Altimeter error sources at the 10-cm performance level
NASA Technical Reports Server (NTRS)
Martin, C. F.
1977-01-01
Error sources affecting the calibration and operational use of a 10 cm altimeter are examined to determine the magnitudes of current errors and the investigations necessary to reduce them to acceptable bounds. Errors considered include those affecting operational data pre-processing, and those affecting altitude bias determination, with error budgets developed for both. The most significant error sources affecting pre-processing are bias calibration, propagation corrections for the ionosphere, and measurement noise. No ionospheric models are currently validated at the required 10-25% accuracy level. The optimum smoothing to reduce the effects of measurement noise is investigated and found to be on the order of one second, based on the TASC model of geoid undulations. The 10 cm calibrations are found to be feasible only through the use of altimeter passes that are very high elevation for a tracking station which tracks very close to the time of altimeter track, such as a high elevation pass across the island of Bermuda. By far the largest error source, based on the current state-of-the-art, is the location of the island tracking station relative to mean sea level in the surrounding ocean areas.
Error Sources in Asteroid Astrometry
NASA Technical Reports Server (NTRS)
Owen, William M., Jr.
2000-01-01
Asteroid astrometry, like any other scientific measurement process, is subject to both random and systematic errors, not all of which are under the observer's control. To design an astrometric observing program or to improve an existing one requires knowledge of the various sources of error, how different errors affect one's results, and how various errors may be minimized by careful observation or data reduction techniques.
Schmidt, Frank L; Le, Huy; Ilies, Remus
2003-06-01
On the basis of an empirical study of measures of constructs from the cognitive domain, the personality domain, and the domain of affective traits, the authors of this study examine the implications of transient measurement error for the measurement of frequently studied individual differences variables. The authors clarify relevant reliability concepts as they relate to transient error and present a procedure for estimating the coefficient of equivalence and stability (L. J. Cronbach, 1947), the only classical reliability coefficient that assesses all 3 major sources of measurement error (random response, transient, and specific factor errors). The authors conclude that transient error exists in all 3 trait domains and is especially large in the domain of affective traits. Their findings indicate that the nearly universal use of the coefficient of equivalence (Cronbach's alpha; L. J. Cronbach, 1951), which fails to assess transient error, leads to overestimates of reliability and undercorrections for biases due to measurement error.
Decision Aids for Multiple-Decision Disease Management as Affected by Weather Input Errors
USDA-ARS?s Scientific Manuscript database
Many disease management decision support systems (DSS) rely, exclusively or in part, on weather inputs to calculate an indicator for disease hazard. Error in the weather inputs, typically due to forecasting, interpolation or estimation from off-site sources, may affect model calculations and manage...
Estimating Uncertainty in Annual Forest Inventory Estimates
Ronald E. McRoberts; Veronica C. Lessard
1999-01-01
The precision of annual forest inventory estimates may be negatively affected by uncertainty from a variety of sources including: (1) sampling error; (2) procedures for updating plots not measured in the current year; and (3) measurement errors. The impact of these sources of uncertainty on final inventory estimates is investigated using Monte Carlo simulation...
Hybrid Correlation Algorithms. A Bridge Between Feature Matching and Image Correlation,
1979-11-01
spa- tially into groups of pixels. The intensity level preprocessing is designed to compensate for any biases or gain changes in the system ; whereas...number of error sources that affect the performance of the system . It would be desirable to lump these errors into ge- neric categories in discussing... system performance rather than treat- ing each error source separately. Such a generic categorization should possess the following properties: 1. The
Green, Christopher T.; Zhang, Yong; Jurgens, Bryant C.; Starn, J. Jeffrey; Landon, Matthew K.
2014-01-01
Analytical models of the travel time distribution (TTD) from a source area to a sample location are often used to estimate groundwater ages and solute concentration trends. The accuracies of these models are not well known for geologically complex aquifers. In this study, synthetic datasets were used to quantify the accuracy of four analytical TTD models as affected by TTD complexity, observation errors, model selection, and tracer selection. Synthetic TTDs and tracer data were generated from existing numerical models with complex hydrofacies distributions for one public-supply well and 14 monitoring wells in the Central Valley, California. Analytical TTD models were calibrated to synthetic tracer data, and prediction errors were determined for estimates of TTDs and conservative tracer (NO3−) concentrations. Analytical models included a new, scale-dependent dispersivity model (SDM) for two-dimensional transport from the watertable to a well, and three other established analytical models. The relative influence of the error sources (TTD complexity, observation error, model selection, and tracer selection) depended on the type of prediction. Geological complexity gave rise to complex TTDs in monitoring wells that strongly affected errors of the estimated TTDs. However, prediction errors for NO3− and median age depended more on tracer concentration errors. The SDM tended to give the most accurate estimates of the vertical velocity and other predictions, although TTD model selection had minor effects overall. Adding tracers improved predictions if the new tracers had different input histories. Studies using TTD models should focus on the factors that most strongly affect the desired predictions.
The Reliability and Sources of Error of Using Rubrics-Based Assessment for Student Projects
ERIC Educational Resources Information Center
Menéndez-Varela, José-Luis; Gregori-Giralt, Eva
2018-01-01
Rubrics are widely used in higher education to assess performance in project-based learning environments. To date, the sources of error that may affect their reliability have not been studied in depth. Using generalisability theory as its starting-point, this article analyses the influence of the assessors and the criteria of the rubrics on the…
Subedi, Manita; Bhattarai, Rebanta Kumar; Devkota, Bhuminand; Phuyal, Sarita; Luitel, Himal
2018-05-22
The original article [1] contains errors in author panels and their contributions, errors in both the Methodology and the Results sections, and errors with respect to funding sources. The affected sections of the manuscript and their respective regions of corrected text can be viewed ahead.
Du, Zhongzhou; Su, Rijian; Liu, Wenzhong; Huang, Zhixing
2015-01-01
The signal transmission module of a magnetic nanoparticle thermometer (MNPT) was established in this study to analyze the error sources introduced during the signal flow in the hardware system. The underlying error sources that significantly affected the precision of the MNPT were determined through mathematical modeling and simulation. A transfer module path with the minimum error in the hardware system was then proposed through the analysis of the variations of the system error caused by the significant error sources when the signal flew through the signal transmission module. In addition, a system parameter, named the signal-to-AC bias ratio (i.e., the ratio between the signal and AC bias), was identified as a direct determinant of the precision of the measured temperature. The temperature error was below 0.1 K when the signal-to-AC bias ratio was higher than 80 dB, and other system errors were not considered. The temperature error was below 0.1 K in the experiments with a commercial magnetic fluid (Sample SOR-10, Ocean Nanotechnology, Springdale, AR, USA) when the hardware system of the MNPT was designed with the aforementioned method. PMID:25875188
The relationship between somatic and cognitive-affective depression symptoms and error-related ERP’s
Bridwell, David A.; Steele, Vaughn R.; Maurer, J. Michael; Kiehl, Kent A.; Calhoun, Vince D.
2014-01-01
Background The symptoms that contribute to the clinical diagnosis of depression likely emerge from, or are related to, underlying cognitive deficits. To understand this relationship further, we examined the relationship between self-reported somatic and cognitive-affective Beck’s Depression Inventory-II (BDI-II) symptoms and aspects of cognitive control reflected in error event-related potential (ERP) responses. Methods Task and assessment data were analyzed within 51 individuals. The group contained a broad distribution of depressive symptoms, as assessed by BDI-II scores. ERP’s were collected following error responses within a go/no-go task. Individual error ERP amplitudes were estimated by conducting group independent component analysis (ICA) on the electroencephalographic (EEG) time series and analyzing the individual reconstructed source epochs. Source error amplitudes were correlated with the subset of BDI-II scores representing somatic and cognitive-affective symptoms. Results We demonstrate a negative relationship between somatic depression symptoms (i.e. fatigue or loss of energy) (after regressing out cognitive-affective scores, age and IQ) and the central-parietal ERP response that peaks at 359 ms. The peak amplitudes within this ERP response were not significantly related to cognitive-affective symptom severity (after regressing out the somatic symptom scores, age, and IQ). Limitations These findings were obtained within a population of female adults from a maximum-security correctional facility. Thus, additional research is required to verify that they generalize to the broad population. Conclusions These results suggest that individuals with greater somatic depression symptoms demonstrate a reduced awareness of behavioral errors, and help clarify the relationship between clinical measures of self-reported depression symptoms and cognitive control. PMID:25451400
The relationship between somatic and cognitive-affective depression symptoms and error-related ERPs.
Bridwell, David A; Steele, Vaughn R; Maurer, J Michael; Kiehl, Kent A; Calhoun, Vince D
2015-02-01
The symptoms that contribute to the clinical diagnosis of depression likely emerge from, or are related to, underlying cognitive deficits. To understand this relationship further, we examined the relationship between self-reported somatic and cognitive-affective Beck'sDepression Inventory-II (BDI-II) symptoms and aspects of cognitive control reflected in error event-related potential (ERP) responses. Task and assessment data were analyzed within 51 individuals. The group contained a broad distribution of depressive symptoms, as assessed by BDI-II scores. ERPs were collected following error responses within a go/no-go task. Individual error ERP amplitudes were estimated by conducting group independent component analysis (ICA) on the electroencephalographic (EEG) time series and analyzing the individual reconstructed source epochs. Source error amplitudes were correlated with the subset of BDI-II scores representing somatic and cognitive-affective symptoms. We demonstrate a negative relationship between somatic depression symptoms (i.e. fatigue or loss of energy) (after regressing out cognitive-affective scores, age and IQ) and the central-parietal ERP response that peaks at 359 ms. The peak amplitudes within this ERP response were not significantly related to cognitive-affective symptom severity (after regressing out the somatic symptom scores, age, and IQ). These findings were obtained within a population of female adults from a maximum-security correctional facility. Thus, additional research is required to verify that they generalize to the broad population. These results suggest that individuals with greater somatic depression symptoms demonstrate a reduced awareness of behavioral errors, and help clarify the relationship between clinical measures of self-reported depression symptoms and cognitive control. Copyright © 2014 Elsevier B.V. All rights reserved.
Geometric error analysis for shuttle imaging spectrometer experiment
NASA Technical Reports Server (NTRS)
Wang, S. J.; Ih, C. H.
1984-01-01
The demand of more powerful tools for remote sensing and management of earth resources steadily increased over the last decade. With the recent advancement of area array detectors, high resolution multichannel imaging spectrometers can be realistically constructed. The error analysis study for the Shuttle Imaging Spectrometer Experiment system is documented for the purpose of providing information for design, tradeoff, and performance prediction. Error sources including the Shuttle attitude determination and control system, instrument pointing and misalignment, disturbances, ephemeris, Earth rotation, etc., were investigated. Geometric error mapping functions were developed, characterized, and illustrated extensively with tables and charts. Selected ground patterns and the corresponding image distortions were generated for direct visual inspection of how the various error sources affect the appearance of the ground object images.
Exchange-Correlation Effects for Noncovalent Interactions in Density Functional Theory.
Otero-de-la-Roza, A; DiLabio, Gino A; Johnson, Erin R
2016-07-12
In this article, we develop an understanding of how errors from exchange-correlation functionals affect the modeling of noncovalent interactions in dispersion-corrected density-functional theory. Computed CCSD(T) reference binding energies for a collection of small-molecule clusters are decomposed via a molecular many-body expansion and are used to benchmark density-functional approximations, including the effect of semilocal approximation, exact-exchange admixture, and range separation. Three sources of error are identified. Repulsion error arises from the choice of semilocal functional approximation. This error affects intermolecular repulsions and is present in all n-body exchange-repulsion energies with a sign that alternates with the order n of the interaction. Delocalization error is independent of the choice of semilocal functional but does depend on the exact exchange fraction. Delocalization error misrepresents the induction energies, leading to overbinding in all induction n-body terms, and underestimates the electrostatic contribution to the 2-body energies. Deformation error affects only monomer relaxation (deformation) energies and behaves similarly to bond-dissociation energy errors. Delocalization and deformation errors affect systems with significant intermolecular orbital interactions (e.g., hydrogen- and halogen-bonded systems), whereas repulsion error is ubiquitous. Many-body errors from the underlying exchange-correlation functional greatly exceed in general the magnitude of the many-body dispersion energy term. A functional built to accurately model noncovalent interactions must contain a dispersion correction, semilocal exchange, and correlation components that minimize the repulsion error independently and must also incorporate exact exchange in such a way that delocalization error is absent.
Operating envelopes of particle sizing instrumentation used for icing research
NASA Technical Reports Server (NTRS)
Hovenac, Edward A.
1987-01-01
The Forward Scattering Spectrometer Probe and the Optical Array Probe are analyzed in terms of their ability to make accurate determinations of water droplet size distributions. Sources of counting and sizing errors are explained. The paper describes ways of identifying these errors and how they can affect measurement.
Laboratory issues: use of nutritional biomarkers.
Blanck, Heidi Michels; Bowman, Barbara A; Cooper, Gerald R; Myers, Gary L; Miller, Dayton T
2003-03-01
Biomarkers of nutritional status provide alternative measures of dietary intake. Like the error and variation associated with dietary intake measures, the magnitude and impact of both biological (preanalytical) and laboratory (analytical) variability need to be considered when one is using biomarkers. When choosing a biomarker, it is important to understand how it relates to nutritional intake and the specific time frame of exposure it reflects as well as how it is affected by sampling and laboratory procedures. Biological sources of variation that arise from genetic and disease states of an individual affect biomarkers, but they are also affected by nonbiological sources of variation arising from specimen collection and storage, seasonality, time of day, contamination, stability and laboratory quality assurance. When choosing a laboratory for biomarker assessment, researchers should try to make sure random and systematic error is minimized by inclusion of certain techniques such as blinding of laboratory staff to disease status and including external pooled standards to which laboratory staff are blinded. In addition analytic quality control should be ensured by use of internal standards or certified materials over the entire range of possible values to control method accuracy. One must consider the effect of random laboratory error on measurement precision and also understand the method's limit of detection and the laboratory cutpoints. Choosing appropriate cutpoints and reducing error is extremely important in nutritional epidemiology where weak associations are frequent. As part of this review, serum lipids are included as an example of a biomarker whereby collaborative efforts have been put forth to both understand biological sources of variation and standardize laboratory results.
Enhanced orbit determination filter sensitivity analysis: Error budget development
NASA Technical Reports Server (NTRS)
Estefan, J. A.; Burkhart, P. D.
1994-01-01
An error budget analysis is presented which quantifies the effects of different error sources in the orbit determination process when the enhanced orbit determination filter, recently developed, is used to reduce radio metric data. The enhanced filter strategy differs from more traditional filtering methods in that nearly all of the principal ground system calibration errors affecting the data are represented as filter parameters. Error budget computations were performed for a Mars Observer interplanetary cruise scenario for cases in which only X-band (8.4-GHz) Doppler data were used to determine the spacecraft's orbit, X-band ranging data were used exclusively, and a combined set in which the ranging data were used in addition to the Doppler data. In all three cases, the filter model was assumed to be a correct representation of the physical world. Random nongravitational accelerations were found to be the largest source of error contributing to the individual error budgets. Other significant contributors, depending on the data strategy used, were solar-radiation pressure coefficient uncertainty, random earth-orientation calibration errors, and Deep Space Network (DSN) station location uncertainty.
Operator- and software-related post-experimental variability and source of error in 2-DE analysis.
Millioni, Renato; Puricelli, Lucia; Sbrignadello, Stefano; Iori, Elisabetta; Murphy, Ellen; Tessari, Paolo
2012-05-01
In the field of proteomics, several approaches have been developed for separating proteins and analyzing their differential relative abundance. One of the oldest, yet still widely used, is 2-DE. Despite the continuous advance of new methods, which are less demanding from a technical standpoint, 2-DE is still compelling and has a lot of potential for improvement. The overall variability which affects 2-DE includes biological, experimental, and post-experimental (software-related) variance. It is important to highlight how much of the total variability of this technique is due to post-experimental variability, which, so far, has been largely neglected. In this short review, we have focused on this topic and explained that post-experimental variability and source of error can be further divided into those which are software-dependent and those which are operator-dependent. We discuss these issues in detail, offering suggestions for reducing errors that may affect the quality of results, summarizing the advantages and drawbacks of each approach.
Accuracy analysis and design of A3 parallel spindle head
NASA Astrophysics Data System (ADS)
Ni, Yanbing; Zhang, Biao; Sun, Yupeng; Zhang, Yuan
2016-03-01
As functional components of machine tools, parallel mechanisms are widely used in high efficiency machining of aviation components, and accuracy is one of the critical technical indexes. Lots of researchers have focused on the accuracy problem of parallel mechanisms, but in terms of controlling the errors and improving the accuracy in the stage of design and manufacturing, further efforts are required. Aiming at the accuracy design of a 3-DOF parallel spindle head(A3 head), its error model, sensitivity analysis and tolerance allocation are investigated. Based on the inverse kinematic analysis, the error model of A3 head is established by using the first-order perturbation theory and vector chain method. According to the mapping property of motion and constraint Jacobian matrix, the compensatable and uncompensatable error sources which affect the accuracy in the end-effector are separated. Furthermore, sensitivity analysis is performed on the uncompensatable error sources. The sensitivity probabilistic model is established and the global sensitivity index is proposed to analyze the influence of the uncompensatable error sources on the accuracy in the end-effector of the mechanism. The results show that orientation error sources have bigger effect on the accuracy in the end-effector. Based upon the sensitivity analysis results, the tolerance design is converted into the issue of nonlinearly constrained optimization with the manufacturing cost minimum being the optimization objective. By utilizing the genetic algorithm, the allocation of the tolerances on each component is finally determined. According to the tolerance allocation results, the tolerance ranges of ten kinds of geometric error sources are obtained. These research achievements can provide fundamental guidelines for component manufacturing and assembly of this kind of parallel mechanisms.
Foley, Mary Ann; Bays, Rebecca Brooke; Foy, Jeffrey; Woodfield, Mila
2015-01-01
In three experiments, we examine the extent to which participants' memory errors are affected by the perceptual features of an encoding series and imagery generation processes. Perceptual features were examined by manipulating the features associated with individual items as well as the relationships among items. An encoding instruction manipulation was included to examine the effects of explicit requests to generate images. In all three experiments, participants falsely claimed to have seen pictures of items presented as words, committing picture misattribution errors. These misattribution errors were exaggerated when the perceptual resemblance between pictures and images was relatively high (Experiment 1) and when explicit requests to generate images were omitted from encoding instructions (Experiments 1 and 2). When perceptual cues made the thematic relationships among items salient, the level and pattern of misattribution errors were also affected (Experiments 2 and 3). Results address alternative views about the nature of internal representations resulting in misattribution errors and refute the idea that these errors reflect only participants' general impressions or beliefs about what was seen.
Over-Distribution in Source Memory
Brainerd, C. J.; Reyna, V. F.; Holliday, R. E.; Nakamura, K.
2012-01-01
Semantic false memories are confounded with a second type of error, over-distribution, in which items are attributed to contradictory episodic states. Over-distribution errors have proved to be more common than false memories when the two are disentangled. We investigated whether over-distribution is prevalent in another classic false memory paradigm: source monitoring. It is. Conventional false memory responses (source misattributions) were predominantly over-distribution errors, but unlike semantic false memory, over-distribution also accounted for more than half of true memory responses (correct source attributions). Experimental control of over-distribution was achieved via a series of manipulations that affected either recollection of contextual details or item memory (concreteness, frequency, list-order, number of presentation contexts, and individual differences in verbatim memory). A theoretical model was used to analyze the data (conjoint process dissociation) that predicts that predicts that (a) over-distribution is directly proportional to item memory but inversely proportional to recollection and (b) item memory is not a necessary precondition for recollection of contextual details. The results were consistent with both predictions. PMID:21942494
Brébion, Gildas; Bressan, Rodrigo A; Ohlsen, Ruth I; David, Anthony S
2013-12-01
Memory impairments in patients with schizophrenia have been associated with various cognitive and clinical factors. Hallucinations have been more specifically associated with errors stemming from source monitoring failure. We conducted a broad investigation of verbal memory and visual memory as well as source memory functioning in a sample of patients with schizophrenia. Various memory measures were tallied, and we studied their associations with processing speed, working memory span, and positive, negative, and depressive symptoms. Superficial and deep memory processes were differentially associated with processing speed, working memory span, avolition, depression, and attention disorders. Auditory/verbal and visual hallucinations were differentially associated with specific types of source memory error. We integrated all the results into a revised version of a previously published model of memory functioning in schizophrenia. The model describes the factors that affect memory efficiency, as well as the cognitive underpinnings of hallucinations within the source monitoring framework. © 2013.
NASA Technical Reports Server (NTRS)
Green, Del L.; Walker, Eric L.; Everhart, Joel L.
2006-01-01
Minimization of uncertainty is essential to extend the usable range of the 15-psid Electronically Scanned Pressure [ESP) transducer measurements to the low free-stream static pressures found in hypersonic wind tunnels. Statistical characterization of environmental error sources inducing much of this uncertainty requires a well defined and controlled calibration method. Employing such a controlled calibration system, several studies were conducted that provide quantitative information detailing the required controls needed to minimize environmental and human induced error sources. Results of temperature, environmental pressure, over-pressurization, and set point randomization studies for the 15-psid transducers are presented along with a comparison of two regression methods using data acquired with both 0.36-psid and 15-psid transducers. Together these results provide insight into procedural and environmental controls required for long term high-accuracy pressure measurements near 0.01 psia in the hypersonic testing environment using 15-psid ESP transducers.
NASA Technical Reports Server (NTRS)
Green, Del L.; Walker, Eric L.; Everhart, Joel L.
2006-01-01
Minimization of uncertainty is essential to extend the usable range of the 15-psid Electronically Scanned Pressure (ESP) transducer measurements to the low free-stream static pressures found in hypersonic wind tunnels. Statistical characterization of environmental error sources inducing much of this uncertainty requires a well defined and controlled calibration method. Employing such a controlled calibration system, several studies were conducted that provide quantitative information detailing the required controls needed to minimize environmental and human induced error sources. Results of temperature, environmental pressure, over-pressurization, and set point randomization studies for the 15-psid transducers are presented along with a comparison of two regression methods using data acquired with both 0.36-psid and 15-psid transducers. Together these results provide insight into procedural and environmental controls required for long term high-accuracy pressure measurements near 0.01 psia in the hypersonic testing environment using 15-psid ESP transducers.
Brzozek, Christopher; Benke, Kurt K; Zeleke, Berihun M; Abramson, Michael J; Benke, Geza
2018-03-26
Uncertainty in experimental studies of exposure to radiation from mobile phones has in the past only been framed within the context of statistical variability. It is now becoming more apparent to researchers that epistemic or reducible uncertainties can also affect the total error in results. These uncertainties are derived from a wide range of sources including human error, such as data transcription, model structure, measurement and linguistic errors in communication. The issue of epistemic uncertainty is reviewed and interpreted in the context of the MoRPhEUS, ExPOSURE and HERMES cohort studies which investigate the effect of radiofrequency electromagnetic radiation from mobile phones on memory performance. Research into this field has found inconsistent results due to limitations from a range of epistemic sources. Potential analytic approaches are suggested based on quantification of epistemic error using Monte Carlo simulation. It is recommended that future studies investigating the relationship between radiofrequency electromagnetic radiation and memory performance pay more attention to treatment of epistemic uncertainties as well as further research into improving exposure assessment. Use of directed acyclic graphs is also encouraged to display the assumed covariate relationship.
Water displacement leg volumetry in clinical studies - A discussion of error sources
2010-01-01
Background Water displacement leg volumetry is a highly reproducible method, allowing the confirmation of efficacy of vasoactive substances. Nevertheless errors of its execution and the selection of unsuitable patients are likely to negatively affect the outcome of clinical studies in chronic venous insufficiency (CVI). Discussion Placebo controlled double-blind drug studies in CVI were searched (Cochrane Review 2005, MedLine Search until December 2007) and assessed with regard to efficacy (volume reduction of the leg), patient characteristics, and potential methodological error sources. Almost every second study reported only small drug effects (≤ 30 mL volume reduction). As the most relevant error source the conduct of volumetry was identified. Because the practical use of available equipment varies, volume differences of more than 300 mL - which is a multifold of a potential treatment effect - have been reported between consecutive measurements. Other potential error sources were insufficient patient guidance or difficulties with the transition from the Widmer CVI classification to the CEAP (Clinical Etiological Anatomical Pathophysiological) grading. Summary Patients should be properly diagnosed with CVI and selected for stable oedema and further clinical symptoms relevant for the specific study. Centres require a thorough training on the use of the volumeter and on patient guidance. Volumetry should be performed under constant conditions. The reproducibility of short term repeat measurements has to be ensured. PMID:20070899
NASA Astrophysics Data System (ADS)
Zhang, Hao; Yuan, Yan; Su, Lijuan; Huang, Fengzhen; Bai, Qing
2016-09-01
The Risley-prism-based light beam steering apparatus delivers superior pointing accuracy and it is used in imaging LIDAR and imaging microscopes. A general model for pointing error analysis of the Risley prisms is proposed in this paper, based on ray direction deviation in light refraction. This model captures incident beam deviation, assembly deflections, and prism rotational error. We derive the transmission matrixes of the model firstly. Then, the independent and cumulative effects of different errors are analyzed through this model. Accuracy study of the model shows that the prediction deviation of pointing error for different error is less than 4.1×10-5° when the error amplitude is 0.1°. Detailed analyses of errors indicate that different error sources affect the pointing accuracy to varying degree, and the major error source is the incident beam deviation. The prism tilting has a relative big effect on the pointing accuracy when prism tilts in the principal section. The cumulative effect analyses of multiple errors represent that the pointing error can be reduced by tuning the bearing tilting in the same direction. The cumulative effect of rotational error is relative big when the difference of these two prism rotational angles equals 0 or π, while it is relative small when the difference equals π/2. The novelty of these results suggests that our analysis can help to uncover the error distribution and aid in measurement calibration of Risley-prism systems.
Swing arm profilometer: analytical solutions of misalignment errors for testing axisymmetric optics
NASA Astrophysics Data System (ADS)
Xiong, Ling; Luo, Xiao; Liu, Zhenyu; Wang, Xiaokun; Hu, Haixiang; Zhang, Feng; Zheng, Ligong; Zhang, Xuejun
2016-07-01
The swing arm profilometer (SAP) has been playing a very important role in testing large aspheric optics. As one of most significant error sources that affects the test accuracy, misalignment error leads to low-order errors such as aspherical aberrations and coma apart from power. In order to analyze the effect of misalignment errors, the relation between alignment parameters and test results of axisymmetric optics is presented. Analytical solutions of SAP system errors from tested mirror misalignment, arm length L deviation, tilt-angle θ deviation, air-table spin error, and air-table misalignment are derived, respectively; and misalignment tolerance is given to guide surface measurement. In addition, experiments on a 2-m diameter parabolic mirror are demonstrated to verify the model; according to the error budget, we achieve the SAP test for low-order errors except power with accuracy of 0.1 μm root-mean-square.
God will forgive: reflecting on God’s love decreases neurophysiological responses to errors
Inzlicht, Michael; Larson, Michael J.
2015-01-01
In religions where God is portrayed as both loving and wrathful, religious beliefs may be a source of fear as well as comfort. Here, we consider if God’s love may be more effective, relative to God’s wrath, for soothing distress, but less effective for helping control behavior. Specifically, we assess whether contemplating God’s love reduces our ability to detect and emotionally react to conflict between one’s behavior and overarching religious standards. We do so within a neurophysiological framework, by observing the effects of exposure to concepts of God’s love vs punishment on the error-related negativity (ERN)—a neural signal originating in the anterior cingulate cortex that is associated with performance monitoring and affective responses to errors. Participants included 123 students at Brigham Young University, who completed a Go/No-Go task where they made ‘religious’ errors (i.e. ostensibly exhibited pro-alcohol tendencies). Reflecting on God’s love caused dampened ERNs and worse performance on the Go/No-Go task. Thinking about God’s punishment did not affect performance or ERNs. Results suggest that one possible reason religiosity is generally linked to positive well-being may be because of a decreased affective response to errors that occurs when God’s love is prominent in the minds of believers. PMID:25062839
Zeleke, Berihun M.; Abramson, Michael J.; Benke, Geza
2018-01-01
Uncertainty in experimental studies of exposure to radiation from mobile phones has in the past only been framed within the context of statistical variability. It is now becoming more apparent to researchers that epistemic or reducible uncertainties can also affect the total error in results. These uncertainties are derived from a wide range of sources including human error, such as data transcription, model structure, measurement and linguistic errors in communication. The issue of epistemic uncertainty is reviewed and interpreted in the context of the MoRPhEUS, ExPOSURE and HERMES cohort studies which investigate the effect of radiofrequency electromagnetic radiation from mobile phones on memory performance. Research into this field has found inconsistent results due to limitations from a range of epistemic sources. Potential analytic approaches are suggested based on quantification of epistemic error using Monte Carlo simulation. It is recommended that future studies investigating the relationship between radiofrequency electromagnetic radiation and memory performance pay more attention to treatment of epistemic uncertainties as well as further research into improving exposure assessment. Use of directed acyclic graphs is also encouraged to display the assumed covariate relationship. PMID:29587425
On-board error correction improves IR earth sensor accuracy
NASA Astrophysics Data System (ADS)
Alex, T. K.; Kasturirangan, K.; Shrivastava, S. K.
1989-10-01
Infra-red earth sensors are used in satellites for attitude sensing. Their accuracy is limited by systematic and random errors. The sources of errors in a scanning infra-red earth sensor are analyzed in this paper. The systematic errors arising from seasonal variation of infra-red radiation, oblate shape of the earth, ambient temperature of sensor, changes in scan/spin rates have been analyzed. Simple relations are derived using least square curve fitting for on-board correction of these errors. Random errors arising out of noise from detector and amplifiers, instability of alignment and localized radiance anomalies are analyzed and possible correction methods are suggested. Sun and Moon interference on earth sensor performance has seriously affected a number of missions. The on-board processor detects Sun/Moon interference and corrects the errors on-board. It is possible to obtain eight times improvement in sensing accuracy, which will be comparable with ground based post facto attitude refinement.
A weighted adjustment of a similarity transformation between two point sets containing errors
NASA Astrophysics Data System (ADS)
Marx, C.
2017-10-01
For an adjustment of a similarity transformation, it is often appropriate to consider that both the source and the target coordinates of the transformation are affected by errors. For the least squares adjustment of this problem, a direct solution is possible in the cases of specific-weighing schemas of the coordinates. Such a problem is considered in the present contribution and a direct solution is generally derived for the m-dimensional space. The applied weighing schema allows (fully populated) point-wise weight matrices for the source and target coordinates, both weight matrices have to be proportional to each other. Additionally, the solutions of two borderline cases of this weighting schema are derived, which only consider errors in the source or target coordinates. The investigated solution of the rotation matrix of the adjustment is independent of the scaling between the weight matrices of the source and the target coordinates. The mentioned borderline cases, therefore, have the same solution of the rotation matrix. The direct solution method is successfully tested on an example of a 3D similarity transformation using a comparison with an iterative solution based on the Gauß-Helmert model.
Brébion, G; Ohlsen, R I; Bressan, R A; David, A S
2012-12-01
Previous research has shown associations between source memory errors and hallucinations in patients with schizophrenia. We bring together here findings from a broad memory investigation to specify better the type of source memory failure that is associated with auditory and visual hallucinations. Forty-one patients with schizophrenia and 43 healthy participants underwent a memory task involving recall and recognition of lists of words, recognition of pictures, memory for temporal and spatial context of presentation of the stimuli, and remembering whether target items were presented as words or pictures. False recognition of words and pictures was associated with hallucination scores. The extra-list intrusions in free recall were associated with verbal hallucinations whereas the intra-list intrusions were associated with a global hallucination score. Errors in discriminating the temporal context of word presentation and the spatial context of picture presentation were associated with auditory hallucinations. The tendency to remember verbal labels of items as pictures of these items was associated with visual hallucinations. Several memory errors were also inversely associated with affective flattening and anhedonia. Verbal and visual hallucinations are associated with confusion between internal verbal thoughts or internal visual images and perception. In addition, auditory hallucinations are associated with failure to process or remember the context of presentation of the events. Certain negative symptoms have an opposite effect on memory errors.
Requirements for Coregistration Accuracy in On-Scalp MEG.
Zetter, Rasmus; Iivanainen, Joonas; Stenroos, Matti; Parkkonen, Lauri
2018-06-22
Recent advances in magnetic sensing has made on-scalp magnetoencephalography (MEG) possible. In particular, optically-pumped magnetometers (OPMs) have reached sensitivity levels that enable their use in MEG. In contrast to the SQUID sensors used in current MEG systems, OPMs do not require cryogenic cooling and can thus be placed within millimetres from the head, enabling the construction of sensor arrays that conform to the shape of an individual's head. To properly estimate the location of neural sources within the brain, one must accurately know the position and orientation of sensors in relation to the head. With the adaptable on-scalp MEG sensor arrays, this coregistration becomes more challenging than in current SQUID-based MEG systems that use rigid sensor arrays. Here, we used simulations to quantify how accurately one needs to know the position and orientation of sensors in an on-scalp MEG system. The effects that different types of localisation errors have on forward modelling and source estimates obtained by minimum-norm estimation, dipole fitting, and beamforming are detailed. We found that sensor position errors generally have a larger effect than orientation errors and that these errors affect the localisation accuracy of superficial sources the most. To obtain similar or higher accuracy than with current SQUID-based MEG systems, RMS sensor position and orientation errors should be [Formula: see text] and [Formula: see text], respectively.
NASA Astrophysics Data System (ADS)
Zhang, Fan; Liu, Pinkuan
2018-04-01
In order to improve the inspection precision of the H-drive air-bearing stage for wafer inspection, in this paper the geometric error of the stage is analyzed and compensated. The relationship between the positioning errors and error sources are initially modeled, and seven error components are identified that are closely related to the inspection accuracy. The most effective factor that affects the geometric error is identified by error sensitivity analysis. Then, the Spearman rank correlation method is applied to find the correlation between different error components, aiming at guiding the accuracy design and error compensation of the stage. Finally, different compensation methods, including the three-error curve interpolation method, the polynomial interpolation method, the Chebyshev polynomial interpolation method, and the B-spline interpolation method, are employed within the full range of the stage, and their results are compared. Simulation and experiment show that the B-spline interpolation method based on the error model has better compensation results. In addition, the research result is valuable for promoting wafer inspection accuracy and will greatly benefit the semiconductor industry.
Skydan, Oleksandr A; Lilley, Francis; Lalor, Michael J; Burton, David R
2003-09-10
We present an investigation into the phase errors that occur in fringe pattern analysis that are caused by quantization effects. When acquisition devices with a limited value of camera bit depth are used, there are a limited number of quantization levels available to record the signal. This may adversely affect the recorded signal and adds a potential source of instrumental error to the measurement system. Quantization effects also determine the accuracy that may be achieved by acquisition devices in a measurement system. We used the Fourier fringe analysis measurement technique. However, the principles can be applied equally well for other phase measuring techniques to yield a phase error distribution that is caused by the camera bit depth.
God will forgive: reflecting on God's love decreases neurophysiological responses to errors.
Good, Marie; Inzlicht, Michael; Larson, Michael J
2015-03-01
In religions where God is portrayed as both loving and wrathful, religious beliefs may be a source of fear as well as comfort. Here, we consider if God's love may be more effective, relative to God's wrath, for soothing distress, but less effective for helping control behavior. Specifically, we assess whether contemplating God's love reduces our ability to detect and emotionally react to conflict between one's behavior and overarching religious standards. We do so within a neurophysiological framework, by observing the effects of exposure to concepts of God's love vs punishment on the error-related negativity (ERN)--a neural signal originating in the anterior cingulate cortex that is associated with performance monitoring and affective responses to errors. Participants included 123 students at Brigham Young University, who completed a Go/No-Go task where they made 'religious' errors (i.e. ostensibly exhibited pro-alcohol tendencies). Reflecting on God's love caused dampened ERNs and worse performance on the Go/No-Go task. Thinking about God's punishment did not affect performance or ERNs. Results suggest that one possible reason religiosity is generally linked to positive well-being may be because of a decreased affective response to errors that occurs when God's love is prominent in the minds of believers. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Strangman, Gary; Franceschini, Maria Angela; Boas, David A.; Sutton, J. P. (Principal Investigator)
2003-01-01
Near-infrared spectroscopy (NIRS) can be used to noninvasively measure changes in the concentrations of oxy- and deoxyhemoglobin in tissue. We have previously shown that while global changes can be reliably measured, focal changes can produce erroneous estimates of concentration changes (NeuroImage 13 (2001), 76). Here, we describe four separate sources for systematic error in the calculation of focal hemoglobin changes from NIRS data and use experimental methods and Monte Carlo simulations to examine the importance and mitigation methods of each. The sources of error are: (1). the absolute magnitudes and relative differences in pathlength factors as a function of wavelength, (2). the location and spatial extent of the absorption change with respect to the optical probe, (3). possible differences in the spatial distribution of hemoglobin species, and (4). the potential for simultaneous monitoring of multiple regions of activation. We found wavelength selection and optode placement to be important variables in minimizing such errors, and our findings indicate that appropriate experimental procedures could reduce each of these errors to a small fraction (<10%) of the observed concentration changes.
Impact of geophysical model error for recovering temporal gravity field model
NASA Astrophysics Data System (ADS)
Zhou, Hao; Luo, Zhicai; Wu, Yihao; Li, Qiong; Xu, Chuang
2016-07-01
The impact of geophysical model error on recovered temporal gravity field models with both real and simulated GRACE observations is assessed in this paper. With real GRACE observations, we build four temporal gravity field models, i.e., HUST08a, HUST11a, HUST04 and HUST05. HUST08a and HUST11a are derived from different ocean tide models (EOT08a and EOT11a), while HUST04 and HUST05 are derived from different non-tidal models (AOD RL04 and AOD RL05). The statistical result shows that the discrepancies of the annual mass variability amplitudes in six river basins between HUST08a and HUST11a models, HUST04 and HUST05 models are all smaller than 1 cm, which demonstrates that geophysical model error slightly affects the current GRACE solutions. The impact of geophysical model error for future missions with more accurate satellite ranging is also assessed by simulation. The simulation results indicate that for current mission with range rate accuracy of 2.5 × 10- 7 m/s, observation error is the main reason for stripe error. However, when the range rate accuracy improves to 5.0 × 10- 8 m/s in the future mission, geophysical model error will be the main source for stripe error, which will limit the accuracy and spatial resolution of temporal gravity model. Therefore, observation error should be the primary error source taken into account at current range rate accuracy level, while more attention should be paid to improving the accuracy of background geophysical models for the future mission.
Accounting for measurement error: a critical but often overlooked process.
Harris, Edward F; Smith, Richard N
2009-12-01
Due to instrument imprecision and human inconsistencies, measurements are not free of error. Technical error of measurement (TEM) is the variability encountered between dimensions when the same specimens are measured at multiple sessions. A goal of a data collection regimen is to minimise TEM. The few studies that actually quantify TEM, regardless of discipline, report that it is substantial and can affect results and inferences. This paper reviews some statistical approaches for identifying and controlling TEM. Statistically, TEM is part of the residual ('unexplained') variance in a statistical test, so accounting for TEM, which requires repeated measurements, enhances the chances of finding a statistically significant difference if one exists. The aim of this paper was to review and discuss common statistical designs relating to types of error and statistical approaches to error accountability. This paper addresses issues of landmark location, validity, technical and systematic error, analysis of variance, scaled measures and correlation coefficients in order to guide the reader towards correct identification of true experimental differences. Researchers commonly infer characteristics about populations from comparatively restricted study samples. Most inferences are statistical and, aside from concerns about adequate accounting for known sources of variation with the research design, an important source of variability is measurement error. Variability in locating landmarks that define variables is obvious in odontometrics, cephalometrics and anthropometry, but the same concerns about measurement accuracy and precision extend to all disciplines. With increasing accessibility to computer-assisted methods of data collection, the ease of incorporating repeated measures into statistical designs has improved. Accounting for this technical source of variation increases the chance of finding biologically true differences when they exist.
Reply to Comment on ‘egs_brachy: a versatile and fast Monte Carlo code for brachytherapy’
NASA Astrophysics Data System (ADS)
Thomson, Rowan M.; Taylor, Randle E. P.; Chamberland, Marc J. P.; Rogers, D. W. O.
2018-02-01
We respond to the comments by Dr Yegin by identifying the source of an error in a fit in our original paper but arguing that the lack of a fit does not affect the conclusion based on the raw data that \
A New Design of the Test Rig to Measure the Transmission Error of Automobile Gearbox
NASA Astrophysics Data System (ADS)
Hou, Yixuan; Zhou, Xiaoqin; He, Xiuzhi; Liu, Zufei; Liu, Qiang
2017-12-01
Noise and vibration affect the performance of automobile gearbox. And transmission error has been regarded as an important excitation source in gear system. Most of current research is focused on the measurement and analysis of single gear drive, and few investigations on the transmission error measurement in complete gearbox were conducted. In order to measure transmission error in a complete automobile gearbox, a kind of electrically closed test rig is developed. Based on the principle of modular design, the test rig can be used to test different types of gearbox by adding necessary modules. The test rig for front engine, rear-wheel-drive gearbox is constructed. And static and modal analysis methods are taken to verify the performance of a key component.
The effects of center of rotation errors on cardiac SPECT imaging
NASA Astrophysics Data System (ADS)
Bai, Chuanyong; Shao, Ling; Ye, Jinghan; Durbin, M.
2003-10-01
In SPECT imaging, center of rotation (COR) errors lead to the misalignment of projection data and can potentially degrade the quality of the reconstructed images. In this work, we study the effects of COR errors on cardiac SPECT imaging using simulation, point source, cardiac phantom, and patient studies. For simulation studies, we generate projection data using a uniform MCAT phantom first without modeling any physical effects (NPH), then with the modeling of detector response effect (DR) alone. We then corrupt the projection data with simulated sinusoid and step COR errors. For other studies, we introduce sinusoid COR errors to projection data acquired on SPECT systems. An OSEM algorithm is used for image reconstruction without detector response correction, but with nonuniform attenuation correction when needed. The simulation studies show that, when COR errors increase from 0 to 0.96 cm: 1) sinusoid COR errors in axial direction lead to intensity decrease in the inferoapical region; 2) step COR errors in axial direction lead to intensity decrease in the distal anterior region. The intensity decrease is more severe in images reconstructed from projection data with NPH than with DR; and 3) the effects of COR errors in transaxial direction seem to be insignificant. In other studies, COR errors slightly degrade point source resolution; COR errors of 0.64 cm or above introduce visible but insignificant nonuniformity in the images of uniform cardiac phantom; COR errors up to 0.96 cm in transaxial direction affect the lesion-to-background contrast (LBC) insignificantly in the images of cardiac phantom with defects, and COR errors up to 0.64 cm in axial direction only slightly decrease the LBC. For the patient studies with COR errors up to 0.96 cm, images have the same diagnostic/prognostic values as those without COR errors. This work suggests that COR errors of up to 0.64 cm are not likely to change the clinical applications of cardiac SPECT imaging when using iterative reconstruction algorithm without detector response correction.
Flight Test Results: CTAS Cruise/Descent Trajectory Prediction Accuracy for En route ATC Advisories
NASA Technical Reports Server (NTRS)
Green, S.; Grace, M.; Williams, D.
1999-01-01
The Center/TRACON Automation System (CTAS), under development at NASA Ames Research Center, is designed to assist controllers with the management and control of air traffic transitioning to/from congested airspace. This paper focuses on the transition from the en route environment, to high-density terminal airspace, under a time-based arrival-metering constraint. Two flight tests were conducted at the Denver Air Route Traffic Control Center (ARTCC) to study trajectory-prediction accuracy, the key to accurate Decision Support Tool advisories such as conflict detection/resolution and fuel-efficient metering conformance. In collaboration with NASA Langley Research Center, these test were part of an overall effort to research systems and procedures for the integration of CTAS and flight management systems (FMS). The Langley Transport Systems Research Vehicle Boeing 737 airplane flew a combined total of 58 cruise-arrival trajectory runs while following CTAS clearance advisories. Actual trajectories of the airplane were compared to CTAS and FMS predictions to measure trajectory-prediction accuracy and identify the primary sources of error for both. The research airplane was used to evaluate several levels of cockpit automation ranging from conventional avionics to a performance-based vertical navigation (VNAV) FMS. Trajectory prediction accuracy was analyzed with respect to both ARTCC radar tracking and GPS-based aircraft measurements. This paper presents detailed results describing the trajectory accuracy and error sources. Although differences were found in both accuracy and error sources, CTAS accuracy was comparable to the FMS in terms of both meter-fix arrival-time performance (in support of metering) and 4D-trajectory prediction (key to conflict prediction). Overall arrival time errors (mean plus standard deviation) were measured to be approximately 24 seconds during the first flight test (23 runs) and 15 seconds during the second flight test (25 runs). The major source of error during these tests was found to be the predicted winds aloft used by CTAS. Position and velocity estimates of the airplane provided to CTAS by the ATC Host radar tracker were found to be a relatively insignificant error source for the trajectory conditions evaluated. Airplane performance modeling errors within CTAS were found to not significantly affect arrival time errors when the constrained descent procedures were used. The most significant effect related to the flight guidance was observed to be the cross-track and turn-overshoot errors associated with conventional VOR guidance. Lateral navigation (LNAV) guidance significantly reduced both the cross-track and turn-overshoot error. Pilot procedures and VNAV guidance were found to significantly reduce the vertical profile errors associated with atmospheric and aircraft performance model errors.
NASA Astrophysics Data System (ADS)
Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang
2018-02-01
Coherent modulation imaging providing fast convergence speed and high resolution with single diffraction pattern is a promising technique to satisfy the urgent demands for on-line multiple parameter diagnostics with single setup in high power laser facilities (HPLF). However, the influence of noise on the final calculated parameters concerned has not been investigated yet. According to a series of simulations with twenty different sampling beams generated based on the practical parameters and performance of HPLF, the quantitative analysis based on statistical results was first investigated after considering five different error sources. We found the background noise of detector and high quantization error will seriously affect the final accuracy and different parameters have different sensitivity to different noise sources. The simulation results and the corresponding analysis provide the potential directions to further improve the final accuracy of parameter diagnostics which is critically important to its formal applications in the daily routines of HPLF.
Measured and predicted rotor performance for the SERI advanced wind turbine blades
NASA Astrophysics Data System (ADS)
Tangler, J.; Smith, B.; Kelley, N.; Jager, D.
1992-02-01
Measured and predicted rotor performance for the Solar Energy Research Institute (SERI) advanced wind turbine blades were compared to assess the accuracy of predictions and to identify the sources of error affecting both predictions and measurements. An awareness of these sources of error contributes to improved prediction and measurement methods that will ultimately benefit future rotor design efforts. Propeller/vane anemometers were found to underestimate the wind speed in turbulent environments such as the San Gorgonio Pass wind farm area. Using sonic or cup anemometers, good agreement was achieved between predicted and measured power output for wind speeds up to 8 m/sec. At higher wind speeds an optimistic predicted power output and the occurrence of peak power at wind speeds lower than measurements resulted from the omission of turbulence and yaw error. In addition, accurate two-dimensional (2-D) airfoil data prior to stall and a post stall airfoil data synthesization method that reflects three-dimensional (3-D) effects were found to be essential for accurate performance prediction.
Reducing sampling error in faecal egg counts from black rhinoceros (Diceros bicornis).
Stringer, Andrew P; Smith, Diane; Kerley, Graham I H; Linklater, Wayne L
2014-04-01
Faecal egg counts (FECs) are commonly used for the non-invasive assessment of parasite load within hosts. Sources of error, however, have been identified in laboratory techniques and sample storage. Here we focus on sampling error. We test whether a delay in sample collection can affect FECs, and estimate the number of samples needed to reliably assess mean parasite abundance within a host population. Two commonly found parasite eggs in black rhinoceros (Diceros bicornis) dung, strongyle-type nematodes and Anoplocephala gigantea, were used. We find that collection of dung from the centre of faecal boluses up to six hours after defecation does not affect FECs. More than nine samples were needed to greatly improve confidence intervals of the estimated mean parasite abundance within a host population. These results should improve the cost-effectiveness and efficiency of sampling regimes, and support the usefulness of FECs when used for the non-invasive assessment of parasite abundance in black rhinoceros populations.
Context matters: the structure of task goals affects accuracy in multiple-target visual search.
Clark, Kait; Cain, Matthew S; Adcock, R Alison; Mitroff, Stephen R
2014-05-01
Career visual searchers such as radiologists and airport security screeners strive to conduct accurate visual searches, but despite extensive training, errors still occur. A key difference between searches in radiology and airport security is the structure of the search task: Radiologists typically scan a certain number of medical images (fixed objective), and airport security screeners typically search X-rays for a specified time period (fixed duration). Might these structural differences affect accuracy? We compared performance on a search task administered either under constraints that approximated radiology or airport security. Some displays contained more than one target because the presence of multiple targets is an established source of errors for career searchers, and accuracy for additional targets tends to be especially sensitive to contextual conditions. Results indicate that participants searching within the fixed objective framework produced more multiple-target search errors; thus, adopting a fixed duration framework could improve accuracy for career searchers. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
The cost of adherence mismeasurement in serious mental illness: a claims-based analysis.
Shafrin, Jason; Forma, Felicia; Scherer, Ethan; Hatch, Ainslie; Vytlacil, Edward; Lakdawalla, Darius
2017-05-01
To quantify how adherence mismeasurement affects the estimated impact of adherence on inpatient costs among patients with serious mental illness (SMI). Proportion of days covered (PDC) is a common claims-based measure of medication adherence. Because PDC does not measure medication ingestion, however, it may inaccurately measure adherence. We derived a formula to correct the bias that occurs in adherence-utilization studies resulting from errors in claims-based measures of adherence. We conducted a literature review to identify the correlation between gold-standard and claims-based adherence measures. We derived a bias-correction methodology to address claims-based medication adherence measurement error. We then applied this methodology to a case study of patients with SMI who initiated atypical antipsychotics in 2 large claims databases. Our literature review identified 6 studies of interest. The 4 most relevant ones measured correlations between 0.38 and 0.91. Our preferred estimate implies that the effect of adherence on inpatient spending estimated from claims data would understate the true effect by a factor of 5.3, if there were no other sources of bias. Although our procedure corrects for measurement error, such error also may amplify or mitigate other potential biases. For instance, if adherent patients are healthier than nonadherent ones, measurement error makes the resulting bias worse. On the other hand, if adherent patients are sicker, measurement error mitigates the other bias. Measurement error due to claims-based adherence measures is worth addressing, alongside other more widely emphasized sources of bias in inference.
A hybrid method for synthetic aperture ladar phase-error compensation
NASA Astrophysics Data System (ADS)
Hua, Zhili; Li, Hongping; Gu, Yongjian
2009-07-01
As a high resolution imaging sensor, synthetic aperture ladar data contain phase-error whose source include uncompensated platform motion and atmospheric turbulence distortion errors. Two previously devised methods, rank one phase-error estimation algorithm and iterative blind deconvolution are reexamined, of which a hybrid method that can recover both the images and PSF's without any a priori information on the PSF is built to speed up the convergence rate by the consideration in the choice of initialization. To be integrated into spotlight mode SAL imaging model respectively, three methods all can effectively reduce the phase-error distortion. For each approach, signal to noise ratio, root mean square error and CPU time are computed, from which we can see the convergence rate of the hybrid method can be improved because a more efficient initialization set of blind deconvolution. Moreover, by making a further discussion of the hybrid method, the weight distribution of ROPE and IBD is found to be an important factor that affects the final result of the whole compensation process.
The Errors Sources Affect to the Results of One-Way Nested Ocean Regional Circulation Model
NASA Astrophysics Data System (ADS)
Pham, S. V.
2016-02-01
Pham-Van Sy1, Jin Hwan Hwang2 and Hyeyun Ku3 Dept. of Civil & Environmental Engineering, Seoul National University, KoreaEmail: 1phamsymt@gmail.com (Corresponding author) Email: 2jinhwang@snu.ac.krEmail: 3hyeyun.ku@gmail.comAbstractThe Oceanic Regional Circulation Model (ORCM) is an essential tool in resolving highly a regional scale through downscaling dynamically the results from the roughly revolved global model. However, when dynamic downscaling from a coarse resolution of the global model or observations to the small scale, errors are generated due to the different sizes of resolution and lateral updating frequency. This research evaluated the effect of four main sources on the results of the ocean regional circulation model (ORCMs) during downscaling and nesting the output data from the ocean global circulation model (OGCMs). Representative four error sources should be the way of the LBC formulation, the spatial resolution difference between driving and driven data, the frequency for up-dating LBCs and domain size. Errors which are contributed from each error source to the results of the ORCMs are investigated separately by applying the Big-Brother Experiment (BBE). Within resolution of 3km grid point of the ORCMs imposing in the BBE framework, it clearly exposes that the simulation results of the ORCMs significantly depend on the domain size and specially the spatial and temporal resolution of lateral boundary conditions (LBCs). The ratio resolution of spatial resolution between driving data and driven model could be up to 3, the updating frequency of the LBCs can be up to every 6 hours per day. The optimal domain size of the ORCMs could be smaller than the OGCMs' domain size around 2 to 10 times. Key words: ORCMs, error source, lateral boundary conditions, domain size Acknowledgement: This research was supported by grants from the Korean Ministry of Oceans and Fisheries entitled as "Developing total management system for the Keum river estuary and coast" and "Development of Technology for CO2 Marine Geological Storage". We also thank to the administrative supports of the Integrated Research Institute of Construction and Environmental Engineering of the Seoul National University.
An analytic technique for statistically modeling random atomic clock errors in estimation
NASA Technical Reports Server (NTRS)
Fell, P. J.
1981-01-01
Minimum variance estimation requires that the statistics of random observation errors be modeled properly. If measurements are derived through the use of atomic frequency standards, then one source of error affecting the observable is random fluctuation in frequency. This is the case, for example, with range and integrated Doppler measurements from satellites of the Global Positioning and baseline determination for geodynamic applications. An analytic method is presented which approximates the statistics of this random process. The procedure starts with a model of the Allan variance for a particular oscillator and develops the statistics of range and integrated Doppler measurements. A series of five first order Markov processes is used to approximate the power spectral density obtained from the Allan variance.
Decision aids for multiple-decision disease management as affected by weather input errors.
Pfender, W F; Gent, D H; Mahaffee, W F; Coop, L B; Fox, A D
2011-06-01
Many disease management decision support systems (DSSs) rely, exclusively or in part, on weather inputs to calculate an indicator for disease hazard. Error in the weather inputs, typically due to forecasting, interpolation, or estimation from off-site sources, may affect model calculations and management decision recommendations. The extent to which errors in weather inputs affect the quality of the final management outcome depends on a number of aspects of the disease management context, including whether management consists of a single dichotomous decision, or of a multi-decision process extending over the cropping season(s). Decision aids for multi-decision disease management typically are based on simple or complex algorithms of weather data which may be accumulated over several days or weeks. It is difficult to quantify accuracy of multi-decision DSSs due to temporally overlapping disease events, existence of more than one solution to optimizing the outcome, opportunities to take later recourse to modify earlier decisions, and the ongoing, complex decision process in which the DSS is only one component. One approach to assessing importance of weather input errors is to conduct an error analysis in which the DSS outcome from high-quality weather data is compared with that from weather data with various levels of bias and/or variance from the original data. We illustrate this analytical approach for two types of DSS, an infection risk index for hop powdery mildew and a simulation model for grass stem rust. Further exploration of analysis methods is needed to address problems associated with assessing uncertainty in multi-decision DSSs.
ERIC Educational Resources Information Center
Grantham, Marilyn H.
Some observers of political phenomena are referring to the 1990s as the "age of accountability." Early in the decade of the '90s, articles in periodicals, professional journals and other sources were voicing warnings about increasing public policymaker frustration with higher education and the spreading development and implementation of…
Accounting for measurement error in log regression models with applications to accelerated testing.
Richardson, Robert; Tolley, H Dennis; Evenson, William E; Lunt, Barry M
2018-01-01
In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.
U.S. Maternally Linked Birth Records May Be Biased for Hispanics and Other Population Groups
LEISS, JACK K.; GILES, DENISE; SULLIVAN, KRISTIN M.; MATHEWS, RAHEL; SENTELLE, GLENDA; TOMASHEK, KAY M.
2010-01-01
Purpose To advance understanding of linkage error in U.S. maternally linked datasets, and how the error may affect results of studies based on the linked data. Methods North Carolina birth and fetal death records for 1988-1997 were maternally linked (n=1,030,029). The maternal set probability, defined as the probability that all records assigned to the same maternal set do in fact represent events to the same woman, was used to assess differential maternal linkage error across race/ethnic groups. Results Maternal set probabilities were lower for records specifying Asian or Hispanic race/ethnicity, suggesting greater maternal linkage error. The lower probabilities for Hispanics were concentrated in women of Mexican origin who were not born in the United States. Conclusions Differential maternal linkage error may be a source of bias in studies using U.S. maternally linked datasets to make comparisons between Hispanics and other groups or among Hispanic subgroups. Methods to quantify and adjust for this potential bias are needed. PMID:20006273
Stenroos, Matti; Hauk, Olaf
2013-01-01
The conductivity profile of the head has a major effect on EEG signals, but unfortunately the conductivity for the most important compartment, skull, is only poorly known. In dipole modeling studies, errors in modeled skull conductivity have been considered to have a detrimental effect on EEG source estimation. However, as dipole models are very restrictive, those results cannot be generalized to other source estimation methods. In this work, we studied the sensitivity of EEG and combined MEG + EEG source estimation to errors in skull conductivity using a distributed source model and minimum-norm (MN) estimation. We used a MEG/EEG modeling set-up that reflected state-of-the-art practices of experimental research. Cortical surfaces were segmented and realistically-shaped three-layer anatomical head models were constructed, and forward models were built with Galerkin boundary element method while varying the skull conductivity. Lead-field topographies and MN spatial filter vectors were compared across conductivities, and the localization and spatial spread of the MN estimators were assessed using intuitive resolution metrics. The results showed that the MN estimator is robust against errors in skull conductivity: the conductivity had a moderate effect on amplitudes of lead fields and spatial filter vectors, but the effect on corresponding morphologies was small. The localization performance of the EEG or combined MEG + EEG MN estimator was only minimally affected by the conductivity error, while the spread of the estimate varied slightly. Thus, the uncertainty with respect to skull conductivity should not prevent researchers from applying minimum norm estimation to EEG or combined MEG + EEG data. Comparing our results to those obtained earlier with dipole models shows that general judgment on the performance of an imaging modality should not be based on analysis with one source estimation method only. PMID:23639259
A posteriori error estimates in voice source recovery
NASA Astrophysics Data System (ADS)
Leonov, A. S.; Sorokin, V. N.
2017-12-01
The inverse problem of voice source pulse recovery from a segment of a speech signal is under consideration. A special mathematical model is used for the solution that relates these quantities. A variational method of solving inverse problem of voice source recovery for a new parametric class of sources, that is for piecewise-linear sources (PWL-sources), is proposed. Also, a technique for a posteriori numerical error estimation for obtained solutions is presented. A computer study of the adequacy of adopted speech production model with PWL-sources is performed in solving the inverse problems for various types of voice signals, as well as corresponding study of a posteriori error estimates. Numerical experiments for speech signals show satisfactory properties of proposed a posteriori error estimates, which represent the upper bounds of possible errors in solving the inverse problem. The estimate of the most probable error in determining the source-pulse shapes is about 7-8% for the investigated speech material. It is noted that a posteriori error estimates can be used as a criterion of the quality for obtained voice source pulses in application to speaker recognition.
Optical system components for navigation grade fiber optic gyroscopes
NASA Astrophysics Data System (ADS)
Heimann, Marcus; Liesegang, Maximilian; Arndt-Staufenbiel, Norbert; Schröder, Henning; Lang, Klaus-Dieter
2013-10-01
Interferometric fiber optic gyroscopes belong to the class of inertial sensors. Due to their high accuracy they are used for absolute position and rotation measurement in manned/unmanned vehicles, e.g. submarines, ground vehicles, aircraft or satellites. The important system components are the light source, the electro optical phase modulator, the optical fiber coil and the photodetector. This paper is focused on approaches to realize a stable light source and fiber coil. Superluminescent diode and erbium doped fiber laser were studied to realize an accurate and stable light source. Therefor the influence of the polarization grade of the source and the effects due to back reflections to the source were studied. During operation thermal working conditions severely affect accuracy and stability of the optical fiber coil, which is the sensor element. Thermal gradients that are applied to the fiber coil have large negative effects on the achievable system accuracy of the optic gyroscope. Therefore a way of calculating and compensating the rotation rate error of a fiber coil due to thermal change is introduced. A simplified 3 dimensional FEM of a quadrupole wound fiber coil is used to determine the build-up of thermal fields in the polarization maintaining fiber due to outside heating sources. The rotation rate error due to these sources is then calculated and compared to measurement data. A simple regression model is used to compensate the rotation rate error with temperature measurement at the outside of the fiber coil. To realize a compact and robust optical package for some of the relevant optical system components an approach based on ion exchanged waveguides in thin glass was developed. This waveguides are used to realize 1x2 and 1x4 splitter with fiber coupling interface or direct photodiode coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, H. -Y.; Klein, S. A.; Xie, S.
Many weather forecasting and climate models simulate a warm surface air temperature (T2m) bias over mid-latitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multi-model intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to T2m bias using a short-term hindcast approach with observations mainly from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site during the period of April to August 2011. The present study examines the contributionmore » of surface energy budget errors to the bias. All participating models simulate higher net shortwave and longwave radiative fluxes at the surface but there is no consistency on signs of biases in latent and sensible heat fluxes over the Central U.S. and ARM SGP. Nevertheless, biases in net shortwave and downward longwave fluxes, as well as surface evaporative fraction (EF) are the main contributors to T2m bias. Radiation biases are largely affected by cloud simulations, while EF is affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation is derived to further quantify the magnitudes of radiation and EF contributions to T2m bias. Our analysis suggests that radiation errors are always an important source of T2m error for long-term climate runs with EF errors either of equal or lesser importance. However, for the short-term hindcasts, EF errors are more important provided a model has a substantial EF bias.« less
NASA Astrophysics Data System (ADS)
Zheng, Sifa; Liu, Haitao; Dan, Jiabi; Lian, Xiaomin
2015-05-01
Linear time-invariant assumption for the determination of acoustic source characteristics, the source strength and the source impedance in the frequency domain has been proved reasonable in the design of an exhaust system. Different methods have been proposed to its identification and the multi-load method is widely used for its convenience by varying the load number and impedance. Theoretical error analysis has rarely been referred to and previous results have shown an overdetermined set of open pipes can reduce the identification error. This paper contributes a theoretical error analysis for the load selection. The relationships between the error in the identification of source characteristics and the load selection were analysed. A general linear time-invariant model was built based on the four-load method. To analyse the error of the source impedance, an error estimation function was proposed. The dispersion of the source pressure was obtained by an inverse calculation as an indicator to detect the accuracy of the results. It was found that for a certain load length, the load resistance at the frequency points of one-quarter wavelength of odd multiples results in peaks and in the maximum error for source impedance identification. Therefore, the load impedance of frequency range within the one-quarter wavelength of odd multiples should not be used for source impedance identification. If the selected loads have more similar resistance values (i.e., the same order of magnitude), the identification error of the source impedance could be effectively reduced.
Golz, Jürgen; MacLeod, Donald I A
2003-05-01
We analyze the sources of error in specifying color in CRT displays. These include errors inherent in the use of the color matching functions of the CIE 1931 standard observer when only colorimetric, not radiometric, calibrations are available. We provide transformation coefficients that prove to correct the deficiencies of this observer very well. We consider four different candidate sets of cone sensitivities. Some of these differ substantially; variation among candidate cone sensitivities exceeds the variation among phosphors. Finally, the effects of the recognized forms of observer variation on the visual responses (cone excitations or cone contrasts) generated by CRT stimuli are investigated and quantitatively specified. Cone pigment polymorphism gives rise to variation of a few per cent in relative excitation by the different phosphors--a variation larger than the errors ensuing from the adoption of the CIE standard observer, though smaller than the differences between some candidate cone sensitivities. Macular pigmentation has a larger influence, affecting mainly responses to the blue phosphor. The estimated combined effect of all sources of observer variation is comparable in magnitude with the largest differences between competing cone sensitivity estimates but is not enough to disrupt very seriously the relation between the L and M cone weights and the isoluminance settings of individual observers. It is also comparable with typical instrumental colorimetric errors, but we discuss these only briefly.
A method on error analysis for large-aperture optical telescope control system
NASA Astrophysics Data System (ADS)
Su, Yanrui; Wang, Qiang; Yan, Fabao; Liu, Xiang; Huang, Yongmei
2016-10-01
For large-aperture optical telescope, compared with the performance of azimuth in the control system, arc second-level jitters exist in elevation under different speeds' working mode, especially low-speed working mode in the process of its acquisition, tracking and pointing. The jitters are closely related to the working speed of the elevation, resulting in the reduction of accuracy and low-speed stability of the telescope. By collecting a large number of measured data to the elevation, we do analysis on jitters in the time domain, frequency domain and space domain respectively. And the relation between jitter points and the leading speed of elevation and the corresponding space angle is concluded that the jitters perform as periodic disturbance in space domain and the period of the corresponding space angle of the jitter points is 79.1″ approximately. Then we did simulation, analysis and comparison to the influence of the disturbance sources, like PWM power level output disturbance, torque (acceleration) disturbance, speed feedback disturbance and position feedback disturbance on the elevation to find that the space periodic disturbance still exist in the elevation performance. It leads us to infer that the problems maybe exist in angle measurement unit. The telescope employs a 24-bit photoelectric encoder and we can calculate the encoder grating angular resolution as 79.1016'', which is as the corresponding angle value in the whole encoder system of one period of the subdivision signal. The value is approximately equal to the space frequency of the jitters. Therefore, the working elevation of the telescope is affected by subdivision errors and the period of the subdivision error is identical to the period of encoder grating angular. Through comprehensive consideration and mathematical analysis, that DC subdivision error of subdivision error sources causes the jitters is determined, which is verified in the practical engineering. The method that analyze error sources from time domain, frequency domain and space domain respectively has a very good role in guiding to find disturbance sources for large-aperture optical telescope.
Predictors of Errors of Novice Java Programmers
ERIC Educational Resources Information Center
Bringula, Rex P.; Manabat, Geecee Maybelline A.; Tolentino, Miguel Angelo A.; Torres, Edmon L.
2012-01-01
This descriptive study determined which of the sources of errors would predict the errors committed by novice Java programmers. Descriptive statistics revealed that the respondents perceived that they committed the identified eighteen errors infrequently. Thought error was perceived to be the main source of error during the laboratory programming…
Wang, Dan; Silkie, Sarah S; Nelson, Kara L; Wuertz, Stefan
2010-09-01
Cultivation- and library-independent, quantitative PCR-based methods have become the method of choice in microbial source tracking. However, these qPCR assays are not 100% specific and sensitive for the target sequence in their respective hosts' genome. The factors that can lead to false positive and false negative information in qPCR results are well defined. It is highly desirable to have a way of removing such false information to estimate the true concentration of host-specific genetic markers and help guide the interpretation of environmental monitoring studies. Here we propose a statistical model based on the Law of Total Probability to predict the true concentration of these markers. The distributions of the probabilities of obtaining false information are estimated from representative fecal samples of known origin. Measurement error is derived from the sample precision error of replicated qPCR reactions. Then, the Monte Carlo method is applied to sample from these distributions of probabilities and measurement error. The set of equations given by the Law of Total Probability allows one to calculate the distribution of true concentrations, from which their expected value, confidence interval and other statistical characteristics can be easily evaluated. The output distributions of predicted true concentrations can then be used as input to watershed-wide total maximum daily load determinations, quantitative microbial risk assessment and other environmental models. This model was validated by both statistical simulations and real world samples. It was able to correct the intrinsic false information associated with qPCR assays and output the distribution of true concentrations of Bacteroidales for each animal host group. Model performance was strongly affected by the precision error. It could perform reliably and precisely when the standard deviation of the precision error was small (≤ 0.1). Further improvement on the precision of sample processing and qPCR reaction would greatly improve the performance of the model. This methodology, built upon Bacteroidales assays, is readily transferable to any other microbial source indicator where a universal assay for fecal sources of that indicator exists. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hazenberg, P.; Uijlenhoet, R.; Leijnse, H.
