Xie, Lin; Cui, Xiaowei; Zhao, Sihao; Lu, Mingquan
2017-01-01
It is well known that multipath effect remains a dominant error source that affects the positioning accuracy of Global Navigation Satellite System (GNSS) receivers. Significant efforts have been made by researchers and receiver manufacturers to mitigate multipath error in the past decades. Recently, a multipath mitigation technique using dual-polarization antennas has become a research hotspot for it provides another degree of freedom to distinguish the line-of-sight (LOS) signal from the LOS and multipath composite signal without extensively increasing the complexity of the receiver. Numbers of multipath mitigation techniques using dual-polarization antennas have been proposed and all of them report performance improvement over the single-polarization methods. However, due to the unpredictability of multipath, multipath mitigation techniques based on dual-polarization are not always effective while few studies discuss the condition under which the multipath mitigation using a dual-polarization antenna can outperform that using a single-polarization antenna, which is a fundamental question for dual-polarization multipath mitigation (DPMM) and the design of multipath mitigation algorithms. In this paper we analyze the characteristics of the signal received by a dual-polarization antenna and use the maximum likelihood estimation (MLE) to assess the theoretical performance of DPMM in different received signal cases. Based on the assessment we answer this fundamental question and find the dual-polarization antenna’s capability in mitigating short delay multipath—the most challenging one among all types of multipath for the majority of the multipath mitigation techniques. Considering these effective conditions, we propose a dual-polarization sequential iterative maximum likelihood estimation (DP-SIMLE) algorithm for DPMM. The simulation results verify our theory and show superior performance of the proposed DP-SIMLE algorithm over the traditional one using only an RHCP antenna. PMID:28208832
NASA Astrophysics Data System (ADS)
Zhong, Ke; Lei, Xia; Li, Shaoqian
2013-12-01
Statistics-based intercarrier interference (ICI) mitigation algorithm is proposed for orthogonal frequency division multiplexing systems in presence of both nonstationary and stationary phase noises. By utilizing the statistics of phase noise, which can be obtained from measurements or data sheets, a Wiener filter preprocessing algorithm for ICI mitigation is proposed. The proposed algorithm can be regarded as a performance-improving technique for the previous researches on phase noise cancelation. Simulation results show that the proposed algorithm can effectively mitigate ICI and lower the error floor, and therefore significantly improve the performances of previous researches on phase noise cancelation, especially in the presence of severe phase noise.
Zhang, Junfeng; Chen, Wei; Gao, Mingyi; Shen, Gangxiang
2017-10-30
In this work, we proposed two k-means-clustering-based algorithms to mitigate the fiber nonlinearity for 64-quadrature amplitude modulation (64-QAM) signal, the training-sequence assisted k-means algorithm and the blind k-means algorithm. We experimentally demonstrated the proposed k-means-clustering-based fiber nonlinearity mitigation techniques in 75-Gb/s 64-QAM coherent optical communication system. The proposed algorithms have reduced clustering complexity and low data redundancy and they are able to quickly find appropriate initial centroids and select correctly the centroids of the clusters to obtain the global optimal solutions for large k value. We measured the bit-error-ratio (BER) performance of 64-QAM signal with different launched powers into the 50-km single mode fiber and the proposed techniques can greatly mitigate the signal impairments caused by the amplified spontaneous emission noise and the fiber Kerr nonlinearity and improve the BER performance.
An improved semi-implicit method for structural dynamics analysis
NASA Technical Reports Server (NTRS)
Park, K. C.
1982-01-01
A semi-implicit algorithm is presented for direct time integration of the structural dynamics equations. The algorithm avoids the factoring of the implicit difference solution matrix and mitigates the unacceptable accuracy losses which plagued previous semi-implicit algorithms. This substantial accuracy improvement is achieved by augmenting the solution matrix with two simple diagonal matrices of the order of the integration truncation error.
NASA Astrophysics Data System (ADS)
Weng, Yi; He, Xuan; Yao, Wang; Pacheco, Michelle C.; Wang, Junyi; Pan, Zhongqi
2017-07-01
In this paper, we explored the performance of space-time block-coding (STBC) assisted multiple-input multiple-output (MIMO) scheme for modal dispersion and mode-dependent loss (MDL) mitigation in spatial-division multiplexed optical communication systems, whereas the weight matrices of frequency-domain equalization (FDE) were updated heuristically using decision-directed recursive least squares (RLS) algorithm for convergence and channel estimation. The proposed STBC-RLS algorithm can achieve 43.6% enhancement on convergence rate over conventional least mean squares (LMS) for quadrature phase-shift keying (QPSK) signals with merely 16.2% increase in hardware complexity. The overall optical signal to noise ratio (OSNR) tolerance can be improved via STBC by approximately 3.1, 4.9, 7.8 dB for QPSK, 16-quadrature amplitude modulation (QAM) and 64-QAM with respective bit-error-rates (BER) and minimum-mean-square-error (MMSE).
Error reduction in EMG signal decomposition
Kline, Joshua C.
2014-01-01
Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization. PMID:25210159
An IMU-Aided Body-Shadowing Error Compensation Method for Indoor Bluetooth Positioning
Deng, Zhongliang
2018-01-01
Research on indoor positioning technologies has recently become a hotspot because of the huge social and economic potential of indoor location-based services (ILBS). Wireless positioning signals have a considerable attenuation in received signal strength (RSS) when transmitting through human bodies, which would cause significant ranging and positioning errors in RSS-based systems. This paper mainly focuses on the body-shadowing impairment of RSS-based ranging and positioning, and derives a mathematical expression of the relation between the body-shadowing effect and the positioning error. In addition, an inertial measurement unit-aided (IMU-aided) body-shadowing detection strategy is designed, and an error compensation model is established to mitigate the effect of body-shadowing. A Bluetooth positioning algorithm with body-shadowing error compensation (BP-BEC) is then proposed to improve both the positioning accuracy and the robustness in indoor body-shadowing environments. Experiments are conducted in two indoor test beds, and the performance of both the BP-BEC algorithm and the algorithms without body-shadowing error compensation (named no-BEC) is evaluated. The results show that the BP-BEC outperforms the no-BEC by about 60.1% and 73.6% in terms of positioning accuracy and robustness, respectively. Moreover, the execution time of the BP-BEC algorithm is also evaluated, and results show that the convergence speed of the proposed algorithm has an insignificant effect on real-time localization. PMID:29361718
An IMU-Aided Body-Shadowing Error Compensation Method for Indoor Bluetooth Positioning.
Deng, Zhongliang; Fu, Xiao; Wang, Hanhua
2018-01-20
Research on indoor positioning technologies has recently become a hotspot because of the huge social and economic potential of indoor location-based services (ILBS). Wireless positioning signals have a considerable attenuation in received signal strength (RSS) when transmitting through human bodies, which would cause significant ranging and positioning errors in RSS-based systems. This paper mainly focuses on the body-shadowing impairment of RSS-based ranging and positioning, and derives a mathematical expression of the relation between the body-shadowing effect and the positioning error. In addition, an inertial measurement unit-aided (IMU-aided) body-shadowing detection strategy is designed, and an error compensation model is established to mitigate the effect of body-shadowing. A Bluetooth positioning algorithm with body-shadowing error compensation (BP-BEC) is then proposed to improve both the positioning accuracy and the robustness in indoor body-shadowing environments. Experiments are conducted in two indoor test beds, and the performance of both the BP-BEC algorithm and the algorithms without body-shadowing error compensation (named no-BEC) is evaluated. The results show that the BP-BEC outperforms the no-BEC by about 60.1% and 73.6% in terms of positioning accuracy and robustness, respectively. Moreover, the execution time of the BP-BEC algorithm is also evaluated, and results show that the convergence speed of the proposed algorithm has an insignificant effect on real-time localization.
Sun, Tengfen; Liu, Minwen; Li, Yingchun; Wang, Min
2017-10-16
In this paper, we experimentally investigate the performance of crosstalk mitigation for 16-ary quadrature amplitude modulation orthogonal frequency division multiplexing (16QAM-OFDM) signals carrying orbital angular momentum (OAM) multiplexed free-space-optical communication (FSO) links using the pilot assisted Least Square (LS) algorithm. At the demodulating spatial light modulators (SLMs), we launch the distorted phase holograms which have the information of atmospheric turbulence obeying the modified Hill spectrum. And crosstalk can be introduced by these holograms with the experimental verification. The pilot assisted LS algorithm can efficiently improve the quality of system performance, the points of constellations get closer to the reference points and around two orders of magnitude improvement of bit-error rate (BER) is obtained.
Algorithm-Based Fault Tolerance Integrated with Replication
NASA Technical Reports Server (NTRS)
Some, Raphael; Rennels, David
2008-01-01
In a proposed approach to programming and utilization of commercial off-the-shelf computing equipment, a combination of algorithm-based fault tolerance (ABFT) and replication would be utilized to obtain high degrees of fault tolerance without incurring excessive costs. The basic idea of the proposed approach is to integrate ABFT with replication such that the algorithmic portions of computations would be protected by ABFT, and the logical portions by replication. ABFT is an extremely efficient, inexpensive, high-coverage technique for detecting and mitigating faults in computer systems used for algorithmic computations, but does not protect against errors in logical operations surrounding algorithms.
NASA Astrophysics Data System (ADS)
Yu, Miao; Li, Yan; Shu, Tong; Zhang, Yifan; Hong, Xiaobin; Qiu, Jifang; Zuo, Yong; Guo, Hongxiang; Li, Wei; Wu, Jian
2018-02-01
A method of recognizing 16QAM signal based on k-means clustering algorithm is proposed to mitigate the impact of transmitter finite extinction ratio. There are pilot symbols with 0.39% overhead assigned to be regarded as initial centroids of k-means clustering algorithm. Simulation result in 10 GBaud 16QAM system shows that the proposed method obtains higher precision of identification compared with traditional decision method for finite ER and IQ mismatch. Specially, the proposed method improves the required OSNR by 5.5 dB, 4.5 dB, 4 dB and 3 dB at FEC limit with ER= 12 dB, 16 dB, 20 dB and 24 dB, respectively, and the acceptable bias error and IQ mismatch range is widened by 767% and 360% with ER =16 dB, respectively.
Decision-aided ICI mitigation with time-domain average approximation in CO-OFDM
NASA Astrophysics Data System (ADS)
Ren, Hongliang; Cai, Jiaxing; Ye, Xin; Lu, Jin; Cao, Quanjun; Guo, Shuqin; Xue, Lin-lin; Qin, Yali; Hu, Weisheng
2015-07-01
We introduce and investigate the feasibility of a novel iterative blind phase noise inter-carrier interference (ICI) mitigation scheme for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The ICI mitigation scheme is performed through the combination of frequency-domain symbol decision-aided estimation and the ICI phase noise time-average approximation. An additional initial decision process with suitable threshold is introduced in order to suppress the decision error symbols. Our proposed ICI mitigation scheme is proved to be effective in removing the ICI for a simulated CO-OFDM with 16-QAM modulation format. With the slightly high computational complexity, it outperforms the time-domain average blind ICI (Avg-BL-ICI) algorithm at a relatively wide laser line-width and high OSNR.
NASA Technical Reports Server (NTRS)
Piepmeier, Jeffrey; Mohammed, Priscilla; De Amici, Giovanni; Kim, Edward; Peng, Jinzheng; Ruf, Christopher; Hanna, Maher; Yueh, Simon; Entekhabi, Dara
2016-01-01
The purpose of the Soil Moisture Active Passive (SMAP) radiometer calibration algorithm is to convert Level 0 (L0) radiometer digital counts data into calibrated estimates of brightness temperatures referenced to the Earth's surface within the main beam. The algorithm theory in most respects is similar to what has been developed and implemented for decades for other satellite radiometers; however, SMAP includes two key features heretofore absent from most satellite borne radiometers: radio frequency interference (RFI) detection and mitigation, and measurement of the third and fourth Stokes parameters using digital correlation. The purpose of this document is to describe the SMAP radiometer and forward model, explain the SMAP calibration algorithm, including approximations, errors, and biases, provide all necessary equations for implementing the calibration algorithm and detail the RFI detection and mitigation process. Section 2 provides a summary of algorithm objectives and driving requirements. Section 3 is a description of the instrument and Section 4 covers the forward models, upon which the algorithm is based. Section 5 gives the retrieval algorithm and theory. Section 6 describes the orbit simulator, which implements the forward model and is the key for deriving antenna pattern correction coefficients and testing the overall algorithm.
Subarray Processing for Projection-based RFI Mitigation in Radio Astronomical Interferometers
NASA Astrophysics Data System (ADS)
Burnett, Mitchell C.; Jeffs, Brian D.; Black, Richard A.; Warnick, Karl F.
2018-04-01
Radio Frequency Interference (RFI) is a major problem for observations in Radio Astronomy (RA). Adaptive spatial filtering techniques such as subspace projection are promising candidates for RFI mitigation; however, for radio interferometric imaging arrays, these have primarily been used in engineering demonstration experiments rather than mainstream scientific observations. This paper considers one reason that adoption of such algorithms is limited: RFI decorrelates across the interferometric array because of long baseline lengths. This occurs when the relative RFI time delay along a baseline is large compared to the frequency channel inverse bandwidth used in the processing chain. Maximum achievable excision of the RFI is limited by covariance matrix estimation error when identifying interference subspace parameters, and decorrelation of the RFI introduces errors that corrupt the subspace estimate, rendering subspace projection ineffective over the entire array. In this work, we present an algorithm that overcomes this challenge of decorrelation by applying subspace projection via subarray processing (SP-SAP). Each subarray is designed to have a set of elements with high mutual correlation in the interferer for better estimation of subspace parameters. In an RFI simulation scenario for the proposed ngVLA interferometric imaging array with 15 kHz channel bandwidth for correlator processing, we show that compared to the former approach of applying subspace projection on the full array, SP-SAP improves mitigation of the RFI on the order of 9 dB. An example of improved image synthesis and reduced RFI artifacts for a simulated image “phantom” using the SP-SAP algorithm is presented.
Radiation effects in reconfigurable FPGAs
NASA Astrophysics Data System (ADS)
Quinn, Heather
2017-04-01
Field-programmable gate arrays (FPGAs) are co-processing hardware used in image and signal processing. FPGA are programmed with custom implementations of an algorithm. These algorithms are highly parallel hardware designs that are faster than software implementations. This flexibility and speed has made FPGAs attractive for many space programs that need in situ, high-speed signal processing for data categorization and data compression. Most commercial FPGAs are affected by the space radiation environment, though. Problems with TID has restricted the use of flash-based FPGAs. Static random access memory based FPGAs must be mitigated to suppress errors from single-event upsets. This paper provides a review of radiation effects issues in reconfigurable FPGAs and discusses methods for mitigating these problems. With careful design it is possible to use these components effectively and resiliently.
Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm
Colless, J. I.; Ramasesh, V. V.; Dahlen, D.; ...
2018-02-12
Harnessing the full power of nascent quantum processors requires the efficient management of a limited number of quantum bits with finite coherent lifetimes. Hybrid algorithms, such as the variational quantum eigensolver (VQE), leverage classical resources to reduce the required number of quantum gates. Experimental demonstrations of VQE have resulted in calculation of Hamiltonian ground states, and a new theoretical approach based on a quantum subspace expansion (QSE) has outlined a procedure for determining excited states that are central to dynamical processes. Here, we use a superconducting-qubit-based processor to apply the QSE approach to the H 2 molecule, extracting both groundmore » and excited states without the need for auxiliary qubits or additional minimization. Further, we show that this extended protocol can mitigate the effects of incoherent errors, potentially enabling larger-scale quantum simulations without the need for complex error-correction techniques.« less
Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm
NASA Astrophysics Data System (ADS)
Colless, J. I.; Ramasesh, V. V.; Dahlen, D.; Blok, M. S.; Kimchi-Schwartz, M. E.; McClean, J. R.; Carter, J.; de Jong, W. A.; Siddiqi, I.
2018-02-01
Harnessing the full power of nascent quantum processors requires the efficient management of a limited number of quantum bits with finite coherent lifetimes. Hybrid algorithms, such as the variational quantum eigensolver (VQE), leverage classical resources to reduce the required number of quantum gates. Experimental demonstrations of VQE have resulted in calculation of Hamiltonian ground states, and a new theoretical approach based on a quantum subspace expansion (QSE) has outlined a procedure for determining excited states that are central to dynamical processes. We use a superconducting-qubit-based processor to apply the QSE approach to the H2 molecule, extracting both ground and excited states without the need for auxiliary qubits or additional minimization. Further, we show that this extended protocol can mitigate the effects of incoherent errors, potentially enabling larger-scale quantum simulations without the need for complex error-correction techniques.
Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colless, J. I.; Ramasesh, V. V.; Dahlen, D.
Harnessing the full power of nascent quantum processors requires the efficient management of a limited number of quantum bits with finite coherent lifetimes. Hybrid algorithms, such as the variational quantum eigensolver (VQE), leverage classical resources to reduce the required number of quantum gates. Experimental demonstrations of VQE have resulted in calculation of Hamiltonian ground states, and a new theoretical approach based on a quantum subspace expansion (QSE) has outlined a procedure for determining excited states that are central to dynamical processes. Here, we use a superconducting-qubit-based processor to apply the QSE approach to the H 2 molecule, extracting both groundmore » and excited states without the need for auxiliary qubits or additional minimization. Further, we show that this extended protocol can mitigate the effects of incoherent errors, potentially enabling larger-scale quantum simulations without the need for complex error-correction techniques.« less
Mitigation of crosstalk based on CSO-ICA in free space orbital angular momentum multiplexing systems
NASA Astrophysics Data System (ADS)
Xing, Dengke; Liu, Jianfei; Zeng, Xiangye; Lu, Jia; Yi, Ziyao
2018-09-01
Orbital angular momentum (OAM) multiplexing has caused a lot of concerns and researches in recent years because of its great spectral efficiency and many OAM systems in free space channel have been demonstrated. However, due to the existence of atmospheric turbulence, the power of OAM beams will diffuse to beams with neighboring topological charges and inter-mode crosstalk will emerge in these systems, resulting in the system nonavailability in severe cases. In this paper, we introduced independent component analysis (ICA), which is known as a popular method of signal separation, to mitigate inter-mode crosstalk effects; furthermore, aiming at the shortcomings of traditional ICA algorithm's fixed iteration speed, we proposed a joint algorithm, CSO-ICA, to improve the process of solving the separation matrix by taking advantage of fast convergence rate and high convergence precision of chicken swarm algorithm (CSO). We can get the optimal separation matrix by adjusting the step size according to the last iteration in CSO-ICA. Simulation results indicate that the proposed algorithm has a good performance in inter-mode crosstalk mitigation and the optical signal-to-noise ratio (OSNR) requirement of received signals (OAM+2, OAM+4, OAM+6, OAM+8) is reduced about 3.2 dB at bit error ratio (BER) of 3.8 × 10-3. Meanwhile, the convergence speed is much faster than the traditional ICA algorithm by improving about an order of iteration times.
A Novel Real-Time Reference Key Frame Scan Matching Method.
Mohamed, Haytham; Moussa, Adel; Elhabiby, Mohamed; El-Sheimy, Naser; Sesay, Abu
2017-05-07
Unmanned aerial vehicles represent an effective technology for indoor search and rescue operations. Typically, most indoor missions' environments would be unknown, unstructured, and/or dynamic. Navigation of UAVs in such environments is addressed by simultaneous localization and mapping approach using either local or global approaches. Both approaches suffer from accumulated errors and high processing time due to the iterative nature of the scan matching method. Moreover, point-to-point scan matching is prone to outlier association processes. This paper proposes a low-cost novel method for 2D real-time scan matching based on a reference key frame (RKF). RKF is a hybrid scan matching technique comprised of feature-to-feature and point-to-point approaches. This algorithm aims at mitigating errors accumulation using the key frame technique, which is inspired from video streaming broadcast process. The algorithm depends on the iterative closest point algorithm during the lack of linear features which is typically exhibited in unstructured environments. The algorithm switches back to the RKF once linear features are detected. To validate and evaluate the algorithm, the mapping performance and time consumption are compared with various algorithms in static and dynamic environments. The performance of the algorithm exhibits promising navigational, mapping results and very short computational time, that indicates the potential use of the new algorithm with real-time systems.
Energy and Quality-Aware Multimedia Signal Processing
NASA Astrophysics Data System (ADS)
Emre, Yunus
Today's mobile devices have to support computation-intensive multimedia applications with a limited energy budget. In this dissertation, we present architecture level and algorithm-level techniques that reduce energy consumption of these devices with minimal impact on system quality. First, we present novel techniques to mitigate the effects of SRAM memory failures in JPEG2000 implementations operating in scaled voltages. We investigate error control coding schemes and propose an unequal error protection scheme tailored for JPEG2000 that reduces overhead without affecting the performance. Furthermore, we propose algorithm-specific techniques for error compensation that exploit the fact that in JPEG2000 the discrete wavelet transform outputs have larger values for low frequency subband coefficients and smaller values for high frequency subband coefficients. Next, we present use of voltage overscaling to reduce the data-path power consumption of JPEG codecs. We propose an algorithm-specific technique which exploits the characteristics of the quantized coefficients after zig-zag scan to mitigate errors introduced by aggressive voltage scaling. Third, we investigate the effect of reducing dynamic range for datapath energy reduction. We analyze the effect of truncation error and propose a scheme that estimates the mean value of the truncation error during the pre-computation stage and compensates for this error. Such a scheme is very effective for reducing the noise power in applications that are dominated by additions and multiplications such as FIR filter and transform computation. We also present a novel sum of absolute difference (SAD) scheme that is based on most significant bit truncation. The proposed scheme exploits the fact that most of the absolute difference (AD) calculations result in small values, and most of the large AD values do not contribute to the SAD values of the blocks that are selected. Such a scheme is highly effective in reducing the energy consumption of motion estimation and intra-prediction kernels in video codecs. Finally, we present several hybrid energy-saving techniques based on combination of voltage scaling, computation reduction and dynamic range reduction that further reduce the energy consumption while keeping the performance degradation very low. For instance, a combination of computation reduction and dynamic range reduction for Discrete Cosine Transform shows on average, 33% to 46% reduction in energy consumption while incurring only 0.5dB to 1.5dB loss in PSNR.
A Novel Real-Time Reference Key Frame Scan Matching Method
Mohamed, Haytham; Moussa, Adel; Elhabiby, Mohamed; El-Sheimy, Naser; Sesay, Abu
2017-01-01
Unmanned aerial vehicles represent an effective technology for indoor search and rescue operations. Typically, most indoor missions’ environments would be unknown, unstructured, and/or dynamic. Navigation of UAVs in such environments is addressed by simultaneous localization and mapping approach using either local or global approaches. Both approaches suffer from accumulated errors and high processing time due to the iterative nature of the scan matching method. Moreover, point-to-point scan matching is prone to outlier association processes. This paper proposes a low-cost novel method for 2D real-time scan matching based on a reference key frame (RKF). RKF is a hybrid scan matching technique comprised of feature-to-feature and point-to-point approaches. This algorithm aims at mitigating errors accumulation using the key frame technique, which is inspired from video streaming broadcast process. The algorithm depends on the iterative closest point algorithm during the lack of linear features which is typically exhibited in unstructured environments. The algorithm switches back to the RKF once linear features are detected. To validate and evaluate the algorithm, the mapping performance and time consumption are compared with various algorithms in static and dynamic environments. The performance of the algorithm exhibits promising navigational, mapping results and very short computational time, that indicates the potential use of the new algorithm with real-time systems. PMID:28481285
Evolution of errors in the altimetric bathymetry model used by Google Earth and GEBCO
NASA Astrophysics Data System (ADS)
Marks, K. M.; Smith, W. H. F.; Sandwell, D. T.
2010-09-01
We analyze errors in the global bathymetry models of Smith and Sandwell that combine satellite altimetry with acoustic soundings and shorelines to estimate depths. Versions of these models have been incorporated into Google Earth and the General Bathymetric Chart of the Oceans (GEBCO). We use Japan Agency for Marine-Earth Science and Technology (JAMSTEC) multibeam surveys not previously incorporated into the models as "ground truth" to compare against model versions 7.2 through 12.1, defining vertical differences as "errors." Overall error statistics improve over time: 50th percentile errors declined from 57 to 55 to 49 m, and 90th percentile errors declined from 257 to 235 to 219 m, in versions 8.2, 11.1 and 12.1. This improvement is partly due to an increasing number of soundings incorporated into successive models, and partly to improvements in the satellite gravity model. Inspection of specific sites reveals that changes in the algorithms used to interpolate across survey gaps with altimetry have affected some errors. Versions 9.1 through 11.1 show a bias in the scaling from gravity in milliGals to topography in meters that affected the 15-160 km wavelength band. Regionally averaged (>160 km wavelength) depths have accumulated error over successive versions 9 through 11. These problems have been mitigated in version 12.1, which shows no systematic variation of errors with depth. Even so, version 12.1 is in some respects not as good as version 8.2, which employed a different algorithm.
Adaptive spectral filtering of PIV cross correlations
NASA Astrophysics Data System (ADS)
Giarra, Matthew; Vlachos, Pavlos; Aether Lab Team
2016-11-01
Using cross correlations (CCs) in particle image velocimetry (PIV) assumes that tracer particles in interrogation regions (IRs) move with the same velocity. But this assumption is nearly always violated because real flows exhibit velocity gradients, which degrade the signal-to-noise ratio (SNR) of the CC and are a major driver of error in PIV. Iterative methods help reduce these errors, but even they can fail when gradients are large within individual IRs. We present an algorithm to mitigate the effects of velocity gradients on PIV measurements. Our algorithm is based on a model of the CC, which predicts a relationship between the PDF of particle displacements and the variation of the correlation's SNR across the Fourier spectrum. We give an algorithm to measure this SNR from the CC, and use this insight to create a filter that suppresses the low-SNR portions of the spectrum. Our algorithm extends to the ensemble correlation, where it accelerates the convergence of the measurement and also reveals the PDF of displacements of the ensemble (and therefore of statistical metrics like diffusion coefficient). Finally, our model provides theoretical foundations for a number of "rules of thumb" in PIV, like the quarter-window rule.
Dai, Wujiao; Shi, Qiang; Cai, Changsheng
2017-01-01
The carrier phase multipath effect is one of the most significant error sources in the precise positioning of BeiDou Navigation Satellite System (BDS). We analyzed the characteristics of BDS multipath, and found the multipath errors of geostationary earth orbit (GEO) satellite signals are systematic, whereas those of inclined geosynchronous orbit (IGSO) or medium earth orbit (MEO) satellites are both systematic and random. The modified multipath mitigation methods, including sidereal filtering algorithm and multipath hemispherical map (MHM) model, were used to improve BDS dynamic deformation monitoring. The results indicate that the sidereal filtering methods can reduce the root mean square (RMS) of positioning errors in the east, north and vertical coordinate directions by 15%, 37%, 25% and 18%, 51%, 27% in the coordinate and observation domains, respectively. By contrast, the MHM method can reduce the RMS by 22%, 52% and 27% on average. In addition, the BDS multipath errors in static baseline solutions are a few centimeters in multipath-rich environments, which is different from that of Global Positioning System (GPS) multipath. Therefore, we add a parameter representing the GEO multipath error in observation equation to the adjustment model to improve the precision of BDS static baseline solutions. And the results show that the modified model can achieve an average precision improvement of 82%, 54% and 68% in the east, north and up coordinate directions, respectively. PMID:28387744
Dai, Wujiao; Shi, Qiang; Cai, Changsheng
2017-04-07
The carrier phase multipath effect is one of the most significant error sources in the precise positioning of BeiDou Navigation Satellite System (BDS). We analyzed the characteristics of BDS multipath, and found the multipath errors of geostationary earth orbit (GEO) satellite signals are systematic, whereas those of inclined geosynchronous orbit (IGSO) or medium earth orbit (MEO) satellites are both systematic and random. The modified multipath mitigation methods, including sidereal filtering algorithm and multipath hemispherical map (MHM) model, were used to improve BDS dynamic deformation monitoring. The results indicate that the sidereal filtering methods can reduce the root mean square (RMS) of positioning errors in the east, north and vertical coordinate directions by 15%, 37%, 25% and 18%, 51%, 27% in the coordinate and observation domains, respectively. By contrast, the MHM method can reduce the RMS by 22%, 52% and 27% on average. In addition, the BDS multipath errors in static baseline solutions are a few centimeters in multipath-rich environments, which is different from that of Global Positioning System (GPS) multipath. Therefore, we add a parameter representing the GEO multipath error in observation equation to the adjustment model to improve the precision of BDS static baseline solutions. And the results show that the modified model can achieve an average precision improvement of 82%, 54% and 68% in the east, north and up coordinate directions, respectively.
Error Sources in Proccessing LIDAR Based Bridge Inspection
NASA Astrophysics Data System (ADS)
Bian, H.; Chen, S. E.; Liu, W.
2017-09-01
Bridge inspection is a critical task in infrastructure management and is facing unprecedented challenges after a series of bridge failures. The prevailing visual inspection was insufficient in providing reliable and quantitative bridge information although a systematic quality management framework was built to ensure visual bridge inspection data quality to minimize errors during the inspection process. The LiDAR based remote sensing is recommended as an effective tool in overcoming some of the disadvantages of visual inspection. In order to evaluate the potential of applying this technology in bridge inspection, some of the error sources in LiDAR based bridge inspection are analysed. The scanning angle variance in field data collection and the different algorithm design in scanning data processing are the found factors that will introduce errors into inspection results. Besides studying the errors sources, advanced considerations should be placed on improving the inspection data quality, and statistical analysis might be employed to evaluate inspection operation process that contains a series of uncertain factors in the future. Overall, the development of a reliable bridge inspection system requires not only the improvement of data processing algorithms, but also systematic considerations to mitigate possible errors in the entire inspection workflow. If LiDAR or some other technology can be accepted as a supplement for visual inspection, the current quality management framework will be modified or redesigned, and this would be as urgent as the refine of inspection techniques.
Global Linking of Cell Tracks Using the Viterbi Algorithm
Jaldén, Joakim; Gilbert, Penney M.; Blau, Helen M.
2016-01-01
Automated tracking of living cells in microscopy image sequences is an important and challenging problem. With this application in mind, we propose a global track linking algorithm, which links cell outlines generated by a segmentation algorithm into tracks. The algorithm adds tracks to the image sequence one at a time, in a way which uses information from the complete image sequence in every linking decision. This is achieved by finding the tracks which give the largest possible increases to a probabilistically motivated scoring function, using the Viterbi algorithm. We also present a novel way to alter previously created tracks when new tracks are created, thus mitigating the effects of error propagation. The algorithm can handle mitosis, apoptosis, and migration in and out of the imaged area, and can also deal with false positives, missed detections, and clusters of jointly segmented cells. The algorithm performance is demonstrated on two challenging datasets acquired using bright-field microscopy, but in principle, the algorithm can be used with any cell type and any imaging technique, presuming there is a suitable segmentation algorithm. PMID:25415983
Improved Calibration through SMAP RFI Change Detection
NASA Technical Reports Server (NTRS)
Piepmeier, Jeffrey; De Amici, Giovanni; Mohammed, Priscilla; Peng, Jinzheng
2017-01-01
Anthropogenic Radio-Frequency Interference (RFI) drove both the SMAP (Soil Moisture Active Passive) microwave radiometer hardware and Level 1 science algorithm designs to use new technology and techniques for the first time on a spaceflight project. Care was taken to provide special features allowing the detection and removal of harmful interference in order to meet the error budget. Nonetheless, the project accepted a risk that RFI and its mitigation would exceed the 1.3-K error budget. Thus, RFI will likely remain a challenge afterwards due to its changing and uncertain nature. To address the challenge, we seek to answer the following questions: How does RFI evolve over the SMAP lifetime? What calibration error does the changing RFI environment cause? Can time series information be exploited to reduce these errors and improve calibration for all science products reliant upon SMAP radiometer data? In this talk, we address the first question.
Ensemble stacking mitigates biases in inference of synaptic connectivity.
Chambers, Brendan; Levy, Maayan; Dechery, Joseph B; MacLean, Jason N
2018-01-01
A promising alternative to directly measuring the anatomical connections in a neuronal population is inferring the connections from the activity. We employ simulated spiking neuronal networks to compare and contrast commonly used inference methods that identify likely excitatory synaptic connections using statistical regularities in spike timing. We find that simple adjustments to standard algorithms improve inference accuracy: A signing procedure improves the power of unsigned mutual-information-based approaches and a correction that accounts for differences in mean and variance of background timing relationships, such as those expected to be induced by heterogeneous firing rates, increases the sensitivity of frequency-based methods. We also find that different inference methods reveal distinct subsets of the synaptic network and each method exhibits different biases in the accurate detection of reciprocity and local clustering. To correct for errors and biases specific to single inference algorithms, we combine methods into an ensemble. Ensemble predictions, generated as a linear combination of multiple inference algorithms, are more sensitive than the best individual measures alone, and are more faithful to ground-truth statistics of connectivity, mitigating biases specific to single inference methods. These weightings generalize across simulated datasets, emphasizing the potential for the broad utility of ensemble-based approaches.
Wangerin, Kristen A; Baratto, Lucia; Khalighi, Mohammad Mehdi; Hope, Thomas A; Gulaka, Praveen K; Deller, Timothy W; Iagaru, Andrei H
2018-06-06
Gallium-68-labeled radiopharmaceuticals pose a challenge for scatter estimation because their targeted nature can produce high contrast in these regions of the kidneys and bladder. Even small errors in the scatter estimate can result in washout artifacts. Administration of diuretics can reduce these artifacts, but they may result in adverse events. Here, we investigated the ability of algorithmic modifications to mitigate washout artifacts and eliminate the need for diuretics or other interventions. The model-based scatter algorithm was modified to account for PET/MRI scanner geometry and challenges of non-FDG tracers. Fifty-three clinical 68 Ga-RM2 and 68 Ga-PSMA-11 whole-body images were reconstructed using the baseline scatter algorithm. For comparison, reconstruction was also processed with modified sampling in the single-scatter estimation and with an offset in the scatter tail-scaling process. None of the patients received furosemide to attempt to decrease the accumulation of radiopharmaceuticals in the bladder. The images were scored independently by three blinded reviewers using the 5-point Likert scale. The scatter algorithm improvements significantly decreased or completely eliminated the washout artifacts. When comparing the baseline and most improved algorithm, the image quality increased and image artifacts were reduced for both 68 Ga-RM2 and for 68 Ga-PSMA-11 in the kidneys and bladder regions. Image reconstruction with the improved scatter correction algorithm mitigated washout artifacts and recovered diagnostic image quality in 68 Ga PET, indicating that the use of diuretics may be avoided.
SMOS L1PP Performance Analysis from Commissioning Phase - Improved Algorithms and Major Results
NASA Astrophysics Data System (ADS)
Castro, Rita; Oliva, Roger; Gutiérrez, Antonio; Barbosa, José; Catarino, Nuno; Martin-Neira, Manuel; Zundo, Michele; Cabot, François
2010-05-01
Following the Soil Moisture and Ocean Salinity (SMOS) launch in November 2009, a Commissioning Phase has taken place for six months, having Deimos closely cooperated with the European Space Agency's (ESA) Level 1 team. During these six months several studies have been conducted on calibration optimization, image reconstruction improvement, geolocation assessment and the impact on scientific results, in particular to insure optimal input to Level 2 Soil Moisture and Ocean Salinity retrieval. In parallel with the scientific studies, some new algorithms/mitigation techniques had to be developed, tested and implemented during the Commissioning Phase. Prior to launch, the Level 1 Prototype Processor (L1PP) included already several experimental algorithms different from the ones existent in the operational chain. These algorithms were tested during Commissioning and some were included in the final processing baseline as a result of the planned studies. Some unforeseen algorithms had to be defined, implemented and tested during the Commissioning Phase itself and these will also be described below. In L1a, for example, the calibration of the Power Measuring Systems (PMS) can be done using a cold target as reference, i.e., the Sky at ~3 K. This has been extensively analyzed and the results will be presented here. At least two linearity corrections to the PMS response function have been tested and compared. The deflection method was selected for inclusion on the operational chain and the results leading to this decision will be also presented. In Level 1B, all the foreign sources algorithms have been tested and validated using real data. The System Response Function (G-matrix) computed for different events has been analyzed and criteria for validation of its pseudo inverse, the J+ matrix, have been defined during the Commissioning Phase. The impact of errors in the J+ matrix has been studied and well characterized. The effects of the Flat Target Response (FTR) have also been addressed and the criteria for an acceptable Flat Target Transformation auxiliary data file have been assessed and implemented during the Commissioning Phase. In L1c, the performance of L1PP's geolocation routines has been analyzed by comparing the estimated and real positions of known land features. An important activity during the Commissioning Phase was the study and impact of Radio Frequency Interference (RFI) sources in the final reconstructed image. The quantity of expected RFIs has been under-estimated and, therefore, error mitigation techniques had to be developed to overcome these unwanted sources of errors. In this presentation the latest news and results for this issue will be presented.
Spectral CT metal artifact reduction with an optimization-based reconstruction algorithm
NASA Astrophysics Data System (ADS)
Gilat Schmidt, Taly; Barber, Rina F.; Sidky, Emil Y.
2017-03-01
Metal objects cause artifacts in computed tomography (CT) images. This work investigated the feasibility of a spectral CT method to reduce metal artifacts. Spectral CT acquisition combined with optimization-based reconstruction is proposed to reduce artifacts by modeling the physical effects that cause metal artifacts and by providing the flexibility to selectively remove corrupted spectral measurements in the spectral-sinogram space. The proposed Constrained `One-Step' Spectral CT Image Reconstruction (cOSSCIR) algorithm directly estimates the basis material maps while enforcing convex constraints. The incorporation of constraints on the reconstructed basis material maps is expected to mitigate undersampling effects that occur when corrupted data is excluded from reconstruction. The feasibility of the cOSSCIR algorithm to reduce metal artifacts was investigated through simulations of a pelvis phantom. The cOSSCIR algorithm was investigated with and without the use of a third basis material representing metal. The effects of excluding data corrupted by metal were also investigated. The results demonstrated that the proposed cOSSCIR algorithm reduced metal artifacts and improved CT number accuracy. For example, CT number error in a bright shading artifact region was reduced from 403 HU in the reference filtered backprojection reconstruction to 33 HU using the proposed algorithm in simulation. In the dark shading regions, the error was reduced from 1141 HU to 25 HU. Of the investigated approaches, decomposing the data into three basis material maps and excluding the corrupted data demonstrated the greatest reduction in metal artifacts.
An IMM-Aided ZUPT Methodology for an INS/DVL Integrated Navigation System.
Yao, Yiqing; Xu, Xiaosu; Xu, Xiang
2017-09-05
Inertial navigation system (INS)/Doppler velocity log (DVL) integration is the most common navigation solution for underwater vehicles. Due to the complex underwater environment, the velocity information provided by DVL always contains some errors. To improve navigation accuracy, zero velocity update (ZUPT) technology is considered, which is an effective algorithm for land vehicles to mitigate the navigation error during the pure INS mode. However, in contrast to ground vehicles, the ZUPT solution cannot be used directly for underwater vehicles because of the existence of the water current. In order to leverage the strengths of the ZUPT method and the INS/DVL solution, an interactive multiple model (IMM)-aided ZUPT methodology for the INS/DVL-integrated underwater navigation system is proposed. Both the INS/DVL and INS/ZUPT models are constructed and operated in parallel, with weights calculated according to their innovations and innovation covariance matrices. Simulations are conducted to evaluate the proposed algorithm. The results indicate that the IMM-aided ZUPT solution outperforms both the INS/DVL solution and the INS/ZUPT solution in the underwater environment, which can properly distinguish between the ZUPT and non-ZUPT conditions. In addition, during DVL outage, the effectiveness of the proposed algorithm is also verified.
The Effect of Antenna Position Errors on Redundant-Baseline Calibration of HERA
NASA Astrophysics Data System (ADS)
Orosz, Naomi; Dillon, Joshua; Ewall-Wice, Aaron; Parsons, Aaron; HERA Collaboration
2018-01-01
HERA (the Hydrogen Epoch of Reionization Array) is a large, highly-redundant radio interferometer in South Africa currently being built out to 350 14-m dishes. Its mission is to probe large scale structure during and prior to the epoch of reionization using the 21 cm hyperfine transition of neutral hydrogen. The array is designed to be calibrated using redundant baselines of known lengths. However, the dishes can deviate from ideal positions, with errors on the order of a few centimeters. This potentially increases foreground contamination of the 21 cm power spectrum in the cleanest part of Fourier space. The calibration algorithm treats groups of baselines that should be redundant, but are not due to position errors, as if they actually are. Accurate, precise calibration is critical because the foreground signals are 100,000 times stronger than the reionization signal. We explain the origin of this effect and discuss weighting strategies to mitigate it.
Fan, Bingfei; Li, Qingguo; Wang, Chao; Liu, Tao
2017-01-01
Magnetic and inertial sensors have been widely used to estimate the orientation of human segments due to their low cost, compact size and light weight. However, the accuracy of the estimated orientation is easily affected by external factors, especially when the sensor is used in an environment with magnetic disturbances. In this paper, we propose an adaptive method to improve the accuracy of orientation estimations in the presence of magnetic disturbances. The method is based on existing gradient descent algorithms, and it is performed prior to sensor fusion algorithms. The proposed method includes stationary state detection and magnetic disturbance severity determination. The stationary state detection makes this method immune to magnetic disturbances in stationary state, while the magnetic disturbance severity determination helps to determine the credibility of magnetometer data under dynamic conditions, so as to mitigate the negative effect of the magnetic disturbances. The proposed method was validated through experiments performed on a customized three-axis instrumented gimbal with known orientations. The error of the proposed method and the original gradient descent algorithms were calculated and compared. Experimental results demonstrate that in stationary state, the proposed method is completely immune to magnetic disturbances, and in dynamic conditions, the error caused by magnetic disturbance is reduced by 51.2% compared with original MIMU gradient descent algorithm. PMID:28534858
Improving Automated Endmember Identification for Linear Unmixing of HyspIRI Spectral Data.
NASA Astrophysics Data System (ADS)
Gader, P.
2016-12-01
The size of data sets produced by imaging spectrometers is increasing rapidly. There is already a processing bottleneck. Part of the reason for this bottleneck is the need for expert input using interactive software tools. This process can be very time consuming and laborious but is currently crucial to ensuring the quality of the analysis. Automated algorithms can mitigate this problem. Although it is unlikely that processing systems can become completely automated, there is an urgent need to increase the level of automation. Spectral unmixing is a key component to processing HyspIRI data. Algorithms such as MESMA have been demonstrated to achieve results but require carefully, expert construction of endmember libraries. Unfortunately, many endmembers found by automated algorithms for finding endmembers are deemed unsuitable by experts because they are not physically reasonable. Unfortunately, endmembers that are not physically reasonable can achieve very low errors between the linear mixing model with those endmembers and the original data. Therefore, this error is not a reasonable way to resolve the problem on "non-physical" endmembers. There are many potential approaches for resolving these issues, including using Bayesian priors, but very little attention has been given to this problem. The study reported on here considers a modification of the Sparsity Promoting Iterated Constrained Endmember (SPICE) algorithm. SPICE finds endmembers and abundances and estimates the number of endmembers. The SPICE algorithm seeks to minimize a quadratic objective function with respect to endmembers E and fractions P. The modified SPICE algorithm, which we refer to as SPICED, is obtained by adding the term D to the objective function. The term D pressures the algorithm to minimize sum of the squared differences between each endmember and a weighted sum of the data. By appropriately modifying the, the endmembers are pushed towards a subset of the data with the potential for becoming exactly equal to the data points. The algorithm has been applied to spectral data and the differences between the endmembers resulting from ecorded. The results so far are that the endmembers found SPICED are approximately 25% closer to the data with indistinguishable reconstruction error compared to those found using SPICE.
Wu, Huafeng; Mei, Xiaojun; Chen, Xinqiang; Li, Junjun; Wang, Jun; Mohapatra, Prasant
2018-07-01
Maritime search and rescue (MSR) play a significant role in Safety of Life at Sea (SOLAS). However, it suffers from scenarios that the measurement information is inaccurate due to wave shadow effect when utilizing wireless Sensor Network (WSN) technology in MSR. In this paper, we develop a Novel Cooperative Localization Algorithm (NCLA) in MSR by using an enhanced particle filter method to reduce measurement errors on observation model caused by wave shadow effect. First, we take into account the mobility of nodes at sea to develop a motion model-Lagrangian model. Furthermore, we introduce both state model and observation model to constitute a system model for particle filter (PF). To address the impact of the wave shadow effect on the observation model, we develop an optimal parameter derived by Kullback-Leibler divergence (KLD) to mitigate the error. After the optimal parameter is acquired, an improved likelihood function is presented. Finally, the estimated position is acquired. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Quantum Error Correction Protects Quantum Search Algorithms Against Decoherence
Botsinis, Panagiotis; Babar, Zunaira; Alanis, Dimitrios; Chandra, Daryus; Nguyen, Hung; Ng, Soon Xin; Hanzo, Lajos
2016-01-01
When quantum computing becomes a wide-spread commercial reality, Quantum Search Algorithms (QSA) and especially Grover’s QSA will inevitably be one of their main applications, constituting their cornerstone. Most of the literature assumes that the quantum circuits are free from decoherence. Practically, decoherence will remain unavoidable as is the Gaussian noise of classic circuits imposed by the Brownian motion of electrons, hence it may have to be mitigated. In this contribution, we investigate the effect of quantum noise on the performance of QSAs, in terms of their success probability as a function of the database size to be searched, when decoherence is modelled by depolarizing channels’ deleterious effects imposed on the quantum gates. Moreover, we employ quantum error correction codes for limiting the effects of quantum noise and for correcting quantum flips. More specifically, we demonstrate that, when we search for a single solution in a database having 4096 entries using Grover’s QSA at an aggressive depolarizing probability of 10−3, the success probability of the search is 0.22 when no quantum coding is used, which is improved to 0.96 when Steane’s quantum error correction code is employed. Finally, apart from Steane’s code, the employment of Quantum Bose-Chaudhuri-Hocquenghem (QBCH) codes is also considered. PMID:27924865
MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination
NASA Technical Reports Server (NTRS)
Riggs, George A.; Hall, Dorothy K.
2010-01-01
Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.
An IMM-Aided ZUPT Methodology for an INS/DVL Integrated Navigation System
Yao, Yiqing
2017-01-01
Inertial navigation system (INS)/Doppler velocity log (DVL) integration is the most common navigation solution for underwater vehicles. Due to the complex underwater environment, the velocity information provided by DVL always contains some errors. To improve navigation accuracy, zero velocity update (ZUPT) technology is considered, which is an effective algorithm for land vehicles to mitigate the navigation error during the pure INS mode. However, in contrast to ground vehicles, the ZUPT solution cannot be used directly for underwater vehicles because of the existence of the water current. In order to leverage the strengths of the ZUPT method and the INS/DVL solution, an interactive multiple model (IMM)-aided ZUPT methodology for the INS/DVL-integrated underwater navigation system is proposed. Both the INS/DVL and INS/ZUPT models are constructed and operated in parallel, with weights calculated according to their innovations and innovation covariance matrices. Simulations are conducted to evaluate the proposed algorithm. The results indicate that the IMM-aided ZUPT solution outperforms both the INS/DVL solution and the INS/ZUPT solution in the underwater environment, which can properly distinguish between the ZUPT and non-ZUPT conditions. In addition, during DVL outage, the effectiveness of the proposed algorithm is also verified. PMID:28872602
NASA Astrophysics Data System (ADS)
Samboju, Vishal; Adams, Matthew; Salgaonkar, Vasant; Diederich, Chris J.; Cunha, J. Adam M.
2017-02-01
The speed of sound (SOS) for ultrasound devices used for imaging soft tissue is often calibrated to water, 1540 m/s1 , despite in-vivo soft tissue SOS varying from 1450 to 1613 m/s2 . Images acquired with 1540 m/s and used in conjunction with stereotactic external coordinate systems can thus result in displacement errors of several millimeters. Ultrasound imaging systems are routinely used to guide interventional thermal ablation and cryoablation devices, or radiation sources for brachytherapy3 . Brachytherapy uses small radioactive pellets, inserted interstitially with needles under ultrasound guidance, to eradicate cancerous tissue4 . Since the radiation dose diminishes with distance from the pellet as 1/r2 , imaging uncertainty of a few millimeters can result in significant erroneous dose delivery5,6. Likewise, modeling of power deposition and thermal dose accumulations from ablative sources are also prone to errors due to placement offsets from SOS errors7 . This work presents a method of mitigating needle placement error due to SOS variances without the need of ionizing radiation2,8. We demonstrate the effects of changes in dosimetry in a prostate brachytherapy environment due to patientspecific SOS variances and the ability to mitigate dose delivery uncertainty. Electromagnetic (EM) sensors embedded in the brachytherapy ultrasound system provide information regarding 3D position and orientation of the ultrasound array. Algorithms using data from these two modalities are used to correct bmode images to account for SOS errors. While ultrasound localization resulted in >3 mm displacements, EM resolution was verified to <1 mm precision using custom-built phantoms with various SOS, showing 1% accuracy in SOS measurement.
Robust Blind Learning Algorithm for Nonlinear Equalization Using Input Decision Information.
Xu, Lu; Huang, Defeng David; Guo, Yingjie Jay
2015-12-01
In this paper, we propose a new blind learning algorithm, namely, the Benveniste-Goursat input-output decision (BG-IOD), to enhance the convergence performance of neural network-based equalizers for nonlinear channel equalization. In contrast to conventional blind learning algorithms, where only the output of the equalizer is employed for updating system parameters, the BG-IOD exploits a new type of extra information, the input decision information obtained from the input of the equalizer, to mitigate the influence of the nonlinear equalizer structure on parameters learning, thereby leading to improved convergence performance. We prove that, with the input decision information, a desirable convergence capability that the output symbol error rate (SER) is always less than the input SER if the input SER is below a threshold, can be achieved. Then, the BG soft-switching technique is employed to combine the merits of both input and output decision information, where the former is used to guarantee SER convergence and the latter is to improve SER performance. Simulation results show that the proposed algorithm outperforms conventional blind learning algorithms, such as stochastic quadratic distance and dual mode constant modulus algorithm, in terms of both convergence performance and SER performance, for nonlinear equalization.
A Space-Time Signal Decomposition Algorithm for Downlink MIMO DS-CDMA Receivers
NASA Astrophysics Data System (ADS)
Wang, Yung-Yi; Fang, Wen-Hsien; Chen, Jiunn-Tsair
We propose a dimension reduction algorithm for the receiver of the downlink of direct-sequence code-division multiple access (DS-CDMA) systems in which both the transmitters and the receivers employ antenna arrays of multiple elements. To estimate the high order channel parameters, we develop a layered architecture using dimension-reduced parameter estimation algorithms to estimate the frequency-selective multipath channels. In the proposed architecture, to exploit the space-time geometric characteristics of multipath channels, spatial beamformers and constrained (or unconstrained) temporal filters are adopted for clustered-multipath grouping and path isolation. In conjunction with the multiple access interference (MAI) suppression techniques, the proposed architecture jointly estimates the direction of arrivals, propagation delays, and fading amplitudes of the downlink fading multipaths. With the outputs of the proposed architecture, the signals of interest can then be naturally detected by using path-wise maximum ratio combining. Compared to the traditional techniques, such as the Joint-Angle-and-Delay-Estimation (JADE) algorithm for DOA-delay joint estimation and the space-time minimum mean square error (ST-MMSE) algorithm for signal detection, computer simulations show that the proposed algorithm substantially mitigate the computational complexity at the expense of only slight performance degradation.
An error reduction algorithm to improve lidar turbulence estimates for wind energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Clifton, Andrew
Remote-sensing devices such as lidars are currently being investigated as alternatives to cup anemometers on meteorological towers for the measurement of wind speed and direction. Although lidars can measure mean wind speeds at heights spanning an entire turbine rotor disk and can be easily moved from one location to another, they measure different values of turbulence than an instrument on a tower. Current methods for improving lidar turbulence estimates include the use of analytical turbulence models and expensive scanning lidars. While these methods provide accurate results in a research setting, they cannot be easily applied to smaller, vertically profiling lidarsmore » in locations where high-resolution sonic anemometer data are not available. Thus, there is clearly a need for a turbulence error reduction model that is simpler and more easily applicable to lidars that are used in the wind energy industry. In this work, a new turbulence error reduction algorithm for lidars is described. The Lidar Turbulence Error Reduction Algorithm, L-TERRA, can be applied using only data from a stand-alone vertically profiling lidar and requires minimal training with meteorological tower data. The basis of L-TERRA is a series of physics-based corrections that are applied to the lidar data to mitigate errors from instrument noise, volume averaging, and variance contamination. These corrections are applied in conjunction with a trained machine-learning model to improve turbulence estimates from a vertically profiling WINDCUBE v2 lidar. The lessons learned from creating the L-TERRA model for a WINDCUBE v2 lidar can also be applied to other lidar devices. L-TERRA was tested on data from two sites in the Southern Plains region of the United States. The physics-based corrections in L-TERRA brought regression line slopes much closer to 1 at both sites and significantly reduced the sensitivity of lidar turbulence errors to atmospheric stability. The accuracy of machine-learning methods in L-TERRA was highly dependent on the input variables and training dataset used, suggesting that machine learning may not be the best technique for reducing lidar turbulence intensity (TI) error. Future work will include the use of a lidar simulator to better understand how different factors affect lidar turbulence error and to determine how these errors can be reduced using information from a stand-alone lidar.« less
An error reduction algorithm to improve lidar turbulence estimates for wind energy
Newman, Jennifer F.; Clifton, Andrew
2017-02-10
Remote-sensing devices such as lidars are currently being investigated as alternatives to cup anemometers on meteorological towers for the measurement of wind speed and direction. Although lidars can measure mean wind speeds at heights spanning an entire turbine rotor disk and can be easily moved from one location to another, they measure different values of turbulence than an instrument on a tower. Current methods for improving lidar turbulence estimates include the use of analytical turbulence models and expensive scanning lidars. While these methods provide accurate results in a research setting, they cannot be easily applied to smaller, vertically profiling lidarsmore » in locations where high-resolution sonic anemometer data are not available. Thus, there is clearly a need for a turbulence error reduction model that is simpler and more easily applicable to lidars that are used in the wind energy industry. In this work, a new turbulence error reduction algorithm for lidars is described. The Lidar Turbulence Error Reduction Algorithm, L-TERRA, can be applied using only data from a stand-alone vertically profiling lidar and requires minimal training with meteorological tower data. The basis of L-TERRA is a series of physics-based corrections that are applied to the lidar data to mitigate errors from instrument noise, volume averaging, and variance contamination. These corrections are applied in conjunction with a trained machine-learning model to improve turbulence estimates from a vertically profiling WINDCUBE v2 lidar. The lessons learned from creating the L-TERRA model for a WINDCUBE v2 lidar can also be applied to other lidar devices. L-TERRA was tested on data from two sites in the Southern Plains region of the United States. The physics-based corrections in L-TERRA brought regression line slopes much closer to 1 at both sites and significantly reduced the sensitivity of lidar turbulence errors to atmospheric stability. The accuracy of machine-learning methods in L-TERRA was highly dependent on the input variables and training dataset used, suggesting that machine learning may not be the best technique for reducing lidar turbulence intensity (TI) error. Future work will include the use of a lidar simulator to better understand how different factors affect lidar turbulence error and to determine how these errors can be reduced using information from a stand-alone lidar.« less
Palmer, Antony L; Bradley, David A; Nisbet, Andrew
2015-03-08
This work considers a previously overlooked uncertainty present in film dosimetry which results from moderate curvature of films during the scanning process. Small film samples are particularly susceptible to film curling which may be undetected or deemed insignificant. In this study, we consider test cases with controlled induced curvature of film and with film raised horizontally above the scanner plate. We also evaluate the difference in scans of a film irradiated with a typical brachytherapy dose distribution with the film naturally curved and with the film held flat on the scanner. Typical naturally occurring curvature of film at scanning, giving rise to a maximum height 1 to 2 mm above the scan plane, may introduce dose errors of 1% to 4%, and considerably reduce gamma evaluation passing rates when comparing film-measured doses with treatment planning system-calculated dose distributions, a common application of film dosimetry in radiotherapy. The use of a triple-channel dosimetry algorithm appeared to mitigate the error due to film curvature compared to conventional single-channel film dosimetry. The change in pixel value and calibrated reported dose with film curling or height above the scanner plate may be due to variations in illumination characteristics, optical disturbances, or a Callier-type effect. There is a clear requirement for physically flat films at scanning to avoid the introduction of a substantial error source in film dosimetry. Particularly for small film samples, a compression glass plate above the film is recommended to ensure flat-film scanning. This effect has been overlooked to date in the literature.
Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections
NASA Astrophysics Data System (ADS)
Wang, Ningbo; Yuan, Yunbin; Li, Zishen; Huo, Xingliang
2016-04-01
Broadcast ionospheric model is currently an effective approach to mitigate the ionospheric time delay for real-time Global Navigation Satellite System (GNSS) single-frequency users. Klobuchar coefficients transmitted in Global Positioning System (GPS) navigation message have been widely used in various GNSS positioning and navigation applications; however, this model can only reduce the ionospheric error by approximately 50% in mid-latitudes. With the emerging BeiDou and Galileo, as well as the modernization of GPS and GLONASS, more precise ionospheric correction models or algorithms are required by GNSS single-frequency users. Numerical analysis of the initial phase and nighttime term in Klobuchar algorithm demonstrates that more parameters should be introduced to better describe the variation of nighttime ionospheric total electron content (TEC). In view of this, several schemes are proposed for the improvement of Klobuchar algorithm. Performance of these improved Klobuchar-like models are validated over the continental and oceanic regions during high (2002) and low (2006) levels of solar activities, respectively. Over the continental region, GPS TEC generated from 35 International GNSS Service (IGS) and the Crust Movement Observation Network of China (CMONOC) stations are used as references. Over the oceanic region, TEC data from TOPEX/Poseidon and JASON-1 altimeters are used for comparison. A ten-parameter Klobuchar-like model, which describes the nighttime term as a linear function of geomagnetic latitude, is finally proposed for GNSS single-frequency ionospheric corrections. Compared to GPS TEC, while GPS broadcast model can correct for 55.0% and 49.5% of the ionospheric delay for the year 2002 and 2006, respectively, the proposed ten-parameter Klobuchar-like model can reduce the ionospheric error by 68.4% and 64.7% for the same period. Compared to TOPEX/Poseidon and JASON-1 TEC, the improved ten-parameter Klobuchar-like model can mitigate the ionospheric delay by 61.1% and 64.3% in 2002 and 2006, respectively.
Error and Error Mitigation in Low-Coverage Genome Assemblies
Hubisz, Melissa J.; Lin, Michael F.; Kellis, Manolis; Siepel, Adam
2011-01-01
The recent release of twenty-two new genome sequences has dramatically increased the data available for mammalian comparative genomics, but twenty of these new sequences are currently limited to ∼2× coverage. Here we examine the extent of sequencing error in these 2× assemblies, and its potential impact in downstream analyses. By comparing 2× assemblies with high-quality sequences from the ENCODE regions, we estimate the rate of sequencing error to be 1–4 errors per kilobase. While this error rate is fairly modest, sequencing error can still have surprising effects. For example, an apparent lineage-specific insertion in a coding region is more likely to reflect sequencing error than a true biological event, and the length distribution of coding indels is strongly distorted by error. We find that most errors are contributed by a small fraction of bases with low quality scores, in particular, by the ends of reads in regions of single-read coverage in the assembly. We explore several approaches for automatic sequencing error mitigation (SEM), making use of the localized nature of sequencing error, the fact that it is well predicted by quality scores, and information about errors that comes from comparisons across species. Our automatic methods for error mitigation cannot replace the need for additional sequencing, but they do allow substantial fractions of errors to be masked or eliminated at the cost of modest amounts of over-correction, and they can reduce the impact of error in downstream phylogenomic analyses. Our error-mitigated alignments are available for download. PMID:21340033
NASA Astrophysics Data System (ADS)
Lipton, A.; Moncet, J. L.; Payne, V.; Lynch, R.; Polonsky, I. N.
2017-12-01
We will present recent results from an algorithm for producing climate-quality atmospheric profiling earth system data records (ESDRs) for application to data from hyperspectral sounding instruments, including the Atmospheric InfraRed Sounder (AIRS) on EOS Aqua and the Cross-track Infrared Sounder (CrIS) on Suomi-NPP, along with their companion microwave sounders, AMSU and ATMS, respectively. The ESDR algorithm uses an optimal estimation approach and the implementation has a flexible, modular software structure to support experimentation and collaboration. Data record continuity benefits from the fact that the same algorithm can be applied to different sensors, simply by providing suitable configuration and data files. Developments to be presented include the impact of a radiance-based pre-classification method for the atmospheric background. In addition to improving retrieval performance, pre-classification has the potential to reduce the sensitivity of the retrievals to the climatological data from which the background estimate and its error covariance are derived. We will also discuss evaluation of a method for mitigating the effect of clouds on the radiances, and enhancements of the radiative transfer forward model.
Vector Graph Assisted Pedestrian Dead Reckoning Using an Unconstrained Smartphone
Qian, Jiuchao; Pei, Ling; Ma, Jiabin; Ying, Rendong; Liu, Peilin
2015-01-01
The paper presents a hybrid indoor positioning solution based on a pedestrian dead reckoning (PDR) approach using built-in sensors on a smartphone. To address the challenges of flexible and complex contexts of carrying a phone while walking, a robust step detection algorithm based on motion-awareness has been proposed. Given the fact that step length is influenced by different motion states, an adaptive step length estimation algorithm based on motion recognition is developed. Heading estimation is carried out by an attitude acquisition algorithm, which contains a two-phase filter to mitigate the distortion of magnetic anomalies. In order to estimate the heading for an unconstrained smartphone, principal component analysis (PCA) of acceleration is applied to determine the offset between the orientation of smartphone and the actual heading of a pedestrian. Moreover, a particle filter with vector graph assisted particle weighting is introduced to correct the deviation in step length and heading estimation. Extensive field tests, including four contexts of carrying a phone, have been conducted in an office building to verify the performance of the proposed algorithm. Test results show that the proposed algorithm can achieve sub-meter mean error in all contexts. PMID:25738763
Olson, Eric J.
2013-06-11
An apparatus, program product, and method that run an algorithm on a hardware based processor, generate a hardware error as a result of running the algorithm, generate an algorithm output for the algorithm, compare the algorithm output to another output for the algorithm, and detect the hardware error from the comparison. The algorithm is designed to cause the hardware based processor to heat to a degree that increases the likelihood of hardware errors to manifest, and the hardware error is observable in the algorithm output. As such, electronic components may be sufficiently heated and/or sufficiently stressed to create better conditions for generating hardware errors, and the output of the algorithm may be compared at the end of the run to detect a hardware error that occurred anywhere during the run that may otherwise not be detected by traditional methodologies (e.g., due to cooling, insufficient heat and/or stress, etc.).
NASA Astrophysics Data System (ADS)
Lin, Tsungpo
Performance engineers face the major challenge in modeling and simulation for the after-market power system due to system degradation and measurement errors. Currently, the majority in power generation industries utilizes the deterministic data matching method to calibrate the model and cascade system degradation, which causes significant calibration uncertainty and also the risk of providing performance guarantees. In this research work, a maximum-likelihood based simultaneous data reconciliation and model calibration (SDRMC) is used for power system modeling and simulation. By replacing the current deterministic data matching with SDRMC one can reduce the calibration uncertainty and mitigate the error propagation to the performance simulation. A modeling and simulation environment for a complex power system with certain degradation has been developed. In this environment multiple data sets are imported when carrying out simultaneous data reconciliation and model calibration. Calibration uncertainties are estimated through error analyses and populated to performance simulation by using principle of error propagation. System degradation is then quantified by performance comparison between the calibrated model and its expected new & clean status. To mitigate smearing effects caused by gross errors, gross error detection (GED) is carried out in two stages. The first stage is a screening stage, in which serious gross errors are eliminated in advance. The GED techniques used in the screening stage are based on multivariate data analysis (MDA), including multivariate data visualization and principal component analysis (PCA). Subtle gross errors are treated at the second stage, in which the serial bias compensation or robust M-estimator is engaged. To achieve a better efficiency in the combined scheme of the least squares based data reconciliation and the GED technique based on hypotheses testing, the Levenberg-Marquardt (LM) algorithm is utilized as the optimizer. To reduce the computation time and stabilize the problem solving for a complex power system such as a combined cycle power plant, meta-modeling using the response surface equation (RSE) and system/process decomposition are incorporated with the simultaneous scheme of SDRMC. The goal of this research work is to reduce the calibration uncertainties and, thus, the risks of providing performance guarantees arisen from uncertainties in performance simulation.
NASA Astrophysics Data System (ADS)
Fayadh, Rashid A.; Malek, F.; Fadhil, Hilal A.; Aldhaibani, Jaafar A.; Salman, M. K.; Abdullah, Farah Salwani
2015-05-01
For high data rate propagation in wireless ultra-wideband (UWB) communication systems, the inter-symbol interference (ISI), multiple-access interference (MAI), and multiple-users interference (MUI) are influencing the performance of the wireless systems. In this paper, the rake-receiver was presented with the spread signal by direct sequence spread spectrum (DS-SS) technique. The adaptive rake-receiver structure was shown with adjusting the receiver tap weights using least mean squares (LMS), normalized least mean squares (NLMS), and affine projection algorithms (APA) to support the weak signals by noise cancellation and mitigate the interferences. To minimize the data convergence speed and to reduce the computational complexity by the previous algorithms, a well-known approach of partial-updates (PU) adaptive filters were employed with algorithms, such as sequential-partial, periodic-partial, M-max-partial, and selective-partial updates (SPU) in the proposed system. The simulation results of bit error rate (BER) versus signal-to-noise ratio (SNR) are illustrated to show the performance of partial-update algorithms that have nearly comparable performance with the full update adaptive filters. Furthermore, the SPU-partial has closed performance to the full-NLMS and full-APA while the M-max-partial has closed performance to the full-LMS updates algorithms.
Bradley, David A.; Nisbet, Andrew
2015-01-01
This work considers a previously overlooked uncertainty present in film dosimetry which results from moderate curvature of films during the scanning process. Small film samples are particularly susceptible to film curling which may be undetected or deemed insignificant. In this study, we consider test cases with controlled induced curvature of film and with film raised horizontally above the scanner plate. We also evaluate the difference in scans of a film irradiated with a typical brachytherapy dose distribution with the film naturally curved and with the film held flat on the scanner. Typical naturally occurring curvature of film at scanning, giving rise to a maximum height 1 to 2 mm above the scan plane, may introduce dose errors of 1% to 4%, and considerably reduce gamma evaluation passing rates when comparing film‐measured doses with treatment planning system‐calculated dose distributions, a common application of film dosimetry in radiotherapy. The use of a triple‐channel dosimetry algorithm appeared to mitigate the error due to film curvature compared to conventional single‐channel film dosimetry. The change in pixel value and calibrated reported dose with film curling or height above the scanner plate may be due to variations in illumination characteristics, optical disturbances, or a Callier‐type effect. There is a clear requirement for physically flat films at scanning to avoid the introduction of a substantial error source in film dosimetry. Particularly for small film samples, a compression glass plate above the film is recommended to ensure flat‐film scanning. This effect has been overlooked to date in the literature. PACS numbers: 87.55.Qr, 87.56.bg, 87.55.km PMID:26103181
Impact of packet losses in scalable 3D holoscopic video coding
NASA Astrophysics Data System (ADS)
Conti, Caroline; Nunes, Paulo; Ducla Soares, Luís.
2014-05-01
Holoscopic imaging became a prospective glassless 3D technology to provide more natural 3D viewing experiences to the end user. Additionally, holoscopic systems also allow new post-production degrees of freedom, such as controlling the plane of focus or the viewing angle presented to the user. However, to successfully introduce this technology into the consumer market, a display scalable coding approach is essential to achieve backward compatibility with legacy 2D and 3D displays. Moreover, to effectively transmit 3D holoscopic content over error-prone networks, e.g., wireless networks or the Internet, error resilience techniques are required to mitigate the impact of data impairments in the user quality perception. Therefore, it is essential to deeply understand the impact of packet losses in terms of decoding video quality for the specific case of 3D holoscopic content, notably when a scalable approach is used. In this context, this paper studies the impact of packet losses when using a three-layer display scalable 3D holoscopic video coding architecture previously proposed, where each layer represents a different level of display scalability (i.e., L0 - 2D, L1 - stereo or multiview, and L2 - full 3D holoscopic). For this, a simple error concealment algorithm is used, which makes use of inter-layer redundancy between multiview and 3D holoscopic content and the inherent correlation of the 3D holoscopic content to estimate lost data. Furthermore, a study of the influence of 2D views generation parameters used in lower layers on the performance of the used error concealment algorithm is also presented.
Sun, Guodong; Qin, Laian; Hou, Zaihong; Jing, Xu; He, Feng; Tan, Fengfu; Zhang, Silong
2018-03-19
In this paper, a new prototypical Scheimpflug lidar capable of detecting the aerosol extinction coefficient and vertical atmospheric transmittance at 1 km above the ground is described. The lidar system operates at 532 nm and can be used to detect aerosol extinction coefficients throughout an entire day. Then, the vertical atmospheric transmittance can be determined from the extinction coefficients with the equation of numerical integration in this area. CCD flat fielding of the image data is used to mitigate the effects of pixel sensitivity variation. An efficient method of two-dimensional wavelet transform according to a local threshold value has been proposed to reduce the Gaussian white noise in the lidar signal. Furthermore, a new iteration method of backscattering ratio based on genetic algorithm is presented to calculate the aerosol extinction coefficient and vertical atmospheric transmittance. Some simulations are performed to reduce the different levels of noise in the simulated signal in order to test the precision of the de-noising method and inversion algorithm. The simulation result shows that the root-mean-square errors of extinction coefficients are all less than 0.02 km -1 , and that the relative errors of the atmospheric transmittance between the model and inversion data are below 0.56% for all cases. The feasibility of the instrument and the inversion algorithm have also been verified by an optical experiment. The average relative errors of aerosol extinction coefficients between the Scheimpflug lidar and the conventional backscattering elastic lidar are 3.54% and 2.79% in the full overlap heights of two time points, respectively. This work opens up new possibilities of using a small-scale Scheimpflug lidar system for the remote sensing of atmospheric aerosols.
Registration of pencil beam proton radiography data with X-ray CT.
Deffet, Sylvain; Macq, Benoît; Righetto, Roberto; Vander Stappen, François; Farace, Paolo
2017-10-01
Proton radiography seems to be a promising tool for assessing the quality of the stopping power computation in proton therapy. However, range error maps obtained on the basis of proton radiographs are very sensitive to small misalignment between the planning CT and the proton radiography acquisitions. In order to be able to mitigate misalignment in postprocessing, the authors implemented a fast method for registration between pencil proton radiography data obtained with a multilayer ionization chamber (MLIC) and an X-ray CT acquired on a head phantom. The registration was performed by optimizing a cost function which performs a comparison between the acquired data and simulated integral depth-dose curves. Two methodologies were considered, one based on dual orthogonal projections and the other one on a single projection. For each methodology, the robustness of the registration algorithm with respect to three confounding factors (measurement noise, CT calibration errors, and spot spacing) was investigated by testing the accuracy of the method through simulations based on a CT scan of a head phantom. The present registration method showed robust convergence towards the optimal solution. For the level of measurement noise and the uncertainty in the stopping power computation expected in proton radiography using a MLIC, the accuracy appeared to be better than 0.3° for angles and 0.3 mm for translations by use of the appropriate cost function. The spot spacing analysis showed that a spacing larger than the 5 mm used by other authors for the investigation of a MLIC for proton radiography led to results with absolute accuracy better than 0.3° for angles and 1 mm for translations when orthogonal proton radiographs were fed into the algorithm. In the case of a single projection, 6 mm was the largest spot spacing presenting an acceptable registration accuracy. For registration of proton radiography data with X-ray CT, the use of a direct ray-tracing algorithm to compute sums of squared differences and corrections of range errors showed very good accuracy and robustness with respect to three confounding factors: measurement noise, calibration error, and spot spacing. It is therefore a suitable algorithm to use in the in vivo range verification framework, allowing to separate in postprocessing the proton range uncertainty due to setup errors from the other sources of uncertainty. © 2017 American Association of Physicists in Medicine.
A day in the life of a volunteer incident commander: errors, pressures and mitigating strategies.
Bearman, Christopher; Bremner, Peter A
2013-05-01
To meet an identified gap in the literature this paper investigates the tasks that a volunteer incident commander needs to carry out during an incident, the errors that can be made and the way that errors are managed. In addition, pressure from goal seduction and situation aversion were also examined. Volunteer incident commanders participated in a two-part interview consisting of a critical decision method interview and discussions about a hierarchical task analysis constructed by the authors. A SHERPA analysis was conducted to further identify potential errors. The results identified the key tasks, errors with extreme risk, pressures from strong situations and mitigating strategies for errors and pressures. The errors and pressures provide a basic set of issues that need to be managed by both volunteer incident commanders and fire agencies. The mitigating strategies identified here suggest some ways that this can be done. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
QSPIN: A High Level Java API for Quantum Computing Experimentation
NASA Technical Reports Server (NTRS)
Barth, Tim
2017-01-01
QSPIN is a high level Java language API for experimentation in QC models used in the calculation of Ising spin glass ground states and related quadratic unconstrained binary optimization (QUBO) problems. The Java API is intended to facilitate research in advanced QC algorithms such as hybrid quantum-classical solvers, automatic selection of constraint and optimization parameters, and techniques for the correction and mitigation of model and solution errors. QSPIN includes high level solver objects tailored to the D-Wave quantum annealing architecture that implement hybrid quantum-classical algorithms [Booth et al.] for solving large problems on small quantum devices, elimination of variables via roof duality, and classical computing optimization methods such as GPU accelerated simulated annealing and tabu search for comparison. A test suite of documented NP-complete applications ranging from graph coloring, covering, and partitioning to integer programming and scheduling are provided to demonstrate current capabilities.
Canceling the momentum in a phase-shifting algorithm to eliminate spatially uniform errors.
Hibino, Kenichi; Kim, Yangjin
2016-08-10
In phase-shifting interferometry, phase modulation nonlinearity causes both spatially uniform and nonuniform errors in the measured phase. Conventional linear-detuning error-compensating algorithms only eliminate the spatially variable error component. The uniform error is proportional to the inertial momentum of the data-sampling weight of a phase-shifting algorithm. This paper proposes a design approach to cancel the momentum by using characteristic polynomials in the Z-transform space and shows that an arbitrary M-frame algorithm can be modified to a new (M+2)-frame algorithm that acquires new symmetry to eliminate the uniform error.
Pasciuto, Ilaria; Ligorio, Gabriele; Bergamini, Elena; Vannozzi, Giuseppe; Sabatini, Angelo Maria; Cappozzo, Aurelio
2015-09-18
In human movement analysis, 3D body segment orientation can be obtained through the numerical integration of gyroscope signals. These signals, however, are affected by errors that, for the case of micro-electro-mechanical systems, are mainly due to: constant bias, scale factor, white noise, and bias instability. The aim of this study is to assess how the orientation estimation accuracy is affected by each of these disturbances, and whether it is influenced by the angular velocity magnitude and 3D distribution across the gyroscope axes. Reference angular velocity signals, either constant or representative of human walking, were corrupted with each of the four noise types within a simulation framework. The magnitude of the angular velocity affected the error in the orientation estimation due to each noise type, except for the white noise. Additionally, the error caused by the constant bias was also influenced by the angular velocity 3D distribution. As the orientation error depends not only on the noise itself but also on the signal it is applied to, different sensor placements could enhance or mitigate the error due to each disturbance, and special attention must be paid in providing and interpreting measures of accuracy for orientation estimation algorithms.
Pasciuto, Ilaria; Ligorio, Gabriele; Bergamini, Elena; Vannozzi, Giuseppe; Sabatini, Angelo Maria; Cappozzo, Aurelio
2015-01-01
In human movement analysis, 3D body segment orientation can be obtained through the numerical integration of gyroscope signals. These signals, however, are affected by errors that, for the case of micro-electro-mechanical systems, are mainly due to: constant bias, scale factor, white noise, and bias instability. The aim of this study is to assess how the orientation estimation accuracy is affected by each of these disturbances, and whether it is influenced by the angular velocity magnitude and 3D distribution across the gyroscope axes. Reference angular velocity signals, either constant or representative of human walking, were corrupted with each of the four noise types within a simulation framework. The magnitude of the angular velocity affected the error in the orientation estimation due to each noise type, except for the white noise. Additionally, the error caused by the constant bias was also influenced by the angular velocity 3D distribution. As the orientation error depends not only on the noise itself but also on the signal it is applied to, different sensor placements could enhance or mitigate the error due to each disturbance, and special attention must be paid in providing and interpreting measures of accuracy for orientation estimation algorithms. PMID:26393606
Crosstalk effect and its mitigation in Aqua MODIS middle wave infrared bands
NASA Astrophysics Data System (ADS)
Sun, Junqiang; Madhavan, Sriharsha; Wang, Menghua
2017-09-01
The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS). The first MODIS instrument was launched in December 1999 on-board the Terra spacecraft. A follow on MODIS was launched on an afternoon orbit in 2002 and is aboard the Aqua spacecraft. Both MODIS instruments are very akin, has 36 bands, among which bands 20 to 25 are Middle Wave Infrared (MWIR) bands covering a wavelength range from approximately 3.750 μm to 4.515 μm. It was found that there was severe contamination in these bands early in mission but the effect has not been characterized and mitigated at the time. The crosstalk effect induces strong striping in the Earth View (EV) images and causes significant retrieval errors in the EV Brightness Temperature (BT) in these bands. An algorithm using a linear approximation derived from on-orbit lunar observations has been developed to correct the crosstalk effect and successfully applied to mitigate the effect in both Terra and Aqua MODIS Long Wave Infrared (LWIR) Photovoltaic (PV) bands. In this paper, the crosstalk effect in the Aqua MWIR bands is investigated and characterized by deriving the crosstalk coefficients using the scheduled Aqua MODIS lunar observations for the MWIR bands. It is shown that there are strong crosstalk contaminations among the five MWIR bands and they also have significant crosstalk contaminations from Short Wave Infrared (SWIR) bands. The crosstalk correction algorithm previously developed is applied to correct the crosstalk effect in these bands. It is demonstrated that the crosstalk correction successfully reduces the striping in the EV images and improves the accuracy of the EV BT in the five bands as was done similarly for LWIR PV bands. The crosstalk correction algorithm should thus be applied to improve both the image quality and radiometric accuracy of the Aqua MODIS MWIR bands Level 1B (L1B) products.
Experimental Verification of Sparse Aperture Mask for Low Order Wavefront Sensing
NASA Astrophysics Data System (ADS)
Subedi, Hari; Kasdin, N. Jeremy
2017-01-01
To directly image exoplanets, future space-based missions are equipped with coronagraphs which manipulate the diffraction of starlight and create regions of high contrast called dark holes. Theoretically, coronagraphs can be designed to achieve the high level of contrast required to image exoplanets, which are billions of times dimmer than their host stars, however the aberrations caused by optical imperfections and thermal fluctuations cause the degradation of contrast in the dark holes. Focal plane wavefront control (FPWC) algorithms using deformable mirrors (DMs) are used to mitigate the quasi-static aberrations caused by optical imperfections. Although the FPWC methods correct the quasi-static aberrations, they are blind to dynamic errors caused by telescope jitter and thermal fluctuations. At Princeton's High Contrast Imaging Lab we have developed a new technique that integrates a sparse aperture mask with the coronagraph to estimate these low-order dynamic wavefront errors. This poster shows the effectiveness of a SAM Low-Order Wavefront Sensor in estimating and correcting these errors via simulation and experiment and compares the results to other methods, such as the Zernike Wavefront Sensor planned for WFIRST.
Deo, Ravinesh C; Downs, Nathan; Parisi, Alfio V; Adamowski, Jan F; Quilty, John M
2017-05-01
Exposure to erythemally-effective solar ultraviolet radiation (UVR) that contributes to malignant keratinocyte cancers and associated health-risk is best mitigated through innovative decision-support systems, with global solar UV index (UVI) forecast necessary to inform real-time sun-protection behaviour recommendations. It follows that the UVI forecasting models are useful tools for such decision-making. In this study, a model for computationally-efficient data-driven forecasting of diffuse and global very short-term reactive (VSTR) (10-min lead-time) UVI, enhanced by drawing on the solar zenith angle (θ s ) data, was developed using an extreme learning machine (ELM) algorithm. An ELM algorithm typically serves to address complex and ill-defined forecasting problems. UV spectroradiometer situated in Toowoomba, Australia measured daily cycles (0500-1700h) of UVI over the austral summer period. After trialling activations functions based on sine, hard limit, logarithmic and tangent sigmoid and triangular and radial basis networks for best results, an optimal ELM architecture utilising logarithmic sigmoid equation in hidden layer, with lagged combinations of θ s as the predictor data was developed. ELM's performance was evaluated using statistical metrics: correlation coefficient (r), Willmott's Index (WI), Nash-Sutcliffe efficiency coefficient (E NS ), root mean square error (RMSE), and mean absolute error (MAE) between observed and forecasted UVI. Using these metrics, the ELM model's performance was compared to that of existing methods: multivariate adaptive regression spline (MARS), M5 Model Tree, and a semi-empirical (Pro6UV) clear sky model. Based on RMSE and MAE values, the ELM model (0.255, 0.346, respectively) outperformed the MARS (0.310, 0.438) and M5 Model Tree (0.346, 0.466) models. Concurring with these metrics, the Willmott's Index for the ELM, MARS and M5 Model Tree models were 0.966, 0.942 and 0.934, respectively. About 57% of the ELM model's absolute errors were small in magnitude (±0.25), whereas the MARS and M5 Model Tree models generated 53% and 48% of such errors, respectively, indicating the latter models' errors to be distributed in larger magnitude error range. In terms of peak global UVI forecasting, with half the level of error, the ELM model outperformed MARS and M5 Model Tree. A comparison of the magnitude of hourly-cumulated errors of 10-min lead time forecasts for diffuse and global UVI highlighted ELM model's greater accuracy compared to MARS, M5 Model Tree or Pro6UV models. This confirmed the versatility of an ELM model drawing on θ s data for VSTR forecasting of UVI at near real-time horizon. When applied to the goal of enhancing expert systems, ELM-based accurate forecasts capable of reacting quickly to measured conditions can enhance real-time exposure advice for the public, mitigating the potential for solar UV-exposure-related disease. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Improvement in error propagation in the Shack-Hartmann-type zonal wavefront sensors.
Pathak, Biswajit; Boruah, Bosanta R
2017-12-01
Estimation of the wavefront from measured slope values is an essential step in a Shack-Hartmann-type wavefront sensor. Using an appropriate estimation algorithm, these measured slopes are converted into wavefront phase values. Hence, accuracy in wavefront estimation lies in proper interpretation of these measured slope values using the chosen estimation algorithm. There are two important sources of errors associated with the wavefront estimation process, namely, the slope measurement error and the algorithm discretization error. The former type is due to the noise in the slope measurements or to the detector centroiding error, and the latter is a consequence of solving equations of a basic estimation algorithm adopted onto a discrete geometry. These errors deserve particular attention, because they decide the preference of a specific estimation algorithm for wavefront estimation. In this paper, we investigate these two important sources of errors associated with the wavefront estimation algorithms of Shack-Hartmann-type wavefront sensors. We consider the widely used Southwell algorithm and the recently proposed Pathak-Boruah algorithm [J. Opt.16, 055403 (2014)JOOPDB0150-536X10.1088/2040-8978/16/5/055403] and perform a comparative study between the two. We find that the latter algorithm is inherently superior to the Southwell algorithm in terms of the error propagation performance. We also conduct experiments that further establish the correctness of the comparative study between the said two estimation algorithms.
Methodology of automated ionosphere front velocity estimation for ground-based augmentation of GNSS
NASA Astrophysics Data System (ADS)
Bang, Eugene; Lee, Jiyun
2013-11-01
ionospheric anomalies occurring during severe ionospheric storms can pose integrity threats to Global Navigation Satellite System (GNSS) Ground-Based Augmentation Systems (GBAS). Ionospheric anomaly threat models for each region of operation need to be developed to analyze the potential impact of these anomalies on GBAS users and develop mitigation strategies. Along with the magnitude of ionospheric gradients, the speed of the ionosphere "fronts" in which these gradients are embedded is an important parameter for simulation-based GBAS integrity analysis. This paper presents a methodology for automated ionosphere front velocity estimation which will be used to analyze a vast amount of ionospheric data, build ionospheric anomaly threat models for different regions, and monitor ionospheric anomalies continuously going forward. This procedure automatically selects stations that show a similar trend of ionospheric delays, computes the orientation of detected fronts using a three-station-based trigonometric method, and estimates speeds for the front using a two-station-based method. It also includes fine-tuning methods to improve the estimation to be robust against faulty measurements and modeling errors. It demonstrates the performance of the algorithm by comparing the results of automated speed estimation to those manually computed previously. All speed estimates from the automated algorithm fall within error bars of ± 30% of the manually computed speeds. In addition, this algorithm is used to populate the current threat space with newly generated threat points. A larger number of velocity estimates helps us to better understand the behavior of ionospheric gradients under geomagnetic storm conditions.
Fault Mitigation Schemes for Future Spaceflight Multicore Processors
NASA Technical Reports Server (NTRS)
Alexander, James W.; Clement, Bradley J.; Gostelow, Kim P.; Lai, John Y.
2012-01-01
Future planetary exploration missions demand significant advances in on-board computing capabilities over current avionics architectures based on a single-core processing element. The state-of-the-art multi-core processor provides much promise in meeting such challenges while introducing new fault tolerance problems when applied to space missions. Software-based schemes are being presented in this paper that can achieve system-level fault mitigation beyond that provided by radiation-hard-by-design (RHBD). For mission and time critical applications such as the Terrain Relative Navigation (TRN) for planetary or small body navigation, and landing, a range of fault tolerance methods can be adapted by the application. The software methods being investigated include Error Correction Code (ECC) for data packet routing between cores, virtual network routing, Triple Modular Redundancy (TMR), and Algorithm-Based Fault Tolerance (ABFT). A robust fault tolerance framework that provides fail-operational behavior under hard real-time constraints and graceful degradation will be demonstrated using TRN executing on a commercial Tilera(R) processor with simulated fault injections.
Entropy-Based TOA Estimation and SVM-Based Ranging Error Mitigation in UWB Ranging Systems
Yin, Zhendong; Cui, Kai; Wu, Zhilu; Yin, Liang
2015-01-01
The major challenges for Ultra-wide Band (UWB) indoor ranging systems are the dense multipath and non-line-of-sight (NLOS) problems of the indoor environment. To precisely estimate the time of arrival (TOA) of the first path (FP) in such a poor environment, a novel approach of entropy-based TOA estimation and support vector machine (SVM) regression-based ranging error mitigation is proposed in this paper. The proposed method can estimate the TOA precisely by measuring the randomness of the received signals and mitigate the ranging error without the recognition of the channel conditions. The entropy is used to measure the randomness of the received signals and the FP can be determined by the decision of the sample which is followed by a great entropy decrease. The SVM regression is employed to perform the ranging-error mitigation by the modeling of the regressor between the characteristics of received signals and the ranging error. The presented numerical simulation results show that the proposed approach achieves significant performance improvements in the CM1 to CM4 channels of the IEEE 802.15.4a standard, as compared to conventional approaches. PMID:26007726
Discrete-Time Stable Generalized Self-Learning Optimal Control With Approximation Errors.
Wei, Qinglai; Li, Benkai; Song, Ruizhuo
2018-04-01
In this paper, a generalized policy iteration (GPI) algorithm with approximation errors is developed for solving infinite horizon optimal control problems for nonlinear systems. The developed stable GPI algorithm provides a general structure of discrete-time iterative adaptive dynamic programming algorithms, by which most of the discrete-time reinforcement learning algorithms can be described using the GPI structure. It is for the first time that approximation errors are explicitly considered in the GPI algorithm. The properties of the stable GPI algorithm with approximation errors are analyzed. The admissibility of the approximate iterative control law can be guaranteed if the approximation errors satisfy the admissibility criteria. The convergence of the developed algorithm is established, which shows that the iterative value function is convergent to a finite neighborhood of the optimal performance index function, if the approximate errors satisfy the convergence criterion. Finally, numerical examples and comparisons are presented.
NASA Technical Reports Server (NTRS)
Foyle, David C.; Hooey, Becky L.; Bakowski, Deborah L.
2013-01-01
The results offour piloted medium-fidelity simulations investigating flight deck surface trajectory-based operations (STBO) will be reviewed. In these flight deck STBO simulations, commercial transport pilots were given taxi clearances with time and/or speed components and required to taxi to the departing runway or an intermediate traffic intersection. Under a variety of concept of operations (ConOps) and flight deck information conditions, pilots' ability to taxi in compliance with the required time of arrival (RTA) at the designated airport location was measured. ConOps and flight deck information conditions explored included: Availability of taxi clearance speed and elapsed time information; Intermediate RTAs at intermediate time constraint points (e.g., intersection traffic flow points); STBO taxi clearances via ATC voice speed commands or datal ink; and, Availability of flight deck display algorithms to reduce STBO RTA error. Flight Deck Implications. Pilot RTA conformance for STBO clearances, in the form of ATC taxi clearances with associated speed requirements, was found to be relatively poor, unless the pilot is required to follow a precise speed and acceleration/deceleration profile. However, following such a precise speed profile results in inordinate head-down tracking of current ground speed, leading to potentially unsafe operations. Mitigating these results, and providing good taxi RTA performance without the associated safety issues, is a flight deck avionics or electronic flight bag (EFB) solution. Such a solution enables pilots to meet the taxi route RTA without moment-by-moment tracking of ground speed. An avionics or EFB "error-nulling" algorithm allows the pilot to view the STBO information when the pilot determines it is necessary and when workload alloys, thus enabling the pilot to spread his/her attention appropriately and strategically on aircraft separation airport navigation, and the many other flight deck tasks concurrently required. Surface Traffic Management (STM) System Implications. The data indicate a number of implications regarding specific parameters for ATC/STM algorithm development. Pilots have a tendency to arrive at RTA points early with slow required speeds, on time for moderate speeds, and late with faster required speeds. This implies that ATC/STM algorithms should operate with middle-range speeds, similar to that of non-STBO taxi performance. Route length has a related effect: Long taxi routes increase the earliness with slow speeds and the lateness with faster speeds. This is likely due to the" open-loop" nature of the task in which the speed error compounds over a longer time with longer routes. Results showed that this may be mitigated by imposing a small number oftime constraint points each with their own RTAs effectively tuming a long route into a series of shorter routes - and thus improving RTA performance. STBO ConOps Implications. Most important is the impact that these data have for NextGen STM system ConOps development. The results of these experiments imply that it is not reasonable to expect pilots to taxi under a "Full STBO" ConOps in which pilots are expected to be at a predictable (x,y) airport location for every time (t). An STBO ConOps with a small number of intermediate time constraint points and the departing runway, however, is feasible, but only with flight deck equipage enabling the use of a display similar to the "error-nulling algorithm/display" tested.
Simulation and mitigation of higher-order ionospheric errors in PPP
NASA Astrophysics Data System (ADS)
Zus, Florian; Deng, Zhiguo; Wickert, Jens
2017-04-01
We developed a rapid and precise algorithm to compute ionospheric phase advances in a realistic electron density field. The electron density field is derived from a plasmaspheric extension of the International Reference Ionosphere (Gulyaeva and Bilitza, 2012) and the magnetic field stems from the International Geomagnetic Reference Field. For specific station locations, elevation and azimuth angles the ionospheric phase advances are stored in a look-up table. The higher-order ionospheric residuals are computed by forming the standard linear combination of the ionospheric phase advances. In a simulation study we examine how the higher-order ionospheric residuals leak into estimated station coordinates, clocks, zenith delays and tropospheric gradients in precise point positioning. The simulation study includes a few hundred globally distributed stations and covers the time period 1990-2015. We take a close look on the estimated zenith delays and tropospheric gradients as they are considered a data source for meteorological and climate related research. We also show how the by product of this simulation study, the look-up tables, can be used to mitigate higher-order ionospheric errors in practise. Gulyaeva, T.L., and Bilitza, D. Towards ISO Standard Earth Ionosphere and Plasmasphere Model. In: New Developments in the Standard Model, edited by R.J. Larsen, pp. 1-39, NOVA, Hauppauge, New York, 2012, available at https://www.novapublishers.com/catalog/product_info.php?products_id=35812
Exploring cosmic origins with CORE: Mitigation of systematic effects
NASA Astrophysics Data System (ADS)
Natoli, P.; Ashdown, M.; Banerji, R.; Borrill, J.; Buzzelli, A.; de Gasperis, G.; Delabrouille, J.; Hivon, E.; Molinari, D.; Patanchon, G.; Polastri, L.; Tomasi, M.; Bouchet, F. R.; Henrot-Versillé, S.; Hoang, D. T.; Keskitalo, R.; Kiiveri, K.; Kisner, T.; Lindholm, V.; McCarthy, D.; Piacentini, F.; Perdereau, O.; Polenta, G.; Tristram, M.; Achucarro, A.; Ade, P.; Allison, R.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Bartlett, J.; Bartolo, N.; Basak, S.; Baumann, D.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Cai, Z.-Y.; Calvo, M.; Carvalho, C.-S.; Castellano, M. G.; Challinor, A.; Chluba, J.; Clesse, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; de Bernardis, P.; De Zotti, G.; Di Valentino, E.; Diego, J.-M.; Errard, J.; Feeney, S.; Fernandez-Cobos, R.; Finelli, F.; Forastieri, F.; Galli, S.; Genova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Gruppuso, A.; Hagstotz, S.; Hanany, S.; Handley, W.; Hernandez-Monteagudo, C.; Hervías-Caimapo, C.; Hills, M.; Keihänen, E.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Lesgourgues, J.; Lewis, A.; Liguori, M.; López-Caniego, M.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martinez-González, E.; Martins, C. J. A. P.; Masi, S.; Matarrese, S.; Melchiorri, A.; Melin, J.-B.; Migliaccio, M.; Monfardini, A.; Negrello, M.; Notari, A.; Pagano, L.; Paiella, A.; Paoletti, D.; Piat, M.; Pisano, G.; Pollo, A.; Poulin, V.; Quartin, M.; Remazeilles, M.; Roman, M.; Rossi, G.; Rubino-Martin, J.-A.; Salvati, L.; Signorelli, G.; Tartari, A.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Valiviita, J.; Van de Weijgaert, R.; van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.; Wallis, C.; Young, K.; Zannoni, M.
2018-04-01
We present an analysis of the main systematic effects that could impact the measurement of CMB polarization with the proposed CORE space mission. We employ timeline-to-map simulations to verify that the CORE instrumental set-up and scanning strategy allow us to measure sky polarization to a level of accuracy adequate to the mission science goals. We also show how the CORE observations can be processed to mitigate the level of contamination by potentially worrying systematics, including intensity-to-polarization leakage due to bandpass mismatch, asymmetric main beams, pointing errors and correlated noise. We use analysis techniques that are well validated on data from current missions such as Planck to demonstrate how the residual contamination of the measurements by these effects can be brought to a level low enough not to hamper the scientific capability of the mission, nor significantly increase the overall error budget. We also present a prototype of the CORE photometric calibration pipeline, based on that used for Planck, and discuss its robustness to systematics, showing how CORE can achieve its calibration requirements. While a fine-grained assessment of the impact of systematics requires a level of knowledge of the system that can only be achieved in a future study phase, the analysis presented here strongly suggests that the main areas of concern for the CORE mission can be addressed using existing knowledge, techniques and algorithms.
NASA Astrophysics Data System (ADS)
Hardie, Russell C.; Rucci, Michael A.; Dapore, Alexander J.; Karch, Barry K.
2017-07-01
We present a block-matching and Wiener filtering approach to atmospheric turbulence mitigation for long-range imaging of extended scenes. We evaluate the proposed method, along with some benchmark methods, using simulated and real-image sequences. The simulated data are generated with a simulation tool developed by one of the authors. These data provide objective truth and allow for quantitative error analysis. The proposed turbulence mitigation method takes a sequence of short-exposure frames of a static scene and outputs a single restored image. A block-matching registration algorithm is used to provide geometric correction for each of the individual input frames. The registered frames are then averaged, and the average image is processed with a Wiener filter to provide deconvolution. An important aspect of the proposed method lies in how we model the degradation point spread function (PSF) for the purposes of Wiener filtering. We use a parametric model that takes into account the level of geometric correction achieved during image registration. This is unlike any method we are aware of in the literature. By matching the PSF to the level of registration in this way, the Wiener filter is able to fully exploit the reduced blurring achieved by registration. We also describe a method for estimating the atmospheric coherence diameter (or Fried parameter) from the estimated motion vectors. We provide a detailed performance analysis that illustrates how the key tuning parameters impact system performance. The proposed method is relatively simple computationally, yet it has excellent performance in comparison with state-of-the-art benchmark methods in our study.
Kendrick, Paul; von Hünerbein, Sabine; Cox, Trevor J
2016-07-01
Microphone wind noise can corrupt outdoor recordings even when wind shields are used. When monitoring wind turbine noise, microphone wind noise is almost inevitable because measurements cannot be made in still conditions. The effect of microphone wind noise on two amplitude modulation (AM) metrics is quantified in a simulation, showing that even at low wind speeds of 2.5 m/s errors of over 4 dBA can result. As microphone wind noise is intermittent, a wind noise detection algorithm is used to automatically find uncorrupted sections of the recording, and so recover the true AM metrics to within ±2/±0.5 dBA.
Comparison of turbulence mitigation algorithms
NASA Astrophysics Data System (ADS)
Kozacik, Stephen T.; Paolini, Aaron; Sherman, Ariel; Bonnett, James; Kelmelis, Eric
2017-07-01
When capturing imagery over long distances, atmospheric turbulence often degrades the data, especially when observation paths are close to the ground or in hot environments. These issues manifest as time-varying scintillation and warping effects that decrease the effective resolution of the sensor and reduce actionable intelligence. In recent years, several image processing approaches to turbulence mitigation have shown promise. Each of these algorithms has different computational requirements, usability demands, and degrees of independence from camera sensors. They also produce different degrees of enhancement when applied to turbulent imagery. Additionally, some of these algorithms are applicable to real-time operational scenarios while others may only be suitable for postprocessing workflows. EM Photonics has been developing image-processing-based turbulence mitigation technology since 2005. We will compare techniques from the literature with our commercially available, real-time, GPU-accelerated turbulence mitigation software. These comparisons will be made using real (not synthetic), experimentally obtained data for a variety of conditions, including varying optical hardware, imaging range, subjects, and turbulence conditions. Comparison metrics will include image quality, video latency, computational complexity, and potential for real-time operation. Additionally, we will present a technique for quantitatively comparing turbulence mitigation algorithms using real images of radial resolution targets.
Video error concealment using block matching and frequency selective extrapolation algorithms
NASA Astrophysics Data System (ADS)
P. K., Rajani; Khaparde, Arti
2017-06-01
Error Concealment (EC) is a technique at the decoder side to hide the transmission errors. It is done by analyzing the spatial or temporal information from available video frames. It is very important to recover distorted video because they are used for various applications such as video-telephone, video-conference, TV, DVD, internet video streaming, video games etc .Retransmission-based and resilient-based methods, are also used for error removal. But these methods add delay and redundant data. So error concealment is the best option for error hiding. In this paper, the error concealment methods such as Block Matching error concealment algorithm is compared with Frequency Selective Extrapolation algorithm. Both the works are based on concealment of manually error video frames as input. The parameter used for objective quality measurement was PSNR (Peak Signal to Noise Ratio) and SSIM(Structural Similarity Index). The original video frames along with error video frames are compared with both the Error concealment algorithms. According to simulation results, Frequency Selective Extrapolation is showing better quality measures such as 48% improved PSNR and 94% increased SSIM than Block Matching Algorithm.
Wong, Ling Ai; Shareef, Hussain; Mohamed, Azah; Ibrahim, Ahmad Asrul
2014-01-01
This paper presents the application of enhanced opposition-based firefly algorithm in obtaining the optimal battery energy storage systems (BESS) sizing in photovoltaic generation integrated radial distribution network in order to mitigate the voltage rise problem. Initially, the performance of the original firefly algorithm is enhanced by utilizing the opposition-based learning and introducing inertia weight. After evaluating the performance of the enhanced opposition-based firefly algorithm (EOFA) with fifteen benchmark functions, it is then adopted to determine the optimal size for BESS. Two optimization processes are conducted where the first optimization aims to obtain the optimal battery output power on hourly basis and the second optimization aims to obtain the optimal BESS capacity by considering the state of charge constraint of BESS. The effectiveness of the proposed method is validated by applying the algorithm to the 69-bus distribution system and by comparing the performance of EOFA with conventional firefly algorithm and gravitational search algorithm. Results show that EOFA has the best performance comparatively in terms of mitigating the voltage rise problem. PMID:25054184
Wong, Ling Ai; Shareef, Hussain; Mohamed, Azah; Ibrahim, Ahmad Asrul
2014-01-01
This paper presents the application of enhanced opposition-based firefly algorithm in obtaining the optimal battery energy storage systems (BESS) sizing in photovoltaic generation integrated radial distribution network in order to mitigate the voltage rise problem. Initially, the performance of the original firefly algorithm is enhanced by utilizing the opposition-based learning and introducing inertia weight. After evaluating the performance of the enhanced opposition-based firefly algorithm (EOFA) with fifteen benchmark functions, it is then adopted to determine the optimal size for BESS. Two optimization processes are conducted where the first optimization aims to obtain the optimal battery output power on hourly basis and the second optimization aims to obtain the optimal BESS capacity by considering the state of charge constraint of BESS. The effectiveness of the proposed method is validated by applying the algorithm to the 69-bus distribution system and by comparing the performance of EOFA with conventional firefly algorithm and gravitational search algorithm. Results show that EOFA has the best performance comparatively in terms of mitigating the voltage rise problem.
An improved VSS NLMS algorithm for active noise cancellation
NASA Astrophysics Data System (ADS)
Sun, Yunzhuo; Wang, Mingjiang; Han, Yufei; Zhang, Congyan
2017-08-01
In this paper, an improved variable step size NLMS algorithm is proposed. NLMS has fast convergence rate and low steady state error compared to other traditional adaptive filtering algorithm. But there is a contradiction between the convergence speed and steady state error that affect the performance of the NLMS algorithm. Now, we propose a new variable step size NLMS algorithm. It dynamically changes the step size according to current error and iteration times. The proposed algorithm has simple formulation and easily setting parameters, and effectively solves the contradiction in NLMS. The simulation results show that the proposed algorithm has a good tracking ability, fast convergence rate and low steady state error simultaneously.
Optimal reentry prediction of space objects from LEO using RSM and GA
NASA Astrophysics Data System (ADS)
Mutyalarao, M.; Raj, M. Xavier James
2012-07-01
The accurate estimation of the orbital life time (OLT) of decaying near-Earth objects is of considerable importance for the prediction of risk object re-entry time and hazard assessment as well as for mitigation strategies. Recently, due to the reentries of large number of risk objects, which poses threat to the human life and property, a great concern is developed in the space scientific community all over the World. The evolution of objects in Low Earth Orbit (LEO) is determined by a complex interplay of the perturbing forces, mainly due to atmospheric drag and Earth gravity. These orbits are mostly in low eccentric (eccentricity < 0.2) and have variations in perigee and apogee altitudes due to perturbations during a revolution. The changes in the perigee and apogee altitudes of these orbits are mainly due to the gravitational perturbations of the Earth and the atmospheric density. It has become necessary to use extremely complex force models to match with the present operational requirements and observational techniques. Further the re-entry time of the objects in such orbits is sensitive to the initial conditions. In this paper the problem of predicting re-entry time is attempted as an optimal estimation problem. It is known that the errors are more in eccentricity for the observations based on two line elements (TLEs). Thus two parameters, initial eccentricity and ballistic coefficient, are chosen for optimal estimation. These two parameters are computed with response surface method (RSM) using a genetic algorithm (GA) for the selected time zones, based on rough linear variation of response parameter, the mean semi-major axis during orbit evolution. Error minimization between the observed and predicted mean Semi-major axis is achieved by the application of an optimization algorithm such as Genetic Algorithm (GA). The basic feature of the present approach is that the model and measurement errors are accountable in terms of adjusting the ballistic coefficient and eccentricity. The methodology is tested with the recently reentered objects ROSAT and PHOBOS GRUNT satellites. The study reveals a good agreement with the actual reentry time of these objects. It is also observed that the absolute percentage error in re-entry prediction time for all the two objects is found to be very less. Keywords: low eccentric, Response surface method, Genetic algorithm, apogee altitude, Ballistic coefficient
NASA Astrophysics Data System (ADS)
He, Xiaojun; Ma, Haotong; Luo, Chuanxin
2016-10-01
The optical multi-aperture imaging system is an effective way to magnify the aperture and increase the resolution of telescope optical system, the difficulty of which lies in detecting and correcting of co-phase error. This paper presents a method based on stochastic parallel gradient decent algorithm (SPGD) to correct the co-phase error. Compared with the current method, SPGD method can avoid detecting the co-phase error. This paper analyzed the influence of piston error and tilt error on image quality based on double-aperture imaging system, introduced the basic principle of SPGD algorithm, and discuss the influence of SPGD algorithm's key parameters (the gain coefficient and the disturbance amplitude) on error control performance. The results show that SPGD can efficiently correct the co-phase error. The convergence speed of the SPGD algorithm is improved with the increase of gain coefficient and disturbance amplitude, but the stability of the algorithm reduced. The adaptive gain coefficient can solve this problem appropriately. This paper's results can provide the theoretical reference for the co-phase error correction of the multi-aperture imaging system.
SU-E-J-15: A Patient-Centered Scheme to Mitigate Impacts of Treatment Setup Error
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, L; Southern Medical University, Guangzhou; Tian, Z
2014-06-01
Purpose: Current Intensity Modulated Radiation Therapy (IMRT) is plan-centered. At each treatment fraction, we position the patient to match the setup in treatment plan. Inaccurate setup can compromise delivered dose distribution, and hence leading to suboptimal treatments. Moreover, current setup approach via couch shift under image guidance can correct translational errors, while rotational and deformation errors are hard to address. To overcome these problems, we propose in this abstract a patient-centered scheme to mitigate impacts of treatment setup errors. Methods: In the patient-centered scheme, we first position the patient on the couch approximately matching the planned-setup. Our Supercomputing Online Replanningmore » Environment (SCORE) is then employed to design an optimal treatment plan based on the daily patient geometry. It hence mitigates the impacts of treatment setup error and reduces the requirements on setup accuracy. We have conducted simulations studies in 10 head-and-neck (HN) patients to investigate the feasibility of this scheme. Rotational and deformation setup errors were simulated. Specifically, 1, 3, 5, 7 degrees of rotations were put on pitch, roll, and yaw directions; deformation errors were simulated by splitting neck movements into four basic types: rotation, lateral bending, flexion and extension. Setup variation ranges are based on observed numbers in previous studies. Dosimetric impacts of our scheme were evaluated on PTVs and OARs in comparison with original plan dose with original geometry and original plan recalculated dose with new setup geometries. Results: With conventional plan-centered approach, setup error could lead to significant PTV D99 decrease (−0.25∼+32.42%) and contralateral-parotid Dmean increase (−35.09∼+42.90%). The patientcentered approach is effective in mitigating such impacts to 0∼+0.20% and −0.03∼+5.01%, respectively. Computation time is <128 s. Conclusion: Patient-centered scheme is proposed to mitigate setup error impacts using replanning. Its superiority in terms of dosimetric impacts and feasibility has been shown through simulation studies on HN cases.« less
Beamforming Based Full-Duplex for Millimeter-Wave Communication
Liu, Xiao; Xiao, Zhenyu; Bai, Lin; Choi, Jinho; Xia, Pengfei; Xia, Xiang-Gen
2016-01-01
In this paper, we study beamforming based full-duplex (FD) systems in millimeter-wave (mmWave) communications. A joint transmission and reception (Tx/Rx) beamforming problem is formulated to maximize the achievable rate by mitigating self-interference (SI). Since the optimal solution is difficult to find due to the non-convexity of the objective function, suboptimal schemes are proposed in this paper. A low-complexity algorithm, which iteratively maximizes signal power while suppressing SI, is proposed and its convergence is proven. Moreover, two closed-form solutions, which do not require iterations, are also derived under minimum-mean-square-error (MMSE), zero-forcing (ZF), and maximum-ratio transmission (MRT) criteria. Performance evaluations show that the proposed iterative scheme converges fast (within only two iterations on average) and approaches an upper-bound performance, while the two closed-form solutions also achieve appealing performances, although there are noticeable differences from the upper bound depending on channel conditions. Interestingly, these three schemes show different robustness against the geometry of Tx/Rx antenna arrays and channel estimation errors. PMID:27455256
Bartos, Anthony L; Cipr, Tomas; Nelson, Douglas J; Schwarz, Petr; Banowetz, John; Jerabek, Ladislav
2018-04-01
A method is presented in which conventional speech algorithms are applied, with no modifications, to improve their performance in extremely noisy environments. It has been demonstrated that, for eigen-channel algorithms, pre-training multiple speaker identification (SID) models at a lattice of signal-to-noise-ratio (SNR) levels and then performing SID using the appropriate SNR dependent model was successful in mitigating noise at all SNR levels. In those tests, it was found that SID performance was optimized when the SNR of the testing and training data were close or identical. In this current effort multiple i-vector algorithms were used, greatly improving both processing throughput and equal error rate classification accuracy. Using identical approaches in the same noisy environment, performance of SID, language identification, gender identification, and diarization were significantly improved. A critical factor in this improvement is speech activity detection (SAD) that performs reliably in extremely noisy environments, where the speech itself is barely audible. To optimize SAD operation at all SNR levels, two algorithms were employed. The first maximized detection probability at low levels (-10 dB ≤ SNR < +10 dB) using just the voiced speech envelope, and the second exploited features extracted from the original speech to improve overall accuracy at higher quality levels (SNR ≥ +10 dB).
Li, Zheng; Zhang, Hai; Zhou, Qifan; Che, Huan
2017-09-05
The main objective of the introduced study is to design an adaptive Inertial Navigation System/Global Navigation Satellite System (INS/GNSS) tightly-coupled integration system that can provide more reliable navigation solutions by making full use of an adaptive Kalman filter (AKF) and satellite selection algorithm. To achieve this goal, we develop a novel redundant measurement noise covariance estimation (RMNCE) theorem, which adaptively estimates measurement noise properties by analyzing the difference sequences of system measurements. The proposed RMNCE approach is then applied to design both a modified weighted satellite selection algorithm and a type of adaptive unscented Kalman filter (UKF) to improve the performance of the tightly-coupled integration system. In addition, an adaptive measurement noise covariance expanding algorithm is developed to mitigate outliers when facing heavy multipath and other harsh situations. Both semi-physical simulation and field experiments were conducted to evaluate the performance of the proposed architecture and were compared with state-of-the-art algorithms. The results validate that the RMNCE provides a significant improvement in the measurement noise covariance estimation and the proposed architecture can improve the accuracy and reliability of the INS/GNSS tightly-coupled systems. The proposed architecture can effectively limit positioning errors under conditions of poor GNSS measurement quality and outperforms all the compared schemes.
Li, Zheng; Zhang, Hai; Zhou, Qifan; Che, Huan
2017-01-01
The main objective of the introduced study is to design an adaptive Inertial Navigation System/Global Navigation Satellite System (INS/GNSS) tightly-coupled integration system that can provide more reliable navigation solutions by making full use of an adaptive Kalman filter (AKF) and satellite selection algorithm. To achieve this goal, we develop a novel redundant measurement noise covariance estimation (RMNCE) theorem, which adaptively estimates measurement noise properties by analyzing the difference sequences of system measurements. The proposed RMNCE approach is then applied to design both a modified weighted satellite selection algorithm and a type of adaptive unscented Kalman filter (UKF) to improve the performance of the tightly-coupled integration system. In addition, an adaptive measurement noise covariance expanding algorithm is developed to mitigate outliers when facing heavy multipath and other harsh situations. Both semi-physical simulation and field experiments were conducted to evaluate the performance of the proposed architecture and were compared with state-of-the-art algorithms. The results validate that the RMNCE provides a significant improvement in the measurement noise covariance estimation and the proposed architecture can improve the accuracy and reliability of the INS/GNSS tightly-coupled systems. The proposed architecture can effectively limit positioning errors under conditions of poor GNSS measurement quality and outperforms all the compared schemes. PMID:28872629
Efficient error correction for next-generation sequencing of viral amplicons
2012-01-01
Background Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing. Results In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones. Conclusions Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses. The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm PMID:22759430
Efficient error correction for next-generation sequencing of viral amplicons.
Skums, Pavel; Dimitrova, Zoya; Campo, David S; Vaughan, Gilberto; Rossi, Livia; Forbi, Joseph C; Yokosawa, Jonny; Zelikovsky, Alex; Khudyakov, Yury
2012-06-25
Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing. In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones. Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses.The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm.
Tang, Jie; Nett, Brian E; Chen, Guang-Hong
2009-10-07
Of all available reconstruction methods, statistical iterative reconstruction algorithms appear particularly promising since they enable accurate physical noise modeling. The newly developed compressive sampling/compressed sensing (CS) algorithm has shown the potential to accurately reconstruct images from highly undersampled data. The CS algorithm can be implemented in the statistical reconstruction framework as well. In this study, we compared the performance of two standard statistical reconstruction algorithms (penalized weighted least squares and q-GGMRF) to the CS algorithm. In assessing the image quality using these iterative reconstructions, it is critical to utilize realistic background anatomy as the reconstruction results are object dependent. A cadaver head was scanned on a Varian Trilogy system at different dose levels. Several figures of merit including the relative root mean square error and a quality factor which accounts for the noise performance and the spatial resolution were introduced to objectively evaluate reconstruction performance. A comparison is presented between the three algorithms for a constant undersampling factor comparing different algorithms at several dose levels. To facilitate this comparison, the original CS method was formulated in the framework of the statistical image reconstruction algorithms. Important conclusions of the measurements from our studies are that (1) for realistic neuro-anatomy, over 100 projections are required to avoid streak artifacts in the reconstructed images even with CS reconstruction, (2) regardless of the algorithm employed, it is beneficial to distribute the total dose to more views as long as each view remains quantum noise limited and (3) the total variation-based CS method is not appropriate for very low dose levels because while it can mitigate streaking artifacts, the images exhibit patchy behavior, which is potentially harmful for medical diagnosis.
Realtime mitigation of GPS SA errors using Loran-C
NASA Technical Reports Server (NTRS)
Braasch, Soo Y.
1994-01-01
The hybrid use of Loran-C with the Global Positioning System (GPS) was shown capable of providing a sole-means of enroute air radionavigation. By allowing pilots to fly direct to their destinations, use of this system is resulting in significant time savings and therefore fuel savings as well. However, a major error source limiting the accuracy of GPS is the intentional degradation of the GPS signal known as Selective Availability (SA). SA-induced position errors are highly correlated and far exceed all other error sources (horizontal position error: 100 meters, 95 percent). Realtime mitigation of SA errors from the position solution is highly desirable. How that can be achieved is discussed. The stability of Loran-C signals is exploited to reduce SA errors. The theory behind this technique is discussed and results using bench and flight data are given.
NASA Astrophysics Data System (ADS)
Sakata, Shojiro; Fujisawa, Masaya
It is a well-known fact [7], [9] that the BMS algorithm with majority voting can decode up to half the Feng-Rao designed distance dFR. Since dFR is not smaller than the Goppa designed distance dG, that algorithm can correct up to \\lfloor \\frac{d_G-1}{2}\\rfloor errors. On the other hand, it has been considered to be evident that the original BMS algorithm (without voting) [1], [2] can correct up to \\lfloor \\frac{d_G-g-1}{2}\\rfloor errors similarly to the basic algorithm by Skorobogatov-Vladut. But, is it true? In this short paper, we show that it is true, although we need a few remarks and some additional procedures for determining the Groebner basis of the error locator ideal exactly. In fact, as the basic algorithm gives a set of polynomials whose zero set contains the error locators as a subset, it cannot always give the exact error locators, unless the syndrome equation is solved to find the error values in addition.
NASA Technical Reports Server (NTRS)
Lee, J.; Kim, J.; Yang, P.; Hsu, N. C.
2012-01-01
New over-ocean aerosol models are developed by integrating the inversion data from the Aerosol Robotic Network (AERONET) sun/sky radiometers with a database for the optical properties of tri-axial ellipsoid particles. The new aerosol models allow more accurate retrieval of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) in the case of high AOD (AOD greater than 0.3). The aerosol models are categorized by using the fine-mode fraction (FMF) at 550 nm and the singlescattering albedo (SSA) at 440 nm from the AERONET inversion data to include a variety of aerosol types found around the globe. For each aerosol model, the changes in the aerosol optical properties (AOPs) as functions of AOD are considered to better represent aerosol characteristics. Comparisons of AODs between AERONET and MODIS for the period from 2003 to 2010 show that the use of the new aerosol models enhances the AOD accuracy with a Pearson coefficient of 0.93 and a regression slope of 0.99 compared to 0.92 and 0.85 calculated using the MODIS Collection 5 data. Moreover, the percentage of data within an expected error of +/-(0.03 + 0.05xAOD) is increased from 62 percent to 64 percent for overall data and from 39 percent to 51 percent for AOD greater than 0.3. Errors in the retrieved AOD are further characterized with respect to the Angstrom exponent (AE), scattering angle, SSA, and air mass factor (AMF). Due to more realistic AOPs assumptions, the new algorithm generally reduces systematic errors in the retrieved AODs compared with the current operational algorithm. In particular, the underestimation of fine-dominated AOD and the scattering angle dependence of dust-dominated AOD are significantly mitigated as results of the new algorithm's improved treatment of aerosol size distribution and dust particle nonsphericity.
Diagnostic grade wireless ECG monitoring.
Garudadri, Harinath; Chi, Yuejie; Baker, Steve; Majumdar, Somdeb; Baheti, Pawan K; Ballard, Dan
2011-01-01
In remote monitoring of Electrocardiogram (ECG), it is very important to ensure that the diagnostic integrity of signals is not compromised by sensing artifacts and channel errors. It is also important for the sensors to be extremely power efficient to enable wearable form factors and long battery life. We present an application of Compressive Sensing (CS) as an error mitigation scheme at the application layer for wearable, wireless sensors in diagnostic grade remote monitoring of ECG. In our previous work, we described an approach to mitigate errors due to packet losses by projecting ECG data to a random space and recovering a faithful representation using sparse reconstruction methods. Our contributions in this work are twofold. First, we present an efficient hardware implementation of random projection at the sensor. Second, we validate the diagnostic integrity of the reconstructed ECG after packet loss mitigation. We validate our approach on MIT and AHA databases comprising more than 250,000 normal and abnormal beats using EC57 protocols adopted by the Food and Drug Administration (FDA). We show that sensitivity and positive predictivity of a state-of-the-art ECG arrhythmia classifier is essentially invariant under CS based packet loss mitigation for both normal and abnormal beats even at high packet loss rates. In contrast, the performance degrades significantly in the absence of any error mitigation scheme, particularly for abnormal beats such as Ventricular Ectopic Beats (VEB).
NASA Astrophysics Data System (ADS)
Das, Sukanta Kumar; Shukla, Ashish Kumar
2011-04-01
Single-frequency users of a satellite-based augmentation system (SBAS) rely on ionospheric models to mitigate the delay due to the ionosphere. The ionosphere is the major source of range and range rate errors for users of the Global Positioning System (GPS) who require high-accuracy positioning. The purpose of the present study is to develop a tomography model to reconstruct the total electron content (TEC) over the low-latitude Indian region which lies in the equatorial ionospheric anomaly belt. In the present study, the TEC data collected from the six TEC collection stations along a longitudinal belt of around 77 degrees are used. The main objective of the study is to find out optimum pixel size which supports a better reconstruction of the electron density and hence the TEC over the low-latitude Indian region. Performance of two reconstruction algorithms Algebraic Reconstruction Technique (ART) and Multiplicative Algebraic Reconstruction Technique (MART) is analyzed for different pixel sizes varying from 1 to 6 degrees in latitude. It is found from the analysis that the optimum pixel size is 5° × 50 km over the Indian region using both ART and MART algorithms.
NASA Astrophysics Data System (ADS)
Dong, Zhichao; Cheng, Haobo
2018-01-01
A highly noise-tolerant hybrid algorithm (NTHA) is proposed in this study for phase retrieval from a single-shot spatial carrier fringe pattern (SCFP), which effectively combines the merits of spatial carrier phase shift method and two dimensional continuous wavelet transform (2D-CWT). NTHA firstly extracts three phase-shifted fringe patterns from the SCFP with one pixel malposition; then calculates phase gradients by subtracting the reference phase from the other two target phases, which are retrieved respectively from three phase-shifted fringe patterns by 2D-CWT; finally, reconstructs the phase map by a least square gradient integration method. Its typical characters include but not limited to: (1) doesn't require the spatial carrier to be constant; (2) the subtraction mitigates edge errors of 2D-CWT; (3) highly noise-tolerant, because not only 2D-CWT is noise-insensitive, but also the noise in the fringe pattern doesn't directly take part in the phase reconstruction as in previous hybrid algorithm. Its feasibility and performances are validated extensively by simulations and contrastive experiments to temporal phase shift method, Fourier transform and 2D-CWT methods.
Liu, Derong; Li, Hongliang; Wang, Ding
2015-06-01
In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.
Jiménez, Felipe; Monzón, Sergio; Naranjo, Jose Eugenio
2016-02-04
Vehicle positioning is a key factor for numerous information and assistance applications that are included in vehicles and for which satellite positioning is mainly used. However, this positioning process can result in errors and lead to measurement uncertainties. These errors come mainly from two sources: errors and simplifications of digital maps and errors in locating the vehicle. From that inaccurate data, the task of assigning the vehicle's location to a link on the digital map at every instant is carried out by map-matching algorithms. These algorithms have been developed to fulfil that need and attempt to amend these errors to offer the user a suitable positioning. In this research; an algorithm is developed that attempts to solve the errors in positioning when the Global Navigation Satellite System (GNSS) signal reception is frequently lost. The algorithm has been tested with satisfactory results in a complex urban environment of narrow streets and tall buildings where errors and signal reception losses of the GPS receiver are frequent.
Jiménez, Felipe; Monzón, Sergio; Naranjo, Jose Eugenio
2016-01-01
Vehicle positioning is a key factor for numerous information and assistance applications that are included in vehicles and for which satellite positioning is mainly used. However, this positioning process can result in errors and lead to measurement uncertainties. These errors come mainly from two sources: errors and simplifications of digital maps and errors in locating the vehicle. From that inaccurate data, the task of assigning the vehicle’s location to a link on the digital map at every instant is carried out by map-matching algorithms. These algorithms have been developed to fulfil that need and attempt to amend these errors to offer the user a suitable positioning. In this research; an algorithm is developed that attempts to solve the errors in positioning when the Global Navigation Satellite System (GNSS) signal reception is frequently lost. The algorithm has been tested with satisfactory results in a complex urban environment of narrow streets and tall buildings where errors and signal reception losses of the GPS receiver are frequent. PMID:26861320
Methods for Addressing Technology-induced Errors: The Current State.
Borycki, E; Dexheimer, J W; Hullin Lucay Cossio, C; Gong, Y; Jensen, S; Kaipio, J; Kennebeck, S; Kirkendall, E; Kushniruk, A W; Kuziemsky, C; Marcilly, R; Röhrig, R; Saranto, K; Senathirajah, Y; Weber, J; Takeda, H
2016-11-10
The objectives of this paper are to review and discuss the methods that are being used internationally to report on, mitigate, and eliminate technology-induced errors. The IMIA Working Group for Health Informatics for Patient Safety worked together to review and synthesize some of the main methods and approaches associated with technology- induced error reporting, reduction, and mitigation. The work involved a review of the evidence-based literature as well as guideline publications specific to health informatics. The paper presents a rich overview of current approaches, issues, and methods associated with: (1) safe HIT design, (2) safe HIT implementation, (3) reporting on technology-induced errors, (4) technology-induced error analysis, and (5) health information technology (HIT) risk management. The work is based on research from around the world. Internationally, researchers have been developing methods that can be used to identify, report on, mitigate, and eliminate technology-induced errors. Although there remain issues and challenges associated with the methodologies, they have been shown to improve the quality and safety of HIT. Since the first publications documenting technology-induced errors in healthcare in 2005, we have seen in a short 10 years researchers develop ways of identifying and addressing these types of errors. We have also seen organizations begin to use these approaches. Knowledge has been translated into practice in a short ten years whereas the norm for other research areas is of 20 years.
NASA Astrophysics Data System (ADS)
Pan, X.; Yang, Y.; Liu, Y.; Fan, X.; Shan, L.; Zhang, X.
2018-04-01
Error source analyses are critical for the satellite-retrieved surface net radiation (Rn) products. In this study, we evaluate the Rn error sources in the Clouds and the Earth's Radiant Energy System (CERES) project at 43 sites from July in 2007 to December in 2007 in China. The results show that cloud fraction (CF), land surface temperature (LST), atmospheric temperature (AT) and algorithm error dominate the Rn error, with error contributions of -20, 15, 10 and 10 W/m2 (net shortwave (NSW)/longwave (NLW) radiation), respectively. For NSW, the dominant error source is algorithm error (more than 10 W/m2), particularly in spring and summer with abundant cloud. For NLW, due to the high sensitivity of algorithm and large LST/CF error, LST and CF are the largest error sources, especially in northern China. The AT influences the NLW error large in southern China because of the large AT error in there. The total precipitable water has weak influence on Rn error even with the high sensitivity of algorithm. In order to improve Rn quality, CF and LST (AT) error in northern (southern) China should be decreased.
A Modified MinMax k-Means Algorithm Based on PSO.
Wang, Xiaoyan; Bai, Yanping
The MinMax k -means algorithm is widely used to tackle the effect of bad initialization by minimizing the maximum intraclustering errors. Two parameters, including the exponent parameter and memory parameter, are involved in the executive process. Since different parameters have different clustering errors, it is crucial to choose appropriate parameters. In the original algorithm, a practical framework is given. Such framework extends the MinMax k -means to automatically adapt the exponent parameter to the data set. It has been believed that if the maximum exponent parameter has been set, then the programme can reach the lowest intraclustering errors. However, our experiments show that this is not always correct. In this paper, we modified the MinMax k -means algorithm by PSO to determine the proper values of parameters which can subject the algorithm to attain the lowest clustering errors. The proposed clustering method is tested on some favorite data sets in several different initial situations and is compared to the k -means algorithm and the original MinMax k -means algorithm. The experimental results indicate that our proposed algorithm can reach the lowest clustering errors automatically.
Spacecraft attitude determination accuracy from mission experience
NASA Technical Reports Server (NTRS)
Brasoveanu, D.; Hashmall, J.
1994-01-01
This paper summarizes a compilation of attitude determination accuracies attained by a number of satellites supported by the Goddard Space Flight Center Flight Dynamics Facility. The compilation is designed to assist future mission planners in choosing and placing attitude hardware and selecting the attitude determination algorithms needed to achieve given accuracy requirements. The major goal of the compilation is to indicate realistic accuracies achievable using a given sensor complement based on mission experience. It is expected that the use of actual spacecraft experience will make the study especially useful for mission design. A general description of factors influencing spacecraft attitude accuracy is presented. These factors include determination algorithms, inertial reference unit characteristics, and error sources that can affect measurement accuracy. Possible techniques for mitigating errors are also included. Brief mission descriptions are presented with the attitude accuracies attained, grouped by the sensor pairs used in attitude determination. The accuracies for inactive missions represent a compendium of missions report results, and those for active missions represent measurements of attitude residuals. Both three-axis and spin stabilized missions are included. Special emphasis is given to high-accuracy sensor pairs, such as two fixed-head star trackers (FHST's) and fine Sun sensor plus FHST. Brief descriptions of sensor design and mode of operation are included. Also included are brief mission descriptions and plots summarizing the attitude accuracy attained using various sensor complements.
Control of noisy quantum systems: Field-theory approach to error mitigation
NASA Astrophysics Data System (ADS)
Hipolito, Rafael; Goldbart, Paul M.
2016-04-01
We consider the basic quantum-control task of obtaining a target unitary operation (i.e., a quantum gate) via control fields that couple to the quantum system and are chosen to best mitigate errors resulting from time-dependent noise, which frustrate this task. We allow for two sources of noise: fluctuations in the control fields and fluctuations arising from the environment. We address the issue of control-error mitigation by means of a formulation rooted in the Martin-Siggia-Rose (MSR) approach to noisy, classical statistical-mechanical systems. To do this, we express the noisy control problem in terms of a path integral, and integrate out the noise to arrive at an effective, noise-free description. We characterize the degree of success in error mitigation via a fidelity metric, which characterizes the proximity of the sought-after evolution to ones that are achievable in the presence of noise. Error mitigation is then best accomplished by applying the optimal control fields, i.e., those that maximize the fidelity subject to any constraints obeyed by the control fields. To make connection with MSR, we reformulate the fidelity in terms of a Schwinger-Keldysh (SK) path integral, with the added twist that the "forward" and "backward" branches of the time contour are inequivalent with respect to the noise. The present approach naturally and readily allows the incorporation of constraints on the control fields—a useful feature in practice, given that constraints feature in all real experiments. In addition to addressing the noise average of the fidelity, we consider its full probability distribution. The information content present in this distribution allows one to address more complex questions regarding error mitigation, including, in principle, questions of extreme value statistics, i.e., the likelihood and impact of rare instances of the fidelity and how to harness or cope with their influence. We illustrate this MSR-SK reformulation by considering a model system consisting of a single spin-s freedom (with s arbitrary), focusing on the case of 1 /f noise in the weak-noise limit. We discover that optimal error mitigation is accomplished via a universal control field protocol that is valid for all s , from the qubit (i.e., s =1 /2 ) case to the classical (i.e., s →∞ ) limit. In principle, this MSR-SK approach provides a transparent framework for addressing quantum control in the presence of noise for systems of arbitrary complexity.
A Parallel Decoding Algorithm for Short Polar Codes Based on Error Checking and Correcting
Pan, Xiaofei; Pan, Kegang; Ye, Zhan; Gong, Chao
2014-01-01
We propose a parallel decoding algorithm based on error checking and correcting to improve the performance of the short polar codes. In order to enhance the error-correcting capacity of the decoding algorithm, we first derive the error-checking equations generated on the basis of the frozen nodes, and then we introduce the method to check the errors in the input nodes of the decoder by the solutions of these equations. In order to further correct those checked errors, we adopt the method of modifying the probability messages of the error nodes with constant values according to the maximization principle. Due to the existence of multiple solutions of the error-checking equations, we formulate a CRC-aided optimization problem of finding the optimal solution with three different target functions, so as to improve the accuracy of error checking. Besides, in order to increase the throughput of decoding, we use a parallel method based on the decoding tree to calculate probability messages of all the nodes in the decoder. Numerical results show that the proposed decoding algorithm achieves better performance than that of some existing decoding algorithms with the same code length. PMID:25540813
NASA Astrophysics Data System (ADS)
Yoon, Yeosang; Garambois, Pierre-André; Paiva, Rodrigo C. D.; Durand, Michael; Roux, Hélène; Beighley, Edward
2016-01-01
We present an improvement to a previously presented algorithm that used a Bayesian Markov Chain Monte Carlo method for estimating river discharge from remotely sensed observations of river height, width, and slope. We also present an error budget for discharge calculations from the algorithm. The algorithm may be utilized by the upcoming Surface Water and Ocean Topography (SWOT) mission. We present a detailed evaluation of the method using synthetic SWOT-like observations (i.e., SWOT and AirSWOT, an airborne version of SWOT). The algorithm is evaluated using simulated AirSWOT observations over the Sacramento and Garonne Rivers that have differing hydraulic characteristics. The algorithm is also explored using SWOT observations over the Sacramento River. SWOT and AirSWOT height, width, and slope observations are simulated by corrupting the "true" hydraulic modeling results with instrument error. Algorithm discharge root mean square error (RMSE) was 9% for the Sacramento River and 15% for the Garonne River for the AirSWOT case using expected observation error. The discharge uncertainty calculated from Manning's equation was 16.2% and 17.1%, respectively. For the SWOT scenario, the RMSE and uncertainty of the discharge estimate for the Sacramento River were 15% and 16.2%, respectively. A method based on the Kalman filter to correct errors of discharge estimates was shown to improve algorithm performance. From the error budget, the primary source of uncertainty was the a priori uncertainty of bathymetry and roughness parameters. Sensitivity to measurement errors was found to be a function of river characteristics. For example, Steeper Garonne River is less sensitive to slope errors than the flatter Sacramento River.
NASA Astrophysics Data System (ADS)
Deo, Ravinesh C.; Şahin, Mehmet
2015-02-01
The prediction of future drought is an effective mitigation tool for assessing adverse consequences of drought events on vital water resources, agriculture, ecosystems and hydrology. Data-driven model predictions using machine learning algorithms are promising tenets for these purposes as they require less developmental time, minimal inputs and are relatively less complex than the dynamic or physical model. This paper authenticates a computationally simple, fast and efficient non-linear algorithm known as extreme learning machine (ELM) for the prediction of Effective Drought Index (EDI) in eastern Australia using input data trained from 1957-2008 and the monthly EDI predicted over the period 2009-2011. The predictive variables for the ELM model were the rainfall and mean, minimum and maximum air temperatures, supplemented by the large-scale climate mode indices of interest as regression covariates, namely the Southern Oscillation Index, Pacific Decadal Oscillation, Southern Annular Mode and the Indian Ocean Dipole moment. To demonstrate the effectiveness of the proposed data-driven model a performance comparison in terms of the prediction capabilities and learning speeds was conducted between the proposed ELM algorithm and the conventional artificial neural network (ANN) algorithm trained with Levenberg-Marquardt back propagation. The prediction metrics certified an excellent performance of the ELM over the ANN model for the overall test sites, thus yielding Mean Absolute Errors, Root-Mean Square Errors, Coefficients of Determination and Willmott's Indices of Agreement of 0.277, 0.008, 0.892 and 0.93 (for ELM) and 0.602, 0.172, 0.578 and 0.92 (for ANN) models. Moreover, the ELM model was executed with learning speed 32 times faster and training speed 6.1 times faster than the ANN model. An improvement in the prediction capability of the drought duration and severity by the ELM model was achieved. Based on these results we aver that out of the two machine learning algorithms tested, the ELM was the more expeditious tool for prediction of drought and its related properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yunlong; Wang, Aiping; Guo, Lei
This paper presents an error-entropy minimization tracking control algorithm for a class of dynamic stochastic system. The system is represented by a set of time-varying discrete nonlinear equations with non-Gaussian stochastic input, where the statistical properties of stochastic input are unknown. By using Parzen windowing with Gaussian kernel to estimate the probability densities of errors, recursive algorithms are then proposed to design the controller such that the tracking error can be minimized. The performance of the error-entropy minimization criterion is compared with the mean-square-error minimization in the simulation results.
Detecting and mitigating wind turbine clutter for airspace radar systems.
Wang, Wen-Qin
2013-01-01
It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.
Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems
2013-01-01
It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880
Superdense coding interleaved with forward error correction
Humble, Travis S.; Sadlier, Ronald J.
2016-05-12
Superdense coding promises increased classical capacity and communication security but this advantage may be undermined by noise in the quantum channel. We present a numerical study of how forward error correction (FEC) applied to the encoded classical message can be used to mitigate against quantum channel noise. By studying the bit error rate under different FEC codes, we identify the unique role that burst errors play in superdense coding, and we show how these can be mitigated against by interleaving the FEC codewords prior to transmission. As a result, we conclude that classical FEC with interleaving is a useful methodmore » to improve the performance in near-term demonstrations of superdense coding.« less
Markov chain algorithms: a template for building future robust low-power systems
Deka, Biplab; Birklykke, Alex A.; Duwe, Henry; Mansinghka, Vikash K.; Kumar, Rakesh
2014-01-01
Although computational systems are looking towards post CMOS devices in the pursuit of lower power, the expected inherent unreliability of such devices makes it difficult to design robust systems without additional power overheads for guaranteeing robustness. As such, algorithmic structures with inherent ability to tolerate computational errors are of significant interest. We propose to cast applications as stochastic algorithms based on Markov chains (MCs) as such algorithms are both sufficiently general and tolerant to transition errors. We show with four example applications—Boolean satisfiability, sorting, low-density parity-check decoding and clustering—how applications can be cast as MC algorithms. Using algorithmic fault injection techniques, we demonstrate the robustness of these implementations to transition errors with high error rates. Based on these results, we make a case for using MCs as an algorithmic template for future robust low-power systems. PMID:24842030
Prakash, Varuna; Koczmara, Christine; Savage, Pamela; Trip, Katherine; Stewart, Janice; McCurdie, Tara; Cafazzo, Joseph A; Trbovich, Patricia
2014-11-01
Nurses are frequently interrupted during medication verification and administration; however, few interventions exist to mitigate resulting errors, and the impact of these interventions on medication safety is poorly understood. The study objectives were to (A) assess the effects of interruptions on medication verification and administration errors, and (B) design and test the effectiveness of targeted interventions at reducing these errors. The study focused on medication verification and administration in an ambulatory chemotherapy setting. A simulation laboratory experiment was conducted to determine interruption-related error rates during specific medication verification and administration tasks. Interventions to reduce these errors were developed through a participatory design process, and their error reduction effectiveness was assessed through a postintervention experiment. Significantly more nurses committed medication errors when interrupted than when uninterrupted. With use of interventions when interrupted, significantly fewer nurses made errors in verifying medication volumes contained in syringes (16/18; 89% preintervention error rate vs 11/19; 58% postintervention error rate; p=0.038; Fisher's exact test) and programmed in ambulatory pumps (17/18; 94% preintervention vs 11/19; 58% postintervention; p=0.012). The rate of error commission significantly decreased with use of interventions when interrupted during intravenous push (16/18; 89% preintervention vs 6/19; 32% postintervention; p=0.017) and pump programming (7/18; 39% preintervention vs 1/19; 5% postintervention; p=0.017). No statistically significant differences were observed for other medication verification tasks. Interruptions can lead to medication verification and administration errors. Interventions were highly effective at reducing unanticipated errors of commission in medication administration tasks, but showed mixed effectiveness at reducing predictable errors of detection in medication verification tasks. These findings can be generalised and adapted to mitigate interruption-related errors in other settings where medication verification and administration are required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Prakash, Varuna; Koczmara, Christine; Savage, Pamela; Trip, Katherine; Stewart, Janice; McCurdie, Tara; Cafazzo, Joseph A; Trbovich, Patricia
2014-01-01
Background Nurses are frequently interrupted during medication verification and administration; however, few interventions exist to mitigate resulting errors, and the impact of these interventions on medication safety is poorly understood. Objective The study objectives were to (A) assess the effects of interruptions on medication verification and administration errors, and (B) design and test the effectiveness of targeted interventions at reducing these errors. Methods The study focused on medication verification and administration in an ambulatory chemotherapy setting. A simulation laboratory experiment was conducted to determine interruption-related error rates during specific medication verification and administration tasks. Interventions to reduce these errors were developed through a participatory design process, and their error reduction effectiveness was assessed through a postintervention experiment. Results Significantly more nurses committed medication errors when interrupted than when uninterrupted. With use of interventions when interrupted, significantly fewer nurses made errors in verifying medication volumes contained in syringes (16/18; 89% preintervention error rate vs 11/19; 58% postintervention error rate; p=0.038; Fisher's exact test) and programmed in ambulatory pumps (17/18; 94% preintervention vs 11/19; 58% postintervention; p=0.012). The rate of error commission significantly decreased with use of interventions when interrupted during intravenous push (16/18; 89% preintervention vs 6/19; 32% postintervention; p=0.017) and pump programming (7/18; 39% preintervention vs 1/19; 5% postintervention; p=0.017). No statistically significant differences were observed for other medication verification tasks. Conclusions Interruptions can lead to medication verification and administration errors. Interventions were highly effective at reducing unanticipated errors of commission in medication administration tasks, but showed mixed effectiveness at reducing predictable errors of detection in medication verification tasks. These findings can be generalised and adapted to mitigate interruption-related errors in other settings where medication verification and administration are required. PMID:24906806
Evaluation of centroiding algorithm error for Nano-JASMINE
NASA Astrophysics Data System (ADS)
Hara, Takuji; Gouda, Naoteru; Yano, Taihei; Yamada, Yoshiyuki
2014-08-01
The Nano-JASMINE mission has been designed to perform absolute astrometric measurements with unprecedented accuracy; the end-of-mission parallax standard error is required to be of the order of 3 milli arc seconds for stars brighter than 7.5 mag in the zw-band(0.6μm-1.0μm) .These requirements set a stringent constraint on the accuracy of the estimation of the location of the stellar image on the CCD for each observation. However each stellar images have individual shape depend on the spectral energy distribution of the star, the CCD properties, and the optics and its associated wave front errors. So it is necessity that the centroiding algorithm performs a high accuracy in any observables. Referring to the study of Gaia, we use LSF fitting method for centroiding algorithm, and investigate systematic error of the algorithm for Nano-JASMINE. Furthermore, we found to improve the algorithm by restricting sample LSF when we use a Principle Component Analysis. We show that centroiding algorithm error decrease after adapted the method.
A Modified MinMax k-Means Algorithm Based on PSO
2016-01-01
The MinMax k-means algorithm is widely used to tackle the effect of bad initialization by minimizing the maximum intraclustering errors. Two parameters, including the exponent parameter and memory parameter, are involved in the executive process. Since different parameters have different clustering errors, it is crucial to choose appropriate parameters. In the original algorithm, a practical framework is given. Such framework extends the MinMax k-means to automatically adapt the exponent parameter to the data set. It has been believed that if the maximum exponent parameter has been set, then the programme can reach the lowest intraclustering errors. However, our experiments show that this is not always correct. In this paper, we modified the MinMax k-means algorithm by PSO to determine the proper values of parameters which can subject the algorithm to attain the lowest clustering errors. The proposed clustering method is tested on some favorite data sets in several different initial situations and is compared to the k-means algorithm and the original MinMax k-means algorithm. The experimental results indicate that our proposed algorithm can reach the lowest clustering errors automatically. PMID:27656201
Development of a Dependency Theory Toolbox for Database Design.
1987-12-01
published algorithms and theorems , and hand simulating these algorithms can be a tedious and error prone chore. Additionally, since the process of...to design and study relational databases exists in the form of published algorithms and theorems . However, hand simulating these algorithms can be a...published algorithms and theorems . Hand simulating these algorithms can be a tedious and error prone chore. Therefore, a toolbox of algorithms and
The 'Soil Cover App' - a new tool for fast determination of dead and living biomass on soil
NASA Astrophysics Data System (ADS)
Bauer, Thomas; Strauss, Peter; Riegler-Nurscher, Peter; Prankl, Johann; Prankl, Heinrich
2017-04-01
Worldwide many agricultural practices aim on soil protection strategies using living or dead biomass as soil cover. Especially for the case when management practices are focusing on soil erosion mitigation the effectiveness of these practices is directly driven by the amount of soil coverleft on the soil surface. Hence there is a need for quick and reliable methods of soil cover estimation not only for living biomass but particularly for dead biomass (mulch). Available methods for the soil cover measurement are either subjective, depending on an educated guess or time consuming, e.g., if the image is analysed manually at grid points. We therefore developed a mobile application using an algorithm based on entangled forest classification. The final output of the algorithm gives classified labels for each pixel of the input image as well as the percentage of each class which are living biomass, dead biomass, stones and soil. Our training dataset consisted of more than 250 different images and their annotated class information. Images have been taken in a set of different environmental conditions such as light, soil coverages from between 0% to 100%, different materials such as living plants, residues, straw material and stones. We compared the results provided by our mobile application with a data set of 180 images that had been manually annotated A comparison between both methods revealed a regression slope of 0.964 with a coefficient of determination R2 = 0.92, corresponding to an average error of about 4%. While average error of living plant classification was about 3%, dead residue classification resulted in an 8% error. Thus the new mobile application tool offers a fast and easy way to obtain information on the protective potential of a particular agricultural management site.
Anandakrishnan, Ramu; Onufriev, Alexey
2008-03-01
In statistical mechanics, the equilibrium properties of a physical system of particles can be calculated as the statistical average over accessible microstates of the system. In general, these calculations are computationally intractable since they involve summations over an exponentially large number of microstates. Clustering algorithms are one of the methods used to numerically approximate these sums. The most basic clustering algorithms first sub-divide the system into a set of smaller subsets (clusters). Then, interactions between particles within each cluster are treated exactly, while all interactions between different clusters are ignored. These smaller clusters have far fewer microstates, making the summation over these microstates, tractable. These algorithms have been previously used for biomolecular computations, but remain relatively unexplored in this context. Presented here, is a theoretical analysis of the error and computational complexity for the two most basic clustering algorithms that were previously applied in the context of biomolecular electrostatics. We derive a tight, computationally inexpensive, error bound for the equilibrium state of a particle computed via these clustering algorithms. For some practical applications, it is the root mean square error, which can be significantly lower than the error bound, that may be more important. We how that there is a strong empirical relationship between error bound and root mean square error, suggesting that the error bound could be used as a computationally inexpensive metric for predicting the accuracy of clustering algorithms for practical applications. An example of error analysis for such an application-computation of average charge of ionizable amino-acids in proteins-is given, demonstrating that the clustering algorithm can be accurate enough for practical purposes.
A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM.
Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei; Song, Houbing
2018-01-15
Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model's performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM's parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models' performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors.
Heuristics and Cognitive Error in Medical Imaging.
Itri, Jason N; Patel, Sohil H
2018-05-01
The field of cognitive science has provided important insights into mental processes underlying the interpretation of imaging examinations. Despite these insights, diagnostic error remains a major obstacle in the goal to improve quality in radiology. In this article, we describe several types of cognitive bias that lead to diagnostic errors in imaging and discuss approaches to mitigate cognitive biases and diagnostic error. Radiologists rely on heuristic principles to reduce complex tasks of assessing probabilities and predicting values into simpler judgmental operations. These mental shortcuts allow rapid problem solving based on assumptions and past experiences. Heuristics used in the interpretation of imaging studies are generally helpful but can sometimes result in cognitive biases that lead to significant errors. An understanding of the causes of cognitive biases can lead to the development of educational content and systematic improvements that mitigate errors and improve the quality of care provided by radiologists.
Methods for Addressing Technology-Induced Errors: The Current State
Dexheimer, J. W.; Hullin Lucay Cossio, C.; Gong, Y.; Jensen, S.; Kaipio, J.; Kennebeck, S.; Kirkendall, E.; Kushniruk, A. W.; Kuziemsky, C.; Marcilly, R.; Röhrig, R.; Saranto, K.; Senathirajah, Y.; Weber