A predictability study of Lorenz's 28-variable model as a dynamical system
NASA Technical Reports Server (NTRS)
Krishnamurthy, V.
1993-01-01
The dynamics of error growth in a two-layer nonlinear quasi-geostrophic model has been studied to gain an understanding of the mathematical theory of atmospheric predictability. The growth of random errors of varying initial magnitudes has been studied, and the relation between this classical approach and the concepts of the nonlinear dynamical systems theory has been explored. The local and global growths of random errors have been expressed partly in terms of the properties of an error ellipsoid and the Liapunov exponents determined by linear error dynamics. The local growth of small errors is initially governed by several modes of the evolving error ellipsoid but soon becomes dominated by the longest axis. The average global growth of small errors is exponential with a growth rate consistent with the largest Liapunov exponent. The duration of the exponential growth phase depends on the initial magnitude of the errors. The subsequent large errors undergo a nonlinear growth with a steadily decreasing growth rate and attain saturation that defines the limit of predictability. The degree of chaos and the largest Liapunov exponent show considerable variation with change in the forcing, which implies that the time variation in the external forcing can introduce variable character to the predictability.
Online automatic tuning and control for fed-batch cultivation
van Straten, Gerrit; van der Pol, Leo A.; van Boxtel, Anton J. B.
2007-01-01
Performance of controllers applied in biotechnological production is often below expectation. Online automatic tuning has the capability to improve control performance by adjusting control parameters. This work presents automatic tuning approaches for model reference specific growth rate control during fed-batch cultivation. The approaches are direct methods that use the error between observed specific growth rate and its set point; systematic perturbations of the cultivation are not necessary. Two automatic tuning methods proved to be efficient, in which the adaptation rate is based on a combination of the error, squared error and integral error. These methods are relatively simple and robust against disturbances, parameter uncertainties, and initialization errors. Application of the specific growth rate controller yields a stable system. The controller and automatic tuning methods are qualified by simulations and laboratory experiments with Bordetella pertussis. PMID:18157554
Do Errors on Classroom Reading Tasks Slow Growth in Reading? Technical Report No. 404.
ERIC Educational Resources Information Center
Anderson, Richard C.; And Others
A pervasive finding from research on teaching and classroom learning is that a low rate of error on classroom tasks is associated with large year to year gains in achievement, particularly for reading in the primary grades. The finding of a negative relationship between error rate, especially rate of oral reading errors, and gains in reading…
Counteracting structural errors in ensemble forecast of influenza outbreaks.
Pei, Sen; Shaman, Jeffrey
2017-10-13
For influenza forecasts generated using dynamical models, forecast inaccuracy is partly attributable to the nonlinear growth of error. As a consequence, quantification of the nonlinear error structure in current forecast models is needed so that this growth can be corrected and forecast skill improved. Here, we inspect the error growth of a compartmental influenza model and find that a robust error structure arises naturally from the nonlinear model dynamics. By counteracting these structural errors, diagnosed using error breeding, we develop a new forecast approach that combines dynamical error correction and statistical filtering techniques. In retrospective forecasts of historical influenza outbreaks for 95 US cities from 2003 to 2014, overall forecast accuracy for outbreak peak timing, peak intensity and attack rate, are substantially improved for predicted lead times up to 10 weeks. This error growth correction method can be generalized to improve the forecast accuracy of other infectious disease dynamical models.Inaccuracy of influenza forecasts based on dynamical models is partly due to nonlinear error growth. Here the authors address the error structure of a compartmental influenza model, and develop a new improved forecast approach combining dynamical error correction and statistical filtering techniques.
Effects of uncertainty and variability on population declines and IUCN Red List classifications.
Rueda-Cediel, Pamela; Anderson, Kurt E; Regan, Tracey J; Regan, Helen M
2018-01-22
The International Union for Conservation of Nature (IUCN) Red List Categories and Criteria is a quantitative framework for classifying species according to extinction risk. Population models may be used to estimate extinction risk or population declines. Uncertainty and variability arise in threat classifications through measurement and process error in empirical data and uncertainty in the models used to estimate extinction risk and population declines. Furthermore, species traits are known to affect extinction risk. We investigated the effects of measurement and process error, model type, population growth rate, and age at first reproduction on the reliability of risk classifications based on projected population declines on IUCN Red List classifications. We used an age-structured population model to simulate true population trajectories with different growth rates, reproductive ages and levels of variation, and subjected them to measurement error. We evaluated the ability of scalar and matrix models parameterized with these simulated time series to accurately capture the IUCN Red List classification generated with true population declines. Under all levels of measurement error tested and low process error, classifications were reasonably accurate; scalar and matrix models yielded roughly the same rate of misclassifications, but the distribution of errors differed; matrix models led to greater overestimation of extinction risk than underestimations; process error tended to contribute to misclassifications to a greater extent than measurement error; and more misclassifications occurred for fast, rather than slow, life histories. These results indicate that classifications of highly threatened taxa (i.e., taxa with low growth rates) under criterion A are more likely to be reliable than for less threatened taxa when assessed with population models. Greater scrutiny needs to be placed on data used to parameterize population models for species with high growth rates, particularly when available evidence indicates a potential transition to higher risk categories. © 2018 Society for Conservation Biology.
Impact of SST Anomaly Events over the Kuroshio-Oyashio Extension on the "Summer Prediction Barrier"
NASA Astrophysics Data System (ADS)
Wu, Yujie; Duan, Wansuo
2018-04-01
The "summer prediction barrier" (SPB) of SST anomalies (SSTA) over the Kuroshio-Oyashio Extension (KOE) refers to the phenomenon that prediction errors of KOE-SSTA tend to increase rapidly during boreal summer, resulting in large prediction uncertainties. The fast error growth associated with the SPB occurs in the mature-to-decaying transition phase, which is usually during the August-September-October (ASO) season, of the KOE-SSTA events to be predicted. Thus, the role of KOE-SSTA evolutionary characteristics in the transition phase in inducing the SPB is explored by performing perfect model predictability experiments in a coupled model, indicating that the SSTA events with larger mature-to-decaying transition rates (Category-1) favor a greater possibility of yielding a more significant SPB than those events with smaller transition rates (Category-2). The KOE-SSTA events in Category-1 tend to have more significant anomalous Ekman pumping in their transition phase, resulting in larger prediction errors of vertical oceanic temperature advection associated with the SSTA events. Consequently, Category-1 events possess faster error growth and larger prediction errors. In addition, the anomalous Ekman upwelling (downwelling) in the ASO season also causes SSTA cooling (warming), accelerating the transition rates of warm (cold) KOE-SSTA events. Therefore, the SSTA transition rate and error growth rate are both related with the anomalous Ekman pumping of the SSTA events to be predicted in their transition phase. This may explain why the SSTA events transferring more rapidly from the mature to decaying phase tend to have a greater possibility of yielding a more significant SPB.
Estimation and Simulation of Slow Crack Growth Parameters from Constant Stress Rate Data
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Weaver, Aaron S.
2003-01-01
Closed form, approximate functions for estimating the variances and degrees-of-freedom associated with the slow crack growth parameters n, D, B, and A(sup *) as measured using constant stress rate ('dynamic fatigue') testing were derived by using propagation of errors. Estimates made with the resulting functions and slow crack growth data for a sapphire window were compared to the results of Monte Carlo simulations. The functions for estimation of the variances of the parameters were derived both with and without logarithmic transformation of the initial slow crack growth equations. The transformation was performed to make the functions both more linear and more normal. Comparison of the Monte Carlo results and the closed form expressions derived with propagation of errors indicated that linearization is not required for good estimates of the variances of parameters n and D by the propagation of errors method. However, good estimates variances of the parameters B and A(sup *) could only be made when the starting slow crack growth equation was transformed and the coefficients of variation of the input parameters were not too large. This was partially a result of the skewered distributions of B and A(sup *). Parametric variation of the input parameters was used to determine an acceptable range for using closed form approximate equations derived from propagation of errors.
Inferring time derivatives including cell growth rates using Gaussian processes
NASA Astrophysics Data System (ADS)
Swain, Peter S.; Stevenson, Keiran; Leary, Allen; Montano-Gutierrez, Luis F.; Clark, Ivan B. N.; Vogel, Jackie; Pilizota, Teuta
2016-12-01
Often the time derivative of a measured variable is of as much interest as the variable itself. For a growing population of biological cells, for example, the population's growth rate is typically more important than its size. Here we introduce a non-parametric method to infer first and second time derivatives as a function of time from time-series data. Our approach is based on Gaussian processes and applies to a wide range of data. In tests, the method is at least as accurate as others, but has several advantages: it estimates errors both in the inference and in any summary statistics, such as lag times, and allows interpolation with the corresponding error estimation. As illustrations, we infer growth rates of microbial cells, the rate of assembly of an amyloid fibril and both the speed and acceleration of two separating spindle pole bodies. Our algorithm should thus be broadly applicable.
NASA Astrophysics Data System (ADS)
Contreras, Carlos; Blake, Chris; Poole, Gregory B.; Marin, Felipe
2013-04-01
We use high-resolution N-body simulations to develop a new, flexible empirical approach for measuring the growth rate from redshift-space distortions in the 2-point galaxy correlation function. We quantify the systematic error in measuring the growth rate in a 1 h-3 Gpc3 volume over a range of redshifts, from the dark matter particle distribution and a range of halo-mass catalogues with a number density comparable to the latest large-volume galaxy surveys such as the WiggleZ Dark Energy Survey and the Baryon Oscillation Spectroscopic Survey. Our simulations allow us to span halo masses with bias factors ranging from unity (probed by emission-line galaxies) to more massive haloes hosting luminous red galaxies. We show that the measured growth rate is sensitive to the model adopted for the small-scale real-space correlation function, and in particular that the `standard' assumption of a power-law correlation function can result in a significant systematic error in the growth-rate determination. We introduce a new, empirical fitting function that produces results with a lower (5-10 per cent) amplitude of systematic error. We also introduce a new technique which permits the galaxy pairwise velocity distribution, the quantity which drives the non-linear growth of structure, to be measured as a non-parametric stepwise function. Our (model-independent) results agree well with an exponential pairwise velocity distribution, expected from theoretical considerations, and are consistent with direct measurements of halo velocity differences from the parent catalogues. In a companion paper, we present the application of our new methodology to the WiggleZ Survey data set.
Characterization of Mode 1 and Mode 2 delamination growth and thresholds in graphite/peek composites
NASA Technical Reports Server (NTRS)
Martin, Roderick H.; Murri, Gretchen B.
1988-01-01
Composite materials often fail by delamination. The onset and growth of delamination in AS4/PEEK, a tough thermoplastic matrix composite, was characterized for mode 1 and mode 2 loadings, using the Double Cantilever Beam (DCB) and the End Notched Flexure (ENF) test specimens. Delamination growth per fatigue cycle, da/dN, was related to strain energy release rate, G, by means of a power law. However, the exponents of these power laws were too large for them to be adequately used as a life prediction tool. A small error in the estimated applied loads could lead to large errors in the delamination growth rates. Hence strain energy release rate thresholds, G sub th, below which no delamination would occur were also measured. Mode 1 and 2 threshold G values for no delamination growth were found by monitoring the number of cycles to delamination onset in the DCB and ENF specimens. The maximum applied G for which no delamination growth had occurred until at least 1,000,000 cycles was considered the threshold strain energy release rate. Comments are given on how testing effects, facial interference or delamination front damage, may invalidate the experimental determination of the constants in the expression.
Characterization of Mode I and Mode II delamination growth and thresholds in AS4/PEEK composites
NASA Technical Reports Server (NTRS)
Martin, Roderick H.; Murri, Gretchen Bostaph
1990-01-01
Composite materials often fail by delamination. The onset and growth of delamination in AS4/PEEK, a tough thermoplastic matrix composite, was characterized for mode 1 and mode 2 loadings, using the Double Cantilever Beam (DCB) and the End Notched Flexure (ENF) test specimens. Delamination growth per fatigue cycle, da/dN, was related to strain energy release rate, G, by means of a power law. However, the exponents of these power laws were too large for them to be adequately used as a life prediction tool. A small error in the estimated applied loads could lead to large errors in the delamination growth rates. Hence strain energy release rate thresholds, G sub th, below which no delamination would occur were also measured. Mode 1 and 2 threshold G values for no delamination growth were found by monitoring the number of cycles to delamination onset in the DCB and ENF specimens. The maximum applied G for which no delamination growth had occurred until at least 1,000,000 cycles was considered the threshold strain energy release rate. Comments are given on how testing effects, facial interference or delamination front damage, may invalidate the experimental determination of the constants in the expression.
Mahrooghy, Majid; Yarahmadian, Shantia; Menon, Vineetha; Rezania, Vahid; Tuszynski, Jack A
2015-10-01
Microtubules (MTs) are intra-cellular cylindrical protein filaments. They exhibit a unique phenomenon of stochastic growth and shrinkage, called dynamic instability. In this paper, we introduce a theoretical framework for applying Compressive Sensing (CS) to the sampled data of the microtubule length in the process of dynamic instability. To reduce data density and reconstruct the original signal with relatively low sampling rates, we have applied CS to experimental MT lament length time series modeled as a Dichotomous Markov Noise (DMN). The results show that using CS along with the wavelet transform significantly reduces the recovery errors comparing in the absence of wavelet transform, especially in the low and the medium sampling rates. In a sampling rate ranging from 0.2 to 0.5, the Root-Mean-Squared Error (RMSE) decreases by approximately 3 times and between 0.5 and 1, RMSE is small. We also apply a peak detection technique to the wavelet coefficients to detect and closely approximate the growth and shrinkage of MTs for computing the essential dynamic instability parameters, i.e., transition frequencies and specially growth and shrinkage rates. The results show that using compressed sensing along with the peak detection technique and wavelet transform in sampling rates reduces the recovery errors for the parameters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tropical forecasting - Predictability perspective
NASA Technical Reports Server (NTRS)
Shukla, J.
1989-01-01
Results are presented of classical predictability studies and forecast experiments with observed initial conditions to show the nature of initial error growth and final error equilibration for the tropics and midlatitudes, separately. It is found that the theoretical upper limit of tropical circulation predictability is far less than for midlatitudes. The error growth for a complete general circulation model is compared to a dry version of the same model in which there is no prognostic equation for moisture, and diabatic heat sources are prescribed. It is found that the growth rate of synoptic-scale errors for the dry model is significantly smaller than for the moist model, suggesting that the interactions between dynamics and moist processes are among the important causes of atmospheric flow predictability degradation. Results are then presented of numerical experiments showing that correct specification of the slowly varying boundary condition of SST produces significant improvement in the prediction of time-averaged circulation and rainfall over the tropics.
Spectral Analysis of Forecast Error Investigated with an Observing System Simulation Experiment
NASA Technical Reports Server (NTRS)
Prive, N. C.; Errico, Ronald M.
2015-01-01
The spectra of analysis and forecast error are examined using the observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASAGMAO). A global numerical weather prediction model, the Global Earth Observing System version 5 (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation, is cycled for two months with once-daily forecasts to 336 hours to generate a control case. Verification of forecast errors using the Nature Run as truth is compared with verification of forecast errors using self-analysis; significant underestimation of forecast errors is seen using self-analysis verification for up to 48 hours. Likewise, self analysis verification significantly overestimates the error growth rates of the early forecast, as well as mischaracterizing the spatial scales at which the strongest growth occurs. The Nature Run-verified error variances exhibit a complicated progression of growth, particularly for low wave number errors. In a second experiment, cycling of the model and data assimilation over the same period is repeated, but using synthetic observations with different explicitly added observation errors having the same error variances as the control experiment, thus creating a different realization of the control. The forecast errors of the two experiments become more correlated during the early forecast period, with correlations increasing for up to 72 hours before beginning to decrease.
Wang, Hue-Yu; Wen, Ching-Feng; Chiu, Yu-Hsien; Lee, I-Nong; Kao, Hao-Yun; Lee, I-Chen; Ho, Wen-Hsien
2013-01-01
An adaptive-network-based fuzzy inference system (ANFIS) was compared with an artificial neural network (ANN) in terms of accuracy in predicting the combined effects of temperature (10.5 to 24.5°C), pH level (5.5 to 7.5), sodium chloride level (0.25% to 6.25%) and sodium nitrite level (0 to 200 ppm) on the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. THE ANFIS AND ANN MODELS WERE COMPARED IN TERMS OF SIX STATISTICAL INDICES CALCULATED BY COMPARING THEIR PREDICTION RESULTS WITH ACTUAL DATA: mean absolute percentage error (MAPE), root mean square error (RMSE), standard error of prediction percentage (SEP), bias factor (Bf), accuracy factor (Af), and absolute fraction of variance (R (2)). Graphical plots were also used for model comparison. The learning-based systems obtained encouraging prediction results. Sensitivity analyses of the four environmental factors showed that temperature and, to a lesser extent, NaCl had the most influence on accuracy in predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. The observed effectiveness of ANFIS for modeling microbial kinetic parameters confirms its potential use as a supplemental tool in predictive mycology. Comparisons between growth rates predicted by ANFIS and actual experimental data also confirmed the high accuracy of the Gaussian membership function in ANFIS. Comparisons of the six statistical indices under both aerobic and anaerobic conditions also showed that the ANFIS model was better than all ANN models in predicting the four kinetic parameters. Therefore, the ANFIS model is a valuable tool for quickly predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions.
Wang, Hue-Yu; Wen, Ching-Feng; Chiu, Yu-Hsien; Lee, I-Nong; Kao, Hao-Yun; Lee, I-Chen; Ho, Wen-Hsien
2013-01-01
Background An adaptive-network-based fuzzy inference system (ANFIS) was compared with an artificial neural network (ANN) in terms of accuracy in predicting the combined effects of temperature (10.5 to 24.5°C), pH level (5.5 to 7.5), sodium chloride level (0.25% to 6.25%) and sodium nitrite level (0 to 200 ppm) on the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. Methods The ANFIS and ANN models were compared in terms of six statistical indices calculated by comparing their prediction results with actual data: mean absolute percentage error (MAPE), root mean square error (RMSE), standard error of prediction percentage (SEP), bias factor (Bf), accuracy factor (Af), and absolute fraction of variance (R 2). Graphical plots were also used for model comparison. Conclusions The learning-based systems obtained encouraging prediction results. Sensitivity analyses of the four environmental factors showed that temperature and, to a lesser extent, NaCl had the most influence on accuracy in predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. The observed effectiveness of ANFIS for modeling microbial kinetic parameters confirms its potential use as a supplemental tool in predictive mycology. Comparisons between growth rates predicted by ANFIS and actual experimental data also confirmed the high accuracy of the Gaussian membership function in ANFIS. Comparisons of the six statistical indices under both aerobic and anaerobic conditions also showed that the ANFIS model was better than all ANN models in predicting the four kinetic parameters. Therefore, the ANFIS model is a valuable tool for quickly predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. PMID:23705023
A global perspective of the limits of prediction skill based on the ECMWF ensemble
NASA Astrophysics Data System (ADS)
Zagar, Nedjeljka
2016-04-01
In this talk presents a new model of the global forecast error growth applied to the forecast errors simulated by the ensemble prediction system (ENS) of the ECMWF. The proxy for forecast errors is the total spread of the ECMWF operational ensemble forecasts obtained by the decomposition of the wind and geopotential fields in the normal-mode functions. In this way, the ensemble spread can be quantified separately for the balanced and inertio-gravity (IG) modes for every forecast range. Ensemble reliability is defined for the balanced and IG modes comparing the ensemble spread with the control analysis in each scale. The results show that initial uncertainties in the ECMWF ENS are largest in the tropical large-scale modes and their spatial distribution is similar to the distribution of the short-range forecast errors. Initially the ensemble spread grows most in the smallest scales and in the synoptic range of the IG modes but the overall growth is dominated by the increase of spread in balanced modes in synoptic and planetary scales in the midlatitudes. During the forecasts, the distribution of spread in the balanced and IG modes grows towards the climatological spread distribution characteristic of the analyses. The ENS system is found to be somewhat under-dispersive which is associated with the lack of tropical variability, primarily the Kelvin waves. The new model of the forecast error growth has three fitting parameters to parameterize the initial fast growth and a more slow exponential error growth later on. The asymptotic values of forecast errors are independent of the exponential growth rate. It is found that the asymptotic values of the errors due to unbalanced dynamics are around 10 days while the balanced and total errors saturate in 3 to 4 weeks. Reference: Žagar, N., R. Buizza, and J. Tribbia, 2015: A three-dimensional multivariate modal analysis of atmospheric predictability with application to the ECMWF ensemble. J. Atmos. Sci., 72, 4423-4444.
Liu, Xiaoming; Fu, Yun-Xin; Maxwell, Taylor J.; Boerwinkle, Eric
2010-01-01
It is known that sequencing error can bias estimation of evolutionary or population genetic parameters. This problem is more prominent in deep resequencing studies because of their large sample size n, and a higher probability of error at each nucleotide site. We propose a new method based on the composite likelihood of the observed SNP configurations to infer population mutation rate θ = 4Neμ, population exponential growth rate R, and error rate ɛ, simultaneously. Using simulation, we show the combined effects of the parameters, θ, n, ɛ, and R on the accuracy of parameter estimation. We compared our maximum composite likelihood estimator (MCLE) of θ with other θ estimators that take into account the error. The results show the MCLE performs well when the sample size is large or the error rate is high. Using parametric bootstrap, composite likelihood can also be used as a statistic for testing the model goodness-of-fit of the observed DNA sequences. The MCLE method is applied to sequence data on the ANGPTL4 gene in 1832 African American and 1045 European American individuals. PMID:19952140
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.
1990-01-01
An expurgated upper bound on the event error probability of trellis coded modulation is presented. This bound is used to derive a lower bound on the minimum achievable free Euclidean distance d sub (free) of trellis codes. It is shown that the dominant parameters for both bounds, the expurgated error exponent and the asymptotic d sub (free) growth rate, respectively, can be obtained from the cutoff-rate R sub O of the transmission channel by a simple geometric construction, making R sub O the central parameter for finding good trellis codes. Several constellations are optimized with respect to the bounds.
Luo, Ke; Hong, Sung-Sam; Wang, Jun; Chung, Mi-Ja; Deog-Hwan, Oh
2015-05-01
This study was conducted to develop a predictive model to estimate the growth of Listeria monocytogenes on fresh pork during storage at constant temperatures (5, 10, 15, 20, 25, 30, and 35°C). The Baranyi model was fitted to growth data (log CFU per gram) to calculate the specific growth rate (SGR) and lag time (LT) with a high coefficient of determination (R(2) > 0.98). As expected, SGR increased with a decline in LT with rising temperatures in all samples. Secondary models were then developed to describe the variation of SGR and LT as a function of temperature. Subsequently, the developed models were validated with additional independent growth data collected at 7, 17, 27, and 37°C and from published reports using proportion of relative errors and proportion of standard error of prediction. The proportion of relative errors of the SGR and LT models developed herein were 0.79 and 0.18, respectively. In addition, the standard error of prediction values of the SGR and LT of L. monocytogenes ranged from 25.7 to 33.1% and from 44.92 to 58.44%, respectively. These results suggest that the model developed in this study was capable of predicting the growth of L. monocytogenes under various isothermal conditions.
NASA Astrophysics Data System (ADS)
Judt, Falko
2017-04-01
A tremendous increase in computing power has facilitated the advent of global convection-resolving numerical weather prediction (NWP) models. Although this technological breakthrough allows for the seamless prediction of weather from local to global scales, the predictability of multiscale weather phenomena in these models is not very well known. To address this issue, we conducted a global high-resolution (4-km) predictability experiment using the Model for Prediction Across Scales (MPAS), a state-of-the-art global NWP model developed at the National Center for Atmospheric Research. The goals of this experiment are to investigate error growth from convective to planetary scales and to quantify the intrinsic, scale-dependent predictability limits of atmospheric motions. The globally uniform resolution of 4 km allows for the explicit treatment of organized deep moist convection, alleviating grave limitations of previous predictability studies that either used high-resolution limited-area models or global simulations with coarser grids and cumulus parameterization. Error growth is analyzed within the context of an "identical twin" experiment setup: the error is defined as the difference between a 20-day long "nature run" and a simulation that was perturbed with small-amplitude noise, but is otherwise identical. It is found that in convectively active regions, errors grow by several orders of magnitude within the first 24 h ("super-exponential growth"). The errors then spread to larger scales and begin a phase of exponential growth after 2-3 days when contaminating the baroclinic zones. After 16 days, the globally averaged error saturates—suggesting that the intrinsic limit of atmospheric predictability (in a general sense) is about two weeks, which is in line with earlier estimates. However, error growth rates differ between the tropics and mid-latitudes as well as between the troposphere and stratosphere, highlighting that atmospheric predictability is a complex problem. The comparatively slower error growth in the tropics and in the stratosphere indicates that certain weather phenomena could potentially have longer predictability than currently thought.
Olmez, Hülya Kaptan; Aran, Necla
2005-02-01
Mathematical models describing the growth kinetic parameters (lag phase duration and growth rate) of Bacillus cereus as a function of temperature, pH, sodium lactate and sodium chloride concentrations were obtained in this study. In order to get a residual distribution closer to a normal distribution, the natural logarithm of the growth kinetic parameters were used in modeling. For reasons of parsimony, the polynomial models were reduced to contain only the coefficients significant at a level of p
Nonlinear growth of zonal flows by secondary instability in general magnetic geometry
Plunk, G. G.; Navarro, A. Banon
2017-02-23
Here we present a theory of the nonlinear growth of zonal flows in magnetized plasma turbulence, by the mechanism of secondary instability. The theory is derived for general magnetic geometry, and is thus applicable to both tokamaks and stellarators. The predicted growth rate is shown to compare favorably with nonlinear gyrokinetic simulations, with the error scaling as expected with the small parameter of the theory.
Improving tree age estimates derived from increment cores: a case study of red pine
Shawn Fraver; John B. Bradford; Brian J. Palik
2011-01-01
Accurate tree ages are critical to a range of forestry and ecological studies. However, ring counts from increment cores, if not corrected for the years between the root collar and coring height, can produce sizeable age errors. The magnitude of errors is influenced by both the height at which the core is extracted and the growth rate. We destructively sampled saplings...
Creel, Scott; Creel, Michael
2009-11-01
1. Sampling error in annual estimates of population size creates two widely recognized problems for the analysis of population growth. First, if sampling error is mistakenly treated as process error, one obtains inflated estimates of the variation in true population trajectories (Staples, Taper & Dennis 2004). Second, treating sampling error as process error is thought to overestimate the importance of density dependence in population growth (Viljugrein et al. 2005; Dennis et al. 2006). 2. In ecology, state-space models are used to account for sampling error when estimating the effects of density and other variables on population growth (Staples et al. 2004; Dennis et al. 2006). In econometrics, regression with instrumental variables is a well-established method that addresses the problem of correlation between regressors and the error term, but requires fewer assumptions than state-space models (Davidson & MacKinnon 1993; Cameron & Trivedi 2005). 3. We used instrumental variables to account for sampling error and fit a generalized linear model to 472 annual observations of population size for 35 Elk Management Units in Montana, from 1928 to 2004. We compared this model with state-space models fit with the likelihood function of Dennis et al. (2006). We discuss the general advantages and disadvantages of each method. Briefly, regression with instrumental variables is valid with fewer distributional assumptions, but state-space models are more efficient when their distributional assumptions are met. 4. Both methods found that population growth was negatively related to population density and winter snow accumulation. Summer rainfall and wolf (Canis lupus) presence had much weaker effects on elk (Cervus elaphus) dynamics [though limitation by wolves is strong in some elk populations with well-established wolf populations (Creel et al. 2007; Creel & Christianson 2008)]. 5. Coupled with predictions for Montana from global and regional climate models, our results predict a substantial reduction in the limiting effect of snow accumulation on Montana elk populations in the coming decades. If other limiting factors do not operate with greater force, population growth rates would increase substantially.
Huang, Lihan
2018-05-01
The objective of this study was to investigate the growth kinetics of Clostridium botulinum LNT01, a non-toxigenic mutant of C. botulinum 62A, in cooked ground beef. The spores of C. botulinum LNT01 were inoculated to ground beef and incubated anaerobically under different temperature conditions to observe growth and develop growth curves. A one-step kinetic analysis method was used to analyze the growth curves simultaneously to minimize the global residual error. The data analysis was performed using the USDA IPMP-Global Fit, with the Huang model as the primary model and the cardinal parameters model as the secondary model. The results of data analysis showed that the minimum, optimum, and maximum growth temperatures of this mutant are 11.5, 36.4, and 44.3 °C, and the estimated optimum specific growth rate is 0.633 ln CFU/g per h, or 0.275 log CFU/g per h. The maximum cell density is 7.84 log CFU/g. The models and kinetic parameters were validated using additional isothermal and dynamic growth curves. The resulting residual errors of validation followed a Laplace distribution, with about 60% of the residual errors within ±0.5 log CFU/g of experimental observations, suggesting that the models could predict the growth of C. botulinum LNT01 in ground beef with reasonable accuracy. Comparing with C. perfringens, C. botulinum LNT01 grows at much slower rates and with much longer lag times. Its growth kinetics is also very similar to C. sporogenes in ground beef. The results of computer simulation using kinetic models showed that, while prolific growth of C. perfringens may occur in ground beef during cooling, no growth of C. botulinum LNT01 or C. sporogenes would occur under the same cooling conditions. The models developed in this study may be used for prediction of the growth and risk assessments of proteolytic C. botulinum in cooked meats. Published by Elsevier Ltd.
Mou, D G; Cooney, C L
1983-01-01
To broaden the practicality of on-line growth monitoring and control, its application in fedbatch penicillin fermentation using high corn steep liquor (CSL) concentration (53 g/L) is demonstrated. By employing a calculation method that considers the vagaries of CSL consumption, overall and instantaneous carbon-balancing equations are successfully used to calculate, on-line, the cell concentration and instantaneous specific growth rate in the penicillin production phase. As a consequence, these equations, together with a feedback control strategy, enable the computer control of glucose feed and maintenance of the preselected production-phase growth rate with error less than 0.002 h(-1).
Powell, S M; Ratkowsky, D A; Tamplin, M L
2015-05-01
Most existing models for the spoilage of modified atmosphere packed Atlantic salmon are based on the growth of the spoilage organism Photobacterium phosphoreum. However, there is evidence that this organism is not the specific spoilage organism on salmon produced and packaged in Australia. We developed a predictive model for the growth of bacteria in Australian-produced Atlantic salmon stored under modified atmosphere conditions (30-98% carbon dioxide in nitrogen) at refrigeration temperatures (0-10 °C). As expected, both higher levels of carbon dioxide and lower temperatures decreased the observed growth rates of the total population. A Bělehrádek-type model for growth rate fitted the data best with an acceptably low root mean square error. At low temperatures (∼0 °C) the growth rates in this study were similar to those predicted by other models but at higher temperatures (∼10 °C) the growth rates were significantly lower in the current study. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
System dynamic modelling of industrial growth and landscape ecology in China.
Xu, Jian; Kang, Jian; Shao, Long; Zhao, Tianyu
2015-09-15
With the rapid development of large industrial corridors in China, the landscape ecology of the country is currently being affected. Therefore, in this study, a system dynamic model with multi-dimensional nonlinear dynamic prediction function that considers industrial growth and landscape ecology is developed and verified to allow for more sustainable development. Firstly, relationships between industrial development and landscape ecology in China are examined, and five subsystems are then established: industry, population, urban economy, environment and landscape ecology. The main influencing factors are then examined for each subsystem to establish flow charts connecting those factors. Consequently, by connecting the subsystems, an overall industry growth and landscape ecology model is established. Using actual data and landscape index calculated based on GIS of the Ha-Da-Qi industrial corridor, a typical industrial corridor in China, over the period 2005-2009, the model is validated in terms of historical behaviour, logical structure and future prediction, where for 84.8% of the factors, the error rate of the model is less than 5%, the mean error rate of all factors is 2.96% and the error of the simulation test for the landscape ecology subsystem is less than 2%. Moreover, a model application has been made to consider the changes in landscape indices under four industrial development modes, and the optimal industrial growth plan has been examined for landscape ecological protection through the simulation prediction results over 2015-2020. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cullen, Jared; Lobo, Charlene J; Ford, Michael J; Toth, Milos
2015-09-30
Electron-beam-induced deposition (EBID) is a direct-write chemical vapor deposition technique in which an electron beam is used for precursor dissociation. Here we show that Arrhenius analysis of the deposition rates of nanostructures grown by EBID can be used to deduce the diffusion energies and corresponding preexponential factors of EBID precursor molecules. We explain the limitations of this approach, define growth conditions needed to minimize errors, and explain why the errors increase systematically as EBID parameters diverge from ideal growth conditions. Under suitable deposition conditions, EBID can be used as a localized technique for analysis of adsorption barriers and prefactors.
A Spurious Correlation in an Interpopulation Comparison of Atlantic Salmon Life Histories.
Myers, Ransom A; Hutchings, Jeffrey A
1987-12-01
We tested two hypotheses concerning geographical variation in Atlantic salmon (Salmo salar) life histories: (1) mean age at first reproduction is positively correlated with growth rate at sea and (2) within-population variation in age at first reproduction first increases and then decreases with latitude. Data on growth and age at first reproduction were compiled from 41 populations in eastern North America. Data reliability was checked by a redetermination of ages based on scale examination. The proportion of fish that were incorrectly aged was small (°0.7%); however, aging errors were primarily of one kind; salmon that had previously spawned were misclassified as virgin fish of an older age class. Growth rate at sea was found not to be positively correlated with age at maturation. Schaffer and Elson's (1975) positive correlation between growth and age at first reproduction can be attributed to a subtle statistical artifact caused by aging errors. We also found that within-population variation of age at maturation was not related to latitude. We conclude that tests of life history theories should not assume constancy in life history traits, such as mortality, among populations. © 1987 by the Ecological Society of America.
Model comparison for Escherichia coli growth in pouched food.
Fujikawa, Hiroshi; Yano, Kazuyoshi; Morozumi, Satoshi
2006-06-01
We recently studied the growth characteristics of Escherichia coli cells in pouched mashed potatoes (Fujikawa et al., J. Food Hyg. Soc. Japan, 47, 95-98 (2006)). Using those experimental data, in the present study, we compared a logistic model newly developed by us with the modified Gompertz and the Baranyi models, which are used as growth models worldwide. Bacterial growth curves at constant temperatures in the range of 12 to 34 degrees C were successfully described with the new logistic model, as well as with the other models. The Baranyi gave the least error in cell number and our model gave the least error in the rate constant and the lag period. For dynamic temperature, our model successfully predicted the bacterial growth, whereas the Baranyi model considerably overestimated it. Also, there was a discrepancy between the growth curves described with the differential equations of the Baranyi model and those obtained with DMfit, a software program for Baranyi model fitting. These results indicate that the new logistic model can be used to predict bacterial growth in pouched food.
Mean Bias in Seasonal Forecast Model and ENSO Prediction Error.
Kim, Seon Tae; Jeong, Hye-In; Jin, Fei-Fei
2017-07-20
This study uses retrospective forecasts made using an APEC Climate Center seasonal forecast model to investigate the cause of errors in predicting the amplitude of El Niño Southern Oscillation (ENSO)-driven sea surface temperature variability. When utilizing Bjerknes coupled stability (BJ) index analysis, enhanced errors in ENSO amplitude with forecast lead times are found to be well represented by those in the growth rate estimated by the BJ index. ENSO amplitude forecast errors are most strongly associated with the errors in both the thermocline slope response and surface wind response to forcing over the tropical Pacific, leading to errors in thermocline feedback. This study concludes that upper ocean temperature bias in the equatorial Pacific, which becomes more intense with increasing lead times, is a possible cause of forecast errors in the thermocline feedback and thus in ENSO amplitude.
Huang, Lihan
2016-07-01
Clostridium perfringens type A is a significant public health threat and its spores may germinate, outgrow, and multiply during cooling of cooked meats. This study applies a new C. perfringens growth model in the USDA Integrated Pathogen Modeling Program-Dynamic Prediction (IPMP Dynamic Prediction) Dynamic Prediction to predict the growth from spores of C. perfringens in cooked uncured meat and poultry products using isothermal, dynamic heating, and cooling data reported in the literature. The residual errors of predictions (observation-prediction) are analyzed, and the root-mean-square error (RMSE) calculated. For isothermal and heating profiles, each data point in growth curves is compared. The mean residual errors (MRE) of predictions range from -0.40 to 0.02 Log colony forming units (CFU)/g, with a RMSE of approximately 0.6 Log CFU/g. For cooling, the end point predictions are conservative in nature, with an MRE of -1.16 Log CFU/g for single-rate cooling and -0.66 Log CFU/g for dual-rate cooling. The RMSE is between 0.6 and 0.7 Log CFU/g. Compared with other models reported in the literature, this model makes more accurate and fail-safe predictions. For cooling, the percentage for accurate and fail-safe predictions is between 97.6% and 100%. Under criterion 1, the percentage of accurate predictions is 47.5% for single-rate cooling and 66.7% for dual-rate cooling, while the fail-dangerous predictions are between 0% and 2.4%. This study demonstrates that IPMP Dynamic Prediction can be used by food processors and regulatory agencies as a tool to predict the growth of C. perfringens in uncured cooked meats and evaluate the safety of cooked or heat-treated uncured meat and poultry products exposed to cooling deviations or to develop customized cooling schedules. This study also demonstrates the need for more accurate data collection during cooling. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Allan, Darcey M.; Lonigan, Christopher J.
2014-01-01
Although both the Continuous Performance Test (CPT) and behavior rating scales are used in both practice and research to assess inattentive and hyperactive/impulsive behaviors, the correlations between performance on the CPT and teachers' ratings are typically only small-to-moderate. This study examined trajectories of performance on a low target-frequency visual CPT in a sample of preschool children and how these trajectories were associated with teacher-ratings of problem behaviors (i.e., inattention, hyperactivity/impulsivity [H/I], and oppositional/defiant behavior). Participants included 399 preschool children (Mean age = 56 months; 49.4% female; 73.7% White/Caucasian). An ADHD-rating scale was completed by teachers, and the CPT was completed by the preschoolers. Results showed that children's performance across four temporal blocks on the CPT was not stable across the duration of the task, with error rates generally increasing from initial to later blocks. The predictive relations of teacher-rated problem behaviors to performance trajectories on the CPT were examined using growth curve models. Higher rates of teacher-reported inattention and H/I were uniquely associated with higher rates of initial omission errors and initial commission errors, respectively. Higher rates of teacher-reported overall problem behaviors were associated with increasing rates of omission but not commission errors during the CPT; however, the relation was not specific to one type of problem behavior. The results of this study indicate that the pattern of errors on the CPT in preschool samples is complex and may be determined by multiple behavioral factors. These findings have implications for the interpretation of CPT performance in young children. PMID:25419645
Allan, Darcey M; Lonigan, Christopher J
2015-06-01
Although both the continuous performance test (CPT) and behavior rating scales are used in both practice and research to assess inattentive and hyperactive/impulsive behaviors, the correlations between performance on the CPT and teachers' ratings are typically only small-to-moderate. This study examined trajectories of performance on a low target-frequency visual CPT in a sample of preschool children and how these trajectories were associated with teacher-ratings of problem behaviors (i.e., inattention, hyperactivity/impulsivity [H/I], and oppositional/defiant behavior). Participants included 399 preschool children (mean age = 56 months; 49.4% female; 73.7% White/Caucasian). An attention deficit/hyperactivity disorder (ADHD) rating scale was completed by teachers, and the CPT was completed by the preschoolers. Results showed that children's performance across 4 temporal blocks on the CPT was not stable across the duration of the task, with error rates generally increasing from initial to later blocks. The predictive relations of teacher-rated problem behaviors to performance trajectories on the CPT were examined using growth curve models. Higher rates of teacher-reported inattention and H/I were uniquely associated with higher rates of initial omission errors and initial commission errors, respectively. Higher rates of teacher-reported overall problem behaviors were associated with increasing rates of omission but not commission errors during the CPT; however, the relation was not specific to 1 type of problem behavior. The results of this study indicate that the pattern of errors on the CPT in preschool samples is complex and may be determined by multiple behavioral factors. These findings have implications for the interpretation of CPT performance in young children. (c) 2015 APA, all rights reserved).
Loaiza-Echeverri, A M; Bergmann, J A G; Toral, F L B; Osorio, J P; Carmo, A S; Mendonça, L F; Moustacas, V S; Henry, M
2013-03-15
The objective was to use various nonlinear models to describe scrotal circumference (SC) growth in Guzerat bulls on three farms in the state of Minas Gerais, Brazil. The nonlinear models were: Brody, Logistic, Gompertz, Richards, Von Bertalanffy, and Tanaka, where parameter A is the estimated testis size at maturity, B is the integration constant, k is a maturating index and, for the Richards and Tanaka models, m determines the inflection point. In Tanaka, A is an indefinite size of the testis, and B and k adjust the shape and inclination of the curve. A total of 7410 SC records were obtained every 3 months from 1034 bulls with ages varying between 2 and 69 months (<240 days of age = 159; 241-365 days = 451; 366-550 days = 1443; 551-730 days = 1705; and >731 days = 3652 SC measurements). Goodness of fit was evaluated by coefficients of determination (R(2)), error sum of squares, average prediction error (APE), and mean absolute deviation. The Richards model did not reach the convergence criterion. The R(2) were similar for all models (0.68-0.69). The error sum of squares was lowest for the Tanaka model. All models fit the SC data poorly in the early and late periods. Logistic was the model which best estimated SC in the early phase (based on APE and mean absolute deviation). The Tanaka and Logistic models had the lowest APE between 300 and 1600 days of age. The Logistic model was chosen for analysis of the environmental influence on parameters A and k. Based on absolute growth rate, SC increased from 0.019 cm/d, peaking at 0.025 cm/d between 318 and 435 days of age. Farm, year, and season of birth significantly affected size of adult SC and SC growth rate. An increase in SC adult size (parameter A) was accompanied by decreased SC growth rate (parameter k). In conclusion, SC growth in Guzerat bulls was characterized by an accelerated growth phase, followed by decreased growth; this was best represented by the Logistic model. The inflection point occurred at approximately 376 days of age (mean SC of 17.9 cm). We inferred that early selection of testicular size might result in smaller testes at maturity. Copyright © 2013 Elsevier Inc. All rights reserved.
Tarone, Aaron M; Foran, David R
2008-07-01
Forensic entomologists use blow fly development to estimate a postmortem interval. Although accurate, fly age estimates can be imprecise for older developmental stages and no standard means of assigning confidence intervals exists. Presented here is a method for modeling growth of the forensically important blow fly Lucilia sericata, using generalized additive models (GAMs). Eighteen GAMs were created to predict the extent of juvenile fly development, encompassing developmental stage, length, weight, strain, and temperature data, collected from 2559 individuals. All measures were informative, explaining up to 92.6% of the deviance in the data, though strain and temperature exerted negligible influences. Predictions made with an independent data set allowed for a subsequent examination of error. Estimates using length and developmental stage were within 5% of true development percent during the feeding portion of the larval life cycle, while predictions for postfeeding third instars were less precise, but within expected error.
The Effects of Population Density on Juvenile Growth Rate in White-Tailed Deer
NASA Astrophysics Data System (ADS)
Barr, Brannon; Wolverton, Steve
2014-10-01
Animal body size is driven by habitat quality, food availability, and nutrition. Adult size can relate to birth weight, to length of the ontogenetic growth period, and/or to the rate of growth. Data requirements are high for studying these growth mechanisms, but large datasets exist for some game species. In North America, large harvest datasets exist for white-tailed deer ( Odocoileus virginianus), but such data are collected under a variety of conditions and are generally dismissed for ecological research beyond local population and habitat management. We contend that such data are useful for studying the ecology of white-tailed deer growth and body size when analyzed at ordinal scale. In this paper, we test the response of growth rate to food availability by fitting a logarithmic equation that estimates growth rate only to harvest data from Fort Hood, Texas, and track changes in growth rate over time. Results of this ordinal scale model are compared to previously published models that include additional parameters, such as birth weight and adult weight. It is shown that body size responds to food availability by variation in growth rate. Models that estimate multiple parameters may not work with harvest data because they are prone to error, which renders estimates from complex models too variable to detect interannual changes in growth rate that this ordinal scale model captures. This model can be applied to harvest data, from which inferences about factors that influence animal growth and body size (e.g., habitat quality and nutritional availability) can be drawn.
The effects of population density on juvenile growth rate in white-tailed deer.
Barr, Brannon; Wolverton, Steve
2014-10-01
Animal body size is driven by habitat quality, food availability, and nutrition. Adult size can relate to birth weight, to length of the ontogenetic growth period, and/or to the rate of growth. Data requirements are high for studying these growth mechanisms, but large datasets exist for some game species. In North America, large harvest datasets exist for white-tailed deer (Odocoileus virginianus), but such data are collected under a variety of conditions and are generally dismissed for ecological research beyond local population and habitat management. We contend that such data are useful for studying the ecology of white-tailed deer growth and body size when analyzed at ordinal scale. In this paper, we test the response of growth rate to food availability by fitting a logarithmic equation that estimates growth rate only to harvest data from Fort Hood, Texas, and track changes in growth rate over time. Results of this ordinal scale model are compared to previously published models that include additional parameters, such as birth weight and adult weight. It is shown that body size responds to food availability by variation in growth rate. Models that estimate multiple parameters may not work with harvest data because they are prone to error, which renders estimates from complex models too variable to detect interannual changes in growth rate that this ordinal scale model captures. This model can be applied to harvest data, from which inferences about factors that influence animal growth and body size (e.g., habitat quality and nutritional availability) can be drawn.
Barth, Alfred; Sögner, Leopold; Gnambs, Timo; Kundi, Michael; Reiner, Andreas; Winker, Robert
2011-03-01
To evaluate the association between socioeconomic factors and suicide rates. Analysis of time series of suicide rates, gross domestic product, unemployment rates, labor force participation, and divorce rates of 18 countries are analyzed by the application of panel-vector error correction models. Main outcome measures are the association between the socioeconomic factors and suicide rates. Decreasing economic growth and increasing divorce rates are significantly associated with increasing suicide rates in men. For women, increasing economic growth, increasing unemployment, and increasing divorce rates are significantly associated with increasing suicides. Increasing female labor force participation is associated with decreasing suicides. Socioeconomic factors are associated with suicide rates. However, this relationship differs by sex. The current results provide a strong argument that suicide prevention strategies must include the monitoring of socioeconomic development.
Crack Growth Properties of Sealing Glasses
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Tandon, R.
2008-01-01
The crack growth properties of several sealing glasses were measured using constant stress rate testing in 2% and 95% RH (relative humidity). Crack growth parameters measured in high humidity are systematically smaller (n and B) than those measured in low humidity, and velocities for dry environments are approx. 100x lower than for wet environments. The crack velocity is very sensitivity to small changes in RH at low RH. Confidence intervals on parameters that were estimated from propagation of errors were comparable to those from Monte Carlo simulation.
Rotella, J.J.; Link, W.A.; Nichols, J.D.; Hadley, G.L.; Garrott, R.A.; Proffitt, K.M.
2009-01-01
Much of the existing literature that evaluates the roles of density-dependent and density-independent factors on population dynamics has been called into question in recent years because measurement errors were not properly dealt with in analyses. Using state-space models to account for measurement errors, we evaluated a set of competing models for a 22-year time series of mark-resight estimates of abundance for a breeding population of female Weddell seals (Leptonychotes weddellii) studied in Erebus Bay, Antarctica. We tested for evidence of direct density dependence in growth rates and evaluated whether equilibrium population size was related to seasonal sea-ice extent and the Southern Oscillation Index (SOI). We found strong evidence of negative density dependence in annual growth rates for a population whose estimated size ranged from 438 to 623 females during the study. Based on Bayes factors, a density-dependence-only model was favored over models that also included en! vironmental covariates. According to the favored model, the population had a stationary distribution with a mean of 497 females (SD = 60.5), an expected growth rate of 1.10 (95% credible interval 1.08-1.15) when population size was 441 females, and a rate of 0.90 (95% credible interval 0.87-0.93) for a population of 553 females. A model including effects of SOI did receive some support and indicated a positive relationship between SOI and population size. However, effects of SOI were not large, and including the effect did not greatly reduce our estimate of process variation. We speculate that direct density dependence occurred because rates of adult survival, breeding, and temporary emigration were affected by limitations on per capita food resources and space for parturition and pup-rearing. To improve understanding of the relative roles of various demographic components and their associated vital rates to population growth rate, mark-recapture methods can be applied that incorporate both environmental covariates and the seal abundance estimates that were developed here. An improved understanding of why vital rates change with changing population abundance will only come as we develop a better understanding of the processes affecting marine food resources in the Southern Ocean.
McBirney, Samantha E; Trinh, Kristy; Wong-Beringer, Annie; Armani, Andrea M
2016-10-01
Optical density (OD) measurements are the standard approach used in microbiology for characterizing bacteria concentrations in culture media. OD is based on measuring the optical absorbance of a sample at a single wavelength, and any error will propagate through all calculations, leading to reproducibility issues. Here, we use the conventional OD technique to measure the growth rates of two different species of bacteria, Pseudomonas aeruginosa and Staphylococcus aureus. The same samples are also analyzed over the entire UV-Vis wavelength spectrum, allowing a distinctly different strategy for data analysis to be performed. Specifically, instead of only analyzing a single wavelength, a multi-wavelength normalization process is implemented. When the OD method is used, the detected signal does not follow the log growth curve. In contrast, the multi-wavelength normalization process minimizes the impact of bacteria byproducts and environmental noise on the signal, thereby accurately quantifying growth rates with high fidelity at low concentrations.
Identification of Carbon loss in the production of pilot-scale Carbon nanotube using gauze reactor
NASA Astrophysics Data System (ADS)
Wulan, P. P. D. K.; Purwanto, W. W.; Yeni, N.; Lestari, Y. D.
2018-03-01
Carbon loss more than 65% was the major obstacles in the Carbon Nanotube (CNT) production using gauze pilot scale reactor. The results showed that the initial carbon loss calculation is 27.64%. The calculation of carbon loss, then, takes place with various corrections parameters of: product flow rate error measurement, feed flow rate changes, gas product composition by Gas Chromatography Flame Ionization Detector (GC FID), and the carbon particulate by glass fiber filters. Error of product flow rate due to the measurement with bubble soap gives calculation error of carbon loss for about ± 4.14%. Changes in the feed flow rate due to CNT growth in the reactor reduce carbon loss by 4.97%. The detection of secondary hydrocarbon with GC FID during CNT production process reduces carbon loss by 5.14%. Particulates carried by product stream are very few and merely correct the carbon loss about 0.05%. Taking all the factors into account, the amount of carbon loss within this study is (17.21 ± 4.14)%. Assuming that 4.14% of carbon loss is due to the error measurement of product flow rate, the amount of carbon loss is 13.07%. It means that more than 57% of carbon loss within this study is identified.
NASA Technical Reports Server (NTRS)
Laxmanan, V.
1985-01-01
A critical review of the present dendritic growth theories and models is presented. Mathematically rigorous solutions to dendritic growth are found to rely on an ad hoc assumption that dendrites grow at the maximum possible growth rate. This hypothesis is found to be in error and is replaced by stability criteria which consider the conditions under which a dendrite tip advances in a stable fashion in a liquid. The important elements of a satisfactory model for dendritic solidification are summarized and a theoretically consistent model for dendritic growth under an imposed thermal gradient is proposed and described. The model is based on the modification of an analysis due to Burden and Hunt (1974) and predicts correctly in all respects, the transition from a dendritic to a planar interface at both very low and very large growth rates.
Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty
NASA Astrophysics Data System (ADS)
Ballantyne, A. P.; Andres, R.; Houghton, R.; Stocker, B. D.; Wanninkhof, R.; Anderegg, W.; Cooper, L. A.; DeGrandpre, M.; Tans, P. P.; Miller, J. B.; Alden, C.; White, J. W. C.
2015-04-01
Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of carbon (C) in the atmosphere and ocean; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate errors and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we conclude that the 2σ uncertainties of the atmospheric growth rate have decreased from 1.2 Pg C yr-1 in the 1960s to 0.3 Pg C yr-1 in the 2000s due to an expansion of the atmospheric observation network. The 2σ uncertainties in fossil fuel emissions have increased from 0.3 Pg C yr-1 in the 1960s to almost 1.0 Pg C yr-1 during the 2000s due to differences in national reporting errors and differences in energy inventories. Lastly, while land use emissions have remained fairly constant, their errors still remain high and thus their global C uptake uncertainty is not trivial. Currently, the absolute errors in fossil fuel emissions rival the total emissions from land use, highlighting the extent to which fossil fuels dominate the global C budget. Because errors in the atmospheric growth rate have decreased faster than errors in total emissions have increased, a ~20% reduction in the overall uncertainty of net C global uptake has occurred. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% confident that ocean C uptake has increased over the last 5 decades. Thus, it is clear that arguably one of the most vital ecosystem services currently provided by the biosphere is the continued removal of approximately half of atmospheric CO2 emissions from the atmosphere, although there are certain environmental costs associated with this service, such as the acidification of ocean waters.
Evaluation of a Mysis bioenergetics model
Chipps, S.R.; Bennett, D.H.
2002-01-01
Direct approaches for estimating the feeding rate of the opossum shrimp Mysis relicta can be hampered by variable gut residence time (evacuation rate models) and non-linear functional responses (clearance rate models). Bioenergetics modeling provides an alternative method, but the reliability of this approach needs to be evaluated using independent measures of growth and food consumption. In this study, we measured growth and food consumption for M. relicta and compared experimental results with those predicted from a Mysis bioenergetics model. For Mysis reared at 10??C, model predictions were not significantly different from observed values. Moreover, decomposition of mean square error indicated that 70% of the variation between model predictions and observed values was attributable to random error. On average, model predictions were within 12% of observed values. A sensitivity analysis revealed that Mysis respiration and prey energy density were the most sensitive parameters affecting model output. By accounting for uncertainty (95% CLs) in Mysis respiration, we observed a significant improvement in the accuracy of model output (within 5% of observed values), illustrating the importance of sensitive input parameters for model performance. These findings help corroborate the Mysis bioenergetics model and demonstrate the usefulness of this approach for estimating Mysis feeding rate.
Evaluation of Mycology Laboratory Proficiency Testing
Reilly, Andrew A.; Salkin, Ira F.; McGinnis, Michael R.; Gromadzki, Sally; Pasarell, Lester; Kemna, Maggi; Higgins, Nancy; Salfinger, Max
1999-01-01
Changes over the last decade in overt proficiency testing (OPT) regulations have been ostensibly directed at improving laboratory performance on patient samples. However, the overt (unblinded) format of the tests and regulatory penalties associated with incorrect values allow and encourage laboratorians to take extra precautions with OPT analytes. As a result OPT may measure optimal laboratory performance instead of the intended target of typical performance attained during routine patient testing. This study addresses this issue by evaluating medical mycology OPT and comparing its fungal specimen identification error rates to those obtained in a covert (blinded) proficiency testing (CPT) program. Identifications from 188 laboratories participating in the New York State mycology OPT from 1982 to 1994 were compared with the identifications of the same fungi recovered from patient specimens in 1989 and 1994 as part of the routine procedures of 88 of these laboratories. The consistency in the identification of OPT specimens was sufficient to make accurate predictions of OPT error rates. However, while the error rates in OPT and CPT were similar for Candida albicans, significantly higher error rates were found in CPT for Candida tropicalis, Candida glabrata, and other common pathogenic fungi. These differences may, in part, be due to OPT’s use of ideal organism representatives cultured under optimum growth conditions. This difference, as well as the organism-dependent error rate differences, reflects the limitations of OPT as a means of assessing the quality of routine laboratory performance in medical mycology. PMID:10364601
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-12
... subject to this standard, and corrections to mathematical errors found in the previous ICR. The growth in... most recent labor rates from the Bureau of Labor Statistics in calculating the labor costs. There is a...
Taylor, Gordon T.; Suter, Elizabeth A.; Li, Zhuo Q.; Chow, Stephanie; Stinton, Dallyce; Zaliznyak, Tatiana; Beaupré, Steven R.
2017-01-01
A new method to measure growth rates of individual photoautotrophic cells by combining stable isotope probing (SIP) and single-cell resonance Raman microspectrometry is introduced. This report explores optimal experimental design and the theoretical underpinnings for quantitative responses of Raman spectra to cellular isotopic composition. Resonance Raman spectra of isogenic cultures of the cyanobacterium, Synechococcus sp., grown in 13C-bicarbonate revealed linear covariance between wavenumber (cm−1) shifts in dominant carotenoid Raman peaks and a broad range of cellular 13C fractional isotopic abundance. Single-cell growth rates were calculated from spectra-derived isotopic content and empirical relationships. Growth rates among any 25 cells in a sample varied considerably; mean coefficient of variation, CV, was 29 ± 3% (σ/x¯), of which only ~2% was propagated analytical error. Instantaneous population growth rates measured independently by in vivo fluorescence also varied daily (CV ≈ 53%) and were statistically indistinguishable from single-cell growth rates at all but the lowest levels of cell labeling. SCRR censuses of mixtures prepared from Synechococcus sp. and T. pseudonana (a diatom) populations with varying 13C-content and growth rates closely approximated predicted spectral responses and fractional labeling of cells added to the sample. This approach enables direct microspectrometric interrogation of isotopically- and phylogenetically-labeled cells and detects as little as 3% changes in cellular fractional labeling. This is the first description of a non-destructive technique to measure single-cell photoautotrophic growth rates based on Raman spectroscopy and well-constrained assumptions, while requiring few ancillary measurements. PMID:28824580
DKDP crystal growth controlled by cooling rate
NASA Astrophysics Data System (ADS)
Xie, Xiaoyi; Qi, Hongji; Shao, Jianda
2017-08-01
The performance of deuterated potassium dihydrogen phosphate (DKDP) crystal directly affects beam quality, energy and conversion efficiency in the Inertial Confinement Fusion(ICF)facility, which is related with the initial saturation temperature of solution and the real-time supersaturation during the crystal growth. However, traditional method to measure the saturation temperature is neither efficient nor accurate enough. Besides, the supersaturation is often controlled by experience, which yields the higher error and leads to the instability during the crystal growth. In this paper, DKDP solution with 78% deuteration concentration is crystallized in different temperatures. We study the relation between solubility and temperature of DKDP and fit a theoretical curve with a parabola model. With the model, the measurement of saturation temperature is simplified and the control precision of the cooling rate is improved during the crystal growth, which is beneficial for optimizing the crystal growth process.
Inadvertently programmed bits in Samsung 128 Mbit flash devices: a flaky investigation
NASA Technical Reports Server (NTRS)
Swift, G.
2002-01-01
JPL's X2000 avionics design pioneers new territory by specifying a non-volatile memory (NVM) board based on flash memories. The Samsung 128Mb device chosen was found to demonstrate bit errors (mostly program disturbs) and block-erase failures that increase with cycling. Low temperature, certain pseudo- random patterns, and, probably, higher bias increase the observable bit errors. An experiment was conducted to determine the wearout dependence of the bit errors to 100k cycles at cold temperature using flight-lot devices (some pre-irradiated). The results show an exponential growth rate, a wide part-to-part variation, and some annealing behavior.
Time Course of Visual Extrapolation Accuracy
1995-09-01
The pond and duckweed problem: Three experiments on the misperception of exponential growth . Acta Psychologica 43, 239-251. Wiener, E.L., 1962...random variation in tracker velocity. Both models predicted changes in hit and false alarm rates well, except in a condition where response asymmetries...systematic velocity error in tracking, only random variation in tracker velocity. Both models predicted changes in hit and false alarm rates well
MEASURING ECONOMIC GROWTH FROM OUTER SPACE.
Henderson, J Vernon; Storeygard, Adam; Weil, David N
2012-04-01
GDP growth is often measured poorly for countries and rarely measured at all for cities or subnational regions. We propose a readily available proxy: satellite data on lights at night. We develop a statistical framework that uses lights growth to augment existing income growth measures, under the assumption that measurement error in using observed light as an indicator of income is uncorrelated with measurement error in national income accounts. For countries with good national income accounts data, information on growth of lights is of marginal value in estimating the true growth rate of income, while for countries with the worst national income accounts, the optimal estimate of true income growth is a composite with roughly equal weights. Among poor-data countries, our new estimate of average annual growth differs by as much as 3 percentage points from official data. Lights data also allow for measurement of income growth in sub- and supranational regions. As an application, we examine growth in Sub Saharan African regions over the last 17 years. We find that real incomes in non-coastal areas have grown faster by 1/3 of an annual percentage point than coastal areas; non-malarial areas have grown faster than malarial ones by 1/3 to 2/3 annual percent points; and primate city regions have grown no faster than hinterland areas. Such applications point toward a research program in which "empirical growth" need no longer be synonymous with "national income accounts."
NASA Astrophysics Data System (ADS)
Rivière, G.; Hua, B. L.
2004-10-01
A new perturbation initialization method is used to quantify error growth due to inaccuracies of the forecast model initial conditions in a quasigeostrophic box ocean model describing a wind-driven double gyre circulation. This method is based on recent analytical results on Lagrangian alignment dynamics of the perturbation velocity vector in quasigeostrophic flows. More specifically, it consists in initializing a unique perturbation from the sole knowledge of the control flow properties at the initial time of the forecast and whose velocity vector orientation satisfies a Lagrangian equilibrium criterion. This Alignment-based Initialization method is hereafter denoted as the AI method.In terms of spatial distribution of the errors, we have compared favorably the AI error forecast with the mean error obtained with a Monte-Carlo ensemble prediction. It is shown that the AI forecast is on average as efficient as the error forecast initialized with the leading singular vector for the palenstrophy norm, and significantly more efficient than that for total energy and enstrophy norms. Furthermore, a more precise examination shows that the AI forecast is systematically relevant for all control flows whereas the palenstrophy singular vector forecast leads sometimes to very good scores and sometimes to very bad ones.A principal component analysis at the final time of the forecast shows that the AI mode spatial structure is comparable to that of the first eigenvector of the error covariance matrix for a "bred mode" ensemble. Furthermore, the kinetic energy of the AI mode grows at the same constant rate as that of the "bred modes" from the initial time to the final time of the forecast and is therefore characterized by a sustained phase of error growth. In this sense, the AI mode based on Lagrangian dynamics of the perturbation velocity orientation provides a rationale of the "bred mode" behavior.
NASA Technical Reports Server (NTRS)
Boville, Byron A.; Baumhefner, David P.
1990-01-01
Using an NCAR community climate model, Version I, the forecast error growth and the climate drift resulting from the omission of the upper stratosphere are investigated. In the experiment, the control simulation is a seasonal integration of a medium horizontal general circulation model with 30 levels extending from the surface to the upper mesosphere, while the main experiment uses an identical model, except that only the bottom 15 levels (below 10 mb) are retained. It is shown that both random and systematic errors develop rapidly in the lower stratosphere with some local propagation into the troposphere in the 10-30-day time range. The random growth rate in the troposphere in the case of the altered upper boundary was found to be slightly faster than that for the initial-condition uncertainty alone. However, this is not likely to make a significant impact in operational forecast models, because the initial-condition uncertainty is very large.
Beaulieu, Jeremy M; O'Meara, Brian C; Donoghue, Michael J
2013-09-01
The growth of phylogenetic trees in scope and in size is promising from the standpoint of understanding a wide variety of evolutionary patterns and processes. With trees comprised of larger, older, and globally distributed clades, it is likely that the lability of a binary character will differ significantly among lineages, which could lead to errors in estimating transition rates and the associated inference of ancestral states. Here we develop and implement a new method for identifying different rates of evolution in a binary character along different branches of a phylogeny. We illustrate this approach by exploring the evolution of growth habit in Campanulidae, a flowering plant clade containing some 35,000 species. The distribution of woody versus herbaceous species calls into question the use of traditional models of binary character evolution. The recognition and accommodation of changes in the rate of growth form evolution in different lineages demonstrates, for the first time, a robust picture of growth form evolution across a very large, very old, and very widespread flowering plant clade.
Link, William; Hesed, Kyle Miller
2015-01-01
Knowledge of organisms’ growth rates and ages at sexual maturity is important for conservation efforts and a wide variety of studies in ecology and evolutionary biology. However, these life history parameters may be difficult to obtain from natural populations: individuals encountered may be of unknown age, information on age at sexual maturity may be uncertain and interval-censored, and growth data may include both individual heterogeneity and measurement errors. We analyzed mark–recapture data for Red-backed Salamanders (Plethodon cinereus) to compare sex-specific growth rates and ages at sexual maturity. Aging of individuals was made possible by the use of a von Bertalanffy model of growth, complemented with models for interval-censored and imperfect observations at sexual maturation. Individual heterogeneity in growth was modeled through the use of Gamma processes. Our analysis indicates that female P. cinereus mature earlier and grow more quickly than males, growing to nearly identical asymptotic size distributions as males.
Growth of zinc selenide single crystals by physical vapor transport in microgravity
NASA Technical Reports Server (NTRS)
Rosenberger, Franz
1993-01-01
The goals of this research were the optimization of growth parameters for large (20 mm diameter and length) zinc selenide single crystals with low structural defect density, and the development of a 3-D numerical model for the transport rates to be expected in physical vapor transport under a given set of thermal and geometrical boundary conditions, in order to provide guidance for an advantageous conduct of the growth experiments. In the crystal growth studies, it was decided to exclusively apply the Effusive Ampoule PVT technique (EAPVT) to the growth of ZnSe. In this technique, the accumulation of transport-limiting gaseous components at the growing crystal is suppressed by continuous effusion to vacuum of part of the vapor contents. This is achieved through calibrated leaks in one of the ground joints of the ampoule. Regarding the PVT transport rates, a 3-D spectral code was modified. After introduction of the proper boundary conditions and subroutines for the composition-dependent transport properties, the code reproduced the experimentally determined transport rates for the two cases with strongest convective flux contributions to within the experimental and numerical error.
Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty
Ballantyne, A. P.; Andres, R.; Houghton, R.; ...
2015-04-30
Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of carbon (C) in the atmosphere and ocean; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate errors and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we concludemore » that the 2σ uncertainties of the atmospheric growth rate have decreased from 1.2 Pg C yr ₋1 in the 1960s to 0.3 Pg C yr ₋1 in the 2000s due to an expansion of the atmospheric observation network. The 2σ uncertainties in fossil fuel emissions have increased from 0.3 Pg C yr ₋1 in the 1960s to almost 1.0 Pg C yr ₋1 during the 2000s due to differences in national reporting errors and differences in energy inventories. Lastly, while land use emissions have remained fairly constant, their errors still remain high and thus their global C uptake uncertainty is not trivial. Currently, the absolute errors in fossil fuel emissions rival the total emissions from land use, highlighting the extent to which fossil fuels dominate the global C budget. Because errors in the atmospheric growth rate have decreased faster than errors in total emissions have increased, a ~20% reduction in the overall uncertainty of net C global uptake has occurred. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% confident that ocean C uptake has increased over the last 5 decades. Thus, it is clear that arguably one of the most vital ecosystem services currently provided by the biosphere is the continued removal of approximately half of atmospheric CO 2 emissions from the atmosphere, although there are certain environmental costs associated with this service, such as the acidification of ocean waters.« less
Kinetics and thermodynamics of exonuclease-deficient DNA polymerases
NASA Astrophysics Data System (ADS)
Gaspard, Pierre
2016-04-01
A kinetic theory is developed for exonuclease-deficient DNA polymerases, based on the experimental observation that the rates depend not only on the newly incorporated nucleotide, but also on the previous one, leading to the growth of Markovian DNA sequences from a Bernoullian template. The dependencies on nucleotide concentrations and template sequence are explicitly taken into account. In this framework, the kinetic and thermodynamic properties of DNA replication, in particular, the mean growth velocity, the error probability, and the entropy production are calculated analytically in terms of the rate constants and the concentrations. Theory is compared with numerical simulations for the DNA polymerases of T7 viruses and human mitochondria.
Fanesi, Andrea; Wagner, Heiko; Wilhelm, Christian
2017-02-08
Climate change has a strong impact on phytoplankton communities and water quality. However, the development of robust techniques to assess phytoplankton growth is still in progress. In this study, the growth rate of phytoplankton cells grown at different temperatures was modelled based on conventional physiological traits (e.g. chlorophyll, carbon and photosynthetic parameters) using the partial least square regression (PLSR) algorithm and compared with a new approach combining Fourier transform infrared-spectroscopy and PLSR. In this second model, it is assumed that the macromolecular composition of phytoplankton cells represents an intracellular marker for growth. The models have comparable high predictive power (R 2 > 0.8) and low error in predicting new observations. Interestingly, not all of the predictors present the same weight in the modelling of growth rate. A set of specific parameters, such as non-photochemical fluorescence quenching (NPQ) and the quantum yield of carbon production in the first model, and lipid, protein and carbohydrate contents for the second one, strongly covary with cell growth rate regardless of the taxonomic position of the phytoplankton species investigated. This reflects a set of specific physiological adjustments covarying with growth rate, conserved among taxonomically distant algal species that might be used as guidelines for the improvement of modern primary production models. The high predictive power of both sets of cellular traits for growth rate is of great importance for applied phycological studies. Our approach may find application as a quality control tool for the monitoring of phytoplankton populations in natural communities or in photobioreactors. © 2017 The Author(s).
Chipps, S.R.; Einfalt, L.M.; Wahl, David H.
2000-01-01
We measured growth of age-0 tiger muskellunge as a function of ration size (25, 50, 75, and 100% C(max))and water temperature (7.5-25??C) and compared experimental results with those predicted from a bioenergetic model. Discrepancies between actual and predicted values varied appreciably with water temperature and growth rate. On average, model output overestimated winter consumption rates at 10 and 7.5??C by 113 to 328%, respectively, whereas model predictions in summer and autumn (20-25??C) were in better agreement with actual values (4 to 58%). We postulate that variation in model performance was related to seasonal changes in esocid metabolic rate, which were not accounted for in the bioenergetic model. Moreover, accuracy of model output varied with feeding and growth rate of tiger muskellunge. The model performed poorly for fish fed low rations compared with estimates based on fish fed ad libitum rations and was attributed, in part, to the influence of growth rate on the accuracy of bioenergetic predictions. Based on modeling simulations, we found that errors associated with bioenergetic parameters had more influence on model output when growth rate was low, which is consistent with our observations. In addition, reduced conversion efficiency at high ration levels may contribute to variable model performance, thereby implying that waste losses should be modeled as a function of ration size for esocids. Our findings support earlier field tests of the esocid bioenergetic model and indicate that food consumption is generally overestimated by the model, particularly in winter months and for fish exhibiting low feeding and growth rates.
Wu, Min-Yi; Zhang, Ping; Yang, Wei-Dong; Liu, Jie-Sheng
2006-05-01
The aim of this paper was to learn the effect of long-term intake of Y3+ in drinking water on learning-memory function and growth-development of rats. The rats were fed with water dissolved different level Y3+ (0, 0.534, 53.4, 5340 mg/L) for 6 months, pregnant rate, survive rate, bear rate, variety in weight were calculated, the learning-memory function was observed by step-down test. The results showed that a significantly decrease in electric shock period and an increase in incubation period were observed for the low dose group, in contrast, a significantly increase in electric shock period and error times, and an decreases in weight and survive rate were observed for the high dose group. Y3+ in 0.534 mg/L might improve the function of learning and memory in rats, and that Y3+ in 5340mg/L could restrain both the function of learning-memory functions and growth-development in rats.
Modeling error distributions of growth curve models through Bayesian methods.
Zhang, Zhiyong
2016-06-01
Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is proposed to flexibly model normal and non-normal data through the explicit specification of the error distributions. A simulation study shows when the distribution of the error is correctly specified, one can avoid the loss in the efficiency of standard error estimates. A real example on the analysis of mathematical ability growth data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 is used to show the application of the proposed methods. Instructions and code on how to conduct growth curve analysis with both normal and non-normal error distributions using the the MCMC procedure of SAS are provided.
Your Health Care May Kill You: Medical Errors.
Anderson, James G; Abrahamson, Kathleen
2017-01-01
Recent studies of medical errors have estimated errors may account for as many as 251,000 deaths annually in the United States (U.S)., making medical errors the third leading cause of death. Error rates are significantly higher in the U.S. than in other developed countries such as Canada, Australia, New Zealand, Germany and the United Kingdom (U.K). At the same time less than 10 percent of medical errors are reported. This study describes the results of an investigation of the effectiveness of the implementation of the MEDMARX Medication Error Reporting system in 25 hospitals in Pennsylvania. Data were collected on 17,000 errors reported by participating hospitals over a 12-month period. Latent growth curve analysis revealed that reporting of errors by health care providers increased significantly over the four quarters. At the same time, the proportion of corrective actions taken by the hospitals remained relatively constant over the 12 months. A simulation model was constructed to examine the effect of potential organizational changes resulting from error reporting. Four interventions were simulated. The results suggest that improving patient safety requires more than voluntary reporting. Organizational changes need to be implemented and institutionalized as well.
Predicting thunderstorm evolution using ground-based lightning detection networks
NASA Technical Reports Server (NTRS)
Goodman, Steven J.
1990-01-01
Lightning measurements acquired principally by a ground-based network of magnetic direction finders are used to diagnose and predict the existence, temporal evolution, and decay of thunderstorms over a wide range of space and time scales extending over four orders of magnitude. The non-linear growth and decay of thunderstorms and their accompanying cloud-to-ground lightning activity is described by the three parameter logistic growth model. The growth rate is shown to be a function of the storm size and duration, and the limiting value of the total lightning activity is related to the available energy in the environment. A new technique is described for removing systematic bearing errors from direction finder data where radar echoes are used to constrain site error correction and optimization (best point estimate) algorithms. A nearest neighbor pattern recognition algorithm is employed to cluster the discrete lightning discharges into storm cells and the advantages and limitations of different clustering strategies for storm identification and tracking are examined.
NASA Astrophysics Data System (ADS)
McBirney, Samantha E.; Trinh, Kristy; Wong-Beringer, Annie; Armani, Andrea M.
2017-02-01
One of the fundamental analytical measurements performed in microbiology is monitoring and characterizing cell concentration in culture media. Measurement error will give rise to reproducibility problems in a wide range of applications, from biomanufacturing to basic research. Therefore, it is critical that the generated results are consistent. Single wavelength optical density (OD) measurements have become the preferred approach. Here, we compare the conventional OD600 technique with a multi-wavelength normalized scattering optical spectroscopy method to measure the growth rates of Pseudomonas aeruginosa and Staphylococcus aureus, two of the leading nosocomial pathogens with proven abilities to develop resistance. The multi-wavelength normalization process minimizes the impact of bacteria byproducts and environmental noise on the signal, thereby accurately quantifying growth rates with high fidelity at low concentrations. In contrast, due to poor absorbance and scattering at 600 nm, the classic OD600 measurement method is able to detect bacteria but cannot quantify the growth rate reliably. Our wavelength-normalization protocol to detect bacteria growth rates can be readily and easily adopted by research labs, given that it only requires the use of a standard spectrophotometer and implementation of straightforward data analysis. Measuring and monitoring bacteria growth rates play a critical role in a wide range of settings, spanning from therapeutic design and development to diagnostics and disease prevention. Having a full understanding of the growth cycles of bacteria known to cause severe infections and diseases will lead to a better understanding of the pathogenesis of these illnesses, leading to better treatment and, ultimately, the development of a cure.
MEASURING ECONOMIC GROWTH FROM OUTER SPACE
Henderson, J. Vernon; Storeygard, Adam; Weil, David N.
2013-01-01
GDP growth is often measured poorly for countries and rarely measured at all for cities or subnational regions. We propose a readily available proxy: satellite data on lights at night. We develop a statistical framework that uses lights growth to augment existing income growth measures, under the assumption that measurement error in using observed light as an indicator of income is uncorrelated with measurement error in national income accounts. For countries with good national income accounts data, information on growth of lights is of marginal value in estimating the true growth rate of income, while for countries with the worst national income accounts, the optimal estimate of true income growth is a composite with roughly equal weights. Among poor-data countries, our new estimate of average annual growth differs by as much as 3 percentage points from official data. Lights data also allow for measurement of income growth in sub- and supranational regions. As an application, we examine growth in Sub Saharan African regions over the last 17 years. We find that real incomes in non-coastal areas have grown faster by 1/3 of an annual percentage point than coastal areas; non-malarial areas have grown faster than malarial ones by 1/3 to 2/3 annual percent points; and primate city regions have grown no faster than hinterland areas. Such applications point toward a research program in which “empirical growth” need no longer be synonymous with “national income accounts.” PMID:25067841
Test Method Variability in Slow Crack Growth Properties of Sealing Glasses
NASA Technical Reports Server (NTRS)
Salem, J. A.; Tandon, R.
2010-01-01
The crack growth properties of several sealing glasses were measured by using constant stress rate testing in 2 and 95 percent RH (relative humidity). Crack growth parameters measured in high humidity are systematically smaller (n and B) than those measured in low humidity, and crack velocities for dry environments are 100x lower than for wet environments. The crack velocity is very sensitive to small changes in RH at low RH. Biaxial and uniaxial stress states produced similar parameters. Confidence intervals on crack growth parameters that were estimated from propagation of errors solutions were comparable to those from Monte Carlo simulation. Use of scratch-like and indentation flaws produced similar crack growth parameters when residual stresses were considered.
Earth's dynamo limit of predictability controlled by magnetic dissipation
NASA Astrophysics Data System (ADS)
Lhuillier, Florian; Aubert, Julien; Hulot, Gauthier
2011-08-01
To constrain the forecast horizon of geomagnetic data assimilation, it is of interest to quantify the range of predictability of the geodynamo. Following earlier work in the field of dynamic meteorology, we investigate the sensitivity of numerical dynamos to various perturbations applied to the magnetic, velocity and temperature fields. These perturbations result in some errors, which affect all fields in the same relative way, and grow at the same exponential rate λ=τ-1e, independent of the type and the amplitude of perturbation. Errors produced by the limited resolution of numerical dynamos are also shown to produce a similar amplification, with the same exponential rate. Exploring various possible scaling laws, we demonstrate that the growth rate is mainly proportional to an advection timescale. To better understand the mechanism responsible for the error amplification, we next compare these growth rates with two other dynamo outputs which display a similar dependence on advection: the inverse τ-1SV of the secular-variation timescale, characterizing the secular variation of the observable field produced by these dynamos; and the inverse (τmagdiss)-1 of the magnetic dissipation time, characterizing the rate at which magnetic energy is produced to compensate for Ohmic dissipation in these dynamos. The possible role of viscous dissipation is also discussed via the inverse (τkindiss)-1 of the analogous viscous dissipation time, characterizing the rate at which kinetic energy is produced to compensate for viscous dissipation. We conclude that τe tends to equate τmagdiss for dynamos operating in a turbulent regime with low enough Ekman number, and such that τmagdiss < τkindiss. As these conditions are met in the Earth's outer core, we suggest that τe is controlled by magnetic dissipation, leading to a value τe=τmagdiss≈ 30 yr. We finally discuss the consequences of our results for the practical limit of predictability of the geodynamo.
Nickla, Debora L.; Totonelly, Kristen
2016-01-01
Changes in ocular growth that lead to myopia or hyperopia are associated with alterations in the circadian rhythms in eye growth, choroidal thickness and intraocular pressure in animal models of emmetropization. Recent studies have shown that light at night has deleterious effects on human health, acting via “circadian disruptions” of various diurnal rhythms, including changes in phase or amplitude. The purpose of this study was to determine the effects of brief, 2-hour episodes of light in the middle of the night on the rhythms in axial length and choroidal thickness, and whether these alter eye growth and refractive error in the chick model of myopia. Starting at 2 weeks of age, birds received 2 hours of light between 12:00 am and 2:00 am for 7 days (n=12; total hours of light: 14 hrs). Age-matched controls had a continuous dark night (n=14; 14L/10D). Ocular dimensions were measured using high-frequency A-scan ultrasonography on the first day of the experiment, and again on day 7, at 6-hour intervals, starting at noon (12pm, 6pm, 12am, 6am, 12pm). Measurements during the night were done under a photographic safe-light. These data were used to determine rhythm parameters of phase and amplitude. 2 groups of birds, both experimental (light at night) and control, were measured with ultrasound at various intervals over the course of 4 weeks to determine growth rates. Refractive errors were measured in 6 experimental and 6 control birds at the end of 2 weeks. Eyes of birds in a normal L/D cycle showed sinusoidal 24-hour period diurnal rhythms in axial length and choroid thickness. Light in the middle of the night caused changes in both the rhythms in axial length and choroidal thickness, such that neither could be fit to a sine function having a period of 24 hours. Light caused an acute, transient stimulation in ocular growth rate in the subsequent 6-hour period (12 am to 6 am), that may be responsible for the increased growth rate seen 4 weeks later, and the more myopic refractive error. It also abolished the increase in choroidal thickness that normally occurs between 6 pm and 12 am. We conclude that light at night alters the rhythms in axial length and choroidal thickness in an animal model of eye growth, and that these circadian disruptions might lead to the development of ametropias. These results have implications for the use of light during the night in children. PMID:26970497
Oscar, T P
1999-12-01
Response surface models were developed and validated for effects of temperature (10 to 40 degrees C) and previous growth NaCl (0.5 to 4.5%) on lag time (lambda) and specific growth rate (mu) of Salmonella Typhimurium on cooked chicken breast. Growth curves for model development (n = 55) and model validation (n = 16) were fit to a two-phase linear growth model to obtain lambda and mu of Salmonella Typhimurium on cooked chicken breast. Response surface models for natural logarithm transformations of lambda and mu as a function of temperature and previous growth NaCl were obtained by regression analysis. Both lambda and mu of Salmonella Typhimurium were affected (P < 0.0001) by temperature but not by previous growth NaCl. Models were validated against data not used in their development. Mean absolute relative error of predictions (model accuracy) was 26.6% for lambda and 15.4% for mu. Median relative error of predictions (model bias) was 0.9% for lambda and 5.2% for mu. Results indicated that the models developed provided reliable predictions of lambda and mu of Salmonella Typhimurium on cooked chicken breast within the matrix of conditions modeled. In addition, results indicated that previous growth NaCl (0.5 to 4.5%) was not a major factor affecting subsequent growth kinetics of Salmonella Typhimurium on cooked chicken breast. Thus, inclusion of previous growth NaCl in predictive models may not significantly improve our ability to predict growth of Salmonella spp. on food subjected to temperature abuse.
The compensation of quadrupole errors and space charge effects by using trim quadrupoles
NASA Astrophysics Data System (ADS)
An, YuWen; Wang, Sheng
2011-12-01
The China Spallation Neutron Source (CSNS) accelerators consist of an H-linac and a proton Rapid Cycling Synchrotron (RCS). RCS is designed to accumulate and accelerate proton beam from 80 MeV to 1.6 GeV with a repetition rate of 25 Hz. The main dipole and quadruple magnet will operate in AC mode. Due to the adoption of the resonant power supplies, saturation errors of magnetic field cannot be compensated by power supplies. These saturation errors will disturb the linear optics parameters, such as tunes, beta function and dispersion function. The strong space charge effects will cause emittance growth. The compensation of these effects by using trim quadruples is studied, and the corresponding results are presented.
Huang, Lihan; Hwang, Andy; Phillips, John
2011-10-01
The objective of this work is to develop a mathematical model for evaluating the effect of temperature on the rate of microbial growth. The new mathematical model is derived by combination and modification of the Arrhenius equation and the Eyring-Polanyi transition theory. The new model, suitable for both suboptimal and the entire growth temperature ranges, was validated using a collection of 23 selected temperature-growth rate curves belonging to 5 groups of microorganisms, including Pseudomonas spp., Listeria monocytogenes, Salmonella spp., Clostridium perfringens, and Escherichia coli, from the published literature. The curve fitting is accomplished by nonlinear regression using the Levenberg-Marquardt algorithm. The resulting estimated growth rate (μ) values are highly correlated to the data collected from the literature (R(2) = 0.985, slope = 1.0, intercept = 0.0). The bias factor (B(f) ) of the new model is very close to 1.0, while the accuracy factor (A(f) ) ranges from 1.0 to 1.22 for most data sets. The new model is compared favorably with the Ratkowsky square root model and the Eyring equation. Even with more parameters, the Akaike information criterion, Bayesian information criterion, and mean square errors of the new model are not statistically different from the square root model and the Eyring equation, suggesting that the model can be used to describe the inherent relationship between temperature and microbial growth rates. The results of this work show that the new growth rate model is suitable for describing the effect of temperature on microbial growth rate. Practical Application: Temperature is one of the most significant factors affecting the growth of microorganisms in foods. This study attempts to develop and validate a mathematical model to describe the temperature dependence of microbial growth rate. The findings show that the new model is accurate and can be used to describe the effect of temperature on microbial growth rate in foods. Journal of Food Science © 2011 Institute of Food Technologists® No claim to original US government works.
Herler, Jürgen; Dirnwöber, Markus
2011-10-31
Estimating the impacts of global and local threats on coral reefs requires monitoring reef health and measuring coral growth and calcification rates at different time scales. This has traditionally been mostly performed in short-term experimental studies in which coral fragments were grown in the laboratory or in the field but measured ex situ. Practical techniques in which growth and measurements are performed over the long term in situ are rare. Apart from photographic approaches, weight increment measurements have also been applied. Past buoyant weight measurements under water involved a complicated and little-used apparatus. We introduce a new method that combines previous field and laboratory techniques to measure the buoyant weight of entire, transplanted corals under water. This method uses an electronic balance fitted into an acrylic glass underwater housing and placed atop of an acrylic glass cube. Within this cube, corals transplanted onto artificial bases can be attached to the balance and weighed at predetermined intervals while they continue growth in the field. We also provide a set of simple equations for the volume and weight determinations required to calculate net growth rates. The new technique is highly accurate: low error of weight determinations due to variation of coral density (< 0.08%) and low standard error (< 0.01%) for repeated measurements of the same corals. We outline a transplantation technique for properly preparing corals for such long-term in situ experiments and measurements.
Combining forecast weights: Why and how?
NASA Astrophysics Data System (ADS)
Yin, Yip Chee; Kok-Haur, Ng; Hock-Eam, Lim
2012-09-01
This paper proposes a procedure called forecast weight averaging which is a specific combination of forecast weights obtained from different methods of constructing forecast weights for the purpose of improving the accuracy of pseudo out of sample forecasting. It is found that under certain specified conditions, forecast weight averaging can lower the mean squared forecast error obtained from model averaging. In addition, we show that in a linear and homoskedastic environment, this superior predictive ability of forecast weight averaging holds true irrespective whether the coefficients are tested by t statistic or z statistic provided the significant level is within the 10% range. By theoretical proofs and simulation study, we have shown that model averaging like, variance model averaging, simple model averaging and standard error model averaging, each produces mean squared forecast error larger than that of forecast weight averaging. Finally, this result also holds true marginally when applied to business and economic empirical data sets, Gross Domestic Product (GDP growth rate), Consumer Price Index (CPI) and Average Lending Rate (ALR) of Malaysia.
The control of translational accuracy is a determinant of healthy ageing in yeast
Leadsham, Jane E.; Sauvadet, Aimie; Tarrant, Daniel; Adam, Ilectra S.; Saromi, Kofo; Laun, Peter; Rinnerthaler, Mark; Breitenbach-Koller, Hannelore; Breitenbach, Michael; Tuite, Mick F.; Gourlay, Campbell W.
2017-01-01
Life requires the maintenance of molecular function in the face of stochastic processes that tend to adversely affect macromolecular integrity. This is particularly relevant during ageing, as many cellular functions decline with age, including growth, mitochondrial function and energy metabolism. Protein synthesis must deliver functional proteins at all times, implying that the effects of protein synthesis errors like amino acid misincorporation and stop-codon read-through must be minimized during ageing. Here we show that loss of translational accuracy accelerates the loss of viability in stationary phase yeast. Since reduced translational accuracy also reduces the folding competence of at least some proteins, we hypothesize that negative interactions between translational errors and age-related protein damage together overwhelm the cellular chaperone network. We further show that multiple cellular signalling networks control basal error rates in yeast cells, including a ROS signal controlled by mitochondrial activity, and the Ras pathway. Together, our findings indicate that signalling pathways regulating growth, protein homeostasis and energy metabolism may jointly safeguard accurate protein synthesis during healthy ageing. PMID:28100667
The control of translational accuracy is a determinant of healthy ageing in yeast.
von der Haar, Tobias; Leadsham, Jane E; Sauvadet, Aimie; Tarrant, Daniel; Adam, Ilectra S; Saromi, Kofo; Laun, Peter; Rinnerthaler, Mark; Breitenbach-Koller, Hannelore; Breitenbach, Michael; Tuite, Mick F; Gourlay, Campbell W
2017-01-01
Life requires the maintenance of molecular function in the face of stochastic processes that tend to adversely affect macromolecular integrity. This is particularly relevant during ageing, as many cellular functions decline with age, including growth, mitochondrial function and energy metabolism. Protein synthesis must deliver functional proteins at all times, implying that the effects of protein synthesis errors like amino acid misincorporation and stop-codon read-through must be minimized during ageing. Here we show that loss of translational accuracy accelerates the loss of viability in stationary phase yeast. Since reduced translational accuracy also reduces the folding competence of at least some proteins, we hypothesize that negative interactions between translational errors and age-related protein damage together overwhelm the cellular chaperone network. We further show that multiple cellular signalling networks control basal error rates in yeast cells, including a ROS signal controlled by mitochondrial activity, and the Ras pathway. Together, our findings indicate that signalling pathways regulating growth, protein homeostasis and energy metabolism may jointly safeguard accurate protein synthesis during healthy ageing. © 2017 The Authors.
Revisiting the Estimation of Dinosaur Growth Rates
Myhrvold, Nathan P.
2013-01-01
Previous growth-rate studies covering 14 dinosaur taxa, as represented by 31 data sets, are critically examined and reanalyzed by using improved statistical techniques. The examination reveals that some previously reported results cannot be replicated by using the methods originally reported; results from new methods are in many cases different, in both the quantitative rates and the qualitative nature of the growth, from results in the prior literature. Asymptotic growth curves, which have been hypothesized to be ubiquitous, are shown to provide best fits for only four of the 14 taxa. Possible reasons for non-asymptotic growth patterns are discussed; they include systematic errors in the age-estimation process and, more likely, a bias toward younger ages among the specimens analyzed. Analysis of the data sets finds that only three taxa include specimens that could be considered skeletally mature (i.e., having attained 90% of maximum body size predicted by asymptotic curve fits), and eleven taxa are quite immature, with the largest specimen having attained less than 62% of predicted asymptotic size. The three taxa that include skeletally mature specimens are included in the four taxa that are best fit by asymptotic curves. The totality of results presented here suggests that previous estimates of both maximum dinosaur growth rates and maximum dinosaur sizes have little statistical support. Suggestions for future research are presented. PMID:24358133
NASA Astrophysics Data System (ADS)
Jia, Mei-Hui; Wang, Cheng-Lin; Ren, Bin
2017-07-01
Stress, strain and vibration characteristics of rotor parts should be changed significantly under high acceleration, manufacturing error is one of the most important reason. However, current research on this problem has not been carried out. A rotor with an acceleration of 150,000 g is considered as the objective, the effects of manufacturing errors on rotor mechanical properties and dynamic characteristics are executed by the selection of the key affecting factors. Through the force balance equation of the rotor infinitesimal unit establishment, a theoretical model of stress calculation based on slice method is proposed and established, a formula for the rotor stress at any point derives. A finite element model (FEM) of rotor with holes is established with manufacturing errors. The changes of the stresses and strains of a rotor in parallelism and symmetry errors are analyzed, which verify the validity of the theoretical model. The pre-stressing modal analysis is performed based on the aforementioned static analysis. The key dynamic characteristics are analyzed. The results demonstrated that, as the parallelism and symmetry errors increase, the equivalent stresses and strains of the rotor slowly increase linearly, the highest growth rate does not exceed 4%, the maximum change rate of natural frequency is 0.1%. The rotor vibration mode is not significantly affected. The FEM construction method of the rotor with manufacturing errors can be utilized for the quantitative research on rotor characteristics, which will assist in the active control of rotor component reliability under high acceleration.
NASA Technical Reports Server (NTRS)
Chio, S. R.; Gyekenyesi, J. P.
1999-01-01
A two-dimensional, numerical analysis of slow crack growth (SCG) was performed for brittle materials with finite thickness subjected to constant stress-rate ("dynamic fatigue") loading in flexure. The numerical solution showed that the conventional, simple, one-dimensional analytical solution can be used with a maximum error of about 5% in determining the SCG parameters of a brittle material with the conditions of a normalized thickness (a ratio of specimen thickness to initial crack size) T > 3.3 and of a SCG parameter n > 10. The change in crack shape from semicircular to elliptical configurations was significant particularly at both low stress rate and low T, attributed to predominant difference in stress intensity factor along the crack front. The numerical solution of SCG parameters was supported within the experimental range by the data obtained from constant stress-rate flexural testing for soda-lime glass microslides at ambient temperature.
An audit of the global carbon budget: identifying and reducing sources of uncertainty
NASA Astrophysics Data System (ADS)
Ballantyne, A. P.; Tans, P. P.; Marland, G.; Stocker, B. D.
2012-12-01
Uncertainties in our carbon accounting practices may limit our ability to objectively verify emission reductions on regional scales. Furthermore uncertainties in the global C budget must be reduced to benchmark Earth System Models that incorporate carbon-climate interactions. Here we present an audit of the global C budget where we try to identify sources of uncertainty for major terms in the global C budget. The atmospheric growth rate of CO2 has increased significantly over the last 50 years, while the uncertainty in calculating the global atmospheric growth rate has been reduced from 0.4 ppm/yr to 0.2 ppm/yr (95% confidence). Although we have greatly reduced global CO2 growth rate uncertainties, there remain regions, such as the Southern Hemisphere, Tropics and Arctic, where changes in regional sources/sinks will remain difficult to detect without additional observations. Increases in fossil fuel (FF) emissions are the primary factor driving the increase in global CO2 growth rate; however, our confidence in FF emission estimates has actually gone down. Based on a comparison of multiple estimates, FF emissions have increased from 2.45 ± 0.12 PgC/yr in 1959 to 9.40 ± 0.66 PgC/yr in 2010. Major sources of increasing FF emission uncertainty are increased emissions from emerging economies, such as China and India, as well as subtle differences in accounting practices. Lastly, we evaluate emission estimates from Land Use Change (LUC). Although relative errors in emission estimates from LUC are quite high (2 sigma ~ 50%), LUC emissions have remained fairly constant in recent decades. We evaluate the three commonly used approaches to estimating LUC emissions- Bookkeeping, Satellite Imagery, and Model Simulations- to identify their main sources of error and their ability to detect net emissions from LUC.; Uncertainties in Fossil Fuel Emissions over the last 50 years.
Seasonal to interannual Arctic sea ice predictability in current global climate models
NASA Astrophysics Data System (ADS)
Tietsche, S.; Day, J. J.; Guemas, V.; Hurlin, W. J.; Keeley, S. P. E.; Matei, D.; Msadek, R.; Collins, M.; Hawkins, E.
2014-02-01
We establish the first intermodel comparison of seasonal to interannual predictability of present-day Arctic climate by performing coordinated sets of idealized ensemble predictions with four state-of-the-art global climate models. For Arctic sea ice extent and volume, there is potential predictive skill for lead times of up to 3 years, and potential prediction errors have similar growth rates and magnitudes across the models. Spatial patterns of potential prediction errors differ substantially between the models, but some features are robust. Sea ice concentration errors are largest in the marginal ice zone, and in winter they are almost zero away from the ice edge. Sea ice thickness errors are amplified along the coasts of the Arctic Ocean, an effect that is dominated by sea ice advection. These results give an upper bound on the ability of current global climate models to predict important aspects of Arctic climate.
Modeling the growth of Listeria monocytogenes in mold-ripened cheeses.
Lobacz, Adriana; Kowalik, Jaroslaw; Tarczynska, Anna
2013-06-01
This study presents possible applications of predictive microbiology to model the safety of mold-ripened cheeses with respect to bacteria of the species Listeria monocytogenes during (1) the ripening of Camembert cheese, (2) cold storage of Camembert cheese at temperatures ranging from 3 to 15°C, and (3) cold storage of blue cheese at temperatures ranging from 3 to 15°C. The primary models used in this study, such as the Baranyi model and modified Gompertz function, were fitted to growth curves. The Baranyi model yielded the most accurate goodness of fit and the growth rates generated by this model were used for secondary modeling (Ratkowsky simple square root and polynomial models). The polynomial model more accurately predicted the influence of temperature on the growth rate, reaching the adjusted coefficients of multiple determination 0.97 and 0.92 for Camembert and blue cheese, respectively. The observed growth rates of L. monocytogenes in mold-ripened cheeses were compared with simulations run with the Pathogen Modeling Program (PMP 7.0, USDA, Wyndmoor, PA) and ComBase Predictor (Institute of Food Research, Norwich, UK). However, the latter predictions proved to be consistently overestimated and contained a significant error level. In addition, a validation process using independent data generated in dairy products from the ComBase database (www.combase.cc) was performed. In conclusion, it was found that L. monocytogenes grows much faster in Camembert than in blue cheese. Both the Baranyi and Gompertz models described this phenomenon accurately, although the Baranyi model contained a smaller error. Secondary modeling and further validation of the generated models highlighted the issue of usability and applicability of predictive models in the food processing industry by elaborating models targeted at a specific product or a group of similar products. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Forecasting Financial Extremes: A Network Degree Measure of Super-Exponential Growth.
Yan, Wanfeng; van Tuyll van Serooskerken, Edgar
2015-01-01
Investors in stock market are usually greedy during bull markets and scared during bear markets. The greed or fear spreads across investors quickly. This is known as the herding effect, and often leads to a fast movement of stock prices. During such market regimes, stock prices change at a super-exponential rate and are normally followed by a trend reversal that corrects the previous overreaction. In this paper, we construct an indicator to measure the magnitude of the super-exponential growth of stock prices, by measuring the degree of the price network, generated from the price time series. Twelve major international stock indices have been investigated. Error diagram tests show that this new indicator has strong predictive power for financial extremes, both peaks and troughs. By varying the parameters used to construct the error diagram, we show the predictive power is very robust. The new indicator has a better performance than the LPPL pattern recognition indicator.
Functional approach to high-throughput plant growth analysis
2013-01-01
Method Taking advantage of the current rapid development in imaging systems and computer vision algorithms, we present HPGA, a high-throughput phenotyping platform for plant growth modeling and functional analysis, which produces better understanding of energy distribution in regards of the balance between growth and defense. HPGA has two components, PAE (Plant Area Estimation) and GMA (Growth Modeling and Analysis). In PAE, by taking the complex leaf overlap problem into consideration, the area of every plant is measured from top-view images in four steps. Given the abundant measurements obtained with PAE, in the second module GMA, a nonlinear growth model is applied to generate growth curves, followed by functional data analysis. Results Experimental results on model plant Arabidopsis thaliana show that, compared to an existing approach, HPGA reduces the error rate of measuring plant area by half. The application of HPGA on the cfq mutant plants under fluctuating light reveals the correlation between low photosynthetic rates and small plant area (compared to wild type), which raises a hypothesis that knocking out cfq changes the sensitivity of the energy distribution under fluctuating light conditions to repress leaf growth. Availability HPGA is available at http://www.msu.edu/~jinchen/HPGA. PMID:24565437
Using SAS PROC CALIS to fit Level-1 error covariance structures of latent growth models.
Ding, Cherng G; Jane, Ten-Der
2012-09-01
In the present article, we demonstrates the use of SAS PROC CALIS to fit various types of Level-1 error covariance structures of latent growth models (LGM). Advantages of the SEM approach, on which PROC CALIS is based, include the capabilities of modeling the change over time for latent constructs, measured by multiple indicators; embedding LGM into a larger latent variable model; incorporating measurement models for latent predictors; and better assessing model fit and the flexibility in specifying error covariance structures. The strength of PROC CALIS is always accompanied with technical coding work, which needs to be specifically addressed. We provide a tutorial on the SAS syntax for modeling the growth of a manifest variable and the growth of a latent construct, focusing the documentation on the specification of Level-1 error covariance structures. Illustrations are conducted with the data generated from two given latent growth models. The coding provided is helpful when the growth model has been well determined and the Level-1 error covariance structure is to be identified.
Spatio-temporal error growth in the multi-scale Lorenz'96 model
NASA Astrophysics Data System (ADS)
Herrera, S.; Fernández, J.; Rodríguez, M. A.; Gutiérrez, J. M.
2010-07-01
The influence of multiple spatio-temporal scales on the error growth and predictability of atmospheric flows is analyzed throughout the paper. To this aim, we consider the two-scale Lorenz'96 model and study the interplay of the slow and fast variables on the error growth dynamics. It is shown that when the coupling between slow and fast variables is weak the slow variables dominate the evolution of fluctuations whereas in the case of strong coupling the fast variables impose a non-trivial complex error growth pattern on the slow variables with two different regimes, before and after saturation of fast variables. This complex behavior is analyzed using the recently introduced Mean-Variance Logarithmic (MVL) diagram.
Computer modeling the fatigue crack growth rate behavior of metals in corrosive environments
NASA Technical Reports Server (NTRS)
Richey, Edward, III; Wilson, Allen W.; Pope, Jonathan M.; Gangloff, Richard P.
1994-01-01
The objective of this task was to develop a method to digitize FCP (fatigue crack propagation) kinetics data, generally presented in terms of extensive da/dN-Delta K pairs, to produce a file for subsequent linear superposition or curve-fitting analysis. The method that was developed is specific to the Numonics 2400 Digitablet and is comparable to commercially available software products as Digimatic(sup TM 4). Experiments demonstrated that the errors introduced by the photocopying of literature data, and digitization, are small compared to those inherent in laboratory methods to characterize FCP in benign and aggressive environments. The digitizing procedure was employed to obtain fifteen crack growth rate data sets for several aerospace alloys in aggressive environments.
Large-Eddy Simulation (LES) of a Compressible Mixing Layer and the Significance of Inflow Turbulence
NASA Technical Reports Server (NTRS)
Mankbadi, Mina Reda; Georgiadis, Nicholas J.; Debonis, James R.
2017-01-01
In the context of Large Eddy Simulations (LES), the effects of inflow turbulence are investigated through the Synthetic Eddy Method (SEM). The growth rate of a turbulent compressible mixing layer corresponding to operating conditions of GeobelDutton Case 2 is investigated herein. The effects of spanwise width on the growth rate of the mixing layer is investigated such that spanwise width independence is reached. The error in neglecting inflow turbulence effects is quantified by comparing two methodologies: (1) Hybrid-RANS-LES methodology and (2) SEM-LES methodology. Best practices learned from Case 2 are developed herein and then applied to a higher convective mach number corresponding to Case 4 experiments of GeobelDutton.
Understanding the demographic drivers of realized population growth rates.
Koons, David N; Arnold, Todd W; Schaub, Michael
2017-10-01
Identifying the demographic parameters (e.g., reproduction, survival, dispersal) that most influence population dynamics can increase conservation effectiveness and enhance ecological understanding. Life table response experiments (LTRE) aim to decompose the effects of change in parameters on past demographic outcomes (e.g., population growth rates). But the vast majority of LTREs and other retrospective population analyses have focused on decomposing asymptotic population growth rates, which do not account for the dynamic interplay between population structure and vital rates that shape realized population growth rates (λt=Nt+1/Nt) in time-varying environments. We provide an empirical means to overcome these shortcomings by merging recently developed "transient life-table response experiments" with integrated population models (IPMs). IPMs allow for the estimation of latent population structure and other demographic parameters that are required for transient LTRE analysis, and Bayesian versions additionally allow for complete error propagation from the estimation of demographic parameters to derivations of realized population growth rates and perturbation analyses of growth rates. By integrating available monitoring data for Lesser Scaup over 60 yr, and conducting transient LTREs on IPM estimates, we found that the contribution of juvenile female survival to long-term variation in realized population growth rates was 1.6 and 3.7 times larger than that of adult female survival and fecundity, respectively. But a persistent long-term decline in fecundity explained 92% of the decline in abundance between 1983 and 2006. In contrast, an improvement in adult female survival drove the modest recovery in Lesser Scaup abundance since 2006, indicating that the most important demographic drivers of Lesser Scaup population dynamics are temporally dynamic. In addition to resolving uncertainty about Lesser Scaup population dynamics, the merger of IPMs with transient LTREs will strengthen our understanding of demography for many species as we aim to conserve biodiversity during an era of non-stationary global change. © 2017 by the Ecological Society of America.
Testing and extension of a sea lamprey feeding model
Cochran, Philip A.; Swink, William D.; Kinziger, Andrew P.
1999-01-01
A previous model of feeding by sea lamprey Petromyzon marinus predicted energy intake and growth by lampreys as a function of lamprey size, host size, and duration of feeding attachments, but it was applicable only to lampreys feeding at 10°C and it was tested against only a single small data set of limited scope. We extended the model to other temperatures and tested it against an extensive data set (more than 700 feeding bouts) accumulated during experiments with captive sea lampreys. Model predictions of instantaneous growth were highly correlated with observed growth, and a partitioning of mean squared error between model predictions and observed results showed that 88.5% of the variance was due to random variation rather than to systematic errors. However, deviations between observed and predicted values varied substantially, especially for short feeding bouts. Predicted and observed growth trajectories of individual lampreys during multiple feeding bouts during the summer tended to correspond closely, but predicted growth was generally much higher than observed growth late in the year. This suggests the possibility that large overwintering lampreys reduce their feeding rates while attached to hosts. Seasonal or size-related shifts in the fate of consumed energy may provide an alternative explanation. The lamprey feeding model offers great flexibility in assessing growth of captive lampreys within various experimental protocols (e.g., different host species or thermal regimes) because it controls for individual differences in feeding history.
Studies of soundings and imagings measurements from geostationary satellites
NASA Technical Reports Server (NTRS)
Suomi, V. E.
1973-01-01
Soundings and imaging measurements from geostationary satellites are presented. The subjects discussed are: (1) meteorological data processing techniques, (2) sun glitter, (3) cloud growth rate study, satellite stability characteristics, and (4) high resolution optics. The use of perturbation technique to obtain the motion of sensors aboard a satellite is described. The most conditions, and measurement errors. Several performance evaluation parameters are proposed.
Then, Amy Y.; Hoenig, John M; Hall, Norman G.; Hewitt, David A.
2015-01-01
Many methods have been developed in the last 70 years to predict the natural mortality rate, M, of a stock based on empirical evidence from comparative life history studies. These indirect or empirical methods are used in most stock assessments to (i) obtain estimates of M in the absence of direct information, (ii) check on the reasonableness of a direct estimate of M, (iii) examine the range of plausible M estimates for the stock under consideration, and (iv) define prior distributions for Bayesian analyses. The two most cited empirical methods have appeared in the literature over 2500 times to date. Despite the importance of these methods, there is no consensus in the literature on how well these methods work in terms of prediction error or how their performance may be ranked. We evaluate estimators based on various combinations of maximum age (tmax), growth parameters, and water temperature by seeing how well they reproduce >200 independent, direct estimates of M. We use tenfold cross-validation to estimate the prediction error of the estimators and to rank their performance. With updated and carefully reviewed data, we conclude that a tmax-based estimator performs the best among all estimators evaluated. The tmax-based estimators in turn perform better than the Alverson–Carney method based on tmax and the von Bertalanffy K coefficient, Pauly’s method based on growth parameters and water temperature and methods based just on K. It is possible to combine two independent methods by computing a weighted mean but the improvement over the tmax-based methods is slight. Based on cross-validation prediction error, model residual patterns, model parsimony, and biological considerations, we recommend the use of a tmax-based estimator (M=4.899tmax−0.916">M=4.899t−0.916maxM=4.899tmax−0.916, prediction error = 0.32) when possible and a growth-based method (M=4.118K0.73L∞−0.33">M=4.118K0.73L−0.33∞M=4.118K0.73L∞−0.33 , prediction error = 0.6, length in cm) otherwise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bracco, Jacquelyn N.; Gooijer, Yiscka; Higgins, Steven R.
The rate of growth of ionic minerals from solutions with varying aqueous cation:anion ratios may result in significant errors in mineralization rates predicted by commonly-used affinity-based rate equations. To assess the potential influence of solute stoichiometry on barite growth, step velocities on the barite (001) surface have been measured at 108 °C using hydrothermal atomic force microscopy (HAFM) at moderate supersaturation and as a function of the aqueous barium:sulfate ratio (r). Barite growth hillocks at r ~ 1 were bounded bymore » $$\\langle$$120$$\\rangle$$ steps, however at r < 1, kink site densities increased, steps followed a direction vicinal to $$\\langle$$120$$\\rangle$$, and the [010] steps developed. At r > 1, steps roughened and rounded as the kink site density increased. Step velocities peaked at r = 1 and decreased roughly symmetrically as a function of r, indicating the attachment rates of barium and sulfate ions are similar under these conditions. We hypothesize that the differences in our observations at high and low r arise from differences in the attachment rate constants for the obtuse and acute $$\\langle$$120$$\\rangle$$ steps. Based on results at low r, the data suggests the attachment rate constant for barium ions is similar for obtuse and acute steps. Based on results at high r, the data suggests the attachment rate constant for sulfate is greater for obtuse steps than acute steps. In conclusion, utilizing a step growth model developed by Stack and Grantham (2010) the experimental step velocities as a function of r were readily fit while attempts to fit the data using a model developed by Zhang and Nancollas (1998) were less successful.« less
Bracco, Jacquelyn N.; Gooijer, Yiscka; Higgins, Steven R.
2016-03-19
The rate of growth of ionic minerals from solutions with varying aqueous cation:anion ratios may result in significant errors in mineralization rates predicted by commonly-used affinity-based rate equations. To assess the potential influence of solute stoichiometry on barite growth, step velocities on the barite (001) surface have been measured at 108 °C using hydrothermal atomic force microscopy (HAFM) at moderate supersaturation and as a function of the aqueous barium:sulfate ratio (r). Barite growth hillocks at r ~ 1 were bounded bymore » $$\\langle$$120$$\\rangle$$ steps, however at r < 1, kink site densities increased, steps followed a direction vicinal to $$\\langle$$120$$\\rangle$$, and the [010] steps developed. At r > 1, steps roughened and rounded as the kink site density increased. Step velocities peaked at r = 1 and decreased roughly symmetrically as a function of r, indicating the attachment rates of barium and sulfate ions are similar under these conditions. We hypothesize that the differences in our observations at high and low r arise from differences in the attachment rate constants for the obtuse and acute $$\\langle$$120$$\\rangle$$ steps. Based on results at low r, the data suggests the attachment rate constant for barium ions is similar for obtuse and acute steps. Based on results at high r, the data suggests the attachment rate constant for sulfate is greater for obtuse steps than acute steps. In conclusion, utilizing a step growth model developed by Stack and Grantham (2010) the experimental step velocities as a function of r were readily fit while attempts to fit the data using a model developed by Zhang and Nancollas (1998) were less successful.« less
Rast, Philippe; Hofer, Scott M.
2014-01-01
We investigated the power to detect variances and covariances in rates of change in the context of existing longitudinal studies using linear bivariate growth curve models. Power was estimated by means of Monte Carlo simulations. Our findings show that typical longitudinal study designs have substantial power to detect both variances and covariances among rates of change in a variety of cognitive, physical functioning, and mental health outcomes. We performed simulations to investigate the interplay among number and spacing of occasions, total duration of the study, effect size, and error variance on power and required sample size. The relation between growth rate reliability (GRR) and effect size to the sample size required to detect power ≥ .80 was non-linear, with rapidly decreasing sample sizes needed as GRR increases. The results presented here stand in contrast to previous simulation results and recommendations (Hertzog, Lindenberger, Ghisletta, & von Oertzen, 2006; Hertzog, von Oertzen, Ghisletta, & Lindenberger, 2008; von Oertzen, Ghisletta, & Lindenberger, 2010), which are limited due to confounds between study length and number of waves, error variance with GCR, and parameter values which are largely out of bounds of actual study values. Power to detect change is generally low in the early phases (i.e. first years) of longitudinal studies but can substantially increase if the design is optimized. We recommend additional assessments, including embedded intensive measurement designs, to improve power in the early phases of long-term longitudinal studies. PMID:24219544
Batch growth kinetic studies of locally isolated cyanide-degrading Serratia marcescens strain AQ07.
Karamba, Kabiru Ibrahim; Ahmad, Siti Aqlima; Zulkharnain, Azham; Yasid, Nur Adeela; Ibrahim, Salihu; Shukor, Mohd Yunus
2018-01-01
The evaluation of degradation and growth kinetics of Serratia marcescens strain AQ07 was carried out using three half-order models at all the initial concentrations of cyanide with the values of regression exceeding 0.97. The presence of varying cyanide concentrations reveals that the growth and degradation of bacteria were affected by the increase in cyanide concentration with a total halt at 700 ppm KCN after 72 h incubation. In this study, specific growth and degradation rates were found to trail the substrate inhibition kinetics. These two rates fitted well to the kinetic models of Teissier, Luong, Aiba and Heldane, while the performance of Monod model was found to be unsatisfactory. These models were used to clarify the substrate inhibition on the bacteria growth. The analyses of these models have shown that Luong model has fitted the experimental data with the highest coefficient of determination ( R 2 ) value of 0.9794 and 0.9582 with the lowest root mean square error (RMSE) value of 0.000204 and 0.001, respectively, for the specific rate of degradation and growth. It is the only model that illustrates the maximum substrate concentration ( S m ) of 713.4 and empirical constant ( n ) of 1.516. Tessier and Aiba fitted the experimental data with a R 2 value of 0.8002 and 0.7661 with low RMSE of 0.0006, respectively, for specific biodegradation rate, while having a R 2 value of 0.9 and RMSE of 0.001, respectively, for specific growth rate. Haldane has the lowest R 2 value of 0.67 and 0.78 for specific biodegradation and growth rate with RMSE of 0.0006 and 0.002, respectively. This indicates the level of the bacteria stability in varying concentrations of cyanide and the maximum cyanide concentration it can tolerate within a specific time period. The biokinetic constant predicted from this model demonstrates a good ability of the locally isolated bacteria in cyanide remediation in industrial effluents.
Drug error in paediatric anaesthesia: current status and where to go now.
Anderson, Brian J
2018-06-01
Medication errors in paediatric anaesthesia and the perioperative setting continue to occur despite widespread recognition of the problem and published advice for reduction of this predicament at international, national, local and individual levels. Current literature was reviewed to ascertain drug error rates and to appraise causes and proposed solutions to reduce these errors. The medication error incidence remains high. There is documentation of reduction through identification of causes with consequent education and application of safety analytics and quality improvement programs in anaesthesia departments. Children remain at higher risk than adults because of additional complexities such as drug dose calculations, increased susceptibility to some adverse effects and changes associated with growth and maturation. Major improvements are best made through institutional system changes rather than a commitment to do better on the part of each practitioner. Medication errors in paediatric anaesthesia represent an important risk to children and most are avoidable. There is now an understanding of the genesis of adverse drug events and this understanding should facilitate the implementation of known effective countermeasures. An institution-wide commitment and strategy are the basis for a worthwhile and sustained improvement in medication safety.
The Accuracy of Aggregate Student Growth Percentiles as Indicators of Educator Performance
ERIC Educational Resources Information Center
Castellano, Katherine E.; McCaffrey, Daniel F.
2017-01-01
Mean or median student growth percentiles (MGPs) are a popular measure of educator performance, but they lack rigorous evaluation. This study investigates the error in MGP due to test score measurement error (ME). Using analytic derivations, we find that errors in the commonly used MGP are correlated with average prior latent achievement: Teachers…
Correcting for sequencing error in maximum likelihood phylogeny inference.
Kuhner, Mary K; McGill, James
2014-11-04
Accurate phylogenies are critical to taxonomy as well as studies of speciation processes and other evolutionary patterns. Accurate branch lengths in phylogenies are critical for dating and rate measurements. Such accuracy may be jeopardized by unacknowledged sequencing error. We use simulated data to test a correction for DNA sequencing error in maximum likelihood phylogeny inference. Over a wide range of data polymorphism and true error rate, we found that correcting for sequencing error improves recovery of the branch lengths, even if the assumed error rate is up to twice the true error rate. Low error rates have little effect on recovery of the topology. When error is high, correction improves topological inference; however, when error is extremely high, using an assumed error rate greater than the true error rate leads to poor recovery of both topology and branch lengths. The error correction approach tested here was proposed in 2004 but has not been widely used, perhaps because researchers do not want to commit to an estimate of the error rate. This study shows that correction with an approximate error rate is generally preferable to ignoring the issue. Copyright © 2014 Kuhner and McGill.
Multicenter Assessment of Gram Stain Error Rates.
Samuel, Linoj P; Balada-Llasat, Joan-Miquel; Harrington, Amanda; Cavagnolo, Robert
2016-06-01
Gram stains remain the cornerstone of diagnostic testing in the microbiology laboratory for the guidance of empirical treatment prior to availability of culture results. Incorrectly interpreted Gram stains may adversely impact patient care, and yet there are no comprehensive studies that have evaluated the reliability of the technique and there are no established standards for performance. In this study, clinical microbiology laboratories at four major tertiary medical care centers evaluated Gram stain error rates across all nonblood specimen types by using standardized criteria. The study focused on several factors that primarily contribute to errors in the process, including poor specimen quality, smear preparation, and interpretation of the smears. The number of specimens during the evaluation period ranged from 976 to 1,864 specimens per site, and there were a total of 6,115 specimens. Gram stain results were discrepant from culture for 5% of all specimens. Fifty-eight percent of discrepant results were specimens with no organisms reported on Gram stain but significant growth on culture, while 42% of discrepant results had reported organisms on Gram stain that were not recovered in culture. Upon review of available slides, 24% (63/263) of discrepant results were due to reader error, which varied significantly based on site (9% to 45%). The Gram stain error rate also varied between sites, ranging from 0.4% to 2.7%. The data demonstrate a significant variability between laboratories in Gram stain performance and affirm the need for ongoing quality assessment by laboratories. Standardized monitoring of Gram stains is an essential quality control tool for laboratories and is necessary for the establishment of a quality benchmark across laboratories. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Multicenter Assessment of Gram Stain Error Rates
Balada-Llasat, Joan-Miquel; Harrington, Amanda; Cavagnolo, Robert
2016-01-01
Gram stains remain the cornerstone of diagnostic testing in the microbiology laboratory for the guidance of empirical treatment prior to availability of culture results. Incorrectly interpreted Gram stains may adversely impact patient care, and yet there are no comprehensive studies that have evaluated the reliability of the technique and there are no established standards for performance. In this study, clinical microbiology laboratories at four major tertiary medical care centers evaluated Gram stain error rates across all nonblood specimen types by using standardized criteria. The study focused on several factors that primarily contribute to errors in the process, including poor specimen quality, smear preparation, and interpretation of the smears. The number of specimens during the evaluation period ranged from 976 to 1,864 specimens per site, and there were a total of 6,115 specimens. Gram stain results were discrepant from culture for 5% of all specimens. Fifty-eight percent of discrepant results were specimens with no organisms reported on Gram stain but significant growth on culture, while 42% of discrepant results had reported organisms on Gram stain that were not recovered in culture. Upon review of available slides, 24% (63/263) of discrepant results were due to reader error, which varied significantly based on site (9% to 45%). The Gram stain error rate also varied between sites, ranging from 0.4% to 2.7%. The data demonstrate a significant variability between laboratories in Gram stain performance and affirm the need for ongoing quality assessment by laboratories. Standardized monitoring of Gram stains is an essential quality control tool for laboratories and is necessary for the establishment of a quality benchmark across laboratories. PMID:26888900
Modeling Error Distributions of Growth Curve Models through Bayesian Methods
ERIC Educational Resources Information Center
Zhang, Zhiyong
2016-01-01
Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is…
NASA Astrophysics Data System (ADS)
Healey, S. P.; Zhao, F. R.; McCarter, J. B.; Frescino, T.; Goeking, S.
2017-12-01
International reporting of American forest carbon trends depends upon the Forest Service's nationally consistent network of inventory plots. Plots are measured on a rolling basis over a 5- to 10-year cycle, so estimates related to any variable, including carbon storage, reflect conditions over a 5- to 10-year window. This makes it difficult to identify the carbon impact of discrete events (e.g., a bad fire year; extraction rates related to home-building trends), particularly if the events are recent.We report an approach to make inventory estimates more sensitive to discrete and recent events. We use a growth model (the Forest Vegetation Simulator - FVS) that is maintained by the Forest Service to annually update the tree list for every plot, allowing all plots to contribute to a series of single-year estimates. Satellite imagery from the Landsat platform guides the FVS simulations by providing information about which plots have been disturbed, which are recovering from disturbance, and which are undergoing undisturbed growth. The FVS model is only used to "update" plot tree lists until the next field measurement is made (maximum of 9 years). As a result, predicted changes are usually small and error rates are low. We present a pilot study of this system in Idaho, which has experienced several major fire events in the last decade. Empirical estimates of uncertainty, accounting for both plot sampling error and FVS model error, suggest that this approach greatly increases temporal specificity and sensitivity to discrete events without sacrificing much estimate precision at the level of a US state. This approach has the potential to take better advantage of the Forest Service's rolling plot measurement schedule to report carbon storage in the US, and it offers the basis of a system that might allow near-term, forward-looking analysis of the effects of hypothetical forest disturbance patterns.
NASA Astrophysics Data System (ADS)
Kurniawan, Dian; Suparti; Sugito
2018-05-01
Population growth in Indonesia has increased every year. According to the population census conducted by the Central Bureau of Statistics (BPS) in 2010, the population of Indonesia has reached 237.6 million people. Therefore, to control the population growth rate, the government hold Family Planning or Keluarga Berencana (KB) program for couples of childbearing age. The purpose of this program is to improve the health of mothers and children in order to manifest prosperous society by controlling births while ensuring control of population growth. The data used in this study is the updated family data of Semarang city in 2016 that conducted by National Family Planning Coordinating Board (BKKBN). From these data, classifiers with kernel discriminant analysis will be obtained, and also classification accuracy will be obtained from that method. The result of the analysis showed that normal kernel discriminant analysis gives 71.05 % classification accuracy with 28.95 % classification error. Whereas triweight kernel discriminant analysis gives 73.68 % classification accuracy with 26.32 % classification error. Using triweight kernel discriminant for data preprocessing of family planning participation of childbearing age couples in Semarang City of 2016 can be stated better than with normal kernel discriminant.
Chen, Yen-Po; Prashar, Ankush; Hocking, Paul M; Erichsen, Jonathan T; To, Chi Ho; Schaeffel, Frank; Guggenheim, Jeremy A
2010-02-01
There is considerable variation in the degree of form-deprivation myopia (FDM) induced in chickens by a uniform treatment regimen. Sex and pretreatment eye size have been found to be predictive of the rate of FD-induced eye growth. Therefore, this study was undertaken to test whether the greater rate of myopic eye growth in males is a consequence of their larger eyes or of some other aspect of their sex. Monocular FDM was induced in 4-day-old White Leghorn chicks for 4 days. Changes in ocular component dimensions and refractive error were assessed by A-scan ultrasonography and retinoscopy, respectively. Sex identification of chicks was performed by DNA test. Relationships between traits were assessed by multiple regression. FD produced (mean +/- SD) 13.47 +/- 3.12 D of myopia and 0.47 +/- 0.14 mm of vitreous chamber elongation. The level of induced myopia was not significantly different between the sexes, but the males had larger eyes initially and showed greater myopic eye growth than did the females. In multiple linear regression analysis, the partial correlation between sex and the degree of induced eye growth remained significant (P = 0.008) after adjustment for eye size, whereas the partial correlation between initial eye size and the degree of induced eye growth was no longer significant after adjustment for sex (P = 0.11). After adjustment for other factors, the chicks' sex accounted for 6.4% of the variation in FD-induced vitreous chamber elongation. The sex of the chick influences the rate of experimentally induced myopic eye growth, independent of its effects on eye size.
NASA Astrophysics Data System (ADS)
Huo, Ming-Xia; Li, Ying
2017-12-01
Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.
Uy, Raymonde Charles Y; Kury, Fabricio P; Fontelo, Paul A
2015-01-01
The standard of safe medication practice requires strict observance of the five rights of medication administration: the right patient, drug, time, dose, and route. Despite adherence to these guidelines, medication errors remain a public health concern that has generated health policies and hospital processes that leverage automation and computerization to reduce these errors. Bar code, RFID, biometrics and pharmacy automation technologies have been demonstrated in literature to decrease the incidence of medication errors by minimizing human factors involved in the process. Despite evidence suggesting the effectivity of these technologies, adoption rates and trends vary across hospital systems. The objective of study is to examine the state and adoption trends of automatic identification and data capture (AIDC) methods and pharmacy automation technologies in U.S. hospitals. A retrospective descriptive analysis of survey data from the HIMSS Analytics® Database was done, demonstrating an optimistic growth in the adoption of these patient safety solutions.
A Systematic Approach for Identifying Level-1 Error Covariance Structures in Latent Growth Modeling
ERIC Educational Resources Information Center
Ding, Cherng G.; Jane, Ten-Der; Wu, Chiu-Hui; Lin, Hang-Rung; Shen, Chih-Kang
2017-01-01
It has been pointed out in the literature that misspecification of the level-1 error covariance structure in latent growth modeling (LGM) has detrimental impacts on the inferences about growth parameters. Since correct covariance structure is difficult to specify by theory, the identification needs to rely on a specification search, which,…
The Effect of Data Quality on Short-term Growth Model Projections
David Gartner
2005-01-01
This study was designed to determine the effect of FIA's data quality on short-term growth model projections. The data from Georgia's 1996 statewide survey were used for the Southern variant of the Forest Vegetation Simulator to predict Georgia's first annual panel. The effect of several data error sources on growth modeling prediction errors...
Predictability of CFSv2 in the tropical Indo-Pacific region, at daily and subseasonal time scales
NASA Astrophysics Data System (ADS)
Krishnamurthy, V.
2018-06-01
The predictability of a coupled climate model is evaluated at daily and intraseasonal time scales in the tropical Indo-Pacific region during boreal summer and winter. This study has assessed the daily retrospective forecasts of the Climate Forecast System version 2 from the National Centers of Environmental Prediction for the period 1982-2010. The growth of errors in the forecasts of daily precipitation, monsoon intraseasonal oscillation (MISO) and the Madden-Julian oscillation (MJO) is studied. The seasonal cycle of the daily climatology of precipitation is reasonably well predicted except for the underestimation during the peak of summer. The anomalies follow the typical pattern of error growth in nonlinear systems and show no difference between summer and winter. The initial errors in all the cases are found to be in the nonlinear phase of the error growth. The doubling time of small errors is estimated by applying Lorenz error formula. For summer and winter, the doubling time of the forecast errors is in the range of 4-7 and 5-14 days while the doubling time of the predictability errors is 6-8 and 8-14 days, respectively. The doubling time in MISO during the summer and MJO during the winter is in the range of 12-14 days, indicating higher predictability and providing optimism for long-range prediction. There is no significant difference in the growth of forecasts errors originating from different phases of MISO and MJO, although the prediction of the active phase seems to be slightly better.
Fix success and accuracy of GPS radio collars in old-growth temperate coniferous forests
Sager-Fradkin, Kimberly A.; Jenkins, Kurt J.; Hoffman, Robert L.; Happe, P.; Beecham, J.; Wright, R.G.
2007-01-01
Global Positioning System (GPS) telemetry is used extensively to study animal distribution and resource selection patterns but is susceptible to biases resulting from data omission and spatial inaccuracies. These data errors may cause misinterpretation of wildlife habitat selection or spatial use patterns. We used both stationary test collars and collared free-ranging American black bears (Ursus americanus) to quantify systemic data loss and location error of GPS telemetry in mountainous, old-growth temperate forests of Olympic National Park, Washington, USA. We developed predictive models of environmental factors that influence the probability of obtaining GPS locations and evaluated the ability of weighting factors derived from these models to mitigate data omission biases from collared bears. We also examined the effects of microhabitat on collar fix success rate and examined collar accuracy as related to elevation changes between successive fixes. The probability of collars successfully obtaining location fixes was positively associated with elevation and unobstructed satellite view and was negatively affected by the interaction of overstory canopy and satellite view. Test collars were 33% more successful at acquiring fixes than those on bears. Fix success rates of collared bears varied seasonally and diurnally. Application of weighting factors to individual collared bear fixes recouped only 6% of lost data and failed to reduce seasonal or diurnal variation in fix success, suggesting that variables not included in our model contributed to data loss. Test collars placed to mimic bear bedding sites received 16% fewer fixes than randomly placed collars, indicating that microhabitat selection may contribute to data loss for wildlife equipped with GPS collars. Horizontal collar errors of >800 m occurred when elevation changes between successive fixes were >400 m. We conclude that significant limitations remain in accounting for data loss and error inherent in using GPS telemetry in coniferous forest ecosystems and that, at present, resource selection patterns of large mammals derived from GPS telemetry should be interpreted cautiously.
Technology research for strapdown inertial experiment and digital flight control and guidance
NASA Technical Reports Server (NTRS)
Carestia, R. A.; Cottrell, D. E.
1985-01-01
A helicopter flight-test program to evaluate the performance of Honeywell's Tetrad - a strapdown, laser gyro, inertial navitation system is discussed. The results of 34 flights showed a mean final navigational velocity error of 5.06 knots, with a standard deviation of 3.84 knots; a corresponding mean final position error of 2.66 n.mi., with a standard deviation of 1.48 n.m.; and a modeled mean-position-error growth rate for the 34 tests of 1.96 knots, with a standard deviation of 1.09 knots. Tetrad's four-ring laser gyros provided reliable and accurate angular rate sensing during the test program and on sensor failures were detected during the evaluation. Criteria suitable for investigating cockpit systems in rotorcraft were developed. This criteria led to the development of two basic simulators. The first was a standard simulator which could be used to obtain baseline information for studying pilot workload and interactions. The second was an advanced simulator which integrated the RODAAS developed by Honeywell into this simulator. The second area also included surveying the aerospace industry to determine the level of use and impact of microcomputers and related components on avionics systems.
Flight test results of the strapdown ring laser gyro tetrad inertial navigation system
NASA Technical Reports Server (NTRS)
Carestia, R. A.; Hruby, R. J.; Bjorkman, W. S.
1983-01-01
A helicopter flight test program undertaken to evaluate the performance of Tetrad (a strap down, laser gyro, inertial navigation system) is described. The results of 34 flights show a mean final navigational velocity error of 5.06 knots, with a standard deviation of 3.84 knots; a corresponding mean final position error of 2.66 n. mi., with a standard deviation of 1.48 n. mi.; and a modeled mean position error growth rate for the 34 tests of 1.96 knots, with a standard deviation of 1.09 knots. No laser gyro or accelerometer failures were detected during the flight tests. Off line parity residual studies used simulated failures with the prerecorded flight test and laboratory test data. The airborne Tetrad system's failure--detection logic, exercised during the tests, successfully demonstrated the detection of simulated ""hard'' failures and the system's ability to continue successfully to navigate by removing the simulated faulted sensor from the computations. Tetrad's four ring laser gyros provided reliable and accurate angular rate sensing during the 4 yr of the test program, and no sensor failures were detected during the evaluation of free inertial navigation performance.
Effect of Viscosity on the Crystallization of Undercooled Liquids
NASA Technical Reports Server (NTRS)
2003-01-01
There have been numerous studies of glasses indicating that low-gravity processing enhances glass formation. NASA PI s are investigating the effect of low-g processing on the nucleation and crystal growth rates. Dr. Ethridge is investigating a potential mechanism for glass crystallization involving shear thinning of liquids in 1-g. For shear thinning liquids, low-g (low convection) processing will enhance glass formation. The study of the viscosity of glass forming substances at low shear rates is important to understand these new crystallization mechanisms. The temperature dependence of the viscosity of undercooled liquids is also very important for NASA s containerless processing studies. In general, the viscosity of undercooled liquids is not known, yet knowledge of viscosity is required for crystallization calculations. Many researchers have used the Turnbull equation in error. Subsequent nucleation and crystallization calculations can be in error by many orders of magnitude. This demonstrates the requirement for better methods for interpolating and extrapolating the viscosity of undercooled liquids. This is also true for undercooled water. Since amorphous water ice is the predominant form of water in the universe, astrophysicists have modeled the crystallization of amorphous water ice with viscosity relations that may be in error by five orders-of-magnitude.
NASA Technical Reports Server (NTRS)
Smith, Stephen W.; Seshadri, Banavara R.; Newman, John A.
2015-01-01
The experimental methods to determine near-threshold fatigue crack growth rate data are prescribed in ASTM standard E647. To produce near-threshold data at a constant stress ratio (R), the applied stress-intensity factor (K) is decreased as the crack grows based on a specified K-gradient. Consequently, as the fatigue crack growth rate threshold is approached and the crack tip opening displacement decreases, remote crack wake contact may occur due to the plastically deformed crack wake surfaces and shield the growing crack tip resulting in a reduced crack tip driving force and non-representative crack growth rate data. If such data are used to life a component, the evaluation could yield highly non-conservative predictions. Although this anomalous behavior has been shown to be affected by K-gradient, starting K level, residual stresses, environmental assisted cracking, specimen geometry, and material type, the specifications within the standard to avoid this effect are limited to a maximum fatigue crack growth rate and a suggestion for the K-gradient value. This paper provides parallel experimental and computational simulations for the K-decreasing method for two materials (an aluminum alloy, AA 2024-T3 and a titanium alloy, Ti 6-2-2-2-2) to aid in establishing clear understanding of appropriate testing requirements. These simulations investigate the effect of K-gradient, the maximum value of stress-intensity factor applied, and material type. A material independent term is developed to guide in the selection of appropriate test conditions for most engineering alloys. With the use of such a term, near-threshold fatigue crack growth rate tests can be performed at accelerated rates, near-threshold data can be acquired in days instead of weeks without having to establish testing criteria through trial and error, and these data can be acquired for most engineering materials, even those that are produced in relatively small product forms.
Dynamic predictive model for growth of Salmonella spp. in scrambled egg mix.
Li, Lin; Cepeda, Jihan; Subbiah, Jeyamkondan; Froning, Glenn; Juneja, Vijay K; Thippareddi, Harshavardhan
2017-06-01
Liquid egg products can be contaminated with Salmonella spp. during processing. A dynamic model for the growth of Salmonella spp. in scrambled egg mix - high solids (SEM) was developed and validated. SEM was prepared and inoculated with ca. 2 log CFU/mL of a five serovar Salmonella spp. cocktail. Salmonella spp. growth data at isothermal temperatures (10, 15, 20, 25, 30, 35, 37, 39, 41, 43, 45, and 47 °C) in SEM were collected. Baranyi model was used (primary model) to fit growth data and the maximum growth rate and lag phase duration for each temperature were determined. A secondary model was developed with maximum growth rate as a function of temperature. The model performance measures, root mean squared error (RMSE, 0.09) and pseudo-R 2 (1.00) indicated good fit for both primary and secondary models. A dynamic model was developed by integrating the primary and secondary models and validated using two sinusoidal temperature profiles, 5-15 °C (low temperature) for 480 h and 10-40 °C (high temperature) for 48 h. The RMSE values for the sinusoidal low and high temperature profiles were 0.47 and 0.42 log CFU/mL, respectively. The model can be used to predict Salmonella spp. growth in case of temperature abuse during liquid egg processing. Copyright © 2016. Published by Elsevier Ltd.
Efficiently characterizing the total error in quantum circuits
NASA Astrophysics Data System (ADS)
Carignan-Dugas, Arnaud; Wallman, Joel J.; Emerson, Joseph
A promising technological advancement meant to enlarge our computational means is the quantum computer. Such a device would harvest the quantum complexity of the physical world in order to unfold concrete mathematical problems more efficiently. However, the errors emerging from the implementation of quantum operations are likewise quantum, and hence share a similar level of intricacy. Fortunately, randomized benchmarking protocols provide an efficient way to characterize the operational noise within quantum devices. The resulting figures of merit, like the fidelity and the unitarity, are typically attached to a set of circuit components. While important, this doesn't fulfill the main goal: determining if the error rate of the total circuit is small enough in order to trust its outcome. In this work, we fill the gap by providing an optimal bound on the total fidelity of a circuit in terms of component-wise figures of merit. Our bound smoothly interpolates between the classical regime, in which the error rate grows linearly in the circuit's length, and the quantum regime, which can naturally allow quadratic growth. Conversely, our analysis substantially improves the bounds on single circuit element fidelities obtained through techniques such as interleaved randomized benchmarking. This research was supported by the U.S. Army Research Office through Grant W911NF- 14-1-0103, CIFAR, the Government of Ontario, and the Government of Canada through NSERC and Industry Canada.
NASA Astrophysics Data System (ADS)
Aranha, Renita; Edinger, Evan; Layne, Graham; Piercey, Glenn
2014-01-01
Red tree coral, Primnoa pacifica, is one of the more common habitat-forming deep-sea gorgonian corals in the northeast Pacific Ocean, growing in colonies up to 2 m high and living for decades to hundreds of years. Growth characteristics of P. pacifica were studied in Dixon Entrance, northern British Columbia, and the Olympic Coast National Marine Sanctuary, Washington State, USA, based on samples collected in July 2008. To minimize the impact of scientific sampling on coral populations, only dead coral skeletons and dislodged live corals were collected. Ages and growth rates were measured using band counts, and checked against AMS-14C ages of gorgonin rings. Ba/Ca, Mg/Ca, Na/Ca and Sr/Ca ratios in the calcite cortex were measured using radial Secondary Ion Mass Spectrometer (SIMS) transects with a spot size of <20 μm and separation distance of 25 μm. Growth banding was consistent in width between the central mixed zone consisting of calcite and gorgonin and the dominantly calcite cortex. Average annual radial growth rate of the nine corals analysed ranged from 0.23 to 0.58 mm/yr, with an average growth rate of 0.32 mm/yr in Dixon Entrance and 0.36 m/yr in OCNMS. These growth rates are slightly higher than P. pacifica growth rates from the Gulf of Alaska, and more than four times the growth rates of sister species Primnoa resedaeformis in the northwest Atlantic. Primary productivity is likely a more important driver of geographic variation in Primnoa growth rates than temperature or current strength. Both Dixon Entrance and OCNMS are areas with high primary productivity and strong tidal currents. Lack of post-Atomic Bomb radiocarbon in all but one of the gorgonin samples, and long radiocarbon reservoir ages in the Northeast Pacific, made radiocarbon-based verification of coral ages and growth rates difficult due to wide errors in calibrated age estimates. Mg/Ca and Sr/Ca ratios were inversely correlated in two of the three corals analyzed, and showed evidence of interannual variation. Mg/Ca ratios ranged from 70 to 136 mmol mol-1, and Sr/Ca ratios from 2.041 to 3.14 mmol mol-1. Previously published relationships between gorgonian calcite Mg/Ca and seawater temperature yielded average temperatures matching ambient measurements, but the intra- and inter-annual variation in apparent temperature based on the Mg/Ca ratios was more than double the observed variation in modern seawater temperature ranges in the region. Annual variation in Mg/Ca and Sr/Ca could be related to seasonal changes in precipitation efficiency, which is likely a function of short-term fluctuations in coral growth rate, in turn related to variation in primary productivity. Seasonal and interannual variations in food availability, driven by primary productivity, may affect skeletal growth rate, hence Mg/Ca and Sr/Ca ratios. Primnoid coral skeletal microgeochemistry probably records temporal changes in both temperature and primary productivity.
Re-evaluating alkenone based CO2 estimates
NASA Astrophysics Data System (ADS)
Pagani, M.
2013-05-01
Multi-million year patterns of ocean temperatures and ice accumulation are relatively consistent with reconstructed CO2 records. Existing records allow for broad statements regarding climate sensitivity, but uncertainties in reconstructions can lead to considerable error. For example, alkenone-based CO2 reconstructions assume that diffusion of CO2aq is the dominant source of inorganic carbon for photosynthesis. However, the concentration of CO2aq is the lowest of all dissolved carbon species, constituting <1% of the total inorganic aqueous pool. This poses a problem for sustaining reasonable algal growth rates because the half saturation constant for the enzyme Rubisco, the primary carboxylase involved in algal photosythesis, is commonly higher than the average concentration of seawater CO2aq. That is, the concentration of CO2aq in the modern ocean is too low to maintain adequate reactions rates for Rubisco, and thus, algal growth. In order to maintain algal growth rates, most modern algae have strategies to increase intercellular CO2 concentrations. But, if such strategies were prevalent for alkenone-producing algae in the past, CO2 reconstructions could be compromised. This presentation will assess time periods when carbon-concentration strategies were potentially in play and consequences for existing CO2 records.
A bayesian approach to classification criteria for spectacled eiders
Taylor, B.L.; Wade, P.R.; Stehn, R.A.; Cochrane, J.F.
1996-01-01
To facilitate decisions to classify species according to risk of extinction, we used Bayesian methods to analyze trend data for the Spectacled Eider, an arctic sea duck. Trend data from three independent surveys of the Yukon-Kuskokwim Delta were analyzed individually and in combination to yield posterior distributions for population growth rates. We used classification criteria developed by the recovery team for Spectacled Eiders that seek to equalize errors of under- or overprotecting the species. We conducted both a Bayesian decision analysis and a frequentist (classical statistical inference) decision analysis. Bayesian decision analyses are computationally easier, yield basically the same results, and yield results that are easier to explain to nonscientists. With the exception of the aerial survey analysis of the 10 most recent years, both Bayesian and frequentist methods indicated that an endangered classification is warranted. The discrepancy between surveys warrants further research. Although the trend data are abundance indices, we used a preliminary estimate of absolute abundance to demonstrate how to calculate extinction distributions using the joint probability distributions for population growth rate and variance in growth rate generated by the Bayesian analysis. Recent apparent increases in abundance highlight the need for models that apply to declining and then recovering species.
Mechanoregulation of clathrin-mediated endocytosis in isolated cells and developing tissues
NASA Astrophysics Data System (ADS)
Kural, Comert
Clathrin-coated assemblies bear the largest fraction of the endocytic load from the plasma membrane of eukaryotic cells. However, dynamics of clathrin-mediated endocytosis (CME) have not been established within tissues of multicellular organisms due to experimental and analytical bottlenecks in determining the lifespan of clathrin-coated structures. We found that clathrin coat growth rates obtained from fluorescence microscopy acquisitions can be utilized as reporters of CME dynamics. Growth rates can be assembled within time windows shorter than the average clathrin coat lifetime and, thereby, allow probing the changes in CME dynamics in real time. Furthermore, this novel approach is applicable to tissues as it is not prone to particle detection and tracking errors, which result in underestimation of the clathrin coat lifetimes. Exploiting these advantages, we detected spatial and temporal changes in CME dynamics within Drosophila amnioserosa tissues at different stages of embryo development. We also found that increased membrane tension impedes CME through inhibition of formation and dissolution of clathrin-coated structures. Therefore, the parameters defining clathrin coat dynamics (i.e., lifetime, formation density and growth rates) can be utilized to monitor the spatiotemporal gradients of the plasma membrane tension during cell migration and spreading.
Moustakas, Aristides; Evans, Matthew R
2015-02-28
Plant survival is a key factor in forest dynamics and survival probabilities often vary across life stages. Studies specifically aimed at assessing tree survival are unusual and so data initially designed for other purposes often need to be used; such data are more likely to contain errors than data collected for this specific purpose. We investigate the survival rates of ten tree species in a dataset designed to monitor growth rates. As some individuals were not included in the census at some time points we use capture-mark-recapture methods both to allow us to account for missing individuals, and to estimate relocation probabilities. Growth rates, size, and light availability were included as covariates in the model predicting survival rates. The study demonstrates that tree mortality is best described as constant between years and size-dependent at early life stages and size independent at later life stages for most species of UK hardwood. We have demonstrated that even with a twenty-year dataset it is possible to discern variability both between individuals and between species. Our work illustrates the potential utility of the method applied here for calculating plant population dynamics parameters in time replicated datasets with small sample sizes and missing individuals without any loss of sample size, and including explanatory covariates.
Development of a Work Control System for Propulsion Testing at NASA Stennis
NASA Technical Reports Server (NTRS)
Messer, Elizabeth A.
2005-01-01
This paper will explain the requirements and steps taken to develop the current Propulsion Test Directorate electronic work control system for Test Operations. The PTD Work Control System includes work authorization and technical instruction documents, such as test preparation sheets, discrepancy reports, test requests, pre-test briefing reports, and other test operations supporting tools. The environment that existed in the E-Complex test areas in the late 1990's was one of enormous growth which brought people of diverse backgrounds together for the sole purpose of testing propulsion hardware. The problem that faced us was that these newly formed teams did not have a consistent and clearly understood method for writing, performing or verifying work. A paper system was developed that would allow the teams to use the same forms, but this still presented problems in the large amount of errors occurring, such as lost paperwork and inconsistent implementation. In a sampling of errors in August 1999, the paper work control system encountered 250 errors out of 230 documents released and completed, for an error rate of 111%.
Coordinated Changes in Mutation and Growth Rates Induced by Genome Reduction.
Nishimura, Issei; Kurokawa, Masaomi; Liu, Liu; Ying, Bei-Wen
2017-07-05
Genome size is determined during evolution, but it can also be altered by genetic engineering in laboratories. The systematic characterization of reduced genomes provides valuable insights into the cellular properties that are quantitatively described by the global parameters related to the dynamics of growth and mutation. In the present study, we analyzed a small collection of W3110 Escherichia coli derivatives containing either the wild-type genome or reduced genomes of various lengths to examine whether the mutation rate, a global parameter representing genomic plasticity, was affected by genome reduction. We found that the mutation rates of these cells increased with genome reduction. The correlation between genome length and mutation rate, which has been reported for the evolution of bacteria, was also identified, intriguingly, for genome reduction. Gene function enrichment analysis indicated that the deletion of many of the genes encoding membrane and transport proteins play a role in the mutation rate changes mediated by genome reduction. Furthermore, the increase in the mutation rate with genome reduction was highly associated with a decrease in the growth rate in a nutrition-dependent manner; thus, poorer media showed a larger change that was of higher significance. This negative correlation was strongly supported by experimental evidence that the serial transfer of the reduced genome improved the growth rate and reduced the mutation rate to a large extent. Taken together, the global parameters corresponding to the genome, growth, and mutation showed a coordinated relationship, which might be an essential working principle for balancing the cellular dynamics appropriate to the environment. IMPORTANCE Genome reduction is a powerful approach for investigating the fundamental rules for living systems. Whether genetically disturbed genomes have any specific properties that are different from or similar to those of natively evolved genomes has been under investigation. In the present study, we found that Escherichia coli cells with reduced genomes showed accelerated nucleotide substitution errors (mutation rates), although these cells retained the normal DNA mismatch repair systems. Intriguingly, this finding of correlation between reduced genome size and a higher mutation rate was consistent with the reported evolution of mutation rates. Furthermore, the increased mutation rate was quantitatively associated with a decreased growth rate, indicating that the global parameters related to the genome, growth, and mutation, which represent the amount of genetic information, the efficiency of propagation, and the fidelity of replication, respectively, are dynamically coordinated. Copyright © 2017 Nishimura et al.
Yogendrarajah, Pratheeba; Vermeulen, An; Jacxsens, Liesbeth; Mavromichali, Evangelia; De Saeger, Sarah; De Meulenaer, Bruno; Devlieghere, Frank
2016-07-02
The growth and mycotoxin production of three Aspergillus flavus isolates and an Aspergillus parasiticus isolate were studied in whole black peppercorns (Piper nigrum L.) using a full factorial design with seven water activity (aw) (0.826-0.984) levels and three temperatures (22, 30 and 37°C). Growth rates and lag phases were estimated using linear regression. Diverse secondary models were assessed for their ability to describe the radial growth rate as a function of individual and combined effect of aw and temperature. Optimum radial growth rate ranged from 0.75±0.04 to 2.65±0.02mm/day for A. flavus and 1.77±0.10 to 2.50±0.10mm/day for A. parasiticus based on the Rosso cardinal estimations. Despite the growth failure of some isolates at marginal conditions, all the studied models showed good performance to predict the growth rates. Validation of the models was performed on independently derived data. The bias factors (0.73-1.03), accuracy factors (0.97-1.36) and root mean square error (0.050-0.278) show that the examined models are conservative predictors of the colony growth rate of both fungal species in black peppers. The Rosso cardinal model can be recommended to describe the individual aw effect while the extended Gibson model was the best model for describing the combined effect of aw and temperature on the growth rate of both fungal species in peppercorns. Temperature optimum ranged from 30 to 33°C, while aw optimum was 0.87-0.92 as estimated by multi-factorial cardinal model for both species. The estimated minimum temperature and aw for A. flavus and A. parasiticus for growth were 11-16°C and 0.73-0.76, respectively, hence, achieving these conditions should be considered during storage to prevent the growth of these mycotoxigenic fungal species in black peppercorns. Following the growth study, production of mycotoxins (aflatoxins B1, B2, G1, G2, sterigmatocystin and O-methyl sterigmatocystin (OMST)) was quantified using LC-MS/MS. Very small quantities of AFB1 (
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Laurence; Yurkovich, James T.; Lloyd, Colton J.
Integrating omics data to refine or make context-specific models is an active field of constraint-based modeling. Proteomics now cover over 95% of the Escherichia coli proteome by mass. Genome-scale models of Metabolism and macromolecular Expression (ME) compute proteome allocation linked to metabolism and fitness. Using proteomics data, we formulated allocation constraints for key proteome sectors in the ME model. The resulting calibrated model effectively computed the “generalist” (wild-type) E. coli proteome and phenotype across diverse growth environments. Across 15 growth conditions, prediction errors for growth rate and metabolic fluxes were 69% and 14% lower, respectively. The sector-constrained ME model thusmore » represents a generalist ME model reflecting both growth rate maximization and “hedging” against uncertain environments and stresses, as indicated by significant enrichment of these sectors for the general stress response sigma factor σS. Finally, the sector constraints represent a general formalism for integrating omics data from any experimental condition into constraint-based ME models. The constraints can be fine-grained (individual proteins) or coarse-grained (functionally-related protein groups) as demonstrated here. Furthermore, this flexible formalism provides an accessible approach for narrowing the gap between the complexity captured by omics data and governing principles of proteome allocation described by systems-level models.« less
Effect of Feeding-Fasting Cycles on Oxygen Consumption and Bioenergetics of Yellow Perch
Chipps, Steven R.; Travis W. Schaeffer,; Daniel E. Spengler,; Casey W. Schoenebeck,; Michael L. Brown,
2012-01-01
We measured growth and oxygen consumption of age-1 yellow perch Perca flavescenssubjected to ad libitum (control) or variable feeding cycles of 2 (i.e., 2 d of feed, 2 d of deprivation), 6, or 12 d for a 72-d period. Individual, female yellow perch (initial weight = 51.9 ± 0.9 g [mean ± SE]) were stocked in 110-L aquaria to provide six replicates per treatment and fed measured rations of live fathead minnow Pimephales promelas. Consumption, absolute growth rate, growth efficiency, and oxygen consumption were similar among feeding regimens. However, growth trajectories for fish on the 2-d cycle were significantly lower than other feed–fast cycles. Hyperphagia occurred in all treatments. Bioenergetics model simulations indicated that consumption was significantly underestimated (t = 5.4, df = 4, P = 0.006), while growth was overestimated (t = −5.5, df = 4, P = 0.005) for fish on the 12-d cycle. However, model errors detected between observed and predicted values were low, ranging from −10.1% to +7.8%. We found that juvenile yellow perch exhibited compensatory growth (CG), but none of the feed–fast treatments resulted in growth overcompensation. Likewise, we found no evidence that respiration rates varied with CG, implying that yellow perch bioenergetics models could be used to predict the effects of feeding history and CG response on food consumption and fish growth.
Iterative decoding of SOVA and LDPC product code for bit-patterned media recoding
NASA Astrophysics Data System (ADS)
Jeong, Seongkwon; Lee, Jaejin
2018-05-01
The demand for high-density storage systems has increased due to the exponential growth of data. Bit-patterned media recording (BPMR) is one of the promising technologies to achieve the density of 1Tbit/in2 and higher. To increase the areal density in BPMR, the spacing between islands needs to be reduced, yet this aggravates inter-symbol interference and inter-track interference and degrades the bit error rate performance. In this paper, we propose a decision feedback scheme using low-density parity check (LDPC) product code for BPMR. This scheme can improve the decoding performance using an iterative approach with extrinsic information and log-likelihood ratio value between iterative soft output Viterbi algorithm and LDPC product code. Simulation results show that the proposed LDPC product code can offer 1.8dB and 2.3dB gains over the one LDPC code at the density of 2.5 and 3 Tb/in2, respectively, when bit error rate is 10-6.
Simultaneous Control of Error Rates in fMRI Data Analysis
Kang, Hakmook; Blume, Jeffrey; Ombao, Hernando; Badre, David
2015-01-01
The key idea of statistical hypothesis testing is to fix, and thereby control, the Type I error (false positive) rate across samples of any size. Multiple comparisons inflate the global (family-wise) Type I error rate and the traditional solution to maintaining control of the error rate is to increase the local (comparison-wise) Type II error (false negative) rates. However, in the analysis of human brain imaging data, the number of comparisons is so large that this solution breaks down: the local Type II error rate ends up being so large that scientifically meaningful analysis is precluded. Here we propose a novel solution to this problem: allow the Type I error rate to converge to zero along with the Type II error rate. It works because when the Type I error rate per comparison is very small, the accumulation (or global) Type I error rate is also small. This solution is achieved by employing the Likelihood paradigm, which uses likelihood ratios to measure the strength of evidence on a voxel-by-voxel basis. In this paper, we provide theoretical and empirical justification for a likelihood approach to the analysis of human brain imaging data. In addition, we present extensive simulations that show the likelihood approach is viable, leading to ‘cleaner’ looking brain maps and operationally superiority (lower average error rate). Finally, we include a case study on cognitive control related activation in the prefrontal cortex of the human brain. PMID:26272730
Formation and Growth of New Organic Aerosol Particles over the Deepwater Horizon Oil Spill
NASA Astrophysics Data System (ADS)
Brock, C. A.; Murphy, D. M.; Bahreini, R.; Middlebrook, A. M.; De Gouw, J. A.
2011-12-01
Aerosol size distributions were measured in June 2010 downwind of the surface oil slick produced by the Deepwater Horizon oil spill in the Gulf of Mexico. Rapid condensation of partially oxidized hydrocarbons was responsible for formation of a plume of secondary organic aerosol downwind of the spill region. New particles were nucleated upwind of the freshest surface oil but downwind of oil that surfaced less than 100 hours previously. These new particles grew by condensation at rates of ~20 nm hr-1; preexisting accumulation mode particles grew by ~10 nm hr-1. The gas-phase concentration of a condensing species necessary to support the observed growth rate assuming irreversible adsorption with unit accommodation coefficient is estimated to be ~0.04-0.09 μg m-3 (~3-8 pptv). The ratio of growth rates for newly formed particles to accumulation mode particles was consistent within error limits with irreversible condensation. Because new particle formation did not occur in areas away from the <100 hr-old oil slick, these results indicate that the oxidation products of VOC species, probably C14-C16 compounds, were directly involved in the growth of the new particles. While a unique and extreme environment, the oil spill plume provides insight into similar processes that may occur in urban and industrial areas where petrochemical products are produced and consumed.
Morphology and Growth Kinetics of Straight and Kinked Tin Whiskers
NASA Astrophysics Data System (ADS)
Susan, Donald; Michael, Joseph; Grant, Richard P.; McKenzie, Bonnie; Yelton, W. Graham
2013-03-01
Time-lapse SEM studies of Sn whiskers were conducted to estimate growth kinetics and document whisker morphologies. For straight whiskers, growth rates of 3 to 4 microns per day were measured at room temperature. Two types of kinked whiskers were observed. For Type A kinks, the original growth segment spatial orientation remains unchanged, there are no other changes in morphology or diameter, and growth continues. For Type B kinks, the spatial orientation of the original segment changes and it appears that the whisker bends over. Whiskers with Type B kinks show changes in morphology and diameter at the base, indicating grain boundary motion in the film, which eliminates the conditions suitable for long-term whisker growth. To estimate the errors in the whisker growth measurements, a technique is presented to correct for SEM projection effects. With this technique, the actual growth angles and lengths of a large number of whiskers were collected. It was found that most whiskers grow at moderate or shallow angles with respect to the surface; few straight whiskers grow nearly normal to the surface. In addition, there is no simple correlation between growth angles and lengths for whiskers observed over an approximate 2-year period.
Sarkodie, Samuel Asumadu
2018-05-24
This study examined the drivers of environmental degradation and pollution in 17 countries in Africa from 1971 to 2013. The empirical study was analyzed with Westerlund error-correction model and panel cointegration tests with 1000 bootstrapping samples, U-shape test, fixed and random effect estimators, and panel causality test. The investigation of the nexus between environmental pollution economic growth in Africa confirms the validity of the EKC hypothesis in Africa at a turning point of US$ 5702 GDP per capita. However, the nexus between environmental degradation and economic growth reveals a U shape at a lower bound GDP of US$ 101/capita and upper bound GDP of US$ 8050/capita, at a turning point of US$ 7958 GDP per capita, confirming the scale effect hypothesis. The empirical findings revealed that energy consumption, food production, economic growth, permanent crop, agricultural land, birth rate, and fertility rate play a major role in environmental degradation and pollution in Africa, thus supporting the global indicators for achieving the sustainable development goals by 2030.
A cascaded coding scheme for error control and its performance analysis
NASA Technical Reports Server (NTRS)
Lin, Shu; Kasami, Tadao; Fujiwara, Tohru; Takata, Toyoo
1986-01-01
A coding scheme is investigated for error control in data communication systems. The scheme is obtained by cascading two error correcting codes, called the inner and outer codes. The error performance of the scheme is analyzed for a binary symmetric channel with bit error rate epsilon <1/2. It is shown that if the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit error rate. Various specific example schemes with inner codes ranging form high rates to very low rates and Reed-Solomon codes as inner codes are considered, and their error probabilities are evaluated. They all provide extremely high reliability even for very high bit error rates. Several example schemes are being considered by NASA for satellite and spacecraft down link error control.
Uy, Raymonde Charles Y.; Kury, Fabricio P.; Fontelo, Paul A.
2015-01-01
The standard of safe medication practice requires strict observance of the five rights of medication administration: the right patient, drug, time, dose, and route. Despite adherence to these guidelines, medication errors remain a public health concern that has generated health policies and hospital processes that leverage automation and computerization to reduce these errors. Bar code, RFID, biometrics and pharmacy automation technologies have been demonstrated in literature to decrease the incidence of medication errors by minimizing human factors involved in the process. Despite evidence suggesting the effectivity of these technologies, adoption rates and trends vary across hospital systems. The objective of study is to examine the state and adoption trends of automatic identification and data capture (AIDC) methods and pharmacy automation technologies in U.S. hospitals. A retrospective descriptive analysis of survey data from the HIMSS Analytics® Database was done, demonstrating an optimistic growth in the adoption of these patient safety solutions. PMID:26958264
45 CFR 98.100 - Error Rate Report.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 1 2013-10-01 2013-10-01 false Error Rate Report. 98.100 Section 98.100 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.100 Error Rate Report. (a) Applicability—The requirements of this subpart...
45 CFR 98.100 - Error Rate Report.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 1 2014-10-01 2014-10-01 false Error Rate Report. 98.100 Section 98.100 Public Welfare Department of Health and Human Services GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.100 Error Rate Report. (a) Applicability—The requirements of this subpart...
45 CFR 98.100 - Error Rate Report.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 1 2012-10-01 2012-10-01 false Error Rate Report. 98.100 Section 98.100 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.100 Error Rate Report. (a) Applicability—The requirements of this subpart...
45 CFR 98.100 - Error Rate Report.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 1 2011-10-01 2011-10-01 false Error Rate Report. 98.100 Section 98.100 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.100 Error Rate Report. (a) Applicability—The requirements of this subpart...
Theys, T E; Geeraerd, A H; Verhulst, A; Poot, K; Van Bree, I; Devlieghere, F; Moldenaers, P; Wilson, D; Brocklehurst, T; Van Impe, J F
2008-11-30
In this study, the growth of Salmonella Typhimurium in Tryptic Soy Broth was examined at different pH (4.50-5.50), water activity a(w) (0.970-0.992) and gelatin concentration (0%, 1% and 5% ) at 20 degrees C. Experiments in TSB with 0% gelatin were carried out in shaken erlenmeyers, in the weak 1% gelatin media in petri plates and in the firm 5% gelatin media in gel cassettes. A quantification of gel strength was performed by rheological measurements and the influence of oxygen supply on the growth of S. Typhimurium was investigated. pH, as well as a(w) as well as gelatin concentration had an influence on the growth rate. Both in broth and in gelatinized media, lowering pH or water activity caused a decrease of growth rate. In media with 1% gelatin a reduction of growth rate and maximal cell density was observed compared to broth at all conditions. However, the effects of decreasing pH and a(w) were less pronounced. A further increase in gelatin concentration to 5% gelatin caused a small or no additional drop of growth rate. The final oxygen concentration dropped from 5.5 ppm in stirred broth to anoxic values in petri plates, also when 0% and 5% gelatin media were tested in this recipient. Probably, not stirring the medium, which leads to anoxic conditions, has a more pronounced effect on the growth rate of S. Typhimurium then medium solidness. Finally, growth data were fitted with the primary model of Baranyi and Roberts [Baranyi, J. and Roberts, T. A., 1994. A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology 23, 277-294]. An additional factor was introduced into the secondary model of Ross et al. [Ross, T. and Ratkowsky, D. A. and Mellefont, L. A. and McMeekin, T. A., 2003. Modelling the effects of temperature, water activity, pH and lactic acid concentration on the growth rate of Escherichia coli. International Journal of Food Microbiology 82, 33-43.] to incorporate the effect of gelatin concentration, next to the effect of pH and a(w). A two step and a global regression procedure were applied. Both procedures were able to fit the data well, but the global regression procedure led to smaller standard errors on the parameters.
An educational and audit tool to reduce prescribing error in intensive care.
Thomas, A N; Boxall, E M; Laha, S K; Day, A J; Grundy, D
2008-10-01
To reduce prescribing errors in an intensive care unit by providing prescriber education in tutorials, ward-based teaching and feedback in 3-monthly cycles with each new group of trainee medical staff. Prescribing audits were conducted three times in each 3-month cycle, once pretraining, once post-training and a final audit after 6 weeks. The audit information was fed back to prescribers with their correct prescribing rates, rates for individual error types and total error rates together with anonymised information about other prescribers' error rates. The percentage of prescriptions with errors decreased over each 3-month cycle (pretraining 25%, 19%, (one missing data point), post-training 23%, 6%, 11%, final audit 7%, 3%, 5% (p<0.0005)). The total number of prescriptions and error rates varied widely between trainees (data collection one; cycle two: range of prescriptions written: 1-61, median 18; error rate: 0-100%; median: 15%). Prescriber education and feedback reduce manual prescribing errors in intensive care.
A Six Sigma Trial For Reduction of Error Rates in Pathology Laboratory.
Tosuner, Zeynep; Gücin, Zühal; Kiran, Tuğçe; Büyükpinarbaşili, Nur; Turna, Seval; Taşkiran, Olcay; Arici, Dilek Sema
2016-01-01
A major target of quality assurance is the minimization of error rates in order to enhance patient safety. Six Sigma is a method targeting zero error (3.4 errors per million events) used in industry. The five main principles of Six Sigma are defining, measuring, analysis, improvement and control. Using this methodology, the causes of errors can be examined and process improvement strategies can be identified. The aim of our study was to evaluate the utility of Six Sigma methodology in error reduction in our pathology laboratory. The errors encountered between April 2014 and April 2015 were recorded by the pathology personnel. Error follow-up forms were examined by the quality control supervisor, administrative supervisor and the head of the department. Using Six Sigma methodology, the rate of errors was measured monthly and the distribution of errors at the preanalytic, analytic and postanalytical phases was analysed. Improvement strategies were reclaimed in the monthly intradepartmental meetings and the control of the units with high error rates was provided. Fifty-six (52.4%) of 107 recorded errors in total were at the pre-analytic phase. Forty-five errors (42%) were recorded as analytical and 6 errors (5.6%) as post-analytical. Two of the 45 errors were major irrevocable errors. The error rate was 6.8 per million in the first half of the year and 1.3 per million in the second half, decreasing by 79.77%. The Six Sigma trial in our pathology laboratory provided the reduction of the error rates mainly in the pre-analytic and analytic phases.
Small Scale Mass Flow Plug Calibration
NASA Technical Reports Server (NTRS)
Sasson, Jonathan
2015-01-01
A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model in the operating region of the MFP is 0.54%. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. Effects of boundary layer growth and the reduction in cross-sectional flow area are calculated using an in- integral method. A CFD calibration is shown to be of lower accuracy with a maximum error of 1.35%, and slower by a factor of 100. Effects of total pressure distortion are taken into account in the experiment. Distortion creates a loss in flow rate and can be characterized by two different distortion descriptors.
Optimal interpolation and the Kalman filter. [for analysis of numerical weather predictions
NASA Technical Reports Server (NTRS)
Cohn, S.; Isaacson, E.; Ghil, M.
1981-01-01
The estimation theory of stochastic-dynamic systems is described and used in a numerical study of optimal interpolation. The general form of data assimilation methods is reviewed. The Kalman-Bucy, KB filter, and optimal interpolation (OI) filters are examined for effectiveness in performance as gain matrices using a one-dimensional form of the shallow-water equations. Control runs in the numerical analyses were performed for a ten-day forecast in concert with the OI method. The effects of optimality, initialization, and assimilation were studied. It was found that correct initialization is necessary in order to localize errors, especially near boundary points. Also, the use of small forecast error growth rates over data-sparse areas was determined to offset inaccurate modeling of correlation functions near boundaries.
Data Analysis & Statistical Methods for Command File Errors
NASA Technical Reports Server (NTRS)
Meshkat, Leila; Waggoner, Bruce; Bryant, Larry
2014-01-01
This paper explains current work on modeling for managing the risk of command file errors. It is focused on analyzing actual data from a JPL spaceflight mission to build models for evaluating and predicting error rates as a function of several key variables. We constructed a rich dataset by considering the number of errors, the number of files radiated, including the number commands and blocks in each file, as well as subjective estimates of workload and operational novelty. We have assessed these data using different curve fitting and distribution fitting techniques, such as multiple regression analysis, and maximum likelihood estimation to see how much of the variability in the error rates can be explained with these. We have also used goodness of fit testing strategies and principal component analysis to further assess our data. Finally, we constructed a model of expected error rates based on the what these statistics bore out as critical drivers to the error rate. This model allows project management to evaluate the error rate against a theoretically expected rate as well as anticipate future error rates.
Linguistic pattern analysis of misspellings of typically developing writers in grades 1-9.
Bahr, Ruth Huntley; Sillian, Elaine R; Berninger, Virginia W; Dow, Michael
2012-12-01
A mixed-methods approach, evaluating triple word-form theory, was used to describe linguistic patterns of misspellings. Spelling errors were taken from narrative and expository writing samples provided by 888 typically developing students in Grades 1-9. Errors were coded by category (phonological, orthographic, and morphological) and specific linguistic feature affected. Grade-level effects were analyzed with trend analysis. Qualitative analyses determined frequent error types and how use of specific linguistic features varied across grades. Phonological, orthographic, and morphological errors were noted across all grades, but orthographic errors predominated. Linear trends revealed developmental shifts in error proportions for the orthographic and morphological categories between Grades 4 and 5. Similar error types were noted across age groups, but the nature of linguistic feature error changed with age. Triple word-form theory was supported. By Grade 1, orthographic errors predominated, and phonological and morphological error patterns were evident. Morphological errors increased in relative frequency in older students, probably due to a combination of word-formation issues and vocabulary growth. These patterns suggest that normal spelling development reflects nonlinear growth and that it takes a long time to develop a robust orthographic lexicon that coordinates phonology, orthography, and morphology and supports word-specific, conventional spelling.
A switched systems approach to image-based estimation
NASA Astrophysics Data System (ADS)
Parikh, Anup
With the advent of technological improvements in imaging systems and computational resources, as well as the development of image-based reconstruction techniques, it is necessary to understand algorithm performance when subject to real world conditions. Specifically, this dissertation focuses on the stability and performance of a class of image-based observers in the presence of intermittent measurements, caused by e.g., occlusions, limited FOV, feature tracking losses, communication losses, or finite frame rates. Observers or filters that are exponentially stable under persistent observability may have unbounded error growth during intermittent sensing, even while providing seemingly accurate state estimates. In Chapter 3, dwell time conditions are developed to guarantee state estimation error convergence to an ultimate bound for a class of observers while undergoing measurement loss. Bounds are developed on the unstable growth of the estimation errors during the periods when the object being tracked is not visible. A Lyapunov-based analysis for the switched system is performed to develop an inequality in terms of the duration of time the observer can view the moving object and the duration of time the object is out of the field of view. In Chapter 4, a motion model is used to predict the evolution of the states of the system while the object is not visible. This reduces the growth rate of the bounding function to an exponential and enables the use of traditional switched systems Lyapunov analysis techniques. The stability analysis results in an average dwell time condition to guarantee state error convergence with a known decay rate. In comparison with the results in Chapter 3, the estimation errors converge to zero rather than a ball, with relaxed switching conditions, at the cost of requiring additional information about the motion of the feature. In some applications, a motion model of the object may not be available. Numerous adaptive techniques have been developed to compensate for unknown parameters or functions in system dynamics; however, persistent excitation (PE) conditions are typically required to ensure parameter convergence, i.e., learning. Since the motion model is needed in the predictor, model learning is desired; however, PE is difficult to insure a priori and infeasible to check online for nonlinear systems. Concurrent learning (CL) techniques have been developed to use recorded data and a relaxed excitation condition to ensure convergence. In CL, excitation is only required for a finite period of time, and the recorded data can be checked to determine if it is sufficiently rich. However, traditional CL requires knowledge of state derivatives, which are typically not measured and require extensive filter design and tuning to develop satisfactory estimates. In Chapter 5 of this dissertation, a novel formulation of CL is developed in terms of an integral (ICL), removing the need to estimate state derivatives while preserving parameter convergence properties. Using ICL, an estimator is developed in Chapter 6 for simultaneously estimating the pose of an object as well as learning a model of its motion for use in a predictor when the object is not visible. A switched systems analysis is provided to demonstrate the stability of the estimation and prediction with learning scheme. Dwell time conditions as well as excitation conditions are developed to ensure estimation errors converge to an arbitrarily small bound. Experimental results are provided to illustrate the performance of each of the developed estimation schemes. The dissertation concludes with a discussion of the contributions and limitations of the developed techniques, as well as avenues for future extensions.
Detecting Signatures of GRACE Sensor Errors in Range-Rate Residuals
NASA Astrophysics Data System (ADS)
Goswami, S.; Flury, J.
2016-12-01
In order to reach the accuracy of the GRACE baseline, predicted earlier from the design simulations, efforts are ongoing since a decade. GRACE error budget is highly dominated by noise from sensors, dealiasing models and modeling errors. GRACE range-rate residuals contain these errors. Thus, their analysis provides an insight to understand the individual contribution to the error budget. Hence, we analyze the range-rate residuals with focus on contribution of sensor errors due to mis-pointing and bad ranging performance in GRACE solutions. For the analysis of pointing errors, we consider two different reprocessed attitude datasets with differences in pointing performance. Then range-rate residuals are computed from these two datasetsrespectively and analysed. We further compare the system noise of four K-and Ka- band frequencies of the two spacecrafts, with range-rate residuals. Strong signatures of mis-pointing errors can be seen in the range-rate residuals. Also, correlation between range frequency noise and range-rate residuals are seen.
Schaeffel, F; Bartmann, M; Hagel, G; Zrenner, E
1995-05-01
We have found that development of both deprivation-induced and lens-induced refractive errors in chickens implicates changes of the diurnal growth rhythms in the eye (Fig. 1). Because the major diurnal oscillator in the eye is expressed by the retinal dopamine/melatonin system, effects of drugs were studied that change retinal dopamine and/or serotonin levels. Vehicle-injected and drug-injected eyes treated with either translucent occluders or lenses were compared to focus on visual growth mechanisms. Retinal biogenic amine levels were measured at the end of each experiment by HPLC with electrochemical detection. For reserpine (which was most extensively studied) electroretinograms were recorded to test retinal function [Fig. 3 (C)] and catecholaminergic and serotonergic retinal neurons were observed by immunohistochemical labelling [Fig. 3(D)]. Deprivation myopia was readily altered by a single intravitreal injection of drugs that affected retinal dopamine or serotonin levels; reserpine which depleted both serotonin and dopamine stores blocked deprivation myopia very efficiently [Fig. 3(A)], whereas 5,7-dihydroxy-tryptamine (5,7-DHT), sulpiride, melatonin and Sch23390 could enhance deprivation myopia (Table 1, Fig. 5). In contrast to other procedures that were previously employed to block deprivation myopia (6-OHDA injections or continuous light) and which had no significant effect on lens-induced refractive errors, reserpine also affected lens-induced changes in eye growth. At lower doses, the effect was selective for negative lenses (Fig. 4). We found that the individual retinal dopamine levels were very variable among individuals but were correlated in both eyes of an animal; a similar variability was previously found with regard to deprivation myopia. To test a hypothesis raised by Li, Schaeffel, Kohler and Zrenner [(1992) Visual Neuroscience, 9, 483-492] that individual dopamine levels might determine the susceptibility to deprivation myopia, refractive errors were correlated with dopamine levels in occluded and untreated eyes of monocularly deprived chickens (Fig. 6). The hypothesis was rejected. Although it has been previously found that the static retinal tissue levels of dopamine are not altered by lens treatment, subtle changes in the ratio of DOPAC to dopamine were detected in the present study. The result indicates that retinal dopamine might be implicated also in lens-induced growth changes. Surprisingly, the changes were in the opposite direction for deprivation and negative lenses although both produce myopia. Currently, there is evidence that deprivation-induced and lens-induced refractive errors in chicks are produced by different mechanisms. However, findings (1), (3) and (5) suggest that there may also be common features. Although it has not yet been resolved how both mechanisms merge to produce the appropriate axial eye growth rates, we propose a scheme (Fig. 7).
Jegathesan, Mithila; Vitberg, Yaffa M; Pusic, Martin V
2016-02-11
Intelligence theory research has illustrated that people hold either "fixed" (intelligence is immutable) or "growth" (intelligence can be improved) mindsets and that these views may affect how people learn throughout their lifetime. Little is known about the mindsets of physicians, and how mindset may affect their lifetime learning and integration of feedback. Our objective was to determine if pediatric physicians are of the "fixed" or "growth" mindset and whether individual mindset affects perception of medical error reporting. We sent an anonymous electronic survey to pediatric residents and attending pediatricians at a tertiary care pediatric hospital. Respondents completed the "Theories of Intelligence Inventory" which classifies individuals on a 6-point scale ranging from 1 (Fixed Mindset) to 6 (Growth Mindset). Subsequent questions collected data on respondents' recall of medical errors by self or others. We received 176/349 responses (50 %). Participants were equally distributed between mindsets with 84 (49 %) classified as "fixed" and 86 (51 %) as "growth". Residents, fellows and attendings did not differ in terms of mindset. Mindset did not correlate with the small number of reported medical errors. There is no dominant theory of intelligence (mindset) amongst pediatric physicians. The distribution is similar to that seen in the general population. Mindset did not correlate with error reports.
DNA replication error-induced extinction of diploid yeast.
Herr, Alan J; Kennedy, Scott R; Knowels, Gary M; Schultz, Eric M; Preston, Bradley D
2014-03-01
Genetic defects in DNA polymerase accuracy, proofreading, or mismatch repair (MMR) induce mutator phenotypes that accelerate adaptation of microbes and tumor cells. Certain combinations of mutator alleles synergistically increase mutation rates to levels that drive extinction of haploid cells. The maximum tolerated mutation rate of diploid cells is unknown. Here, we define the threshold for replication error-induced extinction (EEX) of diploid Saccharomyces cerevisiae. Double-mutant pol3 alleles that carry mutations for defective DNA polymerase-δ proofreading (pol3-01) and accuracy (pol3-L612M or pol3-L612G) induce strong mutator phenotypes in heterozygous diploids (POL3/pol3-01,L612M or POL3/pol3-01,L612G). Both pol3-01,L612M and pol3-01,L612G alleles are lethal in the homozygous state; cells with pol3-01,L612M divide up to 10 times before arresting at random stages in the cell cycle. Antimutator eex mutations in the pol3 alleles suppress this lethality (pol3-01,L612M,eex or pol3-01,L612G,eex). MMR defects synergize with pol3-01,L612M,eex and pol3-01,L612G,eex alleles, increasing mutation rates and impairing growth. Conversely, inactivation of the Dun1 S-phase checkpoint kinase suppresses strong pol3-01,L612M,eex and pol3-01,L612G,eex mutator phenotypes as well as the lethal pol3-01,L612M phenotype. Our results reveal that the lethal error threshold in diploids is 10 times higher than in haploids and likely determined by homozygous inactivation of essential genes. Pronounced loss of fitness occurs at mutation rates well below the lethal threshold, suggesting that mutator-driven cancers may be susceptible to drugs that exacerbate replication errors.
2004-01-01
chlorophyll content, and the more vigorous the growth , the greater the reflectance. This helps the photointerpreter to better distinguish between plant and...land cover map and the field determinations for each class. Based on the error matrix, the accuracy rate for classifying each map class can be...duck- weed (Lemna, Spirodela, and Wolffia) and other nonrooted- floating aquatics. Because duckweed is free-floating, it can relocate day-to-day
A cascaded coding scheme for error control and its performance analysis
NASA Technical Reports Server (NTRS)
Lin, S.
1986-01-01
A coding scheme for error control in data communication systems is investigated. The scheme is obtained by cascading two error correcting codes, called the inner and the outer codes. The error performance of the scheme is analyzed for a binary symmetric channel with bit error rate epsilon < 1/2. It is shown that, if the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit error rate. Various specific example schemes with inner codes ranging from high rates to very low rates and Reed-Solomon codes are considered, and their probabilities are evaluated. They all provide extremely high reliability even for very high bit error rates, say 0.1 to 0.01. Several example schemes are being considered by NASA for satellite and spacecraft down link error control.
A Simple Exact Error Rate Analysis for DS-CDMA with Arbitrary Pulse Shape in Flat Nakagami Fading
NASA Astrophysics Data System (ADS)
Rahman, Mohammad Azizur; Sasaki, Shigenobu; Kikuchi, Hisakazu; Harada, Hiroshi; Kato, Shuzo
A simple exact error rate analysis is presented for random binary direct sequence code division multiple access (DS-CDMA) considering a general pulse shape and flat Nakagami fading channel. First of all, a simple model is developed for the multiple access interference (MAI). Based on this, a simple exact expression of the characteristic function (CF) of MAI is developed in a straight forward manner. Finally, an exact expression of error rate is obtained following the CF method of error rate analysis. The exact error rate so obtained can be much easily evaluated as compared to the only reliable approximate error rate expression currently available, which is based on the Improved Gaussian Approximation (IGA).
Fire ants perpetually rebuild sinking towers.
Phonekeo, Sulisay; Mlot, Nathan; Monaenkova, Daria; Hu, David L; Tovey, Craig
2017-07-01
In the aftermath of a flood, fire ants, Solenopsis invicta , cluster into temporary encampments. The encampments can contain hundreds of thousands of ants and reach over 30 ants high. How do ants build such tall structures without being crushed? In this combined experimental and theoretical study, we investigate the shape and rate of construction of ant towers around a central support. The towers are bell shaped, consistent with towers of constant strength such as the Eiffel tower, where each element bears an equal load. However, unlike the Eiffel tower, the ant tower is built through a process of trial and error, whereby failed portions avalanche until the final shape emerges. High-speed and novel X-ray videography reveal that the tower constantly sinks and is rebuilt, reminiscent of large multicellular systems such as human skin. We combine the behavioural rules that produce rafts on water with measurements of adhesion and attachment strength to model the rate of growth of the tower. The model correctly predicts that the growth rate decreases as the support diameter increases. This work may inspire the design of synthetic swarms capable of building in vertical layers.
Fire ants perpetually rebuild sinking towers
NASA Astrophysics Data System (ADS)
Phonekeo, Sulisay; Mlot, Nathan; Monaenkova, Daria; Hu, David L.; Tovey, Craig
2017-07-01
In the aftermath of a flood, fire ants, Solenopsis invicta, cluster into temporary encampments. The encampments can contain hundreds of thousands of ants and reach over 30 ants high. How do ants build such tall structures without being crushed? In this combined experimental and theoretical study, we investigate the shape and rate of construction of ant towers around a central support. The towers are bell shaped, consistent with towers of constant strength such as the Eiffel tower, where each element bears an equal load. However, unlike the Eiffel tower, the ant tower is built through a process of trial and error, whereby failed portions avalanche until the final shape emerges. High-speed and novel X-ray videography reveal that the tower constantly sinks and is rebuilt, reminiscent of large multicellular systems such as human skin. We combine the behavioural rules that produce rafts on water with measurements of adhesion and attachment strength to model the rate of growth of the tower. The model correctly predicts that the growth rate decreases as the support diameter increases. This work may inspire the design of synthetic swarms capable of building in vertical layers.
Fire ants perpetually rebuild sinking towers
Phonekeo, Sulisay; Mlot, Nathan; Monaenkova, Daria; Tovey, Craig
2017-01-01
In the aftermath of a flood, fire ants, Solenopsis invicta, cluster into temporary encampments. The encampments can contain hundreds of thousands of ants and reach over 30 ants high. How do ants build such tall structures without being crushed? In this combined experimental and theoretical study, we investigate the shape and rate of construction of ant towers around a central support. The towers are bell shaped, consistent with towers of constant strength such as the Eiffel tower, where each element bears an equal load. However, unlike the Eiffel tower, the ant tower is built through a process of trial and error, whereby failed portions avalanche until the final shape emerges. High-speed and novel X-ray videography reveal that the tower constantly sinks and is rebuilt, reminiscent of large multicellular systems such as human skin. We combine the behavioural rules that produce rafts on water with measurements of adhesion and attachment strength to model the rate of growth of the tower. The model correctly predicts that the growth rate decreases as the support diameter increases. This work may inspire the design of synthetic swarms capable of building in vertical layers. PMID:28791170
Health care cost disease as a threat to Iranian aging society.
Basakha, Mehdi; Yavari, Kazem; Sadeghi, Hosein; Naseri, Alireza
2014-01-01
Because of the rapid aging rate, the share of health expenditure in gross domestic product rises irreversibly and increases concern among politicians and the general public. The aim of this study was to examine the accuracy of the Baumol's model of unbalanced growth in Iran over the period 1981-2010. This theoretical-analytical study was conducted in 2012 to investigate the various determinants of ongoing rise in the health expenditures. To this end, an Error Correction Model was derived from the long run cointegrating equation to inquire the veracity of Baumol's theory. Estimating the short run and long run equations by using time series data shows that the rate of increase in health expenditure is aligned with the difference between wage increases in and growth of productivity in the health sector. Besides, results show that both the per capita income and the inflation rate of health care had significant effects on raising the share of health sector in domestic economy. According to rapid population aging and existence of Baumol's cost disease in Iranian health sector, we predict much more rise in health expenditure in a few decades.
Effect of bar-code technology on the safety of medication administration.
Poon, Eric G; Keohane, Carol A; Yoon, Catherine S; Ditmore, Matthew; Bane, Anne; Levtzion-Korach, Osnat; Moniz, Thomas; Rothschild, Jeffrey M; Kachalia, Allen B; Hayes, Judy; Churchill, William W; Lipsitz, Stuart; Whittemore, Anthony D; Bates, David W; Gandhi, Tejal K
2010-05-06
Serious medication errors are common in hospitals and often occur during order transcription or administration of medication. To help prevent such errors, technology has been developed to verify medications by incorporating bar-code verification technology within an electronic medication-administration system (bar-code eMAR). We conducted a before-and-after, quasi-experimental study in an academic medical center that was implementing the bar-code eMAR. We assessed rates of errors in order transcription and medication administration on units before and after implementation of the bar-code eMAR. Errors that involved early or late administration of medications were classified as timing errors and all others as nontiming errors. Two clinicians reviewed the errors to determine their potential to harm patients and classified those that could be harmful as potential adverse drug events. We observed 14,041 medication administrations and reviewed 3082 order transcriptions. Observers noted 776 nontiming errors in medication administration on units that did not use the bar-code eMAR (an 11.5% error rate) versus 495 such errors on units that did use it (a 6.8% error rate)--a 41.4% relative reduction in errors (P<0.001). The rate of potential adverse drug events (other than those associated with timing errors) fell from 3.1% without the use of the bar-code eMAR to 1.6% with its use, representing a 50.8% relative reduction (P<0.001). The rate of timing errors in medication administration fell by 27.3% (P<0.001), but the rate of potential adverse drug events associated with timing errors did not change significantly. Transcription errors occurred at a rate of 6.1% on units that did not use the bar-code eMAR but were completely eliminated on units that did use it. Use of the bar-code eMAR substantially reduced the rate of errors in order transcription and in medication administration as well as potential adverse drug events, although it did not eliminate such errors. Our data show that the bar-code eMAR is an important intervention to improve medication safety. (ClinicalTrials.gov number, NCT00243373.) 2010 Massachusetts Medical Society
Development and implementation of a human accuracy program in patient foodservice.
Eden, S H; Wood, S M; Ptak, K M
1987-04-01
For many years, industry has utilized the concept of human error rates to monitor and minimize human errors in the production process. A consistent quality-controlled product increases consumer satisfaction and repeat purchase of product. Administrative dietitians have applied the concepts of using human error rates (the number of errors divided by the number of opportunities for error) at four hospitals, with a total bed capacity of 788, within a tertiary-care medical center. Human error rate was used to monitor and evaluate trayline employee performance and to evaluate layout and tasks of trayline stations, in addition to evaluating employees in patient service areas. Long-term employees initially opposed the error rate system with some hostility and resentment, while newer employees accepted the system. All employees now believe that the constant feedback given by supervisors enhances their self-esteem and productivity. Employee error rates are monitored daily and are used to counsel employees when necessary; they are also utilized during annual performance evaluation. Average daily error rates for a facility staffed by new employees decreased from 7% to an acceptable 3%. In a facility staffed by long-term employees, the error rate increased, reflecting improper error documentation. Patient satisfaction surveys reveal satisfaction, for tray accuracy increased from 88% to 92% in the facility staffed by long-term employees and has remained above the 90% standard in the facility staffed by new employees.
Ronald E. McRoberts; Veronica C. Lessard
2001-01-01
Uncertainty in diameter growth predictions is attributed to three general sources: measurement error or sampling variability in predictor variables, parameter covariances, and residual or unexplained variation around model expectations. Using measurement error and sampling variability distributions obtained from the literature and Monte Carlo simulation methods, the...
Covariate Measurement Error Correction for Student Growth Percentiles Using the SIMEX Method
ERIC Educational Resources Information Center
Shang, Yi; VanIwaarden, Adam; Betebenner, Damian W.
2015-01-01
In this study, we examined the impact of covariate measurement error (ME) on the estimation of quantile regression and student growth percentiles (SGPs), and find that SGPs tend to be overestimated among students with higher prior achievement and underestimated among those with lower prior achievement, a problem we describe as ME endogeneity in…
A General Approach to Defining Latent Growth Components
ERIC Educational Resources Information Center
Mayer, Axel; Steyer, Rolf; Mueller, Horst
2012-01-01
We present a 3-step approach to defining latent growth components. In the first step, a measurement model with at least 2 indicators for each time point is formulated to identify measurement error variances and obtain latent variables that are purged from measurement error. In the second step, we use contrast matrices to define the latent growth…
Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and plant growth.
Wilson, Robert H; Alonso, Hernan; Whitney, Spencer M
2016-03-01
In photosynthesis Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the often rate limiting CO2-fixation step in the Calvin cycle. This makes Rubisco both the gatekeeper for carbon entry into the biosphere and a target for functional improvement to enhance photosynthesis and plant growth. Encumbering the catalytic performance of Rubisco is its highly conserved, complex catalytic chemistry. Accordingly, traditional efforts to enhance Rubisco catalysis using protracted "trial and error" protein engineering approaches have met with limited success. Here we demonstrate the versatility of high throughput directed (laboratory) protein evolution for improving the carboxylation properties of a non-photosynthetic Rubisco from the archaea Methanococcoides burtonii. Using chloroplast transformation in the model plant Nicotiana tabacum (tobacco) we confirm the improved forms of M. burtonii Rubisco increased photosynthesis and growth relative to tobacco controls producing wild-type M. burtonii Rubisco. Our findings indicate continued directed evolution of archaeal Rubisco offers new potential for enhancing leaf photosynthesis and plant growth.
Demonstration of repeatability in a high-energy-density planar shear mixing layer experiment
Merritt, Elizabeth Catherine; Doss, Forrest William; Di Stefano, Carlos A.; ...
2017-03-11
On laser-driven platforms the assumption of experiment repeatability is particularly important due to a typically low data acquisition rate that doesn’t often allow for data redundancy. If the platform is repeatable, then measurements of the repeatable dynamics from multiple experiments can be treated as measurements of the same system. In high-energy-density hydrodynamic instability experiments the interface growth is assumed to be one of the repeatable aspects of the system. In this paper we demonstrate the repeatability of the instability growth in the counter-propagating shear experiment at the OMEGA laser facility, where the instability growth is characterized by the tracer layermore » thickness or mix-width evolution. Furthermore, in our previous experiment campaigns we have assumed the instability growth was repeatable enough to identify trends, but in this work we explicitly show that the mix-width measurements for nominally identical experiments are repeatable within the measurement error bars.« less
Principles of proteome allocation are revealed using proteomic data and genome-scale models
Yang, Laurence; Yurkovich, James T.; Lloyd, Colton J.; Ebrahim, Ali; Saunders, Michael A.; Palsson, Bernhard O.
2016-01-01
Integrating omics data to refine or make context-specific models is an active field of constraint-based modeling. Proteomics now cover over 95% of the Escherichia coli proteome by mass. Genome-scale models of Metabolism and macromolecular Expression (ME) compute proteome allocation linked to metabolism and fitness. Using proteomics data, we formulated allocation constraints for key proteome sectors in the ME model. The resulting calibrated model effectively computed the “generalist” (wild-type) E. coli proteome and phenotype across diverse growth environments. Across 15 growth conditions, prediction errors for growth rate and metabolic fluxes were 69% and 14% lower, respectively. The sector-constrained ME model thus represents a generalist ME model reflecting both growth rate maximization and “hedging” against uncertain environments and stresses, as indicated by significant enrichment of these sectors for the general stress response sigma factor σS. Finally, the sector constraints represent a general formalism for integrating omics data from any experimental condition into constraint-based ME models. The constraints can be fine-grained (individual proteins) or coarse-grained (functionally-related protein groups) as demonstrated here. This flexible formalism provides an accessible approach for narrowing the gap between the complexity captured by omics data and governing principles of proteome allocation described by systems-level models. PMID:27857205
Principles of proteome allocation are revealed using proteomic data and genome-scale models
Yang, Laurence; Yurkovich, James T.; Lloyd, Colton J.; ...
2016-11-18
Integrating omics data to refine or make context-specific models is an active field of constraint-based modeling. Proteomics now cover over 95% of the Escherichia coli proteome by mass. Genome-scale models of Metabolism and macromolecular Expression (ME) compute proteome allocation linked to metabolism and fitness. Using proteomics data, we formulated allocation constraints for key proteome sectors in the ME model. The resulting calibrated model effectively computed the “generalist” (wild-type) E. coli proteome and phenotype across diverse growth environments. Across 15 growth conditions, prediction errors for growth rate and metabolic fluxes were 69% and 14% lower, respectively. The sector-constrained ME model thusmore » represents a generalist ME model reflecting both growth rate maximization and “hedging” against uncertain environments and stresses, as indicated by significant enrichment of these sectors for the general stress response sigma factor σS. Finally, the sector constraints represent a general formalism for integrating omics data from any experimental condition into constraint-based ME models. The constraints can be fine-grained (individual proteins) or coarse-grained (functionally-related protein groups) as demonstrated here. Furthermore, this flexible formalism provides an accessible approach for narrowing the gap between the complexity captured by omics data and governing principles of proteome allocation described by systems-level models.« less
Tasca, Giorgio A; Illing, Vanessa; Joyce, Anthony S; Ogrodniczuk, John S
2009-07-01
Researchers have known for years about the negative impact on Type I error rates caused by dependencies in hierarchically nested and longitudinal data. Despite this, group treatment researchers do not consistently use methods such as multilevel models (MLMs) to assess dependence and appropriately analyse their nested data. The goals of this study are to review some of the study design issues with regard to hierarchically nested and longitudinal data, discuss MLMs for assessing and handling dependence in data, and present a guide for developing a three-level growth MLM that is appropriate for group treatment data, design, and research questions. The authors present an example from group treatment research to illustrate these issues and methods.
The influence of the structure and culture of medical group practices on prescription drug errors.
Kralewski, John E; Dowd, Bryan E; Heaton, Alan; Kaissi, Amer
2005-08-01
This project was designed to identify the magnitude of prescription drug errors in medical group practices and to explore the influence of the practice structure and culture on those error rates. Seventy-eight practices serving an upper Midwest managed care (Care Plus) plan during 2001 were included in the study. Using Care Plus claims data, prescription drug error rates were calculated at the enrollee level and then were aggregated to the group practice that each enrollee selected to provide and manage their care. Practice structure and culture data were obtained from surveys of the practices. Data were analyzed using multivariate regression. Both the culture and the structure of these group practices appear to influence prescription drug error rates. Seeing more patients per clinic hour, more prescriptions per patient, and being cared for in a rural clinic were all strongly associated with more errors. Conversely, having a case manager program is strongly related to fewer errors in all of our analyses. The culture of the practices clearly influences error rates, but the findings are mixed. Practices with cohesive cultures have lower error rates but, contrary to our hypothesis, cultures that value physician autonomy and individuality also have lower error rates than those with a more organizational orientation. Our study supports the contention that there are a substantial number of prescription drug errors in the ambulatory care sector. Even by the strictest definition, there were about 13 errors per 100 prescriptions for Care Plus patients in these group practices during 2001. Our study demonstrates that the structure of medical group practices influences prescription drug error rates. In some cases, this appears to be a direct relationship, such as the effects of having a case manager program on fewer drug errors, but in other cases the effect appears to be indirect through the improvement of drug prescribing practices. An important aspect of this study is that it provides insights into the relationships of the structure and culture of medical group practices and prescription drug errors and provides direction for future research. Research focused on the factors influencing the high error rates in rural areas and how the interaction of practice structural and cultural attributes influence error rates would add important insights into our findings. For medical practice directors, our data show that they should focus on patient care coordination to reduce errors.
Emergency department discharge prescription errors in an academic medical center
Belanger, April; Devine, Lauren T.; Lane, Aaron; Condren, Michelle E.
2017-01-01
This study described discharge prescription medication errors written for emergency department patients. This study used content analysis in a cross-sectional design to systematically categorize prescription errors found in a report of 1000 discharge prescriptions submitted in the electronic medical record in February 2015. Two pharmacy team members reviewed the discharge prescription list for errors. Open-ended data were coded by an additional rater for agreement on coding categories. Coding was based upon majority rule. Descriptive statistics were used to address the study objective. Categories evaluated were patient age, provider type, drug class, and type and time of error. The discharge prescription error rate out of 1000 prescriptions was 13.4%, with “incomplete or inadequate prescription” being the most commonly detected error (58.2%). The adult and pediatric error rates were 11.7% and 22.7%, respectively. The antibiotics reviewed had the highest number of errors. The highest within-class error rates were with antianginal medications, antiparasitic medications, antacids, appetite stimulants, and probiotics. Emergency medicine residents wrote the highest percentage of prescriptions (46.7%) and had an error rate of 9.2%. Residents of other specialties wrote 340 prescriptions and had an error rate of 20.9%. Errors occurred most often between 10:00 am and 6:00 pm. PMID:28405061
Effects of black bear relocation on elk calf recruitment at Great Smoky Mountains National Park
Yarkovich, J.; Clark, J.D.; Murrow, J.L.
2011-01-01
Previous research from 2001 to 2006 on an experimentally released elk (Cervus elaphus) population at Great Smoky Mountains National Park (GSMNP or Park) indicated that calf recruitment (i.e., calves reaching 1 yr of age per adult female elk) was low (0.306, total SE = 0.090) resulting in low or negative population growth (λ = 0.996, 95% CI = 0.945–1.047). Black bear (Ursus americanus) predation was the primary calf mortality factor. From 2006 to 2008, we trapped and relocated 49 bears (30 of which were radiocollared) from the primary calving areas in the Park and radiomonitored 67 (28 M:39 F) adult elk and 42 calves to compare vital rates and population growth with the earlier study. A model with annual calf recruitment rate correlating with the number of bears relocated each year was supported (ΔAICc = 0.000; β = 0.070, 95% CI = 0.028–0.112) and a model with annual calf recruitment differing from before to during bear relocation revealed an increase to 0.544 (total SE = 0.098; β = −1.092, 95% CI = −1.180 to −0.375). Using vital rates and estimates of process standard errors observed during our study, 25-yr simulations maintained a mean positive growth rate in 100% of the stochastic trials with λ averaging 1.118 (95% CI = 1.096–1.140), an increase compared with rates before bear relocation. A life table response experiment revealed that increases in population growth were mostly (67.1%) due to changes in calf recruitment. We speculate that behavioral adaptation of the elk since release also contributed to the observed increases in recruitment and population growth. Our results suggest that managers interested in elk reintroduction within bear range should consider bear relocation as a temporary means of increasing calf recruitment.
Linguistic Pattern Analysis of Misspellings of Typically Developing Writers in Grades 1 to 9
Bahr, Ruth Huntley; Silliman, Elaine R.; Berninger, Virginia W.; Dow, Michael
2012-01-01
Purpose A mixed methods approach, evaluating triple word form theory, was used to describe linguistic patterns of misspellings. Method Spelling errors were taken from narrative and expository writing samples provided by 888 typically developing students in grades 1–9. Errors were coded by category (phonological, orthographic, and morphological) and specific linguistic feature affected. Grade level effects were analyzed with trend analysis. Qualitative analyses determined frequent error types and how use of specific linguistic features varied across grades. Results Phonological, orthographic, and morphological errors were noted across all grades, but orthographic errors predominated. Linear trends revealed developmental shifts in error proportions for the orthographic and morphological categories between grades 4–5. Similar error types were noted across age groups but the nature of linguistic feature error changed with age. Conclusions Triple word-form theory was supported. By grade 1, orthographic errors predominated and phonological and morphological error patterns were evident. Morphological errors increased in relative frequency in older students, probably due to a combination of word-formation issues and vocabulary growth. These patterns suggest that normal spelling development reflects non-linear growth and that it takes a long time to develop a robust orthographic lexicon that coordinates phonology, orthography, and morphology and supports word-specific, conventional spelling. PMID:22473834
NASA Astrophysics Data System (ADS)
Dyer, M. I.; Turner, C. L.; Seastedt, T. R.
1998-04-01
During 1987 and 1988 First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE) studies conducted in the tallgrass prairie of central Kansas, variations in ungulate grazing intensity produced a patchy spatial and temporal distribution of remaining vegetation. Equally variable plant regrowth patterns contributed further to a broad array of total primary production that resulted in a pronounced mosaic of grazing impacts. This regrowth potential, derived from a relative growth rate (RGR) equation comparing ungrazed and grazed plants, determines much of the ecosystem dynamics within and among the grazed pastures and between years. Rates of change in new plant growth (RGRg) ranged from 100% to +40%; however, 78% of the time in 1987 and 71% in 1988, productivity increased as a function of grazing intensity. Since plant growth potential in ungrazed (RGRug) and grazed systems (RGRg) have inherently different attributes, interactions with the abiotic environment may develop many uncertainties. Thus, changes in growth rates in grazed areas compared to ungrazed areas (RGRg) may impose major controls over system productivity and associated biological processes currently not accounted for in ecosystem models.Because FIFE microsite atmospheric boundary layer (ABL) studies did not directly incorporate grazing intensity into their design, Type I and Type II statistical errors may introduce significant uncertainties for understanding cause and effect in surface flux dynamics. As a consequence these uncertainties compromise the ability to extrapolate microsite ABL biophysical findings to other spatial and temporal scales.
Dynamic Predictive Model for Growth of Bacillus cereus from Spores in Cooked Beans.
Juneja, Vijay K; Mishra, Abhinav; Pradhan, Abani K
2018-02-01
Kinetic growth data for Bacillus cereus grown from spores were collected in cooked beans under several isothermal conditions (10 to 49°C). Samples were inoculated with approximately 2 log CFU/g heat-shocked (80°C for 10 min) spores and stored at isothermal temperatures. B. cereus populations were determined at appropriate intervals by plating on mannitol-egg yolk-polymyxin agar and incubating at 30°C for 24 h. Data were fitted into Baranyi, Huang, modified Gompertz, and three-phase linear primary growth models. All four models were fitted to the experimental growth data collected at 13 to 46°C. Performances of these models were evaluated based on accuracy and bias factors, the coefficient of determination ( R 2 ), and the root mean square error. Based on these criteria, the Baranyi model best described the growth data, followed by the Huang, modified Gompertz, and three-phase linear models. The maximum growth rates of each primary model were fitted as a function of temperature using the modified Ratkowsky model. The high R 2 values (0.95 to 0.98) indicate that the modified Ratkowsky model can be used to describe the effect of temperature on the growth rates for all four primary models. The acceptable prediction zone (APZ) approach also was used for validation of the model with observed data collected during single and two-step dynamic cooling temperature protocols. When the predictions using the Baranyi model were compared with the observed data using the APZ analysis, all 24 observations for the exponential single rate cooling were within the APZ, which was set between -0.5 and 1 log CFU/g; 26 of 28 predictions for the two-step cooling profiles also were within the APZ limits. The developed dynamic model can be used to predict potential B. cereus growth from spores in beans under various temperature conditions or during extended chilling of cooked beans.
Schroeder, Scott R; Salomon, Meghan M; Galanter, William L; Schiff, Gordon D; Vaida, Allen J; Gaunt, Michael J; Bryson, Michelle L; Rash, Christine; Falck, Suzanne; Lambert, Bruce L
2017-01-01
Background Drug name confusion is a common type of medication error and a persistent threat to patient safety. In the USA, roughly one per thousand prescriptions results in the wrong drug being filled, and most of these errors involve drug names that look or sound alike. Prior to approval, drug names undergo a variety of tests to assess their potential for confusability, but none of these preapproval tests has been shown to predict real-world error rates. Objectives We conducted a study to assess the association between error rates in laboratory-based tests of drug name memory and perception and real-world drug name confusion error rates. Methods Eighty participants, comprising doctors, nurses, pharmacists, technicians and lay people, completed a battery of laboratory tests assessing visual perception, auditory perception and short-term memory of look-alike and sound-alike drug name pairs (eg, hydroxyzine/hydralazine). Results Laboratory test error rates (and other metrics) significantly predicted real-world error rates obtained from a large, outpatient pharmacy chain, with the best-fitting model accounting for 37% of the variance in real-world error rates. Cross-validation analyses confirmed these results, showing that the laboratory tests also predicted errors from a second pharmacy chain, with 45% of the variance being explained by the laboratory test data. Conclusions Across two distinct pharmacy chains, there is a strong and significant association between drug name confusion error rates observed in the real world and those observed in laboratory-based tests of memory and perception. Regulators and drug companies seeking a validated preapproval method for identifying confusing drug names ought to consider using these simple tests. By using a standard battery of memory and perception tests, it should be possible to reduce the number of confusing look-alike and sound-alike drug name pairs that reach the market, which will help protect patients from potentially harmful medication errors. PMID:27193033
Suydam, Robert S.; Ortiz, Joseph D.; Thewissen, J. G. M.
2018-01-01
Counts of Growth Layer Groups (GLGs) in the dentin of marine mammal teeth are widely used as indicators of age. In most marine mammals, observations document that GLGs are deposited yearly, but in beluga whales, some studies have supported the view that two GLGs are deposited each year. Our understanding of beluga life-history differs substantially depending on assumptions regarding the timing of GLG deposition; therefore, resolving this issue has important considerations for population assessments. In this study, we used incremental lines that represent daily pulses of dentin mineralization to test the hypothesis that GLGs in beluga dentin are deposited on a yearly basis. Our estimate of the number of daily growth lines within one GLG is remarkably close to 365 days within error, supporting the hypothesis that GLGs are deposited annually in beluga. We show that measurement of daily growth increments can be used to validate the time represented by GLGs in beluga. Furthermore, we believe this methodology may have broader applications to age estimation in other taxa. PMID:29338011
Waugh, David A; Suydam, Robert S; Ortiz, Joseph D; Thewissen, J G M
2018-01-01
Counts of Growth Layer Groups (GLGs) in the dentin of marine mammal teeth are widely used as indicators of age. In most marine mammals, observations document that GLGs are deposited yearly, but in beluga whales, some studies have supported the view that two GLGs are deposited each year. Our understanding of beluga life-history differs substantially depending on assumptions regarding the timing of GLG deposition; therefore, resolving this issue has important considerations for population assessments. In this study, we used incremental lines that represent daily pulses of dentin mineralization to test the hypothesis that GLGs in beluga dentin are deposited on a yearly basis. Our estimate of the number of daily growth lines within one GLG is remarkably close to 365 days within error, supporting the hypothesis that GLGs are deposited annually in beluga. We show that measurement of daily growth increments can be used to validate the time represented by GLGs in beluga. Furthermore, we believe this methodology may have broader applications to age estimation in other taxa.
Black, Bryan A; Griffin, Daniel; van der Sleen, Peter; Wanamaker, Alan D; Speer, James H; Frank, David C; Stahle, David W; Pederson, Neil; Copenheaver, Carolyn A; Trouet, Valerie; Griffin, Shelly; Gillanders, Bronwyn M
2016-07-01
High-resolution biogenic and geologic proxies in which one increment or layer is formed per year are crucial to describing natural ranges of environmental variability in Earth's physical and biological systems. However, dating controls are necessary to ensure temporal precision and accuracy; simple counts cannot ensure that all layers are placed correctly in time. Originally developed for tree-ring data, crossdating is the only such procedure that ensures all increments have been assigned the correct calendar year of formation. Here, we use growth-increment data from two tree species, two marine bivalve species, and a marine fish species to illustrate sensitivity of environmental signals to modest dating error rates. When falsely added or missed increments are induced at one and five percent rates, errors propagate back through time and eliminate high-frequency variability, climate signals, and evidence of extreme events while incorrectly dating and distorting major disturbances or other low-frequency processes. Our consecutive Monte Carlo experiments show that inaccuracies begin to accumulate in as little as two decades and can remove all but decadal-scale processes after as little as two centuries. Real-world scenarios may have even greater consequence in the absence of crossdating. Given this sensitivity to signal loss, the fundamental tenets of crossdating must be applied to fully resolve environmental signals, a point we underscore as the frontiers of growth-increment analysis continue to expand into tropical, freshwater, and marine environments. © 2016 John Wiley & Sons Ltd.
Dispensing error rate after implementation of an automated pharmacy carousel system.
Oswald, Scott; Caldwell, Richard
2007-07-01
A study was conducted to determine filling and dispensing error rates before and after the implementation of an automated pharmacy carousel system (APCS). The study was conducted in a 613-bed acute and tertiary care university hospital. Before the implementation of the APCS, filling and dispensing rates were recorded during October through November 2004 and January 2005. Postimplementation data were collected during May through June 2006. Errors were recorded in three areas of pharmacy operations: first-dose or missing medication fill, automated dispensing cabinet fill, and interdepartmental request fill. A filling error was defined as an error caught by a pharmacist during the verification step. A dispensing error was defined as an error caught by a pharmacist observer after verification by the pharmacist. Before implementation of the APCS, 422 first-dose or missing medication orders were observed between October 2004 and January 2005. Independent data collected in December 2005, approximately six weeks after the introduction of the APCS, found that filling and error rates had increased. The filling rate for automated dispensing cabinets was associated with the largest decrease in errors. Filling and dispensing error rates had decreased by December 2005. In terms of interdepartmental request fill, no dispensing errors were noted in 123 clinic orders dispensed before the implementation of the APCS. One dispensing error out of 85 clinic orders was identified after implementation of the APCS. The implementation of an APCS at a university hospital decreased medication filling errors related to automated cabinets only and did not affect other filling and dispensing errors.
Inventory implications of using sampling variances in estimation of growth model coefficients
Albert R. Stage; William R. Wykoff
2000-01-01
Variables based on stand densities or stocking have sampling errors that depend on the relation of tree size to plot size and on the spatial structure of the population, ignoring the sampling errors of such variables, which include most measures of competition used in both distance-dependent and distance-independent growth models, can bias the predictions obtained from...
Xiao, Qiang; Gao, Yang; Hu, Dan; Tan, Hong; Wang, Tianxiang
2011-07-01
We have investigated the interactions between economic growth and industrial wastewater discharge from 1978 to 2007 in China's Hunan Province using co-integration theory and an error-correction model. Two main economic growth indicators and four representative industrial wastewater pollutants were selected to demonstrate the interaction mechanism. We found a long-term equilibrium relationship between economic growth and the discharge of industrial pollutants in wastewater between 1978 and 2007 in Hunan Province. The error-correction mechanism prevented the variable expansion for long-term relationship at quantity and scale, and the size of the error-correction parameters reflected short-term adjustments that deviate from the long-term equilibrium. When economic growth changes within a short term, the discharge of pollutants will constrain growth because the values of the parameters in the short-term equation are smaller than those in the long-term co-integrated regression equation, indicating that a remarkable long-term influence of economic growth on the discharge of industrial wastewater pollutants and that increasing pollutant discharge constrained economic growth. Economic growth is the main driving factor that affects the discharge of industrial wastewater pollutants in Hunan Province. On the other hand, the discharge constrains economic growth by producing external pressure on growth, although this feedback mechanism has a lag effect. Economic growth plays an important role in explaining the predicted decomposition of the variance in the discharge of industrial wastewater pollutants, but this discharge contributes less to predictions of the variations in economic growth.
Xiao, Qiang; Gao, Yang; Hu, Dan; Tan, Hong; Wang, Tianxiang
2011-01-01
We have investigated the interactions between economic growth and industrial wastewater discharge from 1978 to 2007 in China’s Hunan Province using co-integration theory and an error-correction model. Two main economic growth indicators and four representative industrial wastewater pollutants were selected to demonstrate the interaction mechanism. We found a long-term equilibrium relationship between economic growth and the discharge of industrial pollutants in wastewater between 1978 and 2007 in Hunan Province. The error-correction mechanism prevented the variable expansion for long-term relationship at quantity and scale, and the size of the error-correction parameters reflected short-term adjustments that deviate from the long-term equilibrium. When economic growth changes within a short term, the discharge of pollutants will constrain growth because the values of the parameters in the short-term equation are smaller than those in the long-term co-integrated regression equation, indicating that a remarkable long-term influence of economic growth on the discharge of industrial wastewater pollutants and that increasing pollutant discharge constrained economic growth. Economic growth is the main driving factor that affects the discharge of industrial wastewater pollutants in Hunan Province. On the other hand, the discharge constrains economic growth by producing external pressure on growth, although this feedback mechanism has a lag effect. Economic growth plays an important role in explaining the predicted decomposition of the variance in the discharge of industrial wastewater pollutants, but this discharge contributes less to predictions of the variations in economic growth. PMID:21845167
Stop Stalling: Mus81 Required for Efficient Replication | Center for Cancer Research
DNA replication is precisely controlled to ensure that daughter cells receive intact, accurate genetic information. Each segment of DNA must be copied only once, and the rate of replication coordinated genome-wide. Mild replication stress slows DNA synthesis and activates a pathway involving the Mus81 endonuclease, which generates a series of DNA breaks that are rapidly repaired, allowing the cell to avoid activating the S-phase checkpoint and its potentially damaging outcomes of apoptosis or error-prone repair. Mirit Aladjem, Ph.D., of CCR’s Developmental Therapeutics Branch, and her colleagues wondered whether Mus81 also plays a role in regulating the replication rate during growth in the absence of stress.
The acquisition of conditioned responding.
Harris, Justin A
2011-04-01
This report analyzes the acquisition of conditioned responses in rats trained in a magazine approach paradigm. Following the suggestion by Gallistel, Fairhurst, and Balsam (2004), Weibull functions were fitted to the trial-by-trial response rates of individual rats. These showed that the emergence of responding was often delayed, after which the response rate would increase relatively gradually across trials. The fit of the Weibull function to the behavioral data of each rat was equaled by that of a cumulative exponential function incorporating a response threshold. Thus, the growth in conditioning strength on each trial can be modeled by the derivative of the exponential--a difference term of the form used in many models of associative learning (e.g., Rescorla & Wagner, 1972). Further analyses, comparing the acquisition of responding with a continuously reinforced stimulus (CRf) and a partially reinforced stimulus (PRf), provided further evidence in support of the difference term. In conclusion, the results are consistent with conventional models that describe learning as the growth of associative strength, incremented on each trial by an error-correction process.
Isotopic Resonance Hypothesis: Experimental Verification by Escherichia coli Growth Measurements
NASA Astrophysics Data System (ADS)
Xie, Xueshu; Zubarev, Roman A.
2015-03-01
Isotopic composition of reactants affects the rates of chemical and biochemical reactions. As a rule, enrichment of heavy stable isotopes leads to progressively slower reactions. But the recent isotopic resonance hypothesis suggests that the dependence of the reaction rate upon the enrichment degree is not monotonous. Instead, at some ``resonance'' isotopic compositions, the kinetics increases, while at ``off-resonance'' compositions the same reactions progress slower. To test the predictions of this hypothesis for the elements C, H, N and O, we designed a precise (standard error +/-0.05%) experiment that measures the parameters of bacterial growth in minimal media with varying isotopic composition. A number of predicted resonance conditions were tested, with significant enhancements in kinetics discovered at these conditions. The combined statistics extremely strongly supports the validity of the isotopic resonance phenomenon (p << 10-15). This phenomenon has numerous implications for the origin of life studies and astrobiology, and possible applications in agriculture, biotechnology, medicine, chemistry and other areas.
NASA Technical Reports Server (NTRS)
Buglia, James J.
1989-01-01
An analysis was made of the error in the minimum altitude of a geometric ray from an orbiting spacecraft to the Sun. The sunrise and sunset errors are highly correlated and are opposite in sign. With the ephemeris generated for the SAGE 1 instrument data reduction, these errors can be as large as 200 to 350 meters (1 sigma) after 7 days of orbit propagation. The bulk of this error results from errors in the position of the orbiting spacecraft rather than errors in computing the position of the Sun. These errors, in turn, result from the discontinuities in the ephemeris tapes resulting from the orbital determination process. Data taken from the end of the definitive ephemeris tape are used to generate the predict data for the time interval covered by the next arc of the orbit determination process. The predicted data are then updated by using the tracking data. The growth of these errors is very nearly linear, with a slight nonlinearity caused by the beta angle. An approximate analytic method is given, which predicts the magnitude of the errors and their growth in time with reasonable fidelity.
Application of a bioenergetics model for hatchery production: Largemouth bass fed commercial diets
Csargo, Isak J.; Michael L. Brown,; Chipps, Steven R.
2012-01-01
Fish bioenergetics models based on natural prey items have been widely used to address research and management questions. However, few attempts have been made to evaluate and apply bioenergetics models to hatchery-reared fish receiving commercial feeds that contain substantially higher energy densities than natural prey. In this study, we evaluated a bioenergetics model for age-0 largemouth bass Micropterus salmoidesreared on four commercial feeds. Largemouth bass (n ≈ 3,504) were reared for 70 d at 25°C in sixteen 833-L circular tanks connected in parallel to a recirculation system. Model performance was evaluated using error components (mean, slope, and random) derived from decomposition of the mean square error obtained from regression of observed on predicted values. Mean predicted consumption was only 8.9% lower than mean observed consumption and was similar to error rates observed for largemouth bass consuming natural prey. Model evaluation showed that the 97.5% joint confidence region included the intercept of 0 (−0.43 ± 3.65) and slope of 1 (1.08 ± 0.20), which indicates the model accurately predicted consumption. Moreover model error was similar among feeds (P = 0.98), and most error was probably attributable to sampling error (unconsumed feed), underestimated predator energy densities, or consumption-dependent error, which is common in bioenergetics models. This bioenergetics model could provide a valuable tool in hatchery production of largemouth bass. Furthermore, we believe that bioenergetics modeling could be useful in aquaculture production, particularly for species lacking historical hatchery constants or conventional growth models.
Differential detection in quadrature-quadrature phase shift keying (Q2PSK) systems
NASA Astrophysics Data System (ADS)
El-Ghandour, Osama M.; Saha, Debabrata
1991-05-01
A generalized quadrature-quadrature phase shift keying (Q2PSK) signaling format is considered for differential encoding and differential detection. Performance in the presence of additive white Gaussian noise (AWGN) is analyzed. Symbol error rate is found to be approximately twice the symbol error rate in a quaternary DPSK system operating at the same Eb/N0. However, the bandwidth efficiency of differential Q2PSK is substantially higher than that of quaternary DPSK. When the error is due to AWGN, the ratio of double error rate to single error rate can be very high, and the ratio may approach zero at high SNR. To improve error rate, differential detection through maximum-likelihood decoding based on multiple or N symbol observations is considered. If N and SNR are large this decoding gives a 3-dB advantage in error rate over conventional N = 2 differential detection, fully recovering the energy loss (as compared to coherent detection) if the observation is extended to a large number of symbol durations.
Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes
NASA Astrophysics Data System (ADS)
Jing, Lin; Brun, Todd; Quantum Research Team
Quasi-cyclic LDPC codes can approach the Shannon capacity and have efficient decoders. Manabu Hagiwara et al., 2007 presented a method to calculate parity check matrices with high girth. Two distinct, orthogonal matrices Hc and Hd are used. Using submatrices obtained from Hc and Hd by deleting rows, we can alter the code rate. The submatrix of Hc is used to correct Pauli X errors, and the submatrix of Hd to correct Pauli Z errors. We simulated this system for depolarizing noise on USC's High Performance Computing Cluster, and obtained the block error rate (BER) as a function of the error weight and code rate. From the rates of uncorrectable errors under different error weights we can extrapolate the BER to any small error probability. Our results show that this code family can perform reasonably well even at high code rates, thus considerably reducing the overhead compared to concatenated and surface codes. This makes these codes promising as storage blocks in fault-tolerant quantum computation. Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes.
Executive Council lists and general practitioner files
Farmer, R. D. T.; Knox, E. G.; Cross, K. W.; Crombie, D. L.
1974-01-01
An investigation of the accuracy of general practitioner and Executive Council files was approached by a comparison of the two. High error rates were found, including both file errors and record errors. On analysis it emerged that file error rates could not be satisfactorily expressed except in a time-dimensioned way, and we were unable to do this within the context of our study. Record error rates and field error rates were expressible as proportions of the number of records on both the lists; 79·2% of all records exhibited non-congruencies and particular information fields had error rates ranging from 0·8% (assignation of sex) to 68·6% (assignation of civil state). Many of the errors, both field errors and record errors, were attributable to delayed updating of mutable information. It is concluded that the simple transfer of Executive Council lists to a computer filing system would not solve all the inaccuracies and would not in itself permit Executive Council registers to be used for any health care applications requiring high accuracy. For this it would be necessary to design and implement a purpose designed health care record system which would include, rather than depend upon, the general practitioner remuneration system. PMID:4816588
Westbrook, Johanna I.; Li, Ling; Lehnbom, Elin C.; Baysari, Melissa T.; Braithwaite, Jeffrey; Burke, Rosemary; Conn, Chris; Day, Richard O.
2015-01-01
Objectives To (i) compare medication errors identified at audit and observation with medication incident reports; (ii) identify differences between two hospitals in incident report frequency and medication error rates; (iii) identify prescribing error detection rates by staff. Design Audit of 3291patient records at two hospitals to identify prescribing errors and evidence of their detection by staff. Medication administration errors were identified from a direct observational study of 180 nurses administering 7451 medications. Severity of errors was classified. Those likely to lead to patient harm were categorized as ‘clinically important’. Setting Two major academic teaching hospitals in Sydney, Australia. Main Outcome Measures Rates of medication errors identified from audit and from direct observation were compared with reported medication incident reports. Results A total of 12 567 prescribing errors were identified at audit. Of these 1.2/1000 errors (95% CI: 0.6–1.8) had incident reports. Clinically important prescribing errors (n = 539) were detected by staff at a rate of 218.9/1000 (95% CI: 184.0–253.8), but only 13.0/1000 (95% CI: 3.4–22.5) were reported. 78.1% (n = 421) of clinically important prescribing errors were not detected. A total of 2043 drug administrations (27.4%; 95% CI: 26.4–28.4%) contained ≥1 errors; none had an incident report. Hospital A had a higher frequency of incident reports than Hospital B, but a lower rate of errors at audit. Conclusions Prescribing errors with the potential to cause harm frequently go undetected. Reported incidents do not reflect the profile of medication errors which occur in hospitals or the underlying rates. This demonstrates the inaccuracy of using incident frequency to compare patient risk or quality performance within or across hospitals. New approaches including data mining of electronic clinical information systems are required to support more effective medication error detection and mitigation. PMID:25583702
Assessing tropical rainforest growth traits: Data - Model fusion in the Congo basin and beyond
NASA Astrophysics Data System (ADS)
Pietsch, Stephan
2017-04-01
Virgin forest ecosystems resemble the key reference level for natural tree growth dynamics. The mosaic cycle concept describes such dynamics as local disequilibria driven by patch level succession cycles of breakdown, regeneration, juvenescence and old growth. These cycles, however, may involve different traits of light demanding and shade tolerant species assemblies. In this work a data model fusion concept will be introduced to assess the differences in growth dynamics of the mosaic cycle of the Western Congolian Lowland Rainforest ecosystem. Field data from 34 forest patches located in an ice age forest refuge, recently pinpointed to the ground and still devoid of direct human impact up to today - resemble the data base. A 3D error assessment procedure versus BGC model simulations for the 34 patches revealed two different growth dynamics, consistent with observed growth traits of pioneer and late succession species assemblies of the Western Congolian Lowland rainforest. An application of the same procedure to Central American Pacific rainforests confirms the strength of the 3D error field data model fusion concept to Central American Pacific rainforests confirms the strength of the 3D error field data model fusion concept to assess different growth traits of the mosaic cycle of natural forest dynamics.
Protein turnover, nitrogen balance and rehabilitation.
Fern, E B; Waterlow, J C
1983-01-01
Not many studies have been done on protein turnover during recovery from malnutrition. Some relevant information can, however, be obtained from measurements on normal growing animals, since rehabilitation and normal growth have in common a rapid rate of net protein synthesis. The key question is the extent to which net gain in protein results from an increase in synthesis or a decrease in breakdown or both. Different studies have used different methods, and all methods for measuring protein turnover have some disadvantages and sources of error. It is important to bear this in mind in evaluating the results. Consequently, part of this paper will be devoted to questions of methodology. Whole body protein turnover has been measured in children recovering from severe malnutrition. During the phase of rapid catch-up growth the rate of protein synthesis is increased. As might be expected, it increases linearly with the rate of weight gain. At the same time there is a smaller increase in the rate of protein breakdown. The resultant of these two processes is that, over and above the basal rate of protein synthesis, 1.4 grams of protein have to be synthesized for 1 gram to be laid down. Very similar results have been obtained in rapidly growing young pigs. Experimental studies on muscle growth in general confirm the conclusion that, at least in muscle, rapid growth is associated with rapid rates of protein breakdown as well as of synthesis. This has been shown in muscles of young growing rats, as well as in muscles in which hypertrophy has been induced by stretch or other stimuli. In contrast, the evidence suggests that rapid growth involves a fall in the rate of protein degradation. The magnitude of the nitrogen balance under any conditions is determined by the difference between synthesis and breakdown. In the absence of any storage of amino acids, this must be the same as the difference between intake and excretion (S - B = I - E). A question of great interest is whether, at a given intake, the extent of N balance is determined primarily by regulation of synthesis and breakdown or by regulation of amino acid oxidation. Clearly, a reduction in amino acid degradation is equivalent to an increase in amino acid intake. An interesting subject for future research is the extent to which the amino acid degrading enzymes adapt to the requirements imposed by growth and rehabilitation.
Oh, S R; Kang, I; Oh, M H; Ha, S D
2014-01-01
The inhibitory effect of chlorine (50, 100, and 200 mg/kg) was investigated with and without UV radiation (300 mW·s/cm(2)) for the growth of Listeria monocytogenes in chicken breast meat. Using a polynomial model, predictive growth models were also developed as a function of chlorine concentration, UV exposure, and storage temperature (4, 10, and 15°C). A maximum L. monocytogenes reduction (0.8 log cfu, cfu/g) was obtained when combining chlorine at 200 mg/kg and UV at 300 mW·s/cm(2), and a maximum synergistic effect (0.4 log cfu/g) was observed when using chlorine at 100 mg/kg and UV at 300 mW·s/cm(2). Primary models developed for specific growth rate and lag time showed a good fitness (R(2) > 0.91), as determined by the reparameterized Gompertz equation. Secondary polynomial models were obtained using nonlinear regression analysis. The developed models were validated with mean square error, bias factor, and accuracy factor, which were 0.0003, 0.96, and 1.11, respectively, for specific growth rate and 7.69, 0.99, and 1.04, respectively, for lag time. The treatment of chlorine and UV did not change the color and texture of chicken breast after 7 d of storage at 4°C. As a result, the combination of chlorine at 100 mg/kg and UV at 300 mW·s/cm(2) appears to an effective method into inhibit L. monocytogenes growth in broiler carcasses with no negative effects on color and textural quality. Based on the validation results, the predictive models can be used to accurately predict L. monocytogenes growth in chicken breast.
Schroeder, Scott R; Salomon, Meghan M; Galanter, William L; Schiff, Gordon D; Vaida, Allen J; Gaunt, Michael J; Bryson, Michelle L; Rash, Christine; Falck, Suzanne; Lambert, Bruce L
2017-05-01
Drug name confusion is a common type of medication error and a persistent threat to patient safety. In the USA, roughly one per thousand prescriptions results in the wrong drug being filled, and most of these errors involve drug names that look or sound alike. Prior to approval, drug names undergo a variety of tests to assess their potential for confusability, but none of these preapproval tests has been shown to predict real-world error rates. We conducted a study to assess the association between error rates in laboratory-based tests of drug name memory and perception and real-world drug name confusion error rates. Eighty participants, comprising doctors, nurses, pharmacists, technicians and lay people, completed a battery of laboratory tests assessing visual perception, auditory perception and short-term memory of look-alike and sound-alike drug name pairs (eg, hydroxyzine/hydralazine). Laboratory test error rates (and other metrics) significantly predicted real-world error rates obtained from a large, outpatient pharmacy chain, with the best-fitting model accounting for 37% of the variance in real-world error rates. Cross-validation analyses confirmed these results, showing that the laboratory tests also predicted errors from a second pharmacy chain, with 45% of the variance being explained by the laboratory test data. Across two distinct pharmacy chains, there is a strong and significant association between drug name confusion error rates observed in the real world and those observed in laboratory-based tests of memory and perception. Regulators and drug companies seeking a validated preapproval method for identifying confusing drug names ought to consider using these simple tests. By using a standard battery of memory and perception tests, it should be possible to reduce the number of confusing look-alike and sound-alike drug name pairs that reach the market, which will help protect patients from potentially harmful medication errors. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Naizhuo; Zhou, Yuyu; Samson, Eric L.
The Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) nighttime lights imagery has proven to be a powerful remote sensing tool to monitor urbanization and assess socioeconomic activities at large scales. However, the existence of incompatible digital number (DN) values and geometric errors severely limit application of nighttime light image data on multi-year quantitative research. In this study we extend and improve previous studies on inter-calibrating nighttime lights image data to obtain more compatible and reliable nighttime lights time series (NLT) image data for China and the United States (US) through four steps: inter-calibration, geometric correction, steady increase adjustment, andmore » population data correction. We then use gross domestic product (GDP) data to test the processed NLT image data indirectly and find that sum light (summed DN value of pixels in a nighttime light image) maintains apparent increase trends with relatively large GDP growth rates but does not increase or decrease with relatively small GDP growth rates. As nighttime light is a sensitive indicator for economic activity, the temporally consistent trends between sum light and GDP growth rate imply that brightness of nighttime lights on the ground is correctly represented by the processed NLT image data. Finally, through analyzing the corrected NLT image data from 1992 to 2008, we find that China experienced apparent nighttime lights development in 1992-1997 and 2001-2008 respectively and the US suffered from nighttime lights decay in large areas after 2001.« less
Classification based upon gene expression data: bias and precision of error rates.
Wood, Ian A; Visscher, Peter M; Mengersen, Kerrie L
2007-06-01
Gene expression data offer a large number of potentially useful predictors for the classification of tissue samples into classes, such as diseased and non-diseased. The predictive error rate of classifiers can be estimated using methods such as cross-validation. We have investigated issues of interpretation and potential bias in the reporting of error rate estimates. The issues considered here are optimization and selection biases, sampling effects, measures of misclassification rate, baseline error rates, two-level external cross-validation and a novel proposal for detection of bias using the permutation mean. Reporting an optimal estimated error rate incurs an optimization bias. Downward bias of 3-5% was found in an existing study of classification based on gene expression data and may be endemic in similar studies. Using a simulated non-informative dataset and two example datasets from existing studies, we show how bias can be detected through the use of label permutations and avoided using two-level external cross-validation. Some studies avoid optimization bias by using single-level cross-validation and a test set, but error rates can be more accurately estimated via two-level cross-validation. In addition to estimating the simple overall error rate, we recommend reporting class error rates plus where possible the conditional risk incorporating prior class probabilities and a misclassification cost matrix. We also describe baseline error rates derived from three trivial classifiers which ignore the predictors. R code which implements two-level external cross-validation with the PAMR package, experiment code, dataset details and additional figures are freely available for non-commercial use from http://www.maths.qut.edu.au/profiles/wood/permr.jsp
NASA Astrophysics Data System (ADS)
Bilgin, Ferhat I.
My dissertation consists of three essays in empirical macroeconomics. The objective of this research is to use rigorous time-series econometric analysis to investigate the impact of commodity prices on macroeconomic performance of a small, developing and resource-rich country, which is in the process of transition from a purely command and control economy to a market oriented one. Essay 1 studies the relationship between Kazakhstan's GDP, total government expenditure, real effective exchange rate and the world oil price. Specifically, I use the cointegrated vector autoregression (CVAR) and error correction modeling (ECM) approach to identify the long and short-run relations that may exist among these macroeconomic variables. I found a long-run relationship for Kazakhstan's GDP, which depends on government spending and the oil price positively, and on the real effective exchange rate negatively. In the short run, the growth rate of GDP depends on the growth rates of the oil price, investment and the magnitude of the deviation from the long-run equilibrium. Essay 2 studies the inflation process in Kazakhstan based on the analysis of price formation in the following sectors: monetary, external, labor and goods and services. The modeling is conducted from two different perspectives: the first is the monetary model of inflation framework and the second is the mark-up modeling framework. Encompassing test results show that the mark-up model performs better than the monetary model in explaining inflation in Kazakhstan. According to the mark-up inflation model, in the long run, the price level is positively related to unit labor costs, import prices and government administered prices as well the world oil prices. In the short run, the inflation is positively influenced by the previous quarter's inflation, the contemporaneous changes in the government administered prices, oil prices and by the changes of contemporaneous and lagged unit labor costs, and negatively affected by the previous quarter's mark-up. Essay 3 empirically examines the determinants of the trade balance for a small oil exporting country within the context of Kazakhstan. The dominant theory by Harberger-Lauren-Metzler (HML) predicts that positive terms of trade shocks will improve the trade balance in the short run, but will fade away in the long run. I estimate cointegrated vector autoregression (CVAR) and vector error correction model (VECM) to study the long-run and short-run impacts on the trade balance. The results suggest that, in the long run, an increase in the terms of trade has a positive effect on the trade balance, an increase in GDP and appreciation of the real effective exchange rate have negative effect on the trade balance. In the short run, the terms of trade has a direct positive impact on the trade balance, real income and real exchange rate. On the other hand, appreciation of the currency has a negative impact on the trade balance. The error correction term, which represents the deviation from the long- run equilibrium between the trade balance, real income, terms of trade and real exchange rate, has a negative effect on the growth rate of the trade balance. These results provide further evidence to the idea that, in the long run, the HML effect not only depends on the duration of the shock, but also depends on the structure of the economy.
Estimating genotype error rates from high-coverage next-generation sequence data.
Wall, Jeffrey D; Tang, Ling Fung; Zerbe, Brandon; Kvale, Mark N; Kwok, Pui-Yan; Schaefer, Catherine; Risch, Neil
2014-11-01
Exome and whole-genome sequencing studies are becoming increasingly common, but little is known about the accuracy of the genotype calls made by the commonly used platforms. Here we use replicate high-coverage sequencing of blood and saliva DNA samples from four European-American individuals to estimate lower bounds on the error rates of Complete Genomics and Illumina HiSeq whole-genome and whole-exome sequencing. Error rates for nonreference genotype calls range from 0.1% to 0.6%, depending on the platform and the depth of coverage. Additionally, we found (1) no difference in the error profiles or rates between blood and saliva samples; (2) Complete Genomics sequences had substantially higher error rates than Illumina sequences had; (3) error rates were higher (up to 6%) for rare or unique variants; (4) error rates generally declined with genotype quality (GQ) score, but in a nonlinear fashion for the Illumina data, likely due to loss of specificity of GQ scores greater than 60; and (5) error rates increased with increasing depth of coverage for the Illumina data. These findings, especially (3)-(5), suggest that caution should be taken in interpreting the results of next-generation sequencing-based association studies, and even more so in clinical application of this technology in the absence of validation by other more robust sequencing or genotyping methods. © 2014 Wall et al.; Published by Cold Spring Harbor Laboratory Press.
Weigel, Ralf; Hohenstein, Axel
2014-01-01
Abstract Chronic subdural hematoma (CSH) is characterized by a net increase of volume over time. Major underlying mechanisms appear to be hemorrhagic episodes and a continuous exudation, which may be studied using labeled proteins to yield an exudation rate in a given patient. We tested the hypothesis that the concentration of vascular endothelial growth factor (VEGF) in hematoma fluid correlates with the rate of exudation. Concentration of VEGF was determined in 51 consecutive patients with CSH by the sandwich immune enzyme-linked immunosorbent assay technique. Mean values were correlated with exudation rates taken from the literature according to the appearance of CSH on computed tomography (CT) images. The CT appearance of each CSH was classified as hypodense, isodense, hyperdense, or mixed density. Mean VEGF concentration was highest in mixed-density hematomas (22,403±4173 pg/mL; mean±standard error of the mean; n=27), followed by isodense (9715±1287 pg/mL; n=9) and hypodense (5955±610 pg/mL; n=18) hematomas. Only 1 patient with hyperdense hematoma fulfilled the inclusion criteria, and the concentration of VEGF found in this patient was 24,200 pg/mL. There was a statistically significant correlation between VEGF concentrations and exudation rates in the four classes of CT appearance (r=0.98). The current report is the first to suggest a pathophysiological link between the VEGF concentration and the exudation rate underlying the steady increase of hematoma volume and CT appearance.With this finding, the current report adds another piece of evidence in favor of the pathophysiological role of VEGF in the development of CSH, including mechanisms contributing to hematoma growth and CT appearance. PMID:24245657
The Role of Moist Processes in the Intrinsic Predictability of Indian Ocean Cyclones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taraphdar, Sourav; Mukhopadhyay, P.; Leung, Lai-Yung R.
The role of moist processes and the possibility of error cascade from cloud scale processes affecting the intrinsic predictable time scale of a high resolution convection permitting model within the environment of tropical cyclones (TCs) over the Indian region are investigated. Consistent with past studies of extra-tropical cyclones, it is demonstrated that moist processes play a major role in forecast error growth which may ultimately limit the intrinsic predictability of the TCs. Small errors in the initial conditions may grow rapidly and cascades from smaller scales to the larger scales through strong diabatic heating and nonlinearities associated with moist convection.more » Results from a suite of twin perturbation experiments for four tropical cyclones suggest that the error growth is significantly higher in cloud permitting simulation at 3.3 km resolutions compared to simulations at 3.3 km and 10 km resolution with parameterized convection. Convective parameterizations with prescribed convective time scales typically longer than the model time step allows the effects of microphysical tendencies to average out so convection responds to a smoother dynamical forcing. Without convective parameterizations, the finer-scale instabilities resolved at 3.3 km resolution and stronger vertical motion that results from the cloud microphysical parameterizations removing super-saturation at each model time step can ultimately feed the error growth in convection permitting simulations. This implies that careful considerations and/or improvements in cloud parameterizations are needed if numerical predictions are to be improved through increased model resolution. Rapid upscale error growth from convective scales may ultimately limit the intrinsic mesoscale predictability of the TCs, which further supports the needs for probabilistic forecasts of these events, even at the mesoscales.« less
Sachs, Julian P.; Kawka, Orest E.
2015-01-01
The hydrogen isotope (2H/1H) ratio of lipids from phytoplankton is a powerful new tool for reconstructing hydroclimate variations in the geologic past from marine and lacustrine sediments. Water 2H/1H changes are reflected in lipid 2H/1H changes with R2 > 0.99, and salinity variations have been shown to cause about a 1‰ change in lipid δ2H values per unit (ppt) change in salinity. Less understood are the effects of growth rate, nutrient limitation and light on 2H/1H fractionation in phytoplankton. Here we present the first published study of growth rate effects on 2H/1H fractionation in the lipids of coccolithophorids grown in continuous cultures. Emiliania huxleyi was cultivated in steady state at four growth rates and the δ2H value of individual alkenones (C37:2, C37:3, C38:2, C38:3), fatty acids (C14:0, C16:0, C18:0), and 24-methyl cholest-5,22-dien-3β-ol (brassicasterol) were measured. 2H/1H fractionation increased in all lipids as growth rate increased by 24‰ to 79‰ (div d-1)-1. We attribute this response to a proportional increase in the fraction of NADPH from Photosystem I (PS1) of photosynthesis relative to NADPH from the cytosolic oxidative pentose phosphate (OPP) pathway in the synthesis of lipids as growth rate increases. A 3-endmember model is presented in which lipid hydrogen comes from NADPH produced in PS1, NADPH produced by OPP, and intracellular water. With published values or best estimates of the fractionation factors for these sources (αPS1 = 0.4, αOPP = 0.75, and αH2O = 0) and half of the hydrogen in a lipid derived from water the model indicates αlipid = 0.79. This value is within the range measured for alkenones (αalkenone = 0.77 to 0.81) and fatty acids (αFA = 0.75 to 0.82) in the chemostat cultures, but is greater than the range for brassicasterol (αbrassicasterol = 0.68 to 0.72). The latter is attributed to a greater proportion of hydrogen from NADPH relative to water in isoprenoid lipids. The model successfully explains the increase in 2H/1H fractionation in the sterol 24-methyl-cholesta-5,24(28)-dien-3β-ol from marine centric diatom T. pseudonana chemostat cultures as growth rate increases. Insensitivity of αFA in those same cultures may be attributable to a larger fraction of hydrogen in fatty acids sourced from intracellular water at the expense of NADPH as growth rate increases. The high sensitivity of α to growth rate in E. huxleyi lipids and a T. pseudonana sterol implies that any change in growth rate larger than ~0.15 div d-1 can cause a change in δ2Hlipid that is larger than the analytical error of the measurement (~5‰), and needs to be considered when interpreting δ2Hlipid variations in sediments. PMID:26576007
Sachs, Julian P; Kawka, Orest E
2015-01-01
The hydrogen isotope (2H/1H) ratio of lipids from phytoplankton is a powerful new tool for reconstructing hydroclimate variations in the geologic past from marine and lacustrine sediments. Water 2H/1H changes are reflected in lipid 2H/1H changes with R2 > 0.99, and salinity variations have been shown to cause about a 1‰ change in lipid δ2H values per unit (ppt) change in salinity. Less understood are the effects of growth rate, nutrient limitation and light on 2H/1H fractionation in phytoplankton. Here we present the first published study of growth rate effects on 2H/1H fractionation in the lipids of coccolithophorids grown in continuous cultures. Emiliania huxleyi was cultivated in steady state at four growth rates and the δ2H value of individual alkenones (C37:2, C37:3, C38:2, C38:3), fatty acids (C14:0, C16:0, C18:0), and 24-methyl cholest-5,22-dien-3β-ol (brassicasterol) were measured. 2H/1H fractionation increased in all lipids as growth rate increased by 24‰ to 79‰ (div d-1)-1. We attribute this response to a proportional increase in the fraction of NADPH from Photosystem I (PS1) of photosynthesis relative to NADPH from the cytosolic oxidative pentose phosphate (OPP) pathway in the synthesis of lipids as growth rate increases. A 3-endmember model is presented in which lipid hydrogen comes from NADPH produced in PS1, NADPH produced by OPP, and intracellular water. With published values or best estimates of the fractionation factors for these sources (αPS1 = 0.4, αOPP = 0.75, and αH2O = 0) and half of the hydrogen in a lipid derived from water the model indicates αlipid = 0.79. This value is within the range measured for alkenones (αalkenone = 0.77 to 0.81) and fatty acids (αFA = 0.75 to 0.82) in the chemostat cultures, but is greater than the range for brassicasterol (αbrassicasterol = 0.68 to 0.72). The latter is attributed to a greater proportion of hydrogen from NADPH relative to water in isoprenoid lipids. The model successfully explains the increase in 2H/1H fractionation in the sterol 24-methyl-cholesta-5,24(28)-dien-3β-ol from marine centric diatom T. pseudonana chemostat cultures as growth rate increases. Insensitivity of αFA in those same cultures may be attributable to a larger fraction of hydrogen in fatty acids sourced from intracellular water at the expense of NADPH as growth rate increases. The high sensitivity of α to growth rate in E. huxleyi lipids and a T. pseudonana sterol implies that any change in growth rate larger than ~0.15 div d-1 can cause a change in δ2Hlipid that is larger than the analytical error of the measurement (~5‰), and needs to be considered when interpreting δ2Hlipid variations in sediments.
Growth models and the expected distribution of fluctuating asymmetry
Graham, John H.; Shimizu, Kunio; Emlen, John M.; Freeman, D. Carl; Merkel, John
2003-01-01
Multiplicative error accounts for much of the size-scaling and leptokurtosis in fluctuating asymmetry. It arises when growth involves the addition of tissue to that which is already present. Such errors are lognormally distributed. The distribution of the difference between two lognormal variates is leptokurtic. If those two variates are correlated, then the asymmetry variance will scale with size. Inert tissues typically exhibit additive error and have a gamma distribution. Although their asymmetry variance does not exhibit size-scaling, the distribution of the difference between two gamma variates is nevertheless leptokurtic. Measurement error is also additive, but has a normal distribution. Thus, the measurement of fluctuating asymmetry may involve the mixing of additive and multiplicative error. When errors are multiplicative, we recommend computing log E(l) − log E(r), the difference between the logarithms of the expected values of left and right sides, even when size-scaling is not obvious. If l and r are lognormally distributed, and measurement error is nil, the resulting distribution will be normal, and multiplicative error will not confound size-related changes in asymmetry. When errors are additive, such a transformation to remove size-scaling is unnecessary. Nevertheless, the distribution of l − r may still be leptokurtic.
Speech Errors across the Lifespan
ERIC Educational Resources Information Center
Vousden, Janet I.; Maylor, Elizabeth A.
2006-01-01
Dell, Burger, and Svec (1997) proposed that the proportion of speech errors classified as anticipations (e.g., "moot and mouth") can be predicted solely from the overall error rate, such that the greater the error rate, the lower the anticipatory proportion (AP) of errors. We report a study examining whether this effect applies to changes in error…
Computer calculated dose in paediatric prescribing.
Kirk, Richard C; Li-Meng Goh, Denise; Packia, Jeya; Min Kam, Huey; Ong, Benjamin K C
2005-01-01
Medication errors are an important cause of hospital-based morbidity and mortality. However, only a few medication error studies have been conducted in children. These have mainly quantified errors in the inpatient setting; there is very little data available on paediatric outpatient and emergency department medication errors and none on discharge medication. This deficiency is of concern because medication errors are more common in children and it has been suggested that the risk of an adverse drug event as a consequence of a medication error is higher in children than in adults. The aims of this study were to assess the rate of medication errors in predominantly ambulatory paediatric patients and the effect of computer calculated doses on medication error rates of two commonly prescribed drugs. This was a prospective cohort study performed in a paediatric unit in a university teaching hospital between March 2003 and August 2003. The hospital's existing computer clinical decision support system was modified so that doctors could choose the traditional prescription method or the enhanced method of computer calculated dose when prescribing paracetamol (acetaminophen) or promethazine. All prescriptions issued to children (<16 years of age) at the outpatient clinic, emergency department and at discharge from the inpatient service were analysed. A medication error was defined as to have occurred if there was an underdose (below the agreed value), an overdose (above the agreed value), no frequency of administration specified, no dose given or excessive total daily dose. The medication error rates and the factors influencing medication error rates were determined using SPSS version 12. From March to August 2003, 4281 prescriptions were issued. Seven prescriptions (0.16%) were excluded, hence 4274 prescriptions were analysed. Most prescriptions were issued by paediatricians (including neonatologists and paediatric surgeons) and/or junior doctors. The error rate in the children's emergency department was 15.7%, for outpatients was 21.5% and for discharge medication was 23.6%. Most errors were the result of an underdose (64%; 536/833). The computer calculated dose error rate was 12.6% compared with the traditional prescription error rate of 28.2%. Logistical regression analysis showed that computer calculated dose was an important and independent variable influencing the error rate (adjusted relative risk = 0.436, 95% CI 0.336, 0.520, p < 0.001). Other important independent variables were seniority and paediatric training of the person prescribing and the type of drug prescribed. Medication error, especially underdose, is common in outpatient, emergency department and discharge prescriptions. Computer calculated doses can significantly reduce errors, but other risk factors have to be concurrently addressed to achieve maximum benefit.
a Weather Monitoring System for Application to Apple and Corn Production
NASA Astrophysics Data System (ADS)
Stirm, Walter Leroy
Many crop management decisions are based on weather -crop development relationships. Daily weather data is currently used in most crop development research and applied models. Present weather and computer technology now makes possible monitoring of crop development on a realtime basis. This research tests a method of computing crop sensitive temperatures for corn and apple using standard hourly meteorological data. The method also makes use of detailed plant physiological stage measurements to determine timing of vital cultural operations tied to the observed weather conditions. The sensitive temperature method incorporates very short term weather variability accounting for changes in the cloud cover, radiation rates, evaporative cooling and other factors involved in the plant's energy balance. The relationship of plant and weather measurements are also used to determine corn emergence, corn grain drydown rate and fruit harvest duration. The monitoring system also incorporates a crop growth unit forecast technique employing short and medium range temperature forecasts of the National Weather Service. The projections of growth units are made for five and ten days into the future. Predicted growth unit accumulations are compared to historical growth unit accumulations to determine the forecast stage. The sensitive temperature crop monitoring system removes some of the error involved in evaluation of growth units by average daily temperature. Carry over maximum and minimums, extended duration of warm or cool periods within the day and disruption of diurnal temperature curve by passage of fronts are eliminated.
Angular rate optimal design for the rotary strapdown inertial navigation system.
Yu, Fei; Sun, Qian
2014-04-22
Due to the characteristics of high precision for a long duration, the rotary strapdown inertial navigation system (RSINS) has been widely used in submarines and surface ships. Nowadays, the core technology, the rotating scheme, has been studied by numerous researchers. It is well known that as one of the key technologies, the rotating angular rate seriously influences the effectiveness of the error modulating. In order to design the optimal rotating angular rate of the RSINS, the relationship between the rotating angular rate and the velocity error of the RSINS was analyzed in detail based on the Laplace transform and the inverse Laplace transform in this paper. The analysis results showed that the velocity error of the RSINS depends on not only the sensor error, but also the rotating angular rate. In order to minimize the velocity error, the rotating angular rate of the RSINS should match the sensor error. One optimal design method for the rotating rate of the RSINS was also proposed in this paper. Simulation and experimental results verified the validity and superiority of this optimal design method for the rotating rate of the RSINS.
Bulik, Catharine C.; Fauntleroy, Kathy A.; Jenkins, Stephen G.; Abuali, Mayssa; LaBombardi, Vincent J.; Nicolau, David P.; Kuti, Joseph L.
2010-01-01
We describe the levels of agreement between broth microdilution, Etest, Vitek 2, Sensititre, and MicroScan methods to accurately define the meropenem MIC and categorical interpretation of susceptibility against carbapenemase-producing Klebsiella pneumoniae (KPC). A total of 46 clinical K. pneumoniae isolates with KPC genotypes, all modified Hodge test and blaKPC positive, collected from two hospitals in NY were included. Results obtained by each method were compared with those from broth microdilution (the reference method), and agreement was assessed based on MICs and Clinical Laboratory Standards Institute (CLSI) interpretative criteria using 2010 susceptibility breakpoints. Based on broth microdilution, 0%, 2.2%, and 97.8% of the KPC isolates were classified as susceptible, intermediate, and resistant to meropenem, respectively. Results from MicroScan demonstrated the most agreement with those from broth microdilution, with 95.6% agreement based on the MIC and 2.2% classified as minor errors, and no major or very major errors. Etest demonstrated 82.6% agreement with broth microdilution MICs, a very major error rate of 2.2%, and a minor error rate of 2.2%. Vitek 2 MIC agreement was 30.4%, with a 23.9% very major error rate and a 39.1% minor error rate. Sensititre demonstrated MIC agreement for 26.1% of isolates, with a 3% very major error rate and a 26.1% minor error rate. Application of FDA breakpoints had little effect on minor error rates but increased very major error rates to 58.7% for Vitek 2 and Sensititre. Meropenem MIC results and categorical interpretations for carbapenemase-producing K. pneumoniae differ by methodology. Confirmation of testing results is encouraged when an accurate MIC is required for antibiotic dosing optimization. PMID:20484603
ERIC Educational Resources Information Center
Christ, Theodore J.
2006-01-01
Curriculum-based measurement of oral reading fluency (CBM-R) is an established procedure used to index the level and trend of student growth. A substantial literature base exists regarding best practices in the administration and interpretation of CBM-R; however, research has yet to adequately address the potential influence of measurement error.…
Kim, Myoung-Soo; Kim, Jung-Soon; Jung, In Sook; Kim, Young Hae; Kim, Ho Jung
2007-03-01
The purpose of this study was to develop and evaluate an error reporting promoting program(ERPP) to systematically reduce the incidence rate of nursing errors in operating room. A non-equivalent control group non-synchronized design was used. Twenty-six operating room nurses who were in one university hospital in Busan participated in this study. They were stratified into four groups according to their operating room experience and were allocated to the experimental and control groups using a matching method. Mann-Whitney U Test was used to analyze the differences pre and post incidence rates of nursing errors between the two groups. The incidence rate of nursing errors decreased significantly in the experimental group compared to the pre-test score from 28.4% to 15.7%. The incidence rate by domains, it decreased significantly in the 3 domains-"compliance of aseptic technique", "management of document", "environmental management" in the experimental group while it decreased in the control group which was applied ordinary error-reporting method. Error-reporting system can make possible to hold the errors in common and to learn from them. ERPP was effective to reduce the errors of recognition-related nursing activities. For the wake of more effective error-prevention, we will be better to apply effort of risk management along the whole health care system with this program.
Validation Relaxation: A Quality Assurance Strategy for Electronic Data Collection
Gordon, Nicholas; Griffiths, Thomas; Kraemer, John D; Siedner, Mark J
2017-01-01
Background The use of mobile devices for data collection in developing world settings is becoming increasingly common and may offer advantages in data collection quality and efficiency relative to paper-based methods. However, mobile data collection systems can hamper many standard quality assurance techniques due to the lack of a hardcopy backup of data. Consequently, mobile health data collection platforms have the potential to generate datasets that appear valid, but are susceptible to unidentified database design flaws, areas of miscomprehension by enumerators, and data recording errors. Objective We describe the design and evaluation of a strategy for estimating data error rates and assessing enumerator performance during electronic data collection, which we term “validation relaxation.” Validation relaxation involves the intentional omission of data validation features for select questions to allow for data recording errors to be committed, detected, and monitored. Methods We analyzed data collected during a cluster sample population survey in rural Liberia using an electronic data collection system (Open Data Kit). We first developed a classification scheme for types of detectable errors and validation alterations required to detect them. We then implemented the following validation relaxation techniques to enable data error conduct and detection: intentional redundancy, removal of “required” constraint, and illogical response combinations. This allowed for up to 11 identifiable errors to be made per survey. The error rate was defined as the total number of errors committed divided by the number of potential errors. We summarized crude error rates and estimated changes in error rates over time for both individuals and the entire program using logistic regression. Results The aggregate error rate was 1.60% (125/7817). Error rates did not differ significantly between enumerators (P=.51), but decreased for the cohort with increasing days of application use, from 2.3% at survey start (95% CI 1.8%-2.8%) to 0.6% at day 45 (95% CI 0.3%-0.9%; OR=0.969; P<.001). The highest error rate (84/618, 13.6%) occurred for an intentional redundancy question for a birthdate field, which was repeated in separate sections of the survey. We found low error rates (0.0% to 3.1%) for all other possible errors. Conclusions A strategy of removing validation rules on electronic data capture platforms can be used to create a set of detectable data errors, which can subsequently be used to assess group and individual enumerator error rates, their trends over time, and categories of data collection that require further training or additional quality control measures. This strategy may be particularly useful for identifying individual enumerators or systematic data errors that are responsive to enumerator training and is best applied to questions for which errors cannot be prevented through training or software design alone. Validation relaxation should be considered as a component of a holistic data quality assurance strategy. PMID:28821474
Validation Relaxation: A Quality Assurance Strategy for Electronic Data Collection.
Kenny, Avi; Gordon, Nicholas; Griffiths, Thomas; Kraemer, John D; Siedner, Mark J
2017-08-18
The use of mobile devices for data collection in developing world settings is becoming increasingly common and may offer advantages in data collection quality and efficiency relative to paper-based methods. However, mobile data collection systems can hamper many standard quality assurance techniques due to the lack of a hardcopy backup of data. Consequently, mobile health data collection platforms have the potential to generate datasets that appear valid, but are susceptible to unidentified database design flaws, areas of miscomprehension by enumerators, and data recording errors. We describe the design and evaluation of a strategy for estimating data error rates and assessing enumerator performance during electronic data collection, which we term "validation relaxation." Validation relaxation involves the intentional omission of data validation features for select questions to allow for data recording errors to be committed, detected, and monitored. We analyzed data collected during a cluster sample population survey in rural Liberia using an electronic data collection system (Open Data Kit). We first developed a classification scheme for types of detectable errors and validation alterations required to detect them. We then implemented the following validation relaxation techniques to enable data error conduct and detection: intentional redundancy, removal of "required" constraint, and illogical response combinations. This allowed for up to 11 identifiable errors to be made per survey. The error rate was defined as the total number of errors committed divided by the number of potential errors. We summarized crude error rates and estimated changes in error rates over time for both individuals and the entire program using logistic regression. The aggregate error rate was 1.60% (125/7817). Error rates did not differ significantly between enumerators (P=.51), but decreased for the cohort with increasing days of application use, from 2.3% at survey start (95% CI 1.8%-2.8%) to 0.6% at day 45 (95% CI 0.3%-0.9%; OR=0.969; P<.001). The highest error rate (84/618, 13.6%) occurred for an intentional redundancy question for a birthdate field, which was repeated in separate sections of the survey. We found low error rates (0.0% to 3.1%) for all other possible errors. A strategy of removing validation rules on electronic data capture platforms can be used to create a set of detectable data errors, which can subsequently be used to assess group and individual enumerator error rates, their trends over time, and categories of data collection that require further training or additional quality control measures. This strategy may be particularly useful for identifying individual enumerators or systematic data errors that are responsive to enumerator training and is best applied to questions for which errors cannot be prevented through training or software design alone. Validation relaxation should be considered as a component of a holistic data quality assurance strategy. ©Avi Kenny, Nicholas Gordon, Thomas Griffiths, John D Kraemer, Mark J Siedner. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 18.08.2017.
NASA Technical Reports Server (NTRS)
Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.;
2006-01-01
A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5 -resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%-80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5deg resolution is relatively small (less than 6% at 5 mm day.1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%-35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%-15% at 5 mm day.1, with proportionate reductions in latent heating sampling errors.
Protein Crystal Growth With the Aid of Microfluidics
NASA Technical Reports Server (NTRS)
vanderWoerd, Mark
2003-01-01
Protein crystallography is one of three well-known methods to obtain the structure of proteins. A major rate limiting step in protein crystallography is protein crystal nucleation and growth, which is still largely a process conducted by trial-and-error methods. Many attempts have been made to improve protein crystal growth by performing growth in microgravity. Although the use of microgravity appears to improve crystal quality in some attempts, this method has been inefficient because several reasons: we lack a fundamental understanding of macromolecular crystal growth in general and of the influence of microgravity in particular, we have to start with crystal growth conditions in microgravity based on conditions on the ground and finally the hardware does not allow for experimental iteration without reloading samples on the ground. To partially accommodate the disadvantages of the current hardware, we have used microfluidic technology (Lab-on-a-Chip devices) to design the concept of a more efficient crystallization device, suitable for use on the International Space Station and in high-throughput applications on the ground. The concept and properties of microfluidics, the application design process, and the advances in protein crystal growth hardware will be discussed in this presentation. Some examples of proteins crystallized in the new hardware will be discussed, including the differences between conventional crystallization versus crystallization in microfluidics.
Sayers, A; Heron, J; Smith, Adac; Macdonald-Wallis, C; Gilthorpe, M S; Steele, F; Tilling, K
2017-02-01
There is a growing debate with regards to the appropriate methods of analysis of growth trajectories and their association with prospective dependent outcomes. Using the example of childhood growth and adult BP, we conducted an extensive simulation study to explore four two-stage and two joint modelling methods, and compared their bias and coverage in estimation of the (unconditional) association between birth length and later BP, and the association between growth rate and later BP (conditional on birth length). We show that the two-stage method of using multilevel models to estimate growth parameters and relating these to outcome gives unbiased estimates of the conditional associations between growth and outcome. Using simulations, we demonstrate that the simple methods resulted in bias in the presence of measurement error, as did the two-stage multilevel method when looking at the total (unconditional) association of birth length with outcome. The two joint modelling methods gave unbiased results, but using the re-inflated residuals led to undercoverage of the confidence intervals. We conclude that either joint modelling or the simpler two-stage multilevel approach can be used to estimate conditional associations between growth and later outcomes, but that only joint modelling is unbiased with nominal coverage for unconditional associations.
A Lyapunov and Sacker–Sell spectral stability theory for one-step methods
Steyer, Andrew J.; Van Vleck, Erik S.
2018-04-13
Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less
A Lyapunov and Sacker–Sell spectral stability theory for one-step methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steyer, Andrew J.; Van Vleck, Erik S.
Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugiyama, Naonori S.; Okumura, Teppei; Spergel, David N., E-mail: nao.s.sugiyama@gmail.com, E-mail: tokumura@asiaa.sinica.edu.tw, E-mail: dns@astro.princeton.edu
2017-01-01
Yes. Future CMB experiments such as Advanced ACTPol and CMB-S4 should achieve measurements with S/N of > 0.1 for the typical host halo of galaxies in redshift surveys. These measurements will provide complementary measurements of the growth rate of large scale structure f and the expansion rate of the Universe H to galaxy clustering measurements. This paper emphasizes that there is significant information in the anisotropy of the relative pairwise kSZ measurements. We expand the relative pairwise kSZ power spectrum in Legendre polynomials and consider up to its octopole. Assuming that the noise in the filtered maps is uncorrelated betweenmore » the positions of galaxies in the survey, we derive a simple analytic form for the power spectrum covariance of the relative pairwise kSZ temperature in redshift space. While many previous studies have assumed optimistically that the optical depth of the galaxies τ{sub T} in the survey is known, we marginalize over τ{sub T}, to compute constraints on the growth rate f and the expansion rate H . For realistic survey parameters, we find that combining kSZ and galaxy redshift survey data reduces the marginalized 1-σ errors on H and f to ∼50-70% compared to the galaxy-only analysis.« less
NASA Astrophysics Data System (ADS)
Sugiyama, Naonori S.; Okumura, Teppei; Spergel, David N.
2017-01-01
Yes. Future CMB experiments such as Advanced ACTPol and CMB-S4 should achieve measurements with S/N of > 0.1 for the typical host halo of galaxies in redshift surveys. These measurements will provide complementary measurements of the growth rate of large scale structure f and the expansion rate of the Universe H to galaxy clustering measurements. This paper emphasizes that there is significant information in the anisotropy of the relative pairwise kSZ measurements. We expand the relative pairwise kSZ power spectrum in Legendre polynomials and consider up to its octopole. Assuming that the noise in the filtered maps is uncorrelated between the positions of galaxies in the survey, we derive a simple analytic form for the power spectrum covariance of the relative pairwise kSZ temperature in redshift space. While many previous studies have assumed optimistically that the optical depth of the galaxies τT in the survey is known, we marginalize over τT, to compute constraints on the growth rate f and the expansion rate H. For realistic survey parameters, we find that combining kSZ and galaxy redshift survey data reduces the marginalized 1-σ errors on H and f to ~50-70% compared to the galaxy-only analysis.
An error criterion for determining sampling rates in closed-loop control systems
NASA Technical Reports Server (NTRS)
Brecher, S. M.
1972-01-01
The determination of an error criterion which will give a sampling rate for adequate performance of linear, time-invariant closed-loop, discrete-data control systems was studied. The proper modelling of the closed-loop control system for characterization of the error behavior, and the determination of an absolute error definition for performance of the two commonly used holding devices are discussed. The definition of an adequate relative error criterion as a function of the sampling rate and the parameters characterizing the system is established along with the determination of sampling rates. The validity of the expressions for the sampling interval was confirmed by computer simulations. Their application solves the problem of making a first choice in the selection of sampling rates.
Westbrook, Johanna I; Li, Ling; Lehnbom, Elin C; Baysari, Melissa T; Braithwaite, Jeffrey; Burke, Rosemary; Conn, Chris; Day, Richard O
2015-02-01
To (i) compare medication errors identified at audit and observation with medication incident reports; (ii) identify differences between two hospitals in incident report frequency and medication error rates; (iii) identify prescribing error detection rates by staff. Audit of 3291 patient records at two hospitals to identify prescribing errors and evidence of their detection by staff. Medication administration errors were identified from a direct observational study of 180 nurses administering 7451 medications. Severity of errors was classified. Those likely to lead to patient harm were categorized as 'clinically important'. Two major academic teaching hospitals in Sydney, Australia. Rates of medication errors identified from audit and from direct observation were compared with reported medication incident reports. A total of 12 567 prescribing errors were identified at audit. Of these 1.2/1000 errors (95% CI: 0.6-1.8) had incident reports. Clinically important prescribing errors (n = 539) were detected by staff at a rate of 218.9/1000 (95% CI: 184.0-253.8), but only 13.0/1000 (95% CI: 3.4-22.5) were reported. 78.1% (n = 421) of clinically important prescribing errors were not detected. A total of 2043 drug administrations (27.4%; 95% CI: 26.4-28.4%) contained ≥ 1 errors; none had an incident report. Hospital A had a higher frequency of incident reports than Hospital B, but a lower rate of errors at audit. Prescribing errors with the potential to cause harm frequently go undetected. Reported incidents do not reflect the profile of medication errors which occur in hospitals or the underlying rates. This demonstrates the inaccuracy of using incident frequency to compare patient risk or quality performance within or across hospitals. New approaches including data mining of electronic clinical information systems are required to support more effective medication error detection and mitigation. © The Author 2015. Published by Oxford University Press in association with the International Society for Quality in Health Care.
Experimental investigation of false positive errors in auditory species occurrence surveys
Miller, David A.W.; Weir, Linda A.; McClintock, Brett T.; Grant, Evan H. Campbell; Bailey, Larissa L.; Simons, Theodore R.
2012-01-01
False positive errors are a significant component of many ecological data sets, which in combination with false negative errors, can lead to severe biases in conclusions about ecological systems. We present results of a field experiment where observers recorded observations for known combinations of electronically broadcast calling anurans under conditions mimicking field surveys to determine species occurrence. Our objectives were to characterize false positive error probabilities for auditory methods based on a large number of observers, to determine if targeted instruction could be used to reduce false positive error rates, and to establish useful predictors of among-observer and among-species differences in error rates. We recruited 31 observers, ranging in abilities from novice to expert, that recorded detections for 12 species during 180 calling trials (66,960 total observations). All observers made multiple false positive errors and on average 8.1% of recorded detections in the experiment were false positive errors. Additional instruction had only minor effects on error rates. After instruction, false positive error probabilities decreased by 16% for treatment individuals compared to controls with broad confidence interval overlap of 0 (95% CI: -46 to 30%). This coincided with an increase in false negative errors due to the treatment (26%; -3 to 61%). Differences among observers in false positive and in false negative error rates were best predicted by scores from an online test and a self-assessment of observer ability completed prior to the field experiment. In contrast, years of experience conducting call surveys was a weak predictor of error rates. False positive errors were also more common for species that were played more frequently, but were not related to the dominant spectral frequency of the call. Our results corroborate other work that demonstrates false positives are a significant component of species occurrence data collected by auditory methods. Instructing observers to only report detections they are completely certain are correct is not sufficient to eliminate errors. As a result, analytical methods that account for false positive errors will be needed, and independent testing of observer ability is a useful predictor for among-observer variation in observation error rates.
Wiring Damage Analyses for STS OV-103
NASA Technical Reports Server (NTRS)
Thomas, Walter, III
2006-01-01
This study investigated the Shuttle Program s belief that Space Transportation System (STS) wiring damage occurrences are random, that is, a constant occurrence rate. Using Problem Reporting and Corrective Action (PRACA)-derived data for STS Space Shuttle OV-103, wiring damage was observed to increase over the vehicle s life. Causal factors could include wiring physical deterioration, maintenance and inspection induced damage, and inspection process changes resulting in more damage events being reported. Induced damage effects cannot be resolved with existent data. Growth analysis (using Crow-AMSAA, or CA) resolved maintenance/inspection effects (e.g., heightened awareness) on all wire damages and indicated an overall increase since Challenger Return-to-Flight (RTF). An increasing failure or occurrence rate per flight cycle was seen for each wire damage mode; these (individual) rates were not affected by inspection process effects, within statistical error.
Technological Advancements and Error Rates in Radiation Therapy Delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margalit, Danielle N., E-mail: dmargalit@partners.org; Harvard Cancer Consortium and Brigham and Women's Hospital/Dana Farber Cancer Institute, Boston, MA; Chen, Yu-Hui
2011-11-15
Purpose: Technological advances in radiation therapy (RT) delivery have the potential to reduce errors via increased automation and built-in quality assurance (QA) safeguards, yet may also introduce new types of errors. Intensity-modulated RT (IMRT) is an increasingly used technology that is more technically complex than three-dimensional (3D)-conformal RT and conventional RT. We determined the rate of reported errors in RT delivery among IMRT and 3D/conventional RT treatments and characterized the errors associated with the respective techniques to improve existing QA processes. Methods and Materials: All errors in external beam RT delivery were prospectively recorded via a nonpunitive error-reporting system atmore » Brigham and Women's Hospital/Dana Farber Cancer Institute. Errors are defined as any unplanned deviation from the intended RT treatment and are reviewed during monthly departmental quality improvement meetings. We analyzed all reported errors since the routine use of IMRT in our department, from January 2004 to July 2009. Fisher's exact test was used to determine the association between treatment technique (IMRT vs. 3D/conventional) and specific error types. Effect estimates were computed using logistic regression. Results: There were 155 errors in RT delivery among 241,546 fractions (0.06%), and none were clinically significant. IMRT was commonly associated with errors in machine parameters (nine of 19 errors) and data entry and interpretation (six of 19 errors). IMRT was associated with a lower rate of reported errors compared with 3D/conventional RT (0.03% vs. 0.07%, p = 0.001) and specifically fewer accessory errors (odds ratio, 0.11; 95% confidence interval, 0.01-0.78) and setup errors (odds ratio, 0.24; 95% confidence interval, 0.08-0.79). Conclusions: The rate of errors in RT delivery is low. The types of errors differ significantly between IMRT and 3D/conventional RT, suggesting that QA processes must be uniquely adapted for each technique. There was a lower error rate with IMRT compared with 3D/conventional RT, highlighting the need for sustained vigilance against errors common to more traditional treatment techniques.« less
Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase
McInerney, Peter; Adams, Paul; Hadi, Masood Z.
2014-01-01
As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error ratemore » measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu , Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.« less
NASA Astrophysics Data System (ADS)
Rahmat, R. F.; Nasution, F. R.; Seniman; Syahputra, M. F.; Sitompul, O. S.
2018-02-01
Weather is condition of air in a certain region at a relatively short period of time, measured with various parameters such as; temperature, air preasure, wind velocity, humidity and another phenomenons in the atmosphere. In fact, extreme weather due to global warming would lead to drought, flood, hurricane and other forms of weather occasion, which directly affects social andeconomic activities. Hence, a forecasting technique is to predict weather with distinctive output, particullary mapping process based on GIS with information about current weather status in certain cordinates of each region with capability to forecast for seven days afterward. Data used in this research are retrieved in real time from the server openweathermap and BMKG. In order to obtain a low error rate and high accuracy of forecasting, the authors use Bayesian Model Averaging (BMA) method. The result shows that the BMA method has good accuracy. Forecasting error value is calculated by mean square error shows (MSE). The error value emerges at minumum temperature rated at 0.28 and maximum temperature rated at 0.15. Meanwhile, the error value of minimum humidity rates at 0.38 and the error value of maximum humidity rates at 0.04. Afterall, the forecasting error rate of wind speed is at 0.076. The lower the forecasting error rate, the more optimized the accuracy is.
Schwantes-An, Tae-Hwi; Sung, Heejong; Sabourin, Jeremy A; Justice, Cristina M; Sorant, Alexa J M; Wilson, Alexander F
2016-01-01
In this study, the effects of (a) the minor allele frequency of the single nucleotide variant (SNV), (b) the degree of departure from normality of the trait, and (c) the position of the SNVs on type I error rates were investigated in the Genetic Analysis Workshop (GAW) 19 whole exome sequence data. To test the distribution of the type I error rate, 5 simulated traits were considered: standard normal and gamma distributed traits; 2 transformed versions of the gamma trait (log 10 and rank-based inverse normal transformations); and trait Q1 provided by GAW 19. Each trait was tested with 313,340 SNVs. Tests of association were performed with simple linear regression and average type I error rates were determined for minor allele frequency classes. Rare SNVs (minor allele frequency < 0.05) showed inflated type I error rates for non-normally distributed traits that increased as the minor allele frequency decreased. The inflation of average type I error rates increased as the significance threshold decreased. Normally distributed traits did not show inflated type I error rates with respect to the minor allele frequency for rare SNVs. There was no consistent effect of transformation on the uniformity of the distribution of the location of SNVs with a type I error.
Estimating Rain Rates from Tipping-Bucket Rain Gauge Measurements
NASA Technical Reports Server (NTRS)
Wang, Jianxin; Fisher, Brad L.; Wolff, David B.
2007-01-01
This paper describes the cubic spline based operational system for the generation of the TRMM one-minute rain rate product 2A-56 from Tipping Bucket (TB) gauge measurements. Methodological issues associated with applying the cubic spline to the TB gauge rain rate estimation are closely examined. A simulated TB gauge from a Joss-Waldvogel (JW) disdrometer is employed to evaluate effects of time scales and rain event definitions on errors of the rain rate estimation. The comparison between rain rates measured from the JW disdrometer and those estimated from the simulated TB gauge shows good overall agreement; however, the TB gauge suffers sampling problems, resulting in errors in the rain rate estimation. These errors are very sensitive to the time scale of rain rates. One-minute rain rates suffer substantial errors, especially at low rain rates. When one minute rain rates are averaged to 4-7 minute or longer time scales, the errors dramatically reduce. The rain event duration is very sensitive to the event definition but the event rain total is rather insensitive, provided that the events with less than 1 millimeter rain totals are excluded. Estimated lower rain rates are sensitive to the event definition whereas the higher rates are not. The median relative absolute errors are about 22% and 32% for 1-minute TB rain rates higher and lower than 3 mm per hour, respectively. These errors decrease to 5% and 14% when TB rain rates are used at 7-minute scale. The radar reflectivity-rainrate (Ze-R) distributions drawn from large amount of 7-minute TB rain rates and radar reflectivity data are mostly insensitive to the event definition.
Approximation of Bit Error Rates in Digital Communications
2007-06-01
and Technology Organisation DSTO—TN—0761 ABSTRACT This report investigates the estimation of bit error rates in digital communi- cations, motivated by...recent work in [6]. In the latter, bounds are used to construct estimates for bit error rates in the case of differentially coherent quadrature phase
Spatial Assessment of Model Errors from Four Regression Techniques
Lianjun Zhang; Jeffrey H. Gove; Jeffrey H. Gove
2005-01-01
Fomst modelers have attempted to account for the spatial autocorrelations among trees in growth and yield models by applying alternative regression techniques such as linear mixed models (LMM), generalized additive models (GAM), and geographicalIy weighted regression (GWR). However, the model errors are commonly assessed using average errors across the entire study...
Landmark-Based Drift Compensation Algorithm for Inertial Pedestrian Navigation
Munoz Diaz, Estefania; Caamano, Maria; Fuentes Sánchez, Francisco Javier
2017-01-01
The navigation of pedestrians based on inertial sensors, i.e., accelerometers and gyroscopes, has experienced a great growth over the last years. However, the noise of medium- and low-cost sensors causes a high error in the orientation estimation, particularly in the yaw angle. This error, called drift, is due to the bias of the z-axis gyroscope and other slow changing errors, such as temperature variations. We propose a seamless landmark-based drift compensation algorithm that only uses inertial measurements. The proposed algorithm adds a great value to the state of the art, because the vast majority of the drift elimination algorithms apply corrections to the estimated position, but not to the yaw angle estimation. Instead, the presented algorithm computes the drift value and uses it to prevent yaw errors and therefore position errors. In order to achieve this goal, a detector of landmarks, i.e., corners and stairs, and an association algorithm have been developed. The results of the experiments show that it is possible to reliably detect corners and stairs using only inertial measurements eliminating the need that the user takes any action, e.g., pressing a button. Associations between re-visited landmarks are successfully made taking into account the uncertainty of the position. After that, the drift is computed out of all associations and used during a post-processing stage to obtain a low-drifted yaw angle estimation, that leads to successfully drift compensated trajectories. The proposed algorithm has been tested with quasi-error-free turn rate measurements introducing known biases and with medium-cost gyroscopes in 3D indoor and outdoor scenarios. PMID:28671622
Arba-Mosquera, Samuel; Aslanides, Ioannis M.
2012-01-01
Purpose To analyze the effects of Eye-Tracker performance on the pulse positioning errors during refractive surgery. Methods A comprehensive model, which directly considers eye movements, including saccades, vestibular, optokinetic, vergence, and miniature, as well as, eye-tracker acquisition rate, eye-tracker latency time, scanner positioning time, laser firing rate, and laser trigger delay have been developed. Results Eye-tracker acquisition rates below 100 Hz correspond to pulse positioning errors above 1.5 mm. Eye-tracker latency times to about 15 ms correspond to pulse positioning errors of up to 3.5 mm. Scanner positioning times to about 9 ms correspond to pulse positioning errors of up to 2 mm. Laser firing rates faster than eye-tracker acquisition rates basically duplicate pulse-positioning errors. Laser trigger delays to about 300 μs have minor to no impact on pulse-positioning errors. Conclusions The proposed model can be used for comparison of laser systems used for ablation processes. Due to the pseudo-random nature of eye movements, positioning errors of single pulses are much larger than observed decentrations in the clinical settings. There is no single parameter that ‘alone’ minimizes the positioning error. It is the optimal combination of the several parameters that minimizes the error. The results of this analysis are important to understand the limitations of correcting very irregular ablation patterns.
Failure analysis and modeling of a multicomputer system. M.S. Thesis
NASA Technical Reports Server (NTRS)
Subramani, Sujatha Srinivasan
1990-01-01
This thesis describes the results of an extensive measurement-based analysis of real error data collected from a 7-machine DEC VaxCluster multicomputer system. In addition to evaluating basic system error and failure characteristics, we develop reward models to analyze the impact of failures and errors on the system. The results show that, although 98 percent of errors in the shared resources recover, they result in 48 percent of all system failures. The analysis of rewards shows that the expected reward rate for the VaxCluster decreases to 0.5 in 100 days for a 3 out of 7 model, which is well over a 100 times that for a 7-out-of-7 model. A comparison of the reward rates for a range of k-out-of-n models indicates that the maximum increase in reward rate (0.25) occurs in going from the 6-out-of-7 model to the 5-out-of-7 model. The analysis also shows that software errors have the lowest reward (0.2 vs. 0.91 for network errors). The large loss in reward rate for software errors is due to the fact that a large proportion (94 percent) of software errors lead to failure. In comparison, the high reward rate for network errors is due to fast recovery from a majority of these errors (median recovery duration is 0 seconds).
NASA Astrophysics Data System (ADS)
George, Freya; Gaidies, Fred
2016-04-01
Analysis of porphyroblast distribution in metamorphic rocks yields insight into the processes controlling metamorphic reaction rates. By coupling this textural record with microprobe analysis and phase-equilibria and diffusion modelling, a detailed view of the nucleation and growth history of metamorphic minerals can be obtained. In this study, we comprehensively characterise the 3D distribution and compositional variation of a garnet population in a garnet-grade pelitic schist of the Lesser Himalayan Sequence (Sikkim), in order to investigate both the rates and kinetic controls of porphyroblastic crystallisation. Quantification of the size, shape and spatial distribution of garnet using high-resolution μ-computed X-ray tomography and statistical analysis reveals a log-normal crystal size distribution, systematic variation of aspect ratio with crystal size, and a significantly clustered garnet texture in the study sample. The latter is indicative of interface-controlled nucleation and growth, with nucleation sites controlled principally by a heterogeneous precursor assemblage. At length-scales less than 0.7 mm, there is evidence for adjacent grains that are on average smaller than the mean size of the population; this minor ordering is attributed to secondary redistribution of porphyroblast centers and reduction of crystal sizes due to syn-kinematic growth and resorption, respectively. Geochemical traverses through centrally sectioned garnet crystals of variable size highlight several features: (1) core compositions of even the smallest crystals preserve primary prograde growth zonation, with little evidence for diffusional modification in any crystal size; (2) rim compositions are within error between grains, suggestive of sample-scale equilibration of the growth medium at the time of cessation of crystallisation; (3) different grains of equal radii display equivalent compositional zoning; and (4) gradients of compositional profiles display a steepening trend in progressively smaller grain sizes, converse to anticipated trends based on classic kinetic crystallisation theory. The observed systematic behaviour is interpreted to reflect interface-controlled rates of crystallisation, with a decrease in the rate of crystal growth of newly nucleated grains as the crystallisation interval proceeds. Numerical simulations of garnet growth successfully reproduce observed core and rim compositions, and simulations of intracrystalline diffusion yield rapid heating/cooling rates along the P-T path, in excess of 100 °C/Ma. Radial garnet crystallisation is correspondingly rapid, with minimum growth rates of 1.5 mm/Ma in the smallest crystals. Simulations suggest progressive nucleation of new generations of garnet occurred with an exponentially decreasing frequency along the prograde path; however, measured gradients indicate that core compositions developed more slowly than predicted by the model, potentially resulting in a more evenly distributed pattern of nucleation.
Luo, Ke; Hong, Sung-Sam; Oh, Deog-Hwan
2015-09-01
The aim of this study was to model the growth kinetics of Listeria monocytogenes on ready-to-eat ham and sausage at different temperatures (4 to 35°C). The observed data fitted well with four primary models (Baranyi, modified Gompertz, logistic, and Huang) with high coefficients of determination (R(2) > 0.98) at all measured temperatures. After the mean square error (0.009 to 0.051), bias factors (0.99 to1.06), and accuracy factors (1.01 to 1.09) were obtained in all models, the square root and the natural logarithm model were employed to describe the relation between temperature and specific growth rate (SGR) and lag time (LT) derived from the primary models. These models were validated against the independent data observed from additional experiments using the acceptable prediction zone method and the proportion of the standard error of prediction. All secondary models based on each of the four primary models were acceptable to describe the growth of the pathogen in the two samples. The validation results indicate that the optimal primary model for estimating the SGR was the Baranyi model, and the optimal primary model for estimating LT was the logistic model in ready-to-eat (RTE) ham. The Baranyi model was also the optimal model to estimate the SGR and LT in RTE sausage. These results could be used to standardize predictive models, which are commonly used to identify critical control points in hazard analysis and critical control point systems or for the quantitative microbial risk assessment to improve the food safety of RTE meat products.
Changes in Atmospheric CO2 Influence the Allergenicity of Aspergillus fumigatus fungal spore
NASA Astrophysics Data System (ADS)
Lang-Yona, N.; Levin, Y.; Dannemoller, K. C.; Yarden, O.; Peccia, J.; Rudich, Y.
2013-12-01
Increased allergic susceptibility has been documented without a comprehensive understanding for its causes. Therefore understanding trends and mechanisms of allergy inducing agents is essential. In this study we investigated whether elevated atmospheric CO2 levels can affect the allergenicity of Aspergillus fumigatus, a common allergenic fungal species. Both direct exposure to changing CO2 levels during fungal growth, and indirect exposure through changes in the C:N ratios in the growth media were inspected. We determined the allergenicity of the spores through two types of immunoassays, accompanied with genes expression analysis, and proteins relative quantification. We show that fungi grown under present day CO2 levels (392 ppm) exhibit 8.5 and 3.5 fold higher allergenicity compared to fungi grown at preindustrial (280 ppm) and double (560 ppm) CO2 levels, respectively. A corresponding trend is observed in the expression of genes encoding for known allergenic proteins and in the major allergen Asp f1 concentrations, possibly due to physiological changes such as respiration rates and the nitrogen content of the fungus, influenced by the CO2 concentrations. Increased carbon and nitrogen levels in the growth medium also lead to a significant increase in the allergenicity, for which we propose two different biological mechanisms. We suggest that climatic changes such as increasing atmospheric CO2 levels and changes in the fungal growth medium may impact the ability of allergenic fungi such as Aspergillus fumigatus to induce allergies. The effect of changing CO2 concentrations on the total allergenicity per 10^7 spores of A. fumigatus (A), the major allergen Asp f1 concentration in ng per 10^7 spores (B), and the gene expression by RT-PCR (C). The error bars represent the standard error of the mean.
Angular Rate Optimal Design for the Rotary Strapdown Inertial Navigation System
Yu, Fei; Sun, Qian
2014-01-01
Due to the characteristics of high precision for a long duration, the rotary strapdown inertial navigation system (RSINS) has been widely used in submarines and surface ships. Nowadays, the core technology, the rotating scheme, has been studied by numerous researchers. It is well known that as one of the key technologies, the rotating angular rate seriously influences the effectiveness of the error modulating. In order to design the optimal rotating angular rate of the RSINS, the relationship between the rotating angular rate and the velocity error of the RSINS was analyzed in detail based on the Laplace transform and the inverse Laplace transform in this paper. The analysis results showed that the velocity error of the RSINS depends on not only the sensor error, but also the rotating angular rate. In order to minimize the velocity error, the rotating angular rate of the RSINS should match the sensor error. One optimal design method for the rotating rate of the RSINS was also proposed in this paper. Simulation and experimental results verified the validity and superiority of this optimal design method for the rotating rate of the RSINS. PMID:24759115
Reverse Transcription Errors and RNA-DNA Differences at Short Tandem Repeats.
Fungtammasan, Arkarachai; Tomaszkiewicz, Marta; Campos-Sánchez, Rebeca; Eckert, Kristin A; DeGiorgio, Michael; Makova, Kateryna D
2016-10-01
Transcript variation has important implications for organismal function in health and disease. Most transcriptome studies focus on assessing variation in gene expression levels and isoform representation. Variation at the level of transcript sequence is caused by RNA editing and transcription errors, and leads to nongenetically encoded transcript variants, or RNA-DNA differences (RDDs). Such variation has been understudied, in part because its detection is obscured by reverse transcription (RT) and sequencing errors. It has only been evaluated for intertranscript base substitution differences. Here, we investigated transcript sequence variation for short tandem repeats (STRs). We developed the first maximum-likelihood estimator (MLE) to infer RT error and RDD rates, taking next generation sequencing error rates into account. Using the MLE, we empirically evaluated RT error and RDD rates for STRs in a large-scale DNA and RNA replicated sequencing experiment conducted in a primate species. The RT error rates increased exponentially with STR length and were biased toward expansions. The RDD rates were approximately 1 order of magnitude lower than the RT error rates. The RT error rates estimated with the MLE from a primate data set were concordant with those estimated with an independent method, barcoded RNA sequencing, from a Caenorhabditis elegans data set. Our results have important implications for medical genomics, as STR allelic variation is associated with >40 diseases. STR nonallelic transcript variation can also contribute to disease phenotype. The MLE and empirical rates presented here can be used to evaluate the probability of disease-associated transcripts arising due to RDD. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Zhang, Jiayu; Li, Jie; Zhang, Xi; Che, Xiaorui; Huang, Yugang; Feng, Kaiqiang
2018-05-04
The Semi-Strapdown Inertial Navigation System (SSINS) provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS) inertial measurement unit (MIMU) outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS) is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions.
45 CFR 98.102 - Content of Error Rate Reports.
Code of Federal Regulations, 2013 CFR
2013-10-01
....102 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.102 Content of Error Rate Reports. (a) Baseline Submission Report... payments by the total dollar amount of child care payments that the State, the District of Columbia or...
45 CFR 98.102 - Content of Error Rate Reports.
Code of Federal Regulations, 2014 CFR
2014-10-01
....102 Public Welfare Department of Health and Human Services GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.102 Content of Error Rate Reports. (a) Baseline Submission Report... payments by the total dollar amount of child care payments that the State, the District of Columbia or...
45 CFR 98.102 - Content of Error Rate Reports.
Code of Federal Regulations, 2012 CFR
2012-10-01
....102 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.102 Content of Error Rate Reports. (a) Baseline Submission Report... payments by the total dollar amount of child care payments that the State, the District of Columbia or...
45 CFR 98.102 - Content of Error Rate Reports.
Code of Federal Regulations, 2011 CFR
2011-10-01
....102 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.102 Content of Error Rate Reports. (a) Baseline Submission Report... payments by the total dollar amount of child care payments that the State, the District of Columbia or...
Impact of an antiretroviral stewardship strategy on medication error rates.
Shea, Katherine M; Hobbs, Athena Lv; Shumake, Jason D; Templet, Derek J; Padilla-Tolentino, Eimeira; Mondy, Kristin E
2018-05-02
The impact of an antiretroviral stewardship strategy on medication error rates was evaluated. This single-center, retrospective, comparative cohort study included patients at least 18 years of age infected with human immunodeficiency virus (HIV) who were receiving antiretrovirals and admitted to the hospital. A multicomponent approach was developed and implemented and included modifications to the order-entry and verification system, pharmacist education, and a pharmacist-led antiretroviral therapy checklist. Pharmacists performed prospective audits using the checklist at the time of order verification. To assess the impact of the intervention, a retrospective review was performed before and after implementation to assess antiretroviral errors. Totals of 208 and 24 errors were identified before and after the intervention, respectively, resulting in a significant reduction in the overall error rate ( p < 0.001). In the postintervention group, significantly lower medication error rates were found in both patient admissions containing at least 1 medication error ( p < 0.001) and those with 2 or more errors ( p < 0.001). Significant reductions were also identified in each error type, including incorrect/incomplete medication regimen, incorrect dosing regimen, incorrect renal dose adjustment, incorrect administration, and the presence of a major drug-drug interaction. A regression tree selected ritonavir as the only specific medication that best predicted more errors preintervention ( p < 0.001); however, no antiretrovirals reliably predicted errors postintervention. An antiretroviral stewardship strategy for hospitalized HIV patients including prospective audit by staff pharmacists through use of an antiretroviral medication therapy checklist at the time of order verification decreased error rates. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Growth and decay of runaway electrons above the critical electric field under quiescent conditions
Paz-Soldan, Carlos; Eidietis, Nicholas W.; Granetz, Robert S.; ...
2014-02-27
Extremely low density operation free of error eld penetration supports the excitation of trace-level quiescent runaway electron (RE) populations during the at-top of DIII-D Ohmic discharges. Operation in the quiescent regime allows accurate measurement of all key parameters important to RE excitation, including the internal broadband magnetic fluctuation level. RE onset is characterized and found to be consistent with primary (Dreicer) generation rates. Impurity-free collisional suppression of the RE population is investigated by stepping the late-time main-ion density until RE decay is observed. The transition from growth to decay is found to occur 3-5 times above the theoretical critical electricmore » eld for avalanche growth and is thus indicative of anomalous RE loss. Lastly, this suggests that suppression of tokamak RE avalanches can be achieved at lower density than previously expected, though extrapolation requires predictive understanding of the RE loss mechanism and magnitude.« less
Spencer, Bruce D
2012-06-01
Latent class models are increasingly used to assess the accuracy of medical diagnostic tests and other classifications when no gold standard is available and the true state is unknown. When the latent class is treated as the true class, the latent class models provide measures of components of accuracy including specificity and sensitivity and their complements, type I and type II error rates. The error rates according to the latent class model differ from the true error rates, however, and empirical comparisons with a gold standard suggest the true error rates often are larger. We investigate conditions under which the true type I and type II error rates are larger than those provided by the latent class models. Results from Uebersax (1988, Psychological Bulletin 104, 405-416) are extended to accommodate random effects and covariates affecting the responses. The results are important for interpreting the results of latent class analyses. An error decomposition is presented that incorporates an error component from invalidity of the latent class model. © 2011, The International Biometric Society.
Han, Mira V; Thomas, Gregg W C; Lugo-Martinez, Jose; Hahn, Matthew W
2013-08-01
Current sequencing methods produce large amounts of data, but genome assemblies constructed from these data are often fragmented and incomplete. Incomplete and error-filled assemblies result in many annotation errors, especially in the number of genes present in a genome. This means that methods attempting to estimate rates of gene duplication and loss often will be misled by such errors and that rates of gene family evolution will be consistently overestimated. Here, we present a method that takes these errors into account, allowing one to accurately infer rates of gene gain and loss among genomes even with low assembly and annotation quality. The method is implemented in the newest version of the software package CAFE, along with several other novel features. We demonstrate the accuracy of the method with extensive simulations and reanalyze several previously published data sets. Our results show that errors in genome annotation do lead to higher inferred rates of gene gain and loss but that CAFE 3 sufficiently accounts for these errors to provide accurate estimates of important evolutionary parameters.
Derivation of an analytic expression for the error associated with the noise reduction rating
NASA Astrophysics Data System (ADS)
Murphy, William J.
2005-04-01
Hearing protection devices are assessed using the Real Ear Attenuation at Threshold (REAT) measurement procedure for the purpose of estimating the amount of noise reduction provided when worn by a subject. The rating number provided on the protector label is a function of the mean and standard deviation of the REAT results achieved by the test subjects. If a group of subjects have a large variance, then it follows that the certainty of the rating should be correspondingly lower. No estimate of the error of a protector's rating is given by existing standards or regulations. Propagation of errors was applied to the Noise Reduction Rating to develop an analytic expression for the hearing protector rating error term. Comparison of the analytic expression for the error to the standard deviation estimated from Monte Carlo simulation of subject attenuations yielded a linear relationship across several protector types and assumptions for the variance of the attenuations.
Errors in laboratory medicine: practical lessons to improve patient safety.
Howanitz, Peter J
2005-10-01
Patient safety is influenced by the frequency and seriousness of errors that occur in the health care system. Error rates in laboratory practices are collected routinely for a variety of performance measures in all clinical pathology laboratories in the United States, but a list of critical performance measures has not yet been recommended. The most extensive databases describing error rates in pathology were developed and are maintained by the College of American Pathologists (CAP). These databases include the CAP's Q-Probes and Q-Tracks programs, which provide information on error rates from more than 130 interlaboratory studies. To define critical performance measures in laboratory medicine, describe error rates of these measures, and provide suggestions to decrease these errors, thereby ultimately improving patient safety. A review of experiences from Q-Probes and Q-Tracks studies supplemented with other studies cited in the literature. Q-Probes studies are carried out as time-limited studies lasting 1 to 4 months and have been conducted since 1989. In contrast, Q-Tracks investigations are ongoing studies performed on a yearly basis and have been conducted only since 1998. Participants from institutions throughout the world simultaneously conducted these studies according to specified scientific designs. The CAP has collected and summarized data for participants about these performance measures, including the significance of errors, the magnitude of error rates, tactics for error reduction, and willingness to implement each of these performance measures. A list of recommended performance measures, the frequency of errors when these performance measures were studied, and suggestions to improve patient safety by reducing these errors. Error rates for preanalytic and postanalytic performance measures were higher than for analytic measures. Eight performance measures were identified, including customer satisfaction, test turnaround times, patient identification, specimen acceptability, proficiency testing, critical value reporting, blood product wastage, and blood culture contamination. Error rate benchmarks for these performance measures were cited and recommendations for improving patient safety presented. Not only has each of the 8 performance measures proven practical, useful, and important for patient care, taken together, they also fulfill regulatory requirements. All laboratories should consider implementing these performance measures and standardizing their own scientific designs, data analysis, and error reduction strategies according to findings from these published studies.
The statistical validity of nursing home survey findings.
Woolley, Douglas C
2011-11-01
The Medicare nursing home survey is a high-stakes process whose findings greatly affect nursing homes, their current and potential residents, and the communities they serve. Therefore, survey findings must achieve high validity. This study looked at the validity of one key assessment made during a nursing home survey: the observation of the rate of errors in administration of medications to residents (med-pass). Statistical analysis of the case under study and of alternative hypothetical cases. A skilled nursing home affiliated with a local medical school. The nursing home administrators and the medical director. Observational study. The probability that state nursing home surveyors make a Type I or Type II error in observing med-pass error rates, based on the current case and on a series of postulated med-pass error rates. In the common situation such as our case, where med-pass errors occur at slightly above a 5% rate after 50 observations, and therefore trigger a citation, the chance that the true rate remains above 5% after a large number of observations is just above 50%. If the true med-pass error rate were as high as 10%, and the survey team wished to achieve 75% accuracy in determining that a citation was appropriate, they would have to make more than 200 med-pass observations. In the more common situation where med pass errors are closer to 5%, the team would have to observe more than 2000 med-passes to achieve even a modest 75% accuracy in their determinations. In settings where error rates are low, large numbers of observations of an activity must be made to reach acceptable validity of estimates for the true rates of errors. In observing key nursing home functions with current methodology, the State Medicare nursing home survey process does not adhere to well-known principles of valid error determination. Alternate approaches in survey methodology are discussed. Copyright © 2011 American Medical Directors Association. Published by Elsevier Inc. All rights reserved.
How does aging affect the types of error made in a visual short-term memory ‘object-recall’ task?
Sapkota, Raju P.; van der Linde, Ian; Pardhan, Shahina
2015-01-01
This study examines how normal aging affects the occurrence of different types of incorrect responses in a visual short-term memory (VSTM) object-recall task. Seventeen young (Mean = 23.3 years, SD = 3.76), and 17 normally aging older (Mean = 66.5 years, SD = 6.30) adults participated. Memory stimuli comprised two or four real world objects (the memory load) presented sequentially, each for 650 ms, at random locations on a computer screen. After a 1000 ms retention interval, a test display was presented, comprising an empty box at one of the previously presented two or four memory stimulus locations. Participants were asked to report the name of the object presented at the cued location. Errors rates wherein participants reported the names of objects that had been presented in the memory display but not at the cued location (non-target errors) vs. objects that had not been presented at all in the memory display (non-memory errors) were compared. Significant effects of aging, memory load and target recency on error type and absolute error rates were found. Non-target error rate was higher than non-memory error rate in both age groups, indicating that VSTM may have been more often than not populated with partial traces of previously presented items. At high memory load, non-memory error rate was higher in young participants (compared to older participants) when the memory target had been presented at the earliest temporal position. However, non-target error rates exhibited a reversed trend, i.e., greater error rates were found in older participants when the memory target had been presented at the two most recent temporal positions. Data are interpreted in terms of proactive interference (earlier examined non-target items interfering with more recent items), false memories (non-memory items which have a categorical relationship to presented items, interfering with memory targets), slot and flexible resource models, and spatial coding deficits. PMID:25653615
How does aging affect the types of error made in a visual short-term memory 'object-recall' task?
Sapkota, Raju P; van der Linde, Ian; Pardhan, Shahina
2014-01-01
This study examines how normal aging affects the occurrence of different types of incorrect responses in a visual short-term memory (VSTM) object-recall task. Seventeen young (Mean = 23.3 years, SD = 3.76), and 17 normally aging older (Mean = 66.5 years, SD = 6.30) adults participated. Memory stimuli comprised two or four real world objects (the memory load) presented sequentially, each for 650 ms, at random locations on a computer screen. After a 1000 ms retention interval, a test display was presented, comprising an empty box at one of the previously presented two or four memory stimulus locations. Participants were asked to report the name of the object presented at the cued location. Errors rates wherein participants reported the names of objects that had been presented in the memory display but not at the cued location (non-target errors) vs. objects that had not been presented at all in the memory display (non-memory errors) were compared. Significant effects of aging, memory load and target recency on error type and absolute error rates were found. Non-target error rate was higher than non-memory error rate in both age groups, indicating that VSTM may have been more often than not populated with partial traces of previously presented items. At high memory load, non-memory error rate was higher in young participants (compared to older participants) when the memory target had been presented at the earliest temporal position. However, non-target error rates exhibited a reversed trend, i.e., greater error rates were found in older participants when the memory target had been presented at the two most recent temporal positions. Data are interpreted in terms of proactive interference (earlier examined non-target items interfering with more recent items), false memories (non-memory items which have a categorical relationship to presented items, interfering with memory targets), slot and flexible resource models, and spatial coding deficits.
Clinical biochemistry laboratory rejection rates due to various types of preanalytical errors.
Atay, Aysenur; Demir, Leyla; Cuhadar, Serap; Saglam, Gulcan; Unal, Hulya; Aksun, Saliha; Arslan, Banu; Ozkan, Asuman; Sutcu, Recep
2014-01-01
Preanalytical errors, along the process from the beginning of test requests to the admissions of the specimens to the laboratory, cause the rejection of samples. The aim of this study was to better explain the reasons of rejected samples, regarding to their rates in certain test groups in our laboratory. This preliminary study was designed on the rejected samples in one-year period, based on the rates and types of inappropriateness. Test requests and blood samples of clinical chemistry, immunoassay, hematology, glycated hemoglobin, coagulation and erythrocyte sedimentation rate test units were evaluated. Types of inappropriateness were evaluated as follows: improperly labelled samples, hemolysed, clotted specimen, insufficient volume of specimen and total request errors. A total of 5,183,582 test requests from 1,035,743 blood collection tubes were considered. The total rejection rate was 0.65 %. The rejection rate of coagulation group was significantly higher (2.28%) than the other test groups (P < 0.001) including insufficient volume of specimen error rate as 1.38%. Rejection rates of hemolysis, clotted specimen and insufficient volume of sample error were found to be 8%, 24% and 34%, respectively. Total request errors, particularly, for unintelligible requests were 32% of the total for inpatients. The errors were especially attributable to unintelligible requests of inappropriate test requests, improperly labelled samples for inpatients and blood drawing errors especially due to insufficient volume of specimens in a coagulation test group. Further studies should be performed after corrective and preventive actions to detect a possible decrease in rejecting samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertzscher, Gustavo, E-mail: guke@dtu.dk; Andersen, Claus E., E-mail: clan@dtu.dk; Tanderup, Kari, E-mail: karitand@rm.dk
Purpose: This study presents an adaptive error detection algorithm (AEDA) for real-timein vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction of the dosimeter position. Instead, the treatment is judged based on dose rate comparisons between measurements and calculations of the most viable dosimeter position provided by the AEDA in a data driven approach. As a result, the AEDA compensates for false error cases related to systematic effects of the dosimeter position reconstruction. Given its nearly exclusivemore » dependence on stable dosimeter positioning, the AEDA allows for a substantially simplified and time efficient real-time in vivo BT dosimetry implementation. Methods: In the event of a measured potential treatment error, the AEDA proposes the most viable dosimeter position out of alternatives to the original reconstruction by means of a data driven matching procedure between dose rate distributions. If measured dose rates do not differ significantly from the most viable alternative, the initial error indication may be attributed to a mispositioned or misreconstructed dosimeter (false error). However, if the error declaration persists, no viable dosimeter position can be found to explain the error, hence the discrepancy is more likely to originate from a misplaced or misreconstructed source applicator or from erroneously connected source guide tubes (true error). Results: The AEDA applied on twoin vivo dosimetry implementations for pulsed dose rate BT demonstrated that the AEDA correctly described effects responsible for initial error indications. The AEDA was able to correctly identify the major part of all permutations of simulated guide tube swap errors and simulated shifts of individual needles from the original reconstruction. Unidentified errors corresponded to scenarios where the dosimeter position was sufficiently symmetric with respect to error and no-error source position constellations. The AEDA was able to correctly identify all false errors represented by mispositioned dosimeters contrary to an error detection algorithm relying on the original reconstruction. Conclusions: The study demonstrates that the AEDA error identification during HDR/PDR BT relies on a stable dosimeter position rather than on an accurate dosimeter reconstruction, and the AEDA’s capacity to distinguish between true and false error scenarios. The study further shows that the AEDA can offer guidance in decision making in the event of potential errors detected with real-timein vivo point dosimetry.« less
Error rate information in attention allocation pilot models
NASA Technical Reports Server (NTRS)
Faulkner, W. H.; Onstott, E. D.
1977-01-01
The Northrop urgency decision pilot model was used in a command tracking task to compare the optimized performance of multiaxis attention allocation pilot models whose urgency functions were (1) based on tracking error alone, and (2) based on both tracking error and error rate. A matrix of system dynamics and command inputs was employed, to create both symmetric and asymmetric two axis compensatory tracking tasks. All tasks were single loop on each axis. Analysis showed that a model that allocates control attention through nonlinear urgency functions using only error information could not achieve performance of the full model whose attention shifting algorithm included both error and error rate terms. Subsequent to this analysis, tracking performance predictions for the full model were verified by piloted flight simulation. Complete model and simulation data are presented.
7 CFR 275.23 - Determination of State agency program performance.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE FOOD STAMP AND FOOD DISTRIBUTION PROGRAM PERFORMANCE REPORTING... section, the adjusted regressed payment error rate shall be calculated to yield the State agency's payment error rate. The adjusted regressed payment error rate is given by r 1″ + r 2″. (ii) If FNS determines...
Derks, E M; Zwinderman, A H; Gamazon, E R
2017-05-01
Population divergence impacts the degree of population stratification in Genome Wide Association Studies. We aim to: (i) investigate type-I error rate as a function of population divergence (F ST ) in multi-ethnic (admixed) populations; (ii) evaluate the statistical power and effect size estimates; and (iii) investigate the impact of population stratification on the results of gene-based analyses. Quantitative phenotypes were simulated. Type-I error rate was investigated for Single Nucleotide Polymorphisms (SNPs) with varying levels of F ST between the ancestral European and African populations. Type-II error rate was investigated for a SNP characterized by a high value of F ST . In all tests, genomic MDS components were included to correct for population stratification. Type-I and type-II error rate was adequately controlled in a population that included two distinct ethnic populations but not in admixed samples. Statistical power was reduced in the admixed samples. Gene-based tests showed no residual inflation in type-I error rate.
Growth of Clostridium perfringens during cooling of refried beans.
Cevallos-Cevallos, Juan M; Akins, E Deann; Friedrich, Loretta M; Danyluk, Michelle D; Simonne, Amarat H
2012-10-01
Outbreaks of Clostridium perfringens have been associated with dishes containing refried beans from food service establishments. However, growth of C. perfringens in refried beans has not been investigated, and predictive models have not been validated in this food matrix. We investigated the growth of C. perfringens during the cooling of refried beans. Refried beans (pinto and black, with and without salt added) were inoculated with 3 log CFU/g C. perfringens spores and incubated isothermally at 12, 23, 30, 35, 40, 45, and 50°C. The levels of C. perfringens were monitored 3, 5, 8, and 10 h after inoculation, and then fitted to the Baranyi primary model and the Rosso secondary model prior to solving the Baranyi differential equation. The final model was validated by dynamic cooling experiments carried out in stockpots, thus mimicking the worst possible food service conditions. All refried beans samples supported the growth of C. perfringens, and all models fit the data with pseudo-R(2) values of 0.95 or greater and mean square errors of 0.3 or lower. The estimated maximum specific growth rates were generally higher in pinto beans, with or without salt added (2.64 and 1.95 h(-1), respectively), when compared with black beans, with or without salt added (1.78 and 1.61 h(-1), respectively). After 10 h of incubation, maximum populations of C. perfringens were significantly higher in samples with no salt added (7.9 log CFU/g for both pinto and black beans) than in samples with salt added (7.3 and 7.2 log CFU/g for pinto and black beans, respectively). The dynamic model predicted the growth of C. perfringens during cooling, with an average root mean squared error of 0.44. The use of large stockpots to cool refried beans led to an observed 1.2-log increase (1.5-log increase predicted by model) in levels of C. perfringens during cooling. The use of shallower pans for cooling is recommended, because they cool faster, therefore limiting the growth of C. perfringens.
Local rules simulation of the kinetics of virus capsid self-assembly.
Schwartz, R; Shor, P W; Prevelige, P E; Berger, B
1998-12-01
A computer model is described for studying the kinetics of the self-assembly of icosahedral viral capsids. Solution of this problem is crucial to an understanding of the viral life cycle, which currently cannot be adequately addressed through laboratory techniques. The abstract simulation model employed to address this is based on the local rules theory of. Proc. Natl. Acad. Sci. USA. 91:7732-7736). It is shown that the principle of local rules, generalized with a model of kinetics and other extensions, can be used to simulate complicated problems in self-assembly. This approach allows for a computationally tractable molecular dynamics-like simulation of coat protein interactions while retaining many relevant features of capsid self-assembly. Three simple simulation experiments are presented to illustrate the use of this model. These show the dependence of growth and malformation rates on the energetics of binding interactions, the tolerance of errors in binding positions, and the concentration of subunits in the examples. These experiments demonstrate a tradeoff within the model between growth rate and fidelity of assembly for the three parameters. A detailed discussion of the computational model is also provided.
Error begat error: design error analysis and prevention in social infrastructure projects.
Love, Peter E D; Lopez, Robert; Edwards, David J; Goh, Yang M
2012-09-01
Design errors contribute significantly to cost and schedule growth in social infrastructure projects and to engineering failures, which can result in accidents and loss of life. Despite considerable research that has addressed their error causation in construction projects they still remain prevalent. This paper identifies the underlying conditions that contribute to design errors in social infrastructure projects (e.g. hospitals, education, law and order type buildings). A systemic model of error causation is propagated and subsequently used to develop a learning framework for design error prevention. The research suggests that a multitude of strategies should be adopted in congruence to prevent design errors from occurring and so ensure that safety and project performance are ameliorated. Copyright © 2011. Published by Elsevier Ltd.
Newman, Craig G J; Bevins, Adam D; Zajicek, John P; Hodges, John R; Vuillermoz, Emil; Dickenson, Jennifer M; Kelly, Denise S; Brown, Simona; Noad, Rupert F
2018-01-01
Ensuring reliable administration and reporting of cognitive screening tests are fundamental in establishing good clinical practice and research. This study captured the rate and type of errors in clinical practice, using the Addenbrooke's Cognitive Examination-III (ACE-III), and then the reduction in error rate using a computerized alternative, the ACEmobile app. In study 1, we evaluated ACE-III assessments completed in National Health Service (NHS) clinics ( n = 87) for administrator error. In study 2, ACEmobile and ACE-III were then evaluated for their ability to capture accurate measurement. In study 1, 78% of clinically administered ACE-IIIs were either scored incorrectly or had arithmetical errors. In study 2, error rates seen in the ACE-III were reduced by 85%-93% using ACEmobile. Error rates are ubiquitous in routine clinical use of cognitive screening tests and the ACE-III. ACEmobile provides a framework for supporting reduced administration, scoring, and arithmetical error during cognitive screening.
Alexander, John H; Levy, Elliott; Lawrence, Jack; Hanna, Michael; Waclawski, Anthony P; Wang, Junyuan; Califf, Robert M; Wallentin, Lars; Granger, Christopher B
2013-09-01
In ARISTOTLE, apixaban resulted in a 21% reduction in stroke, a 31% reduction in major bleeding, and an 11% reduction in death. However, approval of apixaban was delayed to investigate a statement in the clinical study report that "7.3% of subjects in the apixaban group and 1.2% of subjects in the warfarin group received, at some point during the study, a container of the wrong type." Rates of study medication dispensing error were characterized through reviews of study medication container tear-off labels in 6,520 participants from randomly selected study sites. The potential effect of dispensing errors on study outcomes was statistically simulated in sensitivity analyses in the overall population. The rate of medication dispensing error resulting in treatment error was 0.04%. Rates of participants receiving at least 1 incorrect container were 1.04% (34/3,273) in the apixaban group and 0.77% (25/3,247) in the warfarin group. Most of the originally reported errors were data entry errors in which the correct medication container was dispensed but the wrong container number was entered into the case report form. Sensitivity simulations in the overall trial population showed no meaningful effect of medication dispensing error on the main efficacy and safety outcomes. Rates of medication dispensing error were low and balanced between treatment groups. The initially reported dispensing error rate was the result of data recording and data management errors and not true medication dispensing errors. These analyses confirm the previously reported results of ARISTOTLE. © 2013.
Propagation of stage measurement uncertainties to streamflow time series
NASA Astrophysics Data System (ADS)
Horner, Ivan; Le Coz, Jérôme; Renard, Benjamin; Branger, Flora; McMillan, Hilary
2016-04-01
Streamflow uncertainties due to stage measurements errors are generally overlooked in the promising probabilistic approaches that have emerged in the last decade. We introduce an original error model for propagating stage uncertainties through a stage-discharge rating curve within a Bayesian probabilistic framework. The method takes into account both rating curve (parametric errors and structural errors) and stage uncertainty (systematic and non-systematic errors). Practical ways to estimate the different types of stage errors are also presented: (1) non-systematic errors due to instrument resolution and precision and non-stationary waves and (2) systematic errors due to gauge calibration against the staff gauge. The method is illustrated at a site where the rating-curve-derived streamflow can be compared with an accurate streamflow reference. The agreement between the two time series is overall satisfying. Moreover, the quantification of uncertainty is also satisfying since the streamflow reference is compatible with the streamflow uncertainty intervals derived from the rating curve and the stage uncertainties. Illustrations from other sites are also presented. Results are much contrasted depending on the site features. In some cases, streamflow uncertainty is mainly due to stage measurement errors. The results also show the importance of discriminating systematic and non-systematic stage errors, especially for long term flow averages. Perspectives for improving and validating the streamflow uncertainty estimates are eventually discussed.
Longitudinal Growth Curves of Brain Function Underlying Inhibitory Control through Adolescence
Foran, William; Velanova, Katerina; Luna, Beatriz
2013-01-01
Neuroimaging studies suggest that developmental improvements in inhibitory control are primarily supported by changes in prefrontal executive function. However, studies are contradictory with respect to how activation in prefrontal regions changes with age, and they have yet to analyze longitudinal data using growth curve modeling, which allows characterization of dynamic processes of developmental change, individual differences in growth trajectories, and variables that predict any interindividual variability in trajectories. In this study, we present growth curves modeled from longitudinal fMRI data collected over 302 visits (across ages 9 to 26 years) from 123 human participants. Brain regions within circuits known to support motor response control, executive control, and error processing (i.e., aspects of inhibitory control) were investigated. Findings revealed distinct developmental trajectories for regions within each circuit and indicated that a hierarchical pattern of maturation of brain activation supports the gradual emergence of adult-like inhibitory control. Mean growth curves of activation in motor response control regions revealed no changes with age, although interindividual variability decreased with development, indicating equifinality with maturity. Activation in certain executive control regions decreased with age until adolescence, and variability was stable across development. Error-processing activation in the dorsal anterior cingulate cortex showed continued increases into adulthood and no significant interindividual variability across development, and was uniquely associated with task performance. These findings provide evidence that continued maturation of error-processing abilities supports the protracted development of inhibitory control over adolescence, while motor response control regions provide early-maturing foundational capacities and suggest that some executive control regions may buttress immature networks as error processing continues to mature. PMID:24227721
Multimodel ensembles of wheat growth: many models are better than one.
Martre, Pierre; Wallach, Daniel; Asseng, Senthold; Ewert, Frank; Jones, James W; Rötter, Reimund P; Boote, Kenneth J; Ruane, Alex C; Thorburn, Peter J; Cammarano, Davide; Hatfield, Jerry L; Rosenzweig, Cynthia; Aggarwal, Pramod K; Angulo, Carlos; Basso, Bruno; Bertuzzi, Patrick; Biernath, Christian; Brisson, Nadine; Challinor, Andrew J; Doltra, Jordi; Gayler, Sebastian; Goldberg, Richie; Grant, Robert F; Heng, Lee; Hooker, Josh; Hunt, Leslie A; Ingwersen, Joachim; Izaurralde, Roberto C; Kersebaum, Kurt Christian; Müller, Christoph; Kumar, Soora Naresh; Nendel, Claas; O'leary, Garry; Olesen, Jørgen E; Osborne, Tom M; Palosuo, Taru; Priesack, Eckart; Ripoche, Dominique; Semenov, Mikhail A; Shcherbak, Iurii; Steduto, Pasquale; Stöckle, Claudio O; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Travasso, Maria; Waha, Katharina; White, Jeffrey W; Wolf, Joost
2015-02-01
Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24-38% for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models. © 2014 John Wiley & Sons Ltd.
Multimodel Ensembles of Wheat Growth: More Models are Better than One
NASA Technical Reports Server (NTRS)
Martre, Pierre; Wallach, Daniel; Asseng, Senthold; Ewert, Frank; Jones, James W.; Rotter, Reimund P.; Boote, Kenneth J.; Ruane, Alex C.; Thorburn, Peter J.; Cammarano, Davide;
2015-01-01
Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24-38% for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.
Multimodel Ensembles of Wheat Growth: Many Models are Better than One
NASA Technical Reports Server (NTRS)
Martre, Pierre; Wallach, Daniel; Asseng, Senthold; Ewert, Frank; Jones, James W.; Rotter, Reimund P.; Boote, Kenneth J.; Ruane, Alexander C.; Thorburn, Peter J.; Cammarano, Davide;
2015-01-01
Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop model scan give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 2438 for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.
Tully, Mary P; Buchan, Iain E
2009-12-01
To investigate the prevalence of prescribing errors identified by pharmacists in hospital inpatients and the factors influencing error identification rates by pharmacists throughout hospital admission. 880-bed university teaching hospital in North-west England. Data about prescribing errors identified by pharmacists (median: 9 (range 4-17) collecting data per day) when conducting routine work were prospectively recorded on 38 randomly selected days over 18 months. Proportion of new medication orders in which an error was identified; predictors of error identification rate, adjusted for workload and seniority of pharmacist, day of week, type of ward or stage of patient admission. 33,012 new medication orders were reviewed for 5,199 patients; 3,455 errors (in 10.5% of orders) were identified for 2,040 patients (39.2%; median 1, range 1-12). Most were problem orders (1,456, 42.1%) or potentially significant errors (1,748, 50.6%); 197 (5.7%) were potentially serious; 1.6% (n = 54) were potentially severe or fatal. Errors were 41% (CI: 28-56%) more likely to be identified at patient's admission than at other times, independent of confounders. Workload was the strongest predictor of error identification rates, with 40% (33-46%) less errors identified on the busiest days than at other times. Errors identified fell by 1.9% (1.5-2.3%) for every additional chart checked, independent of confounders. Pharmacists routinely identify errors but increasing workload may reduce identification rates. Where resources are limited, they may be better spent on identifying and addressing errors immediately after admission to hospital.
Dudoit, Sandrine; Gilbert, Houston N.; van der Laan, Mark J.
2014-01-01
Summary This article proposes resampling-based empirical Bayes multiple testing procedures for controlling a broad class of Type I error rates, defined as generalized tail probability (gTP) error rates, gTP(q, g) = Pr(g(Vn, Sn) > q), and generalized expected value (gEV) error rates, gEV(g) = E[g(Vn, Sn)], for arbitrary functions g(Vn, Sn) of the numbers of false positives Vn and true positives Sn. Of particular interest are error rates based on the proportion g(Vn, Sn) = Vn/(Vn + Sn) of Type I errors among the rejected hypotheses, such as the false discovery rate (FDR), FDR = E[Vn/(Vn + Sn)]. The proposed procedures offer several advantages over existing methods. They provide Type I error control for general data generating distributions, with arbitrary dependence structures among variables. Gains in power are achieved by deriving rejection regions based on guessed sets of true null hypotheses and null test statistics randomly sampled from joint distributions that account for the dependence structure of the data. The Type I error and power properties of an FDR-controlling version of the resampling-based empirical Bayes approach are investigated and compared to those of widely-used FDR-controlling linear step-up procedures in a simulation study. The Type I error and power trade-off achieved by the empirical Bayes procedures under a variety of testing scenarios allows this approach to be competitive with or outperform the Storey and Tibshirani (2003) linear step-up procedure, as an alternative to the classical Benjamini and Hochberg (1995) procedure. PMID:18932138
Nickerson, Naomi H; Li, Ying; Benjamin, Simon C
2013-01-01
A scalable quantum computer could be built by networking together many simple processor cells, thus avoiding the need to create a single complex structure. The difficulty is that realistic quantum links are very error prone. A solution is for cells to repeatedly communicate with each other and so purify any imperfections; however prior studies suggest that the cells themselves must then have prohibitively low internal error rates. Here we describe a method by which even error-prone cells can perform purification: groups of cells generate shared resource states, which then enable stabilization of topologically encoded data. Given a realistically noisy network (≥10% error rate) we find that our protocol can succeed provided that intra-cell error rates for initialisation, state manipulation and measurement are below 0.82%. This level of fidelity is already achievable in several laboratory systems.
Li, Qiuying; Pham, Hoang
2017-01-01
In this paper, we propose a software reliability model that considers not only error generation but also fault removal efficiency combined with testing coverage information based on a nonhomogeneous Poisson process (NHPP). During the past four decades, many software reliability growth models (SRGMs) based on NHPP have been proposed to estimate the software reliability measures, most of which have the same following agreements: 1) it is a common phenomenon that during the testing phase, the fault detection rate always changes; 2) as a result of imperfect debugging, fault removal has been related to a fault re-introduction rate. But there are few SRGMs in the literature that differentiate between fault detection and fault removal, i.e. they seldom consider the imperfect fault removal efficiency. But in practical software developing process, fault removal efficiency cannot always be perfect, i.e. the failures detected might not be removed completely and the original faults might still exist and new faults might be introduced meanwhile, which is referred to as imperfect debugging phenomenon. In this study, a model aiming to incorporate fault introduction rate, fault removal efficiency and testing coverage into software reliability evaluation is developed, using testing coverage to express the fault detection rate and using fault removal efficiency to consider the fault repair. We compare the performance of the proposed model with several existing NHPP SRGMs using three sets of real failure data based on five criteria. The results exhibit that the model can give a better fitting and predictive performance.
Systematic modelling and design evaluation of unperturbed tumour dynamics in xenografts.
Parra Guillen, Zinnia P Patricia; Mangas Sanjuan, Victor; Garcia-Cremades, Maria; Troconiz, Inaki F; Mo, Gary; Pitou, Celine; Iversen, Philip W; Wallin, Johan E
2018-04-24
Xenograft mice are largely used to evaluate the efficacy of oncological drugs during preclinical phases of drug discovery and development. Mathematical models provide a useful tool to quantitatively characterise tumour growth dynamics and also optimise upcoming experiments. To the best of our knowledge, this is the first report where unperturbed growth of a large set of tumour cell lines (n=28) has been systematically analysed using the model proposed by Simeoni in the context of non-linear mixed effect (NLME). Exponential growth was identified as the governing mechanism in the majority of the cell lines, with constant rate values ranging from 0.0204 to 0.203 day -1 No common patterns could be observed across tumour types, highlighting the importance of combining information from different cell lines when evaluating drug activity. Overall, typical model parameters were precisely estimated using designs where tumour size measurements were taken every two days. Moreover, reducing the number of measurement to twice per week, or even once per week for cell lines with low growth rates, showed little impact on parameter precision. However, in order to accurately characterise parameter variability (i.e. relative standard errors below 50%), a sample size of at least 50 mice is needed. This work illustrates the feasibility to systematically apply NLME models to characterise tumour growth in drug discovery and development, and constitutes a valuable source of data to optimise experimental designs by providing an a priori sampling window and minimising the number of samples required. The American Society for Pharmacology and Experimental Therapeutics.
A Day in the Life of Fish Larvae: Modeling Foraging and Growth Using Quirks
Huebert, Klaus B.; Peck, Myron A.
2014-01-01
This article introduces “Quirks,” a generic, individual-based model synthesizing over 40 years of empirical and theoretical insights into the foraging behavior and growth physiology of marine fish larvae. In Quirks, different types of larvae are defined by a short list of their biological traits, and all foraging and growth processes (including the effects of key environmental factors) are modeled following one unified set of mechanistic rules. This approach facilitates ecologically meaningful comparisons between different species and environments. We applied Quirks to model young exogenously feeding larvae of four species: 5.5-mm European anchovy (Engraulis encrasicolus), 7-mm Atlantic cod (Gadus morhua), 13-mm Atlantic herring (Clupea harengus), and 7-mm European sprat (Sprattus sprattus). Modeled growth estimates explained the majority of variability among 53 published empirical growth estimates, and displayed very little bias: 0.65%±1.2% d−1 (mean ± standard error). Prey organisms of ∼67% the maximum ingestible prey length were optimal for all larval types, in terms of the expected ingestion per encounter. Nevertheless, the foraging rate integrated over all favorable prey sizes was highest when smaller organisms made up >95% of the prey biomass under the assumption of constant normalized size spectrum slopes. The overall effect of turbulence was consistently negative, because its detrimental influence on prey pursuit success exceeded its beneficial influence on prey encounter rate. Model sensitivity to endogenous traits and exogenous environmental factors was measured and is discussed in depth. Quirks is free software and open source code is provided. PMID:24901937
Zhang, Jiayu; Li, Jie; Zhang, Xi; Che, Xiaorui; Huang, Yugang; Feng, Kaiqiang
2018-01-01
The Semi-Strapdown Inertial Navigation System (SSINS) provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS) inertial measurement unit (MIMU) outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS) is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions. PMID:29734707
2017-01-01
Previous reviews estimated that approximately 20 to 25% of assertions cited from original research articles, or “facts,” are inaccurately quoted in the medical literature. These reviews noted that the original studies were dissimilar and only began to compare the methods of the original studies. The aim of this review is to examine the methods of the original studies and provide a more specific rate of incorrectly cited assertions, or quotation errors, in original research articles published in medical journals. Additionally, the estimate of quotation errors calculated here is based on the ratio of quotation errors to quotations examined (a percent) rather than the more prevalent and weighted metric of quotation errors to the references selected. Overall, this resulted in a lower estimate of the quotation error rate in original medical research articles. A total of 15 studies met the criteria for inclusion in the primary quantitative analysis. Quotation errors were divided into two categories: content ("factual") or source (improper indirect citation) errors. Content errors were further subdivided into major and minor errors depending on the degree that the assertion differed from the original source. The rate of quotation errors recalculated here is 14.5% (10.5% to 18.6% at a 95% confidence interval). These content errors are predominantly, 64.8% (56.1% to 73.5% at a 95% confidence interval), major errors or cited assertions in which the referenced source either fails to substantiate, is unrelated to, or contradicts the assertion. Minor errors, which are an oversimplification, overgeneralization, or trivial inaccuracies, are 35.2% (26.5% to 43.9% at a 95% confidence interval). Additionally, improper secondary (or indirect) citations, which are distinguished from calculations of quotation accuracy, occur at a rate of 10.4% (3.4% to 17.5% at a 95% confidence interval). PMID:28910404
Mogull, Scott A
2017-01-01
Previous reviews estimated that approximately 20 to 25% of assertions cited from original research articles, or "facts," are inaccurately quoted in the medical literature. These reviews noted that the original studies were dissimilar and only began to compare the methods of the original studies. The aim of this review is to examine the methods of the original studies and provide a more specific rate of incorrectly cited assertions, or quotation errors, in original research articles published in medical journals. Additionally, the estimate of quotation errors calculated here is based on the ratio of quotation errors to quotations examined (a percent) rather than the more prevalent and weighted metric of quotation errors to the references selected. Overall, this resulted in a lower estimate of the quotation error rate in original medical research articles. A total of 15 studies met the criteria for inclusion in the primary quantitative analysis. Quotation errors were divided into two categories: content ("factual") or source (improper indirect citation) errors. Content errors were further subdivided into major and minor errors depending on the degree that the assertion differed from the original source. The rate of quotation errors recalculated here is 14.5% (10.5% to 18.6% at a 95% confidence interval). These content errors are predominantly, 64.8% (56.1% to 73.5% at a 95% confidence interval), major errors or cited assertions in which the referenced source either fails to substantiate, is unrelated to, or contradicts the assertion. Minor errors, which are an oversimplification, overgeneralization, or trivial inaccuracies, are 35.2% (26.5% to 43.9% at a 95% confidence interval). Additionally, improper secondary (or indirect) citations, which are distinguished from calculations of quotation accuracy, occur at a rate of 10.4% (3.4% to 17.5% at a 95% confidence interval).
Tsuji, Toshikazu; Nagata, Kenichiro; Kawashiri, Takehiro; Yamada, Takaaki; Irisa, Toshihiro; Murakami, Yuko; Kanaya, Akiko; Egashira, Nobuaki; Masuda, Satohiro
2016-01-01
There are many reports regarding various medical institutions' attempts at the prevention of dispensing errors. However, the relationship between occurrence timing of dispensing errors and subsequent danger to patients has not been studied under the situation according to the classification of drugs by efficacy. Therefore, we analyzed the relationship between position and time regarding the occurrence of dispensing errors. Furthermore, we investigated the relationship between occurrence timing of them and danger to patients. In this study, dispensing errors and incidents in three categories (drug name errors, drug strength errors, drug count errors) were classified into two groups in terms of its drug efficacy (efficacy similarity (-) group, efficacy similarity (+) group), into three classes in terms of the occurrence timing of dispensing errors (initial phase errors, middle phase errors, final phase errors). Then, the rates of damage shifting from "dispensing errors" to "damage to patients" were compared as an index of danger between two groups and among three classes. Consequently, the rate of damage in "efficacy similarity (-) group" was significantly higher than that in "efficacy similarity (+) group". Furthermore, the rate of damage is the highest in "initial phase errors", the lowest in "final phase errors" among three classes. From the results of this study, it became clear that the earlier the timing of dispensing errors occurs, the more severe the damage to patients becomes.
ERIC Educational Resources Information Center
Birjandi, Parviz; Siyyari, Masood
2016-01-01
This paper presents the results of an investigation into the role of two personality traits (i.e. Agreeableness and Conscientiousness from the Big Five personality traits) in predicting rating error in the self-assessment and peer-assessment of composition writing. The average self/peer-rating errors of 136 Iranian English major undergraduates…
National Suicide Rates a Century after Durkheim: Do We Know Enough to Estimate Error?
ERIC Educational Resources Information Center
Claassen, Cynthia A.; Yip, Paul S.; Corcoran, Paul; Bossarte, Robert M.; Lawrence, Bruce A.; Currier, Glenn W.
2010-01-01
Durkheim's nineteenth-century analysis of national suicide rates dismissed prior concerns about mortality data fidelity. Over the intervening century, however, evidence documenting various types of error in suicide data has only mounted, and surprising levels of such error continue to be routinely uncovered. Yet the annual suicide rate remains the…
The Relationship of Error Rate and Comprehension in Second and Third Grade Oral Reading Fluency
ERIC Educational Resources Information Center
Abbott, Mary; Wills, Howard; Miller, Angela; Kaufman, Journ
2012-01-01
This study explored the relationships of oral reading speed and error rate on comprehension with second and third grade students with identified reading risk. The study included 920 second and 974 third graders. Results found a significant relationship between error rate, oral reading fluency, and reading comprehension performance, and…
What Are Error Rates for Classifying Teacher and School Performance Using Value-Added Models?
ERIC Educational Resources Information Center
Schochet, Peter Z.; Chiang, Hanley S.
2013-01-01
This article addresses likely error rates for measuring teacher and school performance in the upper elementary grades using value-added models applied to student test score gain data. Using a realistic performance measurement system scheme based on hypothesis testing, the authors develop error rate formulas based on ordinary least squares and…
NASA Astrophysics Data System (ADS)
Concha Larrauri, P.
2015-12-01
Orange production in Florida has experienced a decline over the past decade. Hurricanes in 2004 and 2005 greatly affected production, almost to the same degree as strong freezes that occurred in the 1980's. The spread of the citrus greening disease after the hurricanes has also contributed to a reduction in orange production in Florida. The occurrence of hurricanes and diseases cannot easily be predicted but the additional effects of climate on orange yield can be studied and incorporated into existing production forecasts that are based on physical surveys, such as the October Citrus forecast issued every year by the USDA. Specific climate variables ocurring before and after the October forecast is issued can have impacts on flowering, orange drop rates, growth, and maturation, and can contribute to the forecast error. Here we present a methodology to incorporate local climate variables to predict the USDA's orange production forecast error, and we study the local effects of climate on yield in different counties in Florida. This information can aid farmers to gain an insight on what is to be expected during the orange production cycle, and can help supply chain managers to better plan their strategy.
ERIC Educational Resources Information Center
Shear, Benjamin R.; Zumbo, Bruno D.
2013-01-01
Type I error rates in multiple regression, and hence the chance for false positive research findings, can be drastically inflated when multiple regression models are used to analyze data that contain random measurement error. This article shows the potential for inflated Type I error rates in commonly encountered scenarios and provides new…
Decrease in medical command errors with use of a "standing orders" protocol system.
Holliman, C J; Wuerz, R C; Meador, S A
1994-05-01
The purpose of this study was to determine the physician medical command error rates and paramedic error rates after implementation of a "standing orders" protocol system for medical command. These patient-care error rates were compared with the previously reported rates for a "required call-in" medical command system (Ann Emerg Med 1992; 21(4):347-350). A secondary aim of the study was to determine if the on-scene time interval was increased by the standing orders system. Prospectively conducted audit of prehospital advanced life support (ALS) trip sheets was made at an urban ALS paramedic service with on-line physician medical command from three local hospitals. All ALS run sheets from the start time of the standing orders system (April 1, 1991) for a 1-year period ending on March 30, 1992 were reviewed as part of an ongoing quality assurance program. Cases were identified as nonjustifiably deviating from regional emergency medical services (EMS) protocols as judged by agreement of three physician reviewers (the same methodology as a previously reported command error study in the same ALS system). Medical command and paramedic errors were identified from the prehospital ALS run sheets and categorized. Two thousand one ALS runs were reviewed; 24 physician errors (1.2% of the 1,928 "command" runs) and eight paramedic errors (0.4% of runs) were identified. The physician error rate was decreased from the 2.6% rate in the previous study (P < .0001 by chi 2 analysis). The on-scene time interval did not increase with the "standing orders" system.(ABSTRACT TRUNCATED AT 250 WORDS)
Quantifying Data Quality for Clinical Trials Using Electronic Data Capture
Nahm, Meredith L.; Pieper, Carl F.; Cunningham, Maureen M.
2008-01-01
Background Historically, only partial assessments of data quality have been performed in clinical trials, for which the most common method of measuring database error rates has been to compare the case report form (CRF) to database entries and count discrepancies. Importantly, errors arising from medical record abstraction and transcription are rarely evaluated as part of such quality assessments. Electronic Data Capture (EDC) technology has had a further impact, as paper CRFs typically leveraged for quality measurement are not used in EDC processes. Methods and Principal Findings The National Institute on Drug Abuse Treatment Clinical Trials Network has developed, implemented, and evaluated methodology for holistically assessing data quality on EDC trials. We characterize the average source-to-database error rate (14.3 errors per 10,000 fields) for the first year of use of the new evaluation method. This error rate was significantly lower than the average of published error rates for source-to-database audits, and was similar to CRF-to-database error rates reported in the published literature. We attribute this largely to an absence of medical record abstraction on the trials we examined, and to an outpatient setting characterized by less acute patient conditions. Conclusions Historically, medical record abstraction is the most significant source of error by an order of magnitude, and should be measured and managed during the course of clinical trials. Source-to-database error rates are highly dependent on the amount of structured data collection in the clinical setting and on the complexity of the medical record, dependencies that should be considered when developing data quality benchmarks. PMID:18725958
NASA Technical Reports Server (NTRS)
Safren, H. G.
1987-01-01
The effect of atmospheric turbulence on the bit error rate of a space-to-ground near infrared laser communications link is investigated, for a link using binary pulse position modulation and an avalanche photodiode detector. Formulas are presented for the mean and variance of the bit error rate as a function of signal strength. Because these formulas require numerical integration, they are of limited practical use. Approximate formulas are derived which are easy to compute and sufficiently accurate for system feasibility studies, as shown by numerical comparison with the exact formulas. A very simple formula is derived for the bit error rate as a function of signal strength, which requires only the evaluation of an error function. It is shown by numerical calculations that, for realistic values of the system parameters, the increase in the bit error rate due to turbulence does not exceed about thirty percent for signal strengths of four hundred photons per bit or less. The increase in signal strength required to maintain an error rate of one in 10 million is about one or two tenths of a db.
IoT based Growth Monitoring System of Guava (Psidium guajava L.) Fruits
NASA Astrophysics Data System (ADS)
Slamet, W.; Irham, N. M.; Sutan, M. S. A.
2018-05-01
Growth monitoring of plant is important especially to evaluate the influence of environment or growing condition on its productivity. One way to monitor the plant growth is by measuring the radial growth (i.e., the change of circumference) of certain part of plant such as trunk, branch, and fruit. In this study we develop an internet of things (IoT) based monitoring system of radial growth of plant using a low-cost optoelectronic sensor. The system was applied to monitor radial growth of guava fruits (Psidium guajava L.). The principle of the developed sensor is based on the optoelectronic sensor which detects alternating white and black narrow bar printed on reflective tapes. Reflective tape was installed encircling the fruit. The movement of reflective tapes will follow the radial growth of the fruit so that the infrared sensor on the optoelectronic would response reflective tapes movement. This device is designed to measure object continuously and long-term monitor with minimum maintenance. The data collected by the sensors are then sent to the server and also can be monitored in real-time. Based on field test, at current stage, the developed sensor could measure the radial growth of the fruits with a maximum error 2 mm. In term of data transfer, the success rate of the developed system was 97.54%. The result indicated that the developed system can be used as an effective tool for growth monitoring of plant.
The random coding bound is tight for the average code.
NASA Technical Reports Server (NTRS)
Gallager, R. G.
1973-01-01
The random coding bound of information theory provides a well-known upper bound to the probability of decoding error for the best code of a given rate and block length. The bound is constructed by upperbounding the average error probability over an ensemble of codes. The bound is known to give the correct exponential dependence of error probability on block length for transmission rates above the critical rate, but it gives an incorrect exponential dependence at rates below a second lower critical rate. Here we derive an asymptotic expression for the average error probability over the ensemble of codes used in the random coding bound. The result shows that the weakness of the random coding bound at rates below the second critical rate is due not to upperbounding the ensemble average, but rather to the fact that the best codes are much better than the average at low rates.
Rijgersberg, Hajo; Franz, Eelco; Nierop Groot, Masja; Tromp, Seth-Oscar
2013-07-01
Within a microbial risk assessment framework, modeling the maximum population density (MPD) of a pathogenic microorganism is important but often not considered. This paper describes a model predicting the MPD of Salmonella on alfalfa as a function of the initial contamination level, the total count of the indigenous microbial population, the maximum pathogen growth rate and the maximum population density of the indigenous microbial population. The model is parameterized by experimental data describing growth of Salmonella on sprouting alfalfa seeds at inoculum size, native microbial load and Pseudomonas fluorescens 2-79. The obtained model fits well to the experimental data, with standard errors less than ten percent of the fitted average values. The results show that the MPD of Salmonella is not only dictated by performance characteristics of Salmonella but depends on the characteristics of the indigenous microbial population like total number of cells and its growth rate. The model can improve the predictions of microbiological growth in quantitative microbial risk assessments. Using this model, the effects of preventive measures to reduce pathogenic load and a concurrent effect on the background population can be better evaluated. If competing microorganisms are more sensitive to a particular decontamination method, a pathogenic microorganism may grow faster and reach a higher level. More knowledge regarding the effect of the indigenous microbial population (size, diversity, composition) of food products on pathogen dynamics is needed in order to make adequate predictions of pathogen dynamics on various food products.
A prospective audit of a nurse independent prescribing within critical care.
Carberry, Martin; Connelly, Sarah; Murphy, Jennifer
2013-05-01
To determine the prescribing activity of different staff groups within intensive care unit (ICU) and combined high dependency unit (HDU), namely trainee and consultant medical staff and advanced nurse practitioners in critical care (ANPCC); to determine the number and type of prescription errors; to compare error rates between prescribing groups and to raise awareness of prescribing activity within critical care. The introduction of government legislation has led to the development of non-medical prescribing roles in acute care. This has facilitated an opportunity for the ANPCC working in critical care to develop a prescribing role. The audit was performed over 7 days (Monday-Sunday), on rolling days over a 7-week period in September and October 2011 in three ICUs. All drug entries made on the ICU prescription by the three groups, trainee medical staff, ANPCCs and consultant anaesthetists, were audited once for errors. Data were collected by reviewing all drug entries for errors namely, patient data, drug dose, concentration, rate and frequency, legibility and prescriber signature. A paper data collection tool was used initially; data was later entered onto a Microsoft Access data base. A total of 1418 drug entries were audited from 77 patient prescription Cardexes. Error rates were reported as, 40 errors in 1418 prescriptions (2·8%): ANPCC errors, n = 2 in 388 prescriptions (0·6%); trainee medical staff errors, n = 33 in 984 (3·4%); consultant errors, n = 5 in 73 (6·8%). The error rates were significantly different for different prescribing groups (p < 0·01). This audit shows that prescribing error rates were low (2·8%). Having the lowest error rate, the nurse practitioners are at least as effective as other prescribing groups within this audit, in terms of errors only, in prescribing diligence. National data is required in order to benchmark independent nurse prescribing practice in critical care. These findings could be used to inform research and role development within the critical care. © 2012 The Authors. Nursing in Critical Care © 2012 British Association of Critical Care Nurses.
Huckels-Baumgart, Saskia; Baumgart, André; Buschmann, Ute; Schüpfer, Guido; Manser, Tanja
2016-12-21
Interruptions and errors during the medication process are common, but published literature shows no evidence supporting whether separate medication rooms are an effective single intervention in reducing interruptions and errors during medication preparation in hospitals. We tested the hypothesis that the rate of interruptions and reported medication errors would decrease as a result of the introduction of separate medication rooms. Our aim was to evaluate the effect of separate medication rooms on interruptions during medication preparation and on self-reported medication error rates. We performed a preintervention and postintervention study using direct structured observation of nurses during medication preparation and daily structured medication error self-reporting of nurses by questionnaires in 2 wards at a major teaching hospital in Switzerland. A volunteer sample of 42 nurses was observed preparing 1498 medications for 366 patients over 17 hours preintervention and postintervention on both wards. During 122 days, nurses completed 694 reporting sheets containing 208 medication errors. After the introduction of the separate medication room, the mean interruption rate decreased significantly from 51.8 to 30 interruptions per hour (P < 0.01), and the interruption-free preparation time increased significantly from 1.4 to 2.5 minutes (P < 0.05). Overall, the mean medication error rate per day was also significantly reduced after implementation of the separate medication room from 1.3 to 0.9 errors per day (P < 0.05). The present study showed the positive effect of a hospital-based intervention; after the introduction of the separate medication room, the interruption and medication error rates decreased significantly.
2011-01-01
Background The generation and analysis of high-throughput sequencing data are becoming a major component of many studies in molecular biology and medical research. Illumina's Genome Analyzer (GA) and HiSeq instruments are currently the most widely used sequencing devices. Here, we comprehensively evaluate properties of genomic HiSeq and GAIIx data derived from two plant genomes and one virus, with read lengths of 95 to 150 bases. Results We provide quantifications and evidence for GC bias, error rates, error sequence context, effects of quality filtering, and the reliability of quality values. By combining different filtering criteria we reduced error rates 7-fold at the expense of discarding 12.5% of alignable bases. While overall error rates are low in HiSeq data we observed regions of accumulated wrong base calls. Only 3% of all error positions accounted for 24.7% of all substitution errors. Analyzing the forward and reverse strands separately revealed error rates of up to 18.7%. Insertions and deletions occurred at very low rates on average but increased to up to 2% in homopolymers. A positive correlation between read coverage and GC content was found depending on the GC content range. Conclusions The errors and biases we report have implications for the use and the interpretation of Illumina sequencing data. GAIIx and HiSeq data sets show slightly different error profiles. Quality filtering is essential to minimize downstream analysis artifacts. Supporting previous recommendations, the strand-specificity provides a criterion to distinguish sequencing errors from low abundance polymorphisms. PMID:22067484
ERIC Educational Resources Information Center
Schochet, Peter Z.; Chiang, Hanley S.
2010-01-01
This paper addresses likely error rates for measuring teacher and school performance in the upper elementary grades using value-added models applied to student test score gain data. Using realistic performance measurement system schemes based on hypothesis testing, we develop error rate formulas based on OLS and Empirical Bayes estimators.…
Goo, Yeung-Ja James; Chi, Der-Jang; Shen, Zong-De
2016-01-01
The purpose of this study is to establish rigorous and reliable going concern doubt (GCD) prediction models. This study first uses the least absolute shrinkage and selection operator (LASSO) to select variables and then applies data mining techniques to establish prediction models, such as neural network (NN), classification and regression tree (CART), and support vector machine (SVM). The samples of this study include 48 GCD listed companies and 124 NGCD (non-GCD) listed companies from 2002 to 2013 in the TEJ database. We conduct fivefold cross validation in order to identify the prediction accuracy. According to the empirical results, the prediction accuracy of the LASSO-NN model is 88.96 % (Type I error rate is 12.22 %; Type II error rate is 7.50 %), the prediction accuracy of the LASSO-CART model is 88.75 % (Type I error rate is 13.61 %; Type II error rate is 14.17 %), and the prediction accuracy of the LASSO-SVM model is 89.79 % (Type I error rate is 10.00 %; Type II error rate is 15.83 %).
Sethuraman, Usha; Kannikeswaran, Nirupama; Murray, Kyle P; Zidan, Marwan A; Chamberlain, James M
2015-06-01
Prescription errors occur frequently in pediatric emergency departments (PEDs).The effect of computerized physician order entry (CPOE) with electronic medication alert system (EMAS) on these is unknown. The objective was to compare prescription errors rates before and after introduction of CPOE with EMAS in a PED. The hypothesis was that CPOE with EMAS would significantly reduce the rate and severity of prescription errors in the PED. A prospective comparison of a sample of outpatient, medication prescriptions 5 months before and after CPOE with EMAS implementation (7,268 before and 7,292 after) was performed. Error types and rates, alert types and significance, and physician response were noted. Medication errors were deemed significant if there was a potential to cause life-threatening injury, failure of therapy, or an adverse drug effect. There was a significant reduction in the errors per 100 prescriptions (10.4 before vs. 7.3 after; absolute risk reduction = 3.1, 95% confidence interval [CI] = 2.2 to 4.0). Drug dosing error rates decreased from 8 to 5.4 per 100 (absolute risk reduction = 2.6, 95% CI = 1.8 to 3.4). Alerts were generated for 29.6% of prescriptions, with 45% involving drug dose range checking. The sensitivity of CPOE with EMAS in identifying errors in prescriptions was 45.1% (95% CI = 40.8% to 49.6%), and the specificity was 57% (95% CI = 55.6% to 58.5%). Prescribers modified 20% of the dosing alerts, resulting in the error not reaching the patient. Conversely, 11% of true dosing alerts for medication errors were overridden by the prescribers: 88 (11.3%) resulted in medication errors, and 684 (88.6%) were false-positive alerts. A CPOE with EMAS was associated with a decrease in overall prescription errors in our PED. Further system refinements are required to reduce the high false-positive alert rates. © 2015 by the Society for Academic Emergency Medicine.
Performance improvement of robots using a learning control scheme
NASA Technical Reports Server (NTRS)
Krishna, Ramuhalli; Chiang, Pen-Tai; Yang, Jackson C. S.
1987-01-01
Many applications of robots require that the same task be repeated a number of times. In such applications, the errors associated with one cycle are also repeated every cycle of the operation. An off-line learning control scheme is used here to modify the command function which would result in smaller errors in the next operation. The learning scheme is based on a knowledge of the errors and error rates associated with each cycle. Necessary conditions for the iterative scheme to converge to zero errors are derived analytically considering a second order servosystem model. Computer simulations show that the errors are reduced at a faster rate if the error rate is included in the iteration scheme. The results also indicate that the scheme may increase the magnitude of errors if the rate information is not included in the iteration scheme. Modification of the command input using a phase and gain adjustment is also proposed to reduce the errors with one attempt. The scheme is then applied to a computer model of a robot system similar to PUMA 560. Improved performance of the robot is shown by considering various cases of trajectory tracing. The scheme can be successfully used to improve the performance of actual robots within the limitations of the repeatability and noise characteristics of the robot.
Martis, Walston R; Hannam, Jacqueline A; Lee, Tracey; Merry, Alan F; Mitchell, Simon J
2016-09-09
A new approach to administering the surgical safety checklist (SSC) at our institution using wall-mounted charts for each SSC domain coupled with migrated leadership among operating room (OR) sub-teams, led to improved compliance with the Sign Out domain. Since surgical specimens are reviewed at Sign Out, we aimed to quantify any related change in surgical specimen labelling errors. Prospectively maintained error logs for surgical specimens sent to pathology were examined for the six months before and after introduction of the new SSC administration paradigm. We recorded errors made in the labelling or completion of the specimen pot and on the specimen laboratory request form. Total error rates were calculated from the number of errors divided by total number of specimens. Rates from the two periods were compared using a chi square test. There were 19 errors in 4,760 specimens (rate 3.99/1,000) and eight errors in 5,065 specimens (rate 1.58/1,000) before and after the change in SSC administration paradigm (P=0.0225). Improved compliance with administering the Sign Out domain of the SSC can reduce surgical specimen errors. This finding provides further evidence that OR teams should optimise compliance with the SSC.
Citation Help in Databases: The More Things Change, the More They Stay the Same
ERIC Educational Resources Information Center
Van Ullen, Mary; Kessler, Jane
2012-01-01
In 2005, the authors reviewed citation help in databases and found an error rate of 4.4 errors per citation. This article describes a follow-up study that revealed a modest improvement in the error rate to 3.4 errors per citation, still unacceptably high. The most problematic area was retrieval statements. The authors conclude that librarians…
ERIC Educational Resources Information Center
Hodgson, Catherine; Lambon Ralph, Matthew A.
2008-01-01
Semantic errors are commonly found in semantic dementia (SD) and some forms of stroke aphasia and provide insights into semantic processing and speech production. Low error rates are found in standard picture naming tasks in normal controls. In order to increase error rates and thus provide an experimental model of aphasic performance, this study…
Physical fault tolerance of nanoelectronics.
Szkopek, Thomas; Roychowdhury, Vwani P; Antoniadis, Dimitri A; Damoulakis, John N
2011-04-29
The error rate in complementary transistor circuits is suppressed exponentially in electron number, arising from an intrinsic physical implementation of fault-tolerant error correction. Contrariwise, explicit assembly of gates into the most efficient known fault-tolerant architecture is characterized by a subexponential suppression of error rate with electron number, and incurs significant overhead in wiring and complexity. We conclude that it is more efficient to prevent logical errors with physical fault tolerance than to correct logical errors with fault-tolerant architecture.
Steward, Christine D.; Stocker, Sheila A.; Swenson, Jana M.; O’Hara, Caroline M.; Edwards, Jonathan R.; Gaynes, Robert P.; McGowan, John E.; Tenover, Fred C.
1999-01-01
Fluoroquinolone resistance appears to be increasing in many species of bacteria, particularly in those causing nosocomial infections. However, the accuracy of some antimicrobial susceptibility testing methods for detecting fluoroquinolone resistance remains uncertain. Therefore, we compared the accuracy of the results of agar dilution, disk diffusion, MicroScan Walk Away Neg Combo 15 conventional panels, and Vitek GNS-F7 cards to the accuracy of the results of the broth microdilution reference method for detection of ciprofloxacin and ofloxacin resistance in 195 clinical isolates of the family Enterobacteriaceae collected from six U.S. hospitals for a national surveillance project (Project ICARE [Intensive Care Antimicrobial Resistance Epidemiology]). For ciprofloxacin, very major error rates were 0% (disk diffusion and MicroScan), 0.9% (agar dilution), and 2.7% (Vitek), while major error rates ranged from 0% (agar dilution) to 3.7% (MicroScan and Vitek). Minor error rates ranged from 12.3% (agar dilution) to 20.5% (MicroScan). For ofloxacin, no very major errors were observed, and major errors were noted only with MicroScan (3.7% major error rate). Minor error rates ranged from 8.2% (agar dilution) to 18.5% (Vitek). Minor errors for all methods were substantially reduced when results with MICs within ±1 dilution of the broth microdilution reference MIC were excluded from analysis. However, the high number of minor errors by all test systems remains a concern. PMID:9986809
Quantizing and sampling considerations in digital phased-locked loops
NASA Technical Reports Server (NTRS)
Hurst, G. T.; Gupta, S. C.
1974-01-01
The quantizer problem is first considered. The conditions under which the uniform white sequence model for the quantizer error is valid are established independent of the sampling rate. An equivalent spectral density is defined for the quantizer error resulting in an effective SNR value. This effective SNR may be used to determine quantized performance from infinitely fine quantized results. Attention is given to sampling rate considerations. Sampling rate characteristics of the digital phase-locked loop (DPLL) structure are investigated for the infinitely fine quantized system. The predicted phase error variance equation is examined as a function of the sampling rate. Simulation results are presented and a method is described which enables the minimum required sampling rate to be determined from the predicted phase error variance equations.
Organizational safety culture and medical error reporting by Israeli nurses.
Kagan, Ilya; Barnoy, Sivia
2013-09-01
To investigate the association between patient safety culture (PSC) and the incidence and reporting rate of medical errors by Israeli nurses. Self-administered structured questionnaires were distributed to a convenience sample of 247 registered nurses enrolled in training programs at Tel Aviv University (response rate = 91%). The questionnaire's three sections examined the incidence of medication mistakes in clinical practice, the reporting rate for these errors, and the participants' views and perceptions of the safety culture in their workplace at three levels (organizational, departmental, and individual performance). Pearson correlation coefficients, t tests, and multiple regression analysis were used to analyze the data. Most nurses encountered medical errors from a daily to a weekly basis. Six percent of the sample never reported their own errors, while half reported their own errors "rarely or sometimes." The level of PSC was positively and significantly correlated with the error reporting rate. PSC, place of birth, error incidence, and not having an academic nursing degree were significant predictors of error reporting, together explaining 28% of variance. This study confirms the influence of an organizational safety climate on readiness to report errors. Senior healthcare executives and managers can make a major impact on safety culture development by creating and promoting a vision and strategy for quality and safety and fostering their employees' motivation to implement improvement programs at the departmental and individual level. A positive, carefully designed organizational safety culture can encourage error reporting by staff and so improve patient safety. © 2013 Sigma Theta Tau International.
Software for Quantifying and Simulating Microsatellite Genotyping Error
Johnson, Paul C.D.; Haydon, Daniel T.
2007-01-01
Microsatellite genetic marker data are exploited in a variety of fields, including forensics, gene mapping, kinship inference and population genetics. In all of these fields, inference can be thwarted by failure to quantify and account for data errors, and kinship inference in particular can benefit from separating errors into two distinct classes: allelic dropout and false alleles. Pedant is MS Windows software for estimating locus-specific maximum likelihood rates of these two classes of error. Estimation is based on comparison of duplicate error-prone genotypes: neither reference genotypes nor pedigree data are required. Other functions include: plotting of error rate estimates and confidence intervals; simulations for performing power analysis and for testing the robustness of error rate estimates to violation of the underlying assumptions; and estimation of expected heterozygosity, which is a required input. The program, documentation and source code are available from http://www.stats.gla.ac.uk/~paulj/pedant.html. PMID:20066126
Westbrook, Johanna I; Raban, Magdalena Z; Walter, Scott R; Douglas, Heather
2018-01-09
Interruptions and multitasking have been demonstrated in experimental studies to reduce individuals' task performance. These behaviours are frequently used by clinicians in high-workload, dynamic clinical environments, yet their effects have rarely been studied. To assess the relative contributions of interruptions and multitasking by emergency physicians to prescribing errors. 36 emergency physicians were shadowed over 120 hours. All tasks, interruptions and instances of multitasking were recorded. Physicians' working memory capacity (WMC) and preference for multitasking were assessed using the Operation Span Task (OSPAN) and Inventory of Polychronic Values. Following observation, physicians were asked about their sleep in the previous 24 hours. Prescribing errors were used as a measure of task performance. We performed multivariate analysis of prescribing error rates to determine associations with interruptions and multitasking, also considering physician seniority, age, psychometric measures, workload and sleep. Physicians experienced 7.9 interruptions/hour. 28 clinicians were observed prescribing 239 medication orders which contained 208 prescribing errors. While prescribing, clinicians were interrupted 9.4 times/hour. Error rates increased significantly if physicians were interrupted (rate ratio (RR) 2.82; 95% CI 1.23 to 6.49) or multitasked (RR 1.86; 95% CI 1.35 to 2.56) while prescribing. Having below-average sleep showed a >15-fold increase in clinical error rate (RR 16.44; 95% CI 4.84 to 55.81). WMC was protective against errors; for every 10-point increase on the 75-point OSPAN, a 19% decrease in prescribing errors was observed. There was no effect of polychronicity, workload, physician gender or above-average sleep on error rates. Interruptions, multitasking and poor sleep were associated with significantly increased rates of prescribing errors among emergency physicians. WMC mitigated the negative influence of these factors to an extent. These results confirm experimental findings in other fields and raise questions about the acceptability of the high rates of multitasking and interruption in clinical environments. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Technical Reports Server (NTRS)
Srivastava, R. C.; Coen, J. L.
1992-01-01
The traditional explicit growth equation has been widely used to calculate the growth and evaporation of hydrometeors by the diffusion of water vapor. This paper reexamines the assumptions underlying the traditional equation and shows that large errors (10-30 percent in some cases) result if it is used carelessly. More accurate explicit equations are derived by approximating the saturation vapor-density difference as a quadratic rather than a linear function of the temperature difference between the particle and ambient air. These new equations, which reduce the error to less than a few percent, merit inclusion in a broad range of atmospheric models.
Garrison, Laurel E; Kunz, Jasen M; Cooley, Laura A; Moore, Matthew R; Lucas, Claressa; Schrag, Stephanie; Sarisky, John; Whitney, Cynthia G
2016-06-10
The number of reported cases of Legionnaires' disease, a severe pneumonia caused by the bacterium Legionella, is increasing in the United States. During 2000-2014, the rate of reported legionellosis cases increased from 0.42 to 1.62 per 100,000 persons; 4% of reported cases were outbreak-associated. Legionella is transmitted through aerosolization of contaminated water. A new industry standard for prevention of Legionella growth and transmission in water systems in buildings was published in 2015. CDC investigated outbreaks of Legionnaires' disease to identify gaps in building water system maintenance and guide prevention efforts. Information from summaries of CDC Legionnaires' disease outbreak investigations during 2000-2014 was systematically abstracted, and water system maintenance deficiencies from land-based investigations were categorized as process failures, human errors, equipment failures, or unmanaged external changes. During 2000-2014, CDC participated in 38 field investigations of Legionnaires' disease. Among 27 land-based outbreaks, the median number of cases was 10 (range = 3-82) and median outbreak case fatality rate was 7% (range = 0%-80%). Sufficient information to evaluate maintenance deficiencies was available for 23 (85%) investigations. Of these, all had at least one deficiency; 11 (48%) had deficiencies in ≥2 categories. Fifteen cases (65%) were linked to process failures, 12 (52%) to human errors, eight (35%) to equipment failures, and eight (35%) to unmanaged external changes. Multiple common preventable maintenance deficiencies were identified in association with disease outbreaks, highlighting the importance of comprehensive water management programs for water systems in buildings. Properly implemented programs, as described in the new industry standard, could reduce Legionella growth and transmission, preventing Legionnaires' disease outbreaks and reducing disease.
Model studies of the beam-filling error for rain-rate retrieval with microwave radiometers
NASA Technical Reports Server (NTRS)
Ha, Eunho; North, Gerald R.
1995-01-01
Low-frequency (less than 20 GHz) single-channel microwave retrievals of rain rate encounter the problem of beam-filling error. This error stems from the fact that the relationship between microwave brightness temperature and rain rate is nonlinear, coupled with the fact that the field of view is large or comparable to important scales of variability of the rain field. This means that one may not simply insert the area average of the brightness temperature into the formula for rain rate without incurring both bias and random error. The statistical heterogeneity of the rain-rate field in the footprint of the instrument is key to determining the nature of these errors. This paper makes use of a series of random rain-rate fields to study the size of the bias and random error associated with beam filling. A number of examples are analyzed in detail: the binomially distributed field, the gamma, the Gaussian, the mixed gamma, the lognormal, and the mixed lognormal ('mixed' here means there is a finite probability of no rain rate at a point of space-time). Of particular interest are the applicability of a simple error formula due to Chiu and collaborators and a formula that might hold in the large field of view limit. It is found that the simple formula holds for Gaussian rain-rate fields but begins to fail for highly skewed fields such as the mixed lognormal. While not conclusively demonstrated here, it is suggested that the notionof climatologically adjusting the retrievals to remove the beam-filling bias is a reasonable proposition.
Predator-prey modeling of the coupling of co-propagating CAE to kink modes
NASA Astrophysics Data System (ADS)
Fredrickson, Eric
2012-10-01
Co-propagating Compressional Alfven eigenmodes (CAE) with shorter wavelength and higher frequency than the counter-propagating CAE and Global Alfven eigenmodes (GAE) often accompany a low frequency n=1 kink. The lower frequency CAE and GAE are excited through a Doppler-shifted cyclotron resonance; the high frequency CAE (hfCAE) through a simple parallel resonance. We present measurements of the mode structure and spectrum of the hfCAE, and compare those measurements to predictions of a simple model for CAE. The modes are bursting with a typical burst frequency on the order of a few kHz. The n=1 kink frequency is usually higher than this, but when the kink frequency does drop towards the hfCAE burst frequency, the hfCAE burst frequency can become locked with the kink frequency. A simple predator-prey model to simulate the hfCAE bursting demonstrates that a modulation of the growth or damping rate by a few percent, at a frequency near the natural burst frequency, can lock the burst frequency to the modulation frequency. The modulation of the damping rate is postulated to be through a coupling of the kink with a symmetry-breaking error field. The deeper question is how the kink interaction with a locked mode can affect the damping/growth rates of the CAE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McInerney, Peter; Adams, Paul; Hadi, Masood Z.
As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error ratemore » measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu , Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.« less
NASA Astrophysics Data System (ADS)
Situmorang, B. H.; Setiawan, M. P.; Tosida, E. T.
2017-01-01
Refractive errors are abnormalities of the refraction of light so that the shadows do not focus precisely on the retina resulting in blurred vision [1]. Refractive errors causing the patient should wear glasses or contact lenses in order eyesight returned to normal. The use of glasses or contact lenses in a person will be different from others, it is influenced by patient age, the amount of tear production, vision prescription, and astigmatic. Because the eye is one organ of the human body is very important to see, then the accuracy in determining glasses or contact lenses which will be used is required. This research aims to develop a decision support system that can produce output on the right contact lenses for refractive errors patients with a value of 100% accuracy. Iterative Dichotomize Three (ID3) classification methods will generate gain and entropy values of attributes that include code sample data, age of the patient, astigmatic, the ratio of tear production, vision prescription, and classes that will affect the outcome of the decision tree. The eye specialist test result for the training data obtained the accuracy rate of 96.7% and an error rate of 3.3%, the result test using confusion matrix obtained the accuracy rate of 96.1% and an error rate of 3.1%; for the data testing obtained accuracy rate of 100% and an error rate of 0.
Detecting Growth Shape Misspecifications in Latent Growth Models: An Evaluation of Fit Indexes
ERIC Educational Resources Information Center
Leite, Walter L.; Stapleton, Laura M.
2011-01-01
In this study, the authors compared the likelihood ratio test and fit indexes for detection of misspecifications of growth shape in latent growth models through a simulation study and a graphical analysis. They found that the likelihood ratio test, MFI, and root mean square error of approximation performed best for detecting model misspecification…
The Biasing Effects of Unmodeled ARMA Time Series Processes on Latent Growth Curve Model Estimates
ERIC Educational Resources Information Center
Sivo, Stephen; Fan, Xitao; Witta, Lea
2005-01-01
The purpose of this study was to evaluate the robustness of estimated growth curve models when there is stationary autocorrelation among manifest variable errors. The results suggest that when, in practice, growth curve models are fitted to longitudinal data, alternative rival hypotheses to consider would include growth models that also specify…
NASA Astrophysics Data System (ADS)
Duan, Wansuo; Zhao, Peng
2017-04-01
Within the Zebiak-Cane model, the nonlinear forcing singular vector (NFSV) approach is used to investigate the role of model errors in the "Spring Predictability Barrier" (SPB) phenomenon within ENSO predictions. NFSV-related errors have the largest negative effect on the uncertainties of El Niño predictions. NFSV errors can be classified into two types: the first is characterized by a zonal dipolar pattern of SST anomalies (SSTA), with the western poles centered in the equatorial central-western Pacific exhibiting positive anomalies and the eastern poles in the equatorial eastern Pacific exhibiting negative anomalies; and the second is characterized by a pattern almost opposite the first type. The first type of error tends to have the worst effects on El Niño growth-phase predictions, whereas the latter often yields the largest negative effects on decaying-phase predictions. The evolution of prediction errors caused by NFSV-related errors exhibits prominent seasonality, with the fastest error growth in the spring and/or summer seasons; hence, these errors result in a significant SPB related to El Niño events. The linear counterpart of NFSVs, the (linear) forcing singular vector (FSV), induces a less significant SPB because it contains smaller prediction errors. Random errors cannot generate a SPB for El Niño events. These results show that the occurrence of an SPB is related to the spatial patterns of tendency errors. The NFSV tendency errors cause the most significant SPB for El Niño events. In addition, NFSVs often concentrate these large value errors in a few areas within the equatorial eastern and central-western Pacific, which likely represent those areas sensitive to El Niño predictions associated with model errors. Meanwhile, these areas are also exactly consistent with the sensitive areas related to initial errors determined by previous studies. This implies that additional observations in the sensitive areas would not only improve the accuracy of the initial field but also promote the reduction of model errors to greatly improve ENSO forecasts.
2017-02-01
Reports an error in "Effects of networking on career success: A longitudinal study" by Hans-Georg Wolff and Klaus Moser ( Journal of Applied Psychology , 2009[Jan], Vol 94[1], 196-206). In the article, results from a confirmatory factor analysis on subjective career success in the Measures section contained an error in the reported Chi-square (i.e., χ² (5, N = 257) = 9.17). This error does not alter any conclusions or substantive statements in the original article. The correct fit indices are " χ²(5, N = 257) 9.67, p = .08, RMSEA = 0.059, CFI = 1.00." (The following abstract of the original article appeared in record 2009-00697-007.) Previous research has reported effects of networking, defined as building, maintaining, and using relationships, on career success. However, empirical studies have relied exclusively on concurrent or retrospective designs that rest upon strong assumptions about the causal direction of this relation and depict a static snapshot of the relation at a given point in time. This study provides a dynamic perspective on the effects of networking on career success and reports results of a longitudinal study. Networking was assessed with 6 subscales that resulted from combining measures of the facets of (a) internal versus external networking and (b) building versus maintaining versus using contacts. Objective (salary) and subjective (career satisfaction) measures of career success were obtained for 3 consecutive years. Multilevel analyses showed that networking is related to concurrent salary and that it is related to the growth rate of salary over time. Networking is also related to concurrent career satisfaction. As satisfaction remained stable over time, no effects of networking on the growth of career satisfaction were found. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Prakash, Varuna; Koczmara, Christine; Savage, Pamela; Trip, Katherine; Stewart, Janice; McCurdie, Tara; Cafazzo, Joseph A; Trbovich, Patricia
2014-11-01
Nurses are frequently interrupted during medication verification and administration; however, few interventions exist to mitigate resulting errors, and the impact of these interventions on medication safety is poorly understood. The study objectives were to (A) assess the effects of interruptions on medication verification and administration errors, and (B) design and test the effectiveness of targeted interventions at reducing these errors. The study focused on medication verification and administration in an ambulatory chemotherapy setting. A simulation laboratory experiment was conducted to determine interruption-related error rates during specific medication verification and administration tasks. Interventions to reduce these errors were developed through a participatory design process, and their error reduction effectiveness was assessed through a postintervention experiment. Significantly more nurses committed medication errors when interrupted than when uninterrupted. With use of interventions when interrupted, significantly fewer nurses made errors in verifying medication volumes contained in syringes (16/18; 89% preintervention error rate vs 11/19; 58% postintervention error rate; p=0.038; Fisher's exact test) and programmed in ambulatory pumps (17/18; 94% preintervention vs 11/19; 58% postintervention; p=0.012). The rate of error commission significantly decreased with use of interventions when interrupted during intravenous push (16/18; 89% preintervention vs 6/19; 32% postintervention; p=0.017) and pump programming (7/18; 39% preintervention vs 1/19; 5% postintervention; p=0.017). No statistically significant differences were observed for other medication verification tasks. Interruptions can lead to medication verification and administration errors. Interventions were highly effective at reducing unanticipated errors of commission in medication administration tasks, but showed mixed effectiveness at reducing predictable errors of detection in medication verification tasks. These findings can be generalised and adapted to mitigate interruption-related errors in other settings where medication verification and administration are required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Prakash, Varuna; Koczmara, Christine; Savage, Pamela; Trip, Katherine; Stewart, Janice; McCurdie, Tara; Cafazzo, Joseph A; Trbovich, Patricia
2014-01-01
Background Nurses are frequently interrupted during medication verification and administration; however, few interventions exist to mitigate resulting errors, and the impact of these interventions on medication safety is poorly understood. Objective The study objectives were to (A) assess the effects of interruptions on medication verification and administration errors, and (B) design and test the effectiveness of targeted interventions at reducing these errors. Methods The study focused on medication verification and administration in an ambulatory chemotherapy setting. A simulation laboratory experiment was conducted to determine interruption-related error rates during specific medication verification and administration tasks. Interventions to reduce these errors were developed through a participatory design process, and their error reduction effectiveness was assessed through a postintervention experiment. Results Significantly more nurses committed medication errors when interrupted than when uninterrupted. With use of interventions when interrupted, significantly fewer nurses made errors in verifying medication volumes contained in syringes (16/18; 89% preintervention error rate vs 11/19; 58% postintervention error rate; p=0.038; Fisher's exact test) and programmed in ambulatory pumps (17/18; 94% preintervention vs 11/19; 58% postintervention; p=0.012). The rate of error commission significantly decreased with use of interventions when interrupted during intravenous push (16/18; 89% preintervention vs 6/19; 32% postintervention; p=0.017) and pump programming (7/18; 39% preintervention vs 1/19; 5% postintervention; p=0.017). No statistically significant differences were observed for other medication verification tasks. Conclusions Interruptions can lead to medication verification and administration errors. Interventions were highly effective at reducing unanticipated errors of commission in medication administration tasks, but showed mixed effectiveness at reducing predictable errors of detection in medication verification tasks. These findings can be generalised and adapted to mitigate interruption-related errors in other settings where medication verification and administration are required. PMID:24906806
Hansen, Heidi; Ben-David, Merav; McDonald, David B
2008-03-01
In noninvasive genetic sampling, when genotyping error rates are high and recapture rates are low, misidentification of individuals can lead to overestimation of population size. Thus, estimating genotyping errors is imperative. Nonetheless, conducting multiple polymerase chain reactions (PCRs) at multiple loci is time-consuming and costly. To address the controversy regarding the minimum number of PCRs required for obtaining a consensus genotype, we compared consumer-style the performance of two genotyping protocols (multiple-tubes and 'comparative method') in respect to genotyping success and error rates. Our results from 48 faecal samples of river otters (Lontra canadensis) collected in Wyoming in 2003, and from blood samples of five captive river otters amplified with four different primers, suggest that use of the comparative genotyping protocol can minimize the number of PCRs per locus. For all but five samples at one locus, the same consensus genotypes were reached with fewer PCRs and with reduced error rates with this protocol compared to the multiple-tubes method. This finding is reassuring because genotyping errors can occur at relatively high rates even in tissues such as blood and hair. In addition, we found that loci that amplify readily and yield consensus genotypes, may still exhibit high error rates (7-32%) and that amplification with different primers resulted in different types and rates of error. Thus, assigning a genotype based on a single PCR for several loci could result in misidentification of individuals. We recommend that programs designed to statistically assign consensus genotypes should be modified to allow the different treatment of heterozygotes and homozygotes intrinsic to the comparative method. © 2007 The Authors.
National suicide rates a century after Durkheim: do we know enough to estimate error?
Claassen, Cynthia A; Yip, Paul S; Corcoran, Paul; Bossarte, Robert M; Lawrence, Bruce A; Currier, Glenn W
2010-06-01
Durkheim's nineteenth-century analysis of national suicide rates dismissed prior concerns about mortality data fidelity. Over the intervening century, however, evidence documenting various types of error in suicide data has only mounted, and surprising levels of such error continue to be routinely uncovered. Yet the annual suicide rate remains the most widely used population-level suicide metric today. After reviewing the unique sources of bias incurred during stages of suicide data collection and concatenation, we propose a model designed to uniformly estimate error in future studies. A standardized method of error estimation uniformly applied to mortality data could produce data capable of promoting high quality analyses of cross-national research questions.
Tackenberg, Oliver
2007-01-01
Background and Aims Biomass is an important trait in functional ecology and growth analysis. The typical methods for measuring biomass are destructive. Thus, they do not allow the development of individual plants to be followed and they require many individuals to be cultivated for repeated measurements. Non-destructive methods do not have these limitations. Here, a non-destructive method based on digital image analysis is presented, addressing not only above-ground fresh biomass (FBM) and oven-dried biomass (DBM), but also vertical biomass distribution as well as dry matter content (DMC) and growth rates. Methods Scaled digital images of the plants silhouettes were taken for 582 individuals of 27 grass species (Poaceae). Above-ground biomass and DMC were measured using destructive methods. With image analysis software Zeiss KS 300, the projected area and the proportion of greenish pixels were calculated, and generalized linear models (GLMs) were developed with destructively measured parameters as dependent variables and parameters derived from image analysis as independent variables. A bootstrap analysis was performed to assess the number of individuals required for re-calibration of the models. Key Results The results of the developed models showed no systematic errors compared with traditionally measured values and explained most of their variance (R2 ≥ 0·85 for all models). The presented models can be directly applied to herbaceous grasses without further calibration. Applying the models to other growth forms might require a re-calibration which can be based on only 10–20 individuals for FBM or DMC and on 40–50 individuals for DBM. Conclusions The methods presented are time and cost effective compared with traditional methods, especially if development or growth rates are to be measured repeatedly. Hence, they offer an alternative way of determining biomass, especially as they are non-destructive and address not only FBM and DBM, but also vertical biomass distribution and DMC. PMID:17353204
Does Mckuer's Law Hold for Heart Rate Control via Biofeedback Display?
NASA Technical Reports Server (NTRS)
Courter, B. J.; Jex, H. R.
1984-01-01
Some persons can control their pulse rate with the aid of a biofeedback display. If the biofeedback display is modified to show the error between a command pulse-rate and the measured rate, a compensatory (error correcting) heart rate tracking control loop can be created. The dynamic response characteristics of this control loop when subjected to step and quasi-random disturbances were measured. The control loop includes a beat-to-beat cardiotachmeter differenced with a forcing function from a quasi-random input generator; the resulting error pulse-rate is displayed as feedback. The subject acts to null the displayed pulse-rate error, thereby closing a compensatory control loop. McRuer's Law should hold for this case. A few subjects already skilled in voluntary pulse-rate control were tested for heart-rate control response. Control-law properties are derived, such as: crossover frequency, stability margins, and closed-loop bandwidth. These are evaluated for a range of forcing functions and for step as well as random disturbances.
Error "Reflection": Embracing Growth Mindset in the General Music Classroom
ERIC Educational Resources Information Center
Davis, Virginia Wayman
2017-01-01
As music teachers, part of the job description involves the detection of student errors and the use of our experience and education to eliminate them. This article is an exploration of the role of error in the learning process, with the goal of recognizing mistakes not as an enemy to be vanquished but as a friend with much to teach us. Carol…
Total Dose Effects on Error Rates in Linear Bipolar Systems
NASA Technical Reports Server (NTRS)
Buchner, Stephen; McMorrow, Dale; Bernard, Muriel; Roche, Nicholas; Dusseau, Laurent
2007-01-01
The shapes of single event transients in linear bipolar circuits are distorted by exposure to total ionizing dose radiation. Some transients become broader and others become narrower. Such distortions may affect SET system error rates in a radiation environment. If the transients are broadened by TID, the error rate could increase during the course of a mission, a possibility that has implications for hardness assurance.
NASA Astrophysics Data System (ADS)
Gregoratto, D.; Drake, J. R.; Yadikin, D.; Liu, Y. Q.; Paccagnella, R.; Brunsell, P. R.; Bolzonella, T.; Marchiori, G.; Cecconello, M.
2005-09-01
Arrays of magnetic coils and sensors in the EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Controlled Fusion 43 1457 (2001)] reversed-field pinch have been used to investigate the plasma response to an applied resonant magnetic perturbation in the range of the resistive-wall modes (RWMs). Measured RWM growth rates agree with predictions of a cylindrical ideal-plasma model. The linear growth of low-n marginally stable RWMs is related to the so-called resonant-field amplification due to a dominant ∣n∣=2 machine error field of about 2 G. The dynamics of the m =1 RWMs interacting with the applied field produced by the coils can be accurately described by a two-pole system. Estimated poles and residues are given with sufficient accuracy by the cylindrical model with a thin continuous wall.
The growth of IQ among Estonian schoolchildren from ages 7 to 19.
Pullmann, Helle; Allik, Jüri; Lynn, Richard
2004-11-01
The Standard Progressive Matrices test was standardized in Estonia on a representative sample of 4874 schoolchildren aged from 7 to 19 years. When the IQ of Estonian children was expressed in relation to British and Icelandic norms, both demonstrated a similar sigmoid relationship. The youngest Estonian group scored higher than the British and Icelandic norms: after first grade, the score fell below 100 and remained lower until age 12, and after that age it increased above the mean level of these two comparison countries. The difference between the junior school children and the secondary school children may be due to schooling, sampling error or different trajectories of intellectual maturation in different populations. Systematic differences in the growth pattern suggest that the development of intellectual capacities proceeds at different rates and the maturation process can take longer in some populations than in others.
Performance analysis of a cascaded coding scheme with interleaved outer code
NASA Technical Reports Server (NTRS)
Lin, S.
1986-01-01
A cascaded coding scheme for a random error channel with a bit-error rate is analyzed. In this scheme, the inner code C sub 1 is an (n sub 1, m sub 1l) binary linear block code which is designed for simultaneous error correction and detection. The outer code C sub 2 is a linear block code with symbols from the Galois field GF (2 sup l) which is designed for correcting both symbol errors and erasures, and is interleaved with a degree m sub 1. A procedure for computing the probability of a correct decoding is presented and an upper bound on the probability of a decoding error is derived. The bound provides much better results than the previous bound for a cascaded coding scheme with an interleaved outer code. Example schemes with inner codes ranging from high rates to very low rates are evaluated. Several schemes provide extremely high reliability even for very high bit-error rates say 10 to the -1 to 10 to the -2 power.
Flicker parameters are different for suppression of myopia and hyperopia.
Schwahn, H N; Schaeffel, F
1997-10-01
Axial eye growth rates in the chicken are controlled by local retinal image-processing circuits. These circuits quantify the loss of contrast for different spatial frequencies and promote axial eye growth rates in correlation with the amount of retinal image degradation ("deprivation myopia"). They also distinguish whether the plane of focus lies in front of or behind the retina. How the sign of defocus is detected still remains unclear. Cues from chromatic aberration are not important. In an attempt to isolate retinal circuits controlling the development of myopia or hyperopia, young chickens were raised in flickering light of different frequencies (12 and 6 Hz) and duty cycles (4-75%) produced by rotating chopper disks. The effects of flickering light on refractive errors and change in axial growth rates induced by translucent occluders or defocusing lenses were measured by infrared retinoscopy and A-scan ultrasound, respectively. Retinal electrical activity was evaluated by flicker ERG after matching flicker parameters and stimulation brightness at retinal surface. Changes in retinal and vitreal dopamine content caused by flicker in occluded and normal eyes were determined by HPLC-ECD. Strikingly, suppression of myopia occurred for similar flicker parameters, whether induced by translucent occluders ("deprivation") or negative lenses ("defocus"). The degree to which myopia was suppressed was correlated with the duration of flicker dark phase and with the ERG amplitude. In contrast, suppression of hyperopia did not correlate with these parameters. We conclude that two different retinal circuits with different temporal characteristics are involved in the processing of hyperopic defocus/deprivation and of myopic defocus, the first one dependent on flicker ERG amplitude. However, we did not find any correlation between the rate of dopamine release and the degree of inhibition of deprivation myopia in flickering light.
Mertz, J R; Wallman, J
2000-04-01
Research over the past two decades has shown that the growth of young eyes is guided by vision. If near- or far-sightedness is artificially imposed by spectacle lenses, eyes of primates and chicks compensate by changing their rate of elongation, thereby growing back to the pre-lens optical condition. Little is known about what chemical signals might mediate between visual effects on the retina and alterations of eye growth. We present five findings that point to choroidal retinoic acid possibly being such a mediator. First, the chick choroid can convert retinol into all-trans-retinoic acid at the rate of 11 +/- 3 pmoles mg protein(-1) hr(-1), compared to 1.3 +/- 0.3 for retina/RPE and no conversion for sclera. Second, those visual conditions that cause increased rates of ocular elongation (diffusers or negative lens wear) produce a sharp decrease in all-trans-retinoic acid synthesis to levels barely detectable with our assay. In contrast, visual conditions which result in decreased rates of ocular elongation (recovery from diffusers or positive lens wear) produce a four- to five-fold increase in the formation of all-trans-retinoic acid. Third, the choroidal retinoic acid is found bound to a 28-32 kD protein. Fourth, a large fraction of the choroidal retinoic acid synthesized in culture is found in a nucleus-enriched fraction of sclera. Finally, application of retinoic acid to cultured sclera at physiological concentrations produced an inhibition of proteoglycan production (as assessed by measuring sulfate incorporation) with a EC50 of 8 x 10(-7) M. These results show that the synthesis of choroidal retinoic acid is modulated by those visual manipulations that influence ocular elongation and that this retinoic acid may reach the sclera in concentrations adequate to modulate scleral proteoglycan formation.
Dynamic predictive model for the growth of Salmonella spp. in liquid whole egg.
Singh, Aikansh; Korasapati, Nageswara R; Juneja, Vijay K; Subbiah, Jeyamkondan; Froning, Glenn; Thippareddi, Harshavardhan
2011-04-01
A dynamic model for the growth of Salmonella spp. in liquid whole egg (LWE) (approximately pH 7.8) under continuously varying temperature was developed. The model was validated using 2 (5 to 15 °C; 600 h and 10 to 40 °C; 52 h) sinusoidal, continuously varying temperature profiles. LWE adjusted to pH 7.8 was inoculated with approximately 2.5-3.0 log CFU/mL of Salmonella spp., and the growth data at several isothermal conditions (5, 7, 10, 15, 20, 25, 30, 35, 37, 39, 41, 43, 45, and 47 °C) was collected. A primary model (Baranyi model) was fitted for each temperature growth data and corresponding maximum growth rates were estimated. Pseudo-R2 values were greater than 0.97 for primary models. Modified Ratkowsky model was used to fit the secondary model. The pseudo-R2 and root mean square error were 0.99 and 0.06 log CFU/mL, respectively, for the secondary model. A dynamic model for the prediction of Salmonella spp. growth under varying temperature conditions was developed using 4th-order Runge-Kutta method. The developed dynamic model was validated for 2 sinusoidal temperature profiles, 5 to 15 °C (for 600 h) and 10 to 40 °C (for 52 h) with corresponding root mean squared error values of 0.28 and 0.23 log CFU/mL, respectively, between predicted and observed Salmonella spp. populations. The developed dynamic model can be used to predict the growth of Salmonella spp. in LWE under varying temperature conditions. Liquid egg and egg products are widely used in food processing and in restaurant operations. These products can be contaminated with Salmonella spp. during breaking and other unit operations during processing. The raw, liquid egg products are stored under refrigeration prior to pasteurization. However, process deviations can occur such as refrigeration failure, leading to temperature fluctuations above the required temperatures as specified in the critical limits within hazard analysis and critical control point plans for the operations. The processors are required to evaluate the potential growth of Salmonella spp. in such products before the product can be used, or further processed. Dynamic predictive models are excellent tools for regulators as well as the processing plant personnel to evaluate the microbiological safety of the product under such conditions.
Automated inference procedure for the determination of cell growth parameters
NASA Astrophysics Data System (ADS)
Harris, Edouard A.; Koh, Eun Jee; Moffat, Jason; McMillen, David R.
2016-01-01
The growth rate and carrying capacity of a cell population are key to the characterization of the population's viability and to the quantification of its responses to perturbations such as drug treatments. Accurate estimation of these parameters necessitates careful analysis. Here, we present a rigorous mathematical approach for the robust analysis of cell count data, in which all the experimental stages of the cell counting process are investigated in detail with the machinery of Bayesian probability theory. We advance a flexible theoretical framework that permits accurate estimates of the growth parameters of cell populations and of the logical correlations between them. Moreover, our approach naturally produces an objective metric of avoidable experimental error, which may be tracked over time in a laboratory to detect instrumentation failures or lapses in protocol. We apply our method to the analysis of cell count data in the context of a logistic growth model by means of a user-friendly computer program that automates this analysis, and present some samples of its output. Finally, we note that a traditional least squares fit can provide misleading estimates of parameter values, because it ignores available information with regard to the way in which the data have actually been collected.
Fossett, Tepanta R D; McNeil, Malcolm R; Pratt, Sheila R; Tompkins, Connie A; Shuster, Linda I
Although many speech errors can be generated at either a linguistic or motoric level of production, phonetically well-formed sound-level serial-order errors are generally assumed to result from disruption of phonologic encoding (PE) processes. An influential model of PE (Dell, 1986; Dell, Burger & Svec, 1997) predicts that speaking rate should affect the relative proportion of these serial-order sound errors (anticipations, perseverations, exchanges). These predictions have been extended to, and have special relevance for persons with aphasia (PWA) because of the increased frequency with which speech errors occur and because their localization within the functional linguistic architecture may help in diagnosis and treatment. Supporting evidence regarding the effect of speaking rate on phonological encoding has been provided by studies using young normal language (NL) speakers and computer simulations. Limited data exist for older NL users and no group data exist for PWA. This study tested the phonologic encoding properties of Dell's model of speech production (Dell, 1986; Dell,et al., 1997), which predicts that increasing speaking rate affects the relative proportion of serial-order sound errors (i.e., anticipations, perseverations, and exchanges). The effects of speech rate on the error ratios of anticipation/exchange (AE), anticipation/perseveration (AP) and vocal reaction time (VRT) were examined in 16 normal healthy controls (NHC) and 16 PWA without concomitant motor speech disorders. The participants were recorded performing a phonologically challenging (tongue twister) speech production task at their typical and two faster speaking rates. A significant effect of increased rate was obtained for the AP but not the AE ratio. Significant effects of group and rate were obtained for VRT. Although the significant effect of rate for the AP ratio provided evidence that changes in speaking rate did affect PE, the results failed to support the model derived predictions regarding the direction of change for error type proportions. The current findings argued for an alternative concept of the role of activation and decay in influencing types of serial-order sound errors. Rather than a slow activation decay rate (Dell, 1986), the results of the current study were more compatible with an alternative explanation of rapid activation decay or slow build-up of residual activation.
Evaluation of TRMM Ground-Validation Radar-Rain Errors Using Rain Gauge Measurements
NASA Technical Reports Server (NTRS)
Wang, Jianxin; Wolff, David B.
2009-01-01
Ground-validation (GV) radar-rain products are often utilized for validation of the Tropical Rainfall Measuring Mission (TRMM) spaced-based rain estimates, and hence, quantitative evaluation of the GV radar-rain product error characteristics is vital. This study uses quality-controlled gauge data to compare with TRMM GV radar rain rates in an effort to provide such error characteristics. The results show that significant differences of concurrent radar-gauge rain rates exist at various time scales ranging from 5 min to 1 day, despite lower overall long-term bias. However, the differences between the radar area-averaged rain rates and gauge point rain rates cannot be explained as due to radar error only. The error variance separation method is adapted to partition the variance of radar-gauge differences into the gauge area-point error variance and radar rain estimation error variance. The results provide relatively reliable quantitative uncertainty evaluation of TRMM GV radar rain estimates at various times scales, and are helpful to better understand the differences between measured radar and gauge rain rates. It is envisaged that this study will contribute to better utilization of GV radar rain products to validate versatile spaced-based rain estimates from TRMM, as well as the proposed Global Precipitation Measurement, and other satellites.
Adamo, Margaret Peggy; Boten, Jessica A; Coyle, Linda M; Cronin, Kathleen A; Lam, Clara J K; Negoita, Serban; Penberthy, Lynne; Stevens, Jennifer L; Ward, Kevin C
2017-02-15
Researchers have used prostate-specific antigen (PSA) values collected by central cancer registries to evaluate tumors for potential aggressive clinical disease. An independent study collecting PSA values suggested a high error rate (18%) related to implied decimal points. To evaluate the error rate in the Surveillance, Epidemiology, and End Results (SEER) program, a comprehensive review of PSA values recorded across all SEER registries was performed. Consolidated PSA values for eligible prostate cancer cases in SEER registries were reviewed and compared with text documentation from abstracted records. Four types of classification errors were identified: implied decimal point errors, abstraction or coding implementation errors, nonsignificant errors, and changes related to "unknown" values. A total of 50,277 prostate cancer cases diagnosed in 2012 were reviewed. Approximately 94.15% of cases did not have meaningful changes (85.85% correct, 5.58% with a nonsignificant change of <1 ng/mL, and 2.80% with no clinical change). Approximately 5.70% of cases had meaningful changes (1.93% due to implied decimal point errors, 1.54% due to abstract or coding errors, and 2.23% due to errors related to unknown categories). Only 419 of the original 50,277 cases (0.83%) resulted in a change in disease stage due to a corrected PSA value. The implied decimal error rate was only 1.93% of all cases in the current validation study, with a meaningful error rate of 5.81%. The reasons for the lower error rate in SEER are likely due to ongoing and rigorous quality control and visual editing processes by the central registries. The SEER program currently is reviewing and correcting PSA values back to 2004 and will re-release these data in the public use research file. Cancer 2017;123:697-703. © 2016 American Cancer Society. © 2016 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society.
Errors Affect Hypothetical Intertemporal Food Choice in Women
Sellitto, Manuela; di Pellegrino, Giuseppe
2014-01-01
Growing evidence suggests that the ability to control behavior is enhanced in contexts in which errors are more frequent. Here we investigated whether pairing desirable food with errors could decrease impulsive choice during hypothetical temporal decisions about food. To this end, healthy women performed a Stop-signal task in which one food cue predicted high-error rate, and another food cue predicted low-error rate. Afterwards, we measured participants’ intertemporal preferences during decisions between smaller-immediate and larger-delayed amounts of food. We expected reduced sensitivity to smaller-immediate amounts of food associated with high-error rate. Moreover, taking into account that deprivational states affect sensitivity for food, we controlled for participants’ hunger. Results showed that pairing food with high-error likelihood decreased temporal discounting. This effect was modulated by hunger, indicating that, the lower the hunger level, the more participants showed reduced impulsive preference for the food previously associated with a high number of errors as compared with the other food. These findings reveal that errors, which are motivationally salient events that recruit cognitive control and drive avoidance learning against error-prone behavior, are effective in reducing impulsive choice for edible outcomes. PMID:25244534
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbee, D; McCarthy, A; Galavis, P
Purpose: Errors found during initial physics plan checks frequently require replanning and reprinting, resulting decreased departmental efficiency. Additionally, errors may be missed during physics checks, resulting in potential treatment errors or interruption. This work presents a process control created using the Eclipse Scripting API (ESAPI) enabling dosimetrists and physicists to detect potential errors in the Eclipse treatment planning system prior to performing any plan approvals or printing. Methods: Potential failure modes for five categories were generated based on available ESAPI (v11) patient object properties: Images, Contours, Plans, Beams, and Dose. An Eclipse script plugin (PlanCheck) was written in C# tomore » check errors most frequently observed clinically in each of the categories. The PlanCheck algorithms were devised to check technical aspects of plans, such as deliverability (e.g. minimum EDW MUs), in addition to ensuring that policy and procedures relating to planning were being followed. The effect on clinical workflow efficiency was measured by tracking the plan document error rate and plan revision/retirement rates in the Aria database over monthly intervals. Results: The number of potential failure modes the PlanCheck script is currently capable of checking for in the following categories: Images (6), Contours (7), Plans (8), Beams (17), and Dose (4). Prior to implementation of the PlanCheck plugin, the observed error rates in errored plan documents and revised/retired plans in the Aria database was 20% and 22%, respectively. Error rates were seen to decrease gradually over time as adoption of the script improved. Conclusion: A process control created using the Eclipse scripting API enabled plan checks to occur within the planning system, resulting in reduction in error rates and improved efficiency. Future work includes: initiating full FMEA for planning workflow, extending categories to include additional checks outside of ESAPI via Aria database queries, and eventual automated plan checks.« less
Bit-error rate for free-space adaptive optics laser communications.
Tyson, Robert K
2002-04-01
An analysis of adaptive optics compensation for atmospheric-turbulence-induced scintillation is presented with the figure of merit being the laser communications bit-error rate. The formulation covers weak, moderate, and strong turbulence; on-off keying; and amplitude-shift keying, over horizontal propagation paths or on a ground-to-space uplink or downlink. The theory shows that under some circumstances the bit-error rate can be improved by a few orders of magnitude with the addition of adaptive optics to compensate for the scintillation. Low-order compensation (less than 40 Zernike modes) appears to be feasible as well as beneficial for reducing the bit-error rate and increasing the throughput of the communication link.
Sultana, Shemaila; Solotchi, Mihai; Ramachandran, Aparna; Patel, Smita S
2017-11-03
Single-subunit RNA polymerases (RNAPs) are present in phage T7 and in mitochondria of all eukaryotes. This RNAP class plays important roles in biotechnology and cellular energy production, but we know little about its fidelity and error rates. Herein, we report the error rates of three single-subunit RNAPs measured from the catalytic efficiencies of correct and all possible incorrect nucleotides. The average error rates of T7 RNAP (2 × 10 -6 ), yeast mitochondrial Rpo41 (6 × 10 -6 ), and human mitochondrial POLRMT (RNA polymerase mitochondrial) (2 × 10 -5 ) indicate high accuracy/fidelity of RNA synthesis resembling those of replicative DNA polymerases. All three RNAPs exhibit a distinctly high propensity for GTP misincorporation opposite dT, predicting frequent A→G errors in RNA with rates of ∼10 -4 The A→C, G→A, A→U, C→U, G→U, U→C, and U→G errors mostly due to pyrimidine-purine mismatches were relatively frequent (10 -5 -10 -6 ), whereas C→G, U→A, G→C, and C→A errors from purine-purine and pyrimidine-pyrimidine mismatches were rare (10 -7 -10 -10 ). POLRMT also shows a high C→A error rate on 8-oxo-dG templates (∼10 -4 ). Strikingly, POLRMT shows a high mutagenic bypass rate, which is exacerbated by TEFM (transcription elongation factor mitochondrial). The lifetime of POLRMT on terminally mismatched elongation substrate is increased in the presence of TEFM, which allows POLRMT to efficiently bypass the error and continue with transcription. This investigation of nucleotide selectivity on normal and oxidatively damaged DNA by three single-subunit RNAPs provides the basic information to understand the error rates in mitochondria and, in the case of T7 RNAP, to assess the quality of in vitro transcribed RNAs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty
NASA Astrophysics Data System (ADS)
Ballantyne, A. P.; Andres, R.; Houghton, R.; Stocker, B. D.; Wanninkhof, R.; Anderegg, W.; Cooper, L. A.; DeGrandpre, M.; Tans, P. P.; Miller, J. C.; Alden, C.; White, J. W. C.
2014-10-01
Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of C in the atmosphere, ocean, and land; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate error and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we conclude that the 2 σ error of the atmospheric growth rate has decreased from 1.2 Pg C yr-1 in the 1960s to 0.3 Pg C yr-1 in the 2000s, leading to a ~20% reduction in the over-all uncertainty of net global C uptake by the biosphere. While fossil fuel emissions have increased by a factor of 4 over the last 5 decades, 2 σ errors in fossil fuel emissions due to national reporting errors and differences in energy reporting practices have increased from 0.3 Pg C yr-1 in the 1960s to almost 1.0 Pg C yr-1 during the 2000s. At the same time land use emissions have declined slightly over the last 5 decades, but their relative errors remain high. Notably, errors associated with fossil fuel emissions have come to dominate uncertainty in the global C budget and are now comparable to the total emissions from land use, thus efforts to reduce errors in fossil fuel emissions are necessary. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that C uptake has increased and 97% confident that C uptake by the terrestrial biosphere has increased over the last 5 decades. Although the persistence of future C sinks remains unknown and some ecosystem services may be compromised by this continued C uptake (e.g. ocean acidification), it is clear that arguably the greatest ecosystem service currently provided by the biosphere is the continued removal of approximately half of atmospheric CO2 emissions from the atmosphere.
Quasispecies in population of compositional assemblies.
Gross, Renan; Fouxon, Itzhak; Lancet, Doron; Markovitch, Omer
2014-12-30
The quasispecies model refers to information carriers that undergo self-replication with errors. A quasispecies is a steady-state population of biopolymer sequence variants generated by mutations from a master sequence. A quasispecies error threshold is a minimal replication accuracy below which the population structure breaks down. Theory and experimentation of this model often refer to biopolymers, e.g. RNA molecules or viral genomes, while its prebiotic context is often associated with an RNA world scenario. Here, we study the possibility that compositional entities which code for compositional information, intrinsically different from biopolymers coding for sequential information, could show quasispecies dynamics. We employed a chemistry-based model, graded autocatalysis replication domain (GARD), which simulates the network dynamics within compositional molecular assemblies. In GARD, a compotype represents a population of similar assemblies that constitute a quasi-stationary state in compositional space. A compotype's center-of-mass is found to be analogous to a master sequence for a sequential quasispecies. Using single-cycle GARD dynamics, we measured the quasispecies transition matrix (Q) for the probabilities of transition from one center-of-mass Euclidean distance to another. Similarly, the quasispecies' growth rate vector (A) was obtained. This allowed computing a steady state distribution of distances to the center of mass, as derived from the quasispecies equation. In parallel, a steady state distribution was obtained via the GARD equation kinetics. Rewardingly, a significant correlation was observed between the distributions obtained by these two methods. This was only seen for distances to the compotype center-of-mass, and not to randomly selected compositions. A similar correspondence was found when comparing the quasispecies time dependent dynamics towards steady state. Further, changing the error rate by modifying basal assembly joining rate of GARD kinetics was found to display an error catastrophe, similar to the standard quasispecies model. Additional augmentation of compositional mutations leads to the complete disappearance of the master-like composition. Our results show that compositional assemblies, as simulated by the GARD formalism, portray significant attributes of quasispecies dynamics. This expands the applicability of the quasispecies model beyond sequence-based entities, and potentially enhances validity of GARD as a model for prebiotic evolution.
Gilmartin-Thomas, Julia Fiona-Maree; Smith, Felicity; Wolfe, Rory; Jani, Yogini
2017-07-01
No published study has been specifically designed to compare medication administration errors between original medication packaging and multi-compartment compliance aids in care homes, using direct observation. Compare the effect of original medication packaging and multi-compartment compliance aids on medication administration accuracy. Prospective observational. Ten Greater London care homes. Nurses and carers administering medications. Between October 2014 and June 2015, a pharmacist researcher directly observed solid, orally administered medications in tablet or capsule form at ten purposively sampled care homes (five only used original medication packaging and five used both multi-compartment compliance aids and original medication packaging). The medication administration error rate was calculated as the number of observed doses administered (or omitted) in error according to medication administration records, compared to the opportunities for error (total number of observed doses plus omitted doses). Over 108.4h, 41 different staff (35 nurses, 6 carers) were observed to administer medications to 823 residents during 90 medication administration rounds. A total of 2452 medication doses were observed (1385 from original medication packaging, 1067 from multi-compartment compliance aids). One hundred and seventy eight medication administration errors were identified from 2493 opportunities for error (7.1% overall medication administration error rate). A greater medication administration error rate was seen for original medication packaging than multi-compartment compliance aids (9.3% and 3.1% respectively, risk ratio (RR)=3.9, 95% confidence interval (CI) 2.4 to 6.1, p<0.001). Similar differences existed when comparing medication administration error rates between original medication packaging (from original medication packaging-only care homes) and multi-compartment compliance aids (RR=2.3, 95%CI 1.1 to 4.9, p=0.03), and between original medication packaging and multi-compartment compliance aids within care homes that used a combination of both medication administration systems (RR=4.3, 95%CI 2.7 to 6.8, p<0.001). A significant difference in error rate was not observed between use of a single or combination medication administration system (p=0.44). The significant difference in, and high overall, medication administration error rate between original medication packaging and multi-compartment compliance aids supports the use of the latter in care homes, as well as local investigation of tablet and capsule impact on medication administration errors and staff training to prevent errors occurring. As a significant difference in error rate was not observed between use of a single or combination medication administration system, common practice of using both multi-compartment compliance aids (for most medications) and original packaging (for medications with stability issues) is supported. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calabrese, Edward J., E-mail: edwardc@schoolph.uma
This paper reveals that nearly 25 years after the used Russell's dose-rate data to support the adoption of the linear-no-threshold (LNT) dose response model for genetic and cancer risk assessment, Russell acknowledged a significant under-reporting of the mutation rate of the historical control group. This error, which was unknown to BEIR I, had profound implications, leading it to incorrectly adopt the LNT model, which was a decision that profoundly changed the course of risk assessment for radiation and chemicals to the present. -- Highlights: • The BEAR I Genetics Panel made an error in denying dose rate for mutation. •more » The BEIR I Genetics Subcommittee attempted to correct this dose rate error. • The control group used for risk assessment by BEIR I is now known to be in error. • Correcting this error contradicts the LNT, supporting a threshold model.« less
NASA Astrophysics Data System (ADS)
Li, Xiaojing; Tang, Youmin; Yao, Zhixiong
2017-04-01
The predictability of the convection related to the Madden-Julian Oscillation (MJO) is studied using a coupled model CESM (Community Earth System Model) and the climatically relevant singular vector (CSV) approach. The CSV approach is an ensemble-based strategy to calculate the optimal initial error on climate scale. In this study, we focus on the optimal initial error of the sea surface temperature in Indian Ocean, where is the location of the MJO onset. Six MJO events are chosen from the 10 years model simulation output. The results show that the large values of the SVs are mainly located in the bay of Bengal and the south central IO (around (25°S, 90°E)), which is a meridional dipole-like pattern. The fast error growth of the CSVs have important impacts on the prediction of the convection related to the MJO. The initial perturbations with the SV pattern result in the deep convection damping more quickly in the east Pacific Ocean. Moreover, the sensitivity studies of the CSVs show that different initial fields do not affect the CSVs obviously, while the perturbation domain is a more responsive factor to the CSVs. The rapid growth of the CSVs is found to be related to the west bay of Bengal, where the wind stress starts to be perturbed due to the CSV initial error. These results contribute to the establishment of an ensemble prediction system, as well as the optimal observation network. In addition, the analysis of the error growth can provide us some enlightment about the relationship between SST and the intraseasonal convection related to the MJO.
Fanning, Laura; Jones, Nick; Manias, Elizabeth
2016-04-01
The implementation of automated dispensing cabinets (ADCs) in healthcare facilities appears to be increasing, in particular within Australian hospital emergency departments (EDs). While the investment in ADCs is on the increase, no studies have specifically investigated the impacts of ADCs on medication selection and preparation error rates in EDs. Our aim was to assess the impact of ADCs on medication selection and preparation error rates in an ED of a tertiary teaching hospital. Pre intervention and post intervention study involving direct observations of nurses completing medication selection and preparation activities before and after the implementation of ADCs in the original and new emergency departments within a 377-bed tertiary teaching hospital in Australia. Medication selection and preparation error rates were calculated and compared between these two periods. Secondary end points included the impact on medication error type and severity. A total of 2087 medication selection and preparations were observed among 808 patients pre and post intervention. Implementation of ADCs in the new ED resulted in a 64.7% (1.96% versus 0.69%, respectively, P = 0.017) reduction in medication selection and preparation errors. All medication error types were reduced in the post intervention study period. There was an insignificant impact on medication error severity as all errors detected were categorised as minor. The implementation of ADCs could reduce medication selection and preparation errors and improve medication safety in an ED setting. © 2015 John Wiley & Sons, Ltd.
Teamwork and clinical error reporting among nurses in Korean hospitals.
Hwang, Jee-In; Ahn, Jeonghoon
2015-03-01
To examine levels of teamwork and its relationships with clinical error reporting among Korean hospital nurses. The study employed a cross-sectional survey design. We distributed a questionnaire to 674 nurses in two teaching hospitals in Korea. The questionnaire included items on teamwork and the reporting of clinical errors. We measured teamwork using the Teamwork Perceptions Questionnaire, which has five subscales including team structure, leadership, situation monitoring, mutual support, and communication. Using logistic regression analysis, we determined the relationships between teamwork and error reporting. The response rate was 85.5%. The mean score of teamwork was 3.5 out of 5. At the subscale level, mutual support was rated highest, while leadership was rated lowest. Of the participating nurses, 522 responded that they had experienced at least one clinical error in the last 6 months. Among those, only 53.0% responded that they always or usually reported clinical errors to their managers and/or the patient safety department. Teamwork was significantly associated with better error reporting. Specifically, nurses with a higher team communication score were more likely to report clinical errors to their managers and the patient safety department (odds ratio = 1.82, 95% confidence intervals [1.05, 3.14]). Teamwork was rated as moderate and was positively associated with nurses' error reporting performance. Hospital executives and nurse managers should make substantial efforts to enhance teamwork, which will contribute to encouraging the reporting of errors and improving patient safety. Copyright © 2015. Published by Elsevier B.V.
Determination of Type I Error Rates and Power of Answer Copying Indices under Various Conditions
ERIC Educational Resources Information Center
Yormaz, Seha; Sünbül, Önder
2017-01-01
This study aims to determine the Type I error rates and power of S[subscript 1] , S[subscript 2] indices and kappa statistic at detecting copying on multiple-choice tests under various conditions. It also aims to determine how copying groups are created in order to calculate how kappa statistics affect Type I error rates and power. In this study,…
Vairy, Stephanie; Corny, Jennifer; Jamoulle, Olivier; Levy, Arielle; Lebel, Denis; Carceller, Ana
2017-12-01
A high rate of prescription errors exists in pediatric teaching hospitals, especially during initial training. To determine the effectiveness of a two-hour lecture by a pharmacist on rates of prescription errors and quality of prescriptions. A two-hour lecture led by a pharmacist was provided to 11 junior pediatric residents (PGY-1) as part of a one-month immersion program. A control group included 15 residents without the intervention. We reviewed charts to analyze the first 50 prescriptions of each resident. Data were collected from 1300 prescriptions involving 451 patients, 550 in the intervention group and 750 in the control group. The rate of prescription errors in the intervention group was 9.6% compared to 11.3% in the control group (p=0.32), affecting 106 patients. Statistically significant differences between both groups were prescriptions with unwritten doses (p=0.01) and errors involving overdosing (p=0.04). We identified many errors as well as issues surrounding quality of prescriptions. We found a 10.6% prescription error rate. This two-hour lecture seems insufficient to reduce prescription errors among junior pediatric residents. This study highlights the most frequent types of errors and prescription quality issues that should be targeted by future educational interventions.
Booth, Rachelle; Sturgess, Emma; Taberner-Stokes, Alison; Peters, Mark
2012-11-01
To establish the baseline prescribing error rate in a tertiary paediatric intensive care unit (PICU) and to determine the impact of a zero tolerance prescribing (ZTP) policy incorporating a dedicated prescribing area and daily feedback of prescribing errors. A prospective, non-blinded, observational study was undertaken in a 12-bed tertiary PICU over a period of 134 weeks. Baseline prescribing error data were collected on weekdays for all patients for a period of 32 weeks, following which the ZTP policy was introduced. Daily error feedback was introduced after a further 12 months. Errors were sub-classified as 'clinical', 'non-clinical' and 'infusion prescription' errors and the effects of interventions considered separately. The baseline combined prescribing error rate was 892 (95 % confidence interval (CI) 765-1,019) errors per 1,000 PICU occupied bed days (OBDs), comprising 25.6 % clinical, 44 % non-clinical and 30.4 % infusion prescription errors. The combined interventions of ZTP plus daily error feedback were associated with a reduction in the combined prescribing error rate to 447 (95 % CI 389-504) errors per 1,000 OBDs (p < 0.0001), an absolute risk reduction of 44.5 % (95 % CI 40.8-48.0 %). Introduction of the ZTP policy was associated with a significant decrease in clinical and infusion prescription errors, while the introduction of daily error feedback was associated with a significant reduction in non-clinical prescribing errors. The combined interventions of ZTP and daily error feedback were associated with a significant reduction in prescribing errors in the PICU, in line with Department of Health requirements of a 40 % reduction within 5 years.
Motyer, R E; Liddy, S; Torreggiani, W C; Buckley, O
2016-11-01
Voice recognition (VR) dictation of radiology reports has become the mainstay of reporting in many institutions worldwide. Despite benefit, such software is not without limitations, and transcription errors have been widely reported. Evaluate the frequency and nature of non-clinical transcription error using VR dictation software. Retrospective audit of 378 finalised radiology reports. Errors were counted and categorised by significance, error type and sub-type. Data regarding imaging modality, report length and dictation time was collected. 67 (17.72 %) reports contained ≥1 errors, with 7 (1.85 %) containing 'significant' and 9 (2.38 %) containing 'very significant' errors. A total of 90 errors were identified from the 378 reports analysed, with 74 (82.22 %) classified as 'insignificant', 7 (7.78 %) as 'significant', 9 (10 %) as 'very significant'. 68 (75.56 %) errors were 'spelling and grammar', 20 (22.22 %) 'missense' and 2 (2.22 %) 'nonsense'. 'Punctuation' error was most common sub-type, accounting for 27 errors (30 %). Complex imaging modalities had higher error rates per report and sentence. Computed tomography contained 0.040 errors per sentence compared to plain film with 0.030. Longer reports had a higher error rate, with reports >25 sentences containing an average of 1.23 errors per report compared to 0-5 sentences containing 0.09. These findings highlight the limitations of VR dictation software. While most error was deemed insignificant, there were occurrences of error with potential to alter report interpretation and patient management. Longer reports and reports on more complex imaging had higher error rates and this should be taken into account by the reporting radiologist.
Model parameter-related optimal perturbations and their contributions to El Niño prediction errors
NASA Astrophysics Data System (ADS)
Tao, Ling-Jiang; Gao, Chuan; Zhang, Rong-Hua
2018-04-01
Errors in initial conditions and model parameters (MPs) are the main sources that limit the accuracy of ENSO predictions. In addition to exploring the initial error-induced prediction errors, model errors are equally important in determining prediction performance. In this paper, the MP-related optimal errors that can cause prominent error growth in ENSO predictions are investigated using an intermediate coupled model (ICM) and a conditional nonlinear optimal perturbation (CNOP) approach. Two MPs related to the Bjerknes feedback are considered in the CNOP analysis: one involves the SST-surface wind coupling ({α _τ } ), and the other involves the thermocline effect on the SST ({α _{Te}} ). The MP-related optimal perturbations (denoted as CNOP-P) are found uniformly positive and restrained in a small region: the {α _τ } component is mainly concentrated in the central equatorial Pacific, and the {α _{Te}} component is mainly located in the eastern cold tongue region. This kind of CNOP-P enhances the strength of the Bjerknes feedback and induces an El Niño- or La Niña-like error evolution, resulting in an El Niño-like systematic bias in this model. The CNOP-P is also found to play a role in the spring predictability barrier (SPB) for ENSO predictions. Evidently, such error growth is primarily attributed to MP errors in small areas based on the localized distribution of CNOP-P. Further sensitivity experiments firmly indicate that ENSO simulations are sensitive to the representation of SST-surface wind coupling in the central Pacific and to the thermocline effect in the eastern Pacific in the ICM. These results provide guidance and theoretical support for the future improvement in numerical models to reduce the systematic bias and SPB phenomenon in ENSO predictions.
Addressing Angular Single-Event Effects in the Estimation of On-Orbit Error Rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, David S.; Swift, Gary M.; Wirthlin, Michael J.
2015-12-01
Our study describes complications introduced by angular direct ionization events on space error rate predictions. In particular, prevalence of multiple-cell upsets and a breakdown in the application of effective linear energy transfer in modern-scale devices can skew error rates approximated from currently available estimation models. Moreover, this paper highlights the importance of angular testing and proposes a methodology to extend existing error estimation tools to properly consider angular strikes in modern-scale devices. Finally, these techniques are illustrated with test data provided from a modern 28 nm SRAM-based device.
Reducing the Familiarity of Conjunction Lures with Pictures
ERIC Educational Resources Information Center
Lloyd, Marianne E.
2013-01-01
Four experiments were conducted to test whether conjunction errors were reduced after pictorial encoding and whether the semantic overlap between study and conjunction items would impact error rates. Across 4 experiments, compound words studied with a single-picture had lower conjunction error rates during a recognition test than those words…
45 CFR 98.100 - Error Rate Report.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND... rates, which is defined as the percentage of cases with an error (expressed as the total number of cases with an error compared to the total number of cases); the percentage of cases with an improper payment...
Certification of ICI 1012 optical data storage tape
NASA Technical Reports Server (NTRS)
Howell, J. M.
1993-01-01
ICI has developed a unique and novel method of certifying a Terabyte optical tape. The tape quality is guaranteed as a statistical upper limit on the probability of uncorrectable errors. This is called the Corrected Byte Error Rate or CBER. We developed this probabilistic method because of two reasons why error rate cannot be measured directly. Firstly, written data is indelible, so one cannot employ write/read tests such as used for magnetic tape. Secondly, the anticipated error rates need impractically large samples to measure accurately. For example, a rate of 1E-12 implies only one byte in error per tape. The archivability of ICI 1012 Data Storage Tape in general is well characterized and understood. Nevertheless, customers expect performance guarantees to be supported by test results on individual tapes. In particular, they need assurance that data is retrievable after decades in archive. This paper describes the mathematical basis, measurement apparatus and applicability of the certification method.
Form deprivation and lens-induced myopia: are they different?
Morgan, Ian G.; Ashby, Regan S.; Nickla, Debora L.; Guggenheim, Jeremy A.
2013-01-01
Animal models have been crucial in shaping our understanding of emmetropisation as an active, visually-guided mechanism for overcoming innate refractive errors. For instance, when a ‘minus’ power spectacle lens is mounted in front of the eye of a juvenile animal, the eye is cued to thin its choroid and accelerate its rate of axial elongation. Such altered ocular growth responses serve to attenuate the imposed defocus and so continue over a period of days, weeks or months (depending on the rate of emmetropisation of the species concerned) until the eye attains its optimal refraction. Notably, refracted without the minus lens in place, the eye of an animal emmetropising to a minus lens is myopic (its axial length now being excessive for its anterior segment optics). Similar ocular growth changes are seen with form deprivation, typically achieved by covering the eye with a frosted diffuser, and preventing the eye from receiving clear vision. However while both minus lens wear and form deprivation induce axial myopia, the absence of meaningful visual feedback allows growth to continue in an ‘open-loop’ manner in the latter case, limited mostly by the duration of treatment. Here, Ian Morgan and Regan Ashby present the evidence that form deprivation and lens-induced myopia share the same physiological mechanisms, while Debora Nickla presents the opposing evidence that the underlying mechanisms are different. PMID:23662966
Quantifying model uncertainty in seasonal Arctic sea-ice forecasts
NASA Astrophysics Data System (ADS)
Blanchard-Wrigglesworth, Edward; Barthélemy, Antoine; Chevallier, Matthieu; Cullather, Richard; Fučkar, Neven; Massonnet, François; Posey, Pamela; Wang, Wanqiu; Zhang, Jinlun; Ardilouze, Constantin; Bitz, Cecilia; Vernieres, Guillaume; Wallcraft, Alan; Wang, Muyin
2017-04-01
Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or post-processing techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.
The dependence of crowding on flanker complexity and target-flanker similarity
Bernard, Jean-Baptiste; Chung, Susana T.L.
2013-01-01
We examined the effects of the spatial complexity of flankers and target-flanker similarity on the performance of identifying crowded letters. On each trial, observers identified the middle character of random strings of three characters (“trigrams”) briefly presented at 10° below fixation. We tested the 26 lowercase letters of the Times-Roman and Courier fonts, a set of 79 characters (letters and non-letters) of the Times-Roman font, and the uppercase letters of two highly complex ornamental fonts, Edwardian and Aristocrat. Spatial complexity of characters was quantified by the length of the morphological skeleton of each character, and target-flanker similarity was defined based on a psychometric similarity matrix. Our results showed that (1) letter identification error rate increases with flanker complexity up to a certain value, beyond which error rate becomes independent of flanker complexity; (2) the increase of error rate is slower for high-complexity target letters; (3) error rate increases with target-flanker similarity; and (4) mislocation error rate increases with target-flanker similarity. These findings, combined with the current understanding of the faulty feature integration account of crowding, provide some constraints of how the feature integration process could cause perceptual errors. PMID:21730225
Total energy based flight control system
NASA Technical Reports Server (NTRS)
Lambregts, Antonius A. (Inventor)
1985-01-01
An integrated aircraft longitudinal flight control system uses a generalized thrust and elevator command computation (38), which accepts flight path angle, longitudinal acceleration command signals, along with associated feedback signals, to form energy rate error (20) and energy rate distribution error (18) signals. The engine thrust command is developed (22) as a function of the energy rate distribution error and the elevator position command is developed (26) as a function of the energy distribution error. For any vertical flight path and speed mode the outerloop errors are normalized (30, 34) to produce flight path angle and longitudinal acceleration commands. The system provides decoupled flight path and speed control for all control modes previously provided by the longitudinal autopilot, autothrottle and flight management systems.
Morris, Saul S; Olinto, Pedro; Flores, Rafael; Nilson, Eduardo A F; Figueiró, Ana C
2004-09-01
Programs providing cash transfers to poor families, conditioned upon uptake of preventive health services, are common in Latin America. Because of the consistent association between undernutrition and poverty, and the role of health services in providing growth promotion, these programs are supposed to improve children's growth. The impact of such a program was assessed in 4 municipalities in northeast Brazil by comparing 1387 children under 7 y of age from program beneficiary households with 502 matched nonbeneficiaries who were selected to receive the program but who subsequently were excluded as a result of quasi-random administrative errors. Anthropometric status was assessed 6 mo after benefits began to be distributed, and beneficiary children were 0.13 Z-scores lighter (weight-for-age) than excluded children, after adjusting for confounders (P = 0.024). The children's growth trajectories were reconstructed by copying up to 10 recorded weights from their Ministry of Health growth monitoring cards and by relating each weight to the child's age, gender, and duration of receipt of the program benefit in a random effects regression model. Totals of 472 beneficiary and 158 excluded children under 3 y of age were included in this analysis. Each additional month of exposure to the program was associated with a rate of weight gain 31 g lower than that observed in excluded children of the same age (P < 0.001). This failure to respond positively to the program may have been due to a perception that benefits would be discontinued if the child started to grow well. Nutrition programs should guard against giving the impression that poor growth will be rewarded.
Evidence from the lamarck granodiorite for rapid late cretaceous crust formation in California
Coleman, D.S.; Frost, T.P.; Glazner, A.F.
1992-01-01
Strontium and neodymium isotopic data for rocks from the voluminous 90-million-year-old Lamarck intrusive suite in the Sierra Nevada batholith, California, show little variation across a compositional range from gabbro to granite. Data for three different gabbro intrusions within the suite are identical within analytical error and are consistent with derivation from an enriched mantle source. Recognition of local involvement of enriched mantle during generation of the Sierran batholith modifies estimates of crustal growth rates in the United States. These data indicate that parts of the Sierra Nevada batholith may consist almost entirely of juvenile crust added during Cretaceous magmatism.
Mourelatos, D; Kritsi, Z; Mioglou, E; Dozi-Vassiliades, J
1993-09-01
Reduced sister chromatid exchanges (SCE) frequency in response to cyclophosphamide (CP) was observed when Ehrlich ascites tumour (EAT) cells were exposed in vivo to 2 micrograms/g body weight of prostaglandin E2 (PGE2). 1 h before i.p. injection of 5-bromodeoxyuridine (BrdUrd) adsorbed to activated charcoal, EAT-bearing mice treated i.p. with CP appeared to have increased SCE rates and cell division delays. PGE2 had no effect on survival and in inhibiting tumour growth. CP had only a slight non-significant effect on survival and in inhibiting tumour growth. In mice treated with the combined CP (5 micrograms/g bd wt) plus PGE2 (2 micrograms/g bd wt) a significant enhancement (P < 0.01) of survival time was accompanied by inhibition of tumour growth (P < 0.01) in comparison with the untreated controls. These data imply that SCEs might result from errors in a repair process which might involve a PGE2 sensitive step.
Azin, Arash; Saleh, Fady; Cleghorn, Michelle; Yuen, Andrew; Jackson, Timothy; Okrainec, Allan; Quereshy, Fayez A
2017-03-01
Colonoscopy for colorectal cancer (CRC) has a localization error rate as high as 21 %. Such errors can have substantial clinical consequences, particularly in laparoscopic surgery. The primary objective of this study was to compare accuracy of tumor localization at initial endoscopy performed by either the operating surgeon or non-operating referring endoscopist. All patients who underwent surgical resection for CRC at a large tertiary academic hospital between January 2006 and August 2014 were identified. The exposure of interest was the initial endoscopist: (1) surgeon who also performed the definitive operation (operating surgeon group); and (2) referring gastroenterologist or general surgeon (referring endoscopist group). The outcome measure was localization error, defined as a difference in at least one anatomic segment between initial endoscopy and final operative location. Multivariate logistic regression was used to explore the association between localization error rate and the initial endoscopist. A total of 557 patients were included in the study; 81 patients in the operating surgeon cohort and 476 patients in the referring endoscopist cohort. Initial diagnostic colonoscopy performed by the operating surgeon compared to referring endoscopist demonstrated statistically significant lower intraoperative localization error rate (1.2 vs. 9.0 %, P = 0.016); shorter mean time from endoscopy to surgery (52.3 vs. 76.4 days, P = 0.015); higher tattoo localization rate (32.1 vs. 21.0 %, P = 0.027); and lower preoperative repeat endoscopy rate (8.6 vs. 40.8 %, P < 0.001). Initial endoscopy performed by the operating surgeon was protective against localization error on both univariate analysis, OR 7.94 (95 % CI 1.08-58.52; P = 0.016), and multivariate analysis, OR 7.97 (95 % CI 1.07-59.38; P = 0.043). This study demonstrates that diagnostic colonoscopies performed by an operating surgeon are independently associated with a lower localization error rate. Further research exploring the factors influencing localization accuracy and why operating surgeons have lower error rates relative to non-operating endoscopists is necessary to understand differences in care.
Bioenergetics modeling of percid fishes: Chapter 14
Madenjian, Charles P.; Kestemont, Patrick; Dabrowski, Konrad; Summerfelt, Robert C.
2015-01-01
A bioenergetics model for a percid fish represents a quantitative description of the fish’s energy budget. Bioenergetics modeling can be used to identify the important factors determining growth of percids in lakes, rivers, or seas. For example, bioenergetics modeling applied to yellow perch (Perca flavescens) in the western and central basins of Lake Erie revealed that the slower growth in the western basin was attributable to limitations in suitably sized prey in western Lake Erie, rather than differences in water temperature between the two basins. Bioenergetics modeling can also be applied to a percid population to estimate the amount of food being annually consumed by the percid population. For example, bioenergetics modeling applied to the walleye (Sander vitreus) population in Lake Erie has provided fishery managers valuable insights into changes in the population’s predatory demand over time. In addition, bioenergetics modeling has been used to quantify the effect of the difference in growth between the sexes on contaminant accumulation in walleye. Field and laboratory evaluations of percid bioenergetics model performance have documented a systematic bias, such that the models overestimate consumption at low feeding rates but underestimate consumption at high feeding rates. However, more recent studies have shown that this systematic bias was due, at least in part, to an error in the energy budget balancing algorithm used in the computer software. Future research work is needed to more thoroughly assess the field and laboratory performance of percid bioenergetics models and to quantify differences in activity and standard metabolic rate between the sexes of mature percids.
Mathes, Tim; Klaßen, Pauline; Pieper, Dawid
2017-11-28
Our objective was to assess the frequency of data extraction errors and its potential impact on results in systematic reviews. Furthermore, we evaluated the effect of different extraction methods, reviewer characteristics and reviewer training on error rates and results. We performed a systematic review of methodological literature in PubMed, Cochrane methodological registry, and by manual searches (12/2016). Studies were selected by two reviewers independently. Data were extracted in standardized tables by one reviewer and verified by a second. The analysis included six studies; four studies on extraction error frequency, one study comparing different reviewer extraction methods and two studies comparing different reviewer characteristics. We did not find a study on reviewer training. There was a high rate of extraction errors (up to 50%). Errors often had an influence on effect estimates. Different data extraction methods and reviewer characteristics had moderate effect on extraction error rates and effect estimates. The evidence base for established standards of data extraction seems weak despite the high prevalence of extraction errors. More comparative studies are needed to get deeper insights into the influence of different extraction methods.
PRESAGE: Protecting Structured Address Generation against Soft Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vishal C.; Gopalakrishnan, Ganesh; Krishnamoorthy, Sriram
Modern computer scaling trends in pursuit of larger component counts and power efficiency have, unfortunately, lead to less reliable hardware and consequently soft errors escaping into application data ("silent data corruptions"). Techniques to enhance system resilience hinge on the availability of efficient error detectors that have high detection rates, low false positive rates, and lower computational overhead. Unfortunately, efficient detectors to detect faults during address generation (to index large arrays) have not been widely researched. We present a novel lightweight compiler-driven technique called PRESAGE for detecting bit-flips affecting structured address computations. A key insight underlying PRESAGE is that any addressmore » computation scheme that flows an already incurred error is better than a scheme that corrupts one particular array access but otherwise (falsely) appears to compute perfectly. Enabling the flow of errors allows one to situate detectors at loop exit points, and helps turn silent corruptions into easily detectable error situations. Our experiments using PolyBench benchmark suite indicate that PRESAGE-based error detectors have a high error-detection rate while incurring low overheads.« less
PRESAGE: Protecting Structured Address Generation against Soft Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vishal C.; Gopalakrishnan, Ganesh; Krishnamoorthy, Sriram
Modern computer scaling trends in pursuit of larger component counts and power efficiency have, unfortunately, lead to less reliable hardware and consequently soft errors escaping into application data ("silent data corruptions"). Techniques to enhance system resilience hinge on the availability of efficient error detectors that have high detection rates, low false positive rates, and lower computational overhead. Unfortunately, efficient detectors to detect faults during address generation have not been widely researched (especially in the context of indexing large arrays). We present a novel lightweight compiler-driven technique called PRESAGE for detecting bit-flips affecting structured address computations. A key insight underlying PRESAGEmore » is that any address computation scheme that propagates an already incurred error is better than a scheme that corrupts one particular array access but otherwise (falsely) appears to compute perfectly. Ensuring the propagation of errors allows one to place detectors at loop exit points and helps turn silent corruptions into easily detectable error situations. Our experiments using the PolyBench benchmark suite indicate that PRESAGE-based error detectors have a high error-detection rate while incurring low overheads.« less
Commers, Tessa; Swindells, Susan; Sayles, Harlan; Gross, Alan E; Devetten, Marcel; Sandkovsky, Uriel
2014-01-01
Errors in prescribing antiretroviral therapy (ART) often occur with the hospitalization of HIV-infected patients. The rapid identification and prevention of errors may reduce patient harm and healthcare-associated costs. A retrospective review of hospitalized HIV-infected patients was carried out between 1 January 2009 and 31 December 2011. Errors were documented as omission, underdose, overdose, duplicate therapy, incorrect scheduling and/or incorrect therapy. The time to error correction was recorded. Relative risks (RRs) were computed to evaluate patient characteristics and error rates. A total of 289 medication errors were identified in 146/416 admissions (35%). The most common was drug omission (69%). At an error rate of 31%, nucleoside reverse transcriptase inhibitors were associated with an increased risk of error when compared with protease inhibitors (RR 1.32; 95% CI 1.04-1.69) and co-formulated drugs (RR 1.59; 95% CI 1.19-2.09). Of the errors, 31% were corrected within the first 24 h, but over half (55%) were never remedied. Admissions with an omission error were 7.4 times more likely to have all errors corrected within 24 h than were admissions without an omission. Drug interactions with ART were detected on 51 occasions. For the study population (n = 177), an increased risk of admission error was observed for black (43%) compared with white (28%) individuals (RR 1.53; 95% CI 1.16-2.03) but no significant differences were observed between white patients and other minorities or between men and women. Errors in inpatient ART were common, and the majority were never detected. The most common errors involved omission of medication, and nucleoside reverse transcriptase inhibitors had the highest rate of prescribing error. Interventions to prevent and correct errors are urgently needed.
Li, Qiuying; Pham, Hoang
2017-01-01
In this paper, we propose a software reliability model that considers not only error generation but also fault removal efficiency combined with testing coverage information based on a nonhomogeneous Poisson process (NHPP). During the past four decades, many software reliability growth models (SRGMs) based on NHPP have been proposed to estimate the software reliability measures, most of which have the same following agreements: 1) it is a common phenomenon that during the testing phase, the fault detection rate always changes; 2) as a result of imperfect debugging, fault removal has been related to a fault re-introduction rate. But there are few SRGMs in the literature that differentiate between fault detection and fault removal, i.e. they seldom consider the imperfect fault removal efficiency. But in practical software developing process, fault removal efficiency cannot always be perfect, i.e. the failures detected might not be removed completely and the original faults might still exist and new faults might be introduced meanwhile, which is referred to as imperfect debugging phenomenon. In this study, a model aiming to incorporate fault introduction rate, fault removal efficiency and testing coverage into software reliability evaluation is developed, using testing coverage to express the fault detection rate and using fault removal efficiency to consider the fault repair. We compare the performance of the proposed model with several existing NHPP SRGMs using three sets of real failure data based on five criteria. The results exhibit that the model can give a better fitting and predictive performance. PMID:28750091
Online Error Reporting for Managing Quality Control Within Radiology.
Golnari, Pedram; Forsberg, Daniel; Rosipko, Beverly; Sunshine, Jeffrey L
2016-06-01
Information technology systems within health care, such as picture archiving and communication system (PACS) in radiology, can have a positive impact on production but can also risk compromising quality. The widespread use of PACS has removed the previous feedback loop between radiologists and technologists. Instead of direct communication of quality discrepancies found for an examination, the radiologist submitted a paper-based quality-control report. A web-based issue-reporting tool can help restore some of the feedback loop and also provide possibilities for more detailed analysis of submitted errors. The purpose of this study was to evaluate the hypothesis that data from use of an online error reporting software for quality control can focus our efforts within our department. For the 372,258 radiologic examinations conducted during the 6-month period study, 930 errors (390 exam protocol, 390 exam validation, and 150 exam technique) were submitted, corresponding to an error rate of 0.25 %. Within the category exam protocol, technologist documentation had the highest number of submitted errors in ultrasonography (77 errors [44 %]), while imaging protocol errors were the highest subtype error for computed tomography modality (35 errors [18 %]). Positioning and incorrect accession had the highest errors in the exam technique and exam validation error category, respectively, for nearly all of the modalities. An error rate less than 1 % could signify a system with a very high quality; however, a more likely explanation is that not all errors were detected or reported. Furthermore, staff reception of the error reporting system could also affect the reporting rate.
Moser, Jason S; Schroder, Hans S; Heeter, Carrie; Moran, Tim P; Lee, Yu-Hao
2011-12-01
How well people bounce back from mistakes depends on their beliefs about learning and intelligence. For individuals with a growth mind-set, who believe intelligence develops through effort, mistakes are seen as opportunities to learn and improve. For individuals with a fixed mind-set, who believe intelligence is a stable characteristic, mistakes indicate lack of ability. We examined performance-monitoring event-related potentials (ERPs) to probe the neural mechanisms underlying these different reactions to mistakes. Findings revealed that a growth mind-set was associated with enhancement of the error positivity component (Pe), which reflects awareness of and allocation of attention to mistakes. More growth-minded individuals also showed superior accuracy after mistakes compared with individuals endorsing a more fixed mind-set. It is critical to note that Pe amplitude mediated the relationship between mind-set and posterror accuracy. These results suggest that neural mechanisms indexing on-line awareness of and attention to mistakes are intimately involved in growth-minded individuals' ability to rebound from mistakes.
NASA Astrophysics Data System (ADS)
Wei, Hui; Deng, Xiangwen; Ouyang, Shuai; Chen, Lijun; Chu, Yonghe
2017-01-01
Schima superba is an important fire-resistant, high-quality timber species in southern China. Growth in height, diameter at breast height (DBH), and volume of the three different classes (overtopped, average and dominant) of S. superba were examined in a natural subtropical forest. Four growth models (Richards, edited Weibull, Logistic and Gompertz) were selected to fit the growth of the three different classes of trees. The results showed that there was a fluctuation phenomenon in height and DBH current annual growth process of all three classes. Multiple intersections were found between current annual increment (CAI) and mean annual increment (MAI) curves of both height and DBH, but there was no intersection between volume CAI and MAI curves. All selected models could be used to fit the growth of the three classes of S. superba, with determinant coefficients above 0.9637. However, the edited Weibull model performed best with the highest R2 and the lowest root of mean square error (RMSE). S. superba is a fast-growing tree with a higher growth rate during youth. The height and DBH CAIs of overtopped, average and dominant trees reached growth peaks at ages 5-10, 10-15 and 15-20 years, respectively. According to model simulation, the volume CAIs of overtopped, average and dominant trees reached growth peaks at ages 17, 55 and 76 years, respectively. The biological rotation ages of the overtopped, average and dominant trees of S. superba were 29, 85 and 128 years, respectively.
High Precision Ranging and Range-Rate Measurements over Free-Space-Laser Communication Link
NASA Technical Reports Server (NTRS)
Yang, Guangning; Lu, Wei; Krainak, Michael; Sun, Xiaoli
2016-01-01
We present a high-precision ranging and range-rate measurement system via an optical-ranging or combined ranging-communication link. A complete bench-top optical communication system was built. It included a ground terminal and a space terminal. Ranging and range rate tests were conducted in two configurations. In the communication configuration with 622 data rate, we achieved a two-way range-rate error of 2 microns/s, or a modified Allan deviation of 9 x 10 (exp -15) with 10 second averaging time. Ranging and range-rate as a function of Bit Error Rate of the communication link is reported. They are not sensitive to the link error rate. In the single-frequency amplitude modulation mode, we report a two-way range rate error of 0.8 microns/s, or a modified Allan deviation of 2.6 x 10 (exp -15) with 10 second averaging time. We identified the major noise sources in the current system as the transmitter modulation injected noise and receiver electronics generated noise. A new improved system will be constructed to further improve the system performance for both operating modes.
A Comparison of Latent Growth Models for Constructs Measured by Multiple Items
ERIC Educational Resources Information Center
Leite, Walter L.
2007-01-01
Univariate latent growth modeling (LGM) of composites of multiple items (e.g., item means or sums) has been frequently used to analyze the growth of latent constructs. This study evaluated whether LGM of composites yields unbiased parameter estimates, standard errors, chi-square statistics, and adequate fit indexes. Furthermore, LGM was compared…
Adjusting STEMS growth model for Wisconsin forests.
Margaret R. Holdaway
1985-01-01
Describes a simple procedure for adjusting growth in the STEMS regional tree growth model to compensate for subregional differences. Coefficients are reported to adjust Lake States STEMS to the forests of Northern and Central Wisconsin--an area of essentially uniform climate and similar broad physiographic features. Errors are presented for various combinations of...
ERIC Educational Resources Information Center
Lockwood, J. R.; Castellano, Katherine E.
2017-01-01
Student Growth Percentiles (SGPs) increasingly are being used in the United States for inferences about student achievement growth and educator effectiveness. Emerging research has indicated that SGPs estimated from observed test scores have large measurement errors. As such, little is known about "true" SGPs, which are defined in terms…
The use of a covariate reduces experimental error in nutrient digestion studies in growing pigs
USDA-ARS?s Scientific Manuscript database
Covariance analysis limits error, the degree of nuisance variation, and overparameterizing factors to accurately measure treatment effects. Data dealing with growth, carcass composition, and genetics often utilize covariates in data analysis. In contrast, nutritional studies typically do not. The ob...
Is 50 Hz high enough ECG sampling frequency for accurate HRV analysis?
Mahdiani, Shadi; Jeyhani, Vala; Peltokangas, Mikko; Vehkaoja, Antti
2015-01-01
With the worldwide growth of mobile wireless technologies, healthcare services can be provided at anytime and anywhere. Usage of wearable wireless physiological monitoring system has been extensively increasing during the last decade. These mobile devices can continuously measure e.g. the heart activity and wirelessly transfer the data to the mobile phone of the patient. One of the significant restrictions for these devices is usage of energy, which leads to requiring low sampling rate. This article is presented in order to investigate the lowest adequate sampling frequency of ECG signal, for achieving accurate enough time domain heart rate variability (HRV) parameters. For this purpose the ECG signals originally measured with high 5 kHz sampling rate were down-sampled to simulate the measurement with lower sampling rate. Down-sampling loses information, decreases temporal accuracy, which was then restored by interpolating the signals to their original sampling rates. The HRV parameters obtained from the ECG signals with lower sampling rates were compared. The results represent that even when the sampling rate of ECG signal is equal to 50 Hz, the HRV parameters are almost accurate with a reasonable error.
Longitudinal patterns of leukoaraiosis and brain atrophy in symptomatic small vessel disease
Benjamin, Philip; Zeestraten, Eva; Lawrence, Andrew J.; Barrick, Thomas R.; Markus, Hugh S.
2016-01-01
Abstract Cerebral small vessel disease is a common condition associated with lacunar stroke, cognitive impairment and significant functional morbidity. White matter hyperintensities and brain atrophy, seen on magnetic resonance imaging, are correlated with increasing disease severity. However, how the two are related remains an open question. To better define the relationship between white matter hyperintensity growth and brain atrophy, we applied a semi-automated magnetic resonance imaging segmentation analysis pipeline to a 3-year longitudinal cohort of 99 subjects with symptomatic small vessel disease, who were followed-up for ≥1 years. Using a novel two-stage warping pipeline with tissue repair step, voxel-by-voxel rate of change maps were calculated for each tissue class (grey matter, white matter, white matter hyperintensities and lacunes) for each individual. These maps capture both the distribution of disease and spatial information showing local rates of growth and atrophy. These were analysed to answer three primary questions: first, is there a relationship between whole brain atrophy and magnetic resonance imaging markers of small vessel disease (white matter hyperintensities or lacune volume)? Second, is there regional variation within the cerebral white matter in the rate of white matter hyperintensity progression? Finally, are there regionally specific relationships between the rates of white matter hyperintensity progression and cortical grey matter atrophy? We demonstrate that the rates of white matter hyperintensity expansion and grey matter atrophy are strongly correlated (Pearson’s R = −0.69, P < 1 × 10 −7 ), and significant grey matter loss and whole brain atrophy occurs annually ( P < 0.05). Additionally, the rate of white matter hyperintensity growth was heterogeneous, occurring more rapidly within long association fasciculi. Using voxel-based quantification (family-wise error corrected P < 0.05), we show the rate of white matter hyperintensity progression is associated with increases in cortical grey matter atrophy rates, in the medial-frontal, orbito-frontal, parietal and occipital regions. Conversely, increased rates of global grey matter atrophy are significantly associated with faster white matter hyperintensity growth in the frontal and parietal regions. Together, these results link the progression of white matter hyperintensities with increasing rates of regional grey matter atrophy, and demonstrate that grey matter atrophy is the major contributor to whole brain atrophy in symptomatic cerebral small vessel disease. These measures provide novel insights into the longitudinal pathogenesis of small vessel disease, and imply that therapies aimed at reducing progression of white matter hyperintensities via end-arteriole damage may protect against secondary brain atrophy and consequent functional morbidity. PMID:26936939
Longitudinal patterns of leukoaraiosis and brain atrophy in symptomatic small vessel disease.
Lambert, Christian; Benjamin, Philip; Zeestraten, Eva; Lawrence, Andrew J; Barrick, Thomas R; Markus, Hugh S
2016-04-01
Cerebral small vessel disease is a common condition associated with lacunar stroke, cognitive impairment and significant functional morbidity. White matter hyperintensities and brain atrophy, seen on magnetic resonance imaging, are correlated with increasing disease severity. However, how the two are related remains an open question. To better define the relationship between white matter hyperintensity growth and brain atrophy, we applied a semi-automated magnetic resonance imaging segmentation analysis pipeline to a 3-year longitudinal cohort of 99 subjects with symptomatic small vessel disease, who were followed-up for ≥1 years. Using a novel two-stage warping pipeline with tissue repair step, voxel-by-voxel rate of change maps were calculated for each tissue class (grey matter, white matter, white matter hyperintensities and lacunes) for each individual. These maps capture both the distribution of disease and spatial information showing local rates of growth and atrophy. These were analysed to answer three primary questions: first, is there a relationship between whole brain atrophy and magnetic resonance imaging markers of small vessel disease (white matter hyperintensities or lacune volume)? Second, is there regional variation within the cerebral white matter in the rate of white matter hyperintensity progression? Finally, are there regionally specific relationships between the rates of white matter hyperintensity progression and cortical grey matter atrophy? We demonstrate that the rates of white matter hyperintensity expansion and grey matter atrophy are strongly correlated (Pearson's R = -0.69, P < 1 × 10(-7)), and significant grey matter loss and whole brain atrophy occurs annually (P < 0.05). Additionally, the rate of white matter hyperintensity growth was heterogeneous, occurring more rapidly within long association fasciculi. Using voxel-based quantification (family-wise error corrected P < 0.05), we show the rate of white matter hyperintensity progression is associated with increases in cortical grey matter atrophy rates, in the medial-frontal, orbito-frontal, parietal and occipital regions. Conversely, increased rates of global grey matter atrophy are significantly associated with faster white matter hyperintensity growth in the frontal and parietal regions. Together, these results link the progression of white matter hyperintensities with increasing rates of regional grey matter atrophy, and demonstrate that grey matter atrophy is the major contributor to whole brain atrophy in symptomatic cerebral small vessel disease. These measures provide novel insights into the longitudinal pathogenesis of small vessel disease, and imply that therapies aimed at reducing progression of white matter hyperintensities via end-arteriole damage may protect against secondary brain atrophy and consequent functional morbidity. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.
A long-term follow-up evaluation of electronic health record prescribing safety
Abramson, Erika L; Malhotra, Sameer; Osorio, S Nena; Edwards, Alison; Cheriff, Adam; Cole, Curtis; Kaushal, Rainu
2013-01-01
Objective To be eligible for incentives through the Electronic Health Record (EHR) Incentive Program, many providers using older or locally developed EHRs will be transitioning to new, commercial EHRs. We previously evaluated prescribing errors made by providers in the first year following transition from a locally developed EHR with minimal prescribing clinical decision support (CDS) to a commercial EHR with robust CDS. Following system refinements, we conducted this study to assess the rates and types of errors 2 years after transition and determine the evolution of errors. Materials and methods We conducted a mixed methods cross-sectional case study of 16 physicians at an academic-affiliated ambulatory clinic from April to June 2010. We utilized standardized prescription and chart review to identify errors. Fourteen providers also participated in interviews. Results We analyzed 1905 prescriptions. The overall prescribing error rate was 3.8 per 100 prescriptions (95% CI 2.8 to 5.1). Error rates were significantly lower 2 years after transition (p<0.001 compared to pre-implementation, 12 weeks and 1 year after transition). Rates of near misses remained unchanged. Providers positively appreciated most system refinements, particularly reduced alert firing. Discussion Our study suggests that over time and with system refinements, use of a commercial EHR with advanced CDS can lead to low prescribing error rates, although more serious errors may require targeted interventions to eliminate them. Reducing alert firing frequency appears particularly important. Our results provide support for federal efforts promoting meaningful use of EHRs. Conclusions Ongoing error monitoring can allow CDS to be optimally tailored and help achieve maximal safety benefits. Clinical Trials Registration ClinicalTrials.gov, Identifier: NCT00603070. PMID:23578816
Prevalence and cost of hospital medical errors in the general and elderly United States populations.
Mallow, Peter J; Pandya, Bhavik; Horblyuk, Ruslan; Kaplan, Harold S
2013-12-01
The primary objective of this study was to quantify the differences in the prevalence rate and costs of hospital medical errors between the general population and an elderly population aged ≥65 years. Methods from an actuarial study of medical errors were modified to identify medical errors in the Premier Hospital Database using data from 2009. Visits with more than four medical errors were removed from the population to avoid over-estimation of cost. Prevalence rates were calculated based on the total number of inpatient visits. There were 3,466,596 total inpatient visits in 2009. Of these, 1,230,836 (36%) occurred in people aged ≥ 65. The prevalence rate was 49 medical errors per 1000 inpatient visits in the general cohort and 79 medical errors per 1000 inpatient visits for the elderly cohort. The top 10 medical errors accounted for more than 80% of the total in the general cohort and the 65+ cohort. The most costly medical error for the general population was postoperative infection ($569,287,000). Pressure ulcers were most costly ($347,166,257) in the elderly population. This study was conducted with a hospital administrative database, and assumptions were necessary to identify medical errors in the database. Further, there was no method to identify errors of omission or misdiagnoses within the database. This study indicates that prevalence of hospital medical errors for the elderly is greater than the general population and the associated cost of medical errors in the elderly population is quite substantial. Hospitals which further focus their attention on medical errors in the elderly population may see a significant reduction in costs due to medical errors as a disproportionate percentage of medical errors occur in this age group.
The effectiveness of risk management program on pediatric nurses' medication error.
Dehghan-Nayeri, Nahid; Bayat, Fariba; Salehi, Tahmineh; Faghihzadeh, Soghrat
2013-09-01
Medication therapy is one of the most complex and high-risk clinical processes that nurses deal with. Medication error is the most common type of error that brings about damage and death to patients, especially pediatric ones. However, these errors are preventable. Identifying and preventing undesirable events leading to medication errors are the main risk management activities. The aim of this study was to investigate the effectiveness of a risk management program on the pediatric nurses' medication error rate. This study is a quasi-experimental one with a comparison group. In this study, 200 nurses were recruited from two main pediatric hospitals in Tehran. In the experimental hospital, we applied the risk management program for a period of 6 months. Nurses of the control hospital did the hospital routine schedule. A pre- and post-test was performed to measure the frequency of the medication error events. SPSS software, t-test, and regression analysis were used for data analysis. After the intervention, the medication error rate of nurses at the experimental hospital was significantly lower (P < 0.001) and the error-reporting rate was higher (P < 0.007) compared to before the intervention and also in comparison to the nurses of the control hospital. Based on the results of this study and taking into account the high-risk nature of the medical environment, applying the quality-control programs such as risk management can effectively prevent the occurrence of the hospital undesirable events. Nursing mangers can reduce the medication error rate by applying risk management programs. However, this program cannot succeed without nurses' cooperation.
Pierrillas, Philippe B; Tod, Michel; Amiel, Magali; Chenel, Marylore; Henin, Emilie
2016-09-01
The purpose of this study was to explore the impact of censoring due to animal sacrifice on parameter estimates and tumor volume calculated from two diameters in larger tumors during tumor growth experiments in preclinical studies. The type of measurement error that can be expected was also investigated. Different scenarios were challenged using the stochastic simulation and estimation process. One thousand datasets were simulated under the design of a typical tumor growth study in xenografted mice, and then, eight approaches were used for parameter estimation with the simulated datasets. The distribution of estimates and simulation-based diagnostics were computed for comparison. The different approaches were robust regarding the choice of residual error and gave equivalent results. However, by not considering missing data induced by sacrificing the animal, parameter estimates were biased and led to false inferences in terms of compound potency; the threshold concentration for tumor eradication when ignoring censoring was 581 ng.ml(-1), but the true value was 240 ng.ml(-1).
Rate, causes and reporting of medication errors in Jordan: nurses' perspectives.
Mrayyan, Majd T; Shishani, Kawkab; Al-Faouri, Ibrahim
2007-09-01
The aim of the study was to describe Jordanian nurses' perceptions about various issues related to medication errors. This is the first nursing study about medication errors in Jordan. This was a descriptive study. A convenient sample of 799 nurses from 24 hospitals was obtained. Descriptive and inferential statistics were used for data analysis. Over the course of their nursing career, the average number of recalled committed medication errors per nurse was 2.2. Using incident reports, the rate of medication errors reported to nurse managers was 42.1%. Medication errors occurred mainly when medication labels/packaging were of poor quality or damaged. Nurses failed to report medication errors because they were afraid that they might be subjected to disciplinary actions or even lose their jobs. In the stepwise regression model, gender was the only predictor of medication errors in Jordan. Strategies to reduce or eliminate medication errors are required.
Che-Castaldo, Christian; Jenouvrier, Stephanie; Youngflesh, Casey; Shoemaker, Kevin T; Humphries, Grant; McDowall, Philip; Landrum, Laura; Holland, Marika M; Li, Yun; Ji, Rubao; Lynch, Heather J
2017-10-10
Colonially-breeding seabirds have long served as indicator species for the health of the oceans on which they depend. Abundance and breeding data are repeatedly collected at fixed study sites in the hopes that changes in abundance and productivity may be useful for adaptive management of marine resources, but their suitability for this purpose is often unknown. To address this, we fit a Bayesian population dynamics model that includes process and observation error to all known Adélie penguin abundance data (1982-2015) in the Antarctic, covering >95% of their population globally. We find that process error exceeds observation error in this system, and that continent-wide "year effects" strongly influence population growth rates. Our findings have important implications for the use of Adélie penguins in Southern Ocean feedback management, and suggest that aggregating abundance across space provides the fastest reliable signal of true population change for species whose dynamics are driven by stochastic processes.Adélie penguins are a key Antarctic indicator species, but data patchiness has challenged efforts to link population dynamics to key drivers. Che-Castaldo et al. resolve this issue using a pan-Antarctic Bayesian model to infer missing data, and show that spatial aggregation leads to more robust inference regarding dynamics.
Image data compression having minimum perceptual error
NASA Technical Reports Server (NTRS)
Watson, Andrew B. (Inventor)
1995-01-01
A method for performing image compression that eliminates redundant and invisible image components is described. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.
Müller glia-derived PRSS56 is required to sustain ocular axial growth and prevent refractive error.
Paylakhi, Seyyedhassan; Labelle-Dumais, Cassandre; Tolman, Nicholas G; Sellarole, Michael A; Seymens, Yusef; Saunders, Joseph; Lakosha, Hesham; deVries, Wilhelmine N; Orr, Andrew C; Topilko, Piotr; John, Simon Wm; Nair, K Saidas
2018-03-01
A mismatch between optical power and ocular axial length results in refractive errors. Uncorrected refractive errors constitute the most common cause of vision loss and second leading cause of blindness worldwide. Although the retina is known to play a critical role in regulating ocular growth and refractive development, the precise factors and mechanisms involved are poorly defined. We have previously identified a role for the secreted serine protease PRSS56 in ocular size determination and PRSS56 variants have been implicated in the etiology of both hyperopia and myopia, highlighting its importance in refractive development. Here, we use a combination of genetic mouse models to demonstrate that Prss56 mutations leading to reduced ocular size and hyperopia act via a loss of function mechanism. Using a conditional gene targeting strategy, we show that PRSS56 derived from Müller glia contributes to ocular growth, implicating a new retinal cell type in ocular size determination. Importantly, we demonstrate that persistent activity of PRSS56 is required during distinct developmental stages spanning the pre- and post-eye opening periods to ensure optimal ocular growth. Thus, our mouse data provide evidence for the existence of a molecule contributing to both the prenatal and postnatal stages of human ocular growth. Finally, we demonstrate that genetic inactivation of Prss56 rescues axial elongation in a mouse model of myopia caused by a null mutation in Egr1. Overall, our findings identify PRSS56 as a potential therapeutic target for modulating ocular growth aimed at preventing or slowing down myopia, which is reaching epidemic proportions.
Müller glia-derived PRSS56 is required to sustain ocular axial growth and prevent refractive error
Tolman, Nicholas G; Sellarole, Michael A.; Saunders, Joseph; Lakosha, Hesham; Topilko, Piotr; John, Simon WM.
2018-01-01
A mismatch between optical power and ocular axial length results in refractive errors. Uncorrected refractive errors constitute the most common cause of vision loss and second leading cause of blindness worldwide. Although the retina is known to play a critical role in regulating ocular growth and refractive development, the precise factors and mechanisms involved are poorly defined. We have previously identified a role for the secreted serine protease PRSS56 in ocular size determination and PRSS56 variants have been implicated in the etiology of both hyperopia and myopia, highlighting its importance in refractive development. Here, we use a combination of genetic mouse models to demonstrate that Prss56 mutations leading to reduced ocular size and hyperopia act via a loss of function mechanism. Using a conditional gene targeting strategy, we show that PRSS56 derived from Müller glia contributes to ocular growth, implicating a new retinal cell type in ocular size determination. Importantly, we demonstrate that persistent activity of PRSS56 is required during distinct developmental stages spanning the pre- and post-eye opening periods to ensure optimal ocular growth. Thus, our mouse data provide evidence for the existence of a molecule contributing to both the prenatal and postnatal stages of human ocular growth. Finally, we demonstrate that genetic inactivation of Prss56 rescues axial elongation in a mouse model of myopia caused by a null mutation in Egr1. Overall, our findings identify PRSS56 as a potential therapeutic target for modulating ocular growth aimed at preventing or slowing down myopia, which is reaching epidemic proportions. PMID:29529029
Error analysis of high-rate GNSS precise point positioning for seismic wave measurement
NASA Astrophysics Data System (ADS)
Shu, Yuanming; Shi, Yun; Xu, Peiliang; Niu, Xiaoji; Liu, Jingnan
2017-06-01
High-rate GNSS precise point positioning (PPP) has been playing a more and more important role in providing precise positioning information in fast time-varying environments. Although kinematic PPP is commonly known to have a precision of a few centimeters, the precision of high-rate PPP within a short period of time has been reported recently with experiments to reach a few millimeters in the horizontal components and sub-centimeters in the vertical component to measure seismic motion, which is several times better than the conventional kinematic PPP practice. To fully understand the mechanism of mystified excellent performance of high-rate PPP within a short period of time, we have carried out a theoretical error analysis of PPP and conducted the corresponding simulations within a short period of time. The theoretical analysis has clearly indicated that the high-rate PPP errors consist of two types: the residual systematic errors at the starting epoch, which affect high-rate PPP through the change of satellite geometry, and the time-varying systematic errors between the starting epoch and the current epoch. Both the theoretical error analysis and simulated results are fully consistent with and thus have unambiguously confirmed the reported high precision of high-rate PPP, which has been further affirmed here by the real data experiments, indicating that high-rate PPP can indeed achieve the millimeter level of precision in the horizontal components and the sub-centimeter level of precision in the vertical component to measure motion within a short period of time. The simulation results have clearly shown that the random noise of carrier phases and higher order ionospheric errors are two major factors to affect the precision of high-rate PPP within a short period of time. The experiments with real data have also indicated that the precision of PPP solutions can degrade to the cm level in both the horizontal and vertical components, if the geometry of satellites is rather poor with a large DOP value.
Douglas, Julie A.; Skol, Andrew D.; Boehnke, Michael
2002-01-01
Gene-mapping studies routinely rely on checking for Mendelian transmission of marker alleles in a pedigree, as a means of screening for genotyping errors and mutations, with the implicit assumption that, if a pedigree is consistent with Mendel’s laws of inheritance, then there are no genotyping errors. However, the occurrence of inheritance inconsistencies alone is an inadequate measure of the number of genotyping errors, since the rate of occurrence depends on the number and relationships of genotyped pedigree members, the type of errors, and the distribution of marker-allele frequencies. In this article, we calculate the expected probability of detection of a genotyping error or mutation as an inheritance inconsistency in nuclear-family data, as a function of both the number of genotyped parents and offspring and the marker-allele frequency distribution. Through computer simulation, we explore the sensitivity of our analytic calculations to the underlying error model. Under a random-allele–error model, we find that detection rates are 51%–77% for multiallelic markers and 13%–75% for biallelic markers; detection rates are generally lower when the error occurs in a parent than in an offspring, unless a large number of offspring are genotyped. Errors are especially difficult to detect for biallelic markers with equally frequent alleles, even when both parents are genotyped; in this case, the maximum detection rate is 34% for four-person nuclear families. Error detection in families in which parents are not genotyped is limited, even with multiallelic markers. Given these results, we recommend that additional error checking (e.g., on the basis of multipoint analysis) be performed, beyond routine checking for Mendelian consistency. Furthermore, our results permit assessment of the plausibility of an observed number of inheritance inconsistencies for a family, allowing the detection of likely pedigree—rather than genotyping—errors in the early stages of a genome scan. Such early assessments are valuable in either the targeting of families for resampling or discontinued genotyping. PMID:11791214
Hallmann, N.; Schone, B.R.; Irvine, G.V.; Burchell, M.; Cokelet, E.D.; Hilton, M.R.
2011-01-01
Shells of intertidal bivalve mollusks contain sub-seasonally to interannually resolved records of temperature and salinity variations in coastal settings. Such data are essential to understand changing land-sea interactions through time, specifically atmospheric (precipitation rate, glacial meltwater, river discharge) and oceanographic circulation patterns; however, independent temperature and salinity proxies are currently not available. We established a model for reconstructing daily water temperatures with an average standard error of ???1.3 ??C based on variations in the width of lunar daily growth increments of Saxidomus gigantea from southwestern Alaska, United States. Temperature explains 70% of the variability in shell growth. When used in conjunction with stable oxygen isotope data, this approach can also be used to identify changes in past seawater salinity. This study provides a better understanding of the hydrological changes related to the Alaska Coastal Current (ACC). In combination with ??18Oshell values, increment-derived temperatures were used to estimate salinity changes with an average error of 1.4 ?? 1.1 PSU. Our model was calibrated and tested with modern shells and then applied to archaeological specimens. As derived from the model, the time interval of 988-1447 cal yr BP was characterized by ???1-2 ??C colder and much drier (2-5 PSU) summers. During that time, the ACC was likely flowing much more slowly than at present. In contrast, between 599-1014 cal yr BP, the Aleutian low may have been stronger, which resulted in a 3 ??C temperature decrease during summers and 1-2 PSU fresher conditions than today; the ACC was probably flowing more quickly at that time. The shell growth-temperature model can be used to estimate seasonal to interannual salinity and temperature changes in freshwater-influenced environments through time. ?? 2011 SEPM (Society for Sedimentary Geology).
Bakker, Marjan; Wicherts, Jelte M
2014-09-01
In psychology, outliers are often excluded before running an independent samples t test, and data are often nonnormal because of the use of sum scores based on tests and questionnaires. This article concerns the handling of outliers in the context of independent samples t tests applied to nonnormal sum scores. After reviewing common practice, we present results of simulations of artificial and actual psychological data, which show that the removal of outliers based on commonly used Z value thresholds severely increases the Type I error rate. We found Type I error rates of above 20% after removing outliers with a threshold value of Z = 2 in a short and difficult test. Inflations of Type I error rates are particularly severe when researchers are given the freedom to alter threshold values of Z after having seen the effects thereof on outcomes. We recommend the use of nonparametric Mann-Whitney-Wilcoxon tests or robust Yuen-Welch tests without removing outliers. These alternatives to independent samples t tests are found to have nominal Type I error rates with a minimal loss of power when no outliers are present in the data and to have nominal Type I error rates and good power when outliers are present. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Durand, Casey P
2013-01-01
Statistical interactions are a common component of data analysis across a broad range of scientific disciplines. However, the statistical power to detect interactions is often undesirably low. One solution is to elevate the Type 1 error rate so that important interactions are not missed in a low power situation. To date, no study has quantified the effects of this practice on power in a linear regression model. A Monte Carlo simulation study was performed. A continuous dependent variable was specified, along with three types of interactions: continuous variable by continuous variable; continuous by dichotomous; and dichotomous by dichotomous. For each of the three scenarios, the interaction effect sizes, sample sizes, and Type 1 error rate were varied, resulting in a total of 240 unique simulations. In general, power to detect the interaction effect was either so low or so high at α = 0.05 that raising the Type 1 error rate only served to increase the probability of including a spurious interaction in the model. A small number of scenarios were identified in which an elevated Type 1 error rate may be justified. Routinely elevating Type 1 error rate when testing interaction effects is not an advisable practice. Researchers are best served by positing interaction effects a priori and accounting for them when conducting sample size calculations.
An Evaluation of Commercial Pedometers for Monitoring Slow Walking Speed Populations.
Beevi, Femina H A; Miranda, Jorge; Pedersen, Christian F; Wagner, Stefan
2016-05-01
Pedometers are considered desirable devices for monitoring physical activity. Two population groups of interest include patients having undergone surgery in the lower extremities or who are otherwise weakened through disease, medical treatment, or surgery procedures, as well as the slow walking senior population. For these population groups, pedometers must be able to perform reliably and accurately at slow walking speeds. The objectives of this study were to evaluate the step count accuracy of three commercially available pedometers, the Yamax (Tokyo, Japan) Digi-Walker(®) SW-200 (YM), the Omron (Kyoto, Japan) HJ-720 (OM), and the Fitbit (San Francisco, CA) Zip (FB), at slow walking speeds, specifically at 1, 2, and 3 km/h, and to raise awareness of the necessity of focusing research on step-counting devices and algorithms for slow walking populations. Fourteen participants 29.93 ±4.93 years of age were requested to walk on a treadmill at the three specified speeds, in four trials of 100 steps each. The devices were worn by the participants on the waist belt. The pedometer counts were recorded, and the error percentage was calculated. The error rate of all three evaluated pedometers decreased with the increase of speed: at 1 km/h the error rates varied from 87.11% (YM) to 95.98% (FB), at 2 km/h the error rates varied from 17.27% (FB) to 46.46% (YM), and at 3 km/h the error rates varied from 22.46% (YM) to a slight overcount of 0.70% (FB). It was observed that all the evaluated devices have high error rates at 1 km/h and mixed error rates at 2 km/h, and at 3 km/h the error rates are the smallest of the three assessed speeds, with the OM and the FB having a slight overcount. These results show that research on pedometers' software and hardware should focus more on accurate step detection at slow walking speeds.
Assessing tropical rainforest growth traits: Data - Model fusion in the Congo basin and beyond.
NASA Astrophysics Data System (ADS)
Pietsch, S.
2016-12-01
Virgin forest ecosystems resemble the key reference level for natural tree growth dynamics. The mosaic cycle concept describes such dynamics as local disequilibria driven by patch level succession cycles of breakdown, regeneration, juvenescence and old growth. These cycles, however, may involve different traits of light demanding and shade tolerant species assemblies. In this work a data model fusion concept will be introduced to assess the differences in growth dynamics of the mosaic cycle of the Western Congolian Lowland Rainforest ecosystem. Field data from 34 forest patches located in an ice age forest refuge, recently pinpointed to the ground and still devoid of direct human impact up to today - resemble the data base. A 3D error assessment procedure versus BGC model simulations for the 34 patches revealed two different growth dynamics, consistent with observed growth traits of pioneer and late succession species assemblies of the Western Congolian Lowland rainforest. An application of the same procedure to Central American Pacific rainforests confirms the strength of the 3D error field data model fusion concept to assess different growth traits of the mosaic cycle of natural forest dynamics.
Impact of Measurement Error on Synchrophasor Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yilu; Gracia, Jose R.; Ewing, Paul D.
2015-07-01
Phasor measurement units (PMUs), a type of synchrophasor, are powerful diagnostic tools that can help avert catastrophic failures in the power grid. Because of this, PMU measurement errors are particularly worrisome. This report examines the internal and external factors contributing to PMU phase angle and frequency measurement errors and gives a reasonable explanation for them. It also analyzes the impact of those measurement errors on several synchrophasor applications: event location detection, oscillation detection, islanding detection, and dynamic line rating. The primary finding is that dynamic line rating is more likely to be influenced by measurement error. Other findings include themore » possibility of reporting nonoscillatory activity as an oscillation as the result of error, failing to detect oscillations submerged by error, and the unlikely impact of error on event location and islanding detection.« less
Gray, S.C.; Hein, J.R.; Hausmann, R.; Radtke, U.
1992-01-01
Eustatic sea-level cycles superposed on thermal subsidence of an atoll produce layers of high sea-level reefs separated by erosional unconformities. Coral samples from these reefs from cores drilled to 50 m beneath the lagoons of Pukapuka and Rakahanga atolls, northern Cook Islands give electron spin resonance (ESR) and U-series ages ranging from the Holocene to 600,000 yr B.P. Subgroups of these ages and the stratigraphic position of their bounding unconformities define at least 5 periods of reef growth and high sea-level (0-9000 yr B.P., 125,000-180,000 yr B.P., 180,000-230,000 yr B.P., 300,000-460,000 yr B.P., 460,000-650,000 yr B.P.). Only two ages fall within error of the last interglacial high sea-level stand (???125,000-135,000 yr B.P.). This paucity of ages may result from extensive erosion of the last intergracial reef. In addition, post-depositional isotope exchange may have altered the time ages of three coral samples to apparent ages that fall within glacial stage 6. For the record to be preserved, vertical accretion during rising sea-level must compensate for surface lowering from erosion during sea-level lowstands and subsidence of the atoll; erosion rates (6-63 cm/1000 yr) can therefore be calculated from reef accretion rates (100-400 cm/1000 yr), subsidence rates (2-6 cm/1000 yr), and the duration of island submergence (8-15% of the last 600,000 yr). The stratigraphy of coral ages indicates island subsidence rates of 4.5 ?? 2.8 cm/1000 yr for both islands. A model of reef growth and erosion based on the stratigraphy of the Cook Islands atolls suggests average subsidence and erosion rates of between 3-6 and 15-20 cm/1000 yr, respectively. ?? 1992.
Refractive errors in medical students in Singapore.
Woo, W W; Lim, K A; Yang, H; Lim, X Y; Liew, F; Lee, Y S; Saw, S M
2004-10-01
Refractive errors are becoming more of a problem in many societies, with prevalence rates of myopia in many Asian urban countries reaching epidemic proportions. This study aims to determine the prevalence rates of various refractive errors in Singapore medical students. 157 second year medical students (aged 19-23 years) in Singapore were examined. Refractive error measurements were determined using a stand-alone autorefractor. Additional demographical data was obtained via questionnaires filled in by the students. The prevalence rate of myopia in Singapore medical students was 89.8 percent (Spherical equivalence (SE) at least -0.50 D). Hyperopia was present in 1.3 percent (SE more than +0.50 D) of the participants and the overall astigmatism prevalence rate was 82.2 percent (Cylinder at least 0.50 D). Prevalence rates of myopia and astigmatism in second year Singapore medical students are one of the highest in the world.
Social deviance activates the brain's error-monitoring system.
Kim, Bo-Rin; Liss, Alison; Rao, Monica; Singer, Zachary; Compton, Rebecca J
2012-03-01
Social psychologists have long noted the tendency for human behavior to conform to social group norms. This study examined whether feedback indicating that participants had deviated from group norms would elicit a neural signal previously shown to be elicited by errors and monetary losses. While electroencephalograms were recorded, participants (N = 30) rated the attractiveness of 120 faces and received feedback giving the purported average rating made by a group of peers. The feedback was manipulated so that group ratings either were the same as a participant's rating or deviated by 1, 2, or 3 points. Feedback indicating deviance from the group norm elicited a feedback-related negativity, a brainwave signal known to be elicited by objective performance errors and losses. The results imply that the brain treats deviance from social norms as an error.
Cryptographic robustness of a quantum cryptography system using phase-time coding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molotkov, S. N.
2008-01-15
A cryptographic analysis is presented of a new quantum key distribution protocol using phase-time coding. An upper bound is obtained for the error rate that guarantees secure key distribution. It is shown that the maximum tolerable error rate for this protocol depends on the counting rate in the control time slot. When no counts are detected in the control time slot, the protocol guarantees secure key distribution if the bit error rate in the sifted key does not exceed 50%. This protocol partially discriminates between errors due to system defects (e.g., imbalance of a fiber-optic interferometer) and eavesdropping. In themore » absence of eavesdropping, the counts detected in the control time slot are not caused by interferometer imbalance, which reduces the requirements for interferometer stability.« less
Automatic learning rate adjustment for self-supervising autonomous robot control
NASA Technical Reports Server (NTRS)
Arras, Michael K.; Protzel, Peter W.; Palumbo, Daniel L.
1992-01-01
Described is an application in which an Artificial Neural Network (ANN) controls the positioning of a robot arm with five degrees of freedom by using visual feedback provided by two cameras. This application and the specific ANN model, local liner maps, are based on the work of Ritter, Martinetz, and Schulten. We extended their approach by generating a filtered, average positioning error from the continuous camera feedback and by coupling the learning rate to this error. When the network learns to position the arm, the positioning error decreases and so does the learning rate until the system stabilizes at a minimum error and learning rate. This abolishes the need for a predetermined cooling schedule. The automatic cooling procedure results in a closed loop control with no distinction between a learning phase and a production phase. If the positioning error suddenly starts to increase due to an internal failure such as a broken joint, or an environmental change such as a camera moving, the learning rate increases accordingly. Thus, learning is automatically activated and the network adapts to the new condition after which the error decreases again and learning is 'shut off'. The automatic cooling is therefore a prerequisite for the autonomy and the fault tolerance of the system.
Wisdom in Medicine: What Helps Physicians After a Medical Error?
Plews-Ogan, Margaret; May, Natalie; Owens, Justine; Ardelt, Monika; Shapiro, Jo; Bell, Sigall K
2016-02-01
Confronting medical error openly is critical to organizational learning, but less is known about what helps individual clinicians learn and adapt positively after making a harmful mistake. Understanding what factors help doctors gain wisdom can inform educational and peer support programs, and may facilitate the development of specific tools to assist doctors after harmful errors occur. Using "posttraumatic growth" as a model, the authors conducted semistructured interviews (2009-2011) with 61 physicians who had made a serious medical error. Interviews were recorded, professionally transcribed, and coded by two study team members (kappa 0.8) using principles of grounded theory and NVivo software. Coders also scored interviewees as wisdom exemplars or nonexemplars based on Ardelt's three-dimensional wisdom model. Of the 61 physicians interviewed, 33 (54%) were male, and on average, eight years had elapsed since the error. Wisdom exemplars were more likely to report disclosing the error to the patient/family (69%) than nonexemplars (38%); P < .03. Fewer than 10% of all participants reported receiving disclosure training. Investigators identified eight themes reflecting what helped physician wisdom exemplars cope positively: talking about it, disclosure and apology, forgiveness, a moral context, dealing with imperfection, learning/becoming an expert, preventing recurrences/improving teamwork, and helping others/teaching. The path forged by doctors who coped well with medical error highlights specific ways to help clinicians move through this difficult experience so that they avoid devastating professional outcomes and have the best chance of not just recovery but positive growth.
Mesoscale Predictability and Error Growth in Short Range Ensemble Forecasts
NASA Astrophysics Data System (ADS)
Gingrich, Mark
Although it was originally suggested that small-scale, unresolved errors corrupt forecasts at all scales through an inverse error cascade, some authors have proposed that those mesoscale circulations resulting from stationary forcing on the larger scale may inherit the predictability of the large-scale motions. Further, the relative contributions of large- and small-scale uncertainties in producing error growth in the mesoscales remain largely unknown. Here, 100 member ensemble forecasts are initialized from an ensemble Kalman filter (EnKF) to simulate two winter storms impacting the East Coast of the United States in 2010. Four verification metrics are considered: the local snow water equivalence, total liquid water, and 850 hPa temperatures representing mesoscale features; and the sea level pressure field representing a synoptic feature. It is found that while the predictability of the mesoscale features can be tied to the synoptic forecast, significant uncertainty existed on the synoptic scale at lead times as short as 18 hours. Therefore, mesoscale details remained uncertain in both storms due to uncertainties at the large scale. Additionally, the ensemble perturbation kinetic energy did not show an appreciable upscale propagation of error for either case. Instead, the initial condition perturbations from the cycling EnKF were maximized at large scales and immediately amplified at all scales without requiring initial upscale propagation. This suggests that relatively small errors in the synoptic-scale initialization may have more importance in limiting predictability than errors in the unresolved, small-scale initial conditions.
An Automated Method to Generate e-Learning Quizzes from Online Language Learner Writing
ERIC Educational Resources Information Center
Flanagan, Brendan; Yin, Chengjiu; Hirokawa, Sachio; Hashimoto, Kiyota; Tabata, Yoshiyuki
2013-01-01
In this paper, the entries of Lang-8, which is a Social Networking Site (SNS) site for learning and practicing foreign languages, were analyzed and found to contain similar rates of errors for most error categories reported in previous research. These similarly rated errors were then processed using an algorithm to determine corrections suggested…
Code of Federal Regulations, 2012 CFR
2012-10-01
..., financial records, and automated data systems; (ii) The data are free from computational errors and are... records, financial records, and automated data systems; (ii) The data are free from computational errors... records, and automated data systems; (ii) The data are free from computational errors and are internally...
Doubková, Marcela; Van Dijk, Albert I.J.M.; Sabel, Daniel; Wagner, Wolfgang; Blöschl, Günter
2012-01-01
The Sentinel-1 will carry onboard a C-band radar instrument that will map the European continent once every four days and the global land surface at least once every twelve days with finest 5 × 20 m spatial resolution. The high temporal sampling rate and operational configuration make Sentinel-1 of interest for operational soil moisture monitoring. Currently, updated soil moisture data are made available at 1 km spatial resolution as a demonstration service using Global Mode (GM) measurements from the Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT. The service demonstrates the potential of the C-band observations to monitor variations in soil moisture. Importantly, a retrieval error estimate is also available; these are needed to assimilate observations into models. The retrieval error is estimated by propagating sensor errors through the retrieval model. In this work, the existing ASAR GM retrieval error product is evaluated using independent top soil moisture estimates produced by the grid-based landscape hydrological model (AWRA-L) developed within the Australian Water Resources Assessment system (AWRA). The ASAR GM retrieval error estimate, an assumed prior AWRA-L error estimate and the variance in the respective datasets were used to spatially predict the root mean square error (RMSE) and the Pearson's correlation coefficient R between the two datasets. These were compared with the RMSE calculated directly from the two datasets. The predicted and computed RMSE showed a very high level of agreement in spatial patterns as well as good quantitative agreement; the RMSE was predicted within accuracy of 4% of saturated soil moisture over 89% of the Australian land mass. Predicted and calculated R maps corresponded within accuracy of 10% over 61% of the continent. The strong correspondence between the predicted and calculated RMSE and R builds confidence in the retrieval error model and derived ASAR GM error estimates. The ASAR GM and Sentinel-1 have the same basic physical measurement characteristics, and therefore very similar retrieval error estimation method can be applied. Because of the expected improvements in radiometric resolution of the Sentinel-1 backscatter measurements, soil moisture estimation errors can be expected to be an order of magnitude less than those for ASAR GM. This opens the possibility for operationally available medium resolution soil moisture estimates with very well-specified errors that can be assimilated into hydrological or crop yield models, with potentially large benefits for land-atmosphere fluxes, crop growth, and water balance monitoring and modelling. PMID:23483015
DNA Barcoding through Quaternary LDPC Codes
Tapia, Elizabeth; Spetale, Flavio; Krsticevic, Flavia; Angelone, Laura; Bulacio, Pilar
2015-01-01
For many parallel applications of Next-Generation Sequencing (NGS) technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH) or have intrinsic poor error correcting abilities (Hamming). Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC) codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10−2 per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10−9 at the expense of a rate of read losses just in the order of 10−6. PMID:26492348
DNA Barcoding through Quaternary LDPC Codes.
Tapia, Elizabeth; Spetale, Flavio; Krsticevic, Flavia; Angelone, Laura; Bulacio, Pilar
2015-01-01
For many parallel applications of Next-Generation Sequencing (NGS) technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH) or have intrinsic poor error correcting abilities (Hamming). Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC) codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10(-2) per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10(-9) at the expense of a rate of read losses just in the order of 10(-6).
Human operator response to error-likely situations in complex engineering systems
NASA Technical Reports Server (NTRS)
Morris, Nancy M.; Rouse, William B.
1988-01-01
The causes of human error in complex systems are examined. First, a conceptual framework is provided in which two broad categories of error are discussed: errors of action, or slips, and errors of intention, or mistakes. Conditions in which slips and mistakes might be expected to occur are identified, based on existing theories of human error. Regarding the role of workload, it is hypothesized that workload may act as a catalyst for error. Two experiments are presented in which humans' response to error-likely situations were examined. Subjects controlled PLANT under a variety of conditions and periodically provided subjective ratings of mental effort. A complex pattern of results was obtained, which was not consistent with predictions. Generally, the results of this research indicate that: (1) humans respond to conditions in which errors might be expected by attempting to reduce the possibility of error, and (2) adaptation to conditions is a potent influence on human behavior in discretionary situations. Subjects' explanations for changes in effort ratings are also explored.
NASA Technical Reports Server (NTRS)
Noble, Viveca K.
1993-01-01
There are various elements such as radio frequency interference (RFI) which may induce errors in data being transmitted via a satellite communication link. When a transmission is affected by interference or other error-causing elements, the transmitted data becomes indecipherable. It becomes necessary to implement techniques to recover from these disturbances. The objective of this research is to develop software which simulates error control circuits and evaluate the performance of these modules in various bit error rate environments. The results of the evaluation provide the engineer with information which helps determine the optimal error control scheme. The Consultative Committee for Space Data Systems (CCSDS) recommends the use of Reed-Solomon (RS) and convolutional encoders and Viterbi and RS decoders for error correction. The use of forward error correction techniques greatly reduces the received signal to noise needed for a certain desired bit error rate. The use of concatenated coding, e.g. inner convolutional code and outer RS code, provides even greater coding gain. The 16-bit cyclic redundancy check (CRC) code is recommended by CCSDS for error detection.
Mapping DNA polymerase errors by single-molecule sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, David F.; Lu, Jenny; Chang, Seungwoo
Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replicationmore » product is tagged with a unique nucleotide sequence before amplification. Here, this allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases.« less
Mapping DNA polymerase errors by single-molecule sequencing
Lee, David F.; Lu, Jenny; Chang, Seungwoo; ...
2016-05-16
Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replicationmore » product is tagged with a unique nucleotide sequence before amplification. Here, this allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases.« less
Paediatric in-patient prescribing errors in Malaysia: a cross-sectional multicentre study.
Khoo, Teik Beng; Tan, Jing Wen; Ng, Hoong Phak; Choo, Chong Ming; Bt Abdul Shukor, Intan Nor Chahaya; Teh, Siao Hean
2017-06-01
Background There is a lack of large comprehensive studies in developing countries on paediatric in-patient prescribing errors in different settings. Objectives To determine the characteristics of in-patient prescribing errors among paediatric patients. Setting General paediatric wards, neonatal intensive care units and paediatric intensive care units in government hospitals in Malaysia. Methods This is a cross-sectional multicentre study involving 17 participating hospitals. Drug charts were reviewed in each ward to identify the prescribing errors. All prescribing errors identified were further assessed for their potential clinical consequences, likely causes and contributing factors. Main outcome measures Incidence, types, potential clinical consequences, causes and contributing factors of the prescribing errors. Results The overall prescribing error rate was 9.2% out of 17,889 prescribed medications. There was no significant difference in the prescribing error rates between different types of hospitals or wards. The use of electronic prescribing had a higher prescribing error rate than manual prescribing (16.9 vs 8.2%, p < 0.05). Twenty eight (1.7%) prescribing errors were deemed to have serious potential clinical consequences and 2 (0.1%) were judged to be potentially fatal. Most of the errors were attributed to human factors, i.e. performance or knowledge deficit. The most common contributing factors were due to lack of supervision or of knowledge. Conclusions Although electronic prescribing may potentially improve safety, it may conversely cause prescribing errors due to suboptimal interfaces and cumbersome work processes. Junior doctors need specific training in paediatric prescribing and close supervision to reduce prescribing errors in paediatric in-patients.
An End-to-End Loss Discrimination Scheme for Multimedia Transmission over Wireless IP Networks
NASA Astrophysics Data System (ADS)
Zhao, Hai-Tao; Dong, Yu-Ning; Li, Yang
As the rapid growth of wireless IP networks, wireless IP access networks have a lot of potential applications in a variety of fields in civilian and military environments. Many of these applications, such as realtime audio/video streaming, will require some form of end-to-end QoS assurance. In this paper, an algorithm WMPLD (Wireless Multimedia Packet Loss Discrimination) is proposed for multimedia transmission control over wired-wireless hybrid IP networks. The relationship between packet length and packet loss rate in the Gilbert wireless error model is investigated. Furthermore, the algorithm can detect the nature of packet losses by sending large and small packets alternately, and control the sending rate of nodes. In addition, by means of updating factor K, this algorithm can adapt to the changes of network states quickly. Simulation results show that, compared to previous algorithms, WMPLD algorithm can improve the networks throughput as well as reduce the congestion loss rate in various situations.
The assessment of cognitive errors using an observer-rated method.
Drapeau, Martin
2014-01-01
Cognitive Errors (CEs) are a key construct in cognitive behavioral therapy (CBT). Integral to CBT is that individuals with depression process information in an overly negative or biased way, and that this bias is reflected in specific depressotypic CEs which are distinct from normal information processing. Despite the importance of this construct in CBT theory, practice, and research, few methods are available to researchers and clinicians to reliably identify CEs as they occur. In this paper, the author presents a rating system, the Cognitive Error Rating Scale, which can be used by trained observers to identify and assess the cognitive errors of patients or research participants in vivo, i.e., as they are used or reported by the patients or participants. The method is described, including some of the more important rating conventions to be considered when using the method. This paper also describes the 15 cognitive errors assessed, and the different summary scores, including valence of the CEs, that can be derived from the method.
Cooperative MIMO communication at wireless sensor network: an error correcting code approach.
Islam, Mohammad Rakibul; Han, Young Shin
2011-01-01
Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error p(b). It is observed that C-MIMO performs more efficiently when the targeted p(b) is smaller. Also the lower encoding rate for LDPC code offers better error characteristics.
Cooperative MIMO Communication at Wireless Sensor Network: An Error Correcting Code Approach
Islam, Mohammad Rakibul; Han, Young Shin
2011-01-01
Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error pb. It is observed that C-MIMO performs more efficiently when the targeted pb is smaller. Also the lower encoding rate for LDPC code offers better error characteristics. PMID:22163732
Parental Cognitive Errors Mediate Parental Psychopathology and Ratings of Child Inattention.
Haack, Lauren M; Jiang, Yuan; Delucchi, Kevin; Kaiser, Nina; McBurnett, Keith; Hinshaw, Stephen; Pfiffner, Linda
2017-09-01
We investigate the Depression-Distortion Hypothesis in a sample of 199 school-aged children with ADHD-Predominantly Inattentive presentation (ADHD-I) by examining relations and cross-sectional mediational pathways between parental characteristics (i.e., levels of parental depressive and ADHD symptoms) and parental ratings of child problem behavior (inattention, sluggish cognitive tempo, and functional impairment) via parental cognitive errors. Results demonstrated a positive association between parental factors and parental ratings of inattention, as well as a mediational pathway between parental depressive and ADHD symptoms and parental ratings of inattention via parental cognitive errors. Specifically, higher levels of parental depressive and ADHD symptoms predicted higher levels of cognitive errors, which in turn predicted higher parental ratings of inattention. Findings provide evidence for core tenets of the Depression-Distortion Hypothesis, which state that parents with high rates of psychopathology hold negative schemas for their child's behavior and subsequently, report their child's behavior as more severe. © 2016 Family Process Institute.
Decoy-state quantum key distribution with more than three types of photon intensity pulses
NASA Astrophysics Data System (ADS)
Chau, H. F.
2018-04-01
The decoy-state method closes source security loopholes in quantum key distribution (QKD) using a laser source. In this method, accurate estimates of the detection rates of vacuum and single-photon events plus the error rate of single-photon events are needed to give a good enough lower bound of the secret key rate. Nonetheless, the current estimation method for these detection and error rates, which uses three types of photon intensities, is accurate up to about 1 % relative error. Here I report an experimentally feasible way that greatly improves these estimates and hence increases the one-way key rate of the BB84 QKD protocol with unbiased bases selection by at least 20% on average in realistic settings. The major tricks are the use of more than three types of photon intensities plus the fact that estimating bounds of the above detection and error rates is numerically stable, although these bounds are related to the inversion of a high condition number matrix.
Annual updating of plantation inventory estimates using hybrid models
Peter Snowdon
2000-01-01
Data for Pinus radiata D. Don grown in the Australian Capital Territory (ACT) are used to show that annual indices of growth potential can be successfully incorporated into Schumacher projection models of stand basal area growth. Significant reductions in the error mean squares of the models can be obtained by including an annual growth index derived...
Families as Partners in Hospital Error and Adverse Event Surveillance
Khan, Alisa; Coffey, Maitreya; Litterer, Katherine P.; Baird, Jennifer D.; Furtak, Stephannie L.; Garcia, Briana M.; Ashland, Michele A.; Calaman, Sharon; Kuzma, Nicholas C.; O’Toole, Jennifer K.; Patel, Aarti; Rosenbluth, Glenn; Destino, Lauren A.; Everhart, Jennifer L.; Good, Brian P.; Hepps, Jennifer H.; Dalal, Anuj K.; Lipsitz, Stuart R.; Yoon, Catherine S.; Zigmont, Katherine R.; Srivastava, Rajendu; Starmer, Amy J.; Sectish, Theodore C.; Spector, Nancy D.; West, Daniel C.; Landrigan, Christopher P.
2017-01-01
IMPORTANCE Medical errors and adverse events (AEs) are common among hospitalized children. While clinician reports are the foundation of operational hospital safety surveillance and a key component of multifaceted research surveillance, patient and family reports are not routinely gathered. We hypothesized that a novel family-reporting mechanism would improve incident detection. OBJECTIVE To compare error and AE rates (1) gathered systematically with vs without family reporting, (2) reported by families vs clinicians, and (3) reported by families vs hospital incident reports. DESIGN, SETTING, AND PARTICIPANTS We conducted a prospective cohort study including the parents/caregivers of 989 hospitalized patients 17 years and younger (total 3902 patient-days) and their clinicians from December 2014 to July 2015 in 4 US pediatric centers. Clinician abstractors identified potential errors and AEs by reviewing medical records, hospital incident reports, and clinician reports as well as weekly and discharge Family Safety Interviews (FSIs). Two physicians reviewed and independently categorized all incidents, rating severity and preventability (agreement, 68%–90%; κ, 0.50–0.68). Discordant categorizations were reconciled. Rates were generated using Poisson regression estimated via generalized estimating equations to account for repeated measures on the same patient. MAIN OUTCOMES AND MEASURES Error and AE rates. RESULTS Overall, 746 parents/caregivers consented for the study. Of these, 717 completed FSIs. Their median (interquartile range) age was 32.5 (26–40) years; 380 (53.0%) were nonwhite, 566 (78.9%) were female, 603 (84.1%) were English speaking, and 380 (53.0%) had attended college. Of 717 parents/caregivers completing FSIs, 185 (25.8%) reported a total of 255 incidents, which were classified as 132 safety concerns (51.8%), 102 nonsafety-related quality concerns (40.0%), and 21 other concerns (8.2%). These included 22 preventable AEs (8.6%), 17 nonharmful medical errors (6.7%), and 11 nonpreventable AEs (4.3%) on the study unit. In total, 179 errors and 113 AEs were identified from all sources. Family reports included 8 otherwise unidentified AEs, including 7 preventable AEs. Error rates with family reporting (45.9 per 1000 patient-days) were 1.2-fold (95%CI, 1.1–1.2) higher than rates without family reporting (39.7 per 1000 patient-days). Adverse event rates with family reporting (28.7 per 1000 patient-days) were 1.1-fold (95%CI, 1.0–1.2; P=.006) higher than rates without (26.1 per 1000 patient-days). Families and clinicians reported similar rates of errors (10.0 vs 12.8 per 1000 patient-days; relative rate, 0.8; 95%CI, .5–1.2) and AEs (8.5 vs 6.2 per 1000 patient-days; relative rate, 1.4; 95%CI, 0.8–2.2). Family-reported error rates were 5.0-fold (95%CI, 1.9–13.0) higher and AE rates 2.9-fold (95% CI, 1.2–6.7) higher than hospital incident report rates. CONCLUSIONS AND RELEVANCE Families provide unique information about hospital safety and should be included in hospital safety surveillance in order to facilitate better design and assessment of interventions to improve safety. PMID:28241211
Star tracker error analysis: Roll-to-pitch nonorthogonality
NASA Technical Reports Server (NTRS)
Corson, R. W.
1979-01-01
An error analysis is described on an anomaly isolated in the star tracker software line of sight (LOS) rate test. The LOS rate cosine was found to be greater than one in certain cases which implied that either one or both of the star tracker measured end point unit vectors used to compute the LOS rate cosine had lengths greater than unity. The roll/pitch nonorthogonality matrix in the TNB CL module of the IMU software is examined as the source of error.
Ricker, Martin; Peña Ramírez, Víctor M.; von Rosen, Dietrich
2014-01-01
Growth curves are monotonically increasing functions that measure repeatedly the same subjects over time. The classical growth curve model in the statistical literature is the Generalized Multivariate Analysis of Variance (GMANOVA) model. In order to model the tree trunk radius (r) over time (t) of trees on different sites, GMANOVA is combined here with the adapted PL regression model Q = A·T+E, where for and for , A = initial relative growth to be estimated, , and E is an error term for each tree and time point. Furthermore, Ei[–b·r] = , , with TPR being the turning point radius in a sigmoid curve, and at is an estimated calibrating time-radius point. Advantages of the approach are that growth rates can be compared among growth curves with different turning point radiuses and different starting points, hidden outliers are easily detectable, the method is statistically robust, and heteroscedasticity of the residuals among time points is allowed. The model was implemented with dendrochronological data of 235 Pinus montezumae trees on ten Mexican volcano sites to calculate comparison intervals for the estimated initial relative growth . One site (at the Popocatépetl volcano) stood out, with being 3.9 times the value of the site with the slowest-growing trees. Calculating variance components for the initial relative growth, 34% of the growth variation was found among sites, 31% among trees, and 35% over time. Without the Popocatépetl site, the numbers changed to 7%, 42%, and 51%. Further explanation of differences in growth would need to focus on factors that vary within sites and over time. PMID:25402427
Failure analysis and modeling of a VAXcluster system
NASA Technical Reports Server (NTRS)
Tang, Dong; Iyer, Ravishankar K.; Subramani, Sujatha S.
1990-01-01
This paper discusses the results of a measurement-based analysis of real error data collected from a DEC VAXcluster multicomputer system. In addition to evaluating basic system dependability characteristics such as error and failure distributions and hazard rates for both individual machines and for the VAXcluster, reward models were developed to analyze the impact of failures on the system as a whole. The results show that more than 46 percent of all failures were due to errors in shared resources. This is despite the fact that these errors have a recovery probability greater than 0.99. The hazard rate calculations show that not only errors, but also failures occur in bursts. Approximately 40 percent of all failures occur in bursts and involved multiple machines. This result indicates that correlated failures are significant. Analysis of rewards shows that software errors have the lowest reward (0.05 vs 0.74 for disk errors). The expected reward rate (reliability measure) of the VAXcluster drops to 0.5 in 18 hours for the 7-out-of-7 model and in 80 days for the 3-out-of-7 model.
Error monitoring issues for common channel signaling
NASA Astrophysics Data System (ADS)
Hou, Victor T.; Kant, Krishna; Ramaswami, V.; Wang, Jonathan L.
1994-04-01
Motivated by field data which showed a large number of link changeovers and incidences of link oscillations between in-service and out-of-service states in common channel signaling (CCS) networks, a number of analyses of the link error monitoring procedures in the SS7 protocol were performed by the authors. This paper summarizes the results obtained thus far and include the following: (1) results of an exact analysis of the performance of the error monitoring procedures under both random and bursty errors; (2) a demonstration that there exists a range of error rates within which the error monitoring procedures of SS7 may induce frequent changeovers and changebacks; (3) an analysis of the performance ofthe SS7 level-2 transmission protocol to determine the tolerable error rates within which the delay requirements can be met; (4) a demonstration that the tolerable error rate depends strongly on various link and traffic characteristics, thereby implying that a single set of error monitor parameters will not work well in all situations; (5) some recommendations on a customizable/adaptable scheme of error monitoring with a discussion on their implementability. These issues may be particularly relevant in the presence of anticipated increases in SS7 traffic due to widespread deployment of Advanced Intelligent Network (AIN) and Personal Communications Service (PCS) as well as for developing procedures for high-speed SS7 links currently under consideration by standards bodies.
NASA Technical Reports Server (NTRS)
Warner, Thomas T.; Key, Lawrence E.; Lario, Annette M.
1989-01-01
The effects of horizontal and vertical data resolution, data density, data location, different objective analysis algorithms, and measurement error on mesoscale-forecast accuracy are studied with observing-system simulation experiments. Domain-averaged errors are shown to generally decrease with time. It is found that the vertical distribution of error growth depends on the initial vertical distribution of the error itself. Larger gravity-inertia wave noise is produced in forecasts with coarser vertical data resolution. The use of a low vertical resolution observing system with three data levels leads to more forecast errors than moderate and high vertical resolution observing systems with 8 and 14 data levels. Also, with poor vertical resolution in soundings, the initial and forecast errors are not affected by the horizontal data resolution.
Gildersleeve-Neumann, Christina E; Kester, Ellen S; Davis, Barbara L; Peña, Elizabeth D
2008-07-01
English speech acquisition by typically developing 3- to 4-year-old children with monolingual English was compared to English speech acquisition by typically developing 3- to 4-year-old children with bilingual English-Spanish backgrounds. We predicted that exposure to Spanish would not affect the English phonetic inventory but would increase error frequency and type in bilingual children. Single-word speech samples were collected from 33 children. Phonetically transcribed samples for the 3 groups (monolingual English children, English-Spanish bilingual children who were predominantly exposed to English, and English-Spanish bilingual children with relatively equal exposure to English and Spanish) were compared at 2 time points and for change over time for phonetic inventory, phoneme accuracy, and error pattern frequencies. Children demonstrated similar phonetic inventories. Some bilingual children produced Spanish phonemes in their English and produced few consonant cluster sequences. Bilingual children with relatively equal exposure to English and Spanish averaged more errors than did bilingual children who were predominantly exposed to English. Both bilingual groups showed higher error rates than English-only children overall, particularly for syllable-level error patterns. All language groups decreased in some error patterns, although the ones that decreased were not always the same across language groups. Some group differences of error patterns and accuracy were significant. Vowel error rates did not differ by language group. Exposure to English and Spanish may result in a higher English error rate in typically developing bilinguals, including the application of Spanish phonological properties to English. Slightly higher error rates are likely typical for bilingual preschool-aged children. Change over time at these time points for all 3 groups was similar, suggesting that all will reach an adult-like system in English with exposure and practice.
Antidepressant and antipsychotic medication errors reported to United States poison control centers.
Kamboj, Alisha; Spiller, Henry A; Casavant, Marcel J; Chounthirath, Thitphalak; Hodges, Nichole L; Smith, Gary A
2018-05-08
To investigate unintentional therapeutic medication errors associated with antidepressant and antipsychotic medications in the United States and expand current knowledge on the types of errors commonly associated with these medications. A retrospective analysis of non-health care facility unintentional therapeutic errors associated with antidepressant and antipsychotic medications was conducted using data from the National Poison Data System. From 2000 to 2012, poison control centers received 207 670 calls reporting unintentional therapeutic errors associated with antidepressant or antipsychotic medications that occurred outside of a health care facility, averaging 15 975 errors annually. The rate of antidepressant-related errors increased by 50.6% from 2000 to 2004, decreased by 6.5% from 2004 to 2006, and then increased 13.0% from 2006 to 2012. The rate of errors related to antipsychotic medications increased by 99.7% from 2000 to 2004 and then increased by 8.8% from 2004 to 2012. Overall, 70.1% of reported errors occurred among adults, and 59.3% were among females. The medications most frequently associated with errors were selective serotonin reuptake inhibitors (30.3%), atypical antipsychotics (24.1%), and other types of antidepressants (21.5%). Most medication errors took place when an individual inadvertently took or was given a medication twice (41.0%), inadvertently took someone else's medication (15.6%), or took the wrong medication (15.6%). This study provides a comprehensive overview of non-health care facility unintentional therapeutic errors associated with antidepressant and antipsychotic medications. The frequency and rate of these errors increased significantly from 2000 to 2012. Given that use of these medications is increasing in the US, this study provides important information about the epidemiology of the associated medication errors. Copyright © 2018 John Wiley & Sons, Ltd.
Hypothesis Testing Using Factor Score Regression
Devlieger, Ines; Mayer, Axel; Rosseel, Yves
2015-01-01
In this article, an overview is given of four methods to perform factor score regression (FSR), namely regression FSR, Bartlett FSR, the bias avoiding method of Skrondal and Laake, and the bias correcting method of Croon. The bias correcting method is extended to include a reliable standard error. The four methods are compared with each other and with structural equation modeling (SEM) by using analytic calculations and two Monte Carlo simulation studies to examine their finite sample characteristics. Several performance criteria are used, such as the bias using the unstandardized and standardized parameterization, efficiency, mean square error, standard error bias, type I error rate, and power. The results show that the bias correcting method, with the newly developed standard error, is the only suitable alternative for SEM. While it has a higher standard error bias than SEM, it has a comparable bias, efficiency, mean square error, power, and type I error rate. PMID:29795886
Use of Earth's magnetic field for mitigating gyroscope errors regardless of magnetic perturbation.
Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard
2011-01-01
Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth's magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth's magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment.
Use of Earth’s Magnetic Field for Mitigating Gyroscope Errors Regardless of Magnetic Perturbation
Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard
2011-01-01
Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth’s magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth’s magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment. PMID:22247672
Rizzolo, Daniel; Schmutz, Joel A.; Speakman, John R.
2015-01-01
Environmental conditions can exert a strong influence on the growth and energy demands of chicks. We hypothesized that postnatal growth in a cold, aquatic environment would require a high level of energy metabolism in semiprecocial Red-throated Loon (Gavia stellata) chicks. We measured body-mass growth and daily energy expenditure (DEE) of free-ranging chicks in the Arctic. We used daily gains in body mass and DEE to estimate daily metabolizable energy (DME, kJ day-1) and total metabolizable energy (TME, kJ chick-1). Chicks gained body mass quickly, with a logistic growth rate constant 57% greater than the allometric prediction, yet were at only 60% of adult body mass at fledging. Males grew at a rate similar to that of females but for a slightly longer duration and so reached an asymptotic body mass 23% greater, and tarsus length 8% longer, than that of females. Chick growth performance was similar between first- and second-hatched chicks within broods of 2, which suggests that food availability was not limited. DEE increased in proportion to body mass, and DME peaked at 1,214 kJ day-1 on day 25 posthatching. Over the average 49-day postnatal period, TME was 49.0 MJ, which is within the range of error of the allometric prediction. Parents provided 58.6 MJ as food to meet this energy requirement. Given this chick energy requirement and the range of energy content of prey observed in the chick diet, selecting prey with higher energy content would greatly reduce adult provisioning effort. Red-throated Loon chicks did not have a high postnatal energy requirement, but rather grew quickly and fledged at a small size-with the effect of reducing the length of the postnatal period and, consequently, parental energy investment in chicks.
Shi, Joy; Korsiak, Jill; Roth, Daniel E
2018-03-01
We aimed to demonstrate the use of jackknife residuals to take advantage of the longitudinal nature of available growth data in assessing potential biologically implausible values and outliers. Artificial errors were induced in 5% of length, weight, and head circumference measurements, measured on 1211 participants from the Maternal Vitamin D for Infant Growth (MDIG) trial from birth to 24 months of age. Each child's sex- and age-standardized z-score or raw measurements were regressed as a function of age in child-specific models. Each error responsible for a biologically implausible decrease between a consecutive pair of measurements was identified based on the higher of the two absolute values of jackknife residuals in each pair. In further analyses, outliers were identified as those values beyond fixed cutoffs of the jackknife residuals (e.g., greater than +5 or less than -5 in primary analyses). Kappa, sensitivity, and specificity were calculated over 1000 simulations to assess the ability of the jackknife residual method to detect induced errors and to compare these methods with the use of conditional growth percentiles and conventional cross-sectional methods. Among the induced errors that resulted in a biologically implausible decrease in measurement between two consecutive values, the jackknife residual method identified the correct value in 84.3%-91.5% of these instances when applied to the sex- and age-standardized z-scores, with kappa values ranging from 0.685 to 0.795. Sensitivity and specificity of the jackknife method were higher than those of the conditional growth percentile method, but specificity was lower than for conventional cross-sectional methods. Using jackknife residuals provides a simple method to identify biologically implausible values and outliers in longitudinal child growth data sets in which each child contributes at least 4 serial measurements. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.
[Secular trend of growth in Blumenau, Santa Catarina State].
Soncini, Ana Silveira; Vargas, Deisi Maria; Arena, Mariana Garcia Lopes; Arena, Luiz Fernando Garcia Lopes
2011-01-01
Secular trend of growth refers to any change of the corporal size in determined population group in long periods of time. The objective of this work is to study the secular tendency of growth in natural height among recruits in Blumenau, Santa Catarina State, between the years of 1963 and 2007. This is a transversal, retrospective and analytical study. Young recruits, aged 18 to 20 were chosen as the population. A standardized database was used on individual records with the first 40 records of each year being selected. Data from 1963 to 2007 were collected and separated per decades. A margin of error not higher than 3.5% was used as a demonstration, which resulted in a sample of 600 individuals. The t-test was used to compare the averages of different decades. The results showed an increase of 7 cm in the height of the population in Blumenau in the last 50 years. The positive trend that is occurring in our country in the most recent evaluations can be attributed to better sanitary, economic and social conditions. The secular tendency of growth in height was positive in the municipality of Blumenau. It was found that the population increased 7 cm in the final height in the last 50 years with a growth rate of 0.14 cm/year or 1.4 cm/decade.
Prediction of pilot reserve attention capacity during air-to-air target tracking
NASA Technical Reports Server (NTRS)
Onstott, E. D.; Faulkner, W. H.
1977-01-01
Reserve attention capacity of a pilot was calculated using a pilot model that allocates exclusive model attention according to the ranking of task urgency functions whose variables are tracking error and error rate. The modeled task consisted of tracking a maneuvering target aircraft both vertically and horizontally, and when possible, performing a diverting side task which was simulated by the precise positioning of an electrical stylus and modeled as a task of constant urgency in the attention allocation algorithm. The urgency of the single loop vertical task is simply the magnitude of the vertical tracking error, while the multiloop horizontal task requires a nonlinear urgency measure of error and error rate terms. Comparison of model results with flight simulation data verified the computed model statistics of tracking error of both axes, lateral and longitudinal stick amplitude and rate, and side task episodes. Full data for the simulation tracking statistics as well as the explicit equations and structure of the urgency function multiaxis pilot model are presented.
The Effects of Non-Normality on Type III Error for Comparing Independent Means
ERIC Educational Resources Information Center
Mendes, Mehmet
2007-01-01
The major objective of this study was to investigate the effects of non-normality on Type III error rates for ANOVA F its three commonly recommended parametric counterparts namely Welch, Brown-Forsythe, and Alexander-Govern test. Therefore these tests were compared in terms of Type III error rates across the variety of population distributions,…
NASA Astrophysics Data System (ADS)
Bezan, Scott; Shirani, Shahram
2006-12-01
To reliably transmit video over error-prone channels, the data should be both source and channel coded. When multiple channels are available for transmission, the problem extends to that of partitioning the data across these channels. The condition of transmission channels, however, varies with time. Therefore, the error protection added to the data at one instant of time may not be optimal at the next. In this paper, we propose a method for adaptively adding error correction code in a rate-distortion (RD) optimized manner using rate-compatible punctured convolutional codes to an MJPEG2000 constant rate-coded frame of video. We perform an analysis on the rate-distortion tradeoff of each of the coding units (tiles and packets) in each frame and adapt the error correction code assigned to the unit taking into account the bandwidth and error characteristics of the channels. This method is applied to both single and multiple time-varying channel environments. We compare our method with a basic protection method in which data is either not transmitted, transmitted with no protection, or transmitted with a fixed amount of protection. Simulation results show promising performance for our proposed method.
Fast maximum likelihood estimation of mutation rates using a birth-death process.
Wu, Xiaowei; Zhu, Hongxiao
2015-02-07
Since fluctuation analysis was first introduced by Luria and Delbrück in 1943, it has been widely used to make inference about spontaneous mutation rates in cultured cells. Under certain model assumptions, the probability distribution of the number of mutants that appear in a fluctuation experiment can be derived explicitly, which provides the basis of mutation rate estimation. It has been shown that, among various existing estimators, the maximum likelihood estimator usually demonstrates some desirable properties such as consistency and lower mean squared error. However, its application in real experimental data is often hindered by slow computation of likelihood due to the recursive form of the mutant-count distribution. We propose a fast maximum likelihood estimator of mutation rates, MLE-BD, based on a birth-death process model with non-differential growth assumption. Simulation studies demonstrate that, compared with the conventional maximum likelihood estimator derived from the Luria-Delbrück distribution, MLE-BD achieves substantial improvement on computational speed and is applicable to arbitrarily large number of mutants. In addition, it still retains good accuracy on point estimation. Published by Elsevier Ltd.
Errors in fluid therapy in medical wards.
Mousavi, Maryam; Khalili, Hossein; Dashti-Khavidaki, Simin
2012-04-01
Intravenous fluid therapy remains an essential part of patients' care during hospitalization. There are only few studies that focused on fluid therapy in the hospitalized patients, and there is not any consensus statement about fluid therapy in patients who are hospitalized in medical wards. The aim of the present study was to assess intravenous fluid therapy status and related errors in the patients during the course of hospitalization in the infectious diseases wards of a referral teaching hospital. This study was conducted in the infectious diseases wards of Imam Khomeini Complex Hospital, Tehran, Iran. During a retrospective study, data related to intravenous fluid therapy were collected by two clinical pharmacists of infectious diseases from 2008 to 2010. Intravenous fluid therapy information including indication, type, volume and rate of fluid administration was recorded for each patient. An internal protocol for intravenous fluid therapy was designed based on literature review and available recommendations. The data related to patients' fluid therapy were compared with this protocol. The fluid therapy was considered appropriate if it was compatible with the protocol regarding indication of intravenous fluid therapy, type, electrolyte content and rate of fluid administration. Any mistake in the selection of fluid type, content, volume and rate of administration was considered as intravenous fluid therapy errors. Five hundred and ninety-six of medication errors were detected during the study period in the patients. Overall rate of fluid therapy errors was 1.3 numbers per patient during hospitalization. Errors in the rate of fluid administration (29.8%), incorrect fluid volume calculation (26.5%) and incorrect type of fluid selection (24.6%) were the most common types of errors. The patients' male sex, old age, baseline renal diseases, diabetes co-morbidity, and hospitalization due to endocarditis, HIV infection and sepsis are predisposing factors for the occurrence of fluid therapy errors in the patients. Our result showed that intravenous fluid therapy errors occurred commonly in the hospitalized patients especially in the medical wards. Improvement in knowledge and attention of health-care workers about these errors are essential for preventing of medication errors in aspect of fluid therapy.
Bayes Error Rate Estimation Using Classifier Ensembles
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Ghosh, Joydeep
2003-01-01
The Bayes error rate gives a statistical lower bound on the error achievable for a given classification problem and the associated choice of features. By reliably estimating th is rate, one can assess the usefulness of the feature set that is being used for classification. Moreover, by comparing the accuracy achieved by a given classifier with the Bayes rate, one can quantify how effective that classifier is. Classical approaches for estimating or finding bounds for the Bayes error, in general, yield rather weak results for small sample sizes; unless the problem has some simple characteristics, such as Gaussian class-conditional likelihoods. This article shows how the outputs of a classifier ensemble can be used to provide reliable and easily obtainable estimates of the Bayes error with negligible extra computation. Three methods of varying sophistication are described. First, we present a framework that estimates the Bayes error when multiple classifiers, each providing an estimate of the a posteriori class probabilities, a recombined through averaging. Second, we bolster this approach by adding an information theoretic measure of output correlation to the estimate. Finally, we discuss a more general method that just looks at the class labels indicated by ensem ble members and provides error estimates based on the disagreements among classifiers. The methods are illustrated for artificial data, a difficult four-class problem involving underwater acoustic data, and two problems from the Problem benchmarks. For data sets with known Bayes error, the combiner-based methods introduced in this article outperform existing methods. The estimates obtained by the proposed methods also seem quite reliable for the real-life data sets for which the true Bayes rates are unknown.
Wu, Zhijin; Liu, Dongmei; Sui, Yunxia
2008-02-01
The process of identifying active targets (hits) in high-throughput screening (HTS) usually involves 2 steps: first, removing or adjusting for systematic variation in the measurement process so that extreme values represent strong biological activity instead of systematic biases such as plate effect or edge effect and, second, choosing a meaningful cutoff on the calculated statistic to declare positive compounds. Both false-positive and false-negative errors are inevitable in this process. Common control or estimation of error rates is often based on an assumption of normal distribution of the noise. The error rates in hit detection, especially false-negative rates, are hard to verify because in most assays, only compounds selected in primary screening are followed up in confirmation experiments. In this article, the authors take advantage of a quantitative HTS experiment in which all compounds are tested 42 times over a wide range of 14 concentrations so true positives can be found through a dose-response curve. Using the activity status defined by dose curve, the authors analyzed the effect of various data-processing procedures on the sensitivity and specificity of hit detection, the control of error rate, and hit confirmation. A new summary score is proposed and demonstrated to perform well in hit detection and useful in confirmation rate estimation. In general, adjusting for positional effects is beneficial, but a robust test can prevent overadjustment. Error rates estimated based on normal assumption do not agree with actual error rates, for the tails of noise distribution deviate from normal distribution. However, false discovery rate based on empirically estimated null distribution is very close to observed false discovery proportion.
Outpatient Prescribing Errors and the Impact of Computerized Prescribing
Gandhi, Tejal K; Weingart, Saul N; Seger, Andrew C; Borus, Joshua; Burdick, Elisabeth; Poon, Eric G; Leape, Lucian L; Bates, David W
2005-01-01
Background Medication errors are common among inpatients and many are preventable with computerized prescribing. Relatively little is known about outpatient prescribing errors or the impact of computerized prescribing in this setting. Objective To assess the rates, types, and severity of outpatient prescribing errors and understand the potential impact of computerized prescribing. Design Prospective cohort study in 4 adult primary care practices in Boston using prescription review, patient survey, and chart review to identify medication errors, potential adverse drug events (ADEs) and preventable ADEs. Participants Outpatients over age 18 who received a prescription from 24 participating physicians. Results We screened 1879 prescriptions from 1202 patients, and completed 661 surveys (response rate 55%). Of the prescriptions, 143 (7.6%; 95% confidence interval (CI) 6.4% to 8.8%) contained a prescribing error. Three errors led to preventable ADEs and 62 (43%; 3% of all prescriptions) had potential for patient injury (potential ADEs); 1 was potentially life-threatening (2%) and 15 were serious (24%). Errors in frequency (n=77, 54%) and dose (n=26, 18%) were common. The rates of medication errors and potential ADEs were not significantly different at basic computerized prescribing sites (4.3% vs 11.0%, P=.31; 2.6% vs 4.0%, P=.16) compared to handwritten sites. Advanced checks (including dose and frequency checking) could have prevented 95% of potential ADEs. Conclusions Prescribing errors occurred in 7.6% of outpatient prescriptions and many could have harmed patients. Basic computerized prescribing systems may not be adequate to reduce errors. More advanced systems with dose and frequency checking are likely needed to prevent potentially harmful errors. PMID:16117752
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Anthony, E-mail: anthony.arnold@sesiahs.health.nsw.gov.a; Delaney, Geoff P.; Cassapi, Lynette
Purpose: Radiotherapy is a common treatment for cancer patients. Although incidence of error is low, errors can be severe or affect significant numbers of patients. In addition, errors will often not manifest until long periods after treatment. This study describes the development of an incident reporting tool that allows categorical analysis and time trend reporting, covering first 3 years of use. Methods and Materials: A radiotherapy-specific incident analysis system was established. Staff members were encouraged to report actual errors and near-miss events detected at prescription, simulation, planning, or treatment phases of radiotherapy delivery. Trend reporting was reviewed monthly. Results: Reportsmore » were analyzed for the first 3 years of operation (May 2004-2007). A total of 688 reports was received during the study period. The actual error rate was 0.2% per treatment episode. During the study period, the actual error rates reduced significantly from 1% per year to 0.3% per year (p < 0.001), as did the total event report rates (p < 0.0001). There were 3.5 times as many near misses reported compared with actual errors. Conclusions: This system has allowed real-time analysis of events within a radiation oncology department to a reduced error rate through focus on learning and prevention from the near-miss reports. Plans are underway to develop this reporting tool for Australia and New Zealand.« less
Syndromic surveillance for health information system failures: a feasibility study.
Ong, Mei-Sing; Magrabi, Farah; Coiera, Enrico
2013-05-01
To explore the applicability of a syndromic surveillance method to the early detection of health information technology (HIT) system failures. A syndromic surveillance system was developed to monitor a laboratory information system at a tertiary hospital. Four indices were monitored: (1) total laboratory records being created; (2) total records with missing results; (3) average serum potassium results; and (4) total duplicated tests on a patient. The goal was to detect HIT system failures causing: data loss at the record level; data loss at the field level; erroneous data; and unintended duplication of data. Time-series models of the indices were constructed, and statistical process control charts were used to detect unexpected behaviors. The ability of the models to detect HIT system failures was evaluated using simulated failures, each lasting for 24 h, with error rates ranging from 1% to 35%. In detecting data loss at the record level, the model achieved a sensitivity of 0.26 when the simulated error rate was 1%, while maintaining a specificity of 0.98. Detection performance improved with increasing error rates, achieving a perfect sensitivity when the error rate was 35%. In the detection of missing results, erroneous serum potassium results and unintended repetition of tests, perfect sensitivity was attained when the error rate was as small as 5%. Decreasing the error rate to 1% resulted in a drop in sensitivity to 0.65-0.85. Syndromic surveillance methods can potentially be applied to monitor HIT systems, to facilitate the early detection of failures.
Vogel, Erin A.; Billups, Sarah J.; Herner, Sheryl J.
2016-01-01
Summary Objective The purpose of this study was to compare the effectiveness of an outpatient renal dose adjustment alert via a computerized provider order entry (CPOE) clinical decision support system (CDSS) versus a CDSS with alerts made to dispensing pharmacists. Methods This was a retrospective analysis of patients with renal impairment and 30 medications that are contraindicated or require dose-adjustment in such patients. The primary outcome was the rate of renal dosing errors for study medications that were dispensed between August and December 2013, when a pharmacist-based CDSS was in place, versus August through December 2014, when a prescriber-based CDSS was in place. A dosing error was defined as a prescription for one of the study medications dispensed to a patient where the medication was contraindicated or improperly dosed based on the patient’s renal function. The denominator was all prescriptions for the study medications dispensed during each respective study period. Results During the pharmacist- and prescriber-based CDSS study periods, 49,054 and 50,678 prescriptions, respectively, were dispensed for one of the included medications. Of these, 878 (1.8%) and 758 (1.5%) prescriptions were dispensed to patients with renal impairment in the respective study periods. Patients in each group were similar with respect to age, sex, and renal function stage. Overall, the five-month error rate was 0.38%. Error rates were similar between the two groups: 0.36% and 0.40% in the pharmacist- and prescriber-based CDSS, respectively (p=0.523). The medication with the highest error rate was dofetilide (0.51% overall) while the medications with the lowest error rate were dabigatran, fondaparinux, and spironolactone (0.00% overall). Conclusions Prescriber- and pharmacist-based CDSS provided comparable, low rates of potential medication errors. Future studies should be undertaken to examine patient benefits of the prescriber-based CDSS. PMID:27466041
The Importance of Semi-Major Axis Knowledge in the Determination of Near-Circular Orbits
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Schiesser, Emil R.
1998-01-01
Modem orbit determination has mostly been accomplished using Cartesian coordinates. This usage has carried over in recent years to the use of GPS for satellite orbit determination. The unprecedented positioning accuracy of GPS has tended to focus attention more on the system's capability to locate the spacecraft's location at a particular epoch than on its accuracy in determination of the orbit, per se. As is well-known, the latter depends on a coordinated knowledge of position, velocity, and the correlation between their errors. Failure to determine a properly coordinated position/velocity state vector at a given epoch can lead to an epoch state that does not propagate well, and/or may not be usable for the execution of orbit adjustment maneuvers. For the quite common case of near-circular orbits, the degree to which position and velocity estimates are properly coordinated is largely captured by the error in semi-major axis (SMA) they jointly produce. Figure 1 depicts the relationships among radius error, speed error, and their correlation which exist for a typical low altitude Earth orbit. Two familiar consequences are the relationship Figure 1 shows are the following: (1) downrange position error grows at the per orbit rate of 3(pi) times the SMA error; (2) a velocity change imparted to the orbit will have an error of (pi) divided by the orbit period times the SMA error. A less familiar consequence occurs in the problem of initializing the covariance matrix for a sequential orbit determination filter. An initial covariance consistent with orbital dynamics should be used if the covariance is to propagate well. Properly accounting for the SMA error of the initial state in the construction of the initial covariance accomplishes half of this objective, by specifying the partition of the covariance corresponding to down-track position and radial velocity errors. The remainder of the in-plane covariance partition may be specified in terms of the flight path angle error of the initial state. Figure 2 illustrates the effect of properly and not properly initializing a covariance. This figure was produced by propagating the covariance shown on the plot, without process noise, in a circular low Earth orbit whose period is 5828.5 seconds. The upper subplot, in which the proper relationships among position, velocity, and their correlation has been used, shows overall error growth, in terms of the standard deviations of the inertial position coordinates, of about half of the lower subplot, whose initial covariance was based on other considerations.
NASA Astrophysics Data System (ADS)
Mohammad, F. G.; Granett, B. R.; Guzzo, L.; Bel, J.; Branchini, E.; de la Torre, S.; Moscardini, L.; Peacock, J. A.; Bolzonella, M.; Garilli, B.; Scodeggio, M.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Coupon, J.; De Lucia, G.; Ilbert, O.; Moutard, T.
2018-02-01
We used the VIMOS Public Extragalactic Redshift Survey (VIPERS) final data release (PDR-2) to investigate the performance of colour-selected populations of galaxies as tracers of linear large-scale motions. We empirically selected volume-limited samples of blue and red galaxies as to minimise the systematic error on the estimate of the growth rate of structure fσ8 from the anisotropy of the two-point correlation function. To this end, rather than rigidly splitting the sample into two colour classes we defined the red or blue fractional contribution of each object through a weight based on the (U - V ) colour distribution. Using mock surveys that are designed to reproduce the observed properties of VIPERS galaxies, we find the systematic error in recovering the fiducial value of fσ8 to be minimised when using a volume-limited sample of luminous blue galaxies. We modelled non-linear corrections via the Scoccimarro extension of the Kaiser model (with updated fitting formulae for the velocity power spectra), finding systematic errors on fσ8 of below 1-2%, using scales as small as 5 h-1 Mpc. We interpret this result as indicating that selection of luminous blue galaxies maximises the fraction that are central objects in their dark matter haloes; this in turn minimises the contribution to the measured ξ(rp,π) from the 1-halo term, which is dominated by non-linear motions. The gain is inferior if one uses the full magnitude-limited sample of blue objects, consistent with the presence of a significant fraction of blue, fainter satellites dominated by non-streaming, orbital velocities. We measured a value of fσ8 = 0.45 ± 0.11 over the single redshift range 0.6 ≤ z ≤ 1.0, corresponding to an effective redshift for the blue galaxies ⟨z⟩=0.85. Including in the likelihood the potential extra information contained in the blue-red galaxy cross-correlation function does not lead to an appreciable improvement in the error bars, while it increases the systematic error. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://www.vipers.inaf.it/
NASA Technical Reports Server (NTRS)
Klassen, S. P.; Ritchie, G.; Frantz, J. M.; Pinnock, D.; Bugbee, B.
2003-01-01
Cumulative absorbed radiation is highly correlated with crop biomass and yield. In this chapter we describe the use of a digital camera and commercial imaging software for estimating daily radiation capture, canopy photosynthesis, and relative growth rate. Digital images were used to determine percentage of ground cover of lettuce (Lactuca sativa L.) communities grown at five temperatures. Plants were grown in a steady-state, 10-chamber CO2 gas exchange system, which was used to measure canopy photosynthesis and daily carbon gain. Daily measurements of percentage of ground cover were highly correlated with daily measurements of both absorbed radiation (r(sup 2) = 0.99) and daily carbon gain (r(sup 2) = 0.99). Differences among temperature treatments indicated that these relationships were influenced by leaf angle, leaf area index, and chlorophyll content. An analysis of the daily images also provided good estimates of relative growth rates, which were verified by gas exchange measurements of daily carbon gain. In a separate study we found that images taken at hourly intervals were effective for monitoring real-time growth. Our data suggests that hourly images can be used for early detection of plant stress. Applications, limitations, and potential errors are discussed. We have long known that crop yield is determined by the efficiency of four component processes: (i) radiation capture, (ii) quantum yield, (iii) carbon use efficiency, and (iv) carbon partitioning efficiency (Charles-Edwards, 1982; Penning de Vries & van Laar, 1982; Thornley, 1976). More than one-half century ago, Watson (1947, 1952) showed that variation in radiation capture accounted for almost all of the variation in yield between sites in temperate regions, because the three other components are relatively constant when the crop is not severely stressed. More recently, Monteith (1977) reviewed the literature on the close correlation between radiation capture and yield. Bugbee and Monje (1992) demonstrated the close relationship between absorbed radiation and yield in an optimal environment.
Publication bias was not a good reason to discourage trials with low power.
Borm, George F; den Heijer, Martin; Zielhuis, Gerhard A
2009-01-01
The objective was to investigate whether it is justified to discourage trials with less than 80% power. Trials with low power are unlikely to produce conclusive results, but their findings can be used by pooling then in a meta-analysis. However, such an analysis may be biased, because trials with low power are likely to have a nonsignificant result and are less likely to be published than trials with a statistically significant outcome. We simulated several series of studies with varying degrees of publication bias and then calculated the "real" one-sided type I error and the bias of meta-analyses with a "nominal" error rate (significance level) of 2.5%. In single trials, in which heterogeneity was set at zero, low, and high, the error rates were 2.3%, 4.7%, and 16.5%, respectively. In multiple trials with 80%-90% power and a publication rate of 90% when the results were nonsignificant, the error rates could be as high as 5.1%. When the power was 50% and the publication rate of non-significant results was 60%, the error rates did not exceed 5.3%, whereas the bias was at most 15% of the difference used in the power calculation. The impact of publication bias does not warrant the exclusion of trials with 50% power.
Age-related variation in genetic control of height growth in Douglas-fir.
Namkoong, G; Usanis, R A; Silen, R R
1972-01-01
The development of genetic variances in height growth of Douglas-fir over a 53-year period is analyzed and found to fall into three periods. In the juvenile period, variances in environmental error increase logarithmically, genetic variance within populations exists at moderate levels, and variance among populations is low but increasing. In the early reproductive period, the response to environmental sources of error variance is restricted, genetic variance within populations disappears, and populational differences strongly emerge but do not increase as expected. In the later period, environmental error again increases rapidly, but genetic variance within populations does not reappear and population differences are maintained at about the same level as established in the early reproductive period. The change between the juvenile and early reproductive periods is perhaps associated with the onset of ecological dominance and significant allocations of energy to reproduction.
Medication Errors in Vietnamese Hospitals: Prevalence, Potential Outcome and Associated Factors
Nguyen, Huong-Thao; Nguyen, Tuan-Dung; van den Heuvel, Edwin R.; Haaijer-Ruskamp, Flora M.; Taxis, Katja
2015-01-01
Background Evidence from developed countries showed that medication errors are common and harmful. Little is known about medication errors in resource-restricted settings, including Vietnam. Objectives To determine the prevalence and potential clinical outcome of medication preparation and administration errors, and to identify factors associated with errors. Methods This was a prospective study conducted on six wards in two urban public hospitals in Vietnam. Data of preparation and administration errors of oral and intravenous medications was collected by direct observation, 12 hours per day on 7 consecutive days, on each ward. Multivariable logistic regression was applied to identify factors contributing to errors. Results In total, 2060 out of 5271 doses had at least one error. The error rate was 39.1% (95% confidence interval 37.8%- 40.4%). Experts judged potential clinical outcomes as minor, moderate, and severe in 72 (1.4%), 1806 (34.2%) and 182 (3.5%) doses. Factors associated with errors were drug characteristics (administration route, complexity of preparation, drug class; all p values < 0.001), and administration time (drug round, p = 0.023; day of the week, p = 0.024). Several interactions between these factors were also significant. Nurse experience was not significant. Higher error rates were observed for intravenous medications involving complex preparation procedures and for anti-infective drugs. Slightly lower medication error rates were observed during afternoon rounds compared to other rounds. Conclusions Potentially clinically relevant errors occurred in more than a third of all medications in this large study conducted in a resource-restricted setting. Educational interventions, focusing on intravenous medications with complex preparation procedure, particularly antibiotics, are likely to improve patient safety. PMID:26383873
Suppressing magnetic island growth by resonant magnetic perturbation
NASA Astrophysics Data System (ADS)
Yu, Q.; Günter, S.; Lackner, K.
2018-05-01
The effect of externally applied resonant magnetic perturbations (RMPs) on the growth of magnetic islands is investigated based on two-fluid equations. It is found that if the local bi-normal electron fluid velocity at the resonant surface is sufficiently large, static RMPs of the same helicity and of moderate amplitude can suppress the growth of magnetic islands in high-temperature plasmas. These islands will otherwise grow, driven by an unfavorable plasma current density profile and bootstrap current perturbation. These results indicate that the error field can stabilize island growth, if the error field amplitude is not too large and the local bi-normal electron fluid velocity is not too low. They also indicate that applied rotating RMPs with an appropriate frequency can be utilized to suppress island growth in high-temperature plasmas, even for a low bi-normal electron fluid velocity. A significant change in the local equilibrium plasma current density gradient by small amplitude RMPs is found for realistic plasma parameters, which are important for the island stability and are expected to be more important for fusion reactors with low plasma resistivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, R. V.; Likhachev, O. A.; Jacobs, J. W.
Theory and experiments are reported that explore the behaviour of the Rayleigh–Taylor instability initiated with a diffuse interface. Experiments are performed in which an interface between two gases of differing density is made unstable by acceleration generated by a rarefaction wave. Well-controlled, diffuse, two-dimensional and three-dimensional, single-mode perturbations are generated by oscillating the gases either side to side, or vertically for the three-dimensional perturbations. The puncturing of a diaphragm separating a vacuum tank beneath the test section generates a rarefaction wave that travels upwards and accelerates the interface downwards. This rarefaction wave generates a large, but non-constant, acceleration of the order ofmore » $$1000g_{0}$$, where$$g_{0}$$is the acceleration due to gravity. Initial interface thicknesses are measured using a Rayleigh scattering diagnostic and the instability is visualized using planar laser-induced Mie scattering. Growth rates agree well with theoretical values, and with the inviscid, dynamic diffusion model of Duffet al. (Phys. Fluids, vol. 5, 1962, pp. 417–425) when diffusion thickness is accounted for, and the acceleration is weighted using inviscid Rayleigh–Taylor theory. The linear stability formulation of Chandrasekhar (Proc. Camb. Phil. Soc., vol. 51, 1955, pp. 162–178) is solved numerically with an error function diffusion profile using the Riccati method. This technique exhibits good agreement with the dynamic diffusion model of Duffet al. for small wavenumbers, but produces larger growth rates for large-wavenumber perturbations. Asymptotic analysis shows a$$1/k^{2}$$decay in growth rates as$$k\\rightarrow \\infty$$for large-wavenumber perturbations.« less
van Mantgem, P.J.; Stephenson, N.L.
2005-01-01
1 We assess the use of simple, size-based matrix population models for projecting population trends for six coniferous tree species in the Sierra Nevada, California. We used demographic data from 16 673 trees in 15 permanent plots to create 17 separate time-invariant, density-independent population projection models, and determined differences between trends projected from initial surveys with a 5-year interval and observed data during two subsequent 5-year time steps. 2 We detected departures from the assumptions of the matrix modelling approach in terms of strong growth autocorrelations. We also found evidence of observation errors for measurements of tree growth and, to a more limited degree, recruitment. Loglinear analysis provided evidence of significant temporal variation in demographic rates for only two of the 17 populations. 3 Total population sizes were strongly predicted by model projections, although population dynamics were dominated by carryover from the previous 5-year time step (i.e. there were few cases of recruitment or death). Fractional changes to overall population sizes were less well predicted. Compared with a null model and a simple demographic model lacking size structure, matrix model projections were better able to predict total population sizes, although the differences were not statistically significant. Matrix model projections were also able to predict short-term rates of survival, growth and recruitment. Mortality frequencies were not well predicted. 4 Our results suggest that simple size-structured models can accurately project future short-term changes for some tree populations. However, not all populations were well predicted and these simple models would probably become more inaccurate over longer projection intervals. The predictive ability of these models would also be limited by disturbance or other events that destabilize demographic rates. ?? 2005 British Ecological Society.
Growth rates and variances of unexploited wolf populations in dynamic equilibria
Mech, L. David; Fieberg, John
2015-01-01
Several states have begun harvesting gray wolves (Canis lupus), and these states and various European countries are closely monitoring their wolf populations. To provide appropriate perspective for determining unusual or extreme fluctuations in their managed wolf populations, we analyzed natural, long-term, wolf-population-density trajectories totaling 130 years of data from 3 areas: Isle Royale National Park in Lake Superior, Michigan, USA; the east-central Superior National Forest in northeastern Minnesota, USA; and Denali National Park, Alaska, USA. Ratios between minimum and maximum annual sizes for 2 mainland populations (n = 28 and 46 yr) varied from 2.5–2.8, whereas for Isle Royale (n = 56 yr), the ratio was 6.3. The interquartile range (25th percentile, 75th percentile) for annual growth rates, Nt+1/Nt, was (0.88, 1.14), (0.92, 1.11), and (0.86, 1.12) for Denali, Superior National Forest, and Isle Royale respectively. We fit a density-independent model and a Ricker model to each time series, and in both cases we considered the potential for observation error. Mean growth rates from the density-independent model were close to 0 for all 3 populations, with 95% credible intervals including 0. We view the estimated model parameters, including those describing annual variability or process variance, as providing useful summaries of the trajectories of these populations. The estimates of these natural wolf population parameters can serve as benchmarks for comparison with those of recovering wolf populations. Because our study populations were all from circumscribed areas, fluctuations in them represent fluctuations in densities (i.e., changes in numbers are not confounded by changes in occupied area as would be the case with populations expanding their range, as are wolf populations in many states).
Morgan, R. V.; Likhachev, O. A.; Jacobs, J. W.
2016-02-15
Theory and experiments are reported that explore the behaviour of the Rayleigh–Taylor instability initiated with a diffuse interface. Experiments are performed in which an interface between two gases of differing density is made unstable by acceleration generated by a rarefaction wave. Well-controlled, diffuse, two-dimensional and three-dimensional, single-mode perturbations are generated by oscillating the gases either side to side, or vertically for the three-dimensional perturbations. The puncturing of a diaphragm separating a vacuum tank beneath the test section generates a rarefaction wave that travels upwards and accelerates the interface downwards. This rarefaction wave generates a large, but non-constant, acceleration of the order ofmore » $$1000g_{0}$$, where$$g_{0}$$is the acceleration due to gravity. Initial interface thicknesses are measured using a Rayleigh scattering diagnostic and the instability is visualized using planar laser-induced Mie scattering. Growth rates agree well with theoretical values, and with the inviscid, dynamic diffusion model of Duffet al. (Phys. Fluids, vol. 5, 1962, pp. 417–425) when diffusion thickness is accounted for, and the acceleration is weighted using inviscid Rayleigh–Taylor theory. The linear stability formulation of Chandrasekhar (Proc. Camb. Phil. Soc., vol. 51, 1955, pp. 162–178) is solved numerically with an error function diffusion profile using the Riccati method. This technique exhibits good agreement with the dynamic diffusion model of Duffet al. for small wavenumbers, but produces larger growth rates for large-wavenumber perturbations. Asymptotic analysis shows a$$1/k^{2}$$decay in growth rates as$$k\\rightarrow \\infty$$for large-wavenumber perturbations.« less
[Validation of a method for notifying and monitoring medication errors in pediatrics].
Guerrero-Aznar, M D; Jiménez-Mesa, E; Cotrina-Luque, J; Villalba-Moreno, A; Cumplido-Corbacho, R; Fernández-Fernández, L
2014-12-01
To analyze the impact of a multidisciplinary and decentralized safety committee in the pediatric management unit, and the joint implementation of a computing network application for reporting medication errors, monitoring the follow-up of the errors, and an analysis of the improvements introduced. An observational, descriptive, cross-sectional, pre-post intervention study was performed. An analysis was made of medication errors reported to the central safety committee in the twelve months prior to introduction, and those reported to the decentralized safety committee in the management unit in the nine months after implementation, using the computer application, and the strategies generated by the analysis of reported errors. Number of reported errors/10,000 days of stay, number of reported errors with harm per 10,000 days of stay, types of error, categories based on severity, stage of the process, and groups involved in the notification of medication errors. Reported medication errors increased 4.6 -fold, from 7.6 notifications of medication errors per 10,000 days of stay in the pre-intervention period to 36 in the post-intervention, rate ratio 0.21 (95% CI; 0.11-0.39) (P<.001). The medication errors with harm or requiring monitoring reported per 10,000 days of stay, was virtually unchanged from one period to the other ratio rate 0,77 (95% IC; 0,31-1,91) (P>.05). The notification of potential errors or errors without harm per 10,000 days of stay increased 17.4-fold (rate ratio 0.005., 95% CI; 0.001-0.026, P<.001). The increase in medication errors notified in the post-intervention period is a reflection of an increase in the motivation of health professionals to report errors through this new method. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopan, O; Kalet, A; Smith, W
2016-06-15
Purpose: A standard tool for ensuring the quality of radiation therapy treatments is the initial physics plan review. However, little is known about its performance in practice. The goal of this study is to measure the effectiveness of physics plan review by introducing simulated errors into “mock” treatment plans and measuring the performance of plan review by physicists. Methods: We generated six mock treatment plans containing multiple errors. These errors were based on incident learning system data both within the department and internationally (SAFRON). These errors were scored for severity and frequency. Those with the highest scores were included inmore » the simulations (13 errors total). Observer bias was minimized using a multiple co-correlated distractor approach. Eight physicists reviewed these plans for errors, with each physicist reviewing, on average, 3/6 plans. The confidence interval for the proportion of errors detected was computed using the Wilson score interval. Results: Simulated errors were detected in 65% of reviews [51–75%] (95% confidence interval [CI] in brackets). The following error scenarios had the highest detection rates: incorrect isocenter in DRRs/CBCT (91% [73–98%]) and a planned dose different from the prescribed dose (100% [61–100%]). Errors with low detection rates involved incorrect field parameters in record and verify system (38%, [18–61%]) and incorrect isocenter localization in planning system (29% [8–64%]). Though pre-treatment QA failure was reliably identified (100%), less than 20% of participants reported the error that caused the failure. Conclusion: This is one of the first quantitative studies of error detection. Although physics plan review is a key safety measure and can identify some errors with high fidelity, others errors are more challenging to detect. This data will guide future work on standardization and automation. Creating new checks or improving existing ones (i.e., via automation) will help in detecting those errors with low detection rates.« less
Graf, Alexandra C; Bauer, Peter
2011-06-30
We calculate the maximum type 1 error rate of the pre-planned conventional fixed sample size test for comparing the means of independent normal distributions (with common known variance) which can be yielded when sample size and allocation rate to the treatment arms can be modified in an interim analysis. Thereby it is assumed that the experimenter fully exploits knowledge of the unblinded interim estimates of the treatment effects in order to maximize the conditional type 1 error rate. The 'worst-case' strategies require knowledge of the unknown common treatment effect under the null hypothesis. Although this is a rather hypothetical scenario it may be approached in practice when using a standard control treatment for which precise estimates are available from historical data. The maximum inflation of the type 1 error rate is substantially larger than derived by Proschan and Hunsberger (Biometrics 1995; 51:1315-1324) for design modifications applying balanced samples before and after the interim analysis. Corresponding upper limits for the maximum type 1 error rate are calculated for a number of situations arising from practical considerations (e.g. restricting the maximum sample size, not allowing sample size to decrease, allowing only increase in the sample size in the experimental treatment). The application is discussed for a motivating example. Copyright © 2011 John Wiley & Sons, Ltd.
Classification of echolocation clicks from odontocetes in the Southern California Bight.
Roch, Marie A; Klinck, Holger; Baumann-Pickering, Simone; Mellinger, David K; Qui, Simon; Soldevilla, Melissa S; Hildebrand, John A
2011-01-01
This study presents a system for classifying echolocation clicks of six species of odontocetes in the Southern California Bight: Visually confirmed bottlenose dolphins, short- and long-beaked common dolphins, Pacific white-sided dolphins, Risso's dolphins, and presumed Cuvier's beaked whales. Echolocation clicks are represented by cepstral feature vectors that are classified by Gaussian mixture models. A randomized cross-validation experiment is designed to provide conditions similar to those found in a field-deployed system. To prevent matched conditions from inappropriately lowering the error rate, echolocation clicks associated with a single sighting are never split across the training and test data. Sightings are randomly permuted before assignment to folds in the experiment. This allows different combinations of the training and test data to be used while keeping data from each sighting entirely in the training or test set. The system achieves a mean error rate of 22% across 100 randomized three-fold cross-validation experiments. Four of the six species had mean error rates lower than the overall mean, with the presumed Cuvier's beaked whale clicks showing the best performance (<2% error rate). Long-beaked common and bottlenose dolphins proved the most difficult to classify, with mean error rates of 53% and 68%, respectively.
Comparison of disagreement and error rates for three types of interdepartmental consultations.
Renshaw, Andrew A; Gould, Edwin W
2005-12-01
Previous studies have documented a relatively high rate of disagreement for interdepartmental consultations, but follow-up is limited. We reviewed the results of 3 types of interdepartmental consultations in our hospital during a 2-year period, including 328 incoming, 928 pathologist-generated outgoing, and 227 patient- or clinician-generated outgoing consults. The disagreement rate was significantly higher for incoming consults (10.7%) than for outgoing pathologist-generated consults (5.9%) (P = .06). Disagreement rates for outgoing patient- or clinician-generated consults were not significantly different from either other type (7.9%). Additional consultation, biopsy, or testing follow-up was available for 19 (54%) of 35, 14 (25%) of 55, and 6 (33%) of 18 incoming, outgoing pathologist-generated, and outgoing patient- or clinician-generated consults with disagreements, respectively; the percentage of errors varied widely (15/19 [79%], 8/14 [57%], and 2/6 [33%], respectively), but differences were not significant (P >.05 for each). Review of the individual errors revealed specific diagnostic areas in which improvement in performance might be made. Disagreement rates for interdepartmental consultation ranged from 5.9% to 10.7%, but only 33% to 79% represented errors. Additional consultation, tissue, and testing results can aid in distinguishing disagreements from errors.
Error-rate prediction for programmable circuits: methodology, tools and studied cases
NASA Astrophysics Data System (ADS)
Velazco, Raoul
2013-05-01
This work presents an approach to predict the error rates due to Single Event Upsets (SEU) occurring in programmable circuits as a consequence of the impact or energetic particles present in the environment the circuits operate. For a chosen application, the error-rate is predicted by combining the results obtained from radiation ground testing and the results of fault injection campaigns performed off-beam during which huge numbers of SEUs are injected during the execution of the studied application. The goal of this strategy is to obtain accurate results about different applications' error rates, without using particle accelerator facilities, thus significantly reducing the cost of the sensitivity evaluation. As a case study, this methodology was applied a complex processor, the Power PC 7448 executing a program issued from a real space application and a crypto-processor application implemented in an SRAM-based FPGA and accepted to be embedded in the payload of a scientific satellite of NASA. The accuracy of predicted error rates was confirmed by comparing, for the same circuit and application, predictions with measures issued from radiation ground testing performed at the cyclotron Cyclone cyclotron of HIF (Heavy Ion Facility) of Louvain-la-Neuve (Belgium).
Resin distribution in second-growth ponderosa pine
B.H. Paul
1955-01-01
In a study of specific gravity of second-growth ponderosa pine, there was visible evidence of resin in a part of the specific gravity specimens. Each specimen contained 10 annual growth rings in cross sections taken at 4 heights in the merchantable length of the trees. Since the presence of resin introduced an uncertain amount of error in the specific gravity values,...
Ronald E. McRoberts
2005-01-01
Uncertainty in model-based predictions of individual tree diameter growth is attributed to three sources: measurement error for predictor variables, residual variability around model predictions, and uncertainty in model parameter estimates. Monte Carlo simulations are used to propagate the uncertainty from the three sources through a set of diameter growth models to...
Semiclassical Dynamicswith Exponentially Small Error Estimates
NASA Astrophysics Data System (ADS)
Hagedorn, George A.; Joye, Alain
We construct approximate solutions to the time-dependent Schrödingerequation
NASA Astrophysics Data System (ADS)
Zhang, Kuiyuan; Umehara, Shigehiro; Yamaguchi, Junki; Furuta, Jun; Kobayashi, Kazutoshi
2016-08-01
This paper analyzes how body bias and BOX region thickness affect soft error rates in 65-nm SOTB (Silicon on Thin BOX) and 28-nm UTBB (Ultra Thin Body and BOX) FD-SOI processes. Soft errors are induced by alpha-particle and neutron irradiation and the results are then analyzed by Monte Carlo based simulation using PHITS-TCAD. The alpha-particle-induced single event upset (SEU) cross-section and neutron-induced soft error rate (SER) obtained by simulation are consistent with measurement results. We clarify that SERs decreased in response to an increase in the BOX thickness for SOTB while SERs in UTBB are independent of BOX thickness. We also discover SOTB develops a higher tolerance to soft errors when reverse body bias is applied while UTBB become more susceptible.
Effectiveness of Toyota process redesign in reducing thyroid gland fine-needle aspiration error.
Raab, Stephen S; Grzybicki, Dana Marie; Sudilovsky, Daniel; Balassanian, Ronald; Janosky, Janine E; Vrbin, Colleen M
2006-10-01
Our objective was to determine whether the Toyota Production System process redesign resulted in diagnostic error reduction for patients who underwent cytologic evaluation of thyroid nodules. In this longitudinal, nonconcurrent cohort study, we compared the diagnostic error frequency of a thyroid aspiration service before and after implementation of error reduction initiatives consisting of adoption of a standardized diagnostic terminology scheme and an immediate interpretation service. A total of 2,424 patients underwent aspiration. Following terminology standardization, the false-negative rate decreased from 41.8% to 19.1% (P = .006), the specimen nondiagnostic rate increased from 5.8% to 19.8% (P < .001), and the sensitivity increased from 70.2% to 90.6% (P < .001). Cases with an immediate interpretation had a lower noninterpretable specimen rate than those without immediate interpretation (P < .001). Toyota process change led to significantly fewer diagnostic errors for patients who underwent thyroid fine-needle aspiration.
Continuous quantum error correction for non-Markovian decoherence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oreshkov, Ognyan; Brun, Todd A.; Communication Sciences Institute, University of Southern California, Los Angeles, California 90089
2007-08-15
We study the effect of continuous quantum error correction in the case where each qubit in a codeword is subject to a general Hamiltonian interaction with an independent bath. We first consider the scheme in the case of a trivial single-qubit code, which provides useful insights into the workings of continuous error correction and the difference between Markovian and non-Markovian decoherence. We then study the model of a bit-flip code with each qubit coupled to an independent bath qubit and subject to continuous correction, and find its solution. We show that for sufficiently large error-correction rates, the encoded state approximatelymore » follows an evolution of the type of a single decohering qubit, but with an effectively decreased coupling constant. The factor by which the coupling constant is decreased scales quadratically with the error-correction rate. This is compared to the case of Markovian noise, where the decoherence rate is effectively decreased by a factor which scales only linearly with the rate of error correction. The quadratic enhancement depends on the existence of a Zeno regime in the Hamiltonian evolution which is absent in purely Markovian dynamics. We analyze the range of validity of this result and identify two relevant time scales. Finally, we extend the result to more general codes and argue that the performance of continuous error correction will exhibit the same qualitative characteristics.« less
Olson, Stephen M; Hussaini, Mohammad; Lewis, James S
2011-05-01
Frozen section analysis is an essential tool for assessing margins intra-operatively to assure complete resection. Many institutions evaluate surgical defect edge tissue provided by the surgeon after the main lesion has been removed. With the increasing use of transoral laser microsurgery, this method is becoming even more prevalent. We sought to evaluate error rates at our large academic institution and to see if sampling errors could be reduced by the simple method change of taking an additional third section on these specimens. All head and neck tumor resection cases from January 2005 through August 2008 with margins evaluated by frozen section were identified by database search. These cases were analyzed by cutting two levels during frozen section and a third permanent section later. All resection cases from August 2008 through July 2009 were identified as well. These were analyzed by cutting three levels during frozen section (the third a 'much deeper' level) and a fourth permanent section later. Error rates for both of these periods were determined. Errors were separated into sampling and interpretation types. There were 4976 total frozen section specimens from 848 patients. The overall error rate was 2.4% for all frozen sections where just two levels were evaluated and was 2.5% when three levels were evaluated (P=0.67). The sampling error rate was 1.6% for two-level sectioning and 1.2% for three-level sectioning (P=0.42). However, when considering only the frozen section cases where tumor was ultimately identified (either at the time of frozen section or on permanent sections) the sampling error rate for two-level sectioning was 15.3 versus 7.4% for three-level sectioning. This difference was statistically significant (P=0.006). Cutting a single additional 'deeper' level at the time of frozen section identifies more tumor-bearing specimens and may reduce the number of sampling errors.
Global Vertical Rates from VLBl
NASA Technical Reports Server (NTRS)
Ma, Chopo; MacMillan, D.; Petrov, L.
2003-01-01
The analysis of global VLBI observations provides vertical rates for 50 sites with formal errors less than 2 mm/yr and median formal error of 0.4 mm/yr. These sites are largely in Europe and North America with a few others in east Asia, Australia, South America and South Africa. The time interval of observations is up to 20 years. The error of the velocity reference frame is less than 0.5 mm/yr, but results from several sites with observations from more than one antenna suggest that the estimated vertical rates may have temporal variations or non-geophysical components. Comparisons with GPS rates and corresponding site position time series will be discussed.
Component Analysis of Errors on PERSIANN Precipitation Estimates over Urmia Lake Basin, IRAN
NASA Astrophysics Data System (ADS)
Ghajarnia, N.; Daneshkar Arasteh, P.; Liaghat, A. M.; Araghinejad, S.
2016-12-01
In this study, PERSIANN daily dataset is evaluated from 2000 to 2011 in 69 pixels over Urmia Lake basin in northwest of Iran. Different analytical approaches and indexes are used to examine PERSIANN precision in detection and estimation of rainfall rate. The residuals are decomposed into Hit, Miss and FA estimation biases while continues decomposition of systematic and random error components are also analyzed seasonally and categorically. New interpretation of estimation accuracy named "reliability on PERSIANN estimations" is introduced while the changing manners of existing categorical/statistical measures and error components are also seasonally analyzed over different rainfall rate categories. This study yields new insights into the nature of PERSIANN errors over Urmia lake basin as a semi-arid region in the middle-east, including the followings: - The analyzed contingency table indexes indicate better detection precision during spring and fall. - A relatively constant level of error is generally observed among different categories. The range of precipitation estimates at different rainfall rate categories is nearly invariant as a sign for the existence of systematic error. - Low level of reliability is observed on PERSIANN estimations at different categories which are mostly associated with high level of FA error. However, it is observed that as the rate of precipitation increase, the ability and precision of PERSIANN in rainfall detection also increases. - The systematic and random error decomposition in this area shows that PERSIANN has more difficulty in modeling the system and pattern of rainfall rather than to have bias due to rainfall uncertainties. The level of systematic error also considerably increases in heavier rainfalls. It is also important to note that PERSIANN error characteristics at each season varies due to the condition and rainfall patterns of that season which shows the necessity of seasonally different approach for the calibration of this product. Overall, we believe that different error component's analysis performed in this study, can substantially help any further local studies for post-calibration and bias reduction of PERSIANN estimations.
Feedback on prescribing errors to junior doctors: exploring views, problems and preferred methods.
Bertels, Jeroen; Almoudaris, Alex M; Cortoos, Pieter-Jan; Jacklin, Ann; Franklin, Bryony Dean
2013-06-01
Prescribing errors are common in hospital inpatients. However, the literature suggests that doctors are often unaware of their errors as they are not always informed of them. It has been suggested that providing more feedback to prescribers may reduce subsequent error rates. Only few studies have investigated the views of prescribers towards receiving such feedback, or the views of hospital pharmacists as potential feedback providers. Our aim was to explore the views of junior doctors and hospital pharmacists regarding feedback on individual doctors' prescribing errors. Objectives were to determine how feedback was currently provided and any associated problems, to explore views on other approaches to feedback, and to make recommendations for designing suitable feedback systems. A large London NHS hospital trust. To explore views on current and possible feedback mechanisms, self-administered questionnaires were given to all junior doctors and pharmacists, combining both 5-point Likert scale statements and open-ended questions. Agreement scores for statements regarding perceived prescribing error rates, opinions on feedback, barriers to feedback, and preferences for future practice. Response rates were 49% (37/75) for junior doctors and 57% (57/100) for pharmacists. In general, doctors did not feel threatened by feedback on their prescribing errors. They felt that feedback currently provided was constructive but often irregular and insufficient. Most pharmacists provided feedback in various ways; however some did not or were inconsistent. They were willing to provide more feedback, but did not feel it was always effective or feasible due to barriers such as communication problems and time constraints. Both professional groups preferred individual feedback with additional regular generic feedback on common or serious errors. Feedback on prescribing errors was valued and acceptable to both professional groups. From the results, several suggested methods of providing feedback on prescribing errors emerged. Addressing barriers such as the identification of individual prescribers would facilitate feedback in practice. Research investigating whether or not feedback reduces the subsequent error rate is now needed.
The role of model dynamics in ensemble Kalman filter performance for chaotic systems
Ng, G.-H.C.; McLaughlin, D.; Entekhabi, D.; Ahanin, A.
2011-01-01
The ensemble Kalman filter (EnKF) is susceptible to losing track of observations, or 'diverging', when applied to large chaotic systems such as atmospheric and ocean models. Past studies have demonstrated the adverse impact of sampling error during the filter's update step. We examine how system dynamics affect EnKF performance, and whether the absence of certain dynamic features in the ensemble may lead to divergence. The EnKF is applied to a simple chaotic model, and ensembles are checked against singular vectors of the tangent linear model, corresponding to short-term growth and Lyapunov vectors, corresponding to long-term growth. Results show that the ensemble strongly aligns itself with the subspace spanned by unstable Lyapunov vectors. Furthermore, the filter avoids divergence only if the full linearized long-term unstable subspace is spanned. However, short-term dynamics also become important as non-linearity in the system increases. Non-linear movement prevents errors in the long-term stable subspace from decaying indefinitely. If these errors then undergo linear intermittent growth, a small ensemble may fail to properly represent all important modes, causing filter divergence. A combination of long and short-term growth dynamics are thus critical to EnKF performance. These findings can help in developing practical robust filters based on model dynamics. ?? 2011 The Authors Tellus A ?? 2011 John Wiley & Sons A/S.
Image Data Compression Having Minimum Perceptual Error
NASA Technical Reports Server (NTRS)
Watson, Andrew B. (Inventor)
1997-01-01
A method is presented for performing color or grayscale image compression that eliminates redundant and invisible image components. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The quantization matrix comprises visual masking by luminance and contrast technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.
NASA Astrophysics Data System (ADS)
Blanchard-Wrigglesworth, E.; Barthélemy, A.; Chevallier, M.; Cullather, R.; Fučkar, N.; Massonnet, F.; Posey, P.; Wang, W.; Zhang, J.; Ardilouze, C.; Bitz, C. M.; Vernieres, G.; Wallcraft, A.; Wang, M.
2017-08-01
Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or forecast post-processing (bias correction) techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.
[Diagnostic Errors in Medicine].
Buser, Claudia; Bankova, Andriyana
2015-12-09
The recognition of diagnostic errors in everyday practice can help improve patient safety. The most common diagnostic errors are the cognitive errors, followed by system-related errors and no fault errors. The cognitive errors often result from mental shortcuts, known as heuristics. The rate of cognitive errors can be reduced by a better understanding of heuristics and the use of checklists. The autopsy as a retrospective quality assessment of clinical diagnosis has a crucial role in learning from diagnostic errors. Diagnostic errors occur more often in primary care in comparison to hospital settings. On the other hand, the inpatient errors are more severe than the outpatient errors.
On the robustness of bucket brigade quantum RAM
NASA Astrophysics Data System (ADS)
Arunachalam, Srinivasan; Gheorghiu, Vlad; Jochym-O'Connor, Tomas; Mosca, Michele; Varshinee Srinivasan, Priyaa
2015-12-01
We study the robustness of the bucket brigade quantum random access memory model introduced by Giovannetti et al (2008 Phys. Rev. Lett.100 160501). Due to a result of Regev and Schiff (ICALP ’08 733), we show that for a class of error models the error rate per gate in the bucket brigade quantum memory has to be of order o({2}-n/2) (where N={2}n is the size of the memory) whenever the memory is used as an oracle for the quantum searching problem. We conjecture that this is the case for any realistic error model that will be encountered in practice, and that for algorithms with super-polynomially many oracle queries the error rate must be super-polynomially small, which further motivates the need for quantum error correction. By contrast, for algorithms such as matrix inversion Harrow et al (2009 Phys. Rev. Lett.103 150502) or quantum machine learning Rebentrost et al (2014 Phys. Rev. Lett.113 130503) that only require a polynomial number of queries, the error rate only needs to be polynomially small and quantum error correction may not be required. We introduce a circuit model for the quantum bucket brigade architecture and argue that quantum error correction for the circuit causes the quantum bucket brigade architecture to lose its primary advantage of a small number of ‘active’ gates, since all components have to be actively error corrected.
Error-Related Psychophysiology and Negative Affect
ERIC Educational Resources Information Center
Hajcak, G.; McDonald, N.; Simons, R.F.
2004-01-01
The error-related negativity (ERN/Ne) and error positivity (Pe) have been associated with error detection and response monitoring. More recently, heart rate (HR) and skin conductance (SC) have also been shown to be sensitive to the internal detection of errors. An enhanced ERN has consistently been observed in anxious subjects and there is some…
Effects of Correlated Errors on the Analysis of Space Geodetic Data
NASA Technical Reports Server (NTRS)
Romero-Wolf, Andres; Jacobs, C. S.
2011-01-01
As thermal errors are reduced instrumental and troposphere correlated errors will increasingly become more important. Work in progress shows that troposphere covariance error models improve data analysis results. We expect to see stronger effects with higher data rates. Temperature modeling of delay errors may further reduce temporal correlations in the data.
Rhodes, Alison M; Tran, Thanh V
2013-02-01
This study examined the equivalence or comparability of the measurement properties of seven selected items measuring posttraumatic growth among self-identified Black (n = 270) and White (n = 707) adult survivors of Hurricane Katrina, using data from the Baseline Survey of the Hurricane Katrina Community Advisory Group Study. Internal consistency reliability was equally good for both groups (Cronbach's alphas = .79), as were correlations between individual scale items and their respective overall scale. Confirmatory factor analysis of a congeneric measurement model of seven selected items of posttraumatic growth showed adequate measures of fit for both groups. The results showed only small variation in magnitude of factor loadings and measurement errors between the two samples. Tests of measurement invariance showed mixed results, but overall indicated that factor loading, error variance, and factor variance were similar between the two samples. These seven selected items can be useful for future large-scale surveys of posttraumatic growth.
Confidence Intervals for Error Rates Observed in Coded Communications Systems
NASA Astrophysics Data System (ADS)
Hamkins, J.
2015-05-01
We present methods to compute confidence intervals for the codeword error rate (CWER) and bit error rate (BER) of a coded communications link. We review several methods to compute exact and approximate confidence intervals for the CWER, and specifically consider the situation in which the true CWER is so low that only a handful, if any, codeword errors are able to be simulated. In doing so, we answer the question of how long an error-free simulation must be run in order to certify that a given CWER requirement is met with a given level of confidence, and discuss the bias introduced by aborting a simulation after observing the first codeword error. Next, we turn to the lesser studied problem of determining confidence intervals for the BER of coded systems. Since bit errors in systems that use coding or higher-order modulation do not occur independently, blind application of a method that assumes independence leads to inappropriately narrow confidence intervals. We present a new method to compute the confidence interval properly, using the first and second sample moments of the number of bit errors per codeword. This is the first method we know of to compute a confidence interval for the BER of a coded or higher-order modulation system.
ADEPT, a dynamic next generation sequencing data error-detection program with trimming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Shihai; Lo, Chien-Chi; Li, Po-E
Illumina is the most widely used next generation sequencing technology and produces millions of short reads that contain errors. These sequencing errors constitute a major problem in applications such as de novo genome assembly, metagenomics analysis and single nucleotide polymorphism discovery. In this study, we present ADEPT, a dynamic error detection method, based on the quality scores of each nucleotide and its neighboring nucleotides, together with their positions within the read and compares this to the position-specific quality score distribution of all bases within the sequencing run. This method greatly improves upon other available methods in terms of the truemore » positive rate of error discovery without affecting the false positive rate, particularly within the middle of reads. We conclude that ADEPT is the only tool to date that dynamically assesses errors within reads by comparing position-specific and neighboring base quality scores with the distribution of quality scores for the dataset being analyzed. The result is a method that is less prone to position-dependent under-prediction, which is one of the most prominent issues in error prediction. The outcome is that ADEPT improves upon prior efforts in identifying true errors, primarily within the middle of reads, while reducing the false positive rate.« less
ADEPT, a dynamic next generation sequencing data error-detection program with trimming
Feng, Shihai; Lo, Chien-Chi; Li, Po-E; ...
2016-02-29
Illumina is the most widely used next generation sequencing technology and produces millions of short reads that contain errors. These sequencing errors constitute a major problem in applications such as de novo genome assembly, metagenomics analysis and single nucleotide polymorphism discovery. In this study, we present ADEPT, a dynamic error detection method, based on the quality scores of each nucleotide and its neighboring nucleotides, together with their positions within the read and compares this to the position-specific quality score distribution of all bases within the sequencing run. This method greatly improves upon other available methods in terms of the truemore » positive rate of error discovery without affecting the false positive rate, particularly within the middle of reads. We conclude that ADEPT is the only tool to date that dynamically assesses errors within reads by comparing position-specific and neighboring base quality scores with the distribution of quality scores for the dataset being analyzed. The result is a method that is less prone to position-dependent under-prediction, which is one of the most prominent issues in error prediction. The outcome is that ADEPT improves upon prior efforts in identifying true errors, primarily within the middle of reads, while reducing the false positive rate.« less
Refractive errors in children and adolescents in Bucaramanga (Colombia).
Galvis, Virgilio; Tello, Alejandro; Otero, Johanna; Serrano, Andrés A; Gómez, Luz María; Castellanos, Yuly
2017-01-01
The aim of this study was to establish the frequency of refractive errors in children and adolescents aged between 8 and 17 years old, living in the metropolitan area of Bucaramanga (Colombia). This study was a secondary analysis of two descriptive cross-sectional studies that applied sociodemographic surveys and assessed visual acuity and refraction. Ametropias were classified as myopic errors, hyperopic errors, and mixed astigmatism. Eyes were considered emmetropic if none of these classifications were made. The data were collated using free software and analyzed with STATA/IC 11.2. One thousand two hundred twenty-eight individuals were included in this study. Girls showed a higher rate of ametropia than boys. Hyperopic refractive errors were present in 23.1% of the subjects, and myopic errors in 11.2%. Only 0.2% of the eyes had high myopia (≤-6.00 D). Mixed astigmatism and anisometropia were uncommon, and myopia frequency increased with age. There were statistically significant steeper keratometric readings in myopic compared to hyperopic eyes. The frequency of refractive errors that we found of 36.7% is moderate compared to the global data. The rates and parameters statistically differed by sex and age groups. Our findings are useful for establishing refractive error rate benchmarks in low-middle-income countries and as a baseline for following their variation by sociodemographic factors.
Weaver, Amy L; Stutzman, Sonja E; Supnet, Charlene; Olson, DaiWai M
2016-03-01
The emergency department (ED) is demanding and high risk. The impact of sleep quantity has been hypothesized to impact patient care. This study investigated the hypothesis that fatigue and impaired mentation, due to sleep disturbance and shortened overall sleeping hours, would lead to increased nursing errors. This is a prospective observational study of 30 ED nurses using self-administered survey and sleep architecture measured by wrist actigraphy as predictors of self-reported error rates. An actigraphy device was worn prior to working a 12-hour shift and nurses completed the Pittsburgh Sleep Quality Index (PSQI). Error rates were reported on a visual analog scale at the end of a 12-hour shift. The PSQI responses indicated that 73.3% of subjects had poor sleep quality. Lower sleep quality measured by actigraphy (hours asleep/hours in bed) was associated with higher self-perceived minor errors. Sleep quantity (total hours slept) was not associated with minor, moderate, nor severe errors. Our study found that ED nurses' sleep quality, immediately prior to a working 12-hour shift, is more predictive of error than sleep quantity. These results present evidence that a "good night's sleep" prior to working a nursing shift in the ED is beneficial for reducing minor errors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Advancing the research agenda for diagnostic error reduction.
Zwaan, Laura; Schiff, Gordon D; Singh, Hardeep
2013-10-01
Diagnostic errors remain an underemphasised and understudied area of patient safety research. We briefly summarise the methods that have been used to conduct research on epidemiology, contributing factors and interventions related to diagnostic error and outline directions for future research. Research methods that have studied epidemiology of diagnostic error provide some estimate on diagnostic error rates. However, there appears to be a large variability in the reported rates due to the heterogeneity of definitions and study methods used. Thus, future methods should focus on obtaining more precise estimates in different settings of care. This would lay the foundation for measuring error rates over time to evaluate improvements. Research methods have studied contributing factors for diagnostic error in both naturalistic and experimental settings. Both approaches have revealed important and complementary information. Newer conceptual models from outside healthcare are needed to advance the depth and rigour of analysis of systems and cognitive insights of causes of error. While the literature has suggested many potentially fruitful interventions for reducing diagnostic errors, most have not been systematically evaluated and/or widely implemented in practice. Research is needed to study promising intervention areas such as enhanced patient involvement in diagnosis, improving diagnosis through the use of electronic tools and identification and reduction of specific diagnostic process 'pitfalls' (eg, failure to conduct appropriate diagnostic evaluation of a breast lump after a 'normal' mammogram). The last decade of research on diagnostic error has made promising steps and laid a foundation for more rigorous methods to advance the field.
Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate
NASA Astrophysics Data System (ADS)
Chau, H. F.
2002-12-01
A secret key shared through quantum key distribution between two cooperative players is secure against any eavesdropping attack allowed by the laws of physics. Yet, such a key can be established only when the quantum channel error rate due to eavesdropping or imperfect apparatus is low. Here, a practical quantum key distribution scheme by making use of an adaptive privacy amplification procedure with two-way classical communication is reported. Then, it is proven that the scheme generates a secret key whenever the bit error rate of the quantum channel is less than 0.5-0.1(5)≈27.6%, thereby making it the most error resistant scheme known to date.
Fe/starch nanoparticle - Pseudomonas aeruginosa: Bio-physiochemical and MD studies.
Mofradnia, Soheil Rezazadeh; Tavakoli, Zahra; Yazdian, Fatemeh; Rashedi, Hamid; Rasekh, Behnam
2018-05-03
In this research, we attempt to study biosurfactant production by Pseudomonas aeruginosa using Fe/starch nanoparticles. Fe/starch showed no bacterial toxicity at 1 mg/ml and increased the growth rate and biosurfactant production up to 23.21 and 20.73%, respectively. Surface tension, dry weight cell, and emulsification indexes (E24) were measured. Biosurfactant production was considered via computational techniques and molecular dynamic (MD) simulation through flexible and periodic conditions (by material studio software) as well. The results of software predictions demonstrate by radial distribution function (RDF), density, energy and temperature graphs. According to the present experimental results, increased 30% growth of the bacterium has been observed and the subsequent production of biosurfactant. The difference between the experimental results and simulation data were achieved up to 0.17 g/cm 3 , which confirms the prediction of data by the software due to a difference of <14.5% (ideal error value is 20%). Copyright © 2017. Published by Elsevier B.V.
Self-replication with magnetic dipolar colloids
NASA Astrophysics Data System (ADS)
Dempster, Joshua M.; Zhang, Rui; Olvera de la Cruz, Monica
2015-10-01
Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids.
Gene Profiling in Experimental Models of Eye Growth: Clues to Myopia Pathogenesis
Stone, Richard A.; Khurana, Tejvir S.
2010-01-01
To understand the complex regulatory pathways that underlie the development of refractive errors, expression profiling has evaluated gene expression in ocular tissues of well-characterized experimental models that alter postnatal eye growth and induce refractive errors. Derived from a variety of platforms (e.g. differential display, spotted microarrays or Affymetrix GeneChips), gene expression patterns are now being identified in species that include chicken, mouse and primate. Reconciling available results is hindered by varied experimental designs and analytical/statistical features. Continued application of these methods offers promise to provide the much-needed mechanistic framework to develop therapies to normalize refractive development in children. PMID:20363242
Comparison of a Virtual Older Driver Assessment with an On-Road Driving Test.
Eramudugolla, Ranmalee; Price, Jasmine; Chopra, Sidhant; Li, Xiaolan; Anstey, Kaarin J
2016-12-01
To design a low-cost simulator-based driving assessment for older adults and to compare its validity with that of an on-road driving assessment and other measures of older driver risk. Cross-sectional observational study. Canberra, Australia. Older adult drivers (N = 47; aged 65-88, mean age 75.2). Error rate on a simulated drive with environment and scoring procedure matched to those of an on-road test. Other measures included participant age, simulator sickness severity, neuropsychological measures, and driver screening measures. Outcome variables included occupational therapist (OT)-rated on-road errors, on-road safety rating, and safety category. Participants' error rate on the simulated drive was significantly correlated with their OT-rated driving safety (correlation coefficient (r) = -0.398, P = .006), even after adjustment for age and simulator sickness (P = .009). The simulator error rate was a significant predictor of categorization as unsafe on the road (P = .02, sensitivity 69.2%, specificity 100%), with 13 (27%) drivers assessed as unsafe. Simulator error was also associated with other older driver safety screening measures such as useful field of view (r = 0.341, P = .02), DriveSafe (r = -0.455, P < .01), and visual motion sensitivity (r = 0.368, P = .01) but was not associated with memory (delayed word recall) or global cognition (Mini-Mental State Examination). Drivers made twice as many errors on the simulated assessment as during the on-road assessment (P < .001), with significant differences in the rate and type of errors between the two mediums. A low-cost simulator-based assessment is valid as a screening instrument for identifying at-risk older drivers but not as an alternative to on-road evaluation when accurate data on competence or pattern of impairment is required for licensing decisions and training programs. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.
Armeanu, Daniel; Vintilă, Georgeta; Gherghina, Ştefan Cristian; Drăgoi, Mihaela Cristina; Teodor, Cristian
2018-01-01
This study examines the Environmental Kuznets Curve hypothesis (EKC), considering the primary energy consumption among other country-specific variables, for a panel of the EU-28 countries during the period 1990–2014. By estimating pooled OLS regressions with Driscoll-Kraay standard errors in order to account for cross-sectional dependence, the results confirm the EKC hypothesis in the case of emissions of sulfur oxides and emissions of non-methane volatile organic compounds. In addition to pooled estimations, the output of fixed-effects regressions with Driscoll-Kraay standard errors support the EKC hypothesis for greenhouse gas emissions, greenhouse gas emissions intensity of energy consumption, emissions of nitrogen oxides, emissions of non-methane volatile organic compounds and emissions of ammonia. Additionally, the empirical findings from panel vector error correction model reveal a short-run unidirectional causality from GDP per capita growth to greenhouse gas emissions, as well as a bidirectional causal link between primary energy consumption and greenhouse gas emissions. Furthermore, since there occurred no causal link between economic growth and primary energy consumption, the neo-classical view was confirmed, namely the neutrality hypothesis. PMID:29742169
Armeanu, Daniel; Vintilă, Georgeta; Andrei, Jean Vasile; Gherghina, Ştefan Cristian; Drăgoi, Mihaela Cristina; Teodor, Cristian
2018-01-01
This study examines the Environmental Kuznets Curve hypothesis (EKC), considering the primary energy consumption among other country-specific variables, for a panel of the EU-28 countries during the period 1990-2014. By estimating pooled OLS regressions with Driscoll-Kraay standard errors in order to account for cross-sectional dependence, the results confirm the EKC hypothesis in the case of emissions of sulfur oxides and emissions of non-methane volatile organic compounds. In addition to pooled estimations, the output of fixed-effects regressions with Driscoll-Kraay standard errors support the EKC hypothesis for greenhouse gas emissions, greenhouse gas emissions intensity of energy consumption, emissions of nitrogen oxides, emissions of non-methane volatile organic compounds and emissions of ammonia. Additionally, the empirical findings from panel vector error correction model reveal a short-run unidirectional causality from GDP per capita growth to greenhouse gas emissions, as well as a bidirectional causal link between primary energy consumption and greenhouse gas emissions. Furthermore, since there occurred no causal link between economic growth and primary energy consumption, the neo-classical view was confirmed, namely the neutrality hypothesis.
Report of the 1988 2-D Intercomparison Workshop, chapter 3
NASA Technical Reports Server (NTRS)
Jackman, Charles H.; Brasseur, Guy; Soloman, Susan; Guthrie, Paul D.; Garcia, Rolando; Yung, Yuk L.; Gray, Lesley J.; Tung, K. K.; Ko, Malcolm K. W.; Isaken, Ivar
1989-01-01
Several factors contribute to the errors encountered. With the exception of the line-by-line model, all of the models employ simplifying assumptions that place fundamental limits on their accuracy and range of validity. For example, all 2-D modeling groups use the diffusivity factor approximation. This approximation produces little error in tropospheric H2O and CO2 cooling rates, but can produce significant errors in CO2 and O3 cooling rates at the stratopause. All models suffer from fundamental uncertainties in shapes and strengths of spectral lines. Thermal flux algorithms being used in 2-D tracer tranport models produce cooling rates that differ by as much as 40 percent for the same input model atmosphere. Disagreements of this magnitude are important since the thermal cooling rates must be subtracted from the almost-equal solar heating rates to derive the net radiative heating rates and the 2-D model diabatic circulation. For much of the annual cycle, the net radiative heating rates are comparable in magnitude to the cooling rate differences described. Many of the models underestimate the cooling rates in the middle and lower stratosphere. The consequences of these errors for the net heating rates and the diabatic circulation will depend on their meridional structure, which was not tested here. Other models underestimate the cooling near 1 mbar. Suchs errors pose potential problems for future interactive ozone assessment studies, since they could produce artificially-high temperatures and increased O3 destruction at these levels. These concerns suggest that a great deal of work is needed to improve the performance of thermal cooling rate algorithms used in the 2-D tracer transport models.
Cochran, Gary L; Barrett, Ryan S; Horn, Susan D
2016-08-01
The role of pharmacist transcription, onsite pharmacist dispensing, use of automated dispensing cabinets (ADCs), nurse-nurse double checks, or barcode-assisted medication administration (BCMA) in reducing medication error rates in critical access hospitals (CAHs) was evaluated. Investigators used the practice-based evidence methodology to identify predictors of medication errors in 12 Nebraska CAHs. Detailed information about each medication administered was recorded through direct observation. Errors were identified by comparing the observed medication administered with the physician's order. Chi-square analysis and Fisher's exact test were used to measure differences between groups of medication-dispensing procedures. Nurses observed 6497 medications being administered to 1374 patients. The overall error rate was 1.2%. The transcription error rates for orders transcribed by an onsite pharmacist were slightly lower than for orders transcribed by a telepharmacy service (0.10% and 0.33%, respectively). Fewer dispensing errors occurred when medications were dispensed by an onsite pharmacist versus any other method of medication acquisition (0.10% versus 0.44%, p = 0.0085). The rates of dispensing errors for medications that were retrieved from a single-cell ADC (0.19%), a multicell ADC (0.45%), or a drug closet or general supply (0.77%) did not differ significantly. BCMA was associated with a higher proportion of dispensing and administration errors intercepted before reaching the patient (66.7%) compared with either manual double checks (10%) or no BCMA or double check (30.4%) of the medication before administration (p = 0.0167). Onsite pharmacist dispensing and BCMA were associated with fewer medication errors and are important components of a medication safety strategy in CAHs. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Type I and Type II error concerns in fMRI research: re-balancing the scale
Cunningham, William A.
2009-01-01
Statistical thresholding (i.e. P-values) in fMRI research has become increasingly conservative over the past decade in an attempt to diminish Type I errors (i.e. false alarms) to a level traditionally allowed in behavioral science research. In this article, we examine the unintended negative consequences of this single-minded devotion to Type I errors: increased Type II errors (i.e. missing true effects), a bias toward studying large rather than small effects, a bias toward observing sensory and motor processes rather than complex cognitive and affective processes and deficient meta-analyses. Power analyses indicate that the reductions in acceptable P-values over time are producing dramatic increases in the Type II error rate. Moreover, the push for a mapwide false discovery rate (FDR) of 0.05 is based on the assumption that this is the FDR in most behavioral research; however, this is an inaccurate assessment of the conventions in actual behavioral research. We report simulations demonstrating that combined intensity and cluster size thresholds such as P < 0.005 with a 10 voxel extent produce a desirable balance between Types I and II error rates. This joint threshold produces high but acceptable Type II error rates and produces a FDR that is comparable to the effective FDR in typical behavioral science articles (while a 20 voxel extent threshold produces an actual FDR of 0.05 with relatively common imaging parameters). We recommend a greater focus on replication and meta-analysis rather than emphasizing single studies as the unit of analysis for establishing scientific truth. From this perspective, Type I errors are self-erasing because they will not replicate, thus allowing for more lenient thresholding to avoid Type II errors. PMID:20035017
Accuracy assessment of high-rate GPS measurements for seismology
NASA Astrophysics Data System (ADS)
Elosegui, P.; Davis, J. L.; Ekström, G.
2007-12-01
Analysis of GPS measurements with a controlled laboratory system, built to simulate the ground motions caused by tectonic earthquakes and other transient geophysical signals such as glacial earthquakes, enables us to assess the technique of high-rate GPS. The root-mean-square (rms) position error of this system when undergoing realistic simulated seismic motions is 0.05~mm, with maximum position errors of 0.1~mm, thus providing "ground truth" GPS displacements. We have acquired an extensive set of high-rate GPS measurements while inducing seismic motions on a GPS antenna mounted on this system with a temporal spectrum similar to real seismic events. We found that, for a particular 15-min-long test event, the rms error of the 1-Hz GPS position estimates was 2.5~mm, with maximum position errors of 10~mm, and the error spectrum of the GPS estimates was approximately flicker noise. These results may however represent a best-case scenario since they were obtained over a short (~10~m) baseline, thereby greatly mitigating baseline-dependent errors, and when the number and distribution of satellites on the sky was good. For example, we have determined that the rms error can increase by a factor of 2--3 as the GPS constellation changes throughout the day, with an average value of 3.5~mm for eight identical, hourly-spaced, consecutive test events. The rms error also increases with increasing baseline, as one would expect, with an average rms error for a ~1400~km baseline of 9~mm. We will present an assessment of the accuracy of high-rate GPS based on these measurements, discuss the implications of this study for seismology, and describe new applications in glaciology.