2015-12-01
Volumetric weather radars provide information on the characteristics of precipitation at high spatial and temporal resolution. Unfortunately, rainfall measurements by radar are affected by multiple error sources, which can be subdivided into two main groups: 1) errors affecting the volumetric reflectivity measurements (e.g. ground clutter, vertical profile of reflectivity, attenuation, etc.), and 2) errors related to the conversion of the observed reflectivity (Z) values into rainfall intensity (R) and specific attenuation (k). Until the recent wide-scale implementation of dual-polarimetric radar, this second group of errors received relatively little attention, focusing predominantly on precipitation type-dependent Z-R and Z-k relations. The current work accounts for the impact of variations of the drop size distribution (DSD) on the radar QPE performance. We propose to link the parameters of the Z-R and Z-k relations directly to those of the normalized gamma DSD. The benefit of this procedure is that it reduces the number of unknown parameters. In this work, the DSD parameters are obtained using 1) surface observations from a Parsivel and Thies LPM disdrometer, and 2) a Monte Carlo optimization procedure using surface rain gauge observations. The impact of both approaches for a given precipitation type is assessed for 45 days of summertime precipitation observed within The Netherlands. Accounting for DSD variations using disdrometer observations leads to an improved radar QPE product as compared to applying climatological Z-R and Z-k relations. However, overall precipitation intensities are still underestimated. This underestimation is expected to result from unaccounted errors (e.g. transmitter calibration, erroneous identification of precipitation as clutter, overshooting and small-scale variability). In case the DSD parameters are optimized, the performance of the radar is further improved, resulting in the best performance of the radar QPE product. However, the resulting optimal Z-R and Z-k relations are considerably different from those obtained from disdrometer observations. As such, the best microphysical parameter set results in a minimization of the overall bias, which besides accounting for DSD variations also corrects for the impact of additional error sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, B; Peter, D; Covellone, B
2009-07-02
Efforts to update current wave speed models of the Middle East require a thoroughly tested database of sources and recordings. Recordings of seismic waves traversing the region from Tibet to the Red Sea will be the principal metric in guiding improvements to the current wave speed model. Precise characterizations of the earthquakes, specifically depths and faulting mechanisms, are essential to avoid mapping source errors into the refined wave speed model. Errors associated with the source are manifested in amplitude and phase changes. Source depths and paths near nodal planes are particularly error prone as small changes may severely affect themore » resulting wavefield. Once sources are quantified, regions requiring refinement will be highlighted using adjoint tomography methods based on spectral element simulations [Komatitsch and Tromp (1999)]. An initial database of 250 regional Middle Eastern events from 1990-2007, was inverted for depth and focal mechanism using teleseismic arrivals [Kikuchi and Kanamori (1982)] and regional surface and body waves [Zhao and Helmberger (1994)]. From this initial database, we reinterpreted a large, well recorded subset of 201 events through a direct comparison between data and synthetics based upon a centroid moment tensor inversion [Liu et al. (2004)]. Evaluation was done using both a 1D reference model [Dziewonski and Anderson (1981)] at periods greater than 80 seconds and a 3D model [Kustowski et al. (2008)] at periods of 25 seconds and longer. The final source reinterpretations will be within the 3D model, as this is the initial starting point for the adjoint tomography. Transitioning from a 1D to 3D wave speed model shows dramatic improvements when comparisons are done at shorter periods, (25 s). Synthetics from the 1D model were created through mode summations while those from the 3D simulations were created using the spectral element method. To further assess errors in source depth and focal mechanism, comparisons between the three methods were made. These comparisons help to identify problematic stations and sources which may bias the final solution. Estimates of standard errors were generated for each event's source depth and focal mechanism to identify poorly constrained events. A final, well characterized set of sources and stations will be then used to iteratively improve the wave speed model of the Middle East. After a few iterations during the adjoint inversion process, the sources will be reexamined and relocated to further reduce mapping of source errors into structural features. Finally, efforts continue in developing the infrastructure required to 'quickly' generate event kernels at the n-th iteration and invert for a new, (n+1)-th, wave speed model of the Middle East. While development of the infrastructure proceeds, initial tests using a limited number of events shows the 3D model, while showing vast improvement compared to the 1D model, still requires substantial modifications. Employing our new, full source set and iterating the adjoint inversions at successively shorter periods will lead to significant changes and refined wave speed structures of the Middle East.« less
NASA Astrophysics Data System (ADS)
Pan, X.; Yang, Y.; Liu, Y.; Fan, X.; Shan, L.; Zhang, X.
2018-04-01
Error source analyses are critical for the satellite-retrieved surface net radiation (Rn) products. In this study, we evaluate the Rn error sources in the Clouds and the Earth's Radiant Energy System (CERES) project at 43 sites from July in 2007 to December in 2007 in China. The results show that cloud fraction (CF), land surface temperature (LST), atmospheric temperature (AT) and algorithm error dominate the Rn error, with error contributions of -20, 15, 10 and 10 W/m2 (net shortwave (NSW)/longwave (NLW) radiation), respectively. For NSW, the dominant error source is algorithm error (more than 10 W/m2), particularly in spring and summer with abundant cloud. For NLW, due to the high sensitivity of algorithm and large LST/CF error, LST and CF are the largest error sources, especially in northern China. The AT influences the NLW error large in southern China because of the large AT error in there. The total precipitable water has weak influence on Rn error even with the high sensitivity of algorithm. In order to improve Rn quality, CF and LST (AT) error in northern (southern) China should be decreased.
NASA Astrophysics Data System (ADS)
Lin, J.
2011-12-01
Nitrogen oxides (NOx ≡ NO + NO2) are important atmospheric constituents affecting the tropospheric chemistry, surface air quality and climatic forcing. They are emitted both from anthropogenic and from natural (soil, lightning, biomass burning, etc.) sources, which can be estimated inversely from satellite remote sensing of the vertical column densities (VCDs) of nitrogen dioxide (NO2) in the troposphere. Based on VCDs of NO2 retrieved from OMI, a novel approach is developed in this study to separate anthropogenic emissions of NOx from natural sources over East China for 2006. It exploits the fact that anthropogenic and natural emissions vary with seasons with distinctive patterns. The global chemical transport model (CTM) GEOS-Chem is used to establish the relationship between VCDs of NO2 and emissions of NOx for individual sources. Derived soil emissions are compared to results from a newly developed bottom-up approach. Effects of uncertainties in model meteorology and chemistry over China, an important source of errors in the emission inversion, are evaluated systematically for the first time. Meteorological measurements from space and the ground are used to analyze errors in meteorological parameters driving the CTM.
Cheng, Sen; Sabes, Philip N
2007-04-01
The sensorimotor calibration of visually guided reaching changes on a trial-to-trial basis in response to random shifts in the visual feedback of the hand. We show that a simple linear dynamical system is sufficient to model the dynamics of this adaptive process. In this model, an internal variable represents the current state of sensorimotor calibration. Changes in this state are driven by error feedback signals, which consist of the visually perceived reach error, the artificial shift in visual feedback, or both. Subjects correct for > or =20% of the error observed on each movement, despite being unaware of the visual shift. The state of adaptation is also driven by internal dynamics, consisting of a decay back to a baseline state and a "state noise" process. State noise includes any source of variability that directly affects the state of adaptation, such as variability in sensory feedback processing, the computations that drive learning, or the maintenance of the state. This noise is accumulated in the state across trials, creating temporal correlations in the sequence of reach errors. These correlations allow us to distinguish state noise from sensorimotor performance noise, which arises independently on each trial from random fluctuations in the sensorimotor pathway. We show that these two noise sources contribute comparably to the overall magnitude of movement variability. Finally, the dynamics of adaptation measured with random feedback shifts generalizes to the case of constant feedback shifts, allowing for a direct comparison of our results with more traditional blocked-exposure experiments.
NASA Technical Reports Server (NTRS)
Radomski, M. S.; Doll, C. E.
1991-01-01
This investigation concerns the effects on Ocean Topography Experiment (TOPEX) spacecraft operational orbit determination of ionospheric refraction error affecting tracking measurements from the Tracking and Data Relay Satellite System (TDRSS). Although tracking error from this source is mitigated by the high frequencies (K-band) used for the space-to-ground links and by the high altitudes for the space-to-space links, these effects are of concern for the relatively high-altitude (1334 kilometers) TOPEX mission. This concern is due to the accuracy required for operational orbit-determination by the Goddard Space Flight Center (GSFC) and to the expectation that solar activity will still be relatively high at TOPEX launch in mid-1992. The ionospheric refraction error on S-band space-to-space links was calculated by a prototype observation-correction algorithm using the Bent model of ionosphere electron densities implemented in the context of the Goddard Trajectory Determination System (GTDS). Orbit determination error was evaluated by comparing parallel TOPEX orbit solutions, applying and omitting the correction, using the same simulated TDRSS tracking observations. The tracking scenarios simulated those planned for the observation phase of the TOPEX mission, with a preponderance of one-way return-link Doppler measurements. The results of the analysis showed most TOPEX operational accuracy requirements to be little affected by space-to-space ionospheric error. The determination of along-track velocity changes after ground-track adjustment maneuvers, however, is significantly affected when compared with the stringent 0.1-millimeter-per-second accuracy requirements, assuming uncoupled premaneuver and postmaneuver orbit determination. Space-to-space ionospheric refraction on the 24-hour postmaneuver arc alone causes 0.2 millimeter-per-second errors in along-track delta-v determination using uncoupled solutions. Coupling the premaneuver and postmaneuver solutions, however, appears likely to reduce this figure substantially. Plans and recommendations for response to these findings are presented.
Methods for accurate estimation of net discharge in a tidal channel
Simpson, M.R.; Bland, R.
2000-01-01
Accurate estimates of net residual discharge in tidally affected rivers and estuaries are possible because of recently developed ultrasonic discharge measurement techniques. Previous discharge estimates using conventional mechanical current meters and methods based on stage/discharge relations or water slope measurements often yielded errors that were as great as or greater than the computed residual discharge. Ultrasonic measurement methods consist of: 1) the use of ultrasonic instruments for the measurement of a representative 'index' velocity used for in situ estimation of mean water velocity and 2) the use of the acoustic Doppler current discharge measurement system to calibrate the index velocity measurement data. Methods used to calibrate (rate) the index velocity to the channel velocity measured using the Acoustic Doppler Current Profiler are the most critical factors affecting the accuracy of net discharge estimation. The index velocity first must be related to mean channel velocity and then used to calculate instantaneous channel discharge. Finally, discharge is low-pass filtered to remove the effects of the tides. An ultrasonic velocity meter discharge-measurement site in a tidally affected region of the Sacramento-San Joaquin Rivers was used to study the accuracy of the index velocity calibration procedure. Calibration data consisting of ultrasonic velocity meter index velocity and concurrent acoustic Doppler discharge measurement data were collected during three time periods. Two sets of data were collected during a spring tide (monthly maximum tidal current) and one of data collected during a neap tide (monthly minimum tidal current). The relative magnitude of instrumental errors, acoustic Doppler discharge measurement errors, and calibration errors were evaluated. Calibration error was found to be the most significant source of error in estimating net discharge. Using a comprehensive calibration method, net discharge estimates developed from the three sets of calibration data differed by less than an average of 4 cubic meters per second, or less than 0.5% of a typical peak tidal discharge rate of 750 cubic meters per second.
Deterministic error correction for nonlocal spatial-polarization hyperentanglement
Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu
2016-01-01
Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication. PMID:26861681
Deterministic error correction for nonlocal spatial-polarization hyperentanglement.
Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu
2016-02-10
Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callan, J.R.; Kelly, R.T.; Quinn, M.L.
1995-05-01
Remote Afterloading Brachytherapy (RAB) is a medical process used in the treatment of cancer. RAB uses a computer-controlled device to remotely insert and remove radioactive sources close to a target (or tumor) in the body. Some RAB problems affecting the radiation dose to the patient have been reported and attributed to human error. To determine the root cause of human error in the RAB system, a human factors team visited 23 RAB treatment sites in the US The team observed RAB treatment planning and delivery, interviewed RAB personnel, and performed walk-throughs, during which staff demonstrated the procedures and practices usedmore » in performing RAB tasks. Factors leading to human error in the RAB system were identified. The impact of those factors on the performance of RAB was then evaluated and prioritized in terms of safety significance. Finally, the project identified and evaluated alternative approaches for resolving the safety significant problems related to human error.« less
NASA Technical Reports Server (NTRS)
Ulvestad, J. S.
1989-01-01
Errors from a number of sources in astrometric very long baseline interferometry (VLBI) have been reduced in recent years through a variety of methods of calibration and modeling. Such reductions have led to a situation in which the extended structure of the natural radio sources used in VLBI is a significant error source in the effort to improve the accuracy of the radio reference frame. In the past, work has been done on individual radio sources to establish the magnitude of the errors caused by their particular structures. The results of calculations on 26 radio sources are reported in which an effort is made to determine the typical delay and delay-rate errors for a number of sources having different types of structure. It is found that for single observations of the types of radio sources present in astrometric catalogs, group-delay and phase-delay scatter in the 50 to 100 psec range due to source structure can be expected at 8.4 GHz on the intercontinental baselines available in the Deep Space Network (DSN). Delay-rate scatter of approx. 5 x 10(exp -15) sec sec(exp -1) (or approx. 0.002 mm sec (exp -1) is also expected. If such errors mapped directly into source position errors, they would correspond to position uncertainties of approx. 2 to 5 nrad, similar to the best position determinations in the current JPL VLBI catalog. With the advent of wider bandwidth VLBI systems on the large DSN antennas, the system noise will be low enough so that the structure-induced errors will be a significant part of the error budget. Several possibilities for reducing the structure errors are discussed briefly, although it is likely that considerable effort will have to be devoted to the structure problem in order to reduce the typical error by a factor of two or more.
Effects of energy chirp on bunch length measurement in linear accelerator beams
NASA Astrophysics Data System (ADS)
Sabato, L.; Arpaia, P.; Giribono, A.; Liccardo, A.; Mostacci, A.; Palumbo, L.; Vaccarezza, C.; Variola, A.
2017-08-01
The effects of assumptions about bunch properties on the accuracy of the measurement method of the bunch length based on radio frequency deflectors (RFDs) in electron linear accelerators (LINACs) are investigated. In particular, when the electron bunch at the RFD has a non-negligible energy chirp (i.e. a correlation between the longitudinal positions and energies of the particle), the measurement is affected by a deterministic intrinsic error, which is directly related to the RFD phase offset. A case study on this effect in the electron LINAC of a gamma beam source at the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) is reported. The relative error is estimated by using an electron generation and tracking (ELEGANT) code to define the reference measurements of the bunch length. The relative error is proved to increase linearly with the RFD phase offset. In particular, for an offset of {{7}\\circ} , corresponding to a vertical centroid offset at a screen of about 1 mm, the relative error is 4.5%.
NASA Astrophysics Data System (ADS)
Gebregiorgis, A. S.; Peters-Lidard, C. D.; Tian, Y.; Hossain, F.
2011-12-01
Hydrologic modeling has benefited from operational production of high resolution satellite rainfall products. The global coverage, near-real time availability, spatial and temporal sampling resolutions have advanced the application of physically based semi-distributed and distributed hydrologic models for wide range of environmental decision making processes. Despite these successes, the existence of uncertainties due to indirect way of satellite rainfall estimates and hydrologic models themselves remain a challenge in making meaningful and more evocative predictions. This study comprises breaking down of total satellite rainfall error into three independent components (hit bias, missed precipitation and false alarm), characterizing them as function of land use and land cover (LULC), and tracing back the source of simulated soil moisture and runoff error in physically based distributed hydrologic model. Here, we asked "on what way the three independent total bias components, hit bias, missed, and false precipitation, affect the estimation of soil moisture and runoff in physically based hydrologic models?" To understand the clear picture of the outlined question above, we implemented a systematic approach by characterizing and decomposing the total satellite rainfall error as a function of land use and land cover in Mississippi basin. This will help us to understand the major source of soil moisture and runoff errors in hydrologic model simulation and trace back the information to algorithm development and sensor type which ultimately helps to improve algorithms better and will improve application and data assimilation in future for GPM. For forest and woodland and human land use system, the soil moisture was mainly dictated by the total bias for 3B42-RT, CMORPH, and PERSIANN products. On the other side, runoff error was largely dominated by hit bias than the total bias. This difference occurred due to the presence of missed precipitation which is a major contributor to the total bias both during the summer and winter seasons. Missed precipitation, most likely light rain and rain over snow cover, has significant effect on soil moisture and are less capable of producing runoff that results runoff dependency on the hit bias only.
North Alabama Lightning Mapping Array (LMA): VHF Source Retrieval Algorithm and Error Analyses
NASA Technical Reports Server (NTRS)
Koshak, W. J.; Solakiewicz, R. J.; Blakeslee, R. J.; Goodman, S. J.; Christian, H. J.; Hall, J.; Bailey, J.; Krider, E. P.; Bateman, M. G.; Boccippio, D.
2003-01-01
Two approaches are used to characterize how accurately the North Alabama Lightning Mapping Array (LMA) is able to locate lightning VHF sources in space and in time. The first method uses a Monte Carlo computer simulation to estimate source retrieval errors. The simulation applies a VHF source retrieval algorithm that was recently developed at the NASA Marshall Space Flight Center (MSFC) and that is similar, but not identical to, the standard New Mexico Tech retrieval algorithm. The second method uses a purely theoretical technique (i.e., chi-squared Curvature Matrix Theory) to estimate retrieval errors. Both methods assume that the LMA system has an overall rms timing error of 50 ns, but all other possible errors (e.g., multiple sources per retrieval attempt) are neglected. The detailed spatial distributions of retrieval errors are provided. Given that the two methods are completely independent of one another, it is shown that they provide remarkably similar results. However, for many source locations, the Curvature Matrix Theory produces larger altitude error estimates than the (more realistic) Monte Carlo simulation.
Sources of error in the retracted scientific literature.
Casadevall, Arturo; Steen, R Grant; Fang, Ferric C
2014-09-01
Retraction of flawed articles is an important mechanism for correction of the scientific literature. We recently reported that the majority of retractions are associated with scientific misconduct. In the current study, we focused on the subset of retractions for which no misconduct was identified, in order to identify the major causes of error. Analysis of the retraction notices for 423 articles indexed in PubMed revealed that the most common causes of error-related retraction are laboratory errors, analytical errors, and irreproducible results. The most common laboratory errors are contamination and problems relating to molecular biology procedures (e.g., sequencing, cloning). Retractions due to contamination were more common in the past, whereas analytical errors are now increasing in frequency. A number of publications that have not been retracted despite being shown to contain significant errors suggest that barriers to retraction may impede correction of the literature. In particular, few cases of retraction due to cell line contamination were found despite recognition that this problem has affected numerous publications. An understanding of the errors leading to retraction can guide practices to improve laboratory research and the integrity of the scientific literature. Perhaps most important, our analysis has identified major problems in the mechanisms used to rectify the scientific literature and suggests a need for action by the scientific community to adopt protocols that ensure the integrity of the publication process. © FASEB.
NASA Technical Reports Server (NTRS)
Mahesh, Ashwin; Spinhirne, James D.; Duda, David P.; Eloranta, Edwin W.; Starr, David O'C (Technical Monitor)
2001-01-01
The altimetry bias in GLAS (Geoscience Laser Altimeter System) or other laser altimeters resulting from atmospheric multiple scattering is studied in relationship to current knowledge of cloud properties over the Antarctic Plateau. Estimates of seasonal and interannual changes in the bias are presented. Results show the bias in altitude from multiple scattering in clouds would be a significant error source without correction. The selective use of low optical depth clouds or cloudfree observations, as well as improved analysis of the return pulse such as by the Gaussian method used here, are necessary to minimize the surface altitude errors. The magnitude of the bias is affected by variations in cloud height, cloud effective particle size and optical depth. Interannual variations in these properties as well as in cloud cover fraction could lead to significant year-to-year variations in the altitude bias. Although cloud-free observations reduce biases in surface elevation measurements from space, over Antarctica these may often include near-surface blowing snow, also a source of scattering-induced delay. With careful selection and analysis of data, laser altimetry specifications can be met.
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Moes, Timothy R.
1994-01-01
Presented is a feasibility and error analysis for a hypersonic flush airdata system on a hypersonic flight experiment (HYFLITE). HYFLITE heating loads make intrusive airdata measurement impractical. Although this analysis is specifically for the HYFLITE vehicle and trajectory, the problems analyzed are generally applicable to hypersonic vehicles. A layout of the flush-port matrix is shown. Surface pressures are related airdata parameters using a simple aerodynamic model. The model is linearized using small perturbations and inverted using nonlinear least-squares. Effects of various error sources on the overall uncertainty are evaluated using an error simulation. Error sources modeled include boundarylayer/viscous interactions, pneumatic lag, thermal transpiration in the sensor pressure tubing, misalignment in the matrix layout, thermal warping of the vehicle nose, sampling resolution, and transducer error. Using simulated pressure data for input to the estimation algorithm, effects caused by various error sources are analyzed by comparing estimator outputs with the original trajectory. To obtain ensemble averages the simulation is run repeatedly and output statistics are compiled. Output errors resulting from the various error sources are presented as a function of Mach number. Final uncertainties with all modeled error sources included are presented as a function of Mach number.
Error analysis of satellite attitude determination using a vision-based approach
NASA Astrophysics Data System (ADS)
Carozza, Ludovico; Bevilacqua, Alessandro
2013-09-01
Improvements in communication and processing technologies have opened the doors to exploit on-board cameras to compute objects' spatial attitude using only the visual information from sequences of remote sensed images. The strategies and the algorithmic approach used to extract such information affect the estimation accuracy of the three-axis orientation of the object. This work presents a method for analyzing the most relevant error sources, including numerical ones, possible drift effects and their influence on the overall accuracy, referring to vision-based approaches. The method in particular focuses on the analysis of the image registration algorithm, carried out through on-purpose simulations. The overall accuracy has been assessed on a challenging case study, for which accuracy represents the fundamental requirement. In particular, attitude determination has been analyzed for small satellites, by comparing theoretical findings to metric results from simulations on realistic ground-truth data. Significant laboratory experiments, using a numerical control unit, have further confirmed the outcome. We believe that our analysis approach, as well as our findings in terms of error characterization, can be useful at proof-of-concept design and planning levels, since they emphasize the main sources of error for visual based approaches employed for satellite attitude estimation. Nevertheless, the approach we present is also of general interest for all the affine applicative domains which require an accurate estimation of three-dimensional orientation parameters (i.e., robotics, airborne stabilization).
Determination of Barometric Altimeter Errors for the Orion Exploration Flight Test-1 Entry
NASA Technical Reports Server (NTRS)
Brown, Denise L.; Munoz, Jean-Philippe; Gay, Robert
2011-01-01
The EFT-1 mission is the unmanned flight test for the upcoming Multi-Purpose Crew Vehicle (MPCV). During entry, the EFT-1 vehicle will trigger several Landing and Recovery System (LRS) events, such as parachute deployment, based on onboard altitude information. The primary altitude source is the filtered navigation solution updated with GPS measurement data. The vehicle also has three barometric altimeters that will be used to measure atmospheric pressure during entry. In the event that GPS data is not available during entry, the altitude derived from the barometric altimeter pressure will be used to trigger chute deployment for the drogues and main parachutes. Therefore it is important to understand the impact of error sources on the pressure measured by the barometric altimeters and on the altitude derived from that pressure. There are four primary error sources impacting the sensed pressure: sensor errors, Analog to Digital conversion errors, aerodynamic errors, and atmosphere modeling errors. This last error source is induced by the conversion from pressure to altitude in the vehicle flight software, which requires an atmosphere model such as the US Standard 1976 Atmosphere model. There are several secondary error sources as well, such as waves, tides, and latencies in data transmission. Typically, for error budget calculations it is assumed that all error sources are independent, normally distributed variables. Thus, the initial approach to developing the EFT-1 barometric altimeter altitude error budget was to create an itemized error budget under these assumptions. This budget was to be verified by simulation using high fidelity models of the vehicle hardware and software. The simulation barometric altimeter model includes hardware error sources and a data-driven model of the aerodynamic errors expected to impact the pressure in the midbay compartment in which the sensors are located. The aerodynamic model includes the pressure difference between the midbay compartment and the free stream pressure as a function of altitude, oscillations in sensed pressure due to wake effects, and an acoustics model capturing fluctuations in pressure due to motion of the passive vents separating the barometric altimeters from the outside of the vehicle.
Vinciarelli, Alessandro
2005-12-01
This work presents categorization experiments performed over noisy texts. By noisy, we mean any text obtained through an extraction process (affected by errors) from media other than digital texts (e.g., transcriptions of speech recordings extracted with a recognition system). The performance of a categorization system over the clean and noisy (Word Error Rate between approximately 10 and approximately 50 percent) versions of the same documents is compared. The noisy texts are obtained through handwriting recognition and simulation of optical character recognition. The results show that the performance loss is acceptable for Recall values up to 60-70 percent depending on the noise sources. New measures of the extraction process performance, allowing a better explanation of the categorization results, are proposed.
Error propagation of partial least squares for parameters optimization in NIR modeling.
Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng
2018-03-05
A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models. Copyright © 2017. Published by Elsevier B.V.
Error propagation of partial least squares for parameters optimization in NIR modeling
NASA Astrophysics Data System (ADS)
Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng
2018-03-01
A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models.
Error sources affecting thermocouple thermometry in RF electromagnetic fields.
Chakraborty, D P; Brezovich, I A
1982-03-01
Thermocouple thermometry errors in radiofrequency (typically 13, 56 MHZ) electromagnetic fields such as are encountered in hyperthermia are described. RF currents capacitatively or inductively coupled into the thermocouple-detector circuit produce errors which are a combination of interference, i.e., 'pick-up' error, and genuine rf induced temperature changes at the junction of the thermocouple. The former can be eliminated by adequate filtering and shielding; the latter is due to (a) junction current heating in which the generally unequal resistances of the thermocouple wires cause a net current flow from the higher to the lower resistance wire across the junction, (b) heating in the surrounding resistive material (tissue in hyperthermia), and (c) eddy current heating of the thermocouple wires in the oscillating magnetic field. Low frequency theories are used to estimate these errors under given operating conditions and relevant experiments demonstrating these effects and precautions necessary to minimize the errors are described. It is shown that at 13.56 MHz and voltage levels below 100 V rms these errors do not exceed 0.1 degrees C if the precautions are observed and thermocouples with adequate insulation (e.g., Bailey IT-18) are used. Results of this study are being currently used in our clinical work with good success.
Geographically correlated errors observed from a laser-based short-arc technique
NASA Astrophysics Data System (ADS)
Bonnefond, P.; Exertier, P.; Barlier, F.
1999-07-01
The laser-based short-arc technique has been developed in order to avoid local errors which affect the dynamical orbit computation, such as those due to mismodeling in the geopotential. It is based on a geometric method and consists in fitting short arcs (about 4000 km), issued from a global orbit, with satellite laser ranging tracking measurements from a ground station network. Ninety-two TOPEX/Poseidon (T/P) cycles of laser-based short-arc orbits have then been compared to JGM-2 and JGM-3 T/P orbits computed by the Precise Orbit Determination (POD) teams (Service d'Orbitographie Doris/Centre National d'Etudes Spatiales and Goddard Space Flight Center/NASA) over two areas: (1) the Mediterranean area and (2) a part of the Pacific (including California and Hawaii) called hereafter the U.S. area. Geographically correlated orbit errors in these areas are clearly evidenced: for example, -2.6 cm and +0.7 cm for the Mediterranean and U.S. areas, respectively, relative to JGM-3 orbits. However, geographically correlated errors (GCE) which are commonly linked to errors in the gravity model, can also be due to systematic errors in the reference frame and/or to biases in the tracking measurements. The short-arc technique being very sensitive to such error sources, our analysis however demonstrates that the induced geographical systematic effects are at the level of 1-2 cm on the radial orbit component. Results are also compared with those obtained with the GPS-based reduced dynamic technique. The time-dependent part of GCE has also been studied. Over 6 years of T/P data, coherent signals in the radial component of T/P Precise Orbit Ephemeris (POE) are clearly evidenced with a time period of about 6 months. In addition, impact of time varying-error sources coming from the reference frame and the tracking data accuracy has been analyzed, showing a possible linear trend of about 0.5-1 mm/yr in the radial component of T/P POE.
Atmospheric Calibration for Cassini Radio Science
NASA Technical Reports Server (NTRS)
Resch, G. M.; Bar-Sever, Y.; Keihm, S.; Kroger, P.; Linfield, R.; Mahoney, M. J.; Tanner, A.; Teitelbaum, L.
1996-01-01
The signals from the Cassini spacecraft that will be affected by delay fluctuations in the Earth's atmosphere. These fluctuations are dominated by water vapor in the troposphere, and in the case of Gravitaional Wave Experiment (GWE), they are likely to be a limiting error source. A passive remote sensing system, centered around a water vapor radiometer (WVR), has been developed to provide calibrations of water vapor fluctuations during radio science experiments.
Deformation Estimation In Non-Urban Areas Exploiting High Resolution SAR Data
NASA Astrophysics Data System (ADS)
Goel, Kanika; Adam, Nico
2012-01-01
Advanced techniques such as the Small Baseline Subset Algorithm (SBAS) have been developed for terrain motion mapping in non-urban areas with a focus on extracting information from distributed scatterers (DSs). SBAS uses small baseline differential interferograms (to limit the effects of geometric decorrelation) and these are typically multilooked to reduce phase noise, resulting in loss of resolution. Various error sources e.g. phase unwrapping errors, topographic errors, temporal decorrelation and atmospheric effects also affect the interferometric phase. The aim of our work is an improved deformation monitoring in non-urban areas exploiting high resolution SAR data. The paper provides technical details and a processing example of a newly developed technique which incorporates an adaptive spatial phase filtering algorithm for an accurate high resolution differential interferometric stacking, followed by deformation retrieval via the SBAS approach where we perform the phase inversion using a more robust L1 norm minimization.
Malone, Emma; Jehl, Markus; Arridge, Simon; Betcke, Timo; Holder, David
2014-06-01
We investigate the application of multifrequency electrical impedance tomography (MFEIT) to imaging the brain in stroke patients. The use of MFEIT could enable early diagnosis and thrombolysis of ischaemic stroke, and therefore improve the outcome of treatment. Recent advances in the imaging methodology suggest that the use of spectral constraints could allow for the reconstruction of a one-shot image. We performed a simulation study to investigate the feasibility of imaging stroke in a head model with realistic conductivities. We introduced increasing levels of modelling errors to test the robustness of the method to the most common sources of artefact. We considered the case of errors in the electrode placement, spectral constraints, and contact impedance. The results indicate that errors in the position and shape of the electrodes can affect image quality, although our imaging method was successful in identifying tissues with sufficiently distinct spectra.
Field errors in hybrid insertion devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlueter, R.D.
1995-02-01
Hybrid magnet theory as applied to the error analyses used in the design of Advanced Light Source (ALS) insertion devices is reviewed. Sources of field errors in hybrid insertion devices are discussed.
Lee, Sangyoon; Hu, Xinda; Hua, Hong
2016-05-01
Many error sources have been explored in regards to the depth perception problem in augmented reality environments using optical see-through head-mounted displays (OST-HMDs). Nonetheless, two error sources are commonly neglected: the ray-shift phenomenon and the change in interpupillary distance (IPD). The first source of error arises from the difference in refraction for virtual and see-through optical paths caused by an optical combiner, which is required of OST-HMDs. The second occurs from the change in the viewer's IPD due to eye convergence. In this paper, we analyze the effects of these two error sources on near-field depth perception and propose methods to compensate for these two types of errors. Furthermore, we investigate their effectiveness through an experiment comparing the conditions with and without our error compensation methods applied. In our experiment, participants estimated the egocentric depth of a virtual and a physical object located at seven different near-field distances (40∼200 cm) using a perceptual matching task. Although the experimental results showed different patterns depending on the target distance, the results demonstrated that the near-field depth perception error can be effectively reduced to a very small level (at most 1 percent error) by compensating for the two mentioned error sources.
Meteorological Error Budget Using Open Source Data
2016-09-01
ARL-TR-7831 ● SEP 2016 US Army Research Laboratory Meteorological Error Budget Using Open- Source Data by J Cogan, J Smith, P...needed. Do not return it to the originator. ARL-TR-7831 ● SEP 2016 US Army Research Laboratory Meteorological Error Budget Using...Error Budget Using Open-Source Data 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) J Cogan, J Smith, P Haines
NASA Astrophysics Data System (ADS)
Barré, Jérôme; Edwards, David; Worden, Helen; Arellano, Avelino; Gaubert, Benjamin; Da Silva, Arlindo; Lahoz, William; Anderson, Jeffrey
2016-09-01
This paper describes the second phase of an Observing System Simulation Experiment (OSSE) that utilizes the synthetic measurements from a constellation of satellites measuring atmospheric composition from geostationary (GEO) Earth orbit presented in part I of the study. Our OSSE is focused on carbon monoxide observations over North America, East Asia and Europe where most of the anthropogenic sources are located. Here we assess the impact of a potential GEO constellation on constraining northern hemisphere (NH) carbon monoxide (CO) using data assimilation. We show how cloud cover affects the GEO constellation data density with the largest cloud cover (i.e., lowest data density) occurring during Asian summer. We compare the modeled state of the atmosphere (Control Run), before CO data assimilation, with the known "true" state of the atmosphere (Nature Run) and show that our setup provides realistic atmospheric CO fields and emission budgets. Overall, the Control Run underestimates CO concentrations in the northern hemisphere, especially in areas close to CO sources. Assimilation experiments show that constraining CO close to the main anthropogenic sources significantly reduces errors in NH CO compared to the Control Run. We assess the changes in error reduction when only single satellite instruments are available as compared to the full constellation. We find large differences in how measurements for each continental scale observation system affect the hemispherical improvement in long-range transport patterns, especially due to seasonal cloud cover. A GEO constellation will provide the most efficient constraint on NH CO during winter when CO lifetime is longer and increments from data assimilation associated with source regions are advected further around the globe.
NASA Technical Reports Server (NTRS)
Barre, Jerome; Edwards, David; Worden, Helen; Arellano, Avelino; Gaubert, Benjamin; Da Silva, Arlindo; Lahoz, William; Anderson, Jeffrey
2016-01-01
This paper describes the second phase of an Observing System Simulation Experiment (OSSE) that utilizes the synthetic measurements from a constellation of satellites measuring atmospheric composition from geostationary (GEO) Earth orbit presented in part I of the study. Our OSSE is focused on carbon monoxide observations over North America, East Asia and Europe where most of the anthropogenic sources are located. Here we assess the impact of a potential GEO constellation on constraining northern hemisphere (NH) carbon monoxide (CO) using data assimilation. We show how cloud cover affects the GEO constellation data density with the largest cloud cover (i.e., lowest data density) occurring during Asian summer. We compare the modeled state of the atmosphere (Control Run), before CO data assimilation, with the known 'true' state of the atmosphere (Nature Run) and show that our setup provides realistic atmospheric CO fields and emission budgets. Overall, the Control Run underestimates CO concentrations in the northern hemisphere, especially in areas close to CO sources. Assimilation experiments show that constraining CO close to the main anthropogenic sources significantly reduces errors in NH CO compared to the Control Run. We assess the changes in error reduction when only single satellite instruments are available as compared to the full constellation. We find large differences in how measurements for each continental scale observation system affect the hemispherical improvement in long-range transport patterns, especially due to seasonal cloud cover. A GEO constellation will provide the most efficient constraint on NH CO during winter when CO lifetime is longer and increments from data assimilation associated with source regions are advected further around the globe.
The use of source memory to identify one's own episodic confusion errors.
Smith, S M; Tindell, D R; Pierce, B H; Gilliland, T R; Gerkens, D R
2001-03-01
In 4 category cued recall experiments, participants falsely recalled nonlist common members, a semantic confusion error. Errors were more likely if critical nonlist words were presented on an incidental task, causing source memory failures called episodic confusion errors. Participants could better identify the source of falsely recalled words if they had deeply processed the words on the incidental task. For deep but not shallow processing, participants could reliably include or exclude incidentally shown category members in recall. The illusion that critical items actually appeared on categorized lists was diminished but not eradicated when participants identified episodic confusion errors post hoc among their own recalled responses; participants often believed that critical items had been on both the incidental task and the study list. Improved source monitoring can potentially mitigate episodic (but not semantic) confusion errors.
NASA Astrophysics Data System (ADS)
Beyene, F.; Knospe, S.; Busch, W.
2015-04-01
Landslide detection and monitoring remain difficult with conventional differential radar interferometry (DInSAR) because most pixels of radar interferograms around landslides are affected by different error sources. These are mainly related to the nature of high radar viewing angles and related spatial distortions (such as overlays and shadows), temporal decorrelations owing to vegetation cover, and speed and direction of target sliding masses. On the other hand, GIS can be used to integrate spatial datasets obtained from many sources (including radar and non-radar sources). In this paper, a GRID data model is proposed to integrate deformation data derived from DInSAR processing with other radar origin data (coherence, layover and shadow, slope and aspect, local incidence angle) and external datasets collected from field study of landslide sites and other sources (geology, geomorphology, hydrology). After coordinate transformation and merging of data, candidate landslide representing pixels of high quality radar signals were filtered out by applying a GIS based multicriteria filtering analysis (GIS-MCFA), which excludes grid points in areas of shadow and overlay, low coherence, non-detectable and non-landslide deformations, and other possible sources of errors from the DInSAR data processing. At the end, the results obtained from GIS-MCFA have been verified by using the external datasets (existing landslide sites collected from fieldworks, geological and geomorphologic maps, rainfall data etc.).
Error Analyses of the North Alabama Lightning Mapping Array (LMA)
NASA Technical Reports Server (NTRS)
Koshak, W. J.; Solokiewicz, R. J.; Blakeslee, R. J.; Goodman, S. J.; Christian, H. J.; Hall, J. M.; Bailey, J. C.; Krider, E. P.; Bateman, M. G.; Boccippio, D. J.
2003-01-01
Two approaches are used to characterize how accurately the North Alabama Lightning Mapping Array (LMA) is able to locate lightning VHF sources in space and in time. The first method uses a Monte Carlo computer simulation to estimate source retrieval errors. The simulation applies a VHF source retrieval algorithm that was recently developed at the NASA-MSFC and that is similar, but not identical to, the standard New Mexico Tech retrieval algorithm. The second method uses a purely theoretical technique (i.e., chi-squared Curvature Matrix theory) to estimate retrieval errors. Both methods assume that the LMA system has an overall rms timing error of 50ns, but all other possible errors (e.g., multiple sources per retrieval attempt) are neglected. The detailed spatial distributions of retrieval errors are provided. Given that the two methods are completely independent of one another, it is shown that they provide remarkably similar results, except that the chi-squared theory produces larger altitude error estimates than the (more realistic) Monte Carlo simulation.
Understanding EFL Students' Errors in Writing
ERIC Educational Resources Information Center
Phuket, Pimpisa Rattanadilok Na; Othman, Normah Binti
2015-01-01
Writing is the most difficult skill in English, so most EFL students tend to make errors in writing. In assisting the learners to successfully acquire writing skill, the analysis of errors and the understanding of their sources are necessary. This study attempts to explore the major sources of errors occurred in the writing of EFL students. It…
Influences of optical-spectrum errors on excess relative intensity noise in a fiber-optic gyroscope
NASA Astrophysics Data System (ADS)
Zheng, Yue; Zhang, Chunxi; Li, Lijing
2018-03-01
The excess relative intensity noise (RIN) generated from broadband sources degrades the angular-random-walk performance of a fiber-optic gyroscope dramatically. Many methods have been proposed and managed to suppress the excess RIN. However, the properties of the excess RIN under the influences of different optical errors in the fiber-optic gyroscope have not been systematically investigated. Therefore, it is difficult for the existing RIN-suppression methods to achieve the optimal results in practice. In this work, the influences of different optical-spectrum errors on the power spectral density of the excess RIN are theoretically analyzed. In particular, the properties of the excess RIN affected by the raised-cosine-type ripples in the optical spectrum are elaborately investigated. Experimental measurements of the excess RIN corresponding to different optical-spectrum errors are in good agreement with our theoretical analysis, demonstrating its validity. This work provides a comprehensive understanding of the properties of the excess RIN under the influences of different optical-spectrum errors. Potentially, it can be utilized to optimize the configurations of the existing RIN-suppression methods by accurately evaluating the power spectral density of the excess RIN.
Olson, Andrew; Halloran, Elizabeth; Romani, Cristina
2015-12-01
We present three jargonaphasic patients who made phonological errors in naming, repetition and reading. We analyse target/response overlap using statistical models to answer three questions: 1) Is there a single phonological source for errors or two sources, one for target-related errors and a separate source for abstruse errors? 2) Can correct responses be predicted by the same distribution used to predict errors or do they show a completion boost (CB)? 3) Is non-lexical and lexical information summed during reading and repetition? The answers were clear. 1) Abstruse errors did not require a separate distribution created by failure to access word forms. Abstruse and target-related errors were the endpoints of a single overlap distribution. 2) Correct responses required a special factor, e.g., a CB or lexical/phonological feedback, to preserve their integrity. 3) Reading and repetition required separate lexical and non-lexical contributions that were combined at output. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Cong; Yu, Zong-Wen; Wang, Xiang-Bin
2017-03-01
We show how to calculate the secure final key rate in the four-intensity decoy-state measurement-device-independent quantum key distribution protocol with both source errors and statistical fluctuations with a certain failure probability. Our results rely only on the range of only a few parameters in the source state. All imperfections in this protocol have been taken into consideration without assuming any specific error patterns of the source.
Time course of implicit processing and explicit processing of emotional faces and emotional words.
Frühholz, Sascha; Jellinghaus, Anne; Herrmann, Manfred
2011-05-01
Facial expressions are important emotional stimuli during social interactions. Symbolic emotional cues, such as affective words, also convey information regarding emotions that is relevant for social communication. Various studies have demonstrated fast decoding of emotions from words, as was shown for faces, whereas others report a rather delayed decoding of information about emotions from words. Here, we introduced an implicit (color naming) and explicit task (emotion judgment) with facial expressions and words, both containing information about emotions, to directly compare the time course of emotion processing using event-related potentials (ERP). The data show that only negative faces affected task performance, resulting in increased error rates compared to neutral faces. Presentation of emotional faces resulted in a modulation of the N170, the EPN and the LPP components and these modulations were found during both the explicit and implicit tasks. Emotional words only affected the EPN during the explicit task, but a task-independent effect on the LPP was revealed. Finally, emotional faces modulated source activity in the extrastriate cortex underlying the generation of the N170, EPN and LPP components. Emotional words led to a modulation of source activity corresponding to the EPN and LPP, but they also affected the N170 source on the right hemisphere. These data show that facial expressions affect earlier stages of emotion processing compared to emotional words, but the emotional value of words may have been detected at early stages of emotional processing in the visual cortex, as was indicated by the extrastriate source activity. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhang, Tisheng; Niu, Xiaoji; Ban, Yalong; Zhang, Hongping; Shi, Chuang; Liu, Jingnan
2015-01-01
A GNSS/INS deeply-coupled system can improve the satellite signals tracking performance by INS aiding tracking loops under dynamics. However, there was no literature available on the complete modeling of the INS branch in the INS-aided tracking loop, which caused the lack of a theoretical tool to guide the selections of inertial sensors, parameter optimization and quantitative analysis of INS-aided PLLs. This paper makes an effort on the INS branch in modeling and parameter optimization of phase-locked loops (PLLs) based on the scalar-based GNSS/INS deeply-coupled system. It establishes the transfer function between all known error sources and the PLL tracking error, which can be used to quantitatively evaluate the candidate inertial measurement unit (IMU) affecting the carrier phase tracking error. Based on that, a steady-state error model is proposed to design INS-aided PLLs and to analyze their tracking performance. Based on the modeling and error analysis, an integrated deeply-coupled hardware prototype is developed, with the optimization of the aiding information. Finally, the performance of the INS-aided PLLs designed based on the proposed steady-state error model is evaluated through the simulation and road tests of the hardware prototype. PMID:25569751
Impact of source collinearity in simulated PM 2.5 data on the PMF receptor model solution
NASA Astrophysics Data System (ADS)
Habre, Rima; Coull, Brent; Koutrakis, Petros
2011-12-01
Positive Matrix Factorization (PMF) is a factor analytic model used to identify particle sources and to estimate their contributions to PM 2.5 concentrations observed at receptor sites. Collinearity in source contributions due to meteorological conditions introduces uncertainty in the PMF solution. We simulated datasets of speciated PM 2.5 concentrations associated with three ambient particle sources: "Motor Vehicle" (MV), "Sodium Chloride" (NaCl), and "Sulfur" (S), and we varied the correlation structure between their mass contributions to simulate collinearity. We analyzed the datasets in PMF using the ME-2 multilinear engine. The Pearson correlation coefficients between the simulated and PMF-predicted source contributions and profiles are denoted by " G correlation" and " F correlation", respectively. In sensitivity analyses, we examined how the means or variances of the source contributions affected the stability of the PMF solution with collinearity. The % errors in predicting the average source contributions were 23, 80 and 23% for MV, NaCl, and S, respectively. On average, the NaCl contribution was overestimated, while MV and S contributions were underestimated. The ability of PMF to predict the contributions and profiles of the three sources deteriorated significantly as collinearity in their contributions increased. When the mean of NaCl or variance of NaCl and MV source contributions was increased, the deterioration in G correlation with increasing collinearity became less significant, and the ability of PMF to predict the NaCl and MV loading profiles improved. When the three factor profiles were simulated to share more elements, the decrease in G and F correlations became non-significant. Our findings agree with previous simulation studies reporting that correlated sources are predicted with higher error and bias. Consequently, the power to detect significant concentration-response estimates in health effect analyses weakens.
Modeling and characterization of multipath in global navigation satellite system ranging signals
NASA Astrophysics Data System (ADS)
Weiss, Jan Peter
The Global Positioning System (GPS) provides position, velocity, and time information to users in anywhere near the earth in real-time and regardless of weather conditions. Since the system became operational, improvements in many areas have reduced systematic errors affecting GPS measurements such that multipath, defined as any signal taking a path other than the direct, has become a significant, if not dominant, error source for many applications. This dissertation utilizes several approaches to characterize and model multipath errors in GPS measurements. Multipath errors in GPS ranging signals are characterized for several receiver systems and environments. Experimental P(Y) code multipath data are analyzed for ground stations with multipath levels ranging from minimal to severe, a C-12 turboprop, an F-18 jet, and an aircraft carrier. Comparisons between receivers utilizing single patch antennas and multi-element arrays are also made. In general, the results show significant reductions in multipath with antenna array processing, although large errors can occur even with this kind of equipment. Analysis of airborne platform multipath shows that the errors tend to be small in magnitude because the size of the aircraft limits the geometric delay of multipath signals, and high in frequency because aircraft dynamics cause rapid variations in geometric delay. A comprehensive multipath model is developed and validated. The model integrates 3D structure models, satellite ephemerides, electromagnetic ray-tracing algorithms, and detailed antenna and receiver models to predict multipath errors. Validation is performed by comparing experimental and simulated multipath via overall error statistics, per satellite time histories, and frequency content analysis. The validation environments include two urban buildings, an F-18, an aircraft carrier, and a rural area where terrain multipath dominates. The validated models are used to identify multipath sources, characterize signal properties, evaluate additional antenna and receiver tracking configurations, and estimate the reflection coefficients of multipath-producing surfaces. Dynamic models for an F-18 landing on an aircraft carrier correlate aircraft dynamics to multipath frequency content; the model also characterizes the separate contributions of multipath due to the aircraft, ship, and ocean to the overall error statistics. Finally, reflection coefficients for multipath produced by terrain are estimated via a least-squares algorithm.
Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields
Sapozhnikov, Oleg A.; Tsysar, Sergey A.; Khokhlova, Vera A.; Kreider, Wayne
2015-01-01
Acoustic holography is a powerful technique for characterizing ultrasound sources and the fields they radiate, with the ability to quantify source vibrations and reduce the number of required measurements. These capabilities are increasingly appealing for meeting measurement standards in medical ultrasound; however, associated uncertainties have not been investigated systematically. Here errors associated with holographic representations of a linear, continuous-wave ultrasound field are studied. To facilitate the analysis, error metrics are defined explicitly, and a detailed description of a holography formulation based on the Rayleigh integral is provided. Errors are evaluated both for simulations of a typical therapeutic ultrasound source and for physical experiments with three different ultrasound sources. Simulated experiments explore sampling errors introduced by the use of a finite number of measurements, geometric uncertainties in the actual positions of acquired measurements, and uncertainties in the properties of the propagation medium. Results demonstrate the theoretical feasibility of keeping errors less than about 1%. Typical errors in physical experiments were somewhat larger, on the order of a few percent; comparison with simulations provides specific guidelines for improving the experimental implementation to reduce these errors. Overall, results suggest that holography can be implemented successfully as a metrological tool with small, quantifiable errors. PMID:26428789
Braiding errors in interacting Majorana quantum wires
NASA Astrophysics Data System (ADS)
Sekania, Michael; Plugge, Stephan; Greiter, Martin; Thomale, Ronny; Schmitteckert, Peter
2017-09-01
Avenues of Majorana bound states (MBSs) have become one of the primary directions towards a possible realization of topological quantum computation. For a Y junction of Kitaev quantum wires, we numerically investigate the braiding of MBSs while considering the full quasiparticle background. The two central sources of braiding errors are found to be the fidelity loss due to the incomplete adiabaticity of the braiding operation as well as the finite hybridization of the MBSs. The explicit extraction of the braiding phase from the full many-particle states allows us to analyze the breakdown of the independent-particle picture of Majorana braiding. Furthermore, we find nearest-neighbor interactions to significantly affect the braiding performance for better or worse, depending on the sign and magnitude of the coupling.
Gaia Data Release 1. Validation of the photometry
NASA Astrophysics Data System (ADS)
Evans, D. W.; Riello, M.; De Angeli, F.; Busso, G.; van Leeuwen, F.; Jordi, C.; Fabricius, C.; Brown, A. G. A.; Carrasco, J. M.; Voss, H.; Weiler, M.; Montegriffo, P.; Cacciari, C.; Burgess, P.; Osborne, P.
2017-04-01
Aims: The photometric validation of the Gaia DR1 release of the ESA Gaia mission is described and the quality of the data shown. Methods: This is carried out via an internal analysis of the photometry using the most constant sources. Comparisons with external photometric catalogues are also made, but are limited by the accuracies and systematics present in these catalogues. An analysis of the quoted errors is also described. Investigations of the calibration coefficients reveal some of the systematic effects that affect the fluxes. Results: The analysis of the constant sources shows that the early-stage photometric calibrations can reach an accuracy as low as 3 mmag.
Common but unappreciated sources of error in one, two, and multiple-color pyrometry
NASA Technical Reports Server (NTRS)
Spjut, R. Erik
1988-01-01
The most common sources of error in optical pyrometry are examined. They can be classified as either noise and uncertainty errors, stray radiation errors, or speed-of-response errors. Through judicious choice of detectors and optical wavelengths the effect of noise errors can be minimized, but one should strive to determine as many of the system properties as possible. Careful consideration of the optical-collection system can minimize stray radiation errors. Careful consideration must also be given to the slowest elements in a pyrometer when measuring rapid phenomena.
NASA Technical Reports Server (NTRS)
Ancheta, T. C., Jr.
1976-01-01
A method of using error-correcting codes to obtain data compression, called syndrome-source-coding, is described in which the source sequence is treated as an error pattern whose syndrome forms the compressed data. It is shown that syndrome-source-coding can achieve arbitrarily small distortion with the number of compressed digits per source digit arbitrarily close to the entropy of a binary memoryless source. A 'universal' generalization of syndrome-source-coding is formulated which provides robustly effective distortionless coding of source ensembles. Two examples are given, comparing the performance of noiseless universal syndrome-source-coding to (1) run-length coding and (2) Lynch-Davisson-Schalkwijk-Cover universal coding for an ensemble of binary memoryless sources.
A Comprehensive Radial Velocity Error Budget for Next Generation Doppler Spectrometers
NASA Technical Reports Server (NTRS)
Halverson, Samuel; Ryan, Terrien; Mahadevan, Suvrath; Roy, Arpita; Bender, Chad; Stefansson, Guomundur Kari; Monson, Andrew; Levi, Eric; Hearty, Fred; Blake, Cullen;
2016-01-01
We describe a detailed radial velocity error budget for the NASA-NSF Extreme Precision Doppler Spectrometer instrument concept NEID (NN-explore Exoplanet Investigations with Doppler spectroscopy). Such an instrument performance budget is a necessity for both identifying the variety of noise sources currently limiting Doppler measurements, and estimating the achievable performance of next generation exoplanet hunting Doppler spectrometers. For these instruments, no single source of instrumental error is expected to set the overall measurement floor. Rather, the overall instrumental measurement precision is set by the contribution of many individual error sources. We use a combination of numerical simulations, educated estimates based on published materials, extrapolations of physical models, results from laboratory measurements of spectroscopic subsystems, and informed upper limits for a variety of error sources to identify likely sources of systematic error and construct our global instrument performance error budget. While natively focused on the performance of the NEID instrument, this modular performance budget is immediately adaptable to a number of current and future instruments. Such an approach is an important step in charting a path towards improving Doppler measurement precisions to the levels necessary for discovering Earth-like planets.
Removal of batch effects using distribution-matching residual networks.
Shaham, Uri; Stanton, Kelly P; Zhao, Jun; Li, Huamin; Raddassi, Khadir; Montgomery, Ruth; Kluger, Yuval
2017-08-15
Sources of variability in experimentally derived data include measurement error in addition to the physical phenomena of interest. This measurement error is a combination of systematic components, originating from the measuring instrument and random measurement errors. Several novel biological technologies, such as mass cytometry and single-cell RNA-seq (scRNA-seq), are plagued with systematic errors that may severely affect statistical analysis if the data are not properly calibrated. We propose a novel deep learning approach for removing systematic batch effects. Our method is based on a residual neural network, trained to minimize the Maximum Mean Discrepancy between the multivariate distributions of two replicates, measured in different batches. We apply our method to mass cytometry and scRNA-seq datasets, and demonstrate that it effectively attenuates batch effects. our codes and data are publicly available at https://github.com/ushaham/BatchEffectRemoval.git. yuval.kluger@yale.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
An Autonomous Satellite Time Synchronization System Using Remotely Disciplined VC-OCXOs.
Gu, Xiaobo; Chang, Qing; Glennon, Eamonn P; Xu, Baoda; Dempseter, Andrew G; Wang, Dun; Wu, Jiapeng
2015-07-23
An autonomous remote clock control system is proposed to provide time synchronization and frequency syntonization for satellite to satellite or ground to satellite time transfer, with the system comprising on-board voltage controlled oven controlled crystal oscillators (VC-OCXOs) that are disciplined to a remote master atomic clock or oscillator. The synchronization loop aims to provide autonomous operation over extended periods, be widely applicable to a variety of scenarios and robust. A new architecture comprising the use of frequency division duplex (FDD), synchronous time division (STDD) duplex and code division multiple access (CDMA) with a centralized topology is employed. This new design utilizes dual one-way ranging methods to precisely measure the clock error, adopts least square (LS) methods to predict the clock error and employs a third-order phase lock loop (PLL) to generate the voltage control signal. A general functional model for this system is proposed and the error sources and delays that affect the time synchronization are discussed. Related algorithms for estimating and correcting these errors are also proposed. The performance of the proposed system is simulated and guidance for selecting the clock is provided.
Measurement error in environmental epidemiology and the shape of exposure-response curves.
Rhomberg, Lorenz R; Chandalia, Juhi K; Long, Christopher M; Goodman, Julie E
2011-09-01
Both classical and Berkson exposure measurement errors as encountered in environmental epidemiology data can result in biases in fitted exposure-response relationships that are large enough to affect the interpretation and use of the apparent exposure-response shapes in risk assessment applications. A variety of sources of potential measurement error exist in the process of estimating individual exposures to environmental contaminants, and the authors review the evaluation in the literature of the magnitudes and patterns of exposure measurement errors that prevail in actual practice. It is well known among statisticians that random errors in the values of independent variables (such as exposure in exposure-response curves) may tend to bias regression results. For increasing curves, this effect tends to flatten and apparently linearize what is in truth a steeper and perhaps more curvilinear or even threshold-bearing relationship. The degree of bias is tied to the magnitude of the measurement error in the independent variables. It has been shown that the degree of bias known to apply to actual studies is sufficient to produce a false linear result, and that although nonparametric smoothing and other error-mitigating techniques may assist in identifying a threshold, they do not guarantee detection of a threshold. The consequences of this could be great, as it could lead to a misallocation of resources towards regulations that do not offer any benefit to public health.
The Accuracy of Webcams in 2D Motion Analysis: Sources of Error and Their Control
ERIC Educational Resources Information Center
Page, A.; Moreno, R.; Candelas, P.; Belmar, F.
2008-01-01
In this paper, we show the potential of webcams as precision measuring instruments in a physics laboratory. Various sources of error appearing in 2D coordinate measurements using low-cost commercial webcams are discussed, quantifying their impact on accuracy and precision, and simple procedures to control these sources of error are presented.…
Prediction of discretization error using the error transport equation
NASA Astrophysics Data System (ADS)
Celik, Ismail B.; Parsons, Don Roscoe
2017-06-01
This study focuses on an approach to quantify the discretization error associated with numerical solutions of partial differential equations by solving an error transport equation (ETE). The goal is to develop a method that can be used to adequately predict the discretization error using the numerical solution on only one grid/mesh. The primary problem associated with solving the ETE is the formulation of the error source term which is required for accurately predicting the transport of the error. In this study, a novel approach is considered which involves fitting the numerical solution with a series of locally smooth curves and then blending them together with a weighted spline approach. The result is a continuously differentiable analytic expression that can be used to determine the error source term. Once the source term has been developed, the ETE can easily be solved using the same solver that is used to obtain the original numerical solution. The new methodology is applied to the two-dimensional Navier-Stokes equations in the laminar flow regime. A simple unsteady flow case is also considered. The discretization error predictions based on the methodology presented in this study are in good agreement with the 'true error'. While in most cases the error predictions are not quite as accurate as those from Richardson extrapolation, the results are reasonable and only require one numerical grid. The current results indicate that there is much promise going forward with the newly developed error source term evaluation technique and the ETE.
Space-Borne Laser Altimeter Geolocation Error Analysis
NASA Astrophysics Data System (ADS)
Wang, Y.; Fang, J.; Ai, Y.
2018-05-01
This paper reviews the development of space-borne laser altimetry technology over the past 40 years. Taking the ICESAT satellite as an example, a rigorous space-borne laser altimeter geolocation model is studied, and an error propagation equation is derived. The influence of the main error sources, such as the platform positioning error, attitude measurement error, pointing angle measurement error and range measurement error, on the geolocation accuracy of the laser spot are analysed by simulated experiments. The reasons for the different influences on geolocation accuracy in different directions are discussed, and to satisfy the accuracy of the laser control point, a design index for each error source is put forward.
Whalen, T A; Demarco, A J
1999-10-01
A method is described for measuring the volume of individual specimens of Amoeba proteus which utilizes an easily constructed compressor to flatten the specimen to a known thickness. The microscopic image of the flattened specimen is captured on tape, digitized and analysed with the NIH Image software. The results from one specimen are given to illustrate the sources and magnitude of errors affecting these volume measurements.
Determination of Barometric Altimeter Errors for the Orion Exploration Flight Test-1 Entry
NASA Technical Reports Server (NTRS)
Brown, Denise L.; Bunoz, Jean-Philippe; Gay, Robert
2012-01-01
The Exploration Flight Test 1 (EFT-1) mission is the unmanned flight test for the upcoming Multi-Purpose Crew Vehicle (MPCV). During entry, the EFT-1 vehicle will trigger several Landing and Recovery System (LRS) events, such as parachute deployment, based on on-board altitude information. The primary altitude source is the filtered navigation solution updated with GPS measurement data. The vehicle also has three barometric altimeters that will be used to measure atmospheric pressure during entry. In the event that GPS data is not available during entry, the altitude derived from the barometric altimeter pressure will be used to trigger chute deployment for the drogues and main parachutes. Therefore it is important to understand the impact of error sources on the pressure measured by the barometric altimeters and on the altitude derived from that pressure. The error sources for the barometric altimeters are not independent, and many error sources result in bias in a specific direction. Therefore conventional error budget methods could not be applied. Instead, high fidelity Monte-Carlo simulation was performed and error bounds were determined based on the results of this analysis. Aerodynamic errors were the largest single contributor to the error budget for the barometric altimeters. The large errors drove a change to the altitude trigger setpoint for FBC jettison deploy.
Alachiotis, Nikolaos; Vogiatzi, Emmanouella; Pavlidis, Pavlos; Stamatakis, Alexandros
2013-01-01
Automated DNA sequencers generate chromatograms that contain raw sequencing data. They also generate data that translates the chromatograms into molecular sequences of A, C, G, T, or N (undetermined) characters. Since chromatogram translation programs frequently introduce errors, a manual inspection of the generated sequence data is required. As sequence numbers and lengths increase, visual inspection and manual correction of chromatograms and corresponding sequences on a per-peak and per-nucleotide basis becomes an error-prone, time-consuming, and tedious process. Here, we introduce ChromatoGate (CG), an open-source software that accelerates and partially automates the inspection of chromatograms and the detection of sequencing errors for bidirectional sequencing runs. To provide users full control over the error correction process, a fully automated error correction algorithm has not been implemented. Initially, the program scans a given multiple sequence alignment (MSA) for potential sequencing errors, assuming that each polymorphic site in the alignment may be attributed to a sequencing error with a certain probability. The guided MSA assembly procedure in ChromatoGate detects chromatogram peaks of all characters in an alignment that lead to polymorphic sites, given a user-defined threshold. The threshold value represents the sensitivity of the sequencing error detection mechanism. After this pre-filtering, the user only needs to inspect a small number of peaks in every chromatogram to correct sequencing errors. Finally, we show that correcting sequencing errors is important, because population genetic and phylogenetic inferences can be misled by MSAs with uncorrected mis-calls. Our experiments indicate that estimates of population mutation rates can be affected two- to three-fold by uncorrected errors. PMID:24688709
Alachiotis, Nikolaos; Vogiatzi, Emmanouella; Pavlidis, Pavlos; Stamatakis, Alexandros
2013-01-01
Automated DNA sequencers generate chromatograms that contain raw sequencing data. They also generate data that translates the chromatograms into molecular sequences of A, C, G, T, or N (undetermined) characters. Since chromatogram translation programs frequently introduce errors, a manual inspection of the generated sequence data is required. As sequence numbers and lengths increase, visual inspection and manual correction of chromatograms and corresponding sequences on a per-peak and per-nucleotide basis becomes an error-prone, time-consuming, and tedious process. Here, we introduce ChromatoGate (CG), an open-source software that accelerates and partially automates the inspection of chromatograms and the detection of sequencing errors for bidirectional sequencing runs. To provide users full control over the error correction process, a fully automated error correction algorithm has not been implemented. Initially, the program scans a given multiple sequence alignment (MSA) for potential sequencing errors, assuming that each polymorphic site in the alignment may be attributed to a sequencing error with a certain probability. The guided MSA assembly procedure in ChromatoGate detects chromatogram peaks of all characters in an alignment that lead to polymorphic sites, given a user-defined threshold. The threshold value represents the sensitivity of the sequencing error detection mechanism. After this pre-filtering, the user only needs to inspect a small number of peaks in every chromatogram to correct sequencing errors. Finally, we show that correcting sequencing errors is important, because population genetic and phylogenetic inferences can be misled by MSAs with uncorrected mis-calls. Our experiments indicate that estimates of population mutation rates can be affected two- to three-fold by uncorrected errors.
Ma, H. -Y.; Klein, S. A.; Xie, S.; ...
2018-02-27
Many weather forecast and climate models simulate warm surface air temperature (T 2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T 2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions ofmore » surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T 2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T 2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.« less
NASA Astrophysics Data System (ADS)
Ma, H.-Y.; Klein, S. A.; Xie, S.; Zhang, C.; Tang, S.; Tang, Q.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.; Ahlgrimm, M.; Berg, L. K.; Cheruy, F.; Cole, J.; Forbes, R.; Gustafson, W. I.; Huang, M.; Liu, Y.; Merryfield, W.; Qian, Y.; Roehrig, R.; Wang, Y.-C.
2018-03-01
Many weather forecast and climate models simulate warm surface air temperature (T2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions of surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, H. -Y.; Klein, S. A.; Xie, S.
Many weather forecast and climate models simulate warm surface air temperature (T 2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T 2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions ofmore » surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T 2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T 2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.« less
TOWARD ERROR ANALYSIS OF LARGE-SCALE FOREST CARBON BUDGETS
Quantification of forest carbon sources and sinks is an important part of national inventories of net greenhouse gas emissions. Several such forest carbon budgets have been constructed, but little effort has been made to analyse the sources of error and how these errors propagate...
Quantifying errors without random sampling.
Phillips, Carl V; LaPole, Luwanna M
2003-06-12
All quantifications of mortality, morbidity, and other health measures involve numerous sources of error. The routine quantification of random sampling error makes it easy to forget that other sources of error can and should be quantified. When a quantification does not involve sampling, error is almost never quantified and results are often reported in ways that dramatically overstate their precision. We argue that the precision implicit in typical reporting is problematic and sketch methods for quantifying the various sources of error, building up from simple examples that can be solved analytically to more complex cases. There are straightforward ways to partially quantify the uncertainty surrounding a parameter that is not characterized by random sampling, such as limiting reported significant figures. We present simple methods for doing such quantifications, and for incorporating them into calculations. More complicated methods become necessary when multiple sources of uncertainty must be combined. We demonstrate that Monte Carlo simulation, using available software, can estimate the uncertainty resulting from complicated calculations with many sources of uncertainty. We apply the method to the current estimate of the annual incidence of foodborne illness in the United States. Quantifying uncertainty from systematic errors is practical. Reporting this uncertainty would more honestly represent study results, help show the probability that estimated values fall within some critical range, and facilitate better targeting of further research.
NASA Astrophysics Data System (ADS)
Walsh, Braden; Jolly, Arthur; Procter, Jonathan
2017-04-01
Using active seismic sources on Tongariro Volcano, New Zealand, the amplitude source location (ASL) method is calibrated and optimized through a series of sensitivity tests. By applying a geologic medium velocity of 1500 m/s and an attenuation value of Q=60 for surface waves along with amplification factors computed from regional earthquakes, the ASL produced location discrepancies larger than 1.0 km horizontally and up to 0.5 km in depth. Through the use of sensitivity tests on input parameters, we show that velocity and attenuation models have moderate to strong influences on the location results, but can be easily constrained. Changes in locations are accommodated through either lateral or depth movements. Station corrections (amplification factors) and station geometry strongly affect the ASL locations laterally, horizontally and in depth. Calibrating the amplification factors through the exploitation of the active seismic source events reduced location errors for the sources by up to 50%.
NASA Technical Reports Server (NTRS)
Ricks, Douglas W.
1993-01-01
There are a number of sources of scattering in binary optics: etch depth errors, line edge errors, quantization errors, roughness, and the binary approximation to the ideal surface. These sources of scattering can be systematic (deterministic) or random. In this paper, scattering formulas for both systematic and random errors are derived using Fourier optics. These formulas can be used to explain the results of scattering measurements and computer simulations.
Psychrometric Measurement of Leaf Water Potential: Lack of Error Attributable to Leaf Permeability.
Barrs, H D
1965-07-02
A report that low permeability could cause gross errors in psychrometric determinations of water potential in leaves has not been confirmed. No measurable error from this source could be detected for either of two types of thermocouple psychrometer tested on four species, each at four levels of water potential. No source of error other than tissue respiration could be demonstrated.
Bifftu, Berhanu Boru; Dachew, Berihun Assefa; Tiruneh, Bewket Tadesse; Beshah, Debrework Tesgera
2016-01-01
Medication administration is the final step/phase of medication process in which its error directly affects the patient health. Due to the central role of nurses in medication administration, whether they are the source of an error, a contributor, or an observer they have the professional, legal and ethical responsibility to recognize and report. The aim of this study was to assess the prevalence of medication administration error reporting and associated factors among nurses working at The University of Gondar Referral Hospital, Northwest Ethiopia. Institution based quantitative cross - sectional study was conducted among 282 Nurses. Data were collected using semi-structured, self-administered questionnaire of the Medication Administration Errors Reporting (MAERs). Binary logistic regression with 95 % confidence interval was used to identify factors associated with medication administration errors reporting. The estimated medication administration error reporting was found to be 29.1 %. The perceived rates of medication administration errors reporting for non-intravenous related medications were ranged from 16.8 to 28.6 % and for intravenous-related from 20.6 to 33.4 %. Education status (AOR =1.38, 95 % CI: 4.009, 11.128), disagreement over time - error definition (AOR = 0.44, 95 % CI: 0.468, 0.990), administrative reason (AOR = 0.35, 95 % CI: 0.168, 0.710) and fear (AOR = 0.39, 95 % CI: 0.257, 0.838) were factors statistically significant for the refusal of reporting medication administration errors at p-value <0.05. In this study, less than one third of the study participants reported medication administration errors. Educational status, disagreement over time - error definition, administrative reason and fear were factors statistically significant for the refusal of errors reporting at p-value <0.05. Therefore, the results of this study suggest strategies that enhance the cultures of error reporting such as providing a clear definition of reportable errors and strengthen the educational status of nurses by the health care organization.
Testing contamination source identification methods for water distribution networks
Seth, Arpan; Klise, Katherine A.; Siirola, John D.; ...
2016-04-01
In the event of contamination in a water distribution network (WDN), source identification (SI) methods that analyze sensor data can be used to identify the source location(s). Knowledge of the source location and characteristics are important to inform contamination control and cleanup operations. Various SI strategies that have been developed by researchers differ in their underlying assumptions and solution techniques. The following manuscript presents a systematic procedure for testing and evaluating SI methods. The performance of these SI methods is affected by various factors including the size of WDN model, measurement error, modeling error, time and number of contaminant injections,more » and time and number of measurements. This paper includes test cases that vary these factors and evaluates three SI methods on the basis of accuracy and specificity. The tests are used to review and compare these different SI methods, highlighting their strengths in handling various identification scenarios. These SI methods and a testing framework that includes the test cases and analysis tools presented in this paper have been integrated into EPA’s Water Security Toolkit (WST), a suite of software tools to help researchers and others in the water industry evaluate and plan various response strategies in case of a contamination incident. Lastly, a set of recommendations are made for users to consider when working with different categories of SI methods.« less
Armbrecht, Anne-Simone; Wöhrmann, Anne; Gibbons, Henning; Stahl, Jutta
2010-09-01
The present electrophysiological study investigated the temporal development of response conflict and the effects of diverging conflict sources on error(-related) negativity (Ne). Eighteen participants performed a combined stop-signal flanker task, which was comprised of two different conflict sources: a left-right and a go-stop response conflict. It is assumed that the Ne reflects the activity of a conflict monitoring system and thus increases according to (i) the number of conflict sources and (ii) the temporal development of the conflict activity. No increase of the Ne amplitude after double errors (comprising two conflict sources) as compared to hand- and stop-errors (comprising one conflict source) was found, whereas a higher Ne amplitude was observed after a delayed stop-signal onset. The results suggest that the Ne is not sensitive to an increase in the number of conflict sources, but to the temporal dynamics of a go-stop response conflict. Copyright (c) 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vishal C.; Gopalakrishnan, Ganesh; Krishnamoorthy, Sriram
The systems resilience research community has developed methods to manually insert additional source-program level assertions to trap errors, and also devised tools to conduct fault injection studies for scalar program codes. In this work, we contribute the first vector oriented LLVM-level fault injector VULFI to help study the effects of faults in vector architectures that are of growing importance, especially for vectorizing loops. Using VULFI, we conduct a resiliency study of nine real-world vector benchmarks using Intel’s AVX and SSE extensions as the target vector instruction sets, and offer the first reported understanding of how faults affect vector instruction sets.more » We take this work further toward automating the insertion of resilience assertions during compilation. This is based on our observation that during intermediate (e.g., LLVM-level) code generation to handle full and partial vectorization, modern compilers exploit (and explicate in their code-documentation) critical invariants. These invariants are turned into error-checking code. We confirm the efficacy of these automatically inserted low-overhead error detectors for vectorized for-loops.« less
Factors affecting the sticking of insects on modified aircraft wings
NASA Technical Reports Server (NTRS)
Yi, O.; Chitsaz-Z, M. R.; Eiss, N. S.; Wightman, J. P.
1988-01-01
Previous work showed that the total number of insects sticking to an aluminum surface was reduced by coating the aluminum surface with elastomers. Due to a large number of possible experimental errors, no correlation between the modulus of elasticity, the elastomer, and the total number of insects sticking to a given elastomer was obtained. One of the errors assumed to be introduced during the road test is a variable insect flux so the number of insects striking one surface might be different from that striking another sample. To eliminate this source of error, the road test used to collect insects was simulated in a laboratory by development of an insect impacting technique using a pipe and high pressure compressed air. The insects are accelerated by a compressed air gun to high velocities and are then impacted with a stationary target on which the sample is mounted. The velocity of an object exiting from the pipe was determined and further improvement of the technique was achieved to obtain a uniform air velocity distribution.
NASA Astrophysics Data System (ADS)
Takeuchi, Tsutomu T.; Yoshikawa, Kohji; Ishii, Takako T.
2004-05-01
We have mentioned that we normalized the parameters for the luminosity function by the Hubble constant H0=100 km s-1 Mpc-1 however, for the characteristic luminosity L* we erroneously normalized it by H0=70 km s-1 Mpc-1. As a result, we have proposed wrong numerical factors for L*. In addition, there is a typographic error in the exponent of equation (6) of the published manuscript. Correct values are as follows: L*=(4.34+/-0.86)×108 h-2 [Lsolar] for equation (4), and L*=(2.50+/-0.44)×109 h-2 [Lsolar] and L*=(9.55+/-0.20)×108 h-2 [Lsolar] for equations (5) and (6), respectively. All the other parameters are correct. The errors have occurred only in the final conversion, and they do not affect our discussions and conclusions at all. We thank P. Ranalli for pointing out the errors.
Analysis of RDSS positioning accuracy based on RNSS wide area differential technique
NASA Astrophysics Data System (ADS)
Xing, Nan; Su, RanRan; Zhou, JianHua; Hu, XiaoGong; Gong, XiuQiang; Liu, Li; He, Feng; Guo, Rui; Ren, Hui; Hu, GuangMing; Zhang, Lei
2013-10-01
The BeiDou Navigation Satellite System (BDS) provides Radio Navigation Service System (RNSS) as well as Radio Determination Service System (RDSS). RDSS users can obtain positioning by responding the Master Control Center (MCC) inquiries to signal transmitted via GEO satellite transponder. The positioning result can be calculated with elevation constraint by MCC. The primary error sources affecting the RDSS positioning accuracy are the RDSS signal transceiver delay, atmospheric trans-mission delay and GEO satellite position error. During GEO orbit maneuver, poor orbit forecast accuracy significantly impacts RDSS services. A real-time 3-D orbital correction method based on wide-area differential technique is raised to correct the orbital error. Results from the observation shows that the method can successfully improve positioning precision during orbital maneuver, independent from the RDSS reference station. This improvement can reach 50% in maximum. Accurate calibration of the RDSS signal transceiver delay precision and digital elevation map may have a critical role in high precise RDSS positioning services.
Post-error Brain Activity Correlates With Incidental Memory for Negative Words
Senderecka, Magdalena; Ociepka, Michał; Matyjek, Magdalena; Kroczek, Bartłomiej
2018-01-01
The present study had three main objectives. First, we aimed to evaluate whether short-duration affective states induced by negative and positive words can lead to increased error-monitoring activity relative to a neutral task condition. Second, we intended to determine whether such an enhancement is limited to words of specific valence or is a general response to arousing material. Third, we wanted to assess whether post-error brain activity is associated with incidental memory for negative and/or positive words. Participants performed an emotional stop-signal task that required response inhibition to negative, positive or neutral nouns while EEG was recorded. Immediately after the completion of the task, they were instructed to recall as many of the presented words as they could in an unexpected free recall test. We observed significantly greater brain activity in the error-positivity (Pe) time window in both negative and positive trials. The error-related negativity amplitudes were comparable in both the neutral and emotional arousing trials, regardless of their valence. Regarding behavior, increased processing of emotional words was reflected in better incidental recall. Importantly, the memory performance for negative words was positively correlated with the Pe amplitude, particularly in the negative condition. The source localization analysis revealed that the subsequent memory recall for negative words was associated with widespread bilateral brain activity in the dorsal anterior cingulate cortex and in the medial frontal gyrus, which was registered in the Pe time window during negative trials. The present study has several important conclusions. First, it indicates that the emotional enhancement of error monitoring, as reflected by the Pe amplitude, may be induced by stimuli with symbolic, ontogenetically learned emotional significance. Second, it indicates that the emotion-related enhancement of the Pe occurs across both negative and positive conditions, thus it is preferentially driven by the arousal content of an affective stimuli. Third, our findings suggest that enhanced error monitoring and facilitated recall of negative words may both reflect responsivity to negative events. More speculatively, they can also indicate that post-error activity of the medial prefrontal cortex may selectively support encoding for negative stimuli and contribute to their privileged access to memory. PMID:29867408
Error framing effects on performance: cognitive, motivational, and affective pathways.
Steele-Johnson, Debra; Kalinoski, Zachary T
2014-01-01
Our purpose was to examine whether positive error framing, that is, making errors salient and cuing individuals to see errors as useful, can benefit learning when task exploration is constrained. Recent research has demonstrated the benefits of a newer approach to training, that is, error management training, that includes the opportunity to actively explore the task and framing errors as beneficial to learning complex tasks (Keith & Frese, 2008). Other research has highlighted the important role of errors in on-the-job learning in complex domains (Hutchins, 1995). Participants (N = 168) from a large undergraduate university performed a class scheduling task. Results provided support for a hypothesized path model in which error framing influenced cognitive, motivational, and affective factors which in turn differentially affected performance quantity and quality. Within this model, error framing had significant direct effects on metacognition and self-efficacy. Our results suggest that positive error framing can have beneficial effects even when tasks cannot be structured to support extensive exploration. Whereas future research can expand our understanding of error framing effects on outcomes, results from the current study suggest that positive error framing can facilitate learning from errors in real-time performance of tasks.
Quesada, Jose Antonio; Nolasco, Andreu; Moncho, Joaquín
2013-01-01
Geocoding is the assignment of geographic coordinates to spatial points, which often are postal addresses. The error made in applying this process can introduce bias in estimates of spatiotemporal models in epidemiological studies. No studies have been found to measure the error made in applying this process in Spanish cities. The objective is to evaluate the errors in magnitude and direction from two free sources (Google and Yahoo) with regard to a GPS in two Spanish cities. 30 addresses were geocoded with those two sources and the GPS in Santa Pola (Alicante) and Alicante city. The distances were calculated in metres (median, CI95%) between the sources and the GPS, globally and according to the status reported by each source. The directionality of the error was evaluated by calculating the location quadrant and applying a Chi-Square test. The GPS error was evaluated by geocoding 11 addresses twice at 4 days interval. The overall median in Google-GPS was 23,2 metres (16,0-32,1) for Santa Pola, and 21,4 meters (14,9-31,1) for Alicante. The overall median in Yahoo was 136,0 meters (19,2-318,5) for Santa Pola, and 23,8 meters (13,6- 29,2) for Alicante. Between the 73% and 90% were geocoded by status as "exact or interpolated" (minor error), where Goggle and Yahoo had a median error between 19 and 23 metres in the two cities. The GPS had a median error of 13.8 meters (6,7-17,8). No error directionality was detected. Google error is acceptable and stable in the two cities, so that it is a reliable source for Para medir elgeocoding addresses in Spain in epidemiological studies.
Systematic neutron guide misalignment for an accelerator-driven spallation neutron source
NASA Astrophysics Data System (ADS)
Zendler, C.; Bentley, P. M.
2016-08-01
The European Spallation Source (ESS) is a long pulse spallation neutron source that is currently under construction in Lund, Sweden. A considerable fraction of the 22 planned instruments extend as far as 75-150 m from the source. In such long beam lines, misalignment between neutron guide segments can decrease the neutron transmission significantly. In addition to a random misalignment from installation tolerances, the ground on which ESS is built can be expected to sink with time, and thus shift the neutron guide segments further away from the ideal alignment axis in a systematic way. These systematic errors are correlated to the ground structure, position of buildings and shielding installation. Since the largest deformation is expected close to the target, even short instruments might be noticeably affected. In this study, the effect of this systematic misalignment on short and long ESS beam lines is analyzed, and a possible mitigation by overillumination of subsequent guide sections investigated.
Measuring Diagnoses: ICD Code Accuracy
O'Malley, Kimberly J; Cook, Karon F; Price, Matt D; Wildes, Kimberly Raiford; Hurdle, John F; Ashton, Carol M
2005-01-01
Objective To examine potential sources of errors at each step of the described inpatient International Classification of Diseases (ICD) coding process. Data Sources/Study Setting The use of disease codes from the ICD has expanded from classifying morbidity and mortality information for statistical purposes to diverse sets of applications in research, health care policy, and health care finance. By describing a brief history of ICD coding, detailing the process for assigning codes, identifying where errors can be introduced into the process, and reviewing methods for examining code accuracy, we help code users more systematically evaluate code accuracy for their particular applications. Study Design/Methods We summarize the inpatient ICD diagnostic coding process from patient admission to diagnostic code assignment. We examine potential sources of errors at each step and offer code users a tool for systematically evaluating code accuracy. Principle Findings Main error sources along the “patient trajectory” include amount and quality of information at admission, communication among patients and providers, the clinician's knowledge and experience with the illness, and the clinician's attention to detail. Main error sources along the “paper trail” include variance in the electronic and written records, coder training and experience, facility quality-control efforts, and unintentional and intentional coder errors, such as misspecification, unbundling, and upcoding. Conclusions By clearly specifying the code assignment process and heightening their awareness of potential error sources, code users can better evaluate the applicability and limitations of codes for their particular situations. ICD codes can then be used in the most appropriate ways. PMID:16178999
Methodological uncertainties in multi-regression analyses of middle-atmospheric data series.
Kerzenmacher, Tobias E; Keckhut, Philippe; Hauchecorne, Alain; Chanin, Marie-Lise
2006-07-01
Multi-regression analyses have often been used recently to detect trends, in particular in ozone or temperature data sets in the stratosphere. The confidence in detecting trends depends on a number of factors which generate uncertainties. Part of these uncertainties comes from the random variability and these are what is usually considered. They can be statistically estimated from residual deviations between the data and the fitting model. However, interferences between different sources of variability affecting the data set, such as the Quasi-Biennal Oscillation (QBO), volcanic aerosols, solar flux variability and the trend can also be a critical source of errors. This type of error has hitherto not been well quantified. In this work an artificial data series has been generated to carry out such estimates. The sources of errors considered here are: the length of the data series, the dependence on the choice of parameters used in the fitting model and the time evolution of the trend in the data series. Curves provided here, will permit future studies to test the magnitude of the methodological bias expected for a given case, as shown in several real examples. It is found that, if the data series is shorter than a decade, the uncertainties are very large, whatever factors are chosen to identify the source of the variability. However the errors can be limited when dealing with natural variability, if a sufficient number of periods (for periodic forcings) are covered by the analysed dataset. However when analysing the trend, the response to volcanic eruption induces a bias, whatever the length of the data series. The signal to noise ratio is a key factor: doubling the noise increases the period for which data is required in order to obtain an error smaller than 10%, from 1 to 3-4 decades. Moreover, if non-linear trends are superimposed on the data, and if the length of the series is longer than five years, a non-linear function has to be used to estimate trends. When applied to real data series, and when a breakpoint in the series occurs, the study reveals that data extending over 5 years are needed to detect a significant change in the slope of the ozone trends at mid-latitudes.
A 1400-MHz survey of 1478 Abell clusters of galaxies
NASA Technical Reports Server (NTRS)
Owen, F. N.; White, R. A.; Hilldrup, K. C.; Hanisch, R. J.
1982-01-01
Observations of 1478 Abell clusters of galaxies with the NRAO 91-m telescope at 1400 MHz are reported. The measured beam shape was deconvolved from the measured source Gaussian fits in order to estimate the source size and position angle. All detected sources within 0.5 corrected Abell cluster radii are listed, including the cluster number, richness class, distance class, magnitude of the tenth brightest galaxy, redshift estimate, corrected cluster radius in arcmin, right ascension and error, declination and error, total flux density and error, and angular structure for each source.
Reaching nearby sources: comparison between real and virtual sound and visual targets
Parseihian, Gaëtan; Jouffrais, Christophe; Katz, Brian F. G.
2014-01-01
Sound localization studies over the past century have predominantly been concerned with directional accuracy for far-field sources. Few studies have examined the condition of near-field sources and distance perception. The current study concerns localization and pointing accuracy by examining source positions in the peripersonal space, specifically those associated with a typical tabletop surface. Accuracy is studied with respect to the reporting hand (dominant or secondary) for auditory sources. Results show no effect on the reporting hand with azimuthal errors increasing equally for the most extreme source positions. Distance errors show a consistent compression toward the center of the reporting area. A second evaluation is carried out comparing auditory and visual stimuli to examine any bias in reporting protocol or biomechanical difficulties. No common bias error was observed between auditory and visual stimuli indicating that reporting errors were not due to biomechanical limitations in the pointing task. A final evaluation compares real auditory sources and anechoic condition virtual sources created using binaural rendering. Results showed increased azimuthal errors, with virtual source positions being consistently overestimated to more lateral positions, while no significant distance perception was observed, indicating a deficiency in the binaural rendering condition relative to the real stimuli situation. Various potential reasons for this discrepancy are discussed with several proposals for improving distance perception in peripersonal virtual environments. PMID:25228855
Analysis of filter tuning techniques for sequential orbit determination
NASA Technical Reports Server (NTRS)
Lee, T.; Yee, C.; Oza, D.
1995-01-01
This paper examines filter tuning techniques for a sequential orbit determination (OD) covariance analysis. Recently, there has been a renewed interest in sequential OD, primarily due to the successful flight qualification of the Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) using Doppler data extracted onboard the Extreme Ultraviolet Explorer (EUVE) spacecraft. TONS computes highly accurate orbit solutions onboard the spacecraft in realtime using a sequential filter. As the result of the successful TONS-EUVE flight qualification experiment, the Earth Observing System (EOS) AM-1 Project has selected TONS as the prime navigation system. In addition, sequential OD methods can be used successfully for ground OD. Whether data are processed onboard or on the ground, a sequential OD procedure is generally favored over a batch technique when a realtime automated OD system is desired. Recently, OD covariance analyses were performed for the TONS-EUVE and TONS-EOS missions using the sequential processing options of the Orbit Determination Error Analysis System (ODEAS). ODEAS is the primary covariance analysis system used by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD). The results of these analyses revealed a high sensitivity of the OD solutions to the state process noise filter tuning parameters. The covariance analysis results show that the state estimate error contributions from measurement-related error sources, especially those due to the random noise and satellite-to-satellite ionospheric refraction correction errors, increase rapidly as the state process noise increases. These results prompted an in-depth investigation of the role of the filter tuning parameters in sequential OD covariance analysis. This paper analyzes how the spacecraft state estimate errors due to dynamic and measurement-related error sources are affected by the process noise level used. This information is then used to establish guidelines for determining optimal filter tuning parameters in a given sequential OD scenario for both covariance analysis and actual OD. Comparisons are also made with corresponding definitive OD results available from the TONS-EUVE analysis.
ERIC Educational Resources Information Center
Zhao, Xueyu; Solano-Flores, Guillermo; Qian, Ming
2018-01-01
This article addresses test translation review in international test comparisons. We investigated the applicability of the theory of test translation error--a theory of the multidimensionality and inevitability of test translation error--across source language-target language combinations in the translation of PISA (Programme of International…
Optical linear algebra processors: noise and error-source modeling.
Casasent, D; Ghosh, A
1985-06-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
Optical linear algebra processors - Noise and error-source modeling
NASA Technical Reports Server (NTRS)
Casasent, D.; Ghosh, A.
1985-01-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
NASA Astrophysics Data System (ADS)
Kobulnicky, Henry A.; Johnson, Kelsey E.
2000-08-01
In the article ``Signatures of the Youngest Starbursts: Optically Thick Thermal Bremsstrahlung Radio Sources in Henize 2-10'' by Henry A. Kobulnicky and Kelsey E. Johnson (ApJ, 527, 154 [1999]), equation (4) was incorrect in the original submitted manuscript and thus appears incorrect in print. Equation (4) should read,EM(cm-6 pc)=12.1[Te(K)]1.35[ν(GHz)]2.1τ .(4)The following sentence should read, ``These knots yield emission measures in excess of 106 cm-6 pc at 8 GHz.'' These errors are of a typographical nature and do not affect other aspects of the analysis or discussion.
Sensitivity analysis of non-cohesive sediment transport formulae
NASA Astrophysics Data System (ADS)
Pinto, Lígia; Fortunato, André B.; Freire, Paula
2006-10-01
Sand transport models are often based on semi-empirical equilibrium transport formulae that relate sediment fluxes to physical properties such as velocity, depth and characteristic sediment grain sizes. In engineering applications, errors in these physical properties affect the accuracy of the sediment fluxes. The present analysis quantifies error propagation from the input physical properties to the sediment fluxes, determines which ones control the final errors, and provides insight into the relative strengths, weaknesses and limitations of four total load formulae (Ackers and White, Engelund and Hansen, van Rijn, and Karim and Kennedy) and one bed load formulation (van Rijn). The various sources of uncertainty are first investigated individually, in order to pinpoint the key physical properties that control the errors. Since the strong non-linearity of most sand transport formulae precludes analytical approaches, a Monte Carlo method is validated and used in the analysis. Results show that the accuracy in total sediment transport evaluations is mainly determined by errors in the current velocity and in the sediment median grain size. For the bed load transport using the van Rijn formula, errors in the current velocity alone control the final accuracy. In a final set of tests, all physical properties are allowed to vary simultaneously in order to analyze the combined effect of errors. The combined effect of errors in all the physical properties is then compared to an estimate of the errors due to the intrinsic limitations of the formulae. Results show that errors in the physical properties can be dominant for typical uncertainties associated with these properties, particularly for small depths. A comparison between the various formulae reveals that the van Rijn formula is more sensitive to basic physical properties. Hence, it should only be used when physical properties are known with precision.
Mashburn, Andrew J; Downer, Jason T; Rivers, Susan E; Brackett, Marc A; Martinez, Andres
2014-04-01
Social and emotional learning programs are designed to improve the quality of social interactions in schools and classrooms in order to positively affect students' social, emotional, and academic development. The statistical power of group randomized trials to detect effects of social and emotional learning programs and other preventive interventions on setting-level outcomes is influenced by the reliability of the outcome measure. In this paper, we apply generalizability theory to an observational measure of the quality of classroom interactions that is an outcome in a study of the efficacy of a social and emotional learning program called The Recognizing, Understanding, Labeling, Expressing, and Regulating emotions Approach. We estimate multiple sources of error variance in the setting-level outcome and identify observation procedures to use in the efficacy study that most efficiently reduce these sources of error. We then discuss the implications of using different observation procedures on both the statistical power and the monetary costs of conducting the efficacy study.
Accuracy analysis of pointing control system of solar power station
NASA Technical Reports Server (NTRS)
Hung, J. C.; Peebles, P. Z., Jr.
1978-01-01
The first-phase effort concentrated on defining the minimum basic functions that the retrodirective array must perform, identifying circuits that are capable of satisfying the basic functions, and looking at some of the error sources in the system and how they affect accuracy. The initial effort also examined three methods for generating torques for mechanical antenna control, performed a rough analysis of the flexible body characteristics of the solar collector, and defined a control system configuration for mechanical pointing control of the array.
Test data analysis for concentrating photovoltaic arrays
NASA Astrophysics Data System (ADS)
Maish, A. B.; Cannon, J. E.
A test data analysis approach for use with steady state efficiency measurements taken on concentrating photovoltaic arrays is presented. The analysis procedures can be used to identify based and erroneous data. The steps involved in analyzing the test data are screening the data, developing coefficients for the performance equation, analyzing statistics to ensure adequacy of the regression fit to the data, and plotting the data. In addition, this paper analyzes the sources and magnitudes of precision and bias errors that affect measurement accuracy are analyzed.
ROSAT X-Ray Observation of the Second Error Box for SGR 1900+14
NASA Technical Reports Server (NTRS)
Li, P.; Hurley, K.; Vrba, F.; Kouveliotou, C.; Meegan, C. A.; Fishman, G. J.; Kulkarni, S.; Frail, D.
1997-01-01
The positions of the two error boxes for the soft gamma repeater (SGR) 1900+14 were determined by the "network synthesis" method, which employs observations by the Ulysses gamma-ray burst and CGRO BATSE instruments. The location of the first error box has been observed at optical, infrared, and X-ray wavelengths, resulting in the discovery of a ROSAT X-ray point source and a curious double infrared source. We have recently used the ROSAT HRI to observe the second error box to complete the counterpart search. A total of six X-ray sources were identified within the field of view. None of them falls within the network synthesis error box, and a 3 sigma upper limit to any X-ray counterpart was estimated to be 6.35 x 10(exp -14) ergs/sq cm/s. The closest source is approximately 3 min. away, and has an estimated unabsorbed flux of 1.5 x 10(exp -12) ergs/sq cm/s. Unlike the first error box, there is no supernova remnant near the second error box. The closest one, G43.9+1.6, lies approximately 2.dg6 away. For these reasons, we believe that the first error box is more likely to be the correct one.
Sources of variability and systematic error in mouse timing behavior.
Gallistel, C R; King, Adam; McDonald, Robert
2004-01-01
In the peak procedure, starts and stops in responding bracket the target time at which food is expected. The variability in start and stop times is proportional to the target time (scalar variability), as is the systematic error in the mean center (scalar error). The authors investigated the source of the error and the variability, using head poking in the mouse, with target intervals of 5 s, 15 s, and 45 s, in the standard procedure, and in a variant with 3 different target intervals at 3 different locations in a single trial. The authors conclude that the systematic error is due to the asymmetric location of start and stop decision criteria, and the scalar variability derives primarily from sources other than memory.
Investigating the variability of memory distortion for an analogue trauma.
Strange, Deryn; Takarangi, Melanie K T
2015-01-01
In this paper, we examine whether source monitoring (SM) errors might be one mechanism that accounts for traumatic memory distortion. Participants watched a traumatic film with some critical (crux) and non-critical (non-crux) scenes removed. Twenty-four hours later, they completed a memory test. To increase the likelihood participants would notice the film's gaps, we inserted visual static for the length of each missing scene. We then added manipulations designed to affect people's SM behaviour. To encourage systematic SM, before watching the film, we warned half the participants that we had removed some scenes. To encourage heuristic SM some participants also saw labels describing the missing scenes. Adding static highlighting, the missing scenes did not affect false recognition of those missing scenes. However, a warning decreased, while labels increased, participants' false recognition rates. We conclude that manipulations designed to affect SM behaviour also affect the degree of memory distortion in our paradigm.
Measuring diagnoses: ICD code accuracy.
O'Malley, Kimberly J; Cook, Karon F; Price, Matt D; Wildes, Kimberly Raiford; Hurdle, John F; Ashton, Carol M
2005-10-01
To examine potential sources of errors at each step of the described inpatient International Classification of Diseases (ICD) coding process. The use of disease codes from the ICD has expanded from classifying morbidity and mortality information for statistical purposes to diverse sets of applications in research, health care policy, and health care finance. By describing a brief history of ICD coding, detailing the process for assigning codes, identifying where errors can be introduced into the process, and reviewing methods for examining code accuracy, we help code users more systematically evaluate code accuracy for their particular applications. We summarize the inpatient ICD diagnostic coding process from patient admission to diagnostic code assignment. We examine potential sources of errors at each step and offer code users a tool for systematically evaluating code accuracy. Main error sources along the "patient trajectory" include amount and quality of information at admission, communication among patients and providers, the clinician's knowledge and experience with the illness, and the clinician's attention to detail. Main error sources along the "paper trail" include variance in the electronic and written records, coder training and experience, facility quality-control efforts, and unintentional and intentional coder errors, such as misspecification, unbundling, and upcoding. By clearly specifying the code assignment process and heightening their awareness of potential error sources, code users can better evaluate the applicability and limitations of codes for their particular situations. ICD codes can then be used in the most appropriate ways.
Localization of virtual sound at 4 Gz.
Sandor, Patrick M B; McAnally, Ken I; Pellieux, Lionel; Martin, Russell L
2005-02-01
Acceleration directed along the body's z-axis (Gz) leads to misperception of the elevation of visual objects (the "elevator illusion"), most probably as a result of errors in the transformation from eye-centered to head-centered coordinates. We have investigated whether the location of sound sources is misperceived under increased Gz. Visually guided localization responses were made, using a remotely controlled laser pointer, to virtual auditory targets under conditions of 1 and 4 Gz induced in a human centrifuge. As these responses would be expected to be affected by the elevator illusion, we also measured the effect of Gz on the accuracy with which subjects could point to the horizon. Horizon judgments were lower at 4 Gz than at 1 Gz, so sound localization responses at 4 Gz were corrected for this error in the transformation from eye-centered to head-centered coordinates. We found that the accuracy and bias of sound localization are not significantly affected by increased Gz. The auditory modality is likely to provide a reliable means of conveying spatial information to operators in dynamic environments in which Gz can vary.
More sound of church bells: Authors' correction
NASA Astrophysics Data System (ADS)
Vogt, Patrik; Kasper, Lutz; Burde, Jan-Philipp
2016-01-01
In the recently published article "The Sound of Church Bells: Tracking Down the Secret of a Traditional Arts and Crafts Trade," the bell frequencies have been erroneously oversimplified. The problem affects Eqs. (2) and (3), which were derived from the elementary "coffee mug model" and in which we used the speed of sound in air. However, this does not make sense from a physical point of view, since air only acts as a sound carrier, not as a sound source in the case of bells. Due to the excellent fit of the theoretical model with the empirical data, we unfortunately failed to notice this error before publication. However, all other equations, e.g., the introduction of the correction factor in Eq. (4) and the estimation of the mass in Eqs. (5) and (6) are not affected by this error, since they represent empirical models. However, it is unfortunate to introduce the speed of sound in air as a constant in Eqs. (4) and (6). Instead, we suggest the following simple rule of thumb for relating the radius of a church bell R to its humming frequency fhum:
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seth, Arpan; Klise, Katherine A.; Siirola, John D.
In the event of contamination in a water distribution network (WDN), source identification (SI) methods that analyze sensor data can be used to identify the source location(s). Knowledge of the source location and characteristics are important to inform contamination control and cleanup operations. Various SI strategies that have been developed by researchers differ in their underlying assumptions and solution techniques. The following manuscript presents a systematic procedure for testing and evaluating SI methods. The performance of these SI methods is affected by various factors including the size of WDN model, measurement error, modeling error, time and number of contaminant injections,more » and time and number of measurements. This paper includes test cases that vary these factors and evaluates three SI methods on the basis of accuracy and specificity. The tests are used to review and compare these different SI methods, highlighting their strengths in handling various identification scenarios. These SI methods and a testing framework that includes the test cases and analysis tools presented in this paper have been integrated into EPA’s Water Security Toolkit (WST), a suite of software tools to help researchers and others in the water industry evaluate and plan various response strategies in case of a contamination incident. Lastly, a set of recommendations are made for users to consider when working with different categories of SI methods.« less
NASA Astrophysics Data System (ADS)
Sharan, Maithili; Singh, Amit Kumar; Singh, Sarvesh Kumar
2017-11-01
Estimation of an unknown atmospheric release from a finite set of concentration measurements is considered an ill-posed inverse problem. Besides ill-posedness, the estimation process is influenced by the instrumental errors in the measured concentrations and model representativity errors. The study highlights the effect of minimizing model representativity errors on the source estimation. This is described in an adjoint modelling framework and followed in three steps. First, an estimation of point source parameters (location and intensity) is carried out using an inversion technique. Second, a linear regression relationship is established between the measured concentrations and corresponding predicted using the retrieved source parameters. Third, this relationship is utilized to modify the adjoint functions. Further, source estimation is carried out using these modified adjoint functions to analyse the effect of such modifications. The process is tested for two well known inversion techniques, called renormalization and least-square. The proposed methodology and inversion techniques are evaluated for a real scenario by using concentrations measurements from the Idaho diffusion experiment in low wind stable conditions. With both the inversion techniques, a significant improvement is observed in the retrieval of source estimation after minimizing the representativity errors.
Influence of Gridded Standoff Measurement Resolution on Numerical Bathymetric Inversion
NASA Astrophysics Data System (ADS)
Hesser, T.; Farthing, M. W.; Brodie, K.
2016-02-01
The bathymetry from the surfzone to the shoreline incurs frequent, active movement due to wave energy interacting with the seafloor. Methodologies to measure bathymetry range from point-source in-situ instruments, vessel-mounted single-beam or multi-beam sonar surveys, airborne bathymetric lidar, as well as inversion techniques from standoff measurements of wave processes from video or radar imagery. Each type of measurement has unique sources of error and spatial and temporal resolution and availability. Numerical bathymetry estimation frameworks can use these disparate data types in combination with model-based inversion techniques to produce a "best-estimate of bathymetry" at a given time. Understanding how the sources of error and varying spatial or temporal resolution of each data type affect the end result is critical for determining best practices and in turn increase the accuracy of bathymetry estimation techniques. In this work, we consider an initial step in the development of a complete framework for estimating bathymetry in the nearshore by focusing on gridded standoff measurements and in-situ point observations in model-based inversion at the U.S. Army Corps of Engineers Field Research Facility in Duck, NC. The standoff measurement methods return wave parameters computed using linear wave theory from the direct measurements. These gridded datasets can range in temporal and spatial resolution that do not match the desired model parameters and therefore could lead to a reduction in the accuracy of these methods. Specifically, we investigate the affect of numerical resolution on the accuracy of an Ensemble Kalman Filter bathymetric inversion technique in relation to the spatial and temporal resolution of the gridded standoff measurements. The accuracies of the bathymetric estimates are compared with both high-resolution Real Time Kinematic (RTK) single-beam surveys as well as alternative direct in-situ measurements using sonic altimeters.
Determination of head conductivity frequency response in vivo with optimized EIT-EEG.
Dabek, Juhani; Kalogianni, Konstantina; Rotgans, Edwin; van der Helm, Frans C T; Kwakkel, Gert; van Wegen, Erwin E H; Daffertshofer, Andreas; de Munck, Jan C
2016-02-15
Electroencephalography (EEG) benefits from accurate head models. Dipole source modelling errors can be reduced from over 1cm to a few millimetres by replacing generic head geometry and conductivity with tailored ones. When adequate head geometry is available, electrical impedance tomography (EIT) can be used to infer the conductivities of head tissues. In this study, the boundary element method (BEM) is applied with three-compartment (scalp, skull and brain) subject-specific head models. The optimal injection of small currents to the head with a modular EIT current injector, and voltage measurement by an EEG amplifier is first sought by simulations. The measurement with a 64-electrode EEG layout is studied with respect to three noise sources affecting EIT: background EEG, deviations from the fitting assumption of equal scalp and brain conductivities, and smooth model geometry deviations from the true head geometry. The noise source effects were investigated depending on the positioning of the injection and extraction electrode and the number of their combinations used sequentially. The deviation from equal scalp and brain conductivities produces rather deterministic errors in the three conductivities irrespective of the current injection locations. With a realistic measurement of around 2 min and around 8 distant distinct current injection pairs, the error from the other noise sources is reduced to around 10% or less in the skull conductivity. The analysis of subsequent real measurements, however, suggests that there could be subject-specific local thinnings in the skull, which could amplify the conductivity fitting errors. With proper analysis of multiplexed sinusoidal EIT current injections, the measurements on average yielded conductivities of 340 mS/m (scalp and brain) and 6.6 mS/m (skull) at 2 Hz. From 11 to 127 Hz, the conductivities increased by 1.6% (scalp and brain) and 6.7% (skull) on the average. The proper analysis was ensured by using recombination of the current injections into virtual ones, avoiding problems in location-specific skull morphology variations. The observed large intersubject variations support the need for in vivo measurement of skull conductivity, resulting in calibrated subject-specific head models. Copyright © 2015 Elsevier Inc. All rights reserved.
Syndrome source coding and its universal generalization
NASA Technical Reports Server (NTRS)
Ancheta, T. C., Jr.
1975-01-01
A method of using error-correcting codes to obtain data compression, called syndrome-source-coding, is described in which the source sequence is treated as an error pattern whose syndrome forms the compressed data. It is shown that syndrome-source-coding can achieve arbitrarily small distortion with the number of compressed digits per source digit arbitrarily close to the entropy of a binary memoryless source. A universal generalization of syndrome-source-coding is formulated which provides robustly-effective, distortionless, coding of source ensembles.
A data-driven modeling approach to stochastic computation for low-energy biomedical devices.
Lee, Kyong Ho; Jang, Kuk Jin; Shoeb, Ali; Verma, Naveen
2011-01-01
Low-power devices that can detect clinically relevant correlations in physiologically-complex patient signals can enable systems capable of closed-loop response (e.g., controlled actuation of therapeutic stimulators, continuous recording of disease states, etc.). In ultra-low-power platforms, however, hardware error sources are becoming increasingly limiting. In this paper, we present how data-driven methods, which allow us to accurately model physiological signals, also allow us to effectively model and overcome prominent hardware error sources with nearly no additional overhead. Two applications, EEG-based seizure detection and ECG-based arrhythmia-beat classification, are synthesized to a logic-gate implementation, and two prominent error sources are introduced: (1) SRAM bit-cell errors and (2) logic-gate switching errors ('stuck-at' faults). Using patient data from the CHB-MIT and MIT-BIH databases, performance similar to error-free hardware is achieved even for very high fault rates (up to 0.5 for SRAMs and 7 × 10(-2) for logic) that cause computational bit error rates as high as 50%.
NASA Astrophysics Data System (ADS)
Zhu, Jian-Rong; Li, Jian; Zhang, Chun-Mei; Wang, Qin
2017-10-01
The decoy-state method has been widely used in commercial quantum key distribution (QKD) systems. In view of the practical decoy-state QKD with both source errors and statistical fluctuations, we propose a universal model of full parameter optimization in biased decoy-state QKD with phase-randomized sources. Besides, we adopt this model to carry out simulations of two widely used sources: weak coherent source (WCS) and heralded single-photon source (HSPS). Results show that full parameter optimization can significantly improve not only the secure transmission distance but also the final key generation rate. And when taking source errors and statistical fluctuations into account, the performance of decoy-state QKD using HSPS suffered less than that of decoy-state QKD using WCS.
Chung, Jae W; Ofori, Edward; Misra, Gaurav; Hess, Christopher W; Vaillancourt, David E
2017-01-01
Accurate motor performance may depend on the scaling of distinct oscillatory activity within the motor cortex and effective neural communication between the motor cortex and other brain areas. Oscillatory activity within the beta-band (13-30Hz) has been suggested to provide distinct functional roles for attention and sensorimotor control, yet it remains unclear how beta-band and other oscillatory activity within and between cortical regions is coordinated to enhance motor performance. We explore this open issue by simultaneously measuring high-density cortical activity and elbow flexor and extensor neuromuscular activity during ballistic movements, and manipulating error using high and low visual gain across three target distances. Compared with low visual gain, high visual gain decreased movement errors at each distance. Group analyses in 3D source-space revealed increased theta-, alpha-, and beta-band desynchronization of the contralateral motor cortex and medial parietal cortex in high visual gain conditions and this corresponded to reduced movement error. Dynamic causal modeling was used to compute connectivity between motor cortex and parietal cortex. Analyses revealed that gain affected the directionally-specific connectivity across broadband frequencies from parietal to sensorimotor cortex but not from sensorimotor cortex to parietal cortex. These new findings provide support for the interpretation that broad-band oscillations in theta, alpha, and beta frequency bands within sensorimotor and parietal cortex coordinate to facilitate accurate upper limb movement. Our findings establish a link between sensorimotor oscillations in the context of online motor performance in common source space across subjects. Specifically, the extent and distinct role of medial parietal cortex to sensorimotor beta connectivity and local domain broadband activity combine in a time and frequency manner to assist ballistic movements. These findings can serve as a model to examine whether similar source space EEG dynamics exhibit different time-frequency changes in individuals with neurological disorders that cause movement errors. Copyright © 2016 Elsevier Inc. All rights reserved.
Impact of numerical choices on water conservation in the E3SM Atmosphere Model Version 1 (EAM V1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kai; Rasch, Philip J.; Taylor, Mark A.
The conservation of total water is an important numerical feature for global Earth system models. Even small conservation problems in the water budget can lead to systematic errors in century-long simulations for sea level rise projection. This study quantifies and reduces various sources of water conservation error in the atmosphere component of the Energy Exascale Earth System Model. Several sources of water conservation error have been identified during the development of the version 1 (V1) model. The largest errors result from the numerical coupling between the resolved dynamics and the parameterized sub-grid physics. A hybrid coupling using different methods formore » fluid dynamics and tracer transport provides a reduction of water conservation error by a factor of 50 at 1° horizontal resolution as well as consistent improvements at other resolutions. The second largest error source is the use of an overly simplified relationship between the surface moisture flux and latent heat flux at the interface between the host model and the turbulence parameterization. This error can be prevented by applying the same (correct) relationship throughout the entire model. Two additional types of conservation error that result from correcting the surface moisture flux and clipping negative water concentrations can be avoided by using mass-conserving fixers. With all four error sources addressed, the water conservation error in the V1 model is negligible and insensitive to the horizontal resolution. The associated changes in the long-term statistics of the main atmospheric features are small. A sensitivity analysis is carried out to show that the magnitudes of the conservation errors decrease strongly with temporal resolution but increase with horizontal resolution. The increased vertical resolution in the new model results in a very thin model layer at the Earth’s surface, which amplifies the conservation error associated with the surface moisture flux correction. We note that for some of the identified error sources, the proposed fixers are remedies rather than solutions to the problems at their roots. Future improvements in time integration would be beneficial for this model.« less
Impact of numerical choices on water conservation in the E3SM Atmosphere Model version 1 (EAMv1)
NASA Astrophysics Data System (ADS)
Zhang, Kai; Rasch, Philip J.; Taylor, Mark A.; Wan, Hui; Leung, Ruby; Ma, Po-Lun; Golaz, Jean-Christophe; Wolfe, Jon; Lin, Wuyin; Singh, Balwinder; Burrows, Susannah; Yoon, Jin-Ho; Wang, Hailong; Qian, Yun; Tang, Qi; Caldwell, Peter; Xie, Shaocheng
2018-06-01
The conservation of total water is an important numerical feature for global Earth system models. Even small conservation problems in the water budget can lead to systematic errors in century-long simulations. This study quantifies and reduces various sources of water conservation error in the atmosphere component of the Energy Exascale Earth System Model. Several sources of water conservation error have been identified during the development of the version 1 (V1) model. The largest errors result from the numerical coupling between the resolved dynamics and the parameterized sub-grid physics. A hybrid coupling using different methods for fluid dynamics and tracer transport provides a reduction of water conservation error by a factor of 50 at 1° horizontal resolution as well as consistent improvements at other resolutions. The second largest error source is the use of an overly simplified relationship between the surface moisture flux and latent heat flux at the interface between the host model and the turbulence parameterization. This error can be prevented by applying the same (correct) relationship throughout the entire model. Two additional types of conservation error that result from correcting the surface moisture flux and clipping negative water concentrations can be avoided by using mass-conserving fixers. With all four error sources addressed, the water conservation error in the V1 model becomes negligible and insensitive to the horizontal resolution. The associated changes in the long-term statistics of the main atmospheric features are small. A sensitivity analysis is carried out to show that the magnitudes of the conservation errors in early V1 versions decrease strongly with temporal resolution but increase with horizontal resolution. The increased vertical resolution in V1 results in a very thin model layer at the Earth's surface, which amplifies the conservation error associated with the surface moisture flux correction. We note that for some of the identified error sources, the proposed fixers are remedies rather than solutions to the problems at their roots. Future improvements in time integration would be beneficial for V1.
An Autonomous Satellite Time Synchronization System Using Remotely Disciplined VC-OCXOs
Gu, Xiaobo; Chang, Qing; Glennon, Eamonn P.; Xu, Baoda; Dempseter, Andrew G.; Wang, Dun; Wu, Jiapeng
2015-01-01
An autonomous remote clock control system is proposed to provide time synchronization and frequency syntonization for satellite to satellite or ground to satellite time transfer, with the system comprising on-board voltage controlled oven controlled crystal oscillators (VC-OCXOs) that are disciplined to a remote master atomic clock or oscillator. The synchronization loop aims to provide autonomous operation over extended periods, be widely applicable to a variety of scenarios and robust. A new architecture comprising the use of frequency division duplex (FDD), synchronous time division (STDD) duplex and code division multiple access (CDMA) with a centralized topology is employed. This new design utilizes dual one-way ranging methods to precisely measure the clock error, adopts least square (LS) methods to predict the clock error and employs a third-order phase lock loop (PLL) to generate the voltage control signal. A general functional model for this system is proposed and the error sources and delays that affect the time synchronization are discussed. Related algorithms for estimating and correcting these errors are also proposed. The performance of the proposed system is simulated and guidance for selecting the clock is provided. PMID:26213929
Cheng, Jin-Mei; Li, Jian; Tang, Ji-Xin; Hao, Xiao-Xia; Wang, Zhi-Peng; Sun, Tie-Cheng; Wang, Xiu-Xia; Zhang, Yan; Chen, Su-Ren; Liu, Yi-Xun
2017-08-03
Mammalian oocyte chromosomes undergo 2 meiotic divisions to generate haploid gametes. The frequency of chromosome segregation errors during meiosis I increase with age. However, little attention has been paid to the question of how aging affects sister chromatid segregation during oocyte meiosis II. More importantly, how aneuploid metaphase II (MII) oocytes from aged mice evade the spindle assembly checkpoint (SAC) mechanism to complete later meiosis II to form aneuploid embryos remains unknown. Here, we report that MII oocytes from naturally aged mice exhibited substantial errors in chromosome arrangement and configuration compared with young MII oocytes. Interestingly, these errors in aged oocytes had no impact on anaphase II onset and completion as well as 2-cell formation after parthenogenetic activation. Further study found that merotelic kinetochore attachment occurred more frequently and could stabilize the kinetochore-microtubule interaction to ensure SAC inactivation and anaphase II onset in aged MII oocytes. This orientation could persist largely during anaphase II in aged oocytes, leading to severe chromosome lagging and trailing as well as delay of anaphase II completion. Therefore, merotelic kinetochore attachment in oocyte meiosis II exacerbates age-related genetic instability and is a key source of age-dependent embryo aneuploidy and dysplasia.
Estimating instream constituent loads using replicate synoptic sampling, Peru Creek, Colorado
NASA Astrophysics Data System (ADS)
Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Verplanck, Philip L.; Nimick, David A.
2013-05-01
SummaryThe synoptic mass balance approach is often used to evaluate constituent mass loading in streams affected by mine drainage. Spatial profiles of constituent mass load are used to identify sources of contamination and prioritize sites for remedial action. This paper presents a field scale study in which replicate synoptic sampling campaigns are used to quantify the aggregate uncertainty in constituent load that arises from (1) laboratory analyses of constituent and tracer concentrations, (2) field sampling error, and (3) temporal variation in concentration from diel constituent cycles and/or source variation. Consideration of these factors represents an advance in the application of the synoptic mass balance approach by placing error bars on estimates of constituent load and by allowing all sources of uncertainty to be quantified in aggregate; previous applications of the approach have provided only point estimates of constituent load and considered only a subset of the possible errors. Given estimates of aggregate uncertainty, site specific data and expert judgement may be used to qualitatively assess the contributions of individual factors to uncertainty. This assessment can be used to guide the collection of additional data to reduce uncertainty. Further, error bars provided by the replicate approach can aid the investigator in the interpretation of spatial loading profiles and the subsequent identification of constituent source areas within the watershed. The replicate sampling approach is applied to Peru Creek, a stream receiving acidic, metal-rich effluent from the Pennsylvania Mine. Other sources of acidity and metals within the study reach include a wetland area adjacent to the mine and tributary inflow from Cinnamon Gulch. Analysis of data collected under low-flow conditions indicates that concentrations of Al, Cd, Cu, Fe, Mn, Pb, and Zn in Peru Creek exceed aquatic life standards. Constituent loading within the study reach is dominated by effluent from the Pennsylvania Mine, with over 50% of the Cd, Cu, Fe, Mn, and Zn loads attributable to a collapsed adit near the top of the study reach. These estimates of mass load may underestimate the effect of the Pennsylvania Mine as leakage from underground mine workings may contribute to metal loads that are currently attributed to the wetland area. This potential leakage confounds the evaluation of remedial options and additional research is needed to determine the magnitude and location of the leakage.
Estimating instream constituent loads using replicate synoptic sampling, Peru Creek, Colorado
Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Verplanck, Philip L.; Nimick, David A.
2013-01-01
The synoptic mass balance approach is often used to evaluate constituent mass loading in streams affected by mine drainage. Spatial profiles of constituent mass load are used to identify sources of contamination and prioritize sites for remedial action. This paper presents a field scale study in which replicate synoptic sampling campaigns are used to quantify the aggregate uncertainty in constituent load that arises from (1) laboratory analyses of constituent and tracer concentrations, (2) field sampling error, and (3) temporal variation in concentration from diel constituent cycles and/or source variation. Consideration of these factors represents an advance in the application of the synoptic mass balance approach by placing error bars on estimates of constituent load and by allowing all sources of uncertainty to be quantified in aggregate; previous applications of the approach have provided only point estimates of constituent load and considered only a subset of the possible errors. Given estimates of aggregate uncertainty, site specific data and expert judgement may be used to qualitatively assess the contributions of individual factors to uncertainty. This assessment can be used to guide the collection of additional data to reduce uncertainty. Further, error bars provided by the replicate approach can aid the investigator in the interpretation of spatial loading profiles and the subsequent identification of constituent source areas within the watershed.The replicate sampling approach is applied to Peru Creek, a stream receiving acidic, metal-rich effluent from the Pennsylvania Mine. Other sources of acidity and metals within the study reach include a wetland area adjacent to the mine and tributary inflow from Cinnamon Gulch. Analysis of data collected under low-flow conditions indicates that concentrations of Al, Cd, Cu, Fe, Mn, Pb, and Zn in Peru Creek exceed aquatic life standards. Constituent loading within the study reach is dominated by effluent from the Pennsylvania Mine, with over 50% of the Cd, Cu, Fe, Mn, and Zn loads attributable to a collapsed adit near the top of the study reach. These estimates of mass load may underestimate the effect of the Pennsylvania Mine as leakage from underground mine workings may contribute to metal loads that are currently attributed to the wetland area. This potential leakage confounds the evaluation of remedial options and additional research is needed to determine the magnitude and location of the leakage.
Acoustic centering of sources measured by surrounding spherical microphone arrays.
Hagai, Ilan Ben; Pollow, Martin; Vorländer, Michael; Rafaely, Boaz
2011-10-01
The radiation patterns of acoustic sources have great significance in a wide range of applications, such as measuring the directivity of loudspeakers and investigating the radiation of musical instruments for auralization. Recently, surrounding spherical microphone arrays have been studied for sound field analysis, facilitating measurement of the pressure around a sphere and the computation of the spherical harmonics spectrum of the sound source. However, the sound radiation pattern may be affected by the location of the source inside the microphone array, which is an undesirable property when aiming to characterize source radiation in a unique manner. This paper presents a theoretical analysis of the spherical harmonics spectrum of spatially translated sources and defines four measures for the misalignment of the acoustic center of a radiating source. Optimization is used to promote optimal alignment based on the proposed measures and the errors caused by numerical and array-order limitations are investigated. This methodology is examined using both simulated and experimental data in order to investigate the performance and limitations of the different alignment methods. © 2011 Acoustical Society of America
Experimental Errors in QSAR Modeling Sets: What We Can Do and What We Cannot Do.
Zhao, Linlin; Wang, Wenyi; Sedykh, Alexander; Zhu, Hao
2017-06-30
Numerous chemical data sets have become available for quantitative structure-activity relationship (QSAR) modeling studies. However, the quality of different data sources may be different based on the nature of experimental protocols. Therefore, potential experimental errors in the modeling sets may lead to the development of poor QSAR models and further affect the predictions of new compounds. In this study, we explored the relationship between the ratio of questionable data in the modeling sets, which was obtained by simulating experimental errors, and the QSAR modeling performance. To this end, we used eight data sets (four continuous endpoints and four categorical endpoints) that have been extensively curated both in-house and by our collaborators to create over 1800 various QSAR models. Each data set was duplicated to create several new modeling sets with different ratios of simulated experimental errors (i.e., randomizing the activities of part of the compounds) in the modeling process. A fivefold cross-validation process was used to evaluate the modeling performance, which deteriorates when the ratio of experimental errors increases. All of the resulting models were also used to predict external sets of new compounds, which were excluded at the beginning of the modeling process. The modeling results showed that the compounds with relatively large prediction errors in cross-validation processes are likely to be those with simulated experimental errors. However, after removing a certain number of compounds with large prediction errors in the cross-validation process, the external predictions of new compounds did not show improvement. Our conclusion is that the QSAR predictions, especially consensus predictions, can identify compounds with potential experimental errors. But removing those compounds by the cross-validation procedure is not a reasonable means to improve model predictivity due to overfitting.
Daboul, Amro; Ivanovska, Tatyana; Bülow, Robin; Biffar, Reiner; Cardini, Andrea
2018-01-01
Using 3D anatomical landmarks from adult human head MRIs, we assessed the magnitude of inter-operator differences in Procrustes-based geometric morphometric analyses. An in depth analysis of both absolute and relative error was performed in a subsample of individuals with replicated digitization by three different operators. The effect of inter-operator differences was also explored in a large sample of more than 900 individuals. Although absolute error was not unusual for MRI measurements, including bone landmarks, shape was particularly affected by differences among operators, with up to more than 30% of sample variation accounted for by this type of error. The magnitude of the bias was such that it dominated the main pattern of bone and total (all landmarks included) shape variation, largely surpassing the effect of sex differences between hundreds of men and women. In contrast, however, we found higher reproducibility in soft-tissue nasal landmarks, despite relatively larger errors in estimates of nasal size. Our study exemplifies the assessment of measurement error using geometric morphometrics on landmarks from MRIs and stresses the importance of relating it to total sample variance within the specific methodological framework being used. In summary, precise landmarks may not necessarily imply negligible errors, especially in shape data; indeed, size and shape may be differentially impacted by measurement error and different types of landmarks may have relatively larger or smaller errors. Importantly, and consistently with other recent studies using geometric morphometrics on digital images (which, however, were not specific to MRI data), this study showed that inter-operator biases can be a major source of error in the analysis of large samples, as those that are becoming increasingly common in the 'era of big data'.
Ivanovska, Tatyana; Bülow, Robin; Biffar, Reiner; Cardini, Andrea
2018-01-01
Using 3D anatomical landmarks from adult human head MRIs, we assessed the magnitude of inter-operator differences in Procrustes-based geometric morphometric analyses. An in depth analysis of both absolute and relative error was performed in a subsample of individuals with replicated digitization by three different operators. The effect of inter-operator differences was also explored in a large sample of more than 900 individuals. Although absolute error was not unusual for MRI measurements, including bone landmarks, shape was particularly affected by differences among operators, with up to more than 30% of sample variation accounted for by this type of error. The magnitude of the bias was such that it dominated the main pattern of bone and total (all landmarks included) shape variation, largely surpassing the effect of sex differences between hundreds of men and women. In contrast, however, we found higher reproducibility in soft-tissue nasal landmarks, despite relatively larger errors in estimates of nasal size. Our study exemplifies the assessment of measurement error using geometric morphometrics on landmarks from MRIs and stresses the importance of relating it to total sample variance within the specific methodological framework being used. In summary, precise landmarks may not necessarily imply negligible errors, especially in shape data; indeed, size and shape may be differentially impacted by measurement error and different types of landmarks may have relatively larger or smaller errors. Importantly, and consistently with other recent studies using geometric morphometrics on digital images (which, however, were not specific to MRI data), this study showed that inter-operator biases can be a major source of error in the analysis of large samples, as those that are becoming increasingly common in the 'era of big data'. PMID:29787586
Experimental Errors in QSAR Modeling Sets: What We Can Do and What We Cannot Do
2017-01-01
Numerous chemical data sets have become available for quantitative structure–activity relationship (QSAR) modeling studies. However, the quality of different data sources may be different based on the nature of experimental protocols. Therefore, potential experimental errors in the modeling sets may lead to the development of poor QSAR models and further affect the predictions of new compounds. In this study, we explored the relationship between the ratio of questionable data in the modeling sets, which was obtained by simulating experimental errors, and the QSAR modeling performance. To this end, we used eight data sets (four continuous endpoints and four categorical endpoints) that have been extensively curated both in-house and by our collaborators to create over 1800 various QSAR models. Each data set was duplicated to create several new modeling sets with different ratios of simulated experimental errors (i.e., randomizing the activities of part of the compounds) in the modeling process. A fivefold cross-validation process was used to evaluate the modeling performance, which deteriorates when the ratio of experimental errors increases. All of the resulting models were also used to predict external sets of new compounds, which were excluded at the beginning of the modeling process. The modeling results showed that the compounds with relatively large prediction errors in cross-validation processes are likely to be those with simulated experimental errors. However, after removing a certain number of compounds with large prediction errors in the cross-validation process, the external predictions of new compounds did not show improvement. Our conclusion is that the QSAR predictions, especially consensus predictions, can identify compounds with potential experimental errors. But removing those compounds by the cross-validation procedure is not a reasonable means to improve model predictivity due to overfitting. PMID:28691113
NASA Astrophysics Data System (ADS)
Winiarek, Victor; Bocquet, Marc; Duhanyan, Nora; Roustan, Yelva; Saunier, Olivier; Mathieu, Anne
2014-01-01
Inverse modelling techniques can be used to estimate the amount of radionuclides and the temporal profile of the source term released in the atmosphere during the accident of the Fukushima Daiichi nuclear power plant in March 2011. In Winiarek et al. (2012b), the lower bounds of the caesium-137 and iodine-131 source terms were estimated with such techniques, using activity concentration measurements. The importance of an objective assessment of prior errors (the observation errors and the background errors) was emphasised for a reliable inversion. In such critical context where the meteorological conditions can make the source term partly unobservable and where only a few observations are available, such prior estimation techniques are mandatory, the retrieved source term being very sensitive to this estimation. We propose to extend the use of these techniques to the estimation of prior errors when assimilating observations from several data sets. The aim is to compute an estimate of the caesium-137 source term jointly using all available data about this radionuclide, such as activity concentrations in the air, but also daily fallout measurements and total cumulated fallout measurements. It is crucial to properly and simultaneously estimate the background errors and the prior errors relative to each data set. A proper estimation of prior errors is also a necessary condition to reliably estimate the a posteriori uncertainty of the estimated source term. Using such techniques, we retrieve a total released quantity of caesium-137 in the interval 11.6-19.3 PBq with an estimated standard deviation range of 15-20% depending on the method and the data sets. The “blind” time intervals of the source term have also been strongly mitigated compared to the first estimations with only activity concentration data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wollaeger, Ryan T.; Wollaber, Allan B.; Urbatsch, Todd J.
2016-02-23
Here, the non-linear thermal radiative-transfer equations can be solved in various ways. One popular way is the Fleck and Cummings Implicit Monte Carlo (IMC) method. The IMC method was originally formulated with piecewise-constant material properties. For domains with a coarse spatial grid and large temperature gradients, an error known as numerical teleportation may cause artificially non-causal energy propagation and consequently an inaccurate material temperature. Source tilting is a technique to reduce teleportation error by constructing sub-spatial-cell (or sub-cell) emission profiles from which IMC particles are sampled. Several source tilting schemes exist, but some allow teleportation error to persist. We examinemore » the effect of source tilting in problems with a temperature-dependent opacity. Within each cell, the opacity is evaluated continuously from a temperature profile implied by the source tilt. For IMC, this is a new approach to modeling the opacity. We find that applying both source tilting along with a source tilt-dependent opacity can introduce another dominant error that overly inhibits thermal wavefronts. We show that we can mitigate both teleportation and under-propagation errors if we discretize the temperature equation with a linear discontinuous (LD) trial space. Our method is for opacities ~ 1/T 3, but we formulate and test a slight extension for opacities ~ 1/T 3.5, where T is temperature. We find our method avoids errors that can be incurred by IMC with continuous source tilt constructions and piecewise-constant material temperature updates.« less
Feasibility of Equivalent Dipole Models for Electroencephalogram-Based Brain Computer Interfaces.
Schimpf, Paul H
2017-09-15
This article examines the localization errors of equivalent dipolar sources inverted from the surface electroencephalogram in order to determine the feasibility of using their location as classification parameters for non-invasive brain computer interfaces. Inverse localization errors are examined for two head models: a model represented by four concentric spheres and a realistic model based on medical imagery. It is shown that the spherical model results in localization ambiguity such that a number of dipolar sources, with different azimuths and varying orientations, provide a near match to the electroencephalogram of the best equivalent source. No such ambiguity exists for the elevation of inverted sources, indicating that for spherical head models, only the elevation of inverted sources (and not the azimuth) can be expected to provide meaningful classification parameters for brain-computer interfaces. In a realistic head model, all three parameters of the inverted source location are found to be reliable, providing a more robust set of parameters. In both cases, the residual error hypersurfaces demonstrate local minima, indicating that a search for the best-matching sources should be global. Source localization error vs. signal-to-noise ratio is also demonstrated for both head models.
Negative and positive pretrial publicity affect juror memory and decision making.
Ruva, Christine L; McEvoy, Cathy
2008-09-01
The experiment examined the effects of exposure to pretrial publicity (PTP) and delay on juror memory and decision-making. Mock jurors read news articles containing negative PTP, positive PTP, or unrelated articles. Five days later, they viewed a videotaped murder trial, after which they made decisions about guilt. Finally, all participants independently attributed specific information as having been presented during the trial or in the news articles. Half of the jurors rendered their verdicts and completed the source-memory test immediately after the trial, while the other half did so after a 2-day delay. Exposure to PTP significantly affected guilty verdicts, perceptions of defendant credibility, juror ratings of the prosecuting and defense attorneys, and misattributions of PTP as having been presented as trial evidence. Similar effects were obtained for negative and positive PTP. Delay significantly increased source-memory errors but did not influence guilt ratings. Defendant's credibility and juror ratings of prosecuting and defense attorneys significantly mediated the effect of PTP on guilt ratings. (c) 2008 APA, all rights reserved.
Realistic Affective Forecasting: The Role of Personality
Hoerger, Michael; Chapman, Ben; Duberstein, Paul
2016-01-01
Affective forecasting often drives decision making. Although affective forecasting research has often focused on identifying sources of error at the event level, the present investigation draws upon the ‘realistic paradigm’ in seeking to identify factors that similarly influence predicted and actual emotions, explaining their concordance across individuals. We hypothesized that the personality traits neuroticism and extraversion would account for variation in both predicted and actual emotional reactions to a wide array of stimuli and events (football games, an election, Valentine’s Day, birthdays, happy/sad film clips, and an intrusive interview). As hypothesized, individuals who were more introverted and neurotic anticipated, correctly, that they would experience relatively more unpleasant emotional reactions, and those who were more extraverted and less neurotic anticipated, correctly, that they would experience relatively more pleasant emotional reactions. Personality explained 30% of the concordance between predicted and actual emotional reactions. Findings suggest three purported personality processes implicated in affective forecasting, highlight the importance of individual-differences research in this domain, and call for more research on realistic affective forecasts. PMID:26212463
Realistic affective forecasting: The role of personality.
Hoerger, Michael; Chapman, Ben; Duberstein, Paul
2016-11-01
Affective forecasting often drives decision-making. Although affective forecasting research has often focused on identifying sources of error at the event level, the present investigation draws upon the "realistic paradigm" in seeking to identify factors that similarly influence predicted and actual emotions, explaining their concordance across individuals. We hypothesised that the personality traits neuroticism and extraversion would account for variation in both predicted and actual emotional reactions to a wide array of stimuli and events (football games, an election, Valentine's Day, birthdays, happy/sad film clips, and an intrusive interview). As hypothesised, individuals who were more introverted and neurotic anticipated, correctly, that they would experience relatively more unpleasant emotional reactions, and those who were more extraverted and less neurotic anticipated, correctly, that they would experience relatively more pleasant emotional reactions. Personality explained 30% of the concordance between predicted and actual emotional reactions. Findings suggest three purported personality processes implicated in affective forecasting, highlight the importance of individual-differences research in this domain, and call for more research on realistic affective forecasts.
RCT: Module 2.03, Counting Errors and Statistics, Course 8768
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillmer, Kurt T.
2017-04-01
Radiological sample analysis involves the observation of a random process that may or may not occur and an estimation of the amount of radioactive material present based on that observation. Across the country, radiological control personnel are using the activity measurements to make decisions that may affect the health and safety of workers at those facilities and their surrounding environments. This course will present an overview of measurement processes, a statistical evaluation of both measurements and equipment performance, and some actions to take to minimize the sources of error in count room operations. This course will prepare the student withmore » the skills necessary for radiological control technician (RCT) qualification by passing quizzes, tests, and the RCT Comprehensive Phase 1, Unit 2 Examination (TEST 27566) and by providing in the field skills.« less
Error analysis in stereo vision for location measurement of 3D point
NASA Astrophysics Data System (ADS)
Li, Yunting; Zhang, Jun; Tian, Jinwen
2015-12-01
Location measurement of 3D point in stereo vision is subjected to different sources of uncertainty that propagate to the final result. For current methods of error analysis, most of them are based on ideal intersection model to calculate the uncertainty region of point location via intersecting two fields of view of pixel that may produce loose bounds. Besides, only a few of sources of error such as pixel error or camera position are taken into account in the process of analysis. In this paper we present a straightforward and available method to estimate the location error that is taken most of source of error into account. We summed up and simplified all the input errors to five parameters by rotation transformation. Then we use the fast algorithm of midpoint method to deduce the mathematical relationships between target point and the parameters. Thus, the expectations and covariance matrix of 3D point location would be obtained, which can constitute the uncertainty region of point location. Afterwards, we turned back to the error propagation of the primitive input errors in the stereo system and throughout the whole analysis process from primitive input errors to localization error. Our method has the same level of computational complexity as the state-of-the-art method. Finally, extensive experiments are performed to verify the performance of our methods.
Adaptation to sensory-motor reflex perturbations is blind to the source of errors.
Hudson, Todd E; Landy, Michael S
2012-01-06
In the study of visual-motor control, perhaps the most familiar findings involve adaptation to externally imposed movement errors. Theories of visual-motor adaptation based on optimal information processing suppose that the nervous system identifies the sources of errors to effect the most efficient adaptive response. We report two experiments using a novel perturbation based on stimulating a visually induced reflex in the reaching arm. Unlike adaptation to an external force, our method induces a perturbing reflex within the motor system itself, i.e., perturbing forces are self-generated. This novel method allows a test of the theory that error source information is used to generate an optimal adaptive response. If the self-generated source of the visually induced reflex perturbation is identified, the optimal response will be via reflex gain control. If the source is not identified, a compensatory force should be generated to counteract the reflex. Gain control is the optimal response to reflex perturbation, both because energy cost and movement errors are minimized. Energy is conserved because neither reflex-induced nor compensatory forces are generated. Precision is maximized because endpoint variance is proportional to force production. We find evidence against source-identified adaptation in both experiments, suggesting that sensory-motor information processing is not always optimal.
ERIC Educational Resources Information Center
Tajeddin, Zia; Alemi, Minoo; Pashmforoosh, Roya
2017-01-01
Unlike linguistic fossilization, pragmatic fossilization has received scant attention in fossilization research. To bridge this gap, the present study adopted a typical-error method of fossilization research to identify the most frequent errors in pragmatic routines committed by Persian-speaking learners of L2 English and explore the sources of…
Schiffinger, Michael; Latzke, Markus; Steyrer, Johannes
2016-01-01
Safety climate (SC) and more recently patient engagement (PE) have been identified as potential determinants of patient safety, but conceptual and empirical studies combining both are lacking. On the basis of extant theories and concepts in safety research, this study investigates the effect of PE in conjunction with SC on perceived error occurrence (pEO) in hospitals, controlling for various staff-, patient-, and hospital-related variables as well as the amount of stress and (lack of) organizational support experienced by staff. Besides the main effects of PE and SC on error occurrence, their interaction is examined, too. In 66 hospital units, 4,345 patients assessed the degree of PE, and 811 staff assessed SC and pEO. PE was measured with a new instrument, capturing its core elements according to a recent literature review: Information Provision (both active and passive) and Activation and Collaboration. SC and pEO were measured with validated German-language questionnaires. Besides standard regression and correlational analyses, partial least squares analysis was employed to model the main and interaction effects of PE and SC on pEO, also controlling for stress and (lack of) support perceived by staff, various staff and patient attributes, and potential single-source bias. Both PE and SC are associated with lower pEO, to a similar extent. The joint effect of these predictors suggests a substitution rather than mutually reinforcing interaction. Accounting for control variables and/or potential single-source bias slightly attenuates some effects without altering the results. Ignoring PE potentially amounts to forgoing a potential source of additional safety. On the other hand, despite the abovementioned substitution effect and conjectures of SC being inert, PE should not be considered as a replacement for SC.
Exception handling for sensor fusion
NASA Astrophysics Data System (ADS)
Chavez, G. T.; Murphy, Robin R.
1993-08-01
This paper presents a control scheme for handling sensing failures (sensor malfunctions, significant degradations in performance due to changes in the environment, and errant expectations) in sensor fusion for autonomous mobile robots. The advantages of the exception handling mechanism are that it emphasizes a fast response to sensing failures, is able to use only a partial causal model of sensing failure, and leads to a graceful degradation of sensing if the sensing failure cannot be compensated for. The exception handling mechanism consists of two modules: error classification and error recovery. The error classification module in the exception handler attempts to classify the type and source(s) of the error using a modified generate-and-test procedure. If the source of the error is isolated, the error recovery module examines its cache of recovery schemes, which either repair or replace the current sensing configuration. If the failure is due to an error in expectation or cannot be identified, the planner is alerted. Experiments using actual sensor data collected by the CSM Mobile Robotics/Machine Perception Laboratory's Denning mobile robot demonstrate the operation of the exception handling mechanism.
A dual-phantom system for validation of velocity measurements in stenosis models under steady flow.
Blake, James R; Easson, William J; Hoskins, Peter R
2009-09-01
A dual-phantom system is developed for validation of velocity measurements in stenosis models. Pairs of phantoms with identical geometry and flow conditions are manufactured, one for ultrasound and one for particle image velocimetry (PIV). The PIV model is made from silicone rubber, and a new PIV fluid is made that matches the refractive index of 1.41 of silicone. Dynamic scaling was performed to correct for the increased viscosity of the PIV fluid compared with that of the ultrasound blood mimic. The degree of stenosis in the models pairs agreed to less than 1%. The velocities in the laminar flow region up to the peak velocity location agreed to within 15%, and the difference could be explained by errors in ultrasound velocity estimation. At low flow rates and in mild stenoses, good agreement was observed in the distal flow fields, excepting the maximum velocities. At high flow rates, there was considerable difference in velocities in the poststenosis flow field (maximum centreline differences of 30%), which would seem to represent real differences in hydrodynamic behavior between the two models. Sources of error included: variation of viscosity because of temperature (random error, which could account for differences of up to 7%); ultrasound velocity estimation errors (systematic errors); and geometry effects in each model, particularly because of imperfect connectors and corners (systematic errors, potentially affecting the inlet length and flow stability). The current system is best placed to investigate measurement errors in the laminar flow region rather than the poststenosis turbulent flow region.
NASA Astrophysics Data System (ADS)
Jiang, Cong; Yu, Zong-Wen; Wang, Xiang-Bin
2018-04-01
We present an analysis for measurement-device-independent quantum key distribution with correlated source-light-intensity errors. Numerical results show that the results here can greatly improve the key rate especially with large intensity fluctuations and channel attenuation compared with prior results if the intensity fluctuations of different sources are correlated.
The impact of work-related stress on medication errors in Eastern Region Saudi Arabia.
Salam, Abdul; Segal, David M; Abu-Helalah, Munir Ahmad; Gutierrez, Mary Lou; Joosub, Imran; Ahmed, Wasim; Bibi, Rubina; Clarke, Elizabeth; Qarni, Ali Ahmed Al
2018-05-07
To examine the relationship between overall level and source-specific work-related stressors on medication errors rate. A cross-sectional study examined the relationship between overall levels of stress, 25 source-specific work-related stressors and medication error rate based on documented incident reports in Saudi Arabia (SA) hospital, using secondary databases. King Abdulaziz Hospital in Al-Ahsa, Eastern Region, SA. Two hundred and sixty-nine healthcare professionals (HCPs). The odds ratio (OR) and corresponding 95% confidence interval (CI) for HCPs documented incident report medication errors and self-reported sources of Job Stress Survey. Multiple logistic regression analysis identified source-specific work-related stress as significantly associated with HCPs who made at least one medication error per month (P < 0.05), including disruption to home life, pressure to meet deadlines, difficulties with colleagues, excessive workload, income over 10 000 riyals and compulsory night/weekend call duties either some or all of the time. Although not statistically significant, HCPs who reported overall stress were two times more likely to make at least one medication error per month than non-stressed HCPs (OR: 1.95, P = 0.081). This is the first study to use documented incident reports for medication errors rather than self-report to evaluate the level of stress-related medication errors in SA HCPs. Job demands, such as social stressors (home life disruption, difficulties with colleagues), time pressures, structural determinants (compulsory night/weekend call duties) and higher income, were significantly associated with medication errors whereas overall stress revealed a 2-fold higher trend.
Quantifying Data Quality for Clinical Trials Using Electronic Data Capture
Nahm, Meredith L.; Pieper, Carl F.; Cunningham, Maureen M.
2008-01-01
Background Historically, only partial assessments of data quality have been performed in clinical trials, for which the most common method of measuring database error rates has been to compare the case report form (CRF) to database entries and count discrepancies. Importantly, errors arising from medical record abstraction and transcription are rarely evaluated as part of such quality assessments. Electronic Data Capture (EDC) technology has had a further impact, as paper CRFs typically leveraged for quality measurement are not used in EDC processes. Methods and Principal Findings The National Institute on Drug Abuse Treatment Clinical Trials Network has developed, implemented, and evaluated methodology for holistically assessing data quality on EDC trials. We characterize the average source-to-database error rate (14.3 errors per 10,000 fields) for the first year of use of the new evaluation method. This error rate was significantly lower than the average of published error rates for source-to-database audits, and was similar to CRF-to-database error rates reported in the published literature. We attribute this largely to an absence of medical record abstraction on the trials we examined, and to an outpatient setting characterized by less acute patient conditions. Conclusions Historically, medical record abstraction is the most significant source of error by an order of magnitude, and should be measured and managed during the course of clinical trials. Source-to-database error rates are highly dependent on the amount of structured data collection in the clinical setting and on the complexity of the medical record, dependencies that should be considered when developing data quality benchmarks. PMID:18725958
Minimal-Drift Heading Measurement using a MEMS Gyro for Indoor Mobile Robots.
Hong, Sung Kyung; Park, Sungsu
2008-11-17
To meet the challenges of making low-cost MEMS yaw rate gyros for the precise self-localization of indoor mobile robots, this paper examines a practical and effective method of minimizing drift on the heading angle that relies solely on integration of rate signals from a gyro. The main idea of the proposed approach is consists of two parts; 1) self-identification of calibration coefficients that affects long-term performance, and 2) threshold filter to reject the broadband noise component that affects short-term performance. Experimental results with the proposed phased method applied to Epson XV3500 gyro demonstrate that it effectively yields minimal drift heading angle measurements getting over major error sources in the MEMS gyro output.
Characterizing the SWOT discharge error budget on the Sacramento River, CA
NASA Astrophysics Data System (ADS)
Yoon, Y.; Durand, M. T.; Minear, J. T.; Smith, L.; Merry, C. J.
2013-12-01
The Surface Water and Ocean Topography (SWOT) is an upcoming satellite mission (2020 year) that will provide surface-water elevation and surface-water extent globally. One goal of SWOT is the estimation of river discharge directly from SWOT measurements. SWOT discharge uncertainty is due to two sources. First, SWOT cannot measure channel bathymetry and determine roughness coefficient data necessary for discharge calculations directly; these parameters must be estimated from the measurements or from a priori information. Second, SWOT measurement errors directly impact the discharge estimate accuracy. This study focuses on characterizing parameter and measurement uncertainties for SWOT river discharge estimation. A Bayesian Markov Chain Monte Carlo scheme is used to calculate parameter estimates, given the measurements of river height, slope and width, and mass and momentum constraints. The algorithm is evaluated using simulated both SWOT and AirSWOT (the airborne version of SWOT) observations over seven reaches (about 40 km) of the Sacramento River. The SWOT and AirSWOT observations are simulated by corrupting the ';true' HEC-RAS hydraulic modeling results with the instrument error. This experiment answers how unknown bathymetry and roughness coefficients affect the accuracy of the river discharge algorithm. From the experiment, the discharge error budget is almost completely dominated by unknown bathymetry and roughness; 81% of the variance error is explained by uncertainties in bathymetry and roughness. Second, we show how the errors in water surface, slope, and width observations influence the accuracy of discharge estimates. Indeed, there is a significant sensitivity to water surface, slope, and width errors due to the sensitivity of bathymetry and roughness to measurement errors. Increasing water-surface error above 10 cm leads to a corresponding sharper increase of errors in bathymetry and roughness. Increasing slope error above 1.5 cm/km leads to a significant degradation due to direct error in the discharge estimates. As the width error increases past 20%, the discharge error budget is dominated by the width error. Above two experiments are performed based on AirSWOT scenarios. In addition, we explore the sensitivity of the algorithm to the SWOT scenarios.
NASA Technical Reports Server (NTRS)
Morris, A. Terry
1999-01-01
This paper examines various sources of error in MIT's improved top oil temperature rise over ambient temperature model and estimation process. The sources of error are the current parameter estimation technique, quantization noise, and post-processing of the transformer data. Results from this paper will show that an output error parameter estimation technique should be selected to replace the current least squares estimation technique. The output error technique obtained accurate predictions of transformer behavior, revealed the best error covariance, obtained consistent parameter estimates, and provided for valid and sensible parameters. This paper will also show that the output error technique should be used to minimize errors attributed to post-processing (decimation) of the transformer data. Models used in this paper are validated using data from a large transformer in service.
NASA Astrophysics Data System (ADS)
Liu, C. L.; Kirchengast, G.; Zhang, K. F.; Norman, R.; Li, Y.; Zhang, S. C.; Carter, B.; Fritzer, J.; Schwaerz, M.; Choy, S. L.; Wu, S. Q.; Tan, Z. X.
2013-09-01
Global Navigation Satellite System (GNSS) radio occultation (RO) is an innovative meteorological remote sensing technique for measuring atmospheric parameters such as refractivity, temperature, water vapour and pressure for the improvement of numerical weather prediction (NWP) and global climate monitoring (GCM). GNSS RO has many unique characteristics including global coverage, long-term stability of observations, as well as high accuracy and high vertical resolution of the derived atmospheric profiles. One of the main error sources in GNSS RO observations that significantly affect the accuracy of the derived atmospheric parameters in the stratosphere is the ionospheric error. In order to mitigate the effect of this error, the linear ionospheric correction approach for dual-frequency GNSS RO observations is commonly used. However, the residual ionospheric errors (RIEs) can be still significant, especially when large ionospheric disturbances occur and prevail such as during the periods of active space weather. In this study, the RIEs were investigated under different local time, propagation direction and solar activity conditions and their effects on RO bending angles are characterised using end-to-end simulations. A three-step simulation study was designed to investigate the characteristics of the RIEs through comparing the bending angles with and without the effects of the RIEs. This research forms an important step forward in improving the accuracy of the atmospheric profiles derived from the GNSS RO technique.
NASA Astrophysics Data System (ADS)
Zocchi, Fabio E.
2017-10-01
One of the approaches that is being tested for the integration of the mirror modules of the advanced telescope for high-energy astrophysics x-ray mission of the European Space Agency consists in aligning each module on an optical bench operated at an ultraviolet wavelength. The mirror module is illuminated by a plane wave and, in order to overcome diffraction effects, the centroid of the image produced by the module is used as a reference to assess the accuracy of the optical alignment of the mirror module itself. Among other sources of uncertainty, the wave-front error of the plane wave also introduces an error in the position of the centroid, thus affecting the quality of the mirror module alignment. The power spectral density of the position of the point spread function centroid is here derived from the power spectral density of the wave-front error of the plane wave in the framework of the scalar theory of Fourier diffraction. This allows the defining of a specification on the collimator quality used for generating the plane wave starting from the contribution to the error budget allocated for the uncertainty of the centroid position. The theory generally applies whenever Fourier diffraction is a valid approximation, in which case the obtained result is identical to that derived by geometrical optics considerations.
de Freitas, Carolina P.; Cabot, Florence; Manns, Fabrice; Culbertson, William; Yoo, Sonia H.; Parel, Jean-Marie
2015-01-01
Purpose. To assess if a change in refractive index of the anterior chamber during femtosecond laser-assisted cataract surgery can affect the laser beam focus position. Methods. The index of refraction and chromatic dispersion of six ophthalmic viscoelastic devices (OVDs) was measured with an Abbe refractometer. Using the Gullstrand eye model, the index values were used to predict the error in the depth of a femtosecond laser cut when the anterior chamber is filled with OVD. Two sources of error produced by the change in refractive index were evaluated: the error in anterior capsule position measured with optical coherence tomography biometry and the shift in femtosecond laser beam focus depth. Results. The refractive indices of the OVDs measured ranged from 1.335 to 1.341 in the visible light (at 587 nm). The error in depth measurement of the refilled anterior chamber ranged from −5 to +7 μm. The OVD produced a shift of the femtosecond laser focus ranging from −1 to +6 μm. Replacement of the aqueous humor with OVDs with the densest compound produced a predicted error in cut depth of 13 μm anterior to the expected cut. Conclusions. Our calculations show that the change in refractive index due to anterior chamber refilling does not sufficiently shift the laser beam focus position to cause the incomplete capsulotomies reported during femtosecond laser–assisted cataract surgery. PMID:25626971
Ciliates learn to diagnose and correct classical error syndromes in mating strategies
Clark, Kevin B.
2013-01-01
Preconjugal ciliates learn classical repetition error-correction codes to safeguard mating messages and replies from corruption by “rivals” and local ambient noise. Because individual cells behave as memory channels with Szilárd engine attributes, these coding schemes also might be used to limit, diagnose, and correct mating-signal errors due to noisy intracellular information processing. The present study, therefore, assessed whether heterotrich ciliates effect fault-tolerant signal planning and execution by modifying engine performance, and consequently entropy content of codes, during mock cell–cell communication. Socially meaningful serial vibrations emitted from an ambiguous artificial source initiated ciliate behavioral signaling performances known to advertise mating fitness with varying courtship strategies. Microbes, employing calcium-dependent Hebbian-like decision making, learned to diagnose then correct error syndromes by recursively matching Boltzmann entropies between signal planning and execution stages via “power” or “refrigeration” cycles. All eight serial contraction and reversal strategies incurred errors in entropy magnitude by the execution stage of processing. Absolute errors, however, subtended expected threshold values for single bit-flip errors in three-bit replies, indicating coding schemes protected information content throughout signal production. Ciliate preparedness for vibrations selectively and significantly affected the magnitude and valence of Szilárd engine performance during modal and non-modal strategy corrective cycles. But entropy fidelity for all replies mainly improved across learning trials as refinements in engine efficiency. Fidelity neared maximum levels for only modal signals coded in resilient three-bit repetition error-correction sequences. Together, these findings demonstrate microbes can elevate survival/reproductive success by learning to implement classical fault-tolerant information processing in social contexts. PMID:23966987
Effect of defuzzification method of fuzzy modeling
NASA Astrophysics Data System (ADS)
Lapohos, Tibor; Buchal, Ralph O.
1994-10-01
Imprecision can arise in fuzzy relational modeling as a result of fuzzification, inference and defuzzification. These three sources of imprecision are difficult to separate. We have determined through numerical studies that an important source of imprecision is the defuzzification stage. This imprecision adversely affects the quality of the model output. The most widely used defuzzification algorithm is known by the name of `center of area' (COA) or `center of gravity' (COG). In this paper, we show that this algorithm not only maps the near limit values of the variables improperly but also introduces errors for middle domain values of the same variables. Furthermore, the behavior of this algorithm is a function of the shape of the reference sets. We compare the COA method to the weighted average of cluster centers (WACC) procedure in which the transformation is carried out based on the values of the cluster centers belonging to each of the reference membership functions instead of using the functions themselves. We show that this procedure is more effective and computationally much faster than the COA. The method is tested for a family of reference sets satisfying certain constraints, that is, for any support value the sum of reference membership function values equals one and the peak values of the two marginal membership functions project to the boundaries of the universe of discourse. For all the member sets of this family of reference sets the defuzzification errors do not get bigger as the linguistic variables tend to their extreme values. In addition, the more reference sets that are defined for a certain linguistic variable, the less the average defuzzification error becomes. In case of triangle shaped reference sets there is no defuzzification error at all. Finally, an alternative solution is provided that improves the performance of the COA method.
This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Decision Support for Attack Submarine Commanders.
1980-10-01
affect the size and direction of both. It is, therefore, necessary to supply values for an array of potential conditions. 3.3.3 Sources. What are the...0±1,500 INPUTS ERROR DEPENDENC IES Sxl, Sx2 ~i 2 Sxl-Sx2, ~12 -. 33 +.5 -.15 A+ OUTPUT RT =15,051 -2,508 Figure 3-3 3-9 where Sx1 and Sx2 are own...provided by various TMA techniques. An alternative approach is to update past range solutions, using estimates of course and speed, before pooling them
How noise affects quantum detector tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Q., E-mail: wang@physics.leidenuniv.nl; Renema, J. J.; Exter, M. P.van
2015-10-07
We determine the full photon number response of a NbN superconducting nanowire single photon detector via quantum detector tomography, and the results show the separation of linear, effective absorption efficiency from the internal detection efficiencies. In addition, we demonstrate an error budget for the complete quantum characterization of the detector. We find that for short times, the dominant noise source is shot noise, while laser power fluctuations limit the accuracy for longer timescales. The combined standard uncertainty of the internal detection efficiency derived from our measurements is about 2%.
Accuracy Study of a Robotic System for MRI-guided Prostate Needle Placement
Seifabadi, Reza; Cho, Nathan BJ.; Song, Sang-Eun; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M.; Fichtinger, Gabor; Iordachita, Iulian
2013-01-01
Background Accurate needle placement is the first concern in percutaneous MRI-guided prostate interventions. In this phantom study, different sources contributing to the overall needle placement error of a MRI-guided robot for prostate biopsy have been identified, quantified, and minimized to the possible extent. Methods and Materials The overall needle placement error of the system was evaluated in a prostate phantom. This error was broken into two parts: the error associated with the robotic system (called before-insertion error) and the error associated with needle-tissue interaction (called due-to-insertion error). The before-insertion error was measured directly in a soft phantom and different sources contributing into this part were identified and quantified. A calibration methodology was developed to minimize the 4-DOF manipulator’s error. The due-to-insertion error was indirectly approximated by comparing the overall error and the before-insertion error. The effect of sterilization on the manipulator’s accuracy and repeatability was also studied. Results The average overall system error in phantom study was 2.5 mm (STD=1.1mm). The average robotic system error in super soft phantom was 1.3 mm (STD=0.7 mm). Assuming orthogonal error components, the needle-tissue interaction error was approximated to be 2.13 mm thus having larger contribution to the overall error. The average susceptibility artifact shift was 0.2 mm. The manipulator’s targeting accuracy was 0.71 mm (STD=0.21mm) after robot calibration. The robot’s repeatability was 0.13 mm. Sterilization had no noticeable influence on the robot’s accuracy and repeatability. Conclusions The experimental methodology presented in this paper may help researchers to identify, quantify, and minimize different sources contributing into the overall needle placement error of an MRI-guided robotic system for prostate needle placement. In the robotic system analyzed here, the overall error of the studied system remained within the acceptable range. PMID:22678990
Accuracy study of a robotic system for MRI-guided prostate needle placement.
Seifabadi, Reza; Cho, Nathan B J; Song, Sang-Eun; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M; Fichtinger, Gabor; Iordachita, Iulian
2013-09-01
Accurate needle placement is the first concern in percutaneous MRI-guided prostate interventions. In this phantom study, different sources contributing to the overall needle placement error of a MRI-guided robot for prostate biopsy have been identified, quantified and minimized to the possible extent. The overall needle placement error of the system was evaluated in a prostate phantom. This error was broken into two parts: the error associated with the robotic system (called 'before-insertion error') and the error associated with needle-tissue interaction (called 'due-to-insertion error'). Before-insertion error was measured directly in a soft phantom and different sources contributing into this part were identified and quantified. A calibration methodology was developed to minimize the 4-DOF manipulator's error. The due-to-insertion error was indirectly approximated by comparing the overall error and the before-insertion error. The effect of sterilization on the manipulator's accuracy and repeatability was also studied. The average overall system error in the phantom study was 2.5 mm (STD = 1.1 mm). The average robotic system error in the Super Soft plastic phantom was 1.3 mm (STD = 0.7 mm). Assuming orthogonal error components, the needle-tissue interaction error was found to be approximately 2.13 mm, thus making a larger contribution to the overall error. The average susceptibility artifact shift was 0.2 mm. The manipulator's targeting accuracy was 0.71 mm (STD = 0.21 mm) after robot calibration. The robot's repeatability was 0.13 mm. Sterilization had no noticeable influence on the robot's accuracy and repeatability. The experimental methodology presented in this paper may help researchers to identify, quantify and minimize different sources contributing into the overall needle placement error of an MRI-guided robotic system for prostate needle placement. In the robotic system analysed here, the overall error of the studied system remained within the acceptable range. Copyright © 2012 John Wiley & Sons, Ltd.
A confirmation of the general relativistic prediction of the Lense-Thirring effect.
Ciufolini, I; Pavlis, E C
2004-10-21
An important early prediction of Einstein's general relativity was the advance of the perihelion of Mercury's orbit, whose measurement provided one of the classical tests of Einstein's theory. The advance of the orbital point-of-closest-approach also applies to a binary pulsar system and to an Earth-orbiting satellite. General relativity also predicts that the rotation of a body like Earth will drag the local inertial frames of reference around it, which will affect the orbit of a satellite. This Lense-Thirring effect has hitherto not been detected with high accuracy, but its detection with an error of about 1 per cent is the main goal of Gravity Probe B--an ongoing space mission using orbiting gyroscopes. Here we report a measurement of the Lense-Thirring effect on two Earth satellites: it is 99 +/- 5 per cent of the value predicted by general relativity; the uncertainty of this measurement includes all known random and systematic errors, but we allow for a total +/- 10 per cent uncertainty to include underestimated and unknown sources of error.
Metainference: A Bayesian inference method for heterogeneous systems.
Bonomi, Massimiliano; Camilloni, Carlo; Cavalli, Andrea; Vendruscolo, Michele
2016-01-01
Modeling a complex system is almost invariably a challenging task. The incorporation of experimental observations can be used to improve the quality of a model and thus to obtain better predictions about the behavior of the corresponding system. This approach, however, is affected by a variety of different errors, especially when a system simultaneously populates an ensemble of different states and experimental data are measured as averages over such states. To address this problem, we present a Bayesian inference method, called "metainference," that is able to deal with errors in experimental measurements and with experimental measurements averaged over multiple states. To achieve this goal, metainference models a finite sample of the distribution of models using a replica approach, in the spirit of the replica-averaging modeling based on the maximum entropy principle. To illustrate the method, we present its application to a heterogeneous model system and to the determination of an ensemble of structures corresponding to the thermal fluctuations of a protein molecule. Metainference thus provides an approach to modeling complex systems with heterogeneous components and interconverting between different states by taking into account all possible sources of errors.
Fales, Christina L.; Barch, Deanna M.; Rundle, Melissa M.; Mintun, Mark A.; Snyder, Abraham Z.; Cohen, Jonathan D.; Mathews, Jose; Sheline, Yvette I.
2008-01-01
Background Major depression is characterized by a negativity bias: an enhanced responsiveness to, and memory for, affectively negative stimuli. However it is not yet clear whether this bias represents (1) impaired top-down cognitive control over affective responses, potentially linked to deficits in dorsolateral prefrontal cortex function; or (2) enhanced bottom-up responses to affectively-laden stimuli that dysregulate cognitive control mechanisms, potentially linked to deficits in amygdala and anterior cingulate function. Methods We used an attentional interference task using emotional distracters to test for top-down versus bottom-up dysfunction in the interaction of cognitive-control circuitry and emotion-processing circuitry. A total of 27 patients with major depression and 24 controls were tested. Event-related functional magnetic resonance imaging was carried out as participants directly attended to, or attempted to ignore, fear-related stimuli. Results Compared to controls, patients with depression showed an enhanced amygdala response to unattended fear-related stimuli (relative to unattended neutral). By contrast, control participants showed increased activity in right dorsolateral prefrontal cortex (Brodmann areas 46/9) when ignoring fear stimuli (relative to neutral), which the patients with depression did not. In addition, the depressed participants failed to show evidence of error-related cognitive adjustments (increased activity in bilateral dorsolateral prefrontal cortex on post-error trials), but the control group did show them. Conclusions These results suggest multiple sources of dysregulation in emotional and cognitive control circuitry in depression, implicating both top-down and bottom-up dysfunction. PMID:17719567
Deep Kalman Filter: Simultaneous Multi-Sensor Integration and Modelling; A GNSS/IMU Case Study
Hosseinyalamdary, Siavash
2018-01-01
Bayes filters, such as the Kalman and particle filters, have been used in sensor fusion to integrate two sources of information and obtain the best estimate of unknowns. The efficient integration of multiple sensors requires deep knowledge of their error sources. Some sensors, such as Inertial Measurement Unit (IMU), have complicated error sources. Therefore, IMU error modelling and the efficient integration of IMU and Global Navigation Satellite System (GNSS) observations has remained a challenge. In this paper, we developed deep Kalman filter to model and remove IMU errors and, consequently, improve the accuracy of IMU positioning. To achieve this, we added a modelling step to the prediction and update steps of the Kalman filter, so that the IMU error model is learned during integration. The results showed our deep Kalman filter outperformed the conventional Kalman filter and reached a higher level of accuracy. PMID:29695119
Deep Kalman Filter: Simultaneous Multi-Sensor Integration and Modelling; A GNSS/IMU Case Study.
Hosseinyalamdary, Siavash
2018-04-24
Bayes filters, such as the Kalman and particle filters, have been used in sensor fusion to integrate two sources of information and obtain the best estimate of unknowns. The efficient integration of multiple sensors requires deep knowledge of their error sources. Some sensors, such as Inertial Measurement Unit (IMU), have complicated error sources. Therefore, IMU error modelling and the efficient integration of IMU and Global Navigation Satellite System (GNSS) observations has remained a challenge. In this paper, we developed deep Kalman filter to model and remove IMU errors and, consequently, improve the accuracy of IMU positioning. To achieve this, we added a modelling step to the prediction and update steps of the Kalman filter, so that the IMU error model is learned during integration. The results showed our deep Kalman filter outperformed the conventional Kalman filter and reached a higher level of accuracy.
Total absorption cross sections of several gases of aeronomic interest at 584 A.
NASA Technical Reports Server (NTRS)
Starr, W. L.; Loewenstein, M.
1972-01-01
Total photoabsorption cross sections have been measured at 584.3 A for N2, O2, Ar, CO2, CO, NO, N2O, NH3, CH4, H2, and H2S. A monochromator was used to isolate the He I 584 line produced in a helium resonance lamp, and thin aluminum filters were used as absorption cell windows, thereby eliminating possible errors associated with the use of undispersed radiation or windowless cells. Sources of error are examined, and limits of uncertainty are given. Previous relevant cross-sectional measurements and possible error sources are reviewed. Wall adsorption as a source of error in cross-sectional measurements has not previously been considered and is discussed briefly.
Source localization (LORETA) of the error-related-negativity (ERN/Ne) and positivity (Pe).
Herrmann, Martin J; Römmler, Josefine; Ehlis, Ann-Christine; Heidrich, Anke; Fallgatter, Andreas J
2004-07-01
We investigated error processing of 39 subjects engaging the Eriksen flanker task. In all 39 subjects a pronounced negative deflection (ERN/Ne) and a later positive component (Pe) were observed after incorrect as compared to correct responses. The neural sources of both components were analyzed using LORETA source localization. For the negative component (ERN/Ne) we found significantly higher brain electrical activity in medial prefrontal areas for incorrect responses, whereas the positive component (Pe) was localized nearby but more rostral within the anterior cingulate cortex (ACC). Thus, different neural generators were found for the ERN/Ne and the Pe, which further supports the notion that both error-related components represent different aspects of error processing.
Alderete, John; Davies, Monica
2018-04-01
This work describes a methodology of collecting speech errors from audio recordings and investigates how some of its assumptions affect data quality and composition. Speech errors of all types (sound, lexical, syntactic, etc.) were collected by eight data collectors from audio recordings of unscripted English speech. Analysis of these errors showed that: (i) different listeners find different errors in the same audio recordings, but (ii) the frequencies of error patterns are similar across listeners; (iii) errors collected "online" using on the spot observational techniques are more likely to be affected by perceptual biases than "offline" errors collected from audio recordings; and (iv) datasets built from audio recordings can be explored and extended in a number of ways that traditional corpus studies cannot be.
Sources of Error in Substance Use Prevalence Surveys
Johnson, Timothy P.
2014-01-01
Population-based estimates of substance use patterns have been regularly reported now for several decades. Concerns with the quality of the survey methodologies employed to produce those estimates date back almost as far. Those concerns have led to a considerable body of research specifically focused on understanding the nature and consequences of survey-based errors in substance use epidemiology. This paper reviews and summarizes that empirical research by organizing it within a total survey error model framework that considers multiple types of representation and measurement errors. Gaps in our knowledge of error sources in substance use surveys and areas needing future research are also identified. PMID:27437511
Hill, Kaylin E; Samuel, Douglas B; Foti, Dan
2016-08-01
The error-related negativity (ERN) is a neural measure of error processing that has been implicated as a neurobehavioral trait and has transdiagnostic links with psychopathology. Few studies, however, have contextualized this traitlike component with regard to dimensions of personality that, as intermediate constructs, may aid in contextualizing links with psychopathology. Accordingly, the aim of this study was to examine the interrelationships between error monitoring and dimensions of personality within a large adult sample (N = 208). Building on previous research, we found that the ERN relates to a combination of negative affect, impulsivity, and conscientiousness. At low levels of conscientiousness, negative urgency (i.e., impulsivity in the context of negative affect) predicted an increased ERN; at high levels of conscientiousness, the effect of negative urgency was not significant. This relationship was driven specifically by the conscientiousness facets of competence, order, and deliberation. Links between personality measures and error positivity amplitude were weaker and nonsignificant. Post-error slowing was also related to conscientiousness, as well as a different facet of impulsivity: lack of perseverance. These findings suggest that, in the general population, error processing is modulated by the joint combination of negative affect, impulsivity, and conscientiousness (i.e., the profile across traits), perhaps more so than any one dimension alone. This work may inform future research concerning aberrant error processing in clinical populations. © 2016 Society for Psychophysiological Research.
NASA Astrophysics Data System (ADS)
Singh, Sarvesh Kumar; Turbelin, Gregory; Issartel, Jean-Pierre; Kumar, Pramod; Feiz, Amir Ali
2015-04-01
The fast growing urbanization, industrialization and military developments increase the risk towards the human environment and ecology. This is realized in several past mortality incidents, for instance, Chernobyl nuclear explosion (Ukraine), Bhopal gas leak (India), Fukushima-Daichi radionuclide release (Japan), etc. To reduce the threat and exposure to the hazardous contaminants, a fast and preliminary identification of unknown releases is required by the responsible authorities for the emergency preparedness and air quality analysis. Often, an early detection of such contaminants is pursued by a distributed sensor network. However, identifying the origin and strength of unknown releases following the sensor reported concentrations is a challenging task. This requires an optimal strategy to integrate the measured concentrations with the predictions given by the atmospheric dispersion models. This is an inverse problem. The measured concentrations are insufficient and atmospheric dispersion models suffer from inaccuracy due to the lack of process understanding, turbulence uncertainties, etc. These lead to a loss of information in the reconstruction process and thus, affect the resolution, stability and uniqueness of the retrieved source. An additional well known issue is the numerical artifact arisen at the measurement locations due to the strong concentration gradient and dissipative nature of the concentration. Thus, assimilation techniques are desired which can lead to an optimal retrieval of the unknown releases. In general, this is facilitated within the Bayesian inference and optimization framework with a suitable choice of a priori information, regularization constraints, measurement and background error statistics. An inversion technique is introduced here for an optimal reconstruction of unknown releases using limited concentration measurements. This is based on adjoint representation of the source-receptor relationship and utilization of a weight function which exhibits a priori information about the unknown releases apparent to the monitoring network. The properties of the weight function provide an optimal data resolution and model resolution to the retrieved source estimates. The retrieved source estimates are proved theoretically to be stable against the random measurement errors and their reliability can be interpreted in terms of the distribution of the weight functions. Further, the same framework can be extended for the identification of the point type releases by utilizing the maximum of the retrieved source estimates. The inversion technique has been evaluated with the several diffusion experiments, like, Idaho low wind diffusion experiment (1974), IIT Delhi tracer experiment (1991), European Tracer Experiment (1994), Fusion Field Trials (2007), etc. In case of point release experiments, the source parameters are mostly retrieved close to the true source parameters with least error. Primarily, the proposed technique overcomes two major difficulties incurred in the source reconstruction: (i) The initialization of the source parameters as required by the optimization based techniques. The converged solution depends on their initialization. (ii) The statistical knowledge about the measurement and background errors as required by the Bayesian inference based techniques. These are hypothetically assumed in case of no prior knowledge.
First order error corrections in common introductory physics experiments
NASA Astrophysics Data System (ADS)
Beckey, Jacob; Baker, Andrew; Aravind, Vasudeva; Clarion Team
As a part of introductory physics courses, students perform different standard lab experiments. Almost all of these experiments are prone to errors owing to factors like friction, misalignment of equipment, air drag, etc. Usually these types of errors are ignored by students and not much thought is paid to the source of these errors. However, paying attention to these factors that give rise to errors help students make better physics models and understand physical phenomena behind experiments in more detail. In this work, we explore common causes of errors in introductory physics experiment and suggest changes that will mitigate the errors, or suggest models that take the sources of these errors into consideration. This work helps students build better and refined physical models and understand physics concepts in greater detail. We thank Clarion University undergraduate student grant for financial support involving this project.
Yohay Carmel; Curtis Flather; Denis Dean
2006-01-01
This paper summarizes our efforts to investigate the nature, behavior, and implications of positional error and attribute error in spatiotemporal datasets. Estimating the combined influence of these errors on map analysis has been hindered by the fact that these two error types are traditionally expressed in different units (distance units, and categorical units,...
Fluorescence errors in integrating sphere measurements of remote phosphor type LED light sources
NASA Astrophysics Data System (ADS)
Keppens, A.; Zong, Y.; Podobedov, V. B.; Nadal, M. E.; Hanselaer, P.; Ohno, Y.
2011-05-01
The relative spectral radiant flux error caused by phosphor fluorescence during integrating sphere measurements is investigated both theoretically and experimentally. Integrating sphere and goniophotometer measurements are compared and used for model validation, while a case study provides additional clarification. Criteria for reducing fluorescence errors to a degree of negligibility as well as a fluorescence error correction method based on simple matrix algebra are presented. Only remote phosphor type LED light sources are studied because of their large phosphor surfaces and high application potential in general lighting.
NASA Technical Reports Server (NTRS)
Misra, Amit; Tripathi, S. N.; Kaul, D. S.; Welton, Ellsworth J.
2012-01-01
The level 2 aerosol backscatter and extinction profiles from the NASA Micropulse Lidar Network (MPLNET) at Kanpur, India, have been studied from May 2009 to September 2010. Monthly averaged extinction profiles from MPLNET shows high extinction values near the surface during October March. Higher extinction values at altitudes of 24 km are observed from April to June, a period marked by frequent dust episodes. Version 3 level 2 Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol profile products have been compared with corresponding data from MPLNET over Kanpur for the above-mentioned period. Out of the available backscatter profiles, the16 profiles used in this study have time differences less than 3 h and distances less than 130 km. Among these profiles, four cases show good comparison above 400 m with R2 greater than 0.7. Comparison with AERONET data shows that the aerosol type is properly identified by the CALIOP algorithm. Cloud contamination is a possible source of error in the remaining cases of poor comparison. Another source of error is the improper backscatter-to-extinction ratio, which further affects the accuracy of extinction coefficient retrieval.
NASA Astrophysics Data System (ADS)
Simley, Eric; Y Pao, Lucy; Gebraad, Pieter; Churchfield, Matthew
2014-06-01
Several sources of error exist in lidar measurements for feedforward control of wind turbines including the ability to detect only radial velocities, spatial averaging, and wind evolution. This paper investigates another potential source of error: the upstream induction zone. The induction zone can directly affect lidar measurements and presents an opportunity for further decorrelation between upstream wind and the wind that interacts with the rotor. The impact of the induction zone is investigated using the combined CFD and aeroelastic code SOWFA. Lidar measurements are simulated upstream of a 5 MW turbine rotor and the true wind disturbances are found using a wind speed estimator and turbine outputs. Lidar performance in the absence of an induction zone is determined by simulating lidar measurements and the turbine response using the aeroelastic code FAST with wind inputs taken far upstream of the original turbine location in the SOWFA wind field. Results indicate that while measurement quality strongly depends on the amount of wind evolution, the induction zone has little effect. However, the optimal lidar preview distance and circular scan radius change slightly due to the presence of the induction zone.
NIST Ionization Chamber "A" Sample-Height Corrections.
Fitzgerald, Ryan
2012-01-01
For over 30 years scientists in the NIST radioactivity group have been using their pressurized ionization chamber "A" (PIC "A") to make measurements of radioactivity and radioactive half-lives. We now have evidence that some of those reported measurements were incorrect due to slippage of the source positioning ring over time. The temporal change in the holder caused an error in the source-height within the chamber, which was thought to be invariant. This unaccounted-for height change caused a change in the detector response and thus a relative error in measured activity on the order of 10(-5) to 10(-3) per year, depending on the radionuclide. The drifting detector response affected calibration factors and half-life determinations. After discovering the problem, we carried out historic research and new sensitivity tests. As a result, we have created a quantitative model of the effect and have used that model to estimate corrections to some of the past measurement results from PIC "A". In this paper we report the details and results of that model. Meanwhile, we have fixed the positioning ring and are recalibrating the detector using primary measurement methods and enhanced quality control measures.
Challenge and Error: Critical Events and Attention-Related Errors
ERIC Educational Resources Information Center
Cheyne, James Allan; Carriere, Jonathan S. A.; Solman, Grayden J. F.; Smilek, Daniel
2011-01-01
Attention lapses resulting from reactivity to task challenges and their consequences constitute a pervasive factor affecting everyday performance errors and accidents. A bidirectional model of attention lapses (error [image omitted] attention-lapse: Cheyne, Solman, Carriere, & Smilek, 2009) argues that errors beget errors by generating attention…
Fully probabilistic seismic source inversion - Part 2: Modelling errors and station covariances
NASA Astrophysics Data System (ADS)
Stähler, Simon C.; Sigloch, Karin
2016-11-01
Seismic source inversion, a central task in seismology, is concerned with the estimation of earthquake source parameters and their uncertainties. Estimating uncertainties is particularly challenging because source inversion is a non-linear problem. In a companion paper, Stähler and Sigloch (2014) developed a method of fully Bayesian inference for source parameters, based on measurements of waveform cross-correlation between broadband, teleseismic body-wave observations and their modelled counterparts. This approach yields not only depth and moment tensor estimates but also source time functions. A prerequisite for Bayesian inference is the proper characterisation of the noise afflicting the measurements, a problem we address here. We show that, for realistic broadband body-wave seismograms, the systematic error due to an incomplete physical model affects waveform misfits more strongly than random, ambient background noise. In this situation, the waveform cross-correlation coefficient CC, or rather its decorrelation D = 1 - CC, performs more robustly as a misfit criterion than ℓp norms, more commonly used as sample-by-sample measures of misfit based on distances between individual time samples. From a set of over 900 user-supervised, deterministic earthquake source solutions treated as a quality-controlled reference, we derive the noise distribution on signal decorrelation D = 1 - CC of the broadband seismogram fits between observed and modelled waveforms. The noise on D is found to approximately follow a log-normal distribution, a fortunate fact that readily accommodates the formulation of an empirical likelihood function for D for our multivariate problem. The first and second moments of this multivariate distribution are shown to depend mostly on the signal-to-noise ratio (SNR) of the CC measurements and on the back-azimuthal distances of seismic stations. By identifying and quantifying this likelihood function, we make D and thus waveform cross-correlation measurements usable for fully probabilistic sampling strategies, in source inversion and related applications such as seismic tomography.
Nutrient-gene interactions determine mitochondrial function: effect of dietary fat.
Kim, M J; Berdanier, C D
1998-02-01
The effect on mitochondrial respiration of feeding hydrogenated coconut oil, corn oil, or menhaden oil (MO) to diabetes-prone BHE/cdb rats and normal Sprague Dawley (SD) rats was studied. Both fat source and strain affected the temperature dependence of succinate-supported respiration. The transition temperature was greater in BHE/cdb rats than in the SD rats. The efficiency of ATP synthesis as reflected by the ADP:O ratio was decreased in the BHE/cdb rats compared to SD rats, with the exception of the comparison made at 37 degrees C with the MO-fed rats; at this temperature, the ADP:O ratios were similar. The diet and strain differences suggest a dietary lipid-gene interaction with respect to the mobility of subunit 6 of the F1F0ATPase. This subunit has two errors in its gene: one that affects the proton channel and another that likely affects its mobility within the inner mitochondrial membrane.
When do people rely on affective and cognitive feelings in judgment? A review.
Greifeneder, Rainer; Bless, Herbert; Pham, Michel Tuan
2011-05-01
Although people have been shown to rely on feelings to make judgments, the conditions that moderate this reliance have not been systematically reviewed and conceptually integrated. This article addresses this gap by jointly reviewing moderators of the reliance on both subtle affective feelings and cognitive feelings of ease-of-retrieval. The review revealed that moderators of the reliance on affective and cognitive feelings are remarkably similar and can be grouped into five major categories: (a) the salience of the feelings, (b) the representativeness of the feelings for the target, (c) the relevance of the feelings to the judgment, (d) the evaluative malleability of the judgment, and (e) the level of processing intensity. Based on the reviewed evidence, it is concluded that the use of feelings as information is a frequent event and a generally sensible judgmental strategy rather than a constant source of error. Avenues for future research are discussed.
Realtime mitigation of GPS SA errors using Loran-C
NASA Technical Reports Server (NTRS)
Braasch, Soo Y.
1994-01-01
The hybrid use of Loran-C with the Global Positioning System (GPS) was shown capable of providing a sole-means of enroute air radionavigation. By allowing pilots to fly direct to their destinations, use of this system is resulting in significant time savings and therefore fuel savings as well. However, a major error source limiting the accuracy of GPS is the intentional degradation of the GPS signal known as Selective Availability (SA). SA-induced position errors are highly correlated and far exceed all other error sources (horizontal position error: 100 meters, 95 percent). Realtime mitigation of SA errors from the position solution is highly desirable. How that can be achieved is discussed. The stability of Loran-C signals is exploited to reduce SA errors. The theory behind this technique is discussed and results using bench and flight data are given.
Investigating error structure of shuttle radar topography mission elevation data product
NASA Astrophysics Data System (ADS)
Becek, Kazimierz
2008-08-01
An attempt was made to experimentally assess the instrumental component of error of the C-band SRTM (SRTM). This was achieved by comparing elevation data of 302 runways from airports all over the world with the shuttle radar topography mission data product (SRTM). It was found that the rms of the instrumental error is about +/-1.55 m. Modeling of the remaining SRTM error sources, including terrain relief and pixel size, shows that downsampling from 30 m to 90 m (1 to 3 arc-sec pixels) worsened SRTM vertical accuracy threefold. It is suspected that the proximity of large metallic objects is a source of large SRTM errors. The achieved error estimates allow a pixel-based accuracy assessment of the SRTM elevation data product to be constructed. Vegetation-induced errors were not considered in this work.
Layout-aware simulation of soft errors in sub-100 nm integrated circuits
NASA Astrophysics Data System (ADS)
Balbekov, A.; Gorbunov, M.; Bobkov, S.
2016-12-01
Single Event Transient (SET) caused by charged particle traveling through the sensitive volume of integral circuit (IC) may lead to different errors in digital circuits in some cases. In technologies below 180 nm, a single particle can affect multiple devices causing multiple SET. This fact adds the complexity to fault tolerant devices design, because the schematic design techniques become useless without their layout consideration. The most common layout mitigation technique is a spatial separation of sensitive nodes of hardened circuits. Spatial separation decreases the circuit performance and increases power consumption. Spacing should thus be reasonable and its scaling follows the device dimensions' scaling trend. This paper presents the development of the SET simulation approach comprised of SPICE simulation with "double exponent" current source as SET model. The technique uses layout in GDSII format to locate nearby devices that can be affected by a single particle and that can share the generated charge. The developed software tool automatizes multiple simulations and gathers the produced data to present it as the sensitivity map. The examples of conducted simulations of fault tolerant cells and their sensitivity maps are presented in this paper.
Farris, Coreen; Viken, Richard J; Treat, Teresa A
2010-01-01
Young men's errors in sexual perception have been linked to sexual coercion. The current investigation sought to explicate the perceptual and decisional sources of these social perception errors, as well as their link to risk for sexual violence. General Recognition Theory (GRT; [Ashby, F. G., & Townsend, J. T. (1986). Varieties of perceptual independence. Psychological Review, 93, 154-179]) was used to estimate participants' ability to discriminate between affective cues and clothing style cues and to measure illusory correlations between men's perception of women's clothing style and sexual interest. High-risk men were less sensitive to the distinction between women's friendly and sexual interest cues relative to other men. In addition, they were more likely to perceive an illusory correlation between women's diagnostic sexual interest cues (e.g., facial affect) and non-diagnostic cues (e.g., provocative clothing), which increases the probability that high-risk men will misperceive friendly women as intending to communicate sexual interest. The results provide information about the degree of risk conferred by individual differences in perceptual processing of women's interest cues, and also illustrate how translational scientists might adapt GRT to examine research questions about individual differences in social perception.
DeFeo, Kelly; Sykora, Kristen; Eley, Susan; Vincent, Debra
2014-10-01
To evaluate if pharmacogenetic testing (PT) holds value for pain-management practitioners by identifying the potential applications of pharmacogenetic research as well as applications in practice. A review of the literature was conducted utilizing the databases EBSCOhost, Biomedical Reference Collection, CINAHL, Health Business: Full Text, Health Source: Nursing/Academic Edition, and MEDLINE with the keywords, personalized medicine, cytochrome P450, and phamacogenetics. Chronic-pain patients present some of the most challenging patients to manage medically. Often paired with persistent, life-altering pain, they might also have oncologic and psychological comorbidities that can further complicate their management. One-step in-office PT is now widely available to optimize management of complicated patients and affectively remove the "trial-and-error" process of medication therapy. Practitioners must be familiar with the genetic determinants that affect a patient's response to medications in order to decrease preventable morbidity and mortality associated with drug-drug and patient-drug interactions, and to provide cost-effective care through avoidance of inappropriate medications. Improved pain managements will impove patient outcomes and satisfaction. ©2014 American Association of Nurse Practitioners.
An interpretation of radiosonde errors in the atmospheric boundary layer
Bernadette H. Connell; David R. Miller
1995-01-01
The authors review sources of error in radiosonde measurements in the atmospheric boundary layer and analyze errors of two radiosonde models manufactured by Atmospheric Instrumentation Research, Inc. The authors focus on temperature and humidity lag errors and wind errors. Errors in measurement of azimuth and elevation angles and pressure over short time intervals and...
Polarized Raman spectroscopy of bone tissue: watch the scattering
NASA Astrophysics Data System (ADS)
Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.
2010-02-01
Polarized Raman spectroscopy is widely used in the study of molecular composition and orientation in synthetic and natural polymer systems. Here, we describe the use of Raman spectroscopy to extract quantitative orientation information from bone tissue. Bone tissue poses special challenges to the use of polarized Raman spectroscopy for measurement of orientation distribution functions because the tissue is turbid and birefringent. Multiple scattering in turbid media depolarizes light and is potentially a source of error. Using a Raman microprobe, we show that repeating the measurements with a series of objectives of differing numerical apertures can be used to assess the contributions of sample turbidity and depth of field to the calculated orientation distribution functions. With this test, an optic can be chosen to minimize the systematic errors introduced by multiple scattering events. With adequate knowledge of the optical properties of these bone tissues, we can determine if elastic light scattering affects the polarized Raman measurements.
GOES I/M image navigation and registration
NASA Technical Reports Server (NTRS)
Fiorello, J. L., Jr.; Oh, I. H.; Kelly, K. A.; Ranne, L.
1989-01-01
Image Navigation and Registration (INR) is the system that will be used on future Geostationary Operational Environmental Satellite (GOES) missions to locate and register radiometric imagery data. It consists of a semiclosed loop system with a ground-based segment that generates coefficients to perform image motion compensation (IMC). The IMC coefficients are uplinked to the satellite-based segment, where they are used to adjust the displacement of the imagery data due to movement of the imaging instrument line-of-sight. The flight dynamics aspects of the INR system is discussed in terms of the attitude and orbit determination, attitude pointing, and attitude and orbit control needed to perform INR. The modeling used in the determination of orbit and attitude is discussed, along with the method of on-orbit control used in the INR system, and various factors that affect stability. Also discussed are potential error sources inherent in the INR system and the operational methods of compensating for these errors.
Nonlinear grid error effects on numerical solution of partial differential equations
NASA Technical Reports Server (NTRS)
Dey, S. K.
1980-01-01
Finite difference solutions of nonlinear partial differential equations require discretizations and consequently grid errors are generated. These errors strongly affect stability and convergence properties of difference models. Previously such errors were analyzed by linearizing the difference equations for solutions. Properties of mappings of decadence were used to analyze nonlinear instabilities. Such an analysis is directly affected by initial/boundary conditions. An algorithm was developed, applied to nonlinear Burgers equations, and verified computationally. A preliminary test shows that Navier-Stokes equations may be treated similarly.
Polarization errors associated with birefringent waveplates
NASA Technical Reports Server (NTRS)
West, Edward A.; Smith, Matthew H.
1995-01-01
Although zero-order quartz waveplates are widely used in instrumentation that needs good temperature and field-of-view characteristics, the residual errors associated with these devices can be very important in high-resolution polarimetry measurements. How the field-of-view characteristics are affected by retardation errors and the misalignment of optic axes in a double-crystal waveplate is discussed. The retardation measurements made on zero-order quartz and single-order 'achromatic' waveplates and how the misalignment errors affect those measurements are discussed.
Propagation of angular errors in two-axis rotation systems
NASA Astrophysics Data System (ADS)
Torrington, Geoffrey K.
2003-10-01
Two-Axis Rotation Systems, or "goniometers," are used in diverse applications including telescope pointing, automotive headlamp testing, and display testing. There are three basic configurations in which a goniometer can be built depending on the orientation and order of the stages. Each configuration has a governing set of equations which convert motion between the system "native" coordinates to other base systems, such as direction cosines, optical field angles, or spherical-polar coordinates. In their simplest form, these equations neglect errors present in real systems. In this paper, a statistical treatment of error source propagation is developed which uses only tolerance data, such as can be obtained from the system mechanical drawings prior to fabrication. It is shown that certain error sources are fully correctable, partially correctable, or uncorrectable, depending upon the goniometer configuration and zeroing technique. The system error budget can be described by a root-sum-of-squares technique with weighting factors describing the sensitivity of each error source. This paper tabulates weighting factors at 67% (k=1) and 95% (k=2) confidence for various levels of maximum travel for each goniometer configuration. As a practical example, this paper works through an error budget used for the procurement of a system at Sandia National Laboratories.
Accounting for optical errors in microtensiometry.
Hinton, Zachary R; Alvarez, Nicolas J
2018-09-15
Drop shape analysis (DSA) techniques measure interfacial tension subject to error in image analysis and the optical system. While considerable efforts have been made to minimize image analysis errors, very little work has treated optical errors. There are two main sources of error when considering the optical system: the angle of misalignment and the choice of focal plane. Due to the convoluted nature of these sources, small angles of misalignment can lead to large errors in measured curvature. We demonstrate using microtensiometry the contributions of these sources to measured errors in radius, and, more importantly, deconvolute the effects of misalignment and focal plane. Our findings are expected to have broad implications on all optical techniques measuring interfacial curvature. A geometric model is developed to analytically determine the contributions of misalignment angle and choice of focal plane on measurement error for spherical cap interfaces. This work utilizes a microtensiometer to validate the geometric model and to quantify the effect of both sources of error. For the case of a microtensiometer, an empirical calibration is demonstrated that corrects for optical errors and drastically simplifies implementation. The combination of geometric modeling and experimental results reveal a convoluted relationship between the true and measured interfacial radius as a function of the misalignment angle and choice of focal plane. The validated geometric model produces a full operating window that is strongly dependent on the capillary radius and spherical cap height. In all cases, the contribution of optical errors is minimized when the height of the spherical cap is equivalent to the capillary radius, i.e. a hemispherical interface. The understanding of these errors allow for correct measure of interfacial curvature and interfacial tension regardless of experimental setup. For the case of microtensiometry, this greatly decreases the time for experimental setup and increases experiential accuracy. In a broad sense, this work outlines the importance of optical errors in all DSA techniques. More specifically, these results have important implications for all microscale and microfluidic measurements of interface curvature. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko
2014-05-01
Between 25 and 27 August 2010 a long-duration mesoscale convective system was observed above the Netherlands. For most of the country this led to over 15 hours of near-continuous precipitation, which resulted in total event accumulations exceeding 150 mm in the eastern part of the Netherlands. Such accumulations belong to the largest sums ever recorded in this country and gave rise to local flooding. Measuring precipitation by weather radar within such mesoscale convective systems is known to be a challenge, since measurements are affected by multiple sources of error. For the current event the operational weather radar rainfall product only estimated about 30% of the actual amount of precipitation as measured by rain gauges. In the current presentation we will try to identify what gave rise to such large underestimations. In general weather radar measurement errors can be subdivided into two different groups: 1) errors affecting the volumetric reflectivity measurements taken, and 2) errors related to the conversion of reflectivity values in rainfall intensity and attenuation estimates. To correct for the first group of errors, the quality of the weather radar reflectivity data was improved by successively correcting for 1) clutter and anomalous propagation, 2) radar calibration, 3) wet radome attenuation, 4) signal attenuation and 5) the vertical profile of reflectivity. Such consistent corrections are generally not performed by operational meteorological services. Results show a large improvement in the quality of the precipitation data, however still only ~65% of the actual observed accumulations was estimated. To further improve the quality of the precipitation estimates, the second group of errors are corrected for by making use of disdrometer measurements taken in close vicinity of the radar. Based on these data the parameters of a normalized drop size distribution are estimated for the total event as well as for each precipitation type separately (convective, stratiform and undefined). These are then used to obtain coherent parameter sets for the radar reflectivity-rainfall rate (Z-R) and radar reflectivity-attenuation (Z-k) relationship, specifically applicable for this event. By applying a single parameter set to correct for both sources of errors, the quality of the rainfall product improves further, leading to >80% of the observed accumulations. However, by differentiating between precipitation type no better results are obtained as when using the operational relationships. This leads to the question: how representative are local disdrometer observations to correct large scale weather radar measurements? In order to tackle this question a Monte Carlo approach was used to generate >10000 sets of the normalized dropsize distribution parameters and to assess their impact on the estimated precipitation amounts. Results show that a large number of parameter sets result in improved precipitation estimated by the weather radar closely resembling observations. However, these optimal sets vary considerably as compared to those obtained from the local disdrometer measurements.
Global Erratum for Kepler Q0-Q17 and K2 C0-C5 Short Cadence Data
NASA Technical Reports Server (NTRS)
Caldwell, Douglas; Van Cleve, Jeffrey E.
2016-01-01
An accounting error has scrambled much of the short-cadence collateral smear data used to correct for the effects of Keplers shutterless readout. This error has been present since launch and affects approximately half of all short-cadence targets observed by Kepler and K2 to date. The resulting calibration errors are present in both the short-cadence target pixel files and the short-cadence light curves for Kepler Data Releases 1-24 and K2 Data Releases 1-7. This error does not affect long-cadence data. Since it will take some time to correct this error and reprocess all Kepler and K2 data, a list of affected targets is provided. Even though the affected targets are readily identified, the science impact for any particular target may be difficult to assess. Since the smear signal is often small compared to the target signal, the effect is negligible for many targets. However, the smear signal is scene-dependent, so time varying signals can be introduced into any target by the other stars falling on the same CCD column. Some tips on how to assess the severity of the calibration error are provided in this document.
Response Monitoring and Adjustment: Differential Relations with Psychopathic Traits
Bresin, Konrad; Finy, M. Sima; Sprague, Jenessa; Verona, Edelyn
2014-01-01
Studies on the relation between psychopathy and cognitive functioning often show mixed results, partially because different factors of psychopathy have not been considered fully. Based on previous research, we predicted divergent results based on a two-factor model of psychopathy (interpersonal-affective traits and impulsive-antisocial traits). Specifically, we predicted that the unique variance of interpersonal-affective traits would be related to increased monitoring (i.e., error-related negativity) and adjusting to errors (i.e., post-error slowing), whereas impulsive-antisocial traits would be related to reductions in these processes. Three studies using a diverse selection of assessment tools, samples, and methods are presented to identify response monitoring correlates of the two main factors of psychopathy. In Studies 1 (undergraduates), 2 (adolescents), and 3 (offenders), interpersonal-affective traits were related to increased adjustment following errors and, in Study 3, to enhanced monitoring of errors. Impulsive-antisocial traits were not consistently related to error adjustment across the studies, although these traits were related to a deficient monitoring of errors in Study 3. The results may help explain previous mixed findings and advance implications for etiological models of psychopathy. PMID:24933282
McMahon, Camilla M.; Henderson, Heather A.
2014-01-01
Error-monitoring, or the ability to recognize one's mistakes and implement behavioral changes to prevent further mistakes, may be impaired in individuals with Autism Spectrum Disorder (ASD). Children and adolescents (ages 9-19) with ASD (n = 42) and typical development (n = 42) completed two face processing tasks that required discrimination of either the gender or affect of standardized face stimuli. Post-error slowing and the difference in Error-Related Negativity amplitude between correct and incorrect responses (ERNdiff) were used to index error-monitoring ability. Overall, ERNdiff increased with age. On the Gender Task, individuals with ASD had a smaller ERNdiff than individuals with typical development; however, on the Affect Task, there were no significant diagnostic group differences on ERNdiff. Individuals with ASD may have ERN amplitudes similar to those observed in individuals with typical development in more social contexts compared to less social contexts due to greater consequences for errors, more effortful processing, and/or reduced processing efficiency in these contexts. Across all participants, more post-error slowing on the Affect Task was associated with better social cognitive skills. PMID:25066088
Main sources of errors in diagnosis of chronic radiation sickness (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soldatova, V.A.
1973-11-01
With the aim of finding out the main sources of errors in the diagnosis of chronic radiation sickness, the author analyzed a total of 500 cases of this sickness in roenigenologists and radiologists sent to the clinic to be examined according to occupational indications. lt was shown that the main source of errors when interpreting the observed deviations as occupational was underestimation of etiological significance of functional and organic diseases of the nervous system, endocrinevascular dystonia and also such diseases as hypochromic anemia and chronic infection. The majority of diagnostic errors is explained by insufficient knowledge of the main regularitymore » of forming the picture of chronic radiation sickness and by the absence of the necessary differential diagnosis with general somatic diseases. (auth)« less
Decomposition of Sources of Errors in Seasonal Streamflow Forecasting over the U.S. Sunbelt
NASA Technical Reports Server (NTRS)
Mazrooei, Amirhossein; Sinah, Tusshar; Sankarasubramanian, A.; Kumar, Sujay V.; Peters-Lidard, Christa D.
2015-01-01
Seasonal streamflow forecasts, contingent on climate information, can be utilized to ensure water supply for multiple uses including municipal demands, hydroelectric power generation, and for planning agricultural operations. However, uncertainties in the streamflow forecasts pose significant challenges in their utilization in real-time operations. In this study, we systematically decompose various sources of errors in developing seasonal streamflow forecasts from two Land Surface Models (LSMs) (Noah3.2 and CLM2), which are forced with downscaled and disaggregated climate forecasts. In particular, the study quantifies the relative contributions of the sources of errors from LSMs, climate forecasts, and downscaling/disaggregation techniques in developing seasonal streamflow forecast. For this purpose, three month ahead seasonal precipitation forecasts from the ECHAM4.5 general circulation model (GCM) were statistically downscaled from 2.8deg to 1/8deg spatial resolution using principal component regression (PCR) and then temporally disaggregated from monthly to daily time step using kernel-nearest neighbor (K-NN) approach. For other climatic forcings, excluding precipitation, we considered the North American Land Data Assimilation System version 2 (NLDAS-2) hourly climatology over the years 1979 to 2010. Then the selected LSMs were forced with precipitation forecasts and NLDAS-2 hourly climatology to develop retrospective seasonal streamflow forecasts over a period of 20 years (1991-2010). Finally, the performance of LSMs in forecasting streamflow under different schemes was analyzed to quantify the relative contribution of various sources of errors in developing seasonal streamflow forecast. Our results indicate that the most dominant source of errors during winter and fall seasons is the errors due to ECHAM4.5 precipitation forecasts, while temporal disaggregation scheme contributes to maximum errors during summer season.
Feys, Marjolein; Anseel, Frederik
2015-03-01
People's affective forecasts are often inaccurate because they tend to overestimate how they will feel after an event. As life decisions are often based on affective forecasts, it is crucial to find ways to manage forecasting errors. We examined the impact of a fair treatment on forecasting errors in candidates in a Belgian reality TV talent show. We found that perceptions of fair treatment increased the forecasting error for losers (a negative audition decision) but decreased it for winners (a positive audition decision). For winners, this effect was even more pronounced when candidates were highly invested in their self-view as a future pop idol whereas for losers, the effect was more pronounced when importance was low. The results in this study point to a potential paradox between maximizing happiness and decreasing forecasting errors. A fair treatment increased the forecasting error for losers, but actually made them happier. © 2014 The British Psychological Society.
Stannard, David L.; Rosenberry, Donald O.; Winter, Thomas C.; Parkhurst, Renee S.
2004-01-01
Micrometeorological measurements of evapotranspiration (ET) often are affected to some degree by errors arising from limited fetch. A recently developed model was used to estimate fetch-induced errors in Bowen-ratio energy-budget measurements of ET made at a small wetland with fetch-to-height ratios ranging from 34 to 49. Estimated errors were small, averaging −1.90%±0.59%. The small errors are attributed primarily to the near-zero lower sensor height, and the negative bias reflects the greater Bowen ratios of the drier surrounding upland. Some of the variables and parameters affecting the error were not measured, but instead are estimated. A sensitivity analysis indicates that the uncertainty arising from these estimates is small. In general, fetch-induced error in measured wetland ET increases with decreasing fetch-to-height ratio, with increasing aridity and with increasing atmospheric stability over the wetland. Occurrence of standing water at a site is likely to increase the appropriate time step of data integration, for a given level of accuracy. Occurrence of extensive open water can increase accuracy or decrease the required fetch by allowing the lower sensor to be placed at the water surface. If fetch is highly variable and fetch-induced errors are significant, the variables affecting fetch (e.g., wind direction, water level) need to be measured. Fetch-induced error during the non-growing season may be greater or smaller than during the growing season, depending on how seasonal changes affect both the wetland and upland at a site.
What Air Quality Models Tell Us About Sources and Sinks of Atmospheric Aldehydes
NASA Astrophysics Data System (ADS)
Luecken, D.; Hutzell, W. T.; Phillips, S.
2010-12-01
Atmospheric aldehydes play important roles in several aspects of air quality: they are critical radical sources that drive ozone formation, they are hazardous air pollutants that are national drivers for cancer risk, they participate in aqueous chemistry and potentially aerosol formation, and are key species for evaluating the accuracy of isoprene emissions. For these reasons, it is important to accurately understand their sources and sinks, and the sensitivity of their concentrations to emission controls. While both compounds have been included in air quality modeling for many years, current, state-of-the-science chemical mechanisms have difficulty reproducing measured values of aldehydes, which calls into question the robustness of ozone, HAPs and aerosol predictions. In the past, we have attributed discrepancies to measurement errors, inventory errors, or the focus on high-NOx urban regimes. Despite improvements in all of these areas, the measurements still diverge from model predictions, with formaldehyde often underpredicted by 50% and acetaldehyde showing a large degree of scatter - from 20% overprediction to 50% underprediction. To better examine the sources of aldehydes, we implemented the new SAPRC07T mechanism in the Community Multi-Scale Air Quality (CMAQ) model. This mechanism incorporates current recommendations for kinetic data and has the most detailed representation of product formation under a wide variety of conditions of any mechanism used in regional air quality models. We use model simulations to pinpoint where and when aldehyde concentrations tend to deviate from measurements. We demonstrate the role of secondary production versus primary emissions in aldehdye concentrations and find that secondary sources produce the largest deviations from measurements. We identify which VOCs are most responsible for aldehyde secondary production in the areas of the U.S. where the largest health effects are seen, and discuss how this affects consideration of control strategies.
Personal digital assistant-based drug information sources: potential to improve medication safety.
Galt, Kimberly A; Rule, Ann M; Houghton, Bruce; Young, Daniel O; Remington, Gina
2005-04-01
This study compared the potential for personal digital assistant (PDA)-based drug information sources to minimize potential medication errors dependent on accurate and complete drug information at the point of care. A quality and safety framework for drug information resources was developed to evaluate 11 PDA-based drug information sources. Three drug information sources met the criteria of the framework: Eprocrates Rx Pro, Lexi-Drugs, and mobileMICROMEDEX. Medication error types related to drug information at the point of care were then determined. Forty-seven questions were developed to test the potential of the sources to prevent these error types. Pharmacists and physician experts from Creighton University created these questions based on the most common types of questions asked by primary care providers. Three physicians evaluated the drug information sources, rating the source for each question: 1=no information available, 2=some information available, or 3 = adequate amount of information available. The mean ratings for the drug information sources were: 2.0 (Eprocrates Rx Pro), 2.5 (Lexi-Drugs), and 2.03 (mobileMICROMEDEX). Lexi-Drugs was significantly better (mobileMICROMEDEX t test; P=0.05; Eprocrates Rx Pro t test; P=0.01). Lexi-Drugs was found to be the most specific and complete PDA resource available to optimize medication safety by reducing potential errors associated with drug information. No resource was sufficient to address the patient safety information needs for all cases.
Bedi, Harleen; Goltz, Herbert C; Wong, Agnes M F; Chandrakumar, Manokaraananthan; Niechwiej-Szwedo, Ewa
2013-01-01
Errors in eye movements can be corrected during the ongoing saccade through in-flight modifications (i.e., online control), or by programming a secondary eye movement (i.e., offline control). In a reflexive saccade task, the oculomotor system can use extraretinal information (i.e., efference copy) online to correct errors in the primary saccade, and offline retinal information to generate a secondary corrective saccade. The purpose of this study was to examine the error correction mechanisms in the antisaccade task. The roles of extraretinal and retinal feedback in maintaining eye movement accuracy were investigated by presenting visual feedback at the spatial goal of the antisaccade. We found that online control for antisaccade is not affected by the presence of visual feedback; that is whether visual feedback is present or not, the duration of the deceleration interval was extended and significantly correlated with reduced antisaccade endpoint error. We postulate that the extended duration of deceleration is a feature of online control during volitional saccades to improve their endpoint accuracy. We found that secondary saccades were generated more frequently in the antisaccade task compared to the reflexive saccade task. Furthermore, we found evidence for a greater contribution from extraretinal sources of feedback in programming the secondary "corrective" saccades in the antisaccade task. Nonetheless, secondary saccades were more corrective for the remaining antisaccade amplitude error in the presence of visual feedback of the target. Taken together, our results reveal a distinctive online error control strategy through an extension of the deceleration interval in the antisaccade task. Target feedback does not improve online control, rather it improves the accuracy of secondary saccades in the antisaccade task.
Bedi, Harleen; Goltz, Herbert C.; Wong, Agnes M. F.; Chandrakumar, Manokaraananthan; Niechwiej-Szwedo, Ewa
2013-01-01
Errors in eye movements can be corrected during the ongoing saccade through in-flight modifications (i.e., online control), or by programming a secondary eye movement (i.e., offline control). In a reflexive saccade task, the oculomotor system can use extraretinal information (i.e., efference copy) online to correct errors in the primary saccade, and offline retinal information to generate a secondary corrective saccade. The purpose of this study was to examine the error correction mechanisms in the antisaccade task. The roles of extraretinal and retinal feedback in maintaining eye movement accuracy were investigated by presenting visual feedback at the spatial goal of the antisaccade. We found that online control for antisaccade is not affected by the presence of visual feedback; that is whether visual feedback is present or not, the duration of the deceleration interval was extended and significantly correlated with reduced antisaccade endpoint error. We postulate that the extended duration of deceleration is a feature of online control during volitional saccades to improve their endpoint accuracy. We found that secondary saccades were generated more frequently in the antisaccade task compared to the reflexive saccade task. Furthermore, we found evidence for a greater contribution from extraretinal sources of feedback in programming the secondary “corrective” saccades in the antisaccade task. Nonetheless, secondary saccades were more corrective for the remaining antisaccade amplitude error in the presence of visual feedback of the target. Taken together, our results reveal a distinctive online error control strategy through an extension of the deceleration interval in the antisaccade task. Target feedback does not improve online control, rather it improves the accuracy of secondary saccades in the antisaccade task. PMID:23936308
Urban, Michal; Leššo, Roman; Pelclová, Daniela
2016-07-01
The purpose of the article was to study unintentional pharmaceutical-related poisonings committed by laypersons that were reported to the Toxicological Information Centre in the Czech Republic. Identifying frequency, sources, reasons and consequences of the medication errors in laypersons could help to reduce the overall rate of medication errors. Records of medication error enquiries from 2013 to 2014 were extracted from the electronic database, and the following variables were reviewed: drug class, dosage form, dose, age of the subject, cause of the error, time interval from ingestion to the call, symptoms, prognosis at the time of the call and first aid recommended. Of the calls, 1354 met the inclusion criteria. Among them, central nervous system-affecting drugs (23.6%), respiratory drugs (18.5%) and alimentary drugs (16.2%) were the most common drug classes involved in the medication errors. The highest proportion of the patients was in the youngest age subgroup 0-5 year-old (46%). The reasons for the medication errors involved the leaflet misinterpretation and mistaken dose (53.6%), mixing up medications (19.2%), attempting to reduce pain with repeated doses (6.4%), erroneous routes of administration (2.2%), psychiatric/elderly patients (2.7%), others (9.0%) or unknown (6.9%). A high proportion of children among the patients may be due to the fact that children's dosages for many drugs vary by their weight, and more medications come in a variety of concentrations. Most overdoses could be prevented by safer labelling, proper cap closure systems for liquid products and medication reconciliation by both physicians and pharmacists. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
A comparison between different error modeling of MEMS applied to GPS/INS integrated systems.
Quinchia, Alex G; Falco, Gianluca; Falletti, Emanuela; Dovis, Fabio; Ferrer, Carles
2013-07-24
Advances in the development of micro-electromechanical systems (MEMS) have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS) and the inertial navigation system (INS) integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs), stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV) and the power spectral density (PSD) techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR) filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade) presents error sources with short-term (high-frequency) and long-term (low-frequency) components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF) of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways.
A Comparison between Different Error Modeling of MEMS Applied to GPS/INS Integrated Systems
Quinchia, Alex G.; Falco, Gianluca; Falletti, Emanuela; Dovis, Fabio; Ferrer, Carles
2013-01-01
Advances in the development of micro-electromechanical systems (MEMS) have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS) and the inertial navigation system (INS) integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs), stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV) and the power spectral density (PSD) techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR) filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade) presents error sources with short-term (high-frequency) and long-term (low-frequency) components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF) of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways. PMID:23887084
Identification of driver errors : overview and recommendations
DOT National Transportation Integrated Search
2002-08-01
Driver error is cited as a contributing factor in most automobile crashes, and although estimates vary by source, driver error is cited as the principal cause of from 45 to 75 percent of crashes. However, the specific errors that lead to crashes, and...
Biased interpretation and memory in children with varying levels of spider fear.
Klein, Anke M; Titulaer, Geraldine; Simons, Carlijn; Allart, Esther; de Gier, Erwin; Bögels, Susan M; Becker, Eni S; Rinck, Mike
2014-01-01
This study investigated multiple cognitive biases in children simultaneously, to investigate whether spider-fearful children display an interpretation bias, a recall bias, and source monitoring errors, and whether these biases are specific for spider-related materials. Furthermore, the independent ability of these biases to predict spider fear was investigated. A total of 121 children filled out the Spider Anxiety and Disgust Screening for Children (SADS-C), and they performed an interpretation task, a memory task, and a Behavioural Assessment Test (BAT). As expected, a specific interpretation bias was found: Spider-fearful children showed more negative interpretations of ambiguous spider-related scenarios, but not of other scenarios. We also found specific source monitoring errors: Spider-fearful children made more fear-related source monitoring errors for the spider-related scenarios, but not for the other scenarios. Only limited support was found for a recall bias. Finally, interpretation bias, recall bias, and source monitoring errors predicted unique variance components of spider fear.
Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.
Limongi, Roberto; Silva, Angélica M
2016-11-01
The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.
Uncertainty Analysis Principles and Methods
2007-09-01
error source . The Data Processor converts binary coded numbers to values, performs D/A curve fitting and applies any correction factors that may be...describes the stages or modules involved in the measurement process. We now need to identify all relevant error sources and develop the mathematical... sources , gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden
Error in the Honeybee Waggle Dance Improves Foraging Flexibility
Okada, Ryuichi; Ikeno, Hidetoshi; Kimura, Toshifumi; Ohashi, Mizue; Aonuma, Hitoshi; Ito, Etsuro
2014-01-01
The honeybee waggle dance communicates the location of profitable food sources, usually with a certain degree of error in the directional information ranging from 10–15° at the lower margin. We simulated one-day colonial foraging to address the biological significance of information error in the waggle dance. When the error was 30° or larger, the waggle dance was not beneficial. If the error was 15°, the waggle dance was beneficial when the food sources were scarce. When the error was 10° or smaller, the waggle dance was beneficial under all the conditions tested. Our simulation also showed that precise information (0–5° error) yielded great success in finding feeders, but also caused failures at finding new feeders, i.e., a high-risk high-return strategy. The observation that actual bees perform the waggle dance with an error of 10–15° might reflect, at least in part, the maintenance of a successful yet risky foraging trade-off. PMID:24569525
Application of Exactly Linearized Error Transport Equations to AIAA CFD Prediction Workshops
NASA Technical Reports Server (NTRS)
Derlaga, Joseph M.; Park, Michael A.; Rallabhandi, Sriram
2017-01-01
The computational fluid dynamics (CFD) prediction workshops sponsored by the AIAA have created invaluable opportunities in which to discuss the predictive capabilities of CFD in areas in which it has struggled, e.g., cruise drag, high-lift, and sonic boom pre diction. While there are many factors that contribute to disagreement between simulated and experimental results, such as modeling or discretization error, quantifying the errors contained in a simulation is important for those who make decisions based on the computational results. The linearized error transport equations (ETE) combined with a truncation error estimate is a method to quantify one source of errors. The ETE are implemented with a complex-step method to provide an exact linearization with minimal source code modifications to CFD and multidisciplinary analysis methods. The equivalency of adjoint and linearized ETE functional error correction is demonstrated. Uniformly refined grids from a series of AIAA prediction workshops demonstrate the utility of ETE for multidisciplinary analysis with a connection between estimated discretization error and (resolved or under-resolved) flow features.
Effects of Shame and Guilt on Error Reporting Among Obstetric Clinicians.
Zabari, Mara Lynne; Southern, Nancy L
2018-04-17
To understand how the experiences of shame and guilt, coupled with organizational factors, affect error reporting by obstetric clinicians. Descriptive cross-sectional. A sample of 84 obstetric clinicians from three maternity units in Washington State. In this quantitative inquiry, a variant of the Test of Self-Conscious Affect was used to measure proneness to guilt and shame. In addition, we developed questions to assess attitudes regarding concerns about damaging one's reputation if an error was reported and the choice to keep an error to oneself. Both assessments were analyzed separately and then correlated to identify relationships between constructs. Interviews were used to identify organizational factors that affect error reporting. As a group, mean scores indicated that obstetric clinicians would not choose to keep errors to themselves. However, bivariate correlations showed that proneness to shame was positively correlated to concerns about one's reputation if an error was reported, and proneness to guilt was negatively correlated with keeping errors to oneself. Interview data analysis showed that Past Experience with Responses to Errors, Management and Leadership Styles, Professional Hierarchy, and Relationships With Colleagues were influential factors in error reporting. Although obstetric clinicians want to report errors, their decisions to report are influenced by their proneness to guilt and shame and perceptions of the degree to which organizational factors facilitate or create barriers to restore their self-images. Findings underscore the influence of the organizational context on clinicians' decisions to report errors. Copyright © 2018 AWHONN, the Association of Women’s Health, Obstetric and Neonatal Nurses. Published by Elsevier Inc. All rights reserved.
Groundwater Pollution Source Identification using Linked ANN-Optimization Model
NASA Astrophysics Data System (ADS)
Ayaz, Md; Srivastava, Rajesh; Jain, Ashu
2014-05-01
Groundwater is the principal source of drinking water in several parts of the world. Contamination of groundwater has become a serious health and environmental problem today. Human activities including industrial and agricultural activities are generally responsible for this contamination. Identification of groundwater pollution source is a major step in groundwater pollution remediation. Complete knowledge of pollution source in terms of its source characteristics is essential to adopt an effective remediation strategy. Groundwater pollution source is said to be identified completely when the source characteristics - location, strength and release period - are known. Identification of unknown groundwater pollution source is an ill-posed inverse problem. It becomes more difficult for real field conditions, when the lag time between the first reading at observation well and the time at which the source becomes active is not known. We developed a linked ANN-Optimization model for complete identification of an unknown groundwater pollution source. The model comprises two parts- an optimization model and an ANN model. Decision variables of linked ANN-Optimization model contain source location and release period of pollution source. An objective function is formulated using the spatial and temporal data of observed and simulated concentrations, and then minimized to identify the pollution source parameters. In the formulation of the objective function, we require the lag time which is not known. An ANN model with one hidden layer is trained using Levenberg-Marquardt algorithm to find the lag time. Different combinations of source locations and release periods are used as inputs and lag time is obtained as the output. Performance of the proposed model is evaluated for two and three dimensional case with error-free and erroneous data. Erroneous data was generated by adding uniformly distributed random error (error level 0-10%) to the analytically computed concentration values. The main advantage of the proposed model is that it requires only upper half of the breakthrough curve and is capable of predicting source parameters when the lag time is not known. Linking of ANN model with proposed optimization model reduces the dimensionality of the decision variables of the optimization model by one and hence complexity of optimization model is reduced. The results show that our proposed linked ANN-Optimization model is able to predict the source parameters for the error-free data accurately. The proposed model was run several times to obtain the mean, standard deviation and interval estimate of the predicted parameters for observations with random measurement errors. It was observed that mean values as predicted by the model were quite close to the exact values. An increasing trend was observed in the standard deviation of the predicted values with increasing level of measurement error. The model appears to be robust and may be efficiently utilized to solve the inverse pollution source identification problem.
Energy Storage Sizing Taking Into Account Forecast Uncertainties and Receding Horizon Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kyri; Hug, Gabriela; Li, Xin
Energy storage systems (ESS) have the potential to be very beneficial for applications such as reducing the ramping of generators, peak shaving, and balancing not only the variability introduced by renewable energy sources, but also the uncertainty introduced by errors in their forecasts. Optimal usage of storage may result in reduced generation costs and an increased use of renewable energy. However, optimally sizing these devices is a challenging problem. This paper aims to provide the tools to optimally size an ESS under the assumption that it will be operated under a model predictive control scheme and that the forecast ofmore » the renewable energy resources include prediction errors. A two-stage stochastic model predictive control is formulated and solved, where the optimal usage of the storage is simultaneously determined along with the optimal generation outputs and size of the storage. Wind forecast errors are taken into account in the optimization problem via probabilistic constraints for which an analytical form is derived. This allows for the stochastic optimization problem to be solved directly, without using sampling-based approaches, and sizing the storage to account not only for a wide range of potential scenarios, but also for a wide range of potential forecast errors. In the proposed formulation, we account for the fact that errors in the forecast affect how the device is operated later in the horizon and that a receding horizon scheme is used in operation to optimally use the available storage.« less
New Approaches to Quantifying Transport Model Error in Atmospheric CO2 Simulations
NASA Technical Reports Server (NTRS)
Ott, L.; Pawson, S.; Zhu, Z.; Nielsen, J. E.; Collatz, G. J.; Gregg, W. W.
2012-01-01
In recent years, much progress has been made in observing CO2 distributions from space. However, the use of these observations to infer source/sink distributions in inversion studies continues to be complicated by difficulty in quantifying atmospheric transport model errors. We will present results from several different experiments designed to quantify different aspects of transport error using the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric General Circulation Model (AGCM). In the first set of experiments, an ensemble of simulations is constructed using perturbations to parameters in the model s moist physics and turbulence parameterizations that control sub-grid scale transport of trace gases. Analysis of the ensemble spread and scales of temporal and spatial variability among the simulations allows insight into how parameterized, small-scale transport processes influence simulated CO2 distributions. In the second set of experiments, atmospheric tracers representing model error are constructed using observation minus analysis statistics from NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA). The goal of these simulations is to understand how errors in large scale dynamics are distributed, and how they propagate in space and time, affecting trace gas distributions. These simulations will also be compared to results from NASA's Carbon Monitoring System Flux Pilot Project that quantified the impact of uncertainty in satellite constrained CO2 flux estimates on atmospheric mixing ratios to assess the major factors governing uncertainty in global and regional trace gas distributions.
Self-calibration of photometric redshift scatter in weak-lensing surveys
Zhang, Pengjie; Pen, Ue -Li; Bernstein, Gary
2010-06-11
Photo-z errors, especially catastrophic errors, are a major uncertainty for precision weak lensing cosmology. We find that the shear-(galaxy number) density and density-density cross correlation measurements between photo-z bins, available from the same lensing surveys, contain valuable information for self-calibration of the scattering probabilities between the true-z and photo-z bins. The self-calibration technique we propose does not rely on cosmological priors nor parameterization of the photo-z probability distribution function, and preserves all of the cosmological information available from shear-shear measurement. We estimate the calibration accuracy through the Fisher matrix formalism. We find that, for advanced lensing surveys such as themore » planned stage IV surveys, the rate of photo-z outliers can be determined with statistical uncertainties of 0.01-1% for z < 2 galaxies. Among the several sources of calibration error that we identify and investigate, the galaxy distribution bias is likely the most dominant systematic error, whereby photo-z outliers have different redshift distributions and/or bias than non-outliers from the same bin. This bias affects all photo-z calibration techniques based on correlation measurements. As a result, galaxy bias variations of O(0.1) produce biases in photo-z outlier rates similar to the statistical errors of our method, so this galaxy distribution bias may bias the reconstructed scatters at several-σ level, but is unlikely to completely invalidate the self-calibration technique.« less
Finding Productive Talk around Errors in Intelligent Tutoring Systems
ERIC Educational Resources Information Center
Olsen, Jennifer K.; Rummel, Nikol; Aleven, Vincent
2015-01-01
To learn from an error, students must correct the error by engaging in sense-making activities around the error. Past work has looked at how supporting collaboration around errors affects learning. This paper attempts to shed further light on the role that collaboration can play in the process of overcoming an error. We found that good…
The influence of phonological context on the sound errors of a speaker with Wernicke's aphasia.
Goldmann, R E; Schwartz, M F; Wilshire, C E
2001-09-01
A corpus of phonological errors produced in narrative speech by a Wernicke's aphasic speaker (R.W.B.) was tested for context effects using two new methods for establishing chance baselines. A reliable anticipatory effect was found using the second method, which estimated chance from the distance between phoneme repeats in the speech sample containing the errors. Relative to this baseline, error-source distances were shorter than expected for anticipations, but not perseverations. R.W.B.'s anticipation/perseveration ratio measured intermediate between a nonaphasic error corpus and that of a more severe aphasic speaker (both reported in Schwartz et al., 1994), supporting the view that the anticipatory bias correlates to severity. Finally, R.W.B's anticipations favored word-initial segments, although errors and sources did not consistently share word or syllable position. Copyright 2001 Academic Press.
The Sources of Error in Spanish Writing.
ERIC Educational Resources Information Center
Justicia, Fernando; Defior, Sylvia; Pelegrina, Santiago; Martos, Francisco J.
1999-01-01
Determines the pattern of errors in Spanish spelling. Analyzes and proposes a classification system for the errors made by children in the initial stages of the acquisition of spelling skills. Finds the diverse forms of only 20 Spanish words produces 36% of the spelling errors in Spanish; and substitution is the most frequent type of error. (RS)
2017-01-01
Previous reviews estimated that approximately 20 to 25% of assertions cited from original research articles, or “facts,” are inaccurately quoted in the medical literature. These reviews noted that the original studies were dissimilar and only began to compare the methods of the original studies. The aim of this review is to examine the methods of the original studies and provide a more specific rate of incorrectly cited assertions, or quotation errors, in original research articles published in medical journals. Additionally, the estimate of quotation errors calculated here is based on the ratio of quotation errors to quotations examined (a percent) rather than the more prevalent and weighted metric of quotation errors to the references selected. Overall, this resulted in a lower estimate of the quotation error rate in original medical research articles. A total of 15 studies met the criteria for inclusion in the primary quantitative analysis. Quotation errors were divided into two categories: content ("factual") or source (improper indirect citation) errors. Content errors were further subdivided into major and minor errors depending on the degree that the assertion differed from the original source. The rate of quotation errors recalculated here is 14.5% (10.5% to 18.6% at a 95% confidence interval). These content errors are predominantly, 64.8% (56.1% to 73.5% at a 95% confidence interval), major errors or cited assertions in which the referenced source either fails to substantiate, is unrelated to, or contradicts the assertion. Minor errors, which are an oversimplification, overgeneralization, or trivial inaccuracies, are 35.2% (26.5% to 43.9% at a 95% confidence interval). Additionally, improper secondary (or indirect) citations, which are distinguished from calculations of quotation accuracy, occur at a rate of 10.4% (3.4% to 17.5% at a 95% confidence interval). PMID:28910404
Mogull, Scott A
2017-01-01
Previous reviews estimated that approximately 20 to 25% of assertions cited from original research articles, or "facts," are inaccurately quoted in the medical literature. These reviews noted that the original studies were dissimilar and only began to compare the methods of the original studies. The aim of this review is to examine the methods of the original studies and provide a more specific rate of incorrectly cited assertions, or quotation errors, in original research articles published in medical journals. Additionally, the estimate of quotation errors calculated here is based on the ratio of quotation errors to quotations examined (a percent) rather than the more prevalent and weighted metric of quotation errors to the references selected. Overall, this resulted in a lower estimate of the quotation error rate in original medical research articles. A total of 15 studies met the criteria for inclusion in the primary quantitative analysis. Quotation errors were divided into two categories: content ("factual") or source (improper indirect citation) errors. Content errors were further subdivided into major and minor errors depending on the degree that the assertion differed from the original source. The rate of quotation errors recalculated here is 14.5% (10.5% to 18.6% at a 95% confidence interval). These content errors are predominantly, 64.8% (56.1% to 73.5% at a 95% confidence interval), major errors or cited assertions in which the referenced source either fails to substantiate, is unrelated to, or contradicts the assertion. Minor errors, which are an oversimplification, overgeneralization, or trivial inaccuracies, are 35.2% (26.5% to 43.9% at a 95% confidence interval). Additionally, improper secondary (or indirect) citations, which are distinguished from calculations of quotation accuracy, occur at a rate of 10.4% (3.4% to 17.5% at a 95% confidence interval).
The Pearson-Readhead Survey of Compact Extragalactic Radio Sources from Space. I. The Images
NASA Astrophysics Data System (ADS)
Lister, M. L.; Tingay, S. J.; Murphy, D. W.; Piner, B. G.; Jones, D. L.; Preston, R. A.
2001-06-01
We present images from a space-VLBI survey using the facilities of the VLBI Space Observatory Programme (VSOP), drawing our sample from the well-studied Pearson-Readhead survey of extragalactic radio sources. Our survey has taken advantage of long space-VLBI baselines and large arrays of ground antennas, such as the Very Long Baseline Array and European VLBI Network, to obtain high-resolution images of 27 active galactic nuclei and to measure the core brightness temperatures of these sources more accurately than is possible from the ground. A detailed analysis of the source properties is given in accompanying papers. We have also performed an extensive series of simulations to investigate the errors in VSOP images caused by the relatively large holes in the (u,v)-plane when sources are observed near the orbit normal direction. We find that while the nominal dynamic range (defined as the ratio of map peak to off-source error) often exceeds 1000:1, the true dynamic range (map peak to on-source error) is only about 30:1 for relatively complex core-jet sources. For sources dominated by a strong point source, this value rises to approximately 100:1. We find the true dynamic range to be a relatively weak function of the difference in position angle (P.A.) between the jet P.A. and u-v coverage major axis P.A. For regions with low signal-to-noise ratios, typically located down the jet away from the core, large errors can occur, causing spurious features in VSOP images that should be interpreted with caution.
Short-term Wind Forecasting at Wind Farms using WRF-LES and Actuator Disk Model
NASA Astrophysics Data System (ADS)
Kirkil, Gokhan
2017-04-01
Short-term wind forecasts are obtained for a wind farm on a mountainous terrain using WRF-LES. Multi-scale simulations are also performed using different PBL parameterizations. Turbines are parameterized using Actuator Disc Model. LES models improved the forecasts. Statistical error analysis is performed and ramp events are analyzed. Complex topography of the study area affects model performance, especially the accuracy of wind forecasts were poor for cross valley-mountain flows. By means of LES, we gain new knowledge about the sources of spatial and temporal variability of wind fluctuations such as the configuration of wind turbines.
Automated food microbiology: potential for the hydrophobic grid-membrane filter.
Sharpe, A N; Diotte, M P; Dudas, I; Michaud, G L
1978-01-01
Bacterial counts obtained on hydrophobic grid-membrane filters were comparable to conventional plate counts for Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus in homogenates from a range of foods. The wide numerical operating range of the hydrophobic grid-membrane filters allowed sequential diluting to be reduced or even eliminated, making them attractive as components in automated systems of analysis. Food debris could be rinsed completely from the unincubated hydrophobic grid-membrane filter surface without affecting the subsequent count, thus eliminating the possibility of counting food particles, a common source of error in electronic counting systems. PMID:100054
Error monitoring and empathy: Explorations within a neurophysiological context.
Amiruddin, Azhani; Fueggle, Simone N; Nguyen, An T; Gignac, Gilles E; Clunies-Ross, Karen L; Fox, Allison M
2017-06-01
Past literature has proposed that empathy consists of two components: cognitive and affective empathy. Error monitoring mechanisms indexed by the error-related negativity (ERN) have been associated with empathy. Studies have found that a larger ERN is associated with higher levels of empathy. We aimed to expand upon previous work by investigating how error monitoring relates to the independent theoretical domains of cognitive and affective empathy. Study 1 (N = 24) explored the relationship between error monitoring mechanisms and subcomponents of empathy using the Questionnaire of Cognitive and Affective Empathy and found no relationship. Study 2 (N = 38) explored the relationship between the error monitoring mechanisms and overall empathy. Contrary to past findings, there was no evidence to support a relationship between error monitoring mechanisms and scores on empathy measures. A subsequent meta-analysis (Study 3, N = 125) summarizing the relationship across previously published studies together with the two studies reported in the current paper indicated that overall there was no significant association between ERN and empathy and that there was significant heterogeneity across studies. Future investigations exploring the potential variables that may moderate these relationships are discussed. © 2017 Society for Psychophysiological Research.
NASA Astrophysics Data System (ADS)
Jain, Rahul; Vaughan, Joseph; Heitkamp, Kyle; Ramos, Charleston; Claiborn, Candis; Schreuder, Maarten; Schaaf, Mark; Lamb, Brian
The post-harvest burning of agricultural fields is commonly used to dispose of crop residue and provide other desired services such as pest control. Despite careful regulation of burning, smoke plumes from field burning in the Pacific Northwest commonly degrade air quality, particularly for rural populations. In this paper, ClearSky, a numerical smoke dispersion forecast system for agricultural field burning that was developed to support smoke management in the Inland Pacific Northwest, is described. ClearSky began operation during the summer through fall burn season of 2002 and continues to the present. ClearSky utilizes Mesoscale Meteorological Model version 5 (MM5v3) forecasts from the University of Washington, data on agricultural fields, a web-based user interface for defining burn scenarios, the Lagrangian CALPUFF dispersion model and web-served animations of plume forecasts. The ClearSky system employs a unique hybrid source configuration, which treats the flaming portion of a field as a buoyant line source and the smoldering portion of the field as a buoyant area source. Limited field observations show that this hybrid approach yields reasonable plume rise estimates using source parameters derived from recent field burning emission field studies. The performance of this modeling system was evaluated for 2003 by comparing forecast meteorology against meteorological observations, and comparing model-predicted hourly averaged PM 2.5 concentrations against observations. Examples from this evaluation illustrate that while the ClearSky system can accurately predict PM 2.5 surface concentrations due to field burning, the overall model performance depends strongly on meteorological forecast error. Statistical evaluation of the meteorological forecast at seven surface stations indicates a strong relationship between topographical complexity near the station and absolute wind direction error with wind direction errors increasing from approximately 20° for sites in open areas to 70° or more for sites in very complex terrain. The analysis also showed some days with good forecast meteorology with absolute mean error in wind direction less than 30° when ClearSky correctly predicted PM 2.5 surface concentrations at receptors affected by field burns. On several other days with similar levels of wind direction error the model did not predict apparent plume impacts. In most of these cases, there were no reported burns in the vicinity of the monitor and, thus, it appeared that other, non-reported burns were responsible for the apparent plume impact at the monitoring site. These cases do not provide information on the performance of the model, but rather indicate that further work is needed to identify all burns and to improve burn reports in an accurate and timely manner. There were also a number of days with wind direction errors exceeding 70° when the forecast system did not correctly predict plume behavior.
NASA Astrophysics Data System (ADS)
Lin, J.-T.
2012-04-01
Nitrogen oxides (NOx ≡ NO + NO2) are important atmospheric constituents affecting the tropospheric chemistry and climate. They are emitted both from anthropogenic and from natural (soil, lightning, biomass burning, etc.) sources, and China has become a major region of increasing importance for anthropogenic sources. In a series of studies, satellite remote sensing for the vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) is used to estimate anthropogenic and natural emissions of NOx over China. Focus is set on variations of emissions over a variety of time scales in response to the economic development of China, from the general growth in recent years to the economic downturn during late 2008 - mid 2009 to the holiday associated with the Chinese New Year. An attempt is made to reduce the effect of potential systematic errors in satellite retrievals by coupling data from multiple satellite instruments flying over China at different time of day. For 2006, anthropogenic emissions are separated from lightning and soil sources over East China by exploiting their different seasonality. For the first time, a systematic evaluation is conducted to quantify uncertainties in various aspects of model meteorology and chemistry affecting emission inversion for China and implications for simulations of other air pollution (e.g., near-surface ozone).
Systematic Errors in an Air Track Experiment.
ERIC Educational Resources Information Center
Ramirez, Santos A.; Ham, Joe S.
1990-01-01
Errors found in a common physics experiment to measure acceleration resulting from gravity using a linear air track are investigated. Glider position at release and initial velocity are shown to be sources of systematic error. (CW)
Attitude errors arising from antenna/satellite altitude errors - Recognition and reduction
NASA Technical Reports Server (NTRS)
Godbey, T. W.; Lambert, R.; Milano, G.
1972-01-01
A review is presented of the three basic types of pulsed radar altimeter designs, as well as the source and form of altitude bias errors arising from antenna/satellite attitude errors in each design type. A quantitative comparison of the three systems was also made.
Sensitivity of Magnetospheric Multi-Scale (MMS) Mission Navigation Accuracy to Major Error Sources
NASA Technical Reports Server (NTRS)
Olson, Corwin; Long, Anne; Car[emter. Russell
2011-01-01
The Magnetospheric Multiscale (MMS) mission consists of four satellites flying in formation in highly elliptical orbits about the Earth, with a primary objective of studying magnetic reconnection. The baseline navigation concept is independent estimation of each spacecraft state using GPS pseudorange measurements referenced to an Ultra Stable Oscillator (USO) with accelerometer measurements included during maneuvers. MMS state estimation is performed onboard each spacecraft using the Goddard Enhanced Onboard Navigation System (GEONS), which is embedded in the Navigator GPS receiver. This paper describes the sensitivity of MMS navigation performance to two major error sources: USO clock errors and thrust acceleration knowledge errors.
Sensitivity of Magnetospheric Multi-Scale (MMS) Mission Naviation Accuracy to Major Error Sources
NASA Technical Reports Server (NTRS)
Olson, Corwin; Long, Anne; Carpenter, J. Russell
2011-01-01
The Magnetospheric Multiscale (MMS) mission consists of four satellites flying in formation in highly elliptical orbits about the Earth, with a primary objective of studying magnetic reconnection. The baseline navigation concept is independent estimation of each spacecraft state using GPS pseudorange measurements referenced to an Ultra Stable Oscillator (USO) with accelerometer measurements included during maneuvers. MMS state estimation is performed onboard each spacecraft using the Goddard Enhanced Onboard Navigation System (GEONS), which is embedded in the Navigator GPS receiver. This paper describes the sensitivity of MMS navigation performance to two major error sources: USO clock errors and thrust acceleration knowledge errors.
Goede, Simon L; Leow, Melvin Khee-Shing
2013-01-01
This treatise investigates error sources in measurements applicable to the hypothalamus-pituitary-thyroid (HPT) system of analysis for homeostatic set point computation. The hypothalamus-pituitary transfer characteristic (HP curve) describes the relationship between plasma free thyroxine [FT4] and thyrotropin [TSH]. We define the origin, types, causes, and effects of errors that are commonly encountered in TFT measurements and examine how we can interpret these to construct a reliable HP function for set point establishment. The error sources in the clinical measurement procedures are identified and analyzed in relation to the constructed HP model. The main sources of measurement and interpretation uncertainties are (1) diurnal variations in [TSH], (2) TFT measurement variations influenced by timing of thyroid medications, (3) error sensitivity in ranges of [TSH] and [FT4] (laboratory assay dependent), (4) rounding/truncation of decimals in [FT4] which in turn amplify curve fitting errors in the [TSH] domain in the lower [FT4] range, (5) memory effects (rate-independent hysteresis effect). When the main uncertainties in thyroid function tests (TFT) are identified and analyzed, we can find the most acceptable model space with which we can construct the best HP function and the related set point area.
Unaccounted source of systematic errors in measurements of the Newtonian gravitational constant G
NASA Astrophysics Data System (ADS)
DeSalvo, Riccardo
2015-06-01
Many precision measurements of G have produced a spread of results incompatible with measurement errors. Clearly an unknown source of systematic errors is at work. It is proposed here that most of the discrepancies derive from subtle deviations from Hooke's law, caused by avalanches of entangled dislocations. The idea is supported by deviations from linearity reported by experimenters measuring G, similarly to what is observed, on a larger scale, in low-frequency spring oscillators. Some mitigating experimental apparatus modifications are suggested.
Error-Related Psychophysiology and Negative Affect
ERIC Educational Resources Information Center
Hajcak, G.; McDonald, N.; Simons, R.F.
2004-01-01
The error-related negativity (ERN/Ne) and error positivity (Pe) have been associated with error detection and response monitoring. More recently, heart rate (HR) and skin conductance (SC) have also been shown to be sensitive to the internal detection of errors. An enhanced ERN has consistently been observed in anxious subjects and there is some…
The Perception of Error in Production Plants of a Chemical Organisation
ERIC Educational Resources Information Center
Seifried, Jurgen; Hopfer, Eva
2013-01-01
There is considerable current interest in error-friendly corporate culture, one particular research question being how and under what conditions errors are learnt from in the workplace. This paper starts from the assumption that errors are inevitable and considers key factors which affect learning from errors in high responsibility organisations,…
Diffraction analysis of sidelobe characteristics of optical elements with ripple error
NASA Astrophysics Data System (ADS)
Zhao, Lei; Luo, Yupeng; Bai, Jian; Zhou, Xiangdong; Du, Juan; Liu, Qun; Luo, Yujie
2018-03-01
The ripple errors of the lens lead to optical damage in high energy laser system. The analysis of sidelobe on the focal plane, caused by ripple error, provides a reference to evaluate the error and the imaging quality. In this paper, we analyze the diffraction characteristics of sidelobe of optical elements with ripple errors. First, we analyze the characteristics of ripple error and build relationship between ripple error and sidelobe. The sidelobe results from the diffraction of ripple errors. The ripple error tends to be periodic due to fabrication method on the optical surface. The simulated experiments are carried out based on angular spectrum method by characterizing ripple error as rotationally symmetric periodic structures. The influence of two major parameter of ripple including spatial frequency and peak-to-valley value to sidelobe is discussed. The results indicate that spatial frequency and peak-to-valley value both impact sidelobe at the image plane. The peak-tovalley value is the major factor to affect the energy proportion of the sidelobe. The spatial frequency is the major factor to affect the distribution of the sidelobe at the image plane.
C-band radar pulse Doppler error: Its discovery, modeling, and elimination
NASA Technical Reports Server (NTRS)
Krabill, W. B.; Dempsey, D. J.
1978-01-01
The discovery of a C Band radar pulse Doppler error is discussed and use of the GEOS 3 satellite's coherent transponder to isolate the error source is described. An analysis of the pulse Doppler tracking loop is presented and a mathematical model for the error was developed. Error correction techniques were developed and are described including implementation details.
NASA Astrophysics Data System (ADS)
Wozniak, Kaitlin T.; Germer, Thomas A.; Butler, Sam C.; Brooks, Daniel R.; Huxlin, Krystel R.; Ellis, Jonathan D.
2018-02-01
We present measurements of light scatter induced by a new ultrafast laser technique being developed for laser refractive correction in transparent ophthalmic materials such as cornea, contact lenses, and/or intraocular lenses. In this new technique, called intra-tissue refractive index shaping (IRIS), a 405 nm femtosecond laser is focused and scanned below the corneal surface, inducing a spatially-varying refractive index change that corrects vision errors. In contrast with traditional laser correction techniques, such as laser in-situ keratomileusis (LASIK) or photorefractive keratectomy (PRK), IRIS does not operate via photoablation, but rather changes the refractive index of transparent materials such as cornea and hydrogels. A concern with any laser eye correction technique is additional scatter induced by the process, which can adversely affect vision, especially at night. The goal of this investigation is to identify sources of scatter induced by IRIS and to mitigate possible effects on visual performance in ophthalmic applications. Preliminary light scattering measurements on patterns written into hydrogel showed four sources of scatter, differentiated by distinct behaviors: (1) scattering from scanned lines; (2) scattering from stitching errors, resulting from adjacent scanning fields not being aligned to one another; (3) diffraction from Fresnel zone discontinuities; and (4) long-period variations in the scans that created distinct diffraction peaks, likely due to inconsistent line spacing in the writing instrument. By knowing the nature of these different scattering errors, it will now be possible to modify and optimize the design of IRIS structures to mitigate potential deficits in visual performance in human clinical trials.
Interpolating precipitation and its relation to runoff and non-point source pollution.
Chang, Chia-Ling; Lo, Shang-Lien; Yu, Shaw-L
2005-01-01
When rainfall spatially varies, complete rainfall data for each region with different rainfall characteristics are very important. Numerous interpolation methods have been developed for estimating unknown spatial characteristics. However, no interpolation method is suitable for all circumstances. In this study, several methods, including the arithmetic average method, the Thiessen Polygons method, the traditional inverse distance method, and the modified inverse distance method, were used to interpolate precipitation. The modified inverse distance method considers not only horizontal distances but also differences between the elevations of the region with no rainfall records and of its surrounding rainfall stations. The results show that when the spatial variation of rainfall is strong, choosing a suitable interpolation method is very important. If the rainfall is uniform, the precipitation estimated using any interpolation method would be quite close to the actual precipitation. When rainfall is heavy in locations with high elevation, the rainfall changes with the elevation. In this situation, the modified inverse distance method is much more effective than any other method discussed herein for estimating the rainfall input for WinVAST to estimate runoff and non-point source pollution (NPSP). When the spatial variation of rainfall is random, regardless of the interpolation method used to yield rainfall input, the estimation errors of runoff and NPSP are large. Moreover, the relationship between the relative error of the predicted runoff and predicted pollutant loading of SS is high. However, the pollutant concentration is affected by both runoff and pollutant export, so the relationship between the relative error of the predicted runoff and the predicted pollutant concentration of SS may be unstable.
Time assignment system and its performance aboard the Hitomi satellite
NASA Astrophysics Data System (ADS)
Terada, Yukikatsu; Yamaguchi, Sunao; Sugimoto, Shigenobu; Inoue, Taku; Nakaya, Souhei; Murakami, Maika; Yabe, Seiya; Oshimizu, Kenya; Ogawa, Mina; Dotani, Tadayasu; Ishisaki, Yoshitaka; Mizushima, Kazuyo; Kominato, Takashi; Mine, Hiroaki; Hihara, Hiroki; Iwase, Kaori; Kouzu, Tomomi; Tashiro, Makoto S.; Natsukari, Chikara; Ozaki, Masanobu; Kokubun, Motohide; Takahashi, Tadayuki; Kawakami, Satoko; Kasahara, Masaru; Kumagai, Susumu; Angelini, Lorella; Witthoeft, Michael
2018-01-01
Fast timing capability in x-ray observation of astrophysical objects is one of the key properties for the ASTRO-H (Hitomi) mission. Absolute timing accuracies of 350 or 35 μs are required to achieve nominal scientific goals or to study fast variabilities of specific sources. The satellite carries a GPS receiver to obtain accurate time information, which is distributed from the central onboard computer through the large and complex SpaceWire network. The details of the time system on the hardware and software design are described. In the distribution of the time information, the propagation delays and jitters affect the timing accuracy. Six other items identified within the timing system will also contribute to absolute time error. These error items have been measured and checked on ground to ensure the time error budgets meet the mission requirements. The overall timing performance in combination with hardware performance, software algorithm, and the orbital determination accuracies, etc. under nominal conditions satisfies the mission requirements of 35 μs. This work demonstrates key points for space-use instruments in hardware and software designs and calibration measurements for fine timing accuracy on the order of microseconds for midsized satellites using the SpaceWire (IEEE1355) network.
Metainference: A Bayesian inference method for heterogeneous systems
Bonomi, Massimiliano; Camilloni, Carlo; Cavalli, Andrea; Vendruscolo, Michele
2016-01-01
Modeling a complex system is almost invariably a challenging task. The incorporation of experimental observations can be used to improve the quality of a model and thus to obtain better predictions about the behavior of the corresponding system. This approach, however, is affected by a variety of different errors, especially when a system simultaneously populates an ensemble of different states and experimental data are measured as averages over such states. To address this problem, we present a Bayesian inference method, called “metainference,” that is able to deal with errors in experimental measurements and with experimental measurements averaged over multiple states. To achieve this goal, metainference models a finite sample of the distribution of models using a replica approach, in the spirit of the replica-averaging modeling based on the maximum entropy principle. To illustrate the method, we present its application to a heterogeneous model system and to the determination of an ensemble of structures corresponding to the thermal fluctuations of a protein molecule. Metainference thus provides an approach to modeling complex systems with heterogeneous components and interconverting between different states by taking into account all possible sources of errors. PMID:26844300
Stochastic modeling for time series InSAR: with emphasis on atmospheric effects
NASA Astrophysics Data System (ADS)
Cao, Yunmeng; Li, Zhiwei; Wei, Jianchao; Hu, Jun; Duan, Meng; Feng, Guangcai
2018-02-01
Despite the many applications of time series interferometric synthetic aperture radar (TS-InSAR) techniques in geophysical problems, error analysis and assessment have been largely overlooked. Tropospheric propagation error is still the dominant error source of InSAR observations. However, the spatiotemporal variation of atmospheric effects is seldom considered in the present standard TS-InSAR techniques, such as persistent scatterer interferometry and small baseline subset interferometry. The failure to consider the stochastic properties of atmospheric effects not only affects the accuracy of the estimators, but also makes it difficult to assess the uncertainty of the final geophysical results. To address this issue, this paper proposes a network-based variance-covariance estimation method to model the spatiotemporal variation of tropospheric signals, and to estimate the temporal variance-covariance matrix of TS-InSAR observations. The constructed stochastic model is then incorporated into the TS-InSAR estimators both for parameters (e.g., deformation velocity, topography residual) estimation and uncertainty assessment. It is an incremental and positive improvement to the traditional weighted least squares methods to solve the multitemporal InSAR time series. The performance of the proposed method is validated by using both simulated and real datasets.
NASA Technical Reports Server (NTRS)
Karteris, M. A. (Principal Investigator)
1980-01-01
A winter black and white band 5, a winter color, a fall color, and a diazo color composite of the fall scene were used to assess the use and potential of LANDSAT images for mapping and estimating acreage of small scattered forest tracts in Barry County, Michigan. Forests as small as 2.5 acres were mapped from each LANDSAT data source. The maps for each image were compared with an available forest-type map. Mapping errors detected were categorized as boundary and identification errors. The most frequently misclassified areas were agriculture lands, treed-bogs, brushlands and lowland and mixed hardwood stands. Stocking level affected interpretation more than stand size. The overall level of the interpretation performance was expressed through the estimation of classification, interpretation, and mapping accuracies. These accuracies ranged from 74 between 74% and 98%. Considering errors, accuracy, and cost, winter color imagery is the best LANDSAT alternative for mapping small forest tracts. However, since the availability of cloud-free winter images of the study area is significantly lower than images for other seasons, a diazo enhanced image of a fall scene is recommended as the best next best alternative.
Travel-time source-specific station correction improves location accuracy
NASA Astrophysics Data System (ADS)
Giuntini, Alessandra; Materni, Valerio; Chiappini, Stefano; Carluccio, Roberto; Console, Rodolfo; Chiappini, Massimo
2013-04-01
Accurate earthquake locations are crucial for investigating seismogenic processes, as well as for applications like verifying compliance to the Comprehensive Test Ban Treaty (CTBT). Earthquake location accuracy is related to the degree of knowledge about the 3-D structure of seismic wave velocity in the Earth. It is well known that modeling errors of calculated travel times may have the effect of shifting the computed epicenters far from the real locations by a distance even larger than the size of the statistical error ellipses, regardless of the accuracy in picking seismic phase arrivals. The consequences of large mislocations of seismic events in the context of the CTBT verification is particularly critical in order to trigger a possible On Site Inspection (OSI). In fact, the Treaty establishes that an OSI area cannot be larger than 1000 km2, and its larger linear dimension cannot be larger than 50 km. Moreover, depth accuracy is crucial for the application of the depth event screening criterion. In the present study, we develop a method of source-specific travel times corrections based on a set of well located events recorded by dense national seismic networks in seismically active regions. The applications concern seismic sequences recorded in Japan, Iran and Italy. We show that mislocations of the order of 10-20 km affecting the epicenters, as well as larger mislocations in hypocentral depths, calculated from a global seismic network and using the standard IASPEI91 travel times can be effectively removed by applying source-specific station corrections.
Adaptive Sparse Representation for Source Localization with Gain/Phase Errors
Sun, Ke; Liu, Yimin; Meng, Huadong; Wang, Xiqin
2011-01-01
Sparse representation (SR) algorithms can be implemented for high-resolution direction of arrival (DOA) estimation. Additionally, SR can effectively separate the coherent signal sources because the spectrum estimation is based on the optimization technique, such as the L1 norm minimization, but not on subspace orthogonality. However, in the actual source localization scenario, an unknown gain/phase error between the array sensors is inevitable. Due to this nonideal factor, the predefined overcomplete basis mismatches the actual array manifold so that the estimation performance is degraded in SR. In this paper, an adaptive SR algorithm is proposed to improve the robustness with respect to the gain/phase error, where the overcomplete basis is dynamically adjusted using multiple snapshots and the sparse solution is adaptively acquired to match with the actual scenario. The simulation results demonstrate the estimation robustness to the gain/phase error using the proposed method. PMID:22163875
Kaldjian, Lauris C; Jones, Elizabeth W; Rosenthal, Gary E; Tripp-Reimer, Toni; Hillis, Stephen L
2006-01-01
BACKGROUND Physician disclosure of medical errors to institutions, patients, and colleagues is important for patient safety, patient care, and professional education. However, the variables that may facilitate or impede disclosure are diverse and lack conceptual organization. OBJECTIVE To develop an empirically derived, comprehensive taxonomy of factors that affects voluntary disclosure of errors by physicians. DESIGN A mixed-methods study using qualitative data collection (structured literature search and exploratory focus groups), quantitative data transformation (sorting and hierarchical cluster analysis), and validation procedures (confirmatory focus groups and expert review). RESULTS Full-text review of 316 articles identified 91 impeding or facilitating factors affecting physicians' willingness to disclose errors. Exploratory focus groups identified an additional 27 factors. Sorting and hierarchical cluster analysis organized factors into 8 domains. Confirmatory focus groups and expert review relocated 6 factors, removed 2 factors, and modified 4 domain names. The final taxonomy contained 4 domains of facilitating factors (responsibility to patient, responsibility to self, responsibility to profession, responsibility to community), and 4 domains of impeding factors (attitudinal barriers, uncertainties, helplessness, fears and anxieties). CONCLUSIONS A taxonomy of facilitating and impeding factors provides a conceptual framework for a complex field of variables that affects physicians' willingness to disclose errors to institutions, patients, and colleagues. This taxonomy can be used to guide the design of studies to measure the impact of different factors on disclosure, to assist in the design of error-reporting systems, and to inform educational interventions to promote the disclosure of errors to patients. PMID:16918739
NASA Astrophysics Data System (ADS)
Chen, Shanyong; Li, Shengyi; Wang, Guilin
2014-11-01
The wavefront error of large telescopes requires to be measured to check the system quality and also estimate the misalignment of the telescope optics including the primary, the secondary and so on. It is usually realized by a focal plane interferometer and an autocollimator flat (ACF) of the same aperture with the telescope. However, it is challenging for meter class telescopes due to high cost and technological challenges in producing the large ACF. Subaperture test with a smaller ACF is hence proposed in combination with advanced stitching algorithms. Major error sources include the surface error of the ACF, misalignment of the ACF and measurement noises. Different error sources have different impacts on the wavefront error. Basically the surface error of the ACF behaves like systematic error and the astigmatism will be cumulated and enlarged if the azimuth of subapertures remains fixed. It is difficult to accurately calibrate the ACF because it suffers considerable deformation induced by gravity or mechanical clamping force. Therefore a selfcalibrated stitching algorithm is employed to separate the ACF surface error from the subaperture wavefront error. We suggest the ACF be rotated around the optical axis of the telescope for subaperture test. The algorithm is also able to correct the subaperture tip-tilt based on the overlapping consistency. Since all subaperture measurements are obtained in the same imaging plane, lateral shift of the subapertures is always known and the real overlapping points can be recognized in this plane. Therefore lateral positioning error of subapertures has no impact on the stitched wavefront. In contrast, the angular positioning error changes the azimuth of the ACF and finally changes the systematic error. We propose an angularly uneven layout of subapertures to minimize the stitching error, which is very different from our knowledge. At last, measurement noises could never be corrected but be suppressed by means of averaging and environmental control. We simulate the performance of the stitching algorithm dealing with surface error and misalignment of the ACF, and noise suppression, which provides guidelines to optomechanical design of the stitching test system.
NASA Technical Reports Server (NTRS)
Howlett, J. T.
1979-01-01
The partial coherence analysis method for noise source/path determination is summarized and the application to a two input, single output system with coherence between the inputs is illustrated. The augmentation of the calculations on a digital computer interfaced with a two channel, real time analyzer is also discussed. The results indicate possible sources of error in the computations and suggest procedures for avoiding these errors.
Simulating a transmon implementation of the surface code, Part I
NASA Astrophysics Data System (ADS)
Tarasinski, Brian; O'Brien, Thomas; Rol, Adriaan; Bultink, Niels; Dicarlo, Leo
Current experimental efforts aim to realize Surface-17, a distance-3 surface-code logical qubit, using transmon qubits in a circuit QED architecture. Following experimental proposals for this device, and currently achieved fidelities on physical qubits, we define a detailed error model that takes experimentally relevant error sources into account, such as amplitude and phase damping, imperfect gate pulses, and coherent errors due to low-frequency flux noise. Using the GPU-accelerated software package 'quantumsim', we simulate the density matrix evolution of the logical qubit under this error model. Combining the simulation results with a minimum-weight matching decoder, we obtain predictions for the error rate of the resulting logical qubit when used as a quantum memory, and estimate the contribution of different error sources to the logical error budget. Research funded by the Foundation for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO/OCW), IARPA, an ERC Synergy Grant, the China Scholarship Council, and Intel Corporation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menelaou, Evdokia; Paul, Latoya T.; Perera, Surangi N.
Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at differentmore » developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner. • The nicotine-induced secondary motoneuron axonal pathfinding errors can occur independent of any muscle fiber alterations. • Nicotine exposure primarily affects dorsal projecting secondary motoneurons axons. • Nicotine-induced primary motoneuron axon pathfinding errors can influence secondary motoneuron axon morphology.« less
Sources of uncertanity as a basis to fill the information gap in a response to flood
NASA Astrophysics Data System (ADS)
Kekez, Toni; Knezic, Snjezana
2016-04-01
Taking into account uncertainties in flood risk management remains a challenge due to difficulties in choosing adequate structural and/or non-structural risk management options. Despite stated measures wrong decisions are often being made when flood occurs. Parameter and structural uncertainties which include model and observation errors as well as lack of knowledge about system characteristics are the main considerations. Real time flood risk assessment methods are predominantly based on measured water level values and vulnerability as well as other relevant characteristics of flood affected area. The goal of this research is to identify sources of uncertainties and to minimize information gap between the point where the water level is measured and the affected area, taking into consideration main uncertainties that can affect risk value at the observed point or section of the river. Sources of uncertainties are identified and determined using system analysis approach and relevant uncertainties are included in the risk assessment model. With such methodological approach it is possible to increase response time with more effective risk assessment which includes uncertainty propagation model. Response phase could be better planned with adequate early warning systems resulting in more time and less costs to help affected areas and save human lives. Reliable and precise information is necessary to raise emergency operability level in order to enhance safety of citizens and reducing possible damage. The results of the EPISECC (EU funded FP7) project are used to validate potential benefits of this research in order to improve flood risk management and response methods. EPISECC aims at developing a concept of a common European Information Space for disaster response which, among other disasters, considers the floods.
Detect, correct, retract: How to manage incorrect structural models.
Wlodawer, Alexander; Dauter, Zbigniew; Porebski, Przemyslaw J; Minor, Wladek; Stanfield, Robyn; Jaskolski, Mariusz; Pozharski, Edwin; Weichenberger, Christian X; Rupp, Bernhard
2018-02-01
The massive technical and computational progress of biomolecular crystallography has generated some adverse side effects. Most crystal structure models, produced by crystallographers or well-trained structural biologists, constitute useful sources of information, but occasional extreme outliers remind us that the process of structure determination is not fail-safe. The occurrence of severe errors or gross misinterpretations raises fundamental questions: Why do such aberrations emerge in the first place? How did they evade the sophisticated validation procedures which often produce clear and dire warnings, and why were severe errors not noticed by the depositors themselves, their supervisors, referees and editors? Once detected, what can be done to either correct, improve or eliminate such models? How do incorrect models affect the underlying claims or biomedical hypotheses they were intended, but failed, to support? What is the long-range effect of the propagation of such errors? And finally, what mechanisms can be envisioned to restore the validity of the scientific record and, if necessary, retract publications that are clearly invalidated by the lack of experimental evidence? We suggest that cognitive bias and flawed epistemology are likely at the root of the problem. By using examples from the published literature and from public repositories such as the Protein Data Bank, we provide case summaries to guide correction or improvement of structural models. When strong claims are unsustainable because of a deficient crystallographic model, removal of such a model and even retraction of the affected publication are necessary to restore the integrity of the scientific record. © 2017 Federation of European Biochemical Societies.
Populin, Luis C; Tollin, Daniel J; Yin, Tom C T
2004-10-01
We examined the motor error hypothesis of visual and auditory interaction in the superior colliculus (SC), first tested by Jay and Sparks in the monkey. We trained cats to direct their eyes to the location of acoustic sources and studied the effects of eye position on both the ability of cats to localize sounds and the auditory responses of SC neurons with the head restrained. Sound localization accuracy was generally not affected by initial eye position, i.e., accuracy was not proportionally affected by the deviation of the eyes from the primary position at the time of stimulus presentation, showing that eye position is taken into account when orienting to acoustic targets. The responses of most single SC neurons to acoustic stimuli in the intact cat were modulated by eye position in the direction consistent with the predictions of the "motor error" hypothesis, but the shift accounted for only two-thirds of the initial deviation of the eyes. However, when the average horizontal sound localization error, which was approximately 35% of the target amplitude, was taken into account, the magnitude of the horizontal shifts in the SC auditory receptive fields matched the observed behavior. The modulation by eye position was not due to concomitant movements of the external ears, as confirmed by recordings carried out after immobilizing the pinnae of one cat. However, the pattern of modulation after pinnae immobilization was inconsistent with the observations in the intact cat, suggesting that, in the intact animal, information about the position of the pinnae may be taken into account.
NASA Astrophysics Data System (ADS)
Benomar, O.; Goupil, Mjo.; Belkacem, K.; Appourchaux, T.; Nielsen, M. B.; Bazot, M.; Gizon, L.; Hanasoge, S.; Sreenivasan, K. R.; Marchand, B.
2018-04-01
Oscillation properties are usually measured by fitting symmetric Lorentzian profiles to the power spectra of Sun-like stars. However, the line profiles of solar oscillations have been observed to be asymmetrical for the Sun. The physical origin of this line asymmetry is not fully understood; though, it should depend on the depth dependence of the source of wave excitation (convective turbulence) and details of the observable (velocity or intensity). For oscillations of the Sun, it has been shown that neglecting the asymmetry leads to systematic errors in the frequency determination. This could subsequently affect the results of seismic inferences of the solar internal structure. Using light curves from the Kepler spacecraft, we have measured mode asymmetries in 43 stars. We confirm that neglecting the asymmetry leads to systematic errors that can exceed the 1σ confidence intervals for seismic observations longer than one year. Therefore, the application of an asymmetric Lorentzian profile should be favored to improve the accuracy of the internal stellar structure and stellar fundamental parameters. We also show that the asymmetry changes sign between cool Sun-like stars and hotter stars. This provides the best constraints to date on the location of the excitation sources across the Hertzsprung–Russel diagram.
Crowd-sourced pictures geo-localization method based on street view images and 3D reconstruction
NASA Astrophysics Data System (ADS)
Cheng, Liang; Yuan, Yi; Xia, Nan; Chen, Song; Chen, Yanming; Yang, Kang; Ma, Lei; Li, Manchun
2018-07-01
People are increasingly becoming accustomed to taking photos of everyday life in modern cities and uploading them on major photo-sharing social media sites. These sites contain numerous pictures, but some have incomplete or blurred location information. The geo-localization of crowd-sourced pictures enriches the information contained therein, and is applicable to activities such as urban construction, urban landscape analysis, and crime tracking. However, geo-localization faces huge technical challenges. This paper proposes a method for large-scale geo-localization of crowd-sourced pictures. Our approach uses structured, organized Street View images as a reference dataset and employs a three-step strategy of coarse geo-localization by image retrieval, selecting reliable matches by image registration, and fine geo-localization by 3D reconstruction to attach geographic tags to pictures from unidentified sources. In study area, 3D reconstruction based on close-range photogrammetry is used to restore the 3D geographical information of the crowd-sourced pictures, resulting in the proposed method improving the median error from 256.7 m to 69.0 m, and the percentage of the geo-localized query pictures under a 50 m error from 17.2% to 43.2% compared with the previous method. Another discovery using the proposed method is that, in respect of the causes of reconstruction error, closer distances from the cameras to the main objects in query pictures tend to produce lower errors and the component of error parallel to the road makes a more significant contribution to the Total Error. The proposed method is not limited to small areas, and could be expanded to cities and larger areas owing to its flexible parameters.
Source Memory Errors Associated with Reports of Posttraumatic Flashbacks: A Proof of Concept Study
ERIC Educational Resources Information Center
Brewin, Chris R.; Huntley, Zoe; Whalley, Matthew G.
2012-01-01
Flashbacks are involuntary, emotion-laden images experienced by individuals with posttraumatic stress disorder (PTSD). The qualities of flashbacks could under certain circumstances lead to source memory errors. Participants with PTSD wrote a trauma narrative and reported the experience of flashbacks. They were later presented with stimuli from…
An Application of Multivariate Generalizability in Selection of Mathematically Gifted Students
ERIC Educational Resources Information Center
Kim, Sungyeun; Berebitsky, Dan
2016-01-01
This study investigates error sources and the effects of each error source to determine optimal weights of the composite score of teacher recommendation letters and self-introduction letters using multivariate generalizability theory. Data were collected from the science education institute for the gifted attached to the university located within…
Debiasing affective forecasting errors with targeted, but not representative, experience narratives.
Shaffer, Victoria A; Focella, Elizabeth S; Scherer, Laura D; Zikmund-Fisher, Brian J
2016-10-01
To determine whether representative experience narratives (describing a range of possible experiences) or targeted experience narratives (targeting the direction of forecasting bias) can reduce affective forecasting errors, or errors in predictions of experiences. In Study 1, participants (N=366) were surveyed about their experiences with 10 common medical events. Those who had never experienced the event provided ratings of predicted discomfort and those who had experienced the event provided ratings of actual discomfort. Participants making predictions were randomly assigned to either the representative experience narrative condition or the control condition in which they made predictions without reading narratives. In Study 2, participants (N=196) were again surveyed about their experiences with these 10 medical events, but participants making predictions were randomly assigned to either the targeted experience narrative condition or the control condition. Affective forecasting errors were observed in both studies. These forecasting errors were reduced with the use of targeted experience narratives (Study 2) but not representative experience narratives (Study 1). Targeted, but not representative, narratives improved the accuracy of predicted discomfort. Public collections of patient experiences should favor stories that target affective forecasting biases over stories representing the range of possible experiences. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Error affect inoculation for a complex decision-making task.
Tabernero, Carmen; Wood, Robert E
2009-05-01
Individuals bring knowledge, implicit theories, and goal orientations to group meetings. Group decisions arise out of the exchange of these orientations. This research explores how a trainee's exploratory and deliberate process (an incremental theory and learning goal orientation) impacts the effectiveness of individual and group decision-making processes. The effectiveness of this training program is compared with another program that included error affect inoculation (EAI). Subjects were 40 Spanish Policemen in a training course. They were distributed in two training conditions for an individual and group decision-making task. In one condition, individuals received the Self-Guided Exploration plus Deliberation Process instructions, which emphasised exploring the options and testing hypotheses. In the other condition, individuals also received instructions based on Error Affect Inoculation (EAI), which emphasised positive affective reactions to errors and mistakes when making decisions. Results show that the quality of decisions increases when the groups share their reasoning. The AIE intervention promotes sharing information, flexible initial viewpoints, and improving the quality of group decisions. Implications and future directions are discussed.
Impact of Tropospheric Aerosol Absorption on Ozone Retrieval from buv Measurements
NASA Technical Reports Server (NTRS)
Torres, O.; Bhartia, P. K.
1998-01-01
The impact of tropospheric aerosols on the retrieval of column ozone amounts using spaceborne measurements of backscattered ultraviolet radiation is examined. Using radiative transfer calculations, we show that uv-absorbing desert dust may introduce errors as large as 10% in ozone column amount, depending on the aerosol layer height and optical depth. Smaller errors are produced by carbonaceous aerosols that result from biomass burning. Though the error is produced by complex interactions between ozone absorption (both stratospheric and tropospheric), aerosol scattering, and aerosol absorption, a surprisingly simple correction procedure reduces the error to about 1%, for a variety of aerosols and for a wide range of aerosol loading. Comparison of the corrected TOMS data with operational data indicates that though the zonal mean total ozone derived from TOMS are not significantly affected by these errors, localized affects in the tropics can be large enough to seriously affect the studies of tropospheric ozone that are currently undergoing using the TOMS data.
Developing Performance Estimates for High Precision Astrometry with TMT
NASA Astrophysics Data System (ADS)
Schoeck, Matthias; Do, Tuan; Ellerbroek, Brent; Herriot, Glen; Meyer, Leo; Suzuki, Ryuji; Wang, Lianqi; Yelda, Sylvana
2013-12-01
Adaptive optics on Extremely Large Telescopes will open up many new science cases or expand existing science into regimes unattainable with the current generation of telescopes. One example of this is high-precision astrometry, which has requirements in the range from 10 to 50 micro-arc-seconds for some instruments and science cases. Achieving these requirements imposes stringent constraints on the design of the entire observatory, but also on the calibration procedures, observing sequences and the data analysis techniques. This paper summarizes our efforts to develop a top down astrometry error budget for TMT. It is predominantly developed for the first-light AO system, NFIRAOS, and the IRIS instrument, but many terms are applicable to other configurations as well. Astrometry error sources are divided into 5 categories: Reference source and catalog errors, atmospheric refraction correction errors, other residual atmospheric effects, opto-mechanical errors and focal plane measurement errors. Results are developed in parametric form whenever possible. However, almost every error term in the error budget depends on the details of the astrometry observations, such as whether absolute or differential astrometry is the goal, whether one observes a sparse or crowded field, what the time scales of interest are, etc. Thus, it is not possible to develop a single error budget that applies to all science cases and separate budgets are developed and detailed for key astrometric observations. Our error budget is consistent with the requirements for differential astrometry of tens of micro-arc-seconds for certain science cases. While no show stoppers have been found, the work has resulted in several modifications to the NFIRAOS optical surface specifications and reference source design that will help improve the achievable astrometry precision even further.
Radio-planetary from tie from Phobos-2 VLBI data
NASA Technical Reports Server (NTRS)
Hildebrand, C. E.; Iijima, B. A.; Kroger, P. M.; Folkner, W. M.; Edwards, C. D.
1994-01-01
In an ongoing effort to improve the knowledge of the relative orientation (the 'frame tie') of the planetary ephemeris reference frame used in deep navigation and a second reference frame that is defined by the coordinates of a set of extragalactic radio sources, VLBI observations of the Soviet Phobos-2 spacecraft and nearby (in angle) radio sources were obtained at two epochs in 1989, shortly after the spacecraft entered orbit about Mars. The frame tie is an important systematic error source affecting both interplanetary navigation and the process of improving the theory of the Earth's orientation. The data from a single Phobos-2 VLBI session measure one component of the direction vector from Earth to Mars in the frame of the extragalactic radio sources (the 'radio frame'). The radio frame has been shown to be stable and internally consistent with an accuracy of 5 nrad. The planetary ephemeris reference frame has an internal consistency of approximately 15 nrad. The planetary and radio source reference frames were aligned prior to 1989 and measurements of occulations of the radio source 3C273 by the Moon. The Phobos-2 VLBI measurements provide improvement in the accuracy of two of the three angles describing a general rotation between the planetary and radio reference frames. A complete set of measurements is not available because data acquisition was terminated prematurely by loss of spacecraft. The analysis of the two Phobos-2 VLBI data sets indicates that, in the directions of the two rotation components determined by these data, the JPL planetary ephemeris DE200 is aligned with the radio frame as adopted by the International Earth Rotation Service within an accuracy of 20-40 nrad, depending on direction. The limiting errors in the solutions for these offsets are spacecraft trajectory (20 nrad), instrumental biases (19 nrad), and dependence of quasar coordinates on observing frequency (24 nrad).
Uncertainty Analyses for Back Projection Methods
NASA Astrophysics Data System (ADS)
Zeng, H.; Wei, S.; Wu, W.
2017-12-01
So far few comprehensive error analyses for back projection methods have been conducted, although it is evident that high frequency seismic waves can be easily affected by earthquake depth, focal mechanisms and the Earth's 3D structures. Here we perform 1D and 3D synthetic tests for two back projection methods, MUltiple SIgnal Classification (MUSIC) (Meng et al., 2011) and Compressive Sensing (CS) (Yao et al., 2011). We generate synthetics for both point sources and finite rupture sources with different depths, focal mechanisms, as well as 1D and 3D structures in the source region. The 3D synthetics are generated through a hybrid scheme of Direct Solution Method and Spectral Element Method. Then we back project the synthetic data using MUSIC and CS. The synthetic tests show that the depth phases can be back projected as artificial sources both in space and time. For instance, for a source depth of 10km, back projection gives a strong signal 8km away from the true source. Such bias increases with depth, e.g., the error of horizontal location could be larger than 20km for a depth of 40km. If the array is located around the nodal direction of direct P-waves the teleseismic P-waves are dominated by the depth phases. Therefore, back projections are actually imaging the reflection points of depth phases more than the rupture front. Besides depth phases, the strong and long lasted coda waves due to 3D effects near trench can lead to additional complexities tested here. The strength contrast of different frequency contents in the rupture models also produces some variations to the back projection results. In the synthetic tests, MUSIC and CS derive consistent results. While MUSIC is more computationally efficient, CS works better for sparse arrays. In summary, our analyses indicate that the impact of various factors mentioned above should be taken into consideration when interpreting back projection images, before we can use them to infer the earthquake rupture physics.
Surface characterization protocol for precision aspheric optics
NASA Astrophysics Data System (ADS)
Sarepaka, RamaGopal V.; Sakthibalan, Siva; Doodala, Somaiah; Panwar, Rakesh S.; Kotaria, Rajendra
2017-10-01
In Advanced Optical Instrumentation, Aspherics provide an effective performance alternative. The aspheric fabrication and surface metrology, followed by aspheric design are complementary iterative processes for Precision Aspheric development. As in fabrication, a holistic approach of aspheric surface characterization is adopted to evaluate actual surface error and to aim at the deliverance of aspheric optics with desired surface quality. Precision optical surfaces are characterized by profilometry or by interferometry. Aspheric profiles are characterized by contact profilometers, through linear surface scans to analyze their Form, Figure and Finish errors. One must ensure that, the surface characterization procedure does not add to the resident profile errors (generated during the aspheric surface fabrication). This presentation examines the errors introduced post-surface generation and during profilometry of aspheric profiles. This effort is to identify sources of errors and is to optimize the metrology process. The sources of error during profilometry may be due to: profilometer settings, work-piece placement on the profilometer stage, selection of zenith/nadir points of aspheric profiles, metrology protocols, clear aperture - diameter analysis, computational limitations of the profiler and the software issues etc. At OPTICA, a PGI 1200 FTS contact profilometer (Taylor-Hobson make) is used for this study. Precision Optics of various profiles are studied, with due attention to possible sources of errors during characterization, with multi-directional scan approach for uniformity and repeatability of error estimation. This study provides an insight of aspheric surface characterization and helps in optimal aspheric surface production methodology.
Information-Gathering Patterns Associated with Higher Rates of Diagnostic Error
ERIC Educational Resources Information Center
Delzell, John E., Jr.; Chumley, Heidi; Webb, Russell; Chakrabarti, Swapan; Relan, Anju
2009-01-01
Diagnostic errors are an important source of medical errors. Problematic information-gathering is a common cause of diagnostic errors among physicians and medical students. The objectives of this study were to (1) determine if medical students' information-gathering patterns formed clusters of similar strategies, and if so (2) to calculate the…
More on Systematic Error in a Boyle's Law Experiment
ERIC Educational Resources Information Center
McCall, Richard P.
2012-01-01
A recent article in "The Physics Teacher" describes a method for analyzing a systematic error in a Boyle's law laboratory activity. Systematic errors are important to consider in physics labs because they tend to bias the results of measurements. There are numerous laboratory examples and resources that discuss this common source of error.
Adult age differences in unconscious transference: source confusion or identity blending?
Perfect, Timothy J; Harris, Lucy J
2003-06-01
Eyewitnesses are known often to falsely identify a familiar but innocent bystander when asked to pick out a perpetrator from a lineup. Such unconscious transference errors have been attributed to either identity confusions at encoding or source retrieval errors. Three experiments contrasted younger and older adults in their susceptibility to such misidentifications. Participants saw photographs of perpetrators, then a series of mug shots of innocent bystanders. A week later, they saw lineups containing bystanders (and others containing perpetrators in Experiment 3) and were asked whether any of the perpetrators were present. When younger faces were used as stimuli (Experiments 1 and 3), older adults showed higher rates of transference errors. When older faces were used as stimuli (Experiments 2 and 3), no such age effects in rates of unconscious transference were apparent. In addition, older adults in Experiment 3 showed an own-age bias effect for correct identification of targets. Unconscious transference errors were found to be due to both source retrieval errors and identity confusions, but age-related increases were found only in the latter.
NASA Astrophysics Data System (ADS)
Zheng, Yuejiu; Ouyang, Minggao; Han, Xuebing; Lu, Languang; Li, Jianqiu
2018-02-01
Sate of charge (SOC) estimation is generally acknowledged as one of the most important functions in battery management system for lithium-ion batteries in new energy vehicles. Though every effort is made for various online SOC estimation methods to reliably increase the estimation accuracy as much as possible within the limited on-chip resources, little literature discusses the error sources for those SOC estimation methods. This paper firstly reviews the commonly studied SOC estimation methods from a conventional classification. A novel perspective focusing on the error analysis of the SOC estimation methods is proposed. SOC estimation methods are analyzed from the views of the measured values, models, algorithms and state parameters. Subsequently, the error flow charts are proposed to analyze the error sources from the signal measurement to the models and algorithms for the widely used online SOC estimation methods in new energy vehicles. Finally, with the consideration of the working conditions, choosing more reliable and applicable SOC estimation methods is discussed, and the future development of the promising online SOC estimation methods is suggested.
Recent Improvements in AMSR2 Ground-Based RFI Filtering
NASA Astrophysics Data System (ADS)
Scott, J. P.; Gentemann, C. L.; Wentz, F. J.
2015-12-01
Passive satellite radiometer measurements in the microwave frequencies (6-89 GHz) are useful in providing geophysical retrievals of sea surface temperature (SST), atmospheric water vapor, wind speed, rain rate, and more. However, radio frequency interference (RFI) is one of the fastest growing sources of error in these retrievals. RFI can originate from broadcasting satellites, as well as from ground-based instrumentation that makes use of the microwave range. The microwave channel bandwidths used by passive satellite radiometers are often wider than the protected bands allocated for this type of remote sensing, a common practice in microwave radiometer design used to reduce the effect of instrument noise in the observed signal. However, broad channel bandwidths allow greater opportunity for RFI to affect these observations and retrievals. For ground-based RFI, a signal is broadcast directly into the atmosphere which may interfere with the radiometer - its antenna, cold mirror, hot load or the internal workings of the radiometer itself. It is relatively easy to identify and flag RFI from large sources, but more difficult to do so from small, sporadic sources. Ground-based RFI has high spatial and temporal variability, requiring constant, automated detection and removal to avoid spurious trends leaching into the geophysical retrievals. Ascension Island in the South Atlantic Ocean has been one of these notorious ground-based RFI sources, affecting many microwave radiometers, including the AMSR2 radiometer onboard JAXA's GCOM-W1 satellite. Ascension Island RFI mainly affects AMSR2's lower frequency channels (6.9, 7.3, and 10.65 GHz) over a broad spatial region in the South Atlantic Ocean, which makes it challenging to detect and flag this RFI using conventional channel and geophysical retrieval differencing techniques. The authors have developed a new method of using the radiometer's earth counts and hot counts, for the affected channels, to detect an Ascension Island RFI event and flag the data efficiently and accurately, thereby reducing false detections and optimizing retrieval quality and data preservation.
NASA Astrophysics Data System (ADS)
Demir, Alper
2005-08-01
Oscillators are key components of many kinds of systems, particularly electronic and opto-electronic systems. Undesired perturbations, i.e. noise, that exist in practical systems adversely affect the spectral and timing properties of the signals generated by oscillators resulting in phase noise and timing jitter. These are key performance limiting factors, being major contributors to bit-error-rate (BER) of RF and optical communication systems, and creating synchronization problems in clocked and sampled-data electronic systems. In noise analysis for oscillators, the key is figuring out how the various disturbances and noise sources in the oscillator end up as phase fluctuations. In doing so, one first computes transfer functions from the noise sources to the oscillator phase, or the sensitivity of the oscillator phase to these noise sources. In this paper, we first provide a discussion explaining the origins and the proper definition of this transfer or sensitivity function, followed by a critical review of the various numerical techniques for its computation that have been proposed by various authors over the past fifteen years.
Testing the Recognition and Perception of Errors in Context
ERIC Educational Resources Information Center
Brandenburg, Laura C.
2015-01-01
This study tests the recognition of errors in context and whether the presence of errors affects the reader's perception of the writer's ethos. In an experimental, posttest only design, participants were randomly assigned a memo to read in an online survey: one version with errors and one version without. Of the six intentional errors in version…
[The error, source of learning].
Joyeux, Stéphanie; Bohic, Valérie
2016-05-01
The error itself is not recognised as a fault. It is the intentionality which differentiates between an error and a fault. An error is unintentional while a fault is a failure to respect known rules. The risk of error is omnipresent in health institutions. Public authorities have therefore set out a series of measures to reduce this risk. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Types of Possible Survey Errors in Estimates Published in the Weekly Natural Gas Storage Report
2016-01-01
This document lists types of potential errors in EIA estimates published in the WNGSR. Survey errors are an unavoidable aspect of data collection. Error is inherent in all collected data, regardless of the source of the data and the care and competence of data collectors. The type and extent of error depends on the type and characteristics of the survey.
A spectrally tunable solid-state source for radiometric, photometric, and colorimetric applications
NASA Astrophysics Data System (ADS)
Fryc, Irena; Brown, Steven W.; Eppeldauer, George P.; Ohno, Yoshihiro
2004-10-01
A spectrally tunable light source using a large number of LEDs and an integrating sphere has been designed and being developed at NIST. The source is designed to have a capability of producing any spectral distributions mimicking various light sources in the visible region by feedback control of individual LEDs. The output spectral irradiance or radiance of the source will be calibrated by a reference instrument, and the source will be used as a spectroradiometric as well as photometric and colorimetric standard. The use of the tunable source mimicking spectra of display colors, for example, rather than a traditional incandescent standard lamp for calibration of colorimeters, can reduce the spectral mismatch errors of the colorimeter measuring displays significantly. A series of simulations have been conducted to predict the performance of the designed tunable source when used for calibration of colorimeters. The results indicate that the errors can be reduced by an order of magnitude compared with those when the colorimeters are calibrated against Illuminant A. Stray light errors of a spectroradiometer can also be effectively reduced by using the tunable source producing a blackbody spectrum at higher temperature (e.g., 9000 K). The source can also approximate various CIE daylight illuminants and common lamp spectral distributions for other photometric and colorimetric applications.
Cognitive aspect of diagnostic errors.
Phua, Dong Haur; Tan, Nigel C K
2013-01-01
Diagnostic errors can result in tangible harm to patients. Despite our advances in medicine, the mental processes required to make a diagnosis exhibits shortcomings, causing diagnostic errors. Cognitive factors are found to be an important cause of diagnostic errors. With new understanding from psychology and social sciences, clinical medicine is now beginning to appreciate that our clinical reasoning can take the form of analytical reasoning or heuristics. Different factors like cognitive biases and affective influences can also impel unwary clinicians to make diagnostic errors. Various strategies have been proposed to reduce the effect of cognitive biases and affective influences when clinicians make diagnoses; however evidence for the efficacy of these methods is still sparse. This paper aims to introduce the reader to the cognitive aspect of diagnostic errors, in the hope that clinicians can use this knowledge to improve diagnostic accuracy and patient outcomes.
A Regularizer Approach for RBF Networks Under the Concurrent Weight Failure Situation.
Leung, Chi-Sing; Wan, Wai Yan; Feng, Ruibin
2017-06-01
Many existing results on fault-tolerant algorithms focus on the single fault source situation, where a trained network is affected by one kind of weight failure. In fact, a trained network may be affected by multiple kinds of weight failure. This paper first studies how the open weight fault and the multiplicative weight noise degrade the performance of radial basis function (RBF) networks. Afterward, we define the objective function for training fault-tolerant RBF networks. Based on the objective function, we then develop two learning algorithms, one batch mode and one online mode. Besides, the convergent conditions of our online algorithm are investigated. Finally, we develop a formula to estimate the test set error of faulty networks trained from our approach. This formula helps us to optimize some tuning parameters, such as RBF width.
Dynamics of Complex Systems Built as Coupled Physical, Communication and Decision Layers
Kühnlenz, Florian; Nardelli, Pedro H. J.
2016-01-01
This paper proposes a simple model to capture the complexity of multilayer systems where their constituent layers affect, and are affected by, each other. The physical layer is a circuit composed by a power source and resistors in parallel. Every individual agent aims at maximizing its own delivered power by adding, removing or keeping the resistors it has; the delivered power is in turn a non-linear function that depends on the other agents’ behavior, its own internal state, its global state perception, the information received from its neighbors via the communication network and a randomized selfishness. We develop an agent-based simulation to analyze the effects of number of agents (system size), communication network topology, communication errors and the minimum power gain that triggers a behavioral change on the system dynamic. Our results show that a wave-like behavior at macro-level (caused by individual changes in the decision layer) can only emerge for a specific system size. The ratio between cooperators and defectors depends on the minimum gain assumed—lower minimal gains lead to less cooperation, and vice-versa. Different communication network topologies imply different levels of power utilization and fairness at the physical layer, and a certain level of error in the communication layer induces more cooperation. PMID:26730590
Restoration of the ASCA Source Position Accuracy
NASA Astrophysics Data System (ADS)
Gotthelf, E. V.; Ueda, Y.; Fujimoto, R.; Kii, T.; Yamaoka, K.
2000-11-01
We present a calibration of the absolute pointing accuracy of the Advanced Satellite for Cosmology and Astrophysics (ASCA) which allows us to compensate for a large error (up to 1') in the derived source coordinates. We parameterize a temperature dependent deviation of the attitude solution which is responsible for this error. By analyzing ASCA coordinates of 100 bright active galactic nuclei, we show that it is possible to reduce the uncertainty in the sky position for any given observation by a factor of 4. The revised 90% error circle radius is then 12", consistent with preflight specifications, effectively restoring the full ASCA pointing accuracy. Herein, we derive an algorithm which compensates for this attitude error and present an internet-based table to be used to correct post facto the coordinate of all ASCA observations. While the above error circle is strictly applicable to data taken with the on-board Solid-state Imaging Spectrometers (SISs), similar coordinate corrections are derived for data obtained with the Gas Imaging Spectrometers (GISs), which, however, have additional instrumental uncertainties. The 90% error circle radius for the central 20' diameter of the GIS is 24". The large reduction in the error circle area for the two instruments offers the opportunity to greatly enhance the search for X-ray counterparts at other wavelengths. This has important implications for current and future ASCA source catalogs and surveys.
Vaskinn, Anja; Andersson, Stein; Østefjells, Tiril; Andreassen, Ole A; Sundet, Kjetil
2018-06-05
Theory of mind (ToM) can be divided into cognitive and affective ToM, and a distinction can be made between overmentalizing and undermentalizing errors. Research has shown that ToM in schizophrenia is associated with non-social and social cognition, and with clinical symptoms. In this study, we investigate cognitive and clinical predictors of different ToM processes. Ninety-one individuals with schizophrenia participated. ToM was measured with the Movie for the Assessment of Social Cognition (MASC) yielding six scores (total ToM, cognitive ToM, affective ToM, overmentalizing errors, undermentalizing errors and no mentalizing errors). Neurocognition was indexed by a composite score based on the non-social cognitive tests in the MATRICS Consensus Cognitive Battery (MCCB). Emotion perception was measured with Emotion in Biological Motion (EmoBio), a point-light walker task. Clinical symptoms were assessed with the Positive and Negative Syndrome Scale (PANSS). Seventy-one healthy control (HC) participants completed the MASC. Individuals with schizophrenia showed large impairments compared to HC for all MASC scores, except overmentalizing errors. Hierarchical regression analyses with the six different MASC scores as dependent variables revealed that MCCB was a significant predictor of all MASC scores, explaining 8-18% of the variance. EmoBio increased the explained variance significantly, to 17-28%, except for overmentalizing errors. PANSS excited symptoms increased explained variance for total ToM, affective ToM and no mentalizing errors. Both social and non-social cognition were significant predictors of ToM. Overmentalizing was only predicted by non-social cognition. Excited symptoms contributed to overall and affective ToM, and to no mentalizing errors. Copyright © 2018 Elsevier Inc. All rights reserved.
Sproul, Ashley; Goodine, Carole; Moore, David; McLeod, Amy; Gordon, Jacqueline; Digby, Jennifer; Stoica, George
2018-01-01
Medication reconciliation at transitions of care increases patient safety. Collection of an accurate best possible medication history (BPMH) on admission is a key step. National quality indicators are used as surrogate markers for BPMH quality, but no literature on their accuracy exists. Obtaining a high-quality BPMH is often labour- and resource-intensive. Pharmacy students are now being assigned to obtain BPMHs, as a cost-effective means to increase BPMH completion, despite limited information to support the quality of BPMHs obtained by students relative to other health care professionals. To determine whether the national quality indicator of using more than one source to complete a BPMH is a true marker of quality and to assess whether BPMHs obtained by pharmacy students were of quality equal to those obtained by nurses. This prospective trial compared BPMHs for the same group of patients collected by nurses and by trained pharmacy students in the emergency departments of 2 sites within a large health network over a 2-month period (July and August 2016). Discrepancies between the 2 versions were identified by a pharmacist, who determined which party (nurse, pharmacy student, or both) had made an error. A panel of experts reviewed the errors and ranked their severity. BPMHs were prepared for a total of 40 patients. Those prepared by nurses were more likely to contain an error than those prepared by pharmacy students (171 versus 43 errors, p = 0.006). There was a nonsignificant trend toward less severe errors in BPMHs completed by pharmacy students. There was no significant difference in the mean number of errors in relation to the specified quality indicator (mean of 2.7 errors for BPMHs prepared from 1 source versus 4.8 errors for BPMHs prepared from ≥ 2 sources, p = 0.08). The surrogate marker (number of BPMH sources) may not reflect BPMH quality. However, it appears that BPMHs prepared by pharmacy students had fewer errors and were of similar quality (in terms of clinically significant errors) relative to those prepared by nurses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passarge, M; Fix, M K; Manser, P
Purpose: To create and test an accurate EPID-frame-based VMAT QA metric to detect gross dose errors in real-time and to provide information about the source of error. Methods: A Swiss cheese model was created for an EPID-based real-time QA process. The system compares a treatmentplan- based reference set of EPID images with images acquired over each 2° gantry angle interval. The metric utilizes a sequence of independent consecutively executed error detection Methods: a masking technique that verifies infield radiation delivery and ensures no out-of-field radiation; output normalization checks at two different stages; global image alignment to quantify rotation, scaling andmore » translation; standard gamma evaluation (3%, 3 mm) and pixel intensity deviation checks including and excluding high dose gradient regions. Tolerances for each test were determined. For algorithm testing, twelve different types of errors were selected to modify the original plan. Corresponding predictions for each test case were generated, which included measurement-based noise. Each test case was run multiple times (with different noise per run) to assess the ability to detect introduced errors. Results: Averaged over five test runs, 99.1% of all plan variations that resulted in patient dose errors were detected within 2° and 100% within 4° (∼1% of patient dose delivery). Including cases that led to slightly modified but clinically equivalent plans, 91.5% were detected by the system within 2°. Based on the type of method that detected the error, determination of error sources was achieved. Conclusion: An EPID-based during-treatment error detection system for VMAT deliveries was successfully designed and tested. The system utilizes a sequence of methods to identify and prevent gross treatment delivery errors. The system was inspected for robustness with realistic noise variations, demonstrating that it has the potential to detect a large majority of errors in real-time and indicate the error source. J. V. Siebers receives funding support from Varian Medical Systems.« less
Quantifying uncertainty in carbon and nutrient pools of coarse woody debris
NASA Astrophysics Data System (ADS)
See, C. R.; Campbell, J. L.; Fraver, S.; Domke, G. M.; Harmon, M. E.; Knoepp, J. D.; Woodall, C. W.
2016-12-01
Woody detritus constitutes a major pool of both carbon and nutrients in forested ecosystems. Estimating coarse wood stocks relies on many assumptions, even when full surveys are conducted. Researchers rarely report error in coarse wood pool estimates, despite the importance to ecosystem budgets and modelling efforts. To date, no study has attempted a comprehensive assessment of error rates and uncertainty inherent in the estimation of this pool. Here, we use Monte Carlo analysis to propagate the error associated with the major sources of uncertainty present in the calculation of coarse wood carbon and nutrient (i.e., N, P, K, Ca, Mg, Na) pools. We also evaluate individual sources of error to identify the importance of each source of uncertainty in our estimates. We quantify sampling error by comparing the three most common field methods used to survey coarse wood (two transect methods and a whole-plot survey). We quantify the measurement error associated with length and diameter measurement, and technician error in species identification and decay class using plots surveyed by multiple technicians. We use previously published values of model error for the four most common methods of volume estimation: Smalian's, conical frustum, conic paraboloid, and average-of-ends. We also use previously published values for error in the collapse ratio (cross-sectional height/width) of decayed logs that serves as a surrogate for the volume remaining. We consider sampling error in chemical concentration and density for all decay classes, using distributions from both published and unpublished studies. Analytical uncertainty is calculated using standard reference plant material from the National Institute of Standards. Our results suggest that technician error in decay classification can have a large effect on uncertainty, since many of the error distributions included in the calculation (e.g. density, chemical concentration, volume-model selection, collapse ratio) are decay-class specific.
Current Limitations on VLBI Accuracy
NASA Technical Reports Server (NTRS)
Ma, Chopo; Gipson, John; MacMillan, Daniel
1998-01-01
The contribution of VLBI to geophysics and geodesy arises from its ability to measure distances between stations in a network and to determine the orientation of stations in the network as well as the orientation of the network with respect to the external reference frame of extragalactic radio objects. Integrating nearly two decades of observations provides useful information about station positions and velocities and the orientation of the Earth, but the complications of the real world and the limitations of observing, modeling and analysis prevent recovery of all effects. Of the factors that limit the accuracy of seemingly straightforward geodetic parameters, the neutral propagation medium has been subject to the greatest scrutiny, but the treatment of the mapping function, the wet component and spatial/temporal inhomogeneities is still improving. These affect both the terrestrial scale and consistency over time. The modeling of non-secular site motions (tides and loading) has increased in sophistication, but there are some differences between the models and the observations. VLBI antennas are massive objects, so their behavior is quite unlike GPS monuments, but antenna deformations add some (generally) unmodeled signal. Radio sources used in geodetic VLBI observations are selected for strength and (relative) absence of structure, but apparent changes in position can leak into geodetic parameters. A linear rate of change of baseline or site parameters is the simplest model and its error improves with time span. However, in most cases the VLBI data distribution is insufficient to look for real non-linear behavior that might affect the average rate. A few sites have multiple VLBI antennas, and some show small differences in rate. VLBI intrinsically measures relative positions and velocities, but individual site positions and velocities are generally more useful. The creation of the VLBI terrestrial reference frame, which transforms relative information into individual results, is an empirical process that has intrinsic errors. While UT1 is uniquely measured by VLBI, the geographical distribution and availability of VLBI stations, especially in the southern hemisphere, and the consistency of the VLBI terrestrial reference frame may limit the accuracy of Earth orientation measurements. The effects of particular error sources on geodetic and geophysical parameters derived from VLBI data will be illustrated.
NASA Astrophysics Data System (ADS)
Pieper, Michael
Accurate estimation or retrieval of surface emissivity spectra from long-wave infrared (LWIR) or Thermal Infrared (TIR) hyperspectral imaging data acquired by airborne or space-borne sensors is necessary for many scientific and defense applications. The at-aperture radiance measured by the sensor is a function of the ground emissivity and temperature, modified by the atmosphere. Thus the emissivity retrieval process consists of two interwoven steps: atmospheric compensation (AC) to retrieve the ground radiance from the measured at-aperture radiance and temperature-emissivity separation (TES) to separate the temperature and emissivity from the ground radiance. In-scene AC (ISAC) algorithms use blackbody-like materials in the scene, which have a linear relationship between their ground radiances and at-aperture radiances determined by the atmospheric transmission and upwelling radiance. Using a clear reference channel to estimate the ground radiance, a linear fitting of the at-aperture radiance and estimated ground radiance is done to estimate the atmospheric parameters. TES algorithms for hyperspectral imaging data assume that the emissivity spectra for solids are smooth compared to the sharp features added by the atmosphere. The ground temperature and emissivity are found by finding the temperature that provides the smoothest emissivity estimate. In this thesis we develop models to investigate the sensitivity of AC and TES to the basic assumptions enabling their performance. ISAC assumes that there are perfect blackbody pixels in a scene and that there is a clear channel, which is never the case. The developed ISAC model explains how the quality of blackbody-like pixels affect the shape of atmospheric estimates and the clear channel assumption affects their magnitude. Emissivity spectra for solids usually have some roughness. The TES model identifies four sources of error: the smoothing error of the emissivity spectrum, the emissivity error from using the incorrect temperature, and the errors caused by sensor noise and wavelength calibration. The ways these errors interact determines the overall TES performance. Since the AC and TES processes are interwoven, any errors in AC are transferred to TES and the final temperature and emissivity estimates. Combining the two models, shape errors caused by the blackbody assumption are transferred to the emissivity estimates, where magnitude errors from the clear channel assumption are compensated by TES temperature induced emissivity errors. The ability for the temperature induced error to compensate for such atmospheric errors makes it difficult to determine the correct atmospheric parameters for a scene. With these models we are able to determine the expected quality of estimated emissivity spectra based on the quality of blackbody-like materials on the ground, the emissivity of the materials being searched for, and the properties of the sensor. The quality of material emissivity spectra is a key factor in determining detection performance for a material in a scene.
Uncertainty Analysis of Seebeck Coefficient and Electrical Resistivity Characterization
NASA Technical Reports Server (NTRS)
Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred
2014-01-01
In order to provide a complete description of a materials thermoelectric power factor, in addition to the measured nominal value, an uncertainty interval is required. The uncertainty may contain sources of measurement error including systematic bias error and precision error of a statistical nature. The work focuses specifically on the popular ZEM-3 (Ulvac Technologies) measurement system, but the methods apply to any measurement system. The analysis accounts for sources of systematic error including sample preparation tolerance, measurement probe placement, thermocouple cold-finger effect, and measurement parameters; in addition to including uncertainty of a statistical nature. Complete uncertainty analysis of a measurement system allows for more reliable comparison of measurement data between laboratories.
Remmersmann, Christian; Stürwald, Stephan; Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert
2009-03-10
In temporal phase-shifting-based digital holographic microscopy, high-resolution phase contrast imaging requires optimized conditions for hologram recording and phase retrieval. To optimize the phase resolution, for the example of a variable three-step algorithm, a theoretical analysis on statistical errors, digitalization errors, uncorrelated errors, and errors due to a misaligned temporal phase shift is carried out. In a second step the theoretically predicted results are compared to the measured phase noise obtained from comparative experimental investigations with several coherent and partially coherent light sources. Finally, the applicability for noise reduction is demonstrated by quantitative phase contrast imaging of pancreas tumor cells.
Logic-based assessment of the compatibility of UMLS ontology sources
2011-01-01
Background The UMLS Metathesaurus (UMLS-Meta) is currently the most comprehensive effort for integrating independently-developed medical thesauri and ontologies. UMLS-Meta is being used in many applications, including PubMed and ClinicalTrials.gov. The integration of new sources combines automatic techniques, expert assessment, and auditing protocols. The automatic techniques currently in use, however, are mostly based on lexical algorithms and often disregard the semantics of the sources being integrated. Results In this paper, we argue that UMLS-Meta’s current design and auditing methodologies could be significantly enhanced by taking into account the logic-based semantics of the ontology sources. We provide empirical evidence suggesting that UMLS-Meta in its 2009AA version contains a significant number of errors; these errors become immediately apparent if the rich semantics of the ontology sources is taken into account, manifesting themselves as unintended logical consequences that follow from the ontology sources together with the information in UMLS-Meta. We then propose general principles and specific logic-based techniques to effectively detect and repair such errors. Conclusions Our results suggest that the methodologies employed in the design of UMLS-Meta are not only very costly in terms of human effort, but also error-prone. The techniques presented here can be useful for both reducing human effort in the design and maintenance of UMLS-Meta and improving the quality of its contents. PMID:21388571
Effects of refractive errors on visual evoked magnetic fields.
Suzuki, Masaya; Nagae, Mizuki; Nagata, Yuko; Kumagai, Naoya; Inui, Koji; Kakigi, Ryusuke
2015-11-09
The latency and amplitude of visual evoked cortical responses are known to be affected by refractive states, suggesting that they may be used as an objective index of refractive errors. In order to establish an easy and reliable method for this purpose, we herein examined the effects of refractive errors on visual evoked magnetic fields (VEFs). Binocular VEFs following the presentation of a simple grating of 0.16 cd/m(2) in the lower visual field were recorded in 12 healthy volunteers and compared among four refractive states: 0D, +1D, +2D, and +4D, by using plus lenses. The low-luminance visual stimulus evoked a main MEG response at approximately 120 ms (M100) that reversed its polarity between the upper and lower visual field stimulations and originated from the occipital midline area. When refractive errors were induced by plus lenses, the latency of M100 increased, while its amplitude decreased with an increase in power of the lens. Differences from the control condition (+0D) were significant for all three lenses examined. The results of dipole analyses showed that evoked fields for the control (+0D) condition were explainable by one dipole in the primary visual cortex (V1), while other sources, presumably in V3 or V6, slightly contributed to shape M100 for the +2D or +4D condition. The present results showed that the latency and amplitude of M100 are both useful indicators for assessing refractive states. The contribution of neural sources other than V1 to M100 was modest under the 0D and +1D conditions. By considering the nature of the activity of M100 including its high sensitivity to a spatial frequency and lower visual field dominance, a simple low-luminance grating stimulus at an optimal spatial frequency in the lower visual field appears appropriate for obtaining data on high S/N ratios and reducing the load on subjects.
SUS Source Level Error Analysis
1978-01-20
RIECIP1IEN’ CATALOG NUMBER * ITLE (and SubaltIe) S. TYP aof REPORT & _V9RCO SUS~ SOURCE LEVEL ERROR ANALYSIS & Fia 1.r,. -. pAURWORONTIUMm N (s)$S...Fourier Transform (FFTl) SUS Signal model ___ 10 TRA&C (CeEOINIMII1& ro"* *140O tidat n9#*#*Y a"d 0e~ntiff 6T 69*.4 apbt The report provides an analysis ...of major terms which contribute to signal analysis error in a proposed experiment to c-librate sourr - I levels of SUS (Signal Underwater Sound). A
Hosseini Pooya, SM; Orouji, T
2014-01-01
Background: The accurate results of the individual doses in personal dosimety which are reported by the service providers in personal dosimetry are very important. There are national / international criteria for acceptable dosimetry system performance. Objective: In this research, the sources of uncertainties are identified, measured and calculated in a personal dosimetry system by TLD. Method: These sources are included; inhomogeneity of TLDs sensitivity, variability of TLD readings due to limited sensitivity and background, energy dependence, directional dependence, non-linearity of the response, fading, dependent on ambient temperature / humidity and calibration errors, which may affect on the dose responses. Some parameters which influence on the above sources of uncertainty are studied for Harshaw TLD-100 cards dosimeters as well as the hot gas Harshaw 6600 TLD reader system. Results: The individual uncertainties of each sources was measured less than 6.7% in 68% confidence level. The total uncertainty was calculated 17.5% with 95% confidence level. Conclusion: The TLD-100 personal dosimeters as well as the Harshaw TLD-100 reader 6600 system show the total uncertainty value which is less than that of admissible value of 42% for personal dosimetry services. PMID:25505769
The Effect of Error Correlation on Interfactor Correlation in Psychometric Measurement
ERIC Educational Resources Information Center
Westfall, Peter H.; Henning, Kevin S. S.; Howell, Roy D.
2012-01-01
This article shows how interfactor correlation is affected by error correlations. Theoretical and practical justifications for error correlations are given, and a new equivalence class of models is presented to explain the relationship between interfactor correlation and error correlations. The class allows simple, parsimonious modeling of error…
Error-Analysis for Correctness, Effectiveness, and Composing Procedure.
ERIC Educational Resources Information Center
Ewald, Helen Rothschild
The assumptions underpinning grammatical mistakes can often be detected by looking for patterns of errors in a student's work. Assumptions that negatively influence rhetorical effectiveness can similarly be detected through error analysis. On a smaller scale, error analysis can also reveal assumptions affecting rhetorical choice. Snags in the…
Inference of emission rates from multiple sources using Bayesian probability theory.
Yee, Eugene; Flesch, Thomas K
2010-03-01
The determination of atmospheric emission rates from multiple sources using inversion (regularized least-squares or best-fit technique) is known to be very susceptible to measurement and model errors in the problem, rendering the solution unusable. In this paper, a new perspective is offered for this problem: namely, it is argued that the problem should be addressed as one of inference rather than inversion. Towards this objective, Bayesian probability theory is used to estimate the emission rates from multiple sources. The posterior probability distribution for the emission rates is derived, accounting fully for the measurement errors in the concentration data and the model errors in the dispersion model used to interpret the data. The Bayesian inferential methodology for emission rate recovery is validated against real dispersion data, obtained from a field experiment involving various source-sensor geometries (scenarios) consisting of four synthetic area sources and eight concentration sensors. The recovery of discrete emission rates from three different scenarios obtained using Bayesian inference and singular value decomposition inversion are compared and contrasted.
Close-range radar rainfall estimation and error analysis
NASA Astrophysics Data System (ADS)
van de Beek, C. Z.; Leijnse, H.; Hazenberg, P.; Uijlenhoet, R.
2016-08-01
Quantitative precipitation estimation (QPE) using ground-based weather radar is affected by many sources of error. The most important of these are (1) radar calibration, (2) ground clutter, (3) wet-radome attenuation, (4) rain-induced attenuation, (5) vertical variability in rain drop size distribution (DSD), (6) non-uniform beam filling and (7) variations in DSD. This study presents an attempt to separate and quantify these sources of error in flat terrain very close to the radar (1-2 km), where (4), (5) and (6) only play a minor role. Other important errors exist, like beam blockage, WLAN interferences and hail contamination and are briefly mentioned, but not considered in the analysis. A 3-day rainfall event (25-27 August 2010) that produced more than 50 mm of precipitation in De Bilt, the Netherlands, is analyzed using radar, rain gauge and disdrometer data. Without any correction, it is found that the radar severely underestimates the total rain amount (by more than 50 %). The calibration of the radar receiver is operationally monitored by analyzing the received power from the sun. This turns out to cause a 1 dB underestimation. The operational clutter filter applied by KNMI is found to incorrectly identify precipitation as clutter, especially at near-zero Doppler velocities. An alternative simple clutter removal scheme using a clear sky clutter map improves the rainfall estimation slightly. To investigate the effect of wet-radome attenuation, stable returns from buildings close to the radar are analyzed. It is shown that this may have caused an underestimation of up to 4 dB. Finally, a disdrometer is used to derive event and intra-event specific Z-R relations due to variations in the observed DSDs. Such variations may result in errors when applying the operational Marshall-Palmer Z-R relation. Correcting for all of these effects has a large positive impact on the radar-derived precipitation estimates and yields a good match between radar QPE and gauge measurements, with a difference of 5-8 %. This shows the potential of radar as a tool for rainfall estimation, especially at close ranges, but also underlines the importance of applying radar correction methods as individual errors can have a large detrimental impact on the QPE performance of the radar.
Increased Error-Related Negativity (ERN) in Childhood Anxiety Disorders: ERP and Source Localization
ERIC Educational Resources Information Center
Ladouceur, Cecile D.; Dahl, Ronald E.; Birmaher, Boris; Axelson, David A.; Ryan, Neal D.
2006-01-01
Background: In this study we used event-related potentials (ERPs) and source localization analyses to track the time course of neural activity underlying response monitoring in children diagnosed with an anxiety disorder compared to age-matched low-risk normal controls. Methods: High-density ERPs were examined following errors on a flanker task…
Development of Action Monitoring through Adolescence into Adulthood: ERP and Source Localization
ERIC Educational Resources Information Center
Ladouceur, Cecile D.; Dahl, Ronald E.; Carter, Cameron S.
2007-01-01
In this study we examined the development of three action monitoring event-related potentials (ERPs)--the error-related negativity (ERN/Ne), error positivity (P[subscript E]) and the N2--and estimated their neural sources. These ERPs were recorded during a flanker task in the following groups: early adolescents (mean age = 12 years), late…
Random Error in Judgment: The Contribution of Encoding and Retrieval Processes
ERIC Educational Resources Information Center
Pleskac, Timothy J.; Dougherty, Michael R.; Rivadeneira, A. Walkyria; Wallsten, Thomas S.
2009-01-01
Theories of confidence judgments have embraced the role random error plays in influencing responses. An important next step is to identify the source(s) of these random effects. To do so, we used the stochastic judgment model (SJM) to distinguish the contribution of encoding and retrieval processes. In particular, we investigated whether dividing…
Kim, Do-Won; Lee, Seung-Hwan; Shim, Miseon; Im, Chang-Hwan
2017-01-01
Precise diagnosis of psychiatric diseases and a comprehensive assessment of a patient's symptom severity are important in order to establish a successful treatment strategy for each patient. Although great efforts have been devoted to searching for diagnostic biomarkers of schizophrenia over the past several decades, no study has yet investigated how accurately these biomarkers are able to estimate an individual patient's symptom severity. In this study, we applied electrophysiological biomarkers obtained from electroencephalography (EEG) analyses to an estimation of symptom severity scores of patients with schizophrenia. EEG signals were recorded from 23 patients while they performed a facial affect discrimination task. Based on the source current density analysis results, we extracted voxels that showed a strong correlation between source activity and symptom scores. We then built a prediction model to estimate the symptom severity scores of each patient using the source activations of the selected voxels. The symptom scores of the Positive and Negative Syndrome Scale (PANSS) were estimated using the linear prediction model. The results of leave-one-out cross validation (LOOCV) showed that the mean errors of the estimated symptom scores were 3.34 ± 2.40 and 3.90 ± 3.01 for the Positive and Negative PANSS scores, respectively. The current pilot study is the first attempt to estimate symptom severity scores in schizophrenia using quantitative EEG features. It is expected that the present method can be extended to other cognitive paradigms or other psychological illnesses.
Measuring the Lense-Thirring precession using a second Lageos satellite
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Ciufolini, I.
1989-01-01
A complete numerical simulation and error analysis was performed for the proposed experiment with the objective of establishing an accurate assessment of the feasibility and the potential accuracy of the measurement of the Lense-Thirring precession. Consideration was given to identifying the error sources which limit the accuracy of the experiment and proposing procedures for eliminating or reducing the effect of these errors. Analytic investigations were conducted to study the effects of major error sources with the objective of providing error bounds on the experiment. The analysis of realistic simulated data is used to demonstrate that satellite laser ranging of two Lageos satellites, orbiting with supplemental inclinations, collected for a period of 3 years or more, can be used to verify the Lense-Thirring precession. A comprehensive covariance analysis for the solution was also developed.
The Use of Neural Networks in Identifying Error Sources in Satellite-Derived Tropical SST Estimates
Lee, Yung-Hsiang; Ho, Chung-Ru; Su, Feng-Chun; Kuo, Nan-Jung; Cheng, Yu-Hsin
2011-01-01
An neural network model of data mining is used to identify error sources in satellite-derived tropical sea surface temperature (SST) estimates from thermal infrared sensors onboard the Geostationary Operational Environmental Satellite (GOES). By using the Back Propagation Network (BPN) algorithm, it is found that air temperature, relative humidity, and wind speed variation are the major factors causing the errors of GOES SST products in the tropical Pacific. The accuracy of SST estimates is also improved by the model. The root mean square error (RMSE) for the daily SST estimate is reduced from 0.58 K to 0.38 K and mean absolute percentage error (MAPE) is 1.03%. For the hourly mean SST estimate, its RMSE is also reduced from 0.66 K to 0.44 K and the MAPE is 1.3%. PMID:22164030
Error Correction: A Cognitive-Affective Stance
ERIC Educational Resources Information Center
Saeed, Aziz Thabit
2007-01-01
This paper investigates the application of some of the most frequently used writing error correction techniques to see the extent to which this application takes learners' cognitive and affective characteristics into account. After showing how unlearned application of these styles could be discouraging and/or damaging to students, the paper…
The Effect of Auditory Information on Patterns of Intrusions and Reductions
ERIC Educational Resources Information Center
Slis, Anneke; van Lieshout, Pascal
2016-01-01
Purpose: The study investigates whether auditory information affects the nature of intrusion and reduction errors in reiterated speech. These errors are hypothesized to arise as a consequence of autonomous mechanisms to stabilize movement coordination. The specific question addressed is whether this process is affected by auditory information so…
Article Errors in the English Writing of Saudi EFL Preparatory Year Students
ERIC Educational Resources Information Center
Alhaisoni, Eid; Gaudel, Daya Ram; Al-Zuoud, Khalid M.
2017-01-01
This study aims at providing a comprehensive account of the types of errors produced by Saudi EFL students enrolled in the preparatory year programe in their use of articles, based on the Surface Structure Taxonomies (SST) of errors. The study describes the types, frequency and sources of the definite and indefinite article errors in writing…
An Analysis of Spanish and German Learners' Errors. Working Papers on Bilingualism, No. 7.
ERIC Educational Resources Information Center
LoCoco, Veronica Gonzalez-Mena
This study analyzes Spanish and German errors committed by adult native speakers of English enrolled in elementary and intermediate levels. Four written samples were collected for each target language, over a period of five months. Errors were categorized according to their possible source. Types of errors were ordered according to their…
Errors Affect Hypothetical Intertemporal Food Choice in Women
Sellitto, Manuela; di Pellegrino, Giuseppe
2014-01-01
Growing evidence suggests that the ability to control behavior is enhanced in contexts in which errors are more frequent. Here we investigated whether pairing desirable food with errors could decrease impulsive choice during hypothetical temporal decisions about food. To this end, healthy women performed a Stop-signal task in which one food cue predicted high-error rate, and another food cue predicted low-error rate. Afterwards, we measured participants’ intertemporal preferences during decisions between smaller-immediate and larger-delayed amounts of food. We expected reduced sensitivity to smaller-immediate amounts of food associated with high-error rate. Moreover, taking into account that deprivational states affect sensitivity for food, we controlled for participants’ hunger. Results showed that pairing food with high-error likelihood decreased temporal discounting. This effect was modulated by hunger, indicating that, the lower the hunger level, the more participants showed reduced impulsive preference for the food previously associated with a high number of errors as compared with the other food. These findings reveal that errors, which are motivationally salient events that recruit cognitive control and drive avoidance learning against error-prone behavior, are effective in reducing impulsive choice for edible outcomes. PMID:25244534
Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool
NASA Astrophysics Data System (ADS)
Guo, Qianjian; Fan, Shuo; Xu, Rufeng; Cheng, Xiang; Zhao, Guoyong; Yang, Jianguo
2017-05-01
Aiming at the problem of low machining accuracy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of temperature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC-NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 μm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.
NASA Astrophysics Data System (ADS)
Zhang, Shou-ping; Xin, Xiao-kang
2017-07-01
Identification of pollutant sources for river pollution incidents is an important and difficult task in the emergency rescue, and an intelligent optimization method can effectively compensate for the weakness of traditional methods. An intelligent model for pollutant source identification has been established using the basic genetic algorithm (BGA) as an optimization search tool and applying an analytic solution formula of one-dimensional unsteady water quality equation to construct the objective function. Experimental tests show that the identification model is effective and efficient: the model can accurately figure out the pollutant amounts or positions no matter single pollution source or multiple sources. Especially when the population size of BGA is set as 10, the computing results are sound agree with analytic results for a single source amount and position identification, the relative errors are no more than 5 %. For cases of multi-point sources and multi-variable, there are some errors in computing results for the reasons that there exist many possible combinations of the pollution sources. But, with the help of previous experience to narrow the search scope, the relative errors of the identification results are less than 5 %, which proves the established source identification model can be used to direct emergency responses.
Seshia, Shashi S; Bryan Young, G; Makhinson, Michael; Smith, Preston A; Stobart, Kent; Croskerry, Pat
2018-02-01
Although patient safety has improved steadily, harm remains a substantial global challenge. Additionally, safety needs to be ensured not only in hospitals but also across the continuum of care. Better understanding of the complex cognitive factors influencing health care-related decisions and organizational cultures could lead to more rational approaches, and thereby to further improvement. A model integrating the concepts underlying Reason's Swiss cheese theory and the cognitive-affective biases plus cascade could advance the understanding of cognitive-affective processes that underlie decisions and organizational cultures across the continuum of care. Thematic analysis, qualitative information from several sources being used to support argumentation. Complex covert cognitive phenomena underlie decisions influencing health care. In the integrated model, the Swiss cheese slices represent dynamic cognitive-affective (mental) gates: Reason's successive layers of defence. Like firewalls and antivirus programs, cognitive-affective gates normally allow the passage of rational decisions but block or counter unsounds ones. Gates can be breached (ie, holes created) at one or more levels of organizations, teams, and individuals, by (1) any element of cognitive-affective biases plus (conflicts of interest and cognitive biases being the best studied) and (2) other potential error-provoking factors. Conversely, flawed decisions can be blocked and consequences minimized; for example, by addressing cognitive biases plus and error-provoking factors, and being constantly mindful. Informed shared decision making is a neglected but critical layer of defence (cognitive-affective gate). The integrated model can be custom tailored to specific situations, and the underlying principles applied to all methods for improving safety. The model may also provide a framework for developing and evaluating strategies to optimize organizational cultures and decisions. The concept is abstract, the model is virtual, and the best supportive evidence is qualitative and indirect. The proposed model may help enhance rational decision making across the continuum of care, thereby improving patient safety globally. © 2017 The Authors. Journal of Evaluation in Clinical Practice published by John Wiley & Sons, Ltd.
Overview of the LARES Mission: orbit, error analysis and technological aspects
NASA Astrophysics Data System (ADS)
Ciufolini, Ignazio; Paolozzi, Antonio; Paris, Claudio
2012-03-01
LARES (LAser RElativity Satellite), is an Italian Space Agency (ASI) mission to be launched beginning of 2012 with the new European launch vehicle, VEGA; the launch opportunity was provided by the European Space Agency (ESA). LARES is a laser ranged satellite; it will be launched into a nearly circular orbit, with an altitude of 1450 km and an inclination of 69.5 degrees. The goal of the mission is the measurement of the Lense-Thirring effect with an uncertainty of few percent; such a small uncertainty will be achieved using LARES data together with data from the LAGEOS I (NASA) and LAGEOS II (NASA and ASI) satellites, and because GRACE mission (NASA-CSR and DLR-GFZ) is improving Earth's gravity field models. This paper describes LARES experiment along with the principal error sources affecting the measurement. Furthermore, some engineering aspects of the mission, in particular the structure and materials of the satellite (designed in order to minimize the non-gravitational perturbations), are described.
A Comparison of seismic instrument noise coherence analysis techniques
Ringler, A.T.; Hutt, C.R.; Evans, J.R.; Sandoval, L.D.
2011-01-01
The self-noise of a seismic instrument is a fundamental characteristic used to evaluate the quality of the instrument. It is important to be able to measure this self-noise robustly, to understand how differences among test configurations affect the tests, and to understand how different processing techniques and isolation methods (from nonseismic sources) can contribute to differences in results. We compare two popular coherence methods used for calculating incoherent noise, which is widely used as an estimate of instrument self-noise (incoherent noise and self-noise are not strictly identical but in observatory practice are approximately equivalent; Holcomb, 1989; Sleeman et al., 2006). Beyond directly comparing these two coherence methods on similar models of seismometers, we compare how small changes in test conditions can contribute to incoherent-noise estimates. These conditions include timing errors, signal-to-noise ratio changes (ratios between background noise and instrument incoherent noise), relative sensor locations, misalignment errors, processing techniques, and different configurations of sensor types.
Lead theft--a study of the "uniqueness" of lead from church roofs.
Bond, John W; Hainsworth, Sarah V; Lau, Tien L
2013-07-01
In the United Kingdom, theft of lead is common, particularly from churches and other public buildings with lead roofs. To assess the potential to distinguish lead from different sources, 41 samples of lead from 24 church roofs in Northamptonshire, U.K, have been analyzed for relative abundance of trace elements and isotopes of lead using X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry, respectively. XRF revealed the overall presence of 12 trace elements with the four most abundant, calcium, phosphorus, silicon, and sulfur, showing a large weight percentage standard error of the mean of all samples suggesting variation in the weight percentage of these elements between different church roofs. Multiple samples from the same roofs, but different lead sheets, showed much lower weight percentage standard errors of the mean suggesting similar trace element concentrations. Lead isotope ratios were similar for all samples. Factors likely to affect the occurrence of these trace elements are discussed. © 2013 American Academy of Forensic Sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, L; Yan, H; Jia, X
2014-06-01
Purpose: A moving blocker based strategy has shown promising results for scatter correction in cone-beam computed tomography (CBCT). Different parameters of the system design affect its performance in scatter estimation and image reconstruction accuracy. The goal of this work is to optimize the geometric design of the moving block system. Methods: In the moving blocker system, a blocker consisting of lead strips is inserted between the x-ray source and imaging object and moving back and forth along rotation axis during CBCT acquisition. CT image of an anthropomorphic pelvic phantom was used in the simulation study. Scatter signal was simulated bymore » Monte Carlo calculation with various combinations of the lead strip width and the gap between neighboring lead strips, ranging from 4 mm to 80 mm (projected at the detector plane). Scatter signal in the unblocked region was estimated by cubic B-spline interpolation from the blocked region. Scatter estimation accuracy was quantified as relative root mean squared error by comparing the interpolated scatter to the Monte Carlo simulated scatter. CBCT was reconstructed by total variation minimization from the unblocked region, under various combinations of the lead strip width and gap. Reconstruction accuracy in each condition is quantified by CT number error as comparing to a CBCT reconstructed from unblocked full projection data. Results: Scatter estimation error varied from 0.5% to 2.6% as the lead strip width and the gap varied from 4mm to 80mm. CT number error in the reconstructed CBCT images varied from 12 to 44. Highest reconstruction accuracy is achieved when the blocker lead strip width is 8 mm and the gap is 48 mm. Conclusions: Accurate scatter estimation can be achieved in large range of combinations of lead strip width and gap. However, image reconstruction accuracy is greatly affected by the geometry design of the blocker.« less
Jensen, Jonas; Olesen, Jacob Bjerring; Stuart, Matthias Bo; Hansen, Peter Møller; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt
2016-08-01
A method for vector velocity volume flow estimation is presented, along with an investigation of its sources of error and correction of actual volume flow measurements. Volume flow errors are quantified theoretically by numerical modeling, through flow phantom measurements, and studied in vivo. This paper investigates errors from estimating volumetric flow using a commercial ultrasound scanner and the common assumptions made in the literature. The theoretical model shows, e.g. that volume flow is underestimated by 15%, when the scan plane is off-axis with the vessel center by 28% of the vessel radius. The error sources were also studied in vivo under realistic clinical conditions, and the theoretical results were applied for correcting the volume flow errors. Twenty dialysis patients with arteriovenous fistulas were scanned to obtain vector flow maps of fistulas. When fitting an ellipsis to cross-sectional scans of the fistulas, the major axis was on average 10.2mm, which is 8.6% larger than the minor axis. The ultrasound beam was on average 1.5mm from the vessel center, corresponding to 28% of the semi-major axis in an average fistula. Estimating volume flow with an elliptical, rather than circular, vessel area and correcting the ultrasound beam for being off-axis, gave a significant (p=0.008) reduction in error from 31.2% to 24.3%. The error is relative to the Ultrasound Dilution Technique, which is considered the gold standard for volume flow estimation for dialysis patients. The study shows the importance of correcting for volume flow errors, which are often made in clinical practice. Copyright © 2016 Elsevier B.V. All rights reserved.
Gonçalves, Fabio; Treuhaft, Robert; Law, Beverly; ...
2017-01-07
Mapping and monitoring of forest carbon stocks across large areas in the tropics will necessarily rely on remote sensing approaches, which in turn depend on field estimates of biomass for calibration and validation purposes. Here, we used field plot data collected in a tropical moist forest in the central Amazon to gain a better understanding of the uncertainty associated with plot-level biomass estimates obtained specifically for the calibration of remote sensing measurements. In addition to accounting for sources of error that would be normally expected in conventional biomass estimates (e.g., measurement and allometric errors), we examined two sources of uncertaintymore » that are specific to the calibration process and should be taken into account in most remote sensing studies: the error resulting from spatial disagreement between field and remote sensing measurements (i.e., co-location error), and the error introduced when accounting for temporal differences in data acquisition. We found that the overall uncertainty in the field biomass was typically 25% for both secondary and primary forests, but ranged from 16 to 53%. Co-location and temporal errors accounted for a large fraction of the total variance (>65%) and were identified as important targets for reducing uncertainty in studies relating tropical forest biomass to remotely sensed data. Although measurement and allometric errors were relatively unimportant when considered alone, combined they accounted for roughly 30% of the total variance on average and should not be ignored. Lastly, our results suggest that a thorough understanding of the sources of error associated with field-measured plot-level biomass estimates in tropical forests is critical to determine confidence in remote sensing estimates of carbon stocks and fluxes, and to develop strategies for reducing the overall uncertainty of remote sensing approaches.« less
Yandayan, T; Geckeler, R D; Aksulu, M; Akgoz, S A; Ozgur, B
2016-05-01
The application of advanced error-separating shearing techniques to the precise calibration of autocollimators with Small Angle Generators (SAGs) was carried out for the first time. The experimental realization was achieved using the High Precision Small Angle Generator (HPSAG) of TUBITAK UME under classical dimensional metrology laboratory environmental conditions. The standard uncertainty value of 5 mas (24.2 nrad) reached by classical calibration method was improved to the level of 1.38 mas (6.7 nrad). Shearing techniques, which offer a unique opportunity to separate the errors of devices without recourse to any external standard, were first adapted by Physikalisch-Technische Bundesanstalt (PTB) to the calibration of autocollimators with angle encoders. It has been demonstrated experimentally in a clean room environment using the primary angle standard of PTB (WMT 220). The application of the technique to a different type of angle measurement system extends the range of the shearing technique further and reveals other advantages. For example, the angular scales of the SAGs are based on linear measurement systems (e.g., capacitive nanosensors for the HPSAG). Therefore, SAGs show different systematic errors when compared to angle encoders. In addition to the error-separation of HPSAG and the autocollimator, detailed investigations on error sources were carried out. Apart from determination of the systematic errors of the capacitive sensor used in the HPSAG, it was also demonstrated that the shearing method enables the unique opportunity to characterize other error sources such as errors due to temperature drift in long term measurements. This proves that the shearing technique is a very powerful method for investigating angle measuring systems, for their improvement, and for specifying precautions to be taken during the measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertzscher, Gustavo, E-mail: guke@dtu.dk; Andersen, Claus E., E-mail: clan@dtu.dk; Tanderup, Kari, E-mail: karitand@rm.dk
Purpose: This study presents an adaptive error detection algorithm (AEDA) for real-timein vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction of the dosimeter position. Instead, the treatment is judged based on dose rate comparisons between measurements and calculations of the most viable dosimeter position provided by the AEDA in a data driven approach. As a result, the AEDA compensates for false error cases related to systematic effects of the dosimeter position reconstruction. Given its nearly exclusivemore » dependence on stable dosimeter positioning, the AEDA allows for a substantially simplified and time efficient real-time in vivo BT dosimetry implementation. Methods: In the event of a measured potential treatment error, the AEDA proposes the most viable dosimeter position out of alternatives to the original reconstruction by means of a data driven matching procedure between dose rate distributions. If measured dose rates do not differ significantly from the most viable alternative, the initial error indication may be attributed to a mispositioned or misreconstructed dosimeter (false error). However, if the error declaration persists, no viable dosimeter position can be found to explain the error, hence the discrepancy is more likely to originate from a misplaced or misreconstructed source applicator or from erroneously connected source guide tubes (true error). Results: The AEDA applied on twoin vivo dosimetry implementations for pulsed dose rate BT demonstrated that the AEDA correctly described effects responsible for initial error indications. The AEDA was able to correctly identify the major part of all permutations of simulated guide tube swap errors and simulated shifts of individual needles from the original reconstruction. Unidentified errors corresponded to scenarios where the dosimeter position was sufficiently symmetric with respect to error and no-error source position constellations. The AEDA was able to correctly identify all false errors represented by mispositioned dosimeters contrary to an error detection algorithm relying on the original reconstruction. Conclusions: The study demonstrates that the AEDA error identification during HDR/PDR BT relies on a stable dosimeter position rather than on an accurate dosimeter reconstruction, and the AEDA’s capacity to distinguish between true and false error scenarios. The study further shows that the AEDA can offer guidance in decision making in the event of potential errors detected with real-timein vivo point dosimetry.« less
An error analysis perspective for patient alignment systems.
Figl, Michael; Kaar, Marcus; Hoffman, Rainer; Kratochwil, Alfred; Hummel, Johann
2013-09-01
This paper analyses the effects of error sources which can be found in patient alignment systems. As an example, an ultrasound (US) repositioning system and its transformation chain are assessed. The findings of this concept can also be applied to any navigation system. In a first step, all error sources were identified and where applicable, corresponding target registration errors were computed. By applying error propagation calculations on these commonly used registration/calibration and tracking errors, we were able to analyse the components of the overall error. Furthermore, we defined a special situation where the whole registration chain reduces to the error caused by the tracking system. Additionally, we used a phantom to evaluate the errors arising from the image-to-image registration procedure, depending on the image metric used. We have also discussed how this analysis can be applied to other positioning systems such as Cone Beam CT-based systems or Brainlab's ExacTrac. The estimates found by our error propagation analysis are in good agreement with the numbers found in the phantom study but significantly smaller than results from patient evaluations. We probably underestimated human influences such as the US scan head positioning by the operator and tissue deformation. Rotational errors of the tracking system can multiply these errors, depending on the relative position of tracker and probe. We were able to analyse the components of the overall error of a typical patient positioning system. We consider this to be a contribution to the optimization of the positioning accuracy for computer guidance systems.
Optical radiation measurements: instrumentation and sources of error.
Landry, R J; Andersen, F A
1982-07-01
Accurate measurement of optical radiation is required when sources of this radiation are used in biological research. The most difficult measurements of broadband noncoherent optical radiations usually must be performed by a highly trained specialist using sophisticated, complex, and expensive instruments. Presentation of the results of such measurement requires correct use of quantities and units with which many biological researchers are unfamiliar. The measurement process, physical quantities and units, measurement systems with instruments, and sources of error and uncertainties associated with optical radiation measurements are reviewed.
An improved methodology for heliostat testing and evaluation at the Plataforma Solar de Almería
NASA Astrophysics Data System (ADS)
Monterreal, Rafael; Enrique, Raúl; Fernández-Reche, Jesús
2017-06-01
The optical quality of a heliostat basically quantifies the difference between the scattering effects of the actual solar radiation reflected on its optical surface, compared to the so called canonical dispersion, that is, the one reflected on an optical surface free of constructional errors (paradigm). However, apart from the uncertainties of the measuring process itself, the value of the optical quality must be independent of the measuring instrument; so, any new measuring techniques that provide additional information about the error sources on the heliostat reflecting surface would be welcome. That error sources are responsible for the final optical quality value, with different degrees of influence. For the constructor of heliostats it will be extremely useful to know the value of the classical sources of error and their weight on the overall optical quality of a heliostat, such as facets geometry or focal length, as well as the characteristics of the heliostat as a whole, i.e., its geometry, focal length, facets misalignment and also the possible dependence of these effects with mechanical and/or meteorological factors. It is the goal of the present paper to unfold these optical quality error sources by exploring directly the reflecting surface of the heliostat with the help of a laser-scanner device and link the result with the traditional methods of heliostat evaluation at the Plataforma Solar de Almería.
Comparison of different source calculations in two-nucleon channel at large quark mass
NASA Astrophysics Data System (ADS)
Yamazaki, Takeshi; Ishikawa, Ken-ichi; Kuramashi, Yoshinobu
2018-03-01
We investigate a systematic error coming from higher excited state contributions in the energy shift of light nucleus in the two-nucleon channel by comparing two different source calculations with the exponential and wall sources. Since it is hard to obtain a clear signal of the wall source correlation function in a plateau region, we employ a large quark mass as the pion mass is 0.8 GeV in quenched QCD. We discuss the systematic error in the spin-triplet channel of the two-nucleon system, and the volume dependence of the energy shift.
NASA Astrophysics Data System (ADS)
Zhang, Y. K.; Liang, X.
2014-12-01
Effects of aquifer heterogeneity and uncertainties in source/sink, and initial and boundary conditions in a groundwater flow model on the spatiotemporal variations of groundwater level, h(x,t), were investigated. Analytical solutions for the variance and covariance of h(x, t) in an unconfined aquifer described by a linearized Boussinesq equation with a white noise source/sink and a random transmissivity field were derived. It was found that in a typical aquifer the error in h(x,t) in early time is mainly caused by the random initial condition and the error reduces as time goes to reach a constant error in later time. The duration during which the effect of the random initial condition is significant may last a few hundred days in most aquifers. The constant error in groundwater in later time is due to the combined effects of the uncertain source/sink and flux boundary: the closer to the flux boundary, the larger the error. The error caused by the uncertain head boundary is limited in a narrow zone near the boundary but it remains more or less constant over time. The effect of the heterogeneity is to increase the variation of groundwater level and the maximum effect occurs close to the constant head boundary because of the linear mean hydraulic gradient. The correlation of groundwater level decreases with temporal interval and spatial distance. In addition, the heterogeneity enhances the correlation of groundwater level, especially at larger time intervals and small spatial distances.
Reyes, Jeanette M; Xu, Yadong; Vizuete, William; Serre, Marc L
2017-01-01
The regulatory Community Multiscale Air Quality (CMAQ) model is a means to understanding the sources, concentrations and regulatory attainment of air pollutants within a model's domain. Substantial resources are allocated to the evaluation of model performance. The Regionalized Air quality Model Performance (RAMP) method introduced here explores novel ways of visualizing and evaluating CMAQ model performance and errors for daily Particulate Matter ≤ 2.5 micrometers (PM2.5) concentrations across the continental United States. The RAMP method performs a non-homogenous, non-linear, non-homoscedastic model performance evaluation at each CMAQ grid. This work demonstrates that CMAQ model performance, for a well-documented 2001 regulatory episode, is non-homogeneous across space/time. The RAMP correction of systematic errors outperforms other model evaluation methods as demonstrated by a 22.1% reduction in Mean Square Error compared to a constant domain wide correction. The RAMP method is able to accurately reproduce simulated performance with a correlation of r = 76.1%. Most of the error coming from CMAQ is random error with only a minority of error being systematic. Areas of high systematic error are collocated with areas of high random error, implying both error types originate from similar sources. Therefore, addressing underlying causes of systematic error will have the added benefit of also addressing underlying causes of random error.
Ben Natan, Merav; Sharon, Ira; Mahajna, Marlen; Mahajna, Sara
2017-11-01
Medication errors are common among nursing students. Nonetheless, these errors are often underreported. To examine factors related to nursing students' intention to report medication errors, using the Theory of Planned Behavior, and to examine whether the theory is useful in predicting students' intention to report errors. This study has a descriptive cross-sectional design. Study population was recruited in a university and a large nursing school in central and northern Israel. A convenience sample of 250 nursing students took part in the study. The students completed a self-report questionnaire, based on the Theory of Planned Behavior. The findings indicate that students' intention to report medication errors was high. The Theory of Planned Behavior constructs explained 38% of variance in students' intention to report medication errors. The constructs of behavioral beliefs, subjective norms, and perceived behavioral control were found as affecting this intention, while the most significant factor was behavioral beliefs. The findings also reveal that students' fear of the reaction to disclosure of the error from superiors and colleagues may impede them from reporting the error. Understanding factors related to reporting medication errors is crucial to designing interventions that foster error reporting. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nonintrusive Temperature and Velocity Measurements in a Hypersonic Nozzle Flow
NASA Technical Reports Server (NTRS)
OByrne, S.; Danehy, P. M.; Houwing, A. F. P.
2002-01-01
Distributions of nitric oxide vibrational temperature, rotational temperature and velocity have been measured in the hypersonic freestream at the exit of a conical nozzle, using planar laser-induced fluorescence. Particular attention has been devoted to reducing the major sources of systematic error that can affect fluorescence tempera- ture measurements, including beam attenuation, transition saturation effects, laser mode fluctuations and transition choice. Visualization experiments have been performed to improve the uniformity of the nozzle flow. Comparisons of measured quantities with a simple one-dimensional computation are made, showing good agreement between measurements and theory given the uncertainty of the nozzle reservoir conditions and the vibrational relaxation rate.
Measurement Error and Equating Error in Power Analysis
ERIC Educational Resources Information Center
Phillips, Gary W.; Jiang, Tao
2016-01-01
Power analysis is a fundamental prerequisite for conducting scientific research. Without power analysis the researcher has no way of knowing whether the sample size is large enough to detect the effect he or she is looking for. This paper demonstrates how psychometric factors such as measurement error and equating error affect the power of…
NASA Astrophysics Data System (ADS)
Pan, X. G.; Wang, J. Q.; Zhou, H. Y.
2013-05-01
The variance component estimation (VCE) based on semi-parametric estimator with weighted matrix of data depth has been proposed, because the coupling system model error and gross error exist in the multi-source heterogeneous measurement data of space and ground combined TT&C (Telemetry, Tracking and Command) technology. The uncertain model error has been estimated with the semi-parametric estimator model, and the outlier has been restrained with the weighted matrix of data depth. On the basis of the restriction of the model error and outlier, the VCE can be improved and used to estimate weighted matrix for the observation data with uncertain model error or outlier. Simulation experiment has been carried out under the circumstance of space and ground combined TT&C. The results show that the new VCE based on the model error compensation can determine the rational weight of the multi-source heterogeneous data, and restrain the outlier data.
Atmospheric Science Data Center
2013-08-06
... error Version 4 The MOPITT/NCAR team discovered a data processing error that affects all V4 products previously ... products are available on News and Status on the MOPITT team web site . Data Product New V4 Product Version(s) ...
ERIC Educational Resources Information Center
Mulungye, Mary M.; O'Connor, Miheso; Ndethiu, S.
2016-01-01
This paper is based on a study which sought to examine the various errors and misconceptions committed by students in algebra with the view to exposing the nature and origin of the errors and misconceptions in secondary schools in Machakos district. Teachers' knowledge on students' errors was investigated together with strategies for remedial…
The inference of atmospheric ozone using satellite horizon measurements in the 1042 per cm band.
NASA Technical Reports Server (NTRS)
Russell, J. M., III; Drayson, S. R.
1972-01-01
Description of a method for inferring atmospheric ozone information using infrared horizon radiance measurements in the 1042 per cm band. An analysis based on this method proves the feasibility of the horizon experiment for determining ozone information and shows that the ozone partial pressure can be determined in the altitude range from 50 down to 25 km. A comprehensive error study is conducted which considers effects of individual errors as well as the effect of all error sources acting simultaneously. The results show that in the absence of a temperature profile bias error, it should be possible to determine the ozone partial pressure to within an rms value of 15 to 20%. It may be possible to reduce this rms error to 5% by smoothing the solution profile. These results would be seriously degraded by an atmospheric temperature bias error of only 3 K; thus, great care should be taken to minimize this source of error in an experiment. It is probable, in view of recent technological developments, that these errors will be much smaller in future flight experiments and the altitude range will widen to include from about 60 km down to the tropopause region.
A Robust Sound Source Localization Approach for Microphone Array with Model Errors
NASA Astrophysics Data System (ADS)
Xiao, Hua; Shao, Huai-Zong; Peng, Qi-Cong
In this paper, a robust sound source localization approach is proposed. The approach retains good performance even when model errors exist. Compared with previous work in this field, the contributions of this paper are as follows. First, an improved broad-band and near-field array model is proposed. It takes array gain, phase perturbations into account and is based on the actual positions of the elements. It can be used in arbitrary planar geometry arrays. Second, a subspace model errors estimation algorithm and a Weighted 2-Dimension Multiple Signal Classification (W2D-MUSIC) algorithm are proposed. The subspace model errors estimation algorithm estimates unknown parameters of the array model, i. e., gain, phase perturbations, and positions of the elements, with high accuracy. The performance of this algorithm is improved with the increasing of SNR or number of snapshots. The W2D-MUSIC algorithm based on the improved array model is implemented to locate sound sources. These two algorithms compose the robust sound source approach. The more accurate steering vectors can be provided for further processing such as adaptive beamforming algorithm. Numerical examples confirm effectiveness of this proposed approach.
Main error factors, affecting inversion of EM data
NASA Astrophysics Data System (ADS)
Zuev, M. A.; Magomedov, M.; Korneev, V. A.; Goloshubin, G.; Zuev, J.; Brovman, Y.
2013-12-01
Inversions of EM data are complicated by a number of factors that need to be taken into account. These factors might contribute by tens of percents in data values, concealing responses from target objects, which usually contribute at the level of few percents only. We developed the exact analytical solutions of the EM wave equations that properly incorporate the contributions of the following effects: 1) A finite source size effect, where conventional dipole (zero-size) approximation brings 10-40% error compare to a real size source, needed to provide adequate signal-to-noise ratio. 2) Complex topography. A three-parametrical approach allows to keep the data misfits in 0.5% corridor while topography effect might be up to 40%. 3) Grounding shadow effect, caused by return ground currents, when Tx-line vicinity is horizontally non-uniform. By keeping survey setup within some reasonable geometrical ratios, the shadow effect comes to just one frequency-independent coefficient, which can be excluded from processing by using logarithmical derivatives. 4) Layer's wide spectral range effect. This brings to multi-layer spectral overlapping, so each frequency is affected by many layers; that requires wide spectral range processing, making the typical 'few-frequency data acquisition' non-reliable. 5) Horizontal sensitivity effect. The typical view at the target signal, reflected from a Tx-Rx mid-point is valid only for a ray approximation, reliable in a far-field zone. Unlike this, the real EM surveys usually work in near-field zone. Thus Tx-Rx mid-point does not represent the layer, so a sensitivity distribution function must be computed for each layer for the following 3D-unification process. 6) Wide range Rx-directions from mid-line Tx. Survey terrain often prevents placing Rx perpendicular to Tx-line, and even small deviations without proper corrections cause a significant inaccuracy. A radical simplification of the effect's description becomes possible after applying a special Angular Theorem. 7) Apparent conductivity spectral splitting factor. For some of the inversion approaches an averaged Earth's conductivity σA(ω) is the first step for the inversion to stratified Earth. The related spectral response from the loop-source splits such σA onto two branches: σA(ωHigh) and σA(ωLow), similar to early and late resistivities in time domain processing. 8) Calibration factor. A manufacturer-based internal calibration often leads to many percents of non-controllable systematic error at low and high frequency ends, as well as temperature changes. A special approach allows an external pre-survey calibration to achieve the required accuracy.
Social influences on unconscious plagiarism and anti-plagiarism.
Hollins, Timothy J; Lange, Nicholas; Dennis, Ian; Longmore, Christopher A
2016-08-01
People are more likely to unconsciously plagiarise ideas from a same-sex partner than a different-sex partner, and more likely to unconsciously plagiarise if recalling alone rather than in the presence of their partner [Macrae, C. N., Bodenhausen, G. V., & Calvini, G. (1999). Contexts of cryptomnesia: May the source be with you. Social Cognition, 17, 273-297. doi: 10.1521/soco.1999.17.3.273 ]. Two sets of experiments explore these phenomena, using extensions of the standard unconscious plagiarism paradigm. In Experiment 1A participants worked together in same- or different-sex dyads before trying to recall their own ideas or their partner's ideas. More source errors were evident for same-sex dyads (Experiment 1A), but this effect was absent when participants recalled from both sources simultaneously (Experiment 1B). In Experiment 2A, participants recalled ideas from a single source either alone or in the presence of the partner, using an extended-recall task. Partner presence did not affect the availability of ideas, but did reduce the propensity to report them as task compliant, relative to a partner-present condition. Simultaneous recall from both sources removed this social effect (Experiment 2B). Thus social influences on unconscious plagiarism are apparent, but are influenced by the salience of the alternate source at retrieval.
Carelessness and Affect in an Intelligent Tutoring System for Mathematics
ERIC Educational Resources Information Center
San Pedro, Maria Ofelia Z.; de Baker, Ryan S. J.; Rodrigo, Ma. Mercedes T.
2014-01-01
We investigate the relationship between students' affect and their frequency of careless errors while using an Intelligent Tutoring System for middle school mathematics. A student is said to have committed a careless error when the student's answer is wrong despite knowing the skill required to provide the correct answer. We operationalize the…
NASA Astrophysics Data System (ADS)
Deng, F.; Jones, D. B. A.; Walker, T. W.; Keller, M.; Bowman, K. W.; Henze, D. K.; Nassar, R.; Kort, E. A.; Wofsy, S. C.; Walker, K. A.; Bourassa, A. E.; Degenstein, D. A.
2015-04-01
The upper troposphere and lower stratosphere (UTLS) represents a transition region between the more dynamically active troposphere and more stably stratified stratosphere. The region is characterized by strong gradients in the distribution of long-lived tracers, which are sensitive to discrepancies in transport in models. We evaluate the GEOS-Chem model in the UTLS using carbon dioxide (CO2) and ozone (O3) observations from the HIAPER (The High-Performance Instrumented Airborne Platform for Environmental Research) Pole-to-Pole Observations (HIPPO) campaign in March 2010. GEOS-Chem CO2 / O3 correlation suggests that there is a discrepancy in mixing across the tropopause in the model, which results in an overestimate of CO2 and an underestimate of O3 in the Arctic lower stratosphere. We assimilate stratospheric O3 data from OSIRIS and used the assimilated O3 fields together with the HIPPO CO2 / O3 correlations to obtain a correction to the modeled CO2 profile in the Arctic UTLS (primarily between the 320 and 360 K isentropic surfaces). The HIPPO-derived correction corresponds to a sink of 0.13 Pg C month-1 in the Arctic. Imposing this sink during March-August 2010 results in a reduction in the CO2 sinks inferred from GOSAT observations for temperate North America, Europe, and tropical Asia of 20, 12, and 50%, respectively. Conversely, the inversion increased the source of CO2 from tropical South America by 20%. We found that the model also underestimated CO2 in the upper tropical and subtropical troposphere, which may be linked by mixing across the subtropical tropopause. Correcting for the bias relative to HIPPO in the tropical upper troposphere, by imposing a source of 0.33 Pg C, led to a reduction in the source from tropical South America by 44%, and produced a flux estimate for tropical Asia that was in agreement with the standard inversion (without the imposed source and sink). However, the seasonal transition from a source to a sink of CO2 for tropical Asia was shifted from April to June. It is unclear whether the discrepancies found in the UTLS are due to errors in mixing associated with the large-scale dynamics or are due to the numerical errors in the advection scheme. However, our results illustrate that discrepancies in the CO2 distribution in the UTLS can affect CO2 flux inversions and suggest the need for more careful evaluation of model transport errors in the UTLS.
Study on effective MOSFET channel length extracted from gate capacitance
NASA Astrophysics Data System (ADS)
Tsuji, Katsuhiro; Terada, Kazuo; Fujisaka, Hisato
2018-01-01
The effective channel length (L GCM) of metal-oxide-semiconductor field-effect transistors (MOSFETs) is extracted from the gate capacitances of actual-size MOSFETs, which are measured by charge-injection-induced-error-free charge-based capacitance measurement (CIEF CBCM). To accurately evaluate the capacitances between the gate and the channel of test MOSFETs, the parasitic capacitances are removed by using test MOSFETs having various channel sizes and a source/drain reference device. A strong linear relationship between the gate-channel capacitance and the design channel length is obtained, from which L GCM is extracted. It is found that L GCM is slightly less than the effective channel length (L CRM) extracted from the measured MOSFET drain current. The reason for this is discussed, and it is found that the capacitance between the gate electrode and the source and drain regions affects this extraction.
What can the programming language Rust do for astrophysics?
NASA Astrophysics Data System (ADS)
Blanco-Cuaresma, Sergi; Bolmont, Emeline
2017-06-01
The astrophysics community uses different tools for computational tasks such as complex systems simulations, radiative transfer calculations or big data. Programming languages like Fortran, C or C++ are commonly present in these tools and, generally, the language choice was made based on the need for performance. However, this comes at a cost: safety. For instance, a common source of error is the access to invalid memory regions, which produces random execution behaviors and affects the scientific interpretation of the results. In 2015, Mozilla Research released the first stable version of a new programming language named Rust. Many features make this new language attractive for the scientific community, it is open source and it guarantees memory safety while offering zero-cost abstraction. We explore the advantages and drawbacks of Rust for astrophysics by re-implementing the fundamental parts of Mercury-T, a Fortran code that simulates the dynamical and tidal evolution of multi-planet systems.
Ahmed, Rana; Robinson, Ryan; Elsony, Asma; Thomson, Rachael; Squire, S. Bertel; Malmborg, Rasmus; Burney, Peter
2018-01-01
Introduction Data collection using paper-based questionnaires can be time consuming and return errors affect data accuracy, completeness, and information quality in health surveys. We compared smartphone and paper-based data collection systems in the Burden of Obstructive Lung Disease (BOLD) study in rural Sudan. Methods This exploratory pilot study was designed to run in parallel with the cross-sectional household survey. The Open Data Kit was used to programme questionnaires in Arabic into smartphones. We included 100 study participants (83% women; median age = 41.5 ± 16.4 years) from the BOLD study from 3 rural villages in East-Gezira and Kamleen localities of Gezira state, Sudan. Questionnaire data were collected using smartphone and paper-based technologies simultaneously. We used Kappa statistics and inter-rater class coefficient to test agreement between the two methods. Results Symptoms reported included cough (24%), phlegm (15%), wheezing (17%), and shortness of breath (18%). One in five were or had been cigarette smokers. The two data collection methods varied between perfect to slight agreement across the 204 variables evaluated (Kappa varied between 1.00 and 0.02 and inter-rater coefficient between 1.00 and -0.12). Errors were most commonly seen with paper questionnaires (83% of errors seen) vs smartphones (17% of errors seen) administered questionnaires with questions with complex skip-patterns being a major source of errors in paper questionnaires. Automated checks and validations in smartphone-administered questionnaires avoided skip-pattern related errors. Incomplete and inconsistent records were more likely seen on paper questionnaires. Conclusion Compared to paper-based data collection, smartphone technology worked well for data collection in the study, which was conducted in a challenging rural environment in Sudan. This approach provided timely, quality data with fewer errors and inconsistencies compared to paper-based data collection. We recommend this method for future BOLD studies and other population-based studies in similar settings. PMID:29518132
Dilution space ratio of 2H and 18O of doubly labeled water method in humans.
Sagayama, Hiroyuki; Yamada, Yosuke; Racine, Natalie M; Shriver, Timothy C; Schoeller, Dale A
2016-06-01
Variation of the dilution space ratio (Nd/No) between deuterium ((2)H) and oxygen-18 ((18)O) impacts the calculation of total energy expenditure (TEE) by doubly labeled water (DLW). Our aim was to examine the physiological and methodological sources of variation of Nd/No in humans. We analyzed data from 2,297 humans (0.25-89 yr old). This included the variables Nd/No, total body water, TEE, body mass index (BMI), and percent body fat (%fat). To differentiate between physiologic and methodologic sources of variation, the urine samples from 54 subjects were divided and blinded and analyzed separately, and repeated DLW dosing was performed in an additional 55 participants after 6 mo. Sex, BMI, and %fat did not significantly affect Nd/No, for which the interindividual SD was 0.017. The measurement error from the duplicate urine sample sets was 0.010, and intraindividual SD of Nd/No in repeats experiments was 0.013. An additional SD of 0.008 was contributed by calibration of the DLW dose water. The variation of measured Nd/No in humans was distributed within a small range and measurement error accounted for 68% of this variation. There was no evidence that Nd/No differed with respect to sex, BMI, and age between 1 and 80 yr, and thus use of a constant value is suggested to minimize the effect of stable isotope analysis error on calculation of TEE in the DLW studies in humans. Based on a review of 103 publications, the average dilution space ratio is 1.036 for individuals between 1 and 80 yr of age. Copyright © 2016 the American Physiological Society.
Database of well and areal data, South San Francisco Bay and Peninsula area, California
Leighton, D.A.; Fio, J.L.; Metzger, L.F.
1995-01-01
A database was developed to organize and manage data compiled for a regional assessment of geohydrologic and water-quality conditions in the south San Francisco Bay and Peninsula area in California. Available data provided by local, State, and Federal agencies and private consultants was utilized in the assessment. The database consists of geographicinformation system data layers and related tables and American Standard Code for Information Interchange files. Documentation of the database is necessary to avoid misinterpretation of the data and to make users aware of potential errors and limitations. Most of the data compiled were collected from wells and boreholes (collectively referred to as wells in this report). This point-specific data, including construction, water-level, waterquality, pumping test, and lithologic data, are contained in tables and files that are related to a geographic information system data layer that contains the locations of the wells. There are 1,014 wells in the data layer and the related tables contain 35,845 water-level measurements (from 293 of the wells) and 9,292 water-quality samples (from 394 of the wells). Calculation of hydraulic heads and gradients from the water levels can be affected adversely by errors in the determination of the altitude of land surface at the well. Cation and anion balance computations performed on 396 of the water-quality samples indicate high cation and anion balance errors for 51 (13 percent) of the samples. Well drillers' reports were interpreted for 762 of the wells, and digital representations of the lithology of the formations are contained in files following the American Standard Code for Information Interchange. The usefulness of drillers' descriptions of the formation lithology is affected by the detail and thoroughness of the drillers' descriptions, as well as the knowledge, experience, and vocabulary of the individual who described the drill cuttings. Additional data layers were created that contain political, geohydrologic, and other geographic data. These layers contain features represented by areas and lines rather than discrete points. The layers consist of data representing the thickness of alluvium, surficial geology, physiographic subareas, watershed boundaries, land use, water-supply districts, wastewater treatment districts, and recharge basins. The layers manually digitizing paper maps, acquisition of data already in digital form, or creation of new layers from available layers. The scale of the source data affects the accurate representation of real-world features with the data layer, and, therefore, the scale of the source data must be considered when the data are analyzed and plotted.
The measurement of alpha particle emissions from semiconductor memory materials
NASA Astrophysics Data System (ADS)
Bouldin, D. P.
1981-07-01
With the increasing concern for the affects of alpha particles on the reliability of semiconductor memories, an interest has arisen in characterizing semiconductor manufacturing materials for extremely low-level alpha-emitting contaminants. It is shown that four elements are of primary concern: uranium, thorium, radium, and polonium. Measurement of contamination levels are given relevance by first correlating them with alpha flux emission levels and then corre1ating these flux values with device soft error rates. Measurement techniques involve either measurements of elemental concentrations-applicable to only uranium and thorium - or direct measurements of alpha emission fluxes. Alpha fluxes are most usefully measured by means of ZnS scintillation counting, practical details of which are discussed. Materials measurements are reported for ceramics, solder, silicon, quartz, and various metals and organic materials. Ceramics and most metals have contamination levels of concern, but the high temperature processing normally used in semiconductor manufacturing and low total amounts reduce problems, at least for metals. Silicon, silicon compounds, and organic materials have been found to have no detectable alpha emitters. Finally, a brief discussion of the calibration of alpha sources for accelerated device testing is given, including practical details on the affects of source/chip separation and alignment variations.
Nursing Home Price and Quality Responses to Publicly Reported Quality Information
Clement, Jan P; Bazzoli, Gloria J; Zhao, Mei
2012-01-01
Objective To assess whether the release of Nursing Home Compare (NHC) data affected self-pay per diem prices and quality of care. Data Sources Primary data sources are the Annual Survey of Wisconsin Nursing Homes for 2001–2003, Online Survey and Certification Reporting System, NHC, and Area Resource File. Study Design We estimated fixed effects models with robust standard errors of per diem self-pay charge and quality before and after NHC. Principal Findings After NHC, low-quality nursing homes raised their prices by a small but significant amount and decreased their use of restraints but did not reduce pressure sores. Mid-level and high-quality nursing homes did not significantly increase self-pay prices after NHC nor consistently change quality. Conclusions Our findings suggest that the release of quality information affected nursing home behavior, especially pricing and quality decisions among low-quality facilities. Policy makers should continue to monitor quality and prices for self-pay residents and scrutinize low-quality homes over time to see whether they are on a pathway to improve quality. In addition, policy makers should not expect public reporting to result in quick fixes to nursing home quality problems. PMID:22092366
Error Model and Compensation of Bell-Shaped Vibratory Gyro
Su, Zhong; Liu, Ning; Li, Qing
2015-01-01
A bell-shaped vibratory angular velocity gyro (BVG), inspired by the Chinese traditional bell, is a type of axisymmetric shell resonator gyroscope. This paper focuses on development of an error model and compensation of the BVG. A dynamic equation is firstly established, based on a study of the BVG working mechanism. This equation is then used to evaluate the relationship between the angular rate output signal and bell-shaped resonator character, analyze the influence of the main error sources and set up an error model for the BVG. The error sources are classified from the error propagation characteristics, and the compensation method is presented based on the error model. Finally, using the error model and compensation method, the BVG is calibrated experimentally including rough compensation, temperature and bias compensation, scale factor compensation and noise filter. The experimentally obtained bias instability is from 20.5°/h to 4.7°/h, the random walk is from 2.8°/h1/2 to 0.7°/h1/2 and the nonlinearity is from 0.2% to 0.03%. Based on the error compensation, it is shown that there is a good linear relationship between the sensing signal and the angular velocity, suggesting that the BVG is a good candidate for the field of low and medium rotational speed measurement. PMID:26393593
The pros and cons of code validation
NASA Technical Reports Server (NTRS)
Bobbitt, Percy J.
1988-01-01
Computational and wind tunnel error sources are examined and quantified using specific calculations of experimental data, and a substantial comparison of theoretical and experimental results, or a code validation, is discussed. Wind tunnel error sources considered include wall interference, sting effects, Reynolds number effects, flow quality and transition, and instrumentation such as strain gage balances, electronically scanned pressure systems, hot film gages, hot wire anemometers, and laser velocimeters. Computational error sources include math model equation sets, the solution algorithm, artificial viscosity/dissipation, boundary conditions, the uniqueness of solutions, grid resolution, turbulence modeling, and Reynolds number effects. It is concluded that, although improvements in theory are being made more quickly than in experiments, wind tunnel research has the advantage of the more realistic transition process of a right turbulence model in a free-transition test.
Image reduction pipeline for the detection of variable sources in highly crowded fields
NASA Astrophysics Data System (ADS)
Gössl, C. A.; Riffeser, A.
2002-01-01
We present a reduction pipeline for CCD (charge-coupled device) images which was built to search for variable sources in highly crowded fields like the M 31 bulge and to handle extensive databases due to large time series. We describe all steps of the standard reduction in detail with emphasis on the realisation of per pixel error propagation: Bias correction, treatment of bad pixels, flatfielding, and filtering of cosmic rays. The problems of conservation of PSF (point spread function) and error propagation in our image alignment procedure as well as the detection algorithm for variable sources are discussed: we build difference images via image convolution with a technique called OIS (optimal image subtraction, Alard & Lupton \\cite{1998ApJ...503..325A}), proceed with an automatic detection of variable sources in noise dominated images and finally apply a PSF-fitting, relative photometry to the sources found. For the WeCAPP project (Riffeser et al. \\cite{2001A&A...0000..00R}) we achieve 3sigma detections for variable sources with an apparent brightness of e.g. m = 24.9;mag at their minimum and a variation of Delta m = 2.4;mag (or m = 21.9;mag brightness minimum and a variation of Delta m = 0.6;mag) on a background signal of 18.1;mag/arcsec2 based on a 500;s exposure with 1.5;arcsec seeing at a 1.2;m telescope. The complete per pixel error propagation allows us to give accurate errors for each measurement.
Lash, Timothy L
2007-11-26
The associations of pesticide exposure with disease outcomes are estimated without the benefit of a randomized design. For this reason and others, these studies are susceptible to systematic errors. I analyzed studies of the associations between alachlor and glyphosate exposure and cancer incidence, both derived from the Agricultural Health Study cohort, to quantify the bias and uncertainty potentially attributable to systematic error. For each study, I identified the prominent result and important sources of systematic error that might affect it. I assigned probability distributions to the bias parameters that allow quantification of the bias, drew a value at random from each assigned distribution, and calculated the estimate of effect adjusted for the biases. By repeating the draw and adjustment process over multiple iterations, I generated a frequency distribution of adjusted results, from which I obtained a point estimate and simulation interval. These methods were applied without access to the primary record-level dataset. The conventional estimates of effect associating alachlor and glyphosate exposure with cancer incidence were likely biased away from the null and understated the uncertainty by quantifying only random error. For example, the conventional p-value for a test of trend in the alachlor study equaled 0.02, whereas fewer than 20% of the bias analysis iterations yielded a p-value of 0.02 or lower. Similarly, the conventional fully-adjusted result associating glyphosate exposure with multiple myleoma equaled 2.6 with 95% confidence interval of 0.7 to 9.4. The frequency distribution generated by the bias analysis yielded a median hazard ratio equal to 1.5 with 95% simulation interval of 0.4 to 8.9, which was 66% wider than the conventional interval. Bias analysis provides a more complete picture of true uncertainty than conventional frequentist statistical analysis accompanied by a qualitative description of study limitations. The latter approach is likely to lead to overconfidence regarding the potential for causal associations, whereas the former safeguards against such overinterpretations. Furthermore, such analyses, once programmed, allow rapid implementation of alternative assignments of probability distributions to the bias parameters, so elevate the plane of discussion regarding study bias from characterizing studies as "valid" or "invalid" to a critical and quantitative discussion of sources of uncertainty.
Orbit determination strategy and results for the Pioneer 10 Jupiter mission
NASA Technical Reports Server (NTRS)
Wong, S. K.; Lubeley, A. J.
1974-01-01
Pioneer 10 is the first earth-based vehicle to encounter Jupiter and occult its moon, Io. In contributing to the success of the mission, the Orbit Determination Group evaluated the effects of the dominant error sources on the spacecraft's computed orbit and devised an encounter strategy minimizing the effects of these error sources. The encounter results indicated that: (1) errors in the satellite model played a very important role in the accuracy of the computed orbit, (2) encounter strategy was sound, (3) all mission objectives were met, and (4) Jupiter-Saturn mission for Pioneer 11 is within the navigation capability.
S-193 scatterometer transfer function analysis for data processing
NASA Technical Reports Server (NTRS)
Johnson, L.
1974-01-01
A mathematical model for converting raw data measurements of the S-193 scatterometer into processed values of radar scattering coefficient is presented. The argument is based on an approximation derived from the Radar Equation and actual operating principles of the S-193 Scatterometer hardware. Possible error sources are inaccuracies in transmitted wavelength, range, antenna illumination integrals, and the instrument itself. The dominant source of error in the calculation of scattering coefficent is accuracy of the range. All other ractors with the possible exception of illumination integral are not considered to cause significant error in the calculation of scattering coefficient.
NASA Astrophysics Data System (ADS)
Insua-Costa, Damián; Miguez-Macho, Gonzalo
2018-02-01
A new moisture tagging tool, usually known as water vapor tracer (WVT) method or online Eulerian method, has been implemented into the Weather Research and Forecasting (WRF) regional meteorological model, enabling it for precise studies on atmospheric moisture sources and pathways. We present here the method and its formulation, along with details of the implementation into WRF. We perform an in-depth validation with a 1-month long simulation over North America at 20 km resolution, tagging all possible moisture sources: lateral boundaries, continental, maritime or lake surfaces and initial atmospheric conditions. We estimate errors as the moisture or precipitation amounts that cannot be traced back to any source. Validation results indicate that the method exhibits high precision, with errors considerably lower than 1 % during the entire simulation period, for both precipitation and total precipitable water. We apply the method to the Great Lake-effect snowstorm of November 2014, aiming at quantifying the contribution of lake evaporation to the large snow accumulations observed in the event. We perform simulations in a nested domain at 5 km resolution with the tagging technique, demonstrating that about 30-50 % of precipitation in the regions immediately downwind, originated from evaporated moisture in the Great Lakes. This contribution increases to between 50 and 60 % of the snow water equivalent in the most severely affected areas, which suggests that evaporative fluxes from the lakes have a fundamental role in producing the most extreme accumulations in these episodes, resulting in the highest socioeconomic impacts.
NASA Astrophysics Data System (ADS)
Quinn, P.; Bates, T.; Coffman, D.; Covert, D.
2007-12-01
The impact of anthropogenic aerosol on cloud properties, cloud lifetime, and precipitation processes is one of the largest uncertainties in our current understanding of climate change. Aerosols affect cloud properties by serving as cloud condensation nuclei (CCN) thereby leading to the formation of cloud droplets. The process of cloud drop activation is a function of both the size and chemistry of the aerosol particles which, in turn, depend on the source of the aerosol and transformations that occur downwind. In situ field measurements that can lead to an improved understanding of the process of cloud drop formation and simplifying parameterizations for improving the accuracy of climate models are highly desirable. During the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), the NOAA RV Ronald H. Brown encountered a wide variety of aerosol types ranging from marine near the Florida panhandle to urban and industrial in the Houston-Galveston area. These varied sources provided an opportunity to investigate the role of aerosol sources, aging, chemistry, and size in the activation of particles to form cloud droplets. Here, we use the correlation between variability in critical diameter for activation (determined empirically from measured CCN concentrations and the number size distribution) and aerosol composition to quantify the impact of composition on particle activation. Variability in aerosol composition is parameterized by the mass fraction of Hydrocarbon-like Organic Aerosol (HOA) for particle diameters less than 200 nm (vacuum aerodynamic). The HOA mass fraction in this size range is lowest for marine aerosol and higher for aerosol impacted by anthropogenic emissions. Combining all data collected at 0.44 percent supersaturation (SS) reveals that composition (defined in this way) explains 40 percent of the variance in the critical diameter. As expected, the dependence of activation on composition is strongest at lower SS. At the same time, correlations between HOA mass fraction and aerosol mean diameter show that these two parameters are essentially independent of one another for this data set. We conclude that, based on the variability of the HOA mass fraction observed during GoMACCS, composition plays a dominant role in determining the fraction of particles that are activated to form cloud droplets. Using Kohler theory, we estimate the error that results in calculated CCN concentrations if the organic fraction of the aerosol is neglected (i.e., a fully soluble composition of ammonium sulfate is assumed) for the range of organic mass fractions and mean diameters observed during GoMACCS. We then relate this error to the source and age of the aerosol. At 0.22 and 0.44 percent SS, the error is considerable for anthropogenic aerosol sampled near the source region as this aerosol has, on average, a high POM mass fraction and smaller particle mean diameter. The error is lower for more aged aerosol as it has a lower POM mass fraction and larger mean particle diameter. Hence, the percent error in calculated CCN concentration is expected to be larger for younger, organic- rich aerosol and smaller for aged, sulfate rich aerosol and for marine aerosol. We extend this analysis to continental and marine data sets recently reported by Dusek et al. [Science, 312, 1375, 2006] and Hudson [Geophys. Res., Lett., 34, L08801, 2007].
Investigating effects of communications modulation technique on targeting performance
NASA Astrophysics Data System (ADS)
Blasch, Erik; Eusebio, Gerald; Huling, Edward
2006-05-01
One of the key challenges facing the global war on terrorism (GWOT) and urban operations is the increased need for rapid and diverse information from distributed sources. For users to get adequate information on target types and movements, they would need reliable data. In order to facilitate reliable computational intelligence, we seek to explore the communication modulation tradeoffs affecting information distribution and accumulation. In this analysis, we explore the modulation techniques of Orthogonal Frequency Division Multiplexing (OFDM), Direct Sequence Spread Spectrum (DSSS), and statistical time-division multiple access (TDMA) as a function of the bit error rate and jitter that affect targeting performance. In the analysis, we simulate a Link 16 with a simple bandpass frequency shift keying (PSK) technique using different Signal-to-Noise ratios. The communications transfer delay and accuracy tradeoffs are assessed as to the effects incurred in targeting performance.
Di Pietro, M; Schnider, A; Ptak, R
2011-10-01
Patients with peripheral dysgraphia due to impairment at the allographic level produce writing errors that affect the letter-form and are characterized by case confusions or the failure to write in a specific case or style (e.g., cursive). We studied the writing errors of a patient with pure peripheral dysgraphia who had entirely intact oral spelling, but produced many well-formed letter errors in written spelling. The comparison of uppercase print and lowercase cursive spelling revealed an uncommon pattern: while most uppercase errors were case substitutions (e.g., A - a), almost all lowercase errors were letter substitutions (e.g., n - r). Analyses of the relationship between target letters and substitution errors showed that errors were neither influenced by consonant-vowel status nor by letter frequency, though word length affected error frequency in lowercase writing. Moreover, while graphomotor similarity did not predict either the occurrence of uppercase or lowercase errors, visuospatial similarity was a significant predictor of lowercase errors. These results suggest that lowercase representations of cursive letter-forms are based on a description of entire letters (visuospatial features) and are not - as previously found for uppercase letters - specified in terms of strokes (graphomotor features). Copyright © 2010 Elsevier Srl. All rights reserved.
Impact and quantification of the sources of error in DNA pooling designs.
Jawaid, A; Sham, P
2009-01-01
The analysis of genome wide variation offers the possibility of unravelling the genes involved in the pathogenesis of disease. Genome wide association studies are also particularly useful for identifying and validating targets for therapeutic intervention as well as for detecting markers for drug efficacy and side effects. The cost of such large-scale genetic association studies may be reduced substantially by the analysis of pooled DNA from multiple individuals. However, experimental errors inherent in pooling studies lead to a potential increase in the false positive rate and a loss in power compared to individual genotyping. Here we quantify various sources of experimental error using empirical data from typical pooling experiments and corresponding individual genotyping counts using two statistical methods. We provide analytical formulas for calculating these different errors in the absence of complete information, such as replicate pool formation, and for adjusting for the errors in the statistical analysis. We demonstrate that DNA pooling has the potential of estimating allele frequencies accurately, and adjusting the pooled allele frequency estimates for differential allelic amplification considerably improves accuracy. Estimates of the components of error show that differential allelic amplification is the most important contributor to the error variance in absolute allele frequency estimation, followed by allele frequency measurement and pool formation errors. Our results emphasise the importance of minimising experimental errors and obtaining correct error estimates in genetic association studies.
Optimizing dynamic downscaling in one-way nesting using a regional ocean model
NASA Astrophysics Data System (ADS)
Pham, Van Sy; Hwang, Jin Hwan; Ku, Hyeyun
2016-10-01
Dynamical downscaling with nested regional oceanographic models has been demonstrated to be an effective approach for both operationally forecasted sea weather on regional scales and projections of future climate change and its impact on the ocean. However, when nesting procedures are carried out in dynamic downscaling from a larger-scale model or set of observations to a smaller scale, errors are unavoidable due to the differences in grid sizes and updating intervals. The present work assesses the impact of errors produced by nesting procedures on the downscaled results from Ocean Regional Circulation Models (ORCMs). Errors are identified and evaluated based on their sources and characteristics by employing the Big-Brother Experiment (BBE). The BBE uses the same model to produce both nesting and nested simulations; so it addresses those error sources separately (i.e., without combining the contributions of errors from different sources). Here, we focus on discussing errors resulting from the spatial grids' differences, the updating times and the domain sizes. After the BBE was separately run for diverse cases, a Taylor diagram was used to analyze the results and recommend an optimal combination of grid size, updating period and domain sizes. Finally, suggested setups for the downscaling were evaluated by examining the spatial correlations of variables and the relative magnitudes of variances between the nested model and the original data.
Error Sources in Proccessing LIDAR Based Bridge Inspection
NASA Astrophysics Data System (ADS)
Bian, H.; Chen, S. E.; Liu, W.
2017-09-01
Bridge inspection is a critical task in infrastructure management and is facing unprecedented challenges after a series of bridge failures. The prevailing visual inspection was insufficient in providing reliable and quantitative bridge information although a systematic quality management framework was built to ensure visual bridge inspection data quality to minimize errors during the inspection process. The LiDAR based remote sensing is recommended as an effective tool in overcoming some of the disadvantages of visual inspection. In order to evaluate the potential of applying this technology in bridge inspection, some of the error sources in LiDAR based bridge inspection are analysed. The scanning angle variance in field data collection and the different algorithm design in scanning data processing are the found factors that will introduce errors into inspection results. Besides studying the errors sources, advanced considerations should be placed on improving the inspection data quality, and statistical analysis might be employed to evaluate inspection operation process that contains a series of uncertain factors in the future. Overall, the development of a reliable bridge inspection system requires not only the improvement of data processing algorithms, but also systematic considerations to mitigate possible errors in the entire inspection workflow. If LiDAR or some other technology can be accepted as a supplement for visual inspection, the current quality management framework will be modified or redesigned, and this would be as urgent as the refine of inspection techniques.
Grogger, P; Sacher, C; Weber, S; Millesi, G; Seemann, R
2018-04-10
Deviations in measuring dentofacial components in a lateral X-ray represent a major hurdle in the subsequent treatment of dysgnathic patients. In a retrospective study, we investigated the most prevalent source of error in the following commonly used cephalometric measurements: the angles Sella-Nasion-Point A (SNA), Sella-Nasion-Point B (SNB) and Point A-Nasion-Point B (ANB); the Wits appraisal; the anteroposterior dysplasia indicator (APDI); and the overbite depth indicator (ODI). Preoperative lateral radiographic images of patients with dentofacial deformities were collected and the landmarks digitally traced by three independent raters. Cephalometric analysis was automatically performed based on 1116 tracings. Error analysis identified the x-coordinate of Point A as the prevalent source of error in all investigated measurements, except SNB, in which it is not incorporated. In SNB, the y-coordinate of Nasion predominated error variance. SNB showed lowest inter-rater variation. In addition, our observations confirmed previous studies showing that landmark identification variance follows characteristic error envelopes in the highest number of tracings analysed up to now. Variance orthogonal to defining planes was of relevance, while variance parallel to planes was not. Taking these findings into account, orthognathic surgeons as well as orthodontists would be able to perform cephalometry more accurately and accomplish better therapeutic results. Copyright © 2018 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Rieger, Martina; Bart, Victoria K. E.
2016-01-01
We investigated to what extent different sources of information are used in typing on a computer keyboard. Using self-reports 10 finger typists and idiosyncratic typists estimated how much attention they pay to different sources of information during copy typing and free typing and how much they use them for error detection. 10 finger typists reported less attention to the keyboard and the fingers and more attention to the template and the screen than idiosyncratic typists. The groups did not differ in attention to touch/kinaesthesis in copy typing and free typing, but 10 finger typists reported more use of touch/kinaesthesis in error detection. This indicates that processing of tactile/kinaesthetic information may occur largely outside conscious control, as long as no errors occur. 10 finger typists reported more use of internal prediction of movement consequences for error detection than idiosyncratic typists, reflecting more precise internal models. Further in copy typing compared to free typing attention to the template is required, thus leaving less attentional capacity for other sources of information. Correlations showed that higher skilled typists, regardless of typing style, rely more on sources of information which are usually associated with 10 finger typing. One limitation of the study is that only self-reports were used. We conclude that typing task, typing proficiency, and typing style influence how attention is distributed during typing. PMID:28018256
Rieger, Martina; Bart, Victoria K E
2016-01-01
We investigated to what extent different sources of information are used in typing on a computer keyboard. Using self-reports 10 finger typists and idiosyncratic typists estimated how much attention they pay to different sources of information during copy typing and free typing and how much they use them for error detection. 10 finger typists reported less attention to the keyboard and the fingers and more attention to the template and the screen than idiosyncratic typists. The groups did not differ in attention to touch/kinaesthesis in copy typing and free typing, but 10 finger typists reported more use of touch/kinaesthesis in error detection. This indicates that processing of tactile/kinaesthetic information may occur largely outside conscious control, as long as no errors occur. 10 finger typists reported more use of internal prediction of movement consequences for error detection than idiosyncratic typists, reflecting more precise internal models. Further in copy typing compared to free typing attention to the template is required, thus leaving less attentional capacity for other sources of information. Correlations showed that higher skilled typists, regardless of typing style, rely more on sources of information which are usually associated with 10 finger typing. One limitation of the study is that only self-reports were used. We conclude that typing task, typing proficiency, and typing style influence how attention is distributed during typing.
The Robustness of Acoustic Analogies
NASA Technical Reports Server (NTRS)
Freund, J. B.; Lele, S. K.; Wei, M.
2004-01-01
Acoustic analogies for the prediction of flow noise are exact rearrangements of the flow equations N(right arrow q) = 0 into a nominal sound source S(right arrow q) and sound propagation operator L such that L(right arrow q) = S(right arrow q). In practice, the sound source is typically modeled and the propagation operator inverted to make predictions. Since the rearrangement is exact, any sufficiently accurate model of the source will yield the correct sound, so other factors must determine the merits of any particular formulation. Using data from a two-dimensional mixing layer direct numerical simulation (DNS), we evaluate the robustness of two analogy formulations to different errors intentionally introduced into the source. The motivation is that since S can not be perfectly modeled, analogies that are less sensitive to errors in S are preferable. Our assessment is made within the framework of Goldstein's generalized acoustic analogy, in which different choices of a base flow used in constructing L give different sources S and thus different analogies. A uniform base flow yields a Lighthill-like analogy, which we evaluate against a formulation in which the base flow is the actual mean flow of the DNS. The more complex mean flow formulation is found to be significantly more robust to errors in the energetic turbulent fluctuations, but its advantage is less pronounced when errors are made in the smaller scales.
The Public Understanding of Error in Educational Assessment
ERIC Educational Resources Information Center
Gardner, John
2013-01-01
Evidence from recent research suggests that in the UK the public perception of errors in national examinations is that they are simply mistakes; events that are preventable. This perception predominates over the more sophisticated technical view that errors arise from many sources and create an inevitable variability in assessment outcomes. The…
On the Limitations of Variational Bias Correction
NASA Technical Reports Server (NTRS)
Moradi, Isaac; Mccarty, Will; Gelaro, Ronald
2018-01-01
Satellite radiances are the largest dataset assimilated into Numerical Weather Prediction (NWP) models, however the data are subject to errors and uncertainties that need to be accounted for before assimilating into the NWP models. Variational bias correction uses the time series of observation minus background to estimate the observations bias. This technique does not distinguish between the background error, forward operator error, and observations error so that all these errors are summed up together and counted as observation error. We identify some sources of observations errors (e.g., antenna emissivity, non-linearity in the calibration, and antenna pattern) and show the limitations of variational bias corrections on estimating these errors.
An Analysis of Errors in Written English Sentences: A Case Study of Thai EFL Students
ERIC Educational Resources Information Center
Sermsook, Kanyakorn; Liamnimit, Jiraporn; Pochakorn, Rattaneekorn
2017-01-01
The purposes of the present study were to examine the language errors in a writing of English major students in a Thai university and to explore the sources of the errors. This study focused mainly on sentences because the researcher found that errors in Thai EFL students' sentence construction may lead to miscommunication. 104 pieces of writing…
ERIC Educational Resources Information Center
Vocat, Roland; Pourtois, Gilles; Vuilleumier, Patrik
2008-01-01
The detection of errors is known to be associated with two successive neurophysiological components in EEG, with an early time-course following motor execution: the error-related negativity (ERN/Ne) and late positivity (Pe). The exact cognitive and physiological processes contributing to these two EEG components, as well as their functional…
Ivanov, Mikhail; Dubernet, Marie-Lise; Babikov, Dmitri
2014-04-07
The mixed quantum/classical theory (MQCT) formulated in the space-fixed reference frame is used to compute quenching cross sections of several rotationally excited states of water molecule by impact of He atom in a broad range of collision energies, and is tested against the full-quantum calculations on the same potential energy surface. In current implementation of MQCT method, there are two major sources of errors: one affects results at energies below 10 cm(-1), while the other shows up at energies above 500 cm(-1). Namely, when the collision energy E is below the state-to-state transition energy ΔE the MQCT method becomes less accurate due to its intrinsic classical approximation, although employment of the average-velocity principle (scaling of collision energy in order to satisfy microscopic reversibility) helps dramatically. At higher energies, MQCT is expected to be accurate but in current implementation, in order to make calculations computationally affordable, we had to cut off the basis set size. This can be avoided by using a more efficient body-fixed formulation of MQCT. Overall, the errors of MQCT method are within 20% of the full-quantum results almost everywhere through four-orders-of-magnitude range of collision energies, except near resonances, where the errors are somewhat larger.
Cutti, Andrea Giovanni; Cappello, Angelo; Davalli, Angelo
2006-01-01
Soft tissue artefact is the dominant error source for upper extremity motion analyses that use skin-mounted markers, especially in humeral axial rotation. A new in vivo technique is presented that is based on the definition of a humerus bone-embedded frame almost "artefact free" but influenced by the elbow orientation in the measurement of the humeral axial rotation, and on an algorithm designed to solve this kinematic coupling. The technique was validated in vivo in a study of six healthy subjects who performed five arm-movement tasks. For each task the similarity between a gold standard pattern and the axial rotation pattern before and after the application of the compensation algorithm was evaluated in terms of explained variance, gain, phase and offset. In addition the root mean square error between the patterns was used as a global similarity estimator. After the application, for four out of five tasks, patterns were highly correlated, in phase, with almost equal gain and limited offset; the root mean square error decreased from the original 9 degrees to 3 degrees . The proposed technique appears to help compensate for the soft tissue artefact affecting axial rotation. A further development is also proposed to make the technique effective also for the pure prono-supination task.
Nesvizhskii, Alexey I.
2010-01-01
This manuscript provides a comprehensive review of the peptide and protein identification process using tandem mass spectrometry (MS/MS) data generated in shotgun proteomic experiments. The commonly used methods for assigning peptide sequences to MS/MS spectra are critically discussed and compared, from basic strategies to advanced multi-stage approaches. A particular attention is paid to the problem of false-positive identifications. Existing statistical approaches for assessing the significance of peptide to spectrum matches are surveyed, ranging from single-spectrum approaches such as expectation values to global error rate estimation procedures such as false discovery rates and posterior probabilities. The importance of using auxiliary discriminant information (mass accuracy, peptide separation coordinates, digestion properties, and etc.) is discussed, and advanced computational approaches for joint modeling of multiple sources of information are presented. This review also includes a detailed analysis of the issues affecting the interpretation of data at the protein level, including the amplification of error rates when going from peptide to protein level, and the ambiguities in inferring the identifies of sample proteins in the presence of shared peptides. Commonly used methods for computing protein-level confidence scores are discussed in detail. The review concludes with a discussion of several outstanding computational issues. PMID:20816881
Studies in automatic speech recognition and its application in aerospace
NASA Astrophysics Data System (ADS)
Taylor, Michael Robinson
Human communication is characterized in terms of the spectral and temporal dimensions of speech waveforms. Electronic speech recognition strategies based on Dynamic Time Warping and Markov Model algorithms are described and typical digit recognition error rates are tabulated. The application of Direct Voice Input (DVI) as an interface between man and machine is explored within the context of civil and military aerospace programmes. Sources of physical and emotional stress affecting speech production within military high performance aircraft are identified. Experimental results are reported which quantify fundamental frequency and coarse temporal dimensions of male speech as a function of the vibration, linear acceleration and noise levels typical of aerospace environments; preliminary indications of acoustic phonetic variability reported by other researchers are summarized. Connected whole-word pattern recognition error rates are presented for digits spoken under controlled Gz sinusoidal whole-body vibration. Correlations are made between significant increases in recognition error rate and resonance of the abdomen-thorax and head subsystems of the body. The phenomenon of vibrato style speech produced under low frequency whole-body Gz vibration is also examined. Interactive DVI system architectures and avionic data bus integration concepts are outlined together with design procedures for the efficient development of pilot-vehicle command and control protocols.
Sentence imitation as a marker of SLI in Czech: disproportionate impairment of verbs and clitics.
Smolík, Filip; Vávru, Petra
2014-06-01
The authors examined sentence imitation as a potential clinical marker of specific language impairment (SLI) in Czech and its use to identify grammatical markers of SLI. Children with SLI and the age- and language-matched control groups (total N = 57) were presented with a sentence imitation task, a receptive vocabulary task, and digit span and nonword repetition tasks. Sentence imitations were scored for accuracy and error types. A separate count of inaccuracies for individual part-of-speech categories was performed. Children with SLI had substantially more inaccurate imitations than the control groups. The differences in the memory measures could not account for the differences between children with SLI and the control groups in imitation accuracy, even though they accounted for the differences between the language-matched and age-matched control groups. The proportion of grammatical errors was larger in children with SLI than in the control groups. The categories that were most affected in imitations of children with SLI were verbs and clitics. Sentence imitation is a sensitive marker of SLI. Verbs and clitics are the most vulnerable categories in Czech SLI. The pattern of errors suggests that impaired syntactic representations are the most likely source of difficulties in children with SLI.
Error and its meaning in forensic science.
Christensen, Angi M; Crowder, Christian M; Ousley, Stephen D; Houck, Max M
2014-01-01
The discussion of "error" has gained momentum in forensic science in the wake of the Daubert guidelines and has intensified with the National Academy of Sciences' Report. Error has many different meanings, and too often, forensic practitioners themselves as well as the courts misunderstand scientific error and statistical error rates, often confusing them with practitioner error (or mistakes). Here, we present an overview of these concepts as they pertain to forensic science applications, discussing the difference between practitioner error (including mistakes), instrument error, statistical error, and method error. We urge forensic practitioners to ensure that potential sources of error and method limitations are understood and clearly communicated and advocate that the legal community be informed regarding the differences between interobserver errors, uncertainty, variation, and mistakes. © 2013 American Academy of Forensic Sciences.
Analysis and optimization of cyclic methods in orbit computation
NASA Technical Reports Server (NTRS)
Pierce, S.
1973-01-01
The mathematical analysis and computation of the K=3, order 4; K=4, order 6; and K=5, order 7 cyclic methods and the K=5, order 6 Cowell method and some results of optimizing the 3 backpoint cyclic multistep methods for solving ordinary differential equations are presented. Cyclic methods have the advantage over traditional methods of having higher order for a given number of backpoints while at the same time having more free parameters. After considering several error sources the primary source for the cyclic methods has been isolated. The free parameters for three backpoint methods were used to minimize the effects of some of these error sources. They now yield more accuracy with the same computing time as Cowell's method on selected problems. This work is being extended to the five backpoint methods. The analysis and optimization are more difficult here since the matrices are larger and the dimension of the optimizing space is larger. Indications are that the primary error source can be reduced. This will still leave several parameters free to minimize other sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonçalves, Fabio; Treuhaft, Robert; Law, Beverly
Mapping and monitoring of forest carbon stocks across large areas in the tropics will necessarily rely on remote sensing approaches, which in turn depend on field estimates of biomass for calibration and validation purposes. Here, we used field plot data collected in a tropical moist forest in the central Amazon to gain a better understanding of the uncertainty associated with plot-level biomass estimates obtained specifically for the calibration of remote sensing measurements. In addition to accounting for sources of error that would be normally expected in conventional biomass estimates (e.g., measurement and allometric errors), we examined two sources of uncertaintymore » that are specific to the calibration process and should be taken into account in most remote sensing studies: the error resulting from spatial disagreement between field and remote sensing measurements (i.e., co-location error), and the error introduced when accounting for temporal differences in data acquisition. We found that the overall uncertainty in the field biomass was typically 25% for both secondary and primary forests, but ranged from 16 to 53%. Co-location and temporal errors accounted for a large fraction of the total variance (>65%) and were identified as important targets for reducing uncertainty in studies relating tropical forest biomass to remotely sensed data. Although measurement and allometric errors were relatively unimportant when considered alone, combined they accounted for roughly 30% of the total variance on average and should not be ignored. Lastly, our results suggest that a thorough understanding of the sources of error associated with field-measured plot-level biomass estimates in tropical forests is critical to determine confidence in remote sensing estimates of carbon stocks and fluxes, and to develop strategies for reducing the overall uncertainty of remote sensing approaches.« less
Imaging phased telescope array study
NASA Technical Reports Server (NTRS)
Harvey, James E.
1989-01-01
The problems encountered in obtaining a wide field-of-view with large, space-based direct imaging phased telescope arrays were considered. After defining some of the critical systems issues, previous relevant work in the literature was reviewed and summarized. An extensive list was made of potential error sources and the error sources were categorized in the form of an error budget tree including optical design errors, optical fabrication errors, assembly and alignment errors, and environmental errors. After choosing a top level image quality requirment as a goal, a preliminary tops-down error budget allocation was performed; then, based upon engineering experience, detailed analysis, or data from the literature, a bottoms-up error budget reallocation was performed in an attempt to achieve an equitable distribution of difficulty in satisfying the various allocations. This exercise provided a realistic allocation for residual off-axis optical design errors in the presence of state-of-the-art optical fabrication and alignment errors. Three different computational techniques were developed for computing the image degradation of phased telescope arrays due to aberrations of the individual telescopes. Parametric studies and sensitivity analyses were then performed for a variety of subaperture configurations and telescope design parameters in an attempt to determine how the off-axis performance of a phased telescope array varies as the telescopes are scaled up in size. The Air Force Weapons Laboratory (AFWL) multipurpose telescope testbed (MMTT) configuration was analyzed in detail with regard to image degradation due to field curvature and distortion of the individual telescopes as they are scaled up in size.
A Preliminary ZEUS Lightning Location Error Analysis Using a Modified Retrieval Theory
NASA Technical Reports Server (NTRS)
Elander, Valjean; Koshak, William; Phanord, Dieudonne
2004-01-01
The ZEUS long-range VLF arrival time difference lightning detection network now covers both Europe and Africa, and there are plans for further expansion into the western hemisphere. In order to fully optimize and assess ZEUS lightning location retrieval errors and to determine the best placement of future receivers expected to be added to the network, a software package is being developed jointly between the NASA Marshall Space Flight Center (MSFC) and the University of Nevada Las Vegas (UNLV). The software package, called the ZEUS Error Analysis for Lightning (ZEAL), will be used to obtain global scale lightning location retrieval error maps using both a Monte Carlo approach and chi-squared curvature matrix theory. At the core of ZEAL will be an implementation of an Iterative Oblate (IO) lightning location retrieval method recently developed at MSFC. The IO method will be appropriately modified to account for variable wave propagation speed, and the new retrieval results will be compared with the current ZEUS retrieval algorithm to assess potential improvements. In this preliminary ZEAL work effort, we defined 5000 source locations evenly distributed across the Earth. We then used the existing (as well as potential future ZEUS sites) to simulate arrival time data between source and ZEUS site. A total of 100 sources were considered at each of the 5000 locations, and timing errors were selected from a normal distribution having a mean of 0 seconds and a standard deviation of 20 microseconds. This simulated "noisy" dataset was analyzed using the IO algorithm to estimate source locations. The exact locations were compared with the retrieved locations, and the results are summarized via several color-coded "error maps."
PREVALENCE OF REFRACTIVE ERRORS IN MADRASSA STUDENTS OF HARIPUR DISTRICT.
Atta, Zoia; Arif, Abdus Salam; Ahmed, Iftikhar; Farooq, Umer
2015-01-01
Visual impairment due to refractive errors is one of the most common problems among school-age children and is the second leading cause of treatable blindness. The Right to Sight, a global initiative launched by a coalition of non-government organizations and the World Health Organization (WHO), aims to eliminate avoidable visual impairment and blindness at a global level. In order to achieve this goal it is important to know the prevalence of different refractive errors in a community. Children and teenagers are the most susceptible groups to be affected by refractive errors. So, this population needs to be screened for different types of refractive errors. The study was done with the objective to find the frequency of different types of refractive errors in students of madrassas between the ages of 5-20 years in Haripur. This cross sectional study was done with 300 students between ages of 5-20 years in Madrassas of Haripur. The students were screened for refractive errors and the types of the errors were noted. After screening for refractive errors-the glasses were prescribed to the students. Myopia being 52.6% was the most frequent refractive error in students, followed by hyperopia 28.4% and astigmatism 19%. This study showed that myopia is an important problem in madrassa population. Females and males are almost equally affected. Spectacle correction of refractive errors is the cheapest and easy solution of this problem.
Financial errors in dementia: Testing a neuroeconomic conceptual framework
Chiong, Winston; Hsu, Ming; Wudka, Danny; Miller, Bruce L.; Rosen, Howard J.
2013-01-01
Financial errors by patients with dementia can have devastating personal and family consequences. We developed and evaluated a neuroeconomic conceptual framework for understanding financial errors across different dementia syndromes, using a systematic, retrospective, blinded chart review of demographically-balanced cohorts of patients with Alzheimer’s disease (AD, n=100) and behavioral variant frontotemporal dementia (bvFTD, n=50). Reviewers recorded specific reports of financial errors according to a conceptual framework identifying patient cognitive and affective characteristics, and contextual influences, conferring susceptibility to each error. Specific financial errors were reported for 49% of AD and 70% of bvFTD patients (p = 0.012). AD patients were more likely than bvFTD patients to make amnestic errors (p< 0.001), while bvFTD patients were more likely to spend excessively (p = 0.004) and to exhibit other behaviors consistent with diminished sensitivity to losses and other negative outcomes (p< 0.001). Exploratory factor analysis identified a social/affective vulnerability factor associated with errors in bvFTD, and a cognitive vulnerability factor associated with errors in AD. Our findings highlight the frequency and functional importance of financial errors as symptoms of AD and bvFTD. A conceptual model derived from neuroeconomic literature identifies factors that influence vulnerability to different types of financial error in different dementia syndromes, with implications for early diagnosis and subsequent risk prevention. PMID:23550884
Intuitive theories of information: beliefs about the value of redundancy.
Soll, J B
1999-03-01
In many situations, quantity estimates from multiple experts or diagnostic instruments must be collected and combined. Normatively, and all else equal, one should value information sources that are nonredundant, in the sense that correlation in forecast errors should be minimized. Past research on the preference for redundancy has been inconclusive. While some studies have suggested that people correctly place higher value on uncorrelated inputs when collecting estimates, others have shown that people either ignore correlation or, in some cases, even prefer it. The present experiments show that the preference for redundancy depends on one's intuitive theory of information. The most common intuitive theory identified is the Error Tradeoff Model (ETM), which explicitly distinguishes between measurement error and bias. According to ETM, measurement error can only be averaged out by consulting the same source multiple times (normatively false), and bias can only be averaged out by consulting different sources (normatively true). As a result, ETM leads people to prefer redundant estimates when the ratio of measurement error to bias is relatively high. Other participants favored different theories. Some adopted the normative model, while others were reluctant to mathematically average estimates from different sources in any circumstance. In a post hoc analysis, science majors were more likely than others to subscribe to the normative model. While tentative, this result lends insight into how intuitive theories might develop and also has potential ramifications for how statistical concepts such as correlation might best be learned and internalized. Copyright 1999 Academic Press.
Pointing error analysis of Risley-prism-based beam steering system.
Zhou, Yuan; Lu, Yafei; Hei, Mo; Liu, Guangcan; Fan, Dapeng
2014-09-01
Based on the vector form Snell's law, ray tracing is performed to quantify the pointing errors of Risley-prism-based beam steering systems, induced by component errors, prism orientation errors, and assembly errors. Case examples are given to elucidate the pointing error distributions in the field of regard and evaluate the allowances of the error sources for a given pointing accuracy. It is found that the assembly errors of the second prism will result in more remarkable pointing errors in contrast with the first one. The pointing errors induced by prism tilt depend on the tilt direction. The allowances of bearing tilt and prism tilt are almost identical if the same pointing accuracy is planned. All conclusions can provide a theoretical foundation for practical works.
NASA Astrophysics Data System (ADS)
Haroon, Amir; Mogilatov, Vladimir; Goldman, Mark; Bergers, Rainer; Tezkan, Bülent
2016-05-01
Two novel transient controlled source electromagnetic methods called circular electrical dipole (CED) and differential electrical dipole (DED) are theoretically analysed for applications in shallow marine environments. 1-D and 3-D time-domain modelling studies are used to investigate the detectability and applicability of the methods when investigating resistive layers/targets representing hydrocarbon-saturated formations. The results are compared to the conventional time-domain horizontal electrical dipole (HED) and vertical electrical dipole (VED) sources. The applied theoretical modelling studies demonstrate that CED and DED have higher signal detectability towards resistive targets compared to TD-CSEM, but demonstrate significantly poorer signal amplitudes. Future CED/DED applications will have to solve this issue prior to measuring. Furthermore, the two novel methods have very similar detectability characteristics towards 3-D resistive targets embedded in marine sediments as VED while being less susceptible towards non-verticality. Due to the complex transmitter design of CED/DED the systems are prone to geometrical errors. Modelling studies show that even small transmitter inaccuracies have strong effects on the signal characteristics of CED making an actual marine application difficult at the present time. In contrast, the DED signal is less affected by geometrical errors in comparison to CED and may therefore be more adequate for marine applications.
Zhang, Yuzhong; Zhang, Yan
2016-07-01
In an optical measurement and analysis system based on a CCD, due to the existence of optical vignetting and natural vignetting, photometric distortion, in which the intensity falls off away from the image center, affects the subsequent processing and measuring precision severely. To deal with this problem, an easy and straightforward method used for photometric distortion correction is presented in this paper. This method introduces a simple polynomial fitting model of the photometric distortion function and employs a particle swarm optimization algorithm to get these model parameters by means of a minimizing eight-neighborhood gray gradient. Compared with conventional calibration methods, this method can obtain the profile information of photometric distortion from only a single common image captured by the optical CCD-based system, with no need for a uniform luminance area source used as a standard reference source and relevant optical and geometric parameters in advance. To illustrate the applicability of this method, numerical simulations and photometric distortions with different lens parameters are evaluated using this method in this paper. Moreover, the application example of temperature field correction for casting billets also demonstrates the effectiveness of this method. The experimental results show that the proposed method is able to achieve the maximum absolute error for vignetting estimation of 0.0765 and the relative error for vignetting estimation from different background images of 3.86%.
Luu, Phan; Tucker, Don M; Makeig, Scott
2004-08-01
The error-related negativity (ERN) is an event-related potential (ERP) peak occurring between 50 and 100 ms after the commission of a speeded motor response that the subject immediately realizes to be in error. The ERN is believed to index brain processes that monitor action outcomes. Our previous analyses of ERP and EEG data suggested that the ERN is dominated by partial phase-locking of intermittent theta-band EEG activity. In this paper, this possibility is further evaluated. The possibility that the ERN is produced by phase-locking of theta-band EEG activity was examined by analyzing the single-trial EEG traces from a forced-choice speeded response paradigm before and after applying theta-band (4-7 Hz) filtering and by comparing the averaged and single-trial phase-locked (ERP) and non-phase-locked (other) EEG data. Electrical source analyses were used to estimate the brain sources involved in the generation of the ERN. Beginning just before incorrect button presses in a speeded choice response paradigm, midfrontal theta-band activity increased in amplitude and became partially and transiently phase-locked to the subject's motor response, accounting for 57% of ERN peak amplitude. The portion of the theta-EEG activity increase remaining after subtracting the response-locked ERP from each trial was larger and longer lasting after error responses than after correct responses, extending on average 400 ms beyond the ERN peak. Multiple equivalent-dipole source analysis suggested 3 possible equivalent dipole sources of the theta-bandpassed ERN, while the scalp distribution of non-phase-locked theta amplitude suggested the presence of additional frontal theta-EEG sources. These results appear consistent with a body of research that demonstrates a relationship between limbic theta activity and action regulation, including error monitoring and learning.
Poon, Cynthia; Coombes, Stephen A.; Corcos, Daniel M.; Christou, Evangelos A.
2013-01-01
When subjects perform a learned motor task with increased visual gain, error and variability are reduced. Neuroimaging studies have identified a corresponding increase in activity in parietal cortex, premotor cortex, primary motor cortex, and extrastriate visual cortex. Much less is understood about the neural processes that underlie the immediate transition from low to high visual gain within a trial. This study used 128-channel electroencephalography to measure cortical activity during a visually guided precision grip task, in which the gain of the visual display was changed during the task. Force variability during the transition from low to high visual gain was characterized by an inverted U-shape, whereas force error decreased from low to high gain. Source analysis identified cortical activity in the same structures previously identified using functional magnetic resonance imaging. Source analysis also identified a time-varying shift in the strongest source activity. Superior regions of the motor and parietal cortex had stronger source activity from 300 to 600 ms after the transition, whereas inferior regions of the extrastriate visual cortex had stronger source activity from 500 to 700 ms after the transition. Force variability and electrical activity were linearly related, with a positive relation in the parietal cortex and a negative relation in the frontal cortex. Force error was nonlinearly related to electrical activity in the parietal cortex and frontal cortex by a quadratic function. This is the first evidence that force variability and force error are systematically related to a time-varying shift in cortical activity in frontal and parietal cortex in response to enhanced visual gain. PMID:23365186
Infovigilance: reporting errors in official drug information sources.
Fusier, Isabelle; Tollier, Corinne; Husson, Marie-Caroline
2005-06-01
The French drug database Thériaque (http://www.theriaque.org) developed by the (Centre National Hospitalier d'Information sur le Médicament) (CNHIM), is responsible for the dissemination of independent information about all drugs available in France. Each month the CNHIM pharmacists report problems due to inaccuracies in these sources to the French drug agency. In daily practice we devised the term "infovigilance": "Activity of error or inaccuracy notification in information sources which could be responsible for medication errors". The aim of this study was to evaluate the impact of CNHIM infovigilance on the contents of the Summary of Product Characteristics (SPCs). The study was a prospective study from 09/11/2001 to 31/12/2002. The problems related to the quality of information were classified into four types (inaccuracy/confusion, error/lack of information, discordance between SPC sections and discordance between generic SPCs). (1) Number of notifications and number of SPCs integrated into the database during the study period. (2) Percentage of notifications for each type: with or without potential patient impact, with or without later correction of the SPC, per section. 2.7% (85/3151) of SPCs integrated into the database were concerned by a notification of a problem. Notifications according to type of problem were inaccuracy/confusion (32%), error/lack of information (13%), discordance between SPC sections (27%) and discordance between generic SPCs (28%). 55% of problems were evaluated as 'likely to have an impact on the patient' and 45% as 'unlikely to have an impact on the patient'. 22 of problems which have been reported to the French drug agency were corrected and new updated SPCs were published with the corrections. Our efforts to improve the quality of drug information sources through a continuous "infovigilance" process need to be continued and extended to other information sources.
Visuomotor adaptation needs a validation of prediction error by feedback error
Gaveau, Valérie; Prablanc, Claude; Laurent, Damien; Rossetti, Yves; Priot, Anne-Emmanuelle
2014-01-01
The processes underlying short-term plasticity induced by visuomotor adaptation to a shifted visual field are still debated. Two main sources of error can induce motor adaptation: reaching feedback errors, which correspond to visually perceived discrepancies between hand and target positions, and errors between predicted and actual visual reafferences of the moving hand. These two sources of error are closely intertwined and difficult to disentangle, as both the target and the reaching limb are simultaneously visible. Accordingly, the goal of the present study was to clarify the relative contributions of these two types of errors during a pointing task under prism-displaced vision. In “terminal feedback error” condition, viewing of their hand by subjects was allowed only at movement end, simultaneously with viewing of the target. In “movement prediction error” condition, viewing of the hand was limited to movement duration, in the absence of any visual target, and error signals arose solely from comparisons between predicted and actual reafferences of the hand. In order to prevent intentional corrections of errors, a subthreshold, progressive stepwise increase in prism deviation was used, so that subjects remained unaware of the visual deviation applied in both conditions. An adaptive aftereffect was observed in the “terminal feedback error” condition only. As far as subjects remained unaware of the optical deviation and self-assigned pointing errors, prediction error alone was insufficient to induce adaptation. These results indicate a critical role of hand-to-target feedback error signals in visuomotor adaptation; consistent with recent neurophysiological findings, they suggest that a combination of feedback and prediction error signals is necessary for eliciting aftereffects. They also suggest that feedback error updates the prediction of reafferences when a visual perturbation is introduced gradually and cognitive factors are eliminated or strongly attenuated. PMID:25408644
Foley, Mary Ann; Foy, Jeffrey; Schlemmer, Emily; Belser-Ehrlich, Janna
2010-11-01
Imagery encoding effects on source-monitoring errors were explored using the Deese-Roediger-McDermott paradigm in two experiments. While viewing thematically related lists embedded in mixed picture/word presentations, participants were asked to generate images of objects or words (Experiment 1) or to simply name the items (Experiment 2). An encoding task intended to induce spontaneous images served as a control for the explicit imagery instruction conditions (Experiment 1). On the picture/word source-monitoring tests, participants were much more likely to report "seeing" a picture of an item presented as a word than the converse particularly when images were induced spontaneously. However, this picture misattribution error was reversed after generating images of words (Experiment 1) and was eliminated after simply labelling the items (Experiment 2). Thus source misattributions were sensitive to the processes giving rise to imagery experiences (spontaneous vs deliberate), the kinds of images generated (object vs word images), and the ways in which materials were presented (as pictures vs words).
Analytical investigation of adaptive control of radiated inlet noise from turbofan engines
NASA Technical Reports Server (NTRS)
Risi, John D.; Burdisso, Ricardo A.
1994-01-01
An analytical model has been developed to predict the resulting far field radiation from a turbofan engine inlet. A feedforward control algorithm was simulated to predict the controlled far field radiation from the destructive combination of fan noise and secondary control sources. Numerical results were developed for two system configurations, with the resulting controlled far field radiation patterns showing varying degrees of attenuation and spillover. With one axial station of twelve control sources and error sensors with equal relative angular positions, nearly global attenuation is achieved. Shifting the angular position of one error sensor resulted in an increase of spillover to the extreme sidelines. The complex control inputs for each configuration was investigated to identify the structure of the wave pattern created by the control sources, giving an indication of performance of the system configuration. It is deduced that the locations of the error sensors and the control source configuration are equally critical to the operation of the active noise control system.
Geometric error characterization and error budgets. [thematic mapper
NASA Technical Reports Server (NTRS)
Beyer, E.
1982-01-01
Procedures used in characterizing geometric error sources for a spaceborne imaging system are described using the LANDSAT D thematic mapper ground segment processing as the prototype. Software was tested through simulation and is undergoing tests with the operational hardware as part of the prelaunch system evaluation. Geometric accuracy specifications, geometric correction, and control point processing are discussed. Cross track and along track errors are tabulated for the thematic mapper, the spacecraft, and ground processing to show the temporal registration error budget in pixel (42.5 microrad) 90%.
Evaluation of Acoustic Doppler Current Profiler measurements of river discharge
Morlock, S.E.
1996-01-01
The standard deviations of the ADCP measurements ranged from approximately 1 to 6 percent and were generally higher than the measurement errors predicted by error-propagation analysis of ADCP instrument performance. These error-prediction methods assume that the largest component of ADCP discharge measurement error is instrument related. The larger standard deviations indicate that substantial portions of measurement error may be attributable to sources unrelated to ADCP electronics or signal processing and are functions of the field environment.
Refractive Errors Affect the Vividness of Visual Mental Images
Palermo, Liana; Nori, Raffaella; Piccardi, Laura; Zeri, Fabrizio; Babino, Antonio; Giusberti, Fiorella; Guariglia, Cecilia
2013-01-01
The hypothesis that visual perception and mental imagery are equivalent has never been explored in individuals with vision defects not preventing the visual perception of the world, such as refractive errors. Refractive error (i.e., myopia, hyperopia or astigmatism) is a condition where the refracting system of the eye fails to focus objects sharply on the retina. As a consequence refractive errors cause blurred vision. We subdivided 84 individuals according to their spherical equivalent refraction into Emmetropes (control individuals without refractive errors) and Ametropes (individuals with refractive errors). Participants performed a vividness task and completed a questionnaire that explored their cognitive style of thinking before their vision was checked by an ophthalmologist. Although results showed that Ametropes had less vivid mental images than Emmetropes this did not affect the development of their cognitive style of thinking; in fact, Ametropes were able to use both verbal and visual strategies to acquire and retrieve information. Present data are consistent with the hypothesis of equivalence between imagery and perception. PMID:23755186
Refractive errors affect the vividness of visual mental images.
Palermo, Liana; Nori, Raffaella; Piccardi, Laura; Zeri, Fabrizio; Babino, Antonio; Giusberti, Fiorella; Guariglia, Cecilia
2013-01-01
The hypothesis that visual perception and mental imagery are equivalent has never been explored in individuals with vision defects not preventing the visual perception of the world, such as refractive errors. Refractive error (i.e., myopia, hyperopia or astigmatism) is a condition where the refracting system of the eye fails to focus objects sharply on the retina. As a consequence refractive errors cause blurred vision. We subdivided 84 individuals according to their spherical equivalent refraction into Emmetropes (control individuals without refractive errors) and Ametropes (individuals with refractive errors). Participants performed a vividness task and completed a questionnaire that explored their cognitive style of thinking before their vision was checked by an ophthalmologist. Although results showed that Ametropes had less vivid mental images than Emmetropes this did not affect the development of their cognitive style of thinking; in fact, Ametropes were able to use both verbal and visual strategies to acquire and retrieve information. Present data are consistent with the hypothesis of equivalence between imagery and perception.
NASA Technical Reports Server (NTRS)
Thomas, J. B.
1981-01-01
The effects of source structure on radio interferometry measurements were investigated. The brightness distribution measurements for ten extragalactic sources were analyzed. Significant results are reported.
Are vowel errors influenced by consonantal context in the speech of persons with aphasia?
NASA Astrophysics Data System (ADS)
Gelfer, Carole E.; Bell-Berti, Fredericka; Boyle, Mary
2004-05-01
The literature suggests that vowels and consonants may be affected differently in the speech of persons with conduction aphasia (CA) or nonfluent aphasia with apraxia of speech (AOS). Persons with CA have shown similar error rates across vowels and consonants, while those with AOS have shown more errors for consonants than vowels. These data have been interpreted to suggest that consonants have greater gestural complexity than vowels. However, recent research [M. Boyle et al., Proc. International Cong. Phon. Sci., 3265-3268 (2003)] does not support this interpretation: persons with AOS and CA both had a high proportion of vowel errors, and vowel errors almost always occurred in the context of consonantal errors. To examine the notion that vowels are inherently less complex than consonants and are differentially affected in different types of aphasia, vowel production in different consonantal contexts for speakers with AOS or CA was examined. The target utterances, produced in carrier phrases, were bVC and bV syllables, allowing us to examine whether vowel production is influenced by consonantal context. Listener judgments were obtained for each token, and error productions were grouped according to the intended utterance and error type. Acoustical measurements were made from spectrographic displays.
Number-counts slope estimation in the presence of Poisson noise
NASA Technical Reports Server (NTRS)
Schmitt, Juergen H. M. M.; Maccacaro, Tommaso
1986-01-01
The slope determination of a power-law number flux relationship in the case of photon-limited sampling. This case is important for high-sensitivity X-ray surveys with imaging telescopes, where the error in an individual source measurement depends on integrated flux and is Poisson, rather than Gaussian, distributed. A bias-free method of slope estimation is developed that takes into account the exact error distribution, the influence of background noise, and the effects of varying limiting sensitivities. It is shown that the resulting bias corrections are quite insensitive to the bias correction procedures applied, as long as only sources with signal-to-noise ratio five or greater are considered. However, if sources with signal-to-noise ratio five or less are included, the derived bias corrections depend sensitively on the shape of the error distribution.
Radiant Temperature Nulling Radiometer
NASA Technical Reports Server (NTRS)
Ryan, Robert (Inventor)
2003-01-01
A self-calibrating nulling radiometer for non-contact temperature measurement of an object, such as a body of water, employs a black body source as a temperature reference, an optomechanical mechanism, e.g., a chopper, to switch back and forth between measuring the temperature of the black body source and that of a test source, and an infrared detection technique. The radiometer functions by measuring radiance of both the test and the reference black body sources; adjusting the temperature of the reference black body so that its radiance is equivalent to the test source; and, measuring the temperature of the reference black body at this point using a precision contact-type temperature sensor, to determine the radiative temperature of the test source. The radiation from both sources is detected by an infrared detector that converts the detected radiation to an electrical signal that is fed with a chopper reference signal to an error signal generator, such as a synchronous detector, that creates a precision rectified signal that is approximately proportional to the difference between the temperature of the reference black body and that of the test infrared source. This error signal is then used in a feedback loop to adjust the reference black body temperature until it equals that of the test source, at which point the error signal is nulled to zero. The chopper mechanism operates at one or more Hertz allowing minimization of l/f noise. It also provides pure chopping between the black body and the test source and allows continuous measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballhausen, Hendrik, E-mail: hendrik.ballhausen@med.uni-muenchen.de; Hieber, Sheila; Li, Minglun
2014-08-15
Purpose: To identify the relevant technical sources of error of a system based on three-dimensional ultrasound (3D US) for patient positioning in external beam radiotherapy. To quantify these sources of error in a controlled laboratory setting. To estimate the resulting end-to-end geometric precision of the intramodality protocol. Methods: Two identical free-hand 3D US systems at both the planning-CT and the treatment room were calibrated to the laboratory frame of reference. Every step of the calibration chain was repeated multiple times to estimate its contribution to overall systematic and random error. Optimal margins were computed given the identified and quantified systematicmore » and random errors. Results: In descending order of magnitude, the identified and quantified sources of error were: alignment of calibration phantom to laser marks 0.78 mm, alignment of lasers in treatment vs planning room 0.51 mm, calibration and tracking of 3D US probe 0.49 mm, alignment of stereoscopic infrared camera to calibration phantom 0.03 mm. Under ideal laboratory conditions, these errors are expected to limit ultrasound-based positioning to an accuracy of 1.05 mm radially. Conclusions: The investigated 3D ultrasound system achieves an intramodal accuracy of about 1 mm radially in a controlled laboratory setting. The identified systematic and random errors require an optimal clinical tumor volume to planning target volume margin of about 3 mm. These inherent technical limitations do not prevent clinical use, including hypofractionation or stereotactic body radiation therapy.« less
Dissociation of item and source memory in rhesus monkeys.
Basile, Benjamin M; Hampton, Robert R
2017-09-01
Source memory, or memory for the context in which a memory was formed, is a defining characteristic of human episodic memory and source memory errors are a debilitating symptom of memory dysfunction. Evidence for source memory in nonhuman primates is sparse despite considerable evidence for other types of sophisticated memory and the practical need for good models of episodic memory in nonhuman primates. A previous study showed that rhesus monkeys confused the identity of a monkey they saw with a monkey they heard, but only after an extended memory delay. This suggests that they initially remembered the source - visual or auditory - of the information but forgot the source as time passed. Here, we present a monkey model of source memory that is based on this previous study. In each trial, monkeys studied two images, one that they simply viewed and touched and the other that they classified as a bird, fish, flower, or person. In a subsequent memory test, they were required to select the image from one source but avoid the other. With training, monkeys learned to suppress responding to images from the to-be-avoided source. After longer memory intervals, monkeys continued to show reliable item memory, discriminating studied images from distractors, but made many source memory errors. Monkeys discriminated source based on study method, not study order, providing preliminary evidence that our manipulation of retention interval caused errors due to source forgetting instead of source confusion. Finally, some monkeys learned to select remembered images from either source on cue, showing that they did indeed remember both items and both sources. This paradigm potentially provides a new model to study a critical aspect of episodic memory in nonhuman primates. Copyright © 2017 Elsevier B.V. All rights reserved.
A two-factor error model for quantitative steganalysis
NASA Astrophysics Data System (ADS)
Böhme, Rainer; Ker, Andrew D.
2006-02-01
Quantitative steganalysis refers to the exercise not only of detecting the presence of hidden stego messages in carrier objects, but also of estimating the secret message length. This problem is well studied, with many detectors proposed but only a sparse analysis of errors in the estimators. A deep understanding of the error model, however, is a fundamental requirement for the assessment and comparison of different detection methods. This paper presents a rationale for a two-factor model for sources of error in quantitative steganalysis, and shows evidence from a dedicated large-scale nested experimental set-up with a total of more than 200 million attacks. Apart from general findings about the distribution functions found in both classes of errors, their respective weight is determined, and implications for statistical hypothesis tests in benchmarking scenarios or regression analyses are demonstrated. The results are based on a rigorous comparison of five different detection methods under many different external conditions, such as size of the carrier, previous JPEG compression, and colour channel selection. We include analyses demonstrating the effects of local variance and cover saturation on the different sources of error, as well as presenting the case for a relative bias model for between-image error.
Intrinsic errors in transporting a single-spin qubit through a double quantum dot
NASA Astrophysics Data System (ADS)
Li, Xiao; Barnes, Edwin; Kestner, J. P.; Das Sarma, S.
2017-07-01
Coherent spatial transport or shuttling of a single electron spin through semiconductor nanostructures is an important ingredient in many spintronic and quantum computing applications. In this work we analyze the possible errors in solid-state quantum computation due to leakage in transporting a single-spin qubit through a semiconductor double quantum dot. In particular, we consider three possible sources of leakage errors associated with such transport: finite ramping times, spin-dependent tunneling rates between quantum dots induced by finite spin-orbit couplings, and the presence of multiple valley states. In each case we present quantitative estimates of the leakage errors, and discuss how they can be minimized. The emphasis of this work is on how to deal with the errors intrinsic to the ideal semiconductor structure, such as leakage due to spin-orbit couplings, rather than on errors due to defects or noise sources. In particular, we show that in order to minimize leakage errors induced by spin-dependent tunnelings, it is necessary to apply pulses to perform certain carefully designed spin rotations. We further develop a formalism that allows one to systematically derive constraints on the pulse shapes and present a few examples to highlight the advantage of such an approach.
NASA Astrophysics Data System (ADS)
Raleigh, M. S.; Lundquist, J. D.; Clark, M. P.
2015-07-01
Physically based models provide insights into key hydrologic processes but are associated with uncertainties due to deficiencies in forcing data, model parameters, and model structure. Forcing uncertainty is enhanced in snow-affected catchments, where weather stations are scarce and prone to measurement errors, and meteorological variables exhibit high variability. Hence, there is limited understanding of how forcing error characteristics affect simulations of cold region hydrology and which error characteristics are most important. Here we employ global sensitivity analysis to explore how (1) different error types (i.e., bias, random errors), (2) different error probability distributions, and (3) different error magnitudes influence physically based simulations of four snow variables (snow water equivalent, ablation rates, snow disappearance, and sublimation). We use the Sobol' global sensitivity analysis, which is typically used for model parameters but adapted here for testing model sensitivity to coexisting errors in all forcings. We quantify the Utah Energy Balance model's sensitivity to forcing errors with 1 840 000 Monte Carlo simulations across four sites and five different scenarios. Model outputs were (1) consistently more sensitive to forcing biases than random errors, (2) generally less sensitive to forcing error distributions, and (3) critically sensitive to different forcings depending on the relative magnitude of errors. For typical error magnitudes found in areas with drifting snow, precipitation bias was the most important factor for snow water equivalent, ablation rates, and snow disappearance timing, but other forcings had a more dominant impact when precipitation uncertainty was due solely to gauge undercatch. Additionally, the relative importance of forcing errors depended on the model output of interest. Sensitivity analysis can reveal which forcing error characteristics matter most for hydrologic modeling.
Kiymaz, Dilek; Koç, Zeliha
2018-03-01
To determine individual and professional factors affecting the tendency of emergency unit nurses to make medical errors and their attitudes towards these errors in Turkey. Compared with other units, the emergency unit is an environment where there is an increased tendency for making medical errors due to its intensive and rapid pace, noise and complex and dynamic structure. A descriptive cross-sectional study. The study was carried out from 25 July 2014-16 September 2015 with the participation of 284 nurses who volunteered to take part in the study. Data were gathered using the data collection survey for nurses, the Medical Error Tendency Scale and the Medical Error Attitude Scale. It was determined that 40.1% of the nurses previously witnessed medical errors, 19.4% made a medical error in the last year, 17.6% of medical errors were caused by medication errors where the wrong medication was administered in the wrong dose, and none of the nurses filled out a case report form about the medical errors they made. Regarding the factors that caused medical errors in the emergency unit, 91.2% of the nurses stated excessive workload as a cause; 85.1% stated an insufficient number of nurses; and 75.4% stated fatigue, exhaustion and burnout. The study showed that nurses who loved their job were satisfied with their unit and who always worked during day shifts had a lower medical error tendency. It is suggested to consider the following actions: increase awareness about medical errors, organise training to reduce errors in medication administration, develop procedures and protocols specific to the emergency unit health care and create an environment which is not punitive wherein nurses can safely report medical errors. © 2017 John Wiley & Sons Ltd.
Stochastic estimation of plant-available soil water under fluctuating water table depths
NASA Astrophysics Data System (ADS)
Or, Dani; Groeneveld, David P.
1994-12-01
Preservation of native valley-floor phreatophytes while pumping groundwater for export from Owens Valley, California, requires reliable predictions of plant water use. These predictions are compared with stored soil water within well field regions and serve as a basis for managing groundwater resources. Soil water measurement errors, variable recharge, unpredictable climatic conditions affecting plant water use, and modeling errors make soil water predictions uncertain and error-prone. We developed and tested a scheme based on soil water balance coupled with implementation of Kalman filtering (KF) for (1) providing physically based soil water storage predictions with prediction errors projected from the statistics of the various inputs, and (2) reducing the overall uncertainty in both estimates and predictions. The proposed KF-based scheme was tested using experimental data collected at a location on the Owens Valley floor where the water table was artificially lowered by groundwater pumping and later allowed to recover. Vegetation composition and per cent cover, climatic data, and soil water information were collected and used for developing a soil water balance. Predictions and updates of soil water storage under different types of vegetation were obtained for a period of 5 years. The main results show that: (1) the proposed predictive model provides reliable and resilient soil water estimates under a wide range of external conditions; (2) the predicted soil water storage and the error bounds provided by the model offer a realistic and rational basis for decisions such as when to curtail well field operation to ensure plant survival. The predictive model offers a practical means for accommodating simple aspects of spatial variability by considering the additional source of uncertainty as part of modeling or measurement uncertainty.
Impacts of uncertainties in European gridded precipitation observations on regional climate analysis
Gobiet, Andreas
2016-01-01
ABSTRACT Gridded precipitation data sets are frequently used to evaluate climate models or to remove model output biases. Although precipitation data are error prone due to the high spatio‐temporal variability of precipitation and due to considerable measurement errors, relatively few attempts have been made to account for observational uncertainty in model evaluation or in bias correction studies. In this study, we compare three types of European daily data sets featuring two Pan‐European data sets and a set that combines eight very high‐resolution station‐based regional data sets. Furthermore, we investigate seven widely used, larger scale global data sets. Our results demonstrate that the differences between these data sets have the same magnitude as precipitation errors found in regional climate models. Therefore, including observational uncertainties is essential for climate studies, climate model evaluation, and statistical post‐processing. Following our results, we suggest the following guidelines for regional precipitation assessments. (1) Include multiple observational data sets from different sources (e.g. station, satellite, reanalysis based) to estimate observational uncertainties. (2) Use data sets with high station densities to minimize the effect of precipitation undersampling (may induce about 60% error in data sparse regions). The information content of a gridded data set is mainly related to its underlying station density and not to its grid spacing. (3) Consider undercatch errors of up to 80% in high latitudes and mountainous regions. (4) Analyses of small‐scale features and extremes are especially uncertain in gridded data sets. For higher confidence, use climate‐mean and larger scale statistics. In conclusion, neglecting observational uncertainties potentially misguides climate model development and can severely affect the results of climate change impact assessments. PMID:28111497
Prein, Andreas F; Gobiet, Andreas
2017-01-01
Gridded precipitation data sets are frequently used to evaluate climate models or to remove model output biases. Although precipitation data are error prone due to the high spatio-temporal variability of precipitation and due to considerable measurement errors, relatively few attempts have been made to account for observational uncertainty in model evaluation or in bias correction studies. In this study, we compare three types of European daily data sets featuring two Pan-European data sets and a set that combines eight very high-resolution station-based regional data sets. Furthermore, we investigate seven widely used, larger scale global data sets. Our results demonstrate that the differences between these data sets have the same magnitude as precipitation errors found in regional climate models. Therefore, including observational uncertainties is essential for climate studies, climate model evaluation, and statistical post-processing. Following our results, we suggest the following guidelines for regional precipitation assessments. (1) Include multiple observational data sets from different sources (e.g. station, satellite, reanalysis based) to estimate observational uncertainties. (2) Use data sets with high station densities to minimize the effect of precipitation undersampling (may induce about 60% error in data sparse regions). The information content of a gridded data set is mainly related to its underlying station density and not to its grid spacing. (3) Consider undercatch errors of up to 80% in high latitudes and mountainous regions. (4) Analyses of small-scale features and extremes are especially uncertain in gridded data sets. For higher confidence, use climate-mean and larger scale statistics. In conclusion, neglecting observational uncertainties potentially misguides climate model development and can severely affect the results of climate change impact assessments.
[Determination of the error of aerosol extinction coefficient measured by DOAS].
Si, Fu-qi; Liu, Jian-guo; Xie, Pin-hua; Zhang, Yu-jun; Wang, Mian; Liu, Wen-qing; Hiroaki, Kuze; Liu, Cheng; Nobuo, Takeuchi
2006-10-01
The method of defining the error of aerosol extinction coefficient measured by differential optical absorption spectroscopy (DOAS) is described. Some factors which could bring errors to result, such as variation of source, integral time, atmospheric turbulence, calibration of system parameter, displacement of system, and back scattering of particles, are analyzed. The error of aerosol extinction coefficient, 0.03 km(-1), is determined by theoretical analysis and practical measurement.
Bergmann, Helmar; Minear, Gregory; Raith, Maria; Schaffarich, Peter M
2008-12-09
The accuracy of multiple window spatial resolution characterises the performance of a gamma camera for dual isotope imaging. In the present study we investigate an alternative method to the standard NEMA procedure for measuring this performance parameter. A long-lived 133Ba point source with gamma energies close to 67Ga and a single bore lead collimator were used to measure the multiple window spatial registration error. Calculation of the positions of the point source in the images used the NEMA algorithm. The results were validated against the values obtained by the standard NEMA procedure which uses a liquid 67Ga source with collimation. Of the source-collimator configurations under investigation an optimum collimator geometry, consisting of a 5 mm thick lead disk with a diameter of 46 mm and a 5 mm central bore, was selected. The multiple window spatial registration errors obtained by the 133Ba method showed excellent reproducibility (standard deviation < 0.07 mm). The values were compared with the results from the NEMA procedure obtained at the same locations and showed small differences with a correlation coefficient of 0.51 (p < 0.05). In addition, the 133Ba point source method proved to be much easier to use. A Bland-Altman analysis showed that the 133Ba and the 67Ga Method can be used interchangeably. The 133Ba point source method measures the multiple window spatial registration error with essentially the same accuracy as the NEMA-recommended procedure, but is easier and safer to use and has the potential to replace the current standard procedure.
A line-source method for aligning on-board and other pinhole SPECT systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Susu; Bowsher, James; Yin, Fang-Fang
2013-12-15
Purpose: In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system—to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)—is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems.Methods: An alignment model consisting of multiple alignmentmore » parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot.Results: In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by the Radon transform, estimation accuracy was reduced. The estimation error was associated with rounding errors of Radon transform, finite line-source width, Poisson noise, number of line sources, intrinsic camera resolution, and detector acquisition geometry. Statistically, the estimation accuracy was significantly improved by using four line sources rather than three and by thinner line-source projections (obtained by better intrinsic detector resolution). With five line sources, median errors were 0.2 mm for the detector translations, 0.7 mm for the detector radius of rotation, and less than 0.5° for detector rotation, tilt, and twist. In experimental evaluations, average errors relative to a different, independent registration technique were about 1.8 mm for detector translations, 1.1 mm for the detector radius of rotation (ROR), 0.5° and 0.4° for detector rotation and tilt, respectively, and 1.2° for detector twist.Conclusions: Alignment parameters can be estimated using one pinhole projection of line sources. Alignment errors are largely associated with limited accuracy of the Radon transform in determining angles (α) and offsets (ρ) of the line-source projections. This alignment method may be important for multipinhole SPECT, where relative pinhole alignment may vary during rotation. For pinhole and multipinhole SPECT imaging on-board radiation therapy machines, the method could provide alignment of SPECT coordinates with those of CBCT and the LINAC.« less
A line-source method for aligning on-board and other pinhole SPECT systems
Yan, Susu; Bowsher, James; Yin, Fang-Fang
2013-01-01
Purpose: In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system—to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)—is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems. Methods: An alignment model consisting of multiple alignment parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot. Results: In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by the Radon transform, estimation accuracy was reduced. The estimation error was associated with rounding errors of Radon transform, finite line-source width, Poisson noise, number of line sources, intrinsic camera resolution, and detector acquisition geometry. Statistically, the estimation accuracy was significantly improved by using four line sources rather than three and by thinner line-source projections (obtained by better intrinsic detector resolution). With five line sources, median errors were 0.2 mm for the detector translations, 0.7 mm for the detector radius of rotation, and less than 0.5° for detector rotation, tilt, and twist. In experimental evaluations, average errors relative to a different, independent registration technique were about 1.8 mm for detector translations, 1.1 mm for the detector radius of rotation (ROR), 0.5° and 0.4° for detector rotation and tilt, respectively, and 1.2° for detector twist. Conclusions: Alignment parameters can be estimated using one pinhole projection of line sources. Alignment errors are largely associated with limited accuracy of the Radon transform in determining angles (α) and offsets (ρ) of the line-source projections. This alignment method may be important for multipinhole SPECT, where relative pinhole alignment may vary during rotation. For pinhole and multipinhole SPECT imaging on-board radiation therapy machines, the method could provide alignment of SPECT coordinates with those of CBCT and the LINAC. PMID:24320537
A line-source method for aligning on-board and other pinhole SPECT systems.
Yan, Susu; Bowsher, James; Yin, Fang-Fang
2013-12-01
In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system-to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)-is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems. An alignment model consisting of multiple alignment parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot. In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by the Radon transform, estimation accuracy was reduced. The estimation error was associated with rounding errors of Radon transform, finite line-source width, Poisson noise, number of line sources, intrinsic camera resolution, and detector acquisition geometry. Statistically, the estimation accuracy was significantly improved by using four line sources rather than three and by thinner line-source projections (obtained by better intrinsic detector resolution). With five line sources, median errors were 0.2 mm for the detector translations, 0.7 mm for the detector radius of rotation, and less than 0.5° for detector rotation, tilt, and twist. In experimental evaluations, average errors relative to a different, independent registration technique were about 1.8 mm for detector translations, 1.1 mm for the detector radius of rotation (ROR), 0.5° and 0.4° for detector rotation and tilt, respectively, and 1.2° for detector twist. Alignment parameters can be estimated using one pinhole projection of line sources. Alignment errors are largely associated with limited accuracy of the Radon transform in determining angles (α) and offsets (ρ) of the line-source projections. This alignment method may be important for multipinhole SPECT, where relative pinhole alignment may vary during rotation. For pinhole and multipinhole SPECT imaging on-board radiation therapy machines, the method could provide alignment of SPECT coordinates with those of CBCT and the LINAC.
Accuracy of outpatient service data for activity-based funding in New South Wales, Australia.
Munyisia, Esther N; Reid, David; Yu, Ping
2017-05-01
Despite increasing research on activity-based funding (ABF), there is no empirical evidence on the accuracy of outpatient service data for payment. This study aimed to identify data entry errors affecting ABF in two drug and alcohol outpatient clinic services in Australia. An audit was carried out on healthcare workers' (doctors, nurses, psychologists, social workers, counsellors, and aboriginal health education officers) data entry errors in an outpatient electronic documentation system. Of the 6919 data entries in the electronic documentation system, 7.5% (518) had errors, 68.7% of the errors were related to a wrong primary activity, 14.5% were due to a wrong activity category, 14.5% were as a result of a wrong combination of primary activity and modality of care, 1.9% were due to inaccurate information on a client's presence during service delivery and 0.4% were related to a wrong modality of care. Data entry errors may affect the amount of funding received by a healthcare organisation, which in turn may affect the quality of treatment provided to clients due to the possibility of underfunding the organisation. To reduce errors or achieve an error-free environment, there is a need to improve the naming convention of data elements, their descriptions and alignment with the national standard classification of outpatient services. It is also important to support healthcare workers in their data entry by embedding safeguards in the electronic documentation system such as flags for inaccurate data elements.
Forcing scheme analysis for the axisymmetric lattice Boltzmann method under incompressible limit.
Zhang, Liangqi; Yang, Shiliang; Zeng, Zhong; Chen, Jie; Yin, Linmao; Chew, Jia Wei
2017-04-01
Because the standard lattice Boltzmann (LB) method is proposed for Cartesian Navier-Stokes (NS) equations, additional source terms are necessary in the axisymmetric LB method for representing the axisymmetric effects. Therefore, the accuracy and applicability of the axisymmetric LB models depend on the forcing schemes adopted for discretization of the source terms. In this study, three forcing schemes, namely, the trapezium rule based scheme, the direct forcing scheme, and the semi-implicit centered scheme, are analyzed theoretically by investigating their derived macroscopic equations in the diffusive scale. Particularly, the finite difference interpretation of the standard LB method is extended to the LB equations with source terms, and then the accuracy of different forcing schemes is evaluated for the axisymmetric LB method. Theoretical analysis indicates that the discrete lattice effects arising from the direct forcing scheme are part of the truncation error terms and thus would not affect the overall accuracy of the standard LB method with general force term (i.e., only the source terms in the momentum equation are considered), but lead to incorrect macroscopic equations for the axisymmetric LB models. On the other hand, the trapezium rule based scheme and the semi-implicit centered scheme both have the advantage of avoiding the discrete lattice effects and recovering the correct macroscopic equations. Numerical tests applied for validating the theoretical analysis show that both the numerical stability and the accuracy of the axisymmetric LB simulations are affected by the direct forcing scheme, which indicate that forcing schemes free of the discrete lattice effects are necessary for the axisymmetric LB method.
NASA Astrophysics Data System (ADS)
Ragon, Théa; Sladen, Anthony; Simons, Mark
2018-05-01
The ill-posed nature of earthquake source estimation derives from several factors including the quality and quantity of available observations and the fidelity of our forward theory. Observational errors are usually accounted for in the inversion process. Epistemic errors, which stem from our simplified description of the forward problem, are rarely dealt with despite their potential to bias the estimate of a source model. In this study, we explore the impact of uncertainties related to the choice of a fault geometry in source inversion problems. The geometry of a fault structure is generally reduced to a set of parameters, such as position, strike and dip, for one or a few planar fault segments. While some of these parameters can be solved for, more often they are fixed to an uncertain value. We propose a practical framework to address this limitation by following a previously implemented method exploring the impact of uncertainties on the elastic properties of our models. We develop a sensitivity analysis to small perturbations of fault dip and position. The uncertainties in fault geometry are included in the inverse problem under the formulation of the misfit covariance matrix that combines both prediction and observation uncertainties. We validate this approach with the simplified case of a fault that extends infinitely along strike, using both Bayesian and optimization formulations of a static inversion. If epistemic errors are ignored, predictions are overconfident in the data and source parameters are not reliably estimated. In contrast, inclusion of uncertainties in fault geometry allows us to infer a robust posterior source model. Epistemic uncertainties can be many orders of magnitude larger than observational errors for great earthquakes (Mw > 8). Not accounting for uncertainties in fault geometry may partly explain observed shallow slip deficits for continental earthquakes. Similarly, ignoring the impact of epistemic errors can also bias estimates of near surface slip and predictions of tsunamis induced by megathrust earthquakes. (Mw > 8)
Dysfunctional error-related processing in female psychopathy
Steele, Vaughn R.; Edwards, Bethany G.; Bernat, Edward M.; Calhoun, Vince D.; Kiehl, Kent A.
2016-01-01
Neurocognitive studies of psychopathy have predominantly focused on male samples. Studies have shown that female psychopaths exhibit similar affective deficits as their male counterparts, but results are less consistent across cognitive domains including response modulation. As such, there may be potential gender differences in error-related processing in psychopathic personality. Here we investigate response-locked event-related potential (ERP) components [the error-related negativity (ERN/Ne) related to early error-detection processes and the error-related positivity (Pe) involved in later post-error processing] in a sample of incarcerated adult female offenders (n = 121) who performed a response inhibition Go/NoGo task. Psychopathy was assessed using the Hare Psychopathy Checklist-Revised (PCL-R). The ERN/Ne and Pe were analyzed with classic windowed ERP components and principal component analysis (PCA). Consistent with previous research performed in psychopathic males, female psychopaths exhibited specific deficiencies in the neural correlates of post-error processing (as indexed by reduced Pe amplitude) but not in error monitoring (as indexed by intact ERN/Ne amplitude). Specifically, psychopathic traits reflecting interpersonal and affective dysfunction remained significant predictors of both time-domain and PCA measures reflecting reduced Pe mean amplitude. This is the first evidence to suggest that incarcerated female psychopaths exhibit similar dysfunctional post-error processing as male psychopaths. PMID:26060326
Ganesh, Shanti; van Schie, Hein T.; De Bruijn, Ellen R. A.; Bekkering, Harold
2009-01-01
The ability to detect and process errors made by others plays an important role is many social contexts. The capacity to process errors is typically found to rely on sites in the medial frontal cortex. However, it remains to be determined whether responses at these sites are driven primarily by action errors themselves or by the affective consequences normally associated with their commission. Using an experimental paradigm that disentangles action errors and the valence of their affective consequences, we demonstrate that sites in the medial frontal cortex (MFC), including the ventral anterior cingulate cortex (vACC) and pre-supplementary motor area (pre-SMA), respond to action errors independent of the valence of their consequences. The strength of this response was negatively correlated with the empathic concern subscale of the Interpersonal Reactivity Index. We also demonstrate a main effect of self-identification by showing that errors committed by friends and foes elicited significantly different BOLD responses in a separate region of the middle anterior cingulate cortex (mACC). These results suggest that the way we look at others plays a critical role in determining patterns of brain activation during error observation. These findings may have important implications for general theories of error processing. PMID:19015079
NASA Astrophysics Data System (ADS)
Yang, Pan; Ng, Tze Ling
2017-11-01
Accurate rainfall measurement at high spatial and temporal resolutions is critical for the modeling and management of urban storm water. In this study, we conduct computer simulation experiments to test the potential of a crowd-sourcing approach, where smartphones, surveillance cameras, and other devices act as precipitation sensors, as an alternative to the traditional approach of using rain gauges to monitor urban rainfall. The crowd-sourcing approach is promising as it has the potential to provide high-density measurements, albeit with relatively large individual errors. We explore the potential of this approach for urban rainfall monitoring and the subsequent implications for storm water modeling through a series of simulation experiments involving synthetically generated crowd-sourced rainfall data and a storm water model. The results show that even under conservative assumptions, crowd-sourced rainfall data lead to more accurate modeling of storm water flows as compared to rain gauge data. We observe the relative superiority of the crowd-sourcing approach to vary depending on crowd participation rate, measurement accuracy, drainage area, choice of performance statistic, and crowd-sourced observation type. A possible reason for our findings is the differences between the error structures of crowd-sourced and rain gauge rainfall fields resulting from the differences between the errors and densities of the raw measurement data underlying the two field types.
NASA Technical Reports Server (NTRS)
Campbell, J. W. (Editor)
1981-01-01
The detection of anthropogenic disturbances in the Earth's ozone layer was studied. Two topics were addressed: (1) the level at which a trend in total ozoning is detected by existing data sources; and (2) empirical evidence in the prediction of the depletion in total ozone. Error sources are identified. The predictability of climatological series, whether empirical models can be trusted, and how errors in the Dobson total ozone data impact trend detectability, are discussed.
Runtime Detection of C-Style Errors in UPC Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pirkelbauer, P; Liao, C; Panas, T
2011-09-29
Unified Parallel C (UPC) extends the C programming language (ISO C 99) with explicit parallel programming support for the partitioned global address space (PGAS), which provides a global memory space with localized partitions to each thread. Like its ancestor C, UPC is a low-level language that emphasizes code efficiency over safety. The absence of dynamic (and static) safety checks allows programmer oversights and software flaws that can be hard to spot. In this paper, we present an extension of a dynamic analysis tool, ROSE-Code Instrumentation and Runtime Monitor (ROSECIRM), for UPC to help programmers find C-style errors involving the globalmore » address space. Built on top of the ROSE source-to-source compiler infrastructure, the tool instruments source files with code that monitors operations and keeps track of changes to the system state. The resulting code is linked to a runtime monitor that observes the program execution and finds software defects. We describe the extensions to ROSE-CIRM that were necessary to support UPC. We discuss complications that arise from parallel code and our solutions. We test ROSE-CIRM against a runtime error detection test suite, and present performance results obtained from running error-free codes. ROSE-CIRM is released as part of the ROSE compiler under a BSD-style open source license.« less
NASA Astrophysics Data System (ADS)
Mena, Marcelo Andres
During 2004 and 2006 the University of Iowa provided air quality forecast support for flight planning of the ICARTT and MILAGRO field campaigns. A method for improvement of model performance in comparison to observations is showed. The method allows identifying sources of model error from boundary conditions and emissions inventories. Simultaneous analysis of horizontal interpolation of model error and error covariance showed that error in ozone modeling is highly correlated to the error of its precursors, and that there is geographical correlation also. During ICARTT ozone modeling error was improved by updating from the National Emissions Inventory from 1999 and 2001, and furthermore by updating large point source emissions from continuous monitoring data. Further improvements were achieved by reducing area emissions of NOx y 60% for states in the Southeast United States. Ozone error was highly correlated to NOy error during this campaign. Also ozone production in the United States was most sensitive to NOx emissions. During MILAGRO model performance in terms of correlation coefficients was higher, but model error in ozone modeling was high due overestimation of NOx and VOC emissions in Mexico City during forecasting. Large model improvements were shown by decreasing NOx emissions in Mexico City by 50% and VOC by 60%. Recurring ozone error is spatially correlated to CO and NOy error. Sensitivity studies show that Mexico City aerosol can reduce regional photolysis rates by 40% and ozone formation by 5-10%. Mexico City emissions can enhance NOy and O3 concentrations over the Gulf of Mexico in up to 10-20%. Mexico City emissions can convert regional ozone production regimes from VOC to NOx limited. A method of interpolation of observations along flight tracks is shown, which can be used to infer on the direction of outflow plumes. The use of ratios such as O3/NOy and NOx/NOy can be used to provide information on chemical characteristics of the plume, such as age, and ozone production regime. Interpolated MTBE observations can be used as a tracer of urban mobile source emissions. Finally procedures for estimating and gridding emissions inventories in Brazil and Mexico are presented.
Action errors, error management, and learning in organizations.
Frese, Michael; Keith, Nina
2015-01-03
Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.
Marine Controlled-Source Electromagnetic 2D Inversion for synthetic models.
NASA Astrophysics Data System (ADS)
Liu, Y.; Li, Y.
2016-12-01
We present a 2D inverse algorithm for frequency domain marine controlled-source electromagnetic (CSEM) data, which is based on the regularized Gauss-Newton approach. As a forward solver, our parallel adaptive finite element forward modeling program is employed. It is a self-adaptive, goal-oriented grid refinement algorithm in which a finite element analysis is performed on a sequence of refined meshes. The mesh refinement process is guided by a dual error estimate weighting to bias refinement towards elements that affect the solution at the EM receiver locations. With the use of the direct solver (MUMPS), we can effectively compute the electromagnetic fields for multi-sources and parametric sensitivities. We also implement the parallel data domain decomposition approach of Key and Ovall (2011), with the goal of being able to compute accurate responses in parallel for complicated models and a full suite of data parameters typical of offshore CSEM surveys. All minimizations are carried out by using the Gauss-Newton algorithm and model perturbations at each iteration step are obtained by using the Inexact Conjugate Gradient iteration method. Synthetic test inversions are presented.
An Empirical State Error Covariance Matrix Orbit Determination Example
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2015-01-01
State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. First, consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. Then it follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix of the estimate will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully include all of the errors in the state estimate. The empirical error covariance matrix is determined from a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm. It is a formally correct, empirical state error covariance matrix obtained through use of the average form of the weighted measurement residual variance performance index rather than the usual total weighted residual form. Based on its formulation, this matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty and whether the source is anticipated or not. It is expected that the empirical error covariance matrix will give a better, statistical representation of the state error in poorly modeled systems or when sensor performance is suspect. In its most straight forward form, the technique only requires supplemental calculations to be added to existing batch estimation algorithms. In the current problem being studied a truth model making use of gravity with spherical, J2 and J4 terms plus a standard exponential type atmosphere with simple diurnal and random walk components is used. The ability of the empirical state error covariance matrix to account for errors is investigated under four scenarios during orbit estimation. These scenarios are: exact modeling under known measurement errors, exact modeling under corrupted measurement errors, inexact modeling under known measurement errors, and inexact modeling under corrupted measurement errors. For this problem a simple analog of a distributed space surveillance network is used. The sensors in this network make only range measurements and with simple normally distributed measurement errors. The sensors are assumed to have full horizon to horizon viewing at any azimuth. For definiteness, an orbit at the approximate altitude and inclination of the International Space Station is used for the study. The comparison analyses of the data involve only total vectors. No investigation of specific orbital elements is undertaken. The total vector analyses will look at the chisquare values of the error in the difference between the estimated state and the true modeled state using both the empirical and theoretical error covariance matrices for each of scenario.
Statistical design and analysis for plant cover studies with multiple sources of observation errors
Wright, Wilson; Irvine, Kathryn M.; Warren, Jeffrey M .; Barnett, Jenny K.
2017-01-01
Effective wildlife habitat management and conservation requires understanding the factors influencing distribution and abundance of plant species. Field studies, however, have documented observation errors in visually estimated plant cover including measurements which differ from the true value (measurement error) and not observing a species that is present within a plot (detection error). Unlike the rapid expansion of occupancy and N-mixture models for analysing wildlife surveys, development of statistical models accounting for observation error in plants has not progressed quickly. Our work informs development of a monitoring protocol for managed wetlands within the National Wildlife Refuge System.Zero-augmented beta (ZAB) regression is the most suitable method for analysing areal plant cover recorded as a continuous proportion but assumes no observation errors. We present a model extension that explicitly includes the observation process thereby accounting for both measurement and detection errors. Using simulations, we compare our approach to a ZAB regression that ignores observation errors (naïve model) and an “ad hoc” approach using a composite of multiple observations per plot within the naïve model. We explore how sample size and within-season revisit design affect the ability to detect a change in mean plant cover between 2 years using our model.Explicitly modelling the observation process within our framework produced unbiased estimates and nominal coverage of model parameters. The naïve and “ad hoc” approaches resulted in underestimation of occurrence and overestimation of mean cover. The degree of bias was primarily driven by imperfect detection and its relationship with cover within a plot. Conversely, measurement error had minimal impacts on inferences. We found >30 plots with at least three within-season revisits achieved reasonable posterior probabilities for assessing change in mean plant cover.For rapid adoption and application, code for Bayesian estimation of our single-species ZAB with errors model is included. Practitioners utilizing our R-based simulation code can explore trade-offs among different survey efforts and parameter values, as we did, but tuned to their own investigation. Less abundant plant species of high ecological interest may warrant the additional cost of gathering multiple independent observations in order to guard against erroneous conclusions.
Backus Effect on a Perpendicular Errors in Harmonic Models of Real vs. Synthetic Data
NASA Technical Reports Server (NTRS)
Voorhies, C. V.; Santana, J.; Sabaka, T.
1999-01-01
Measurements of geomagnetic scalar intensity on a thin spherical shell alone are not enough to separate internal from external source fields; moreover, such scalar data are not enough for accurate modeling of the vector field from internal sources because of unmodeled fields and small data errors. Spherical harmonic models of the geomagnetic potential fitted to scalar data alone therefore suffer from well-understood Backus effect and perpendicular errors. Curiously, errors in some models of simulated 'data' are very much less than those in models of real data. We analyze select Magsat vector and scalar measurements separately to illustrate Backus effect and perpendicular errors in models of real scalar data. By using a model to synthesize 'data' at the observation points, and by adding various types of 'noise', we illustrate such errors in models of synthetic 'data'. Perpendicular errors prove quite sensitive to the maximum degree in the spherical harmonic expansion of the potential field model fitted to the scalar data. Small errors in models of synthetic 'data' are found to be an artifact of matched truncation levels. For example, consider scalar synthetic 'data' computed from a degree 14 model. A degree 14 model fitted to such synthetic 'data' yields negligible error, but amplifies 4 nT (rmss) added noise into a 60 nT error (rmss); however, a degree 12 model fitted to the noisy 'data' suffers a 492 nT error (rmms through degree 12). Geomagnetic measurements remain unaware of model truncation, so the small errors indicated by some simulations cannot be realized in practice. Errors in models fitted to scalar data alone approach 1000 nT (rmss) and several thousand nT (maximum).
NASA Astrophysics Data System (ADS)
Owens, P. R.; Libohova, Z.; Seybold, C. A.; Wills, S. A.; Peaslee, S.; Beaudette, D.; Lindbo, D. L.
2017-12-01
The measurement errors and spatial prediction uncertainties of soil properties in the modeling community are usually assessed against measured values when available. However, of equal importance is the assessment of errors and uncertainty impacts on cost benefit analysis and risk assessments. Soil pH was selected as one of the most commonly measured soil properties used for liming recommendations. The objective of this study was to assess the error size from different sources and their implications with respect to management decisions. Error sources include measurement methods, laboratory sources, pedotransfer functions, database transections, spatial aggregations, etc. Several databases of measured and predicted soil pH were used for this study including the United States National Cooperative Soil Survey Characterization Database (NCSS-SCDB), the US Soil Survey Geographic (SSURGO) Database. The distribution of errors among different sources from measurement methods to spatial aggregation showed a wide range of values. The greatest RMSE of 0.79 pH units was from spatial aggregation (SSURGO vs Kriging), while the measurement methods had the lowest RMSE of 0.06 pH units. Assuming the order of data acquisition based on the transaction distance i.e. from measurement method to spatial aggregation the RMSE increased from 0.06 to 0.8 pH units suggesting an "error propagation". This has major implications for practitioners and modeling community. Most soil liming rate recommendations are based on 0.1 pH unit increments, while the desired soil pH level increments are based on 0.4 to 0.5 pH units. Thus, even when the measured and desired target soil pH are the same most guidelines recommend 1 ton ha-1 lime, which translates in 111 ha-1 that the farmer has to factor in the cost-benefit analysis. However, this analysis need to be based on uncertainty predictions (0.5-1.0 pH units) rather than measurement errors (0.1 pH units) which would translate in 555-1,111 investment that need to be assessed against the risk. The modeling community can benefit from such analysis, however, error size and spatial distribution for global and regional predictions need to be assessed against the variability of other drivers and impact on management decisions.
ERIC Educational Resources Information Center
Meyvis, Tom; Ratner, Rebecca K.; Levav, Jonathan
2010-01-01
Why do affective forecasting errors persist in the face of repeated disconfirming evidence? Five studies demonstrate that people misremember their forecasts as consistent with their experience and thus fail to perceive the extent of their forecasting error. As a result, people do not learn from past forecasting errors and fail to adjust subsequent…
Nonspinning numerical relativity waveform surrogates: assessing the model
NASA Astrophysics Data System (ADS)
Field, Scott; Blackman, Jonathan; Galley, Chad; Scheel, Mark; Szilagyi, Bela; Tiglio, Manuel
2015-04-01
Recently, multi-modal gravitational waveform surrogate models have been built directly from data numerically generated by the Spectral Einstein Code (SpEC). I will describe ways in which the surrogate model error can be quantified. This task, in turn, requires (i) characterizing differences between waveforms computed by SpEC with those predicted by the surrogate model and (ii) estimating errors associated with the SpEC waveforms from which the surrogate is built. Both pieces can have numerous sources of numerical and systematic errors. We make an attempt to study the most dominant error sources and, ultimately, the surrogate model's fidelity. These investigations yield information about the surrogate model's uncertainty as a function of time (or frequency) and parameter, and could be useful in parameter estimation studies which seek to incorporate model error. Finally, I will conclude by comparing the numerical relativity surrogate model to other inspiral-merger-ringdown models. A companion talk will cover the building of multi-modal surrogate models.
Sure, Rebecca; Brandenburg, Jan Gerit
2015-01-01
Abstract In quantum chemical computations the combination of Hartree–Fock or a density functional theory (DFT) approximation with relatively small atomic orbital basis sets of double‐zeta quality is still widely used, for example, in the popular B3LYP/6‐31G* approach. In this Review, we critically analyze the two main sources of error in such computations, that is, the basis set superposition error on the one hand and the missing London dispersion interactions on the other. We review various strategies to correct those errors and present exemplary calculations on mainly noncovalently bound systems of widely varying size. Energies and geometries of small dimers, large supramolecular complexes, and molecular crystals are covered. We conclude that it is not justified to rely on fortunate error compensation, as the main inconsistencies can be cured by modern correction schemes which clearly outperform the plain mean‐field methods. PMID:27308221
Dynamic performance of an aero-assist spacecraft - AFE
NASA Technical Reports Server (NTRS)
Chang, Ho-Pen; French, Raymond A.
1992-01-01
Dynamic performance of the Aero-assist Flight Experiment (AFE) spacecraft was investigated using a high-fidelity 6-DOF simulation model. Baseline guidance logic, control logic, and a strapdown navigation system to be used on the AFE spacecraft are also modeled in the 6-DOF simulation. During the AFE mission, uncertainties in the environment and the spacecraft are described by an error space which includes both correlated and uncorrelated error sources. The principal error sources modeled in this study include navigation errors, initial state vector errors, atmospheric variations, aerodynamic uncertainties, center-of-gravity off-sets, and weight uncertainties. The impact of the perturbations on the spacecraft performance is investigated using Monte Carlo repetitive statistical techniques. During the Solid Rocket Motor (SRM) deorbit phase, a target flight path angle of -4.76 deg at entry interface (EI) offers very high probability of avoiding SRM casing skip-out from the atmosphere. Generally speaking, the baseline designs of the guidance, navigation, and control systems satisfy most of the science and mission requirements.
New Methods for Assessing and Reducing Uncertainty in Microgravity Studies
NASA Astrophysics Data System (ADS)
Giniaux, J. M.; Hooper, A. J.; Bagnardi, M.
2017-12-01
Microgravity surveying, also known as dynamic or 4D gravimetry is a time-dependent geophysical method used to detect mass fluctuations within the shallow crust, by analysing temporal changes in relative gravity measurements. We present here a detailed uncertainty analysis of temporal gravity measurements, considering for the first time all possible error sources, including tilt, error in drift estimations and timing errors. We find that some error sources that are actually ignored, can have a significant impact on the total error budget and it is therefore likely that some gravity signals may have been misinterpreted in previous studies. Our analysis leads to new methods for reducing some of the uncertainties associated with residual gravity estimation. In particular, we propose different approaches for drift estimation and free air correction depending on the survey set up. We also provide formulae to recalculate uncertainties for past studies and lay out a framework for best practice in future studies. We demonstrate our new approach on volcanic case studies, which include Kilauea in Hawaii and Askja in Iceland.
Dynamically correcting two-qubit gates against any systematic logical error
NASA Astrophysics Data System (ADS)
Calderon Vargas, Fernando Antonio
The reliability of quantum information processing depends on the ability to deal with noise and error in an efficient way. A significant source of error in many settings is coherent, systematic gate error. This work introduces a set of composite pulse sequences that generate maximally entangling gates and correct all systematic errors within the logical subspace to arbitrary order. These sequences are applica- ble for any two-qubit interaction Hamiltonian, and make no assumptions about the underlying noise mechanism except that it is constant on the timescale of the opera- tion. The prime use for our results will be in cases where one has limited knowledge of the underlying physical noise and control mechanisms, highly constrained control, or both. In particular, we apply these composite pulse sequences to the quantum system formed by two capacitively coupled singlet-triplet qubits, which is charac- terized by having constrained control and noise sources that are low frequency and of a non-Markovian nature.
Signal location using generalized linear constraints
NASA Astrophysics Data System (ADS)
Griffiths, Lloyd J.; Feldman, D. D.
1992-01-01
This report has presented a two-part method for estimating the directions of arrival of uncorrelated narrowband sources when there are arbitrary phase errors and angle independent gain errors. The signal steering vectors are estimated in the first part of the method; in the second part, the arrival directions are estimated. It should be noted that the second part of the method can be tailored to incorporate additional information about the nature of the phase errors. For example, if the phase errors are known to be caused solely by element misplacement, the element locations can be estimated concurrently with the DOA's by trying to match the theoretical steering vectors to the estimated ones. Simulation results suggest that, for general perturbation, the method can resolve closely spaced sources under conditions for which a standard high-resolution DOA method such as MUSIC fails.
Geodetic positioning using a global positioning system of satellites
NASA Technical Reports Server (NTRS)
Fell, P. J.
1980-01-01
Geodetic positioning using range, integrated Doppler, and interferometric observations from a constellation of twenty-four Global Positioning System satellites is analyzed. A summary of the proposals for geodetic positioning and baseline determination is given which includes a description of measurement techniques and comments on rank deficiency and error sources. An analysis of variance comparison of range, Doppler, and interferometric time delay to determine their relative geometric strength for baseline determination is included. An analytic examination to the effect of a priori constraints on positioning using simultaneous observations from two stations is presented. Dynamic point positioning and baseline determination using range and Doppler is examined in detail. Models for the error sources influencing dynamic positioning are developed. Included is a discussion of atomic clock stability, and range and Doppler observation error statistics based on random correlated atomic clock error are derived.
Aerosol backscatter lidar calibration and data interpretation
NASA Technical Reports Server (NTRS)
Kavaya, M. J.; Menzies, R. T.
1984-01-01
A treatment of the various factors involved in lidar data acquisition and analysis is presented. This treatment highlights sources of fundamental, systematic, modeling, and calibration errors that may affect the accurate interpretation and calibration of lidar aerosol backscatter data. The discussion primarily pertains to ground based, pulsed CO2 lidars that probe the troposphere and are calibrated using large, hard calibration targets. However, a large part of the analysis is relevant to other types of lidar systems such as lidars operating at other wavelengths; continuous wave (CW) lidars; lidars operating in other regions of the atmosphere; lidars measuring nonaerosol elastic or inelastic backscatter; airborne or Earth-orbiting lidar platforms; and lidars employing combinations of the above characteristics.
Leveraging LSTM for rapid intensifications prediction of tropical cyclones
NASA Astrophysics Data System (ADS)
Li, Y.; Yang, R.; Yang, C.; Yu, M.; Hu, F.; Jiang, Y.
2017-10-01
Tropical cyclones (TCs) usually cause severe damages and destructions. TC intensity forecasting helps people prepare for the extreme weather and could save lives and properties. Rapid Intensifications (RI) of TCs are the major error sources of TC intensity forecasting. A large number of factors, such as sea surface temperature and wind shear, affect the RI processes of TCs. Quite a lot of work have been done to identify the combination of conditions most favorable to RI. In this study, deep learning method is utilized to combine conditions for RI prediction of TCs. Experiments show that the long short-term memory (LSTM) network provides the ability to leverage past conditions to predict TC rapid intensifications.
Variable mid-latitude X-ray source 3U 0042+32
NASA Technical Reports Server (NTRS)
Rappaport, S.; Clark, G. W.; Dower, R.; Doxsey, R.; Jernigan, G.; Li, F.
1977-01-01
A celestial location with an error circle of radius one minute is reported for the mid-latitude X-ray source 3U 0042+32; comparison of observations from the Ariel-5 and Uhuru satellites with data obtained from two independent rotation modulation collimators yields the precise position. Studies to detect regular pulsations and energy spectra of the X-ray source are also discussed. Analysis of the peak X-ray flux in the error circle, as well as certain distance constraints, suggests that the source of the flux may be a neutron star in a distant galactic binary system having a companion that undergoes episodes of mass transfer due to eruption or orbital eccentricity.
The Brera Multiscale Wavelet ROSAT HRI Source Catalog. I. The Algorithm
NASA Astrophysics Data System (ADS)
Lazzati, Davide; Campana, Sergio; Rosati, Piero; Panzera, Maria Rosa; Tagliaferri, Gianpiero
1999-10-01
We present a new detection algorithm based on the wavelet transform for the analysis of high-energy astronomical images. The wavelet transform, because of its multiscale structure, is suited to the optimal detection of pointlike as well as extended sources, regardless of any loss of resolution with the off-axis angle. Sources are detected as significant enhancements in the wavelet space, after the subtraction of the nonflat components of the background. Detection thresholds are computed through Monte Carlo simulations in order to establish the expected number of spurious sources per field. The source characterization is performed through a multisource fitting in the wavelet space. The procedure is designed to correctly deal with very crowded fields, allowing for the simultaneous characterization of nearby sources. To obtain a fast and reliable estimate of the source parameters and related errors, we apply a novel decimation technique that, taking into account the correlation properties of the wavelet transform, extracts a subset of almost independent coefficients. We test the performance of this algorithm on synthetic fields, analyzing with particular care the characterization of sources in poor background situations, where the assumption of Gaussian statistics does not hold. In these cases, for which standard wavelet algorithms generally provide underestimated errors, we infer errors through a procedure that relies on robust basic statistics. Our algorithm is well suited to the analysis of images taken with the new generation of X-ray instruments equipped with CCD technology, which will produce images with very low background and/or high source density.
NASA Astrophysics Data System (ADS)
Comsa, Daria Craita
2008-10-01
There is a real need for improved small animal imaging techniques to enhance the development of therapies in which animal models of disease are used. Optical methods for imaging have been extensively studied in recent years, due to their high sensitivity and specificity. Methods like bioluminescence and fluorescence tomography report promising results for 3D reconstructions of source distributions in vivo. However, no standard methodology exists for optical tomography, and various groups are pursuing different approaches. In a number of studies on small animals, the bioluminescent or fluorescent sources can be reasonably approximated as point or line sources. Examples include images of bone metastases confined to the bone marrow. Starting with this premise, we propose a simpler, faster, and inexpensive technique to quantify optical images of point-like sources. The technique avoids the computational burden of a tomographic method by using planar images and a mathematical model based on diffusion theory. The model employs in situ optical properties estimated from video reflectometry measurements. Modeled and measured images are compared iteratively using a Levenberg-Marquardt algorithm to improve estimates of the depth and strength of the bioluminescent or fluorescent inclusion. The performance of the technique to quantify bioluminescence images was first evaluated on Monte Carlo simulated data. Simulated data also facilitated a methodical investigation of the effect of errors in tissue optical properties on the retrieved source depth and strength. It was found that, for example, an error of 4 % in the effective attenuation coefficient led to 4 % error in the retrieved depth for source depths of up to 12mm, while the error in the retrieved source strength increased from 5.5 % at 2mm depth, to 18 % at 12mm depth. Experiments conducted on images from homogeneous tissue-simulating phantoms showed that depths up to 10mm could be estimated within 8 %, and the relative source strength within 20 %. For sources 14mm deep, the inaccuracy in determining the relative source strength increased to 30 %. Measurements on small animals post mortem showed that the use of measured in situ optical properties to characterize heterogeneous tissue resulted in a superior estimation of the source strength and depth compared to when literature optical properties for organs or tissues were used. Moreover, it was found that regardless of the heterogeneity of the implant location or depth, our algorithm consistently showed an advantage over the simple assessment of the source strength based on the signal strength in the emission image. Our bioluminescence algorithm was generally able to predict the source strength within a factor of 2 of the true strength, but the performance varied with the implant location and depth. In fluorescence imaging a more complex technique is required, including knowledge of tissue optical properties at both the excitation and emission wavelengths. A theoretical study using simulated fluorescence data showed that, for example, for a source 5 mm deep in tissue, errors of up to 15 % in the optical properties would give rise to errors of +/-0.7 mm in the retrieved depth and the source strength would be over- or under-estimated by a factor ranging from 1.25 to 2. Fluorescent sources implanted in rats post mortem at the same depth were localized with an error just slightly higher than predicted theoretically: a root-mean-square value of 0.8 mm was obtained for all implants 5 mm deep. However, for this source depth, the source strength was assessed within a factor ranging from 1.3 to 4.2 from the value estimated in a controlled medium. Nonetheless, similarly to the bioluminescence study, the fluorescence quantification algorithm consistently showed an advantage over the simple assessment of the source strength based on the signal strength in the fluorescence image. Few studies have been reported in the literature that reconstruct known sources of bioluminescence or fluorescence in vivo or in heterogeneous phantoms. The few reported results show that the 3D tomographic methods have not yet reached their full potential. In this context, the simplicity of our technique emerges as a strong advantage.
To Err Is Human; To Structurally Prime from Errors Is Also Human
ERIC Educational Resources Information Center
Slevc, L. Robert; Ferreira, Victor S.
2013-01-01
Natural language contains disfluencies and errors. Do listeners simply discard information that was clearly produced in error, or can erroneous material persist to affect subsequent processing? Two experiments explored this question using a structural priming paradigm. Speakers described dative-eliciting pictures after hearing prime sentences that…
Reed-Solomon error-correction as a software patch mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pendley, Kevin D.
This report explores how error-correction data generated by a Reed-Solomon code may be used as a mechanism to apply changes to an existing installed codebase. Using the Reed-Solomon code to generate error-correction data for a changed or updated codebase will allow the error-correction data to be applied to an existing codebase to both validate and introduce changes or updates from some upstream source to the existing installed codebase.
LANDSAT 4 band 6 data evaluation
NASA Technical Reports Server (NTRS)
1985-01-01
Comparison of underflight data with satellite estimates of temperature revealed significant gain calibration errors. The source of the LANDSAT 5 band 6 error and its reproducibility is not yet adequately defined. The error can be accounted for using underflight or ground truth data. When underflight data are used to correct the satellite data, the residual error for the scene studied was 1.3K when the predicted temperatures were compared to measured surface temperature.
Swift follow-up of 1RXS J194211.9+255552
NASA Astrophysics Data System (ADS)
Sidoli, L.; Fiocchi, M.; Bird, A. J.; Drave, S. P.; Bazzano, A.; Persi, P.; Tarana, A.; Sguera, V.; Chenevez, J.; Kuulkers, E.
2011-12-01
Following the INTEGRAL/JEM-X detection of the unidentified source 1RXS J194211.9+255552 (ATel #3816) on December 18, we asked for a Swift/XRT follow-up observation. Swift observed the source field on December 21, 2011 at 06:10:09.7 (UTC), with a net exposure of 1756 s. Within the ROSAT error circle there is only one pointlike source, at the following position (J2000): RA(hh mm ss.s) = 19h42m11.13s, Dec(dd mm ss.s) = +25:56:07.32 (3.6 arcsec error radius).
A comparative study of spherical and flat-Earth geopotential modeling at satellite elevations
NASA Technical Reports Server (NTRS)
Parrott, M. H.; Hinze, W. J.; Braile, L. W.
1985-01-01
Flat-Earth and spherical-Earth geopotential modeling of crustal anomaly sources at satellite elevations are compared by computing gravity and scalar magnetic anomalies perpendicular to the strike of variably dimensioned rectangular prisms at altitudes of 150, 300, and 450 km. Results indicate that the error caused by the flat-Earth approximation is less than 10% in most geometric conditions. Generally, error increase with larger and wider anomaly sources at higher altitudes. For most crustal source modeling applications at conventional satellite altitudes, flat-Earth modeling can be justified and is numerically efficient.
Partitioning error components for accuracy-assessment of near-neighbor methods of imputation
Albert R. Stage; Nicholas L. Crookston
2007-01-01
Imputation is applied for two quite different purposes: to supply missing data to complete a data set for subsequent modeling analyses or to estimate subpopulation totals. Error properties of the imputed values have different effects in these two contexts. We partition errors of imputation derived from similar observation units as arising from three sources:...
Comparing source-based and gist-based false recognition in aging and Alzheimer's disease.
Pierce, Benton H; Sullivan, Alison L; Schacter, Daniel L; Budson, Andrew E
2005-07-01
This study examined 2 factors contributing to false recognition of semantic associates: errors based on confusion of source and errors based on general similarity information or gist. The authors investigated these errors in patients with Alzheimer's disease (AD), age-matched control participants, and younger adults, focusing on each group's ability to use recollection of source information to suppress false recognition. The authors used a paradigm consisting of both deep and shallow incidental encoding tasks, followed by study of a series of categorized lists in which several typical exemplars were omitted. Results showed that healthy older adults were able to use recollection from the deep processing task to some extent but less than that used by younger adults. In contrast, false recognition in AD patients actually increased following the deep processing task, suggesting that they were unable to use recollection to oppose familiarity arising from incidental presentation. (c) 2005 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Winiarek, Victor; Bocquet, Marc; Duhanyan, Nora; Roustan, Yelva; Saunier, Olivier; Mathieu, Anne
2013-04-01
A major difficulty when inverting the source term of an atmospheric tracer dispersion problem is the estimation of the prior errors: those of the atmospheric transport model, those ascribed to the representativeness of the measurements, the instrumental errors, and those attached to the prior knowledge on the variables one seeks to retrieve. In the case of an accidental release of pollutant, and specially in a situation of sparse observability, the reconstructed source is sensitive to these assumptions. This sensitivity makes the quality of the retrieval dependent on the methods used to model and estimate the prior errors of the inverse modeling scheme. In Winiarek et al. (2012), we proposed to use an estimation method for the errors' amplitude based on the maximum likelihood principle. Under semi-Gaussian assumptions, it takes into account, without approximation, the positivity assumption on the source. We applied the method to the estimation of the Fukushima Daiichi cesium-137 and iodine-131 source terms using activity concentrations in the air. The results were compared to an L-curve estimation technique, and to Desroziers's scheme. Additionally to the estimations of released activities, we provided related uncertainties (12 PBq with a std. of 15 - 20 % for cesium-137 and 190 - 380 PBq with a std. of 5 - 10 % for iodine-131). We also enlightened that, because of the low number of available observations (few hundreds) and even if orders of magnitude were consistent, the reconstructed activities significantly depended on the method used to estimate the prior errors. In order to use more data, we propose to extend the methods to the use of several data types, such as activity concentrations in the air and fallout measurements. The idea is to simultaneously estimate the prior errors related to each dataset, in order to fully exploit the information content of each one. Using the activity concentration measurements, but also daily fallout data from prefectures and cumulated deposition data over a region lying approximately 150 km around the nuclear power plant, we can use a few thousands of data in our inverse modeling algorithm to reconstruct the Cesium-137 source term. To improve the parameterization of removal processes, rainfall fields have also been corrected using outputs from the mesoscale meteorological model WRF and ground station rainfall data. As expected, the different methods yield closer results as the number of data increases. Reference : Winiarek, V., M. Bocquet, O. Saunier, A. Mathieu (2012), Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant : Application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant, J. Geophys. Res., 117, D05122, doi:10.1029/2011JD016932.
Satellite-based Calibration of Heat Flux at the Ocean Surface
NASA Astrophysics Data System (ADS)
Barron, C. N.; Dastugue, J. M.; May, J. C.; Rowley, C. D.; Smith, S. R.; Spence, P. L.; Gremes-Cordero, S.
2016-02-01
Model forecasts of upper ocean heat content and variability on diurnal to daily scales are highly dependent on estimates of heat flux through the air-sea interface. Satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. Traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle. Subsequent evolution depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. The COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates) endeavors to correct ocean forecast bias through a responsive error partition among surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using Navy operational global or regional atmospheric forcing. COFFEE addresses satellite-calibration of surface fluxes to estimate surface error covariances and links these to the ocean interior. Experiment cases combine different levels of flux calibration with different assimilation alternatives. The cases may use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is equally applicable to other regions. These approaches within a 3DVAR application are anticipated to be useful for global and larger regional domains where a full 4DVAR methodology may be cost-prohibitive.
Menelaou, Evdokia; Paul, Latoya T.; Perera, Surangi N.; Svoboda, Kurt R.
2015-01-01
Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMN). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30µM). Previous work showed that the paralytic mutant zebrafish known as sofa potato, exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. PMID:25668718
NASA Technical Reports Server (NTRS)
Tangborn, Andrew; Cooper, Robert; Pawson, Steven; Sun, Zhibin
2009-01-01
We present a source inversion technique for chemical constituents that uses assimilated constituent observations rather than directly using the observations. The method is tested with a simple model problem, which is a two-dimensional Fourier-Galerkin transport model combined with a Kalman filter for data assimilation. Inversion is carried out using a Green's function method and observations are simulated from a true state with added Gaussian noise. The forecast state uses the same spectral spectral model, but differs by an unbiased Gaussian model error, and emissions models with constant errors. The numerical experiments employ both simulated in situ and satellite observation networks. Source inversion was carried out by either direct use of synthetically generated observations with added noise, or by first assimilating the observations and using the analyses to extract observations. We have conducted 20 identical twin experiments for each set of source and observation configurations, and find that in the limiting cases of a very few localized observations, or an extremely large observation network there is little advantage to carrying out assimilation first. However, in intermediate observation densities, there decreases in source inversion error standard deviation using the Kalman filter algorithm followed by Green's function inversion by 50% to 95%.
NASA Astrophysics Data System (ADS)
Hallez, Hans; Staelens, Steven; Lemahieu, Ignace
2009-10-01
EEG source analysis is a valuable tool for brain functionality research and for diagnosing neurological disorders, such as epilepsy. It requires a geometrical representation of the human head or a head model, which is often modeled as an isotropic conductor. However, it is known that some brain tissues, such as the skull or white matter, have an anisotropic conductivity. Many studies reported that the anisotropic conductivities have an influence on the calculated electrode potentials. However, few studies have assessed the influence of anisotropic conductivities on the dipole estimations. In this study, we want to determine the dipole estimation errors due to not taking into account the anisotropic conductivities of the skull and/or brain tissues. Therefore, head models are constructed with the same geometry, but with an anisotropically conducting skull and/or brain tissue compartment. These head models are used in simulation studies where the dipole location and orientation error is calculated due to neglecting anisotropic conductivities of the skull and brain tissue. Results show that not taking into account the anisotropic conductivities of the skull yields a dipole location error between 2 and 25 mm, with an average of 10 mm. When the anisotropic conductivities of the brain tissues are neglected, the dipole location error ranges between 0 and 5 mm. In this case, the average dipole location error was 2.3 mm. In all simulations, the dipole orientation error was smaller than 10°. We can conclude that the anisotropic conductivities of the skull have to be incorporated to improve the accuracy of EEG source analysis. The results of the simulation, as presented here, also suggest that incorporation of the anisotropic conductivities of brain tissues is not necessary. However, more studies are needed to confirm these suggestions.
Bayesian statistics applied to the location of the source of explosions at Stromboli Volcano, Italy
Saccorotti, G.; Chouet, B.; Martini, M.; Scarpa, R.
1998-01-01
We present a method for determining the location and spatial extent of the source of explosions at Stromboli Volcano, Italy, based on a Bayesian inversion of the slowness vector derived from frequency-slowness analyses of array data. The method searches for source locations that minimize the error between the expected and observed slowness vectors. For a given set of model parameters, the conditional probability density function of slowness vectors is approximated by a Gaussian distribution of expected errors. The method is tested with synthetics using a five-layer velocity model derived for the north flank of Stromboli and a smoothed velocity model derived from a power-law approximation of the layered structure. Application to data from Stromboli allows for a detailed examination of uncertainties in source location due to experimental errors and incomplete knowledge of the Earth model. Although the solutions are not constrained in the radial direction, excellent resolution is achieved in both transverse and depth directions. Under the assumption that the horizontal extent of the source does not exceed the crater dimension, the 90% confidence region in the estimate of the explosive source location corresponds to a small volume extending from a depth of about 100 m to a maximum depth of about 300 m beneath the active vents, with a maximum likelihood source region located in the 120- to 180-m-depth interval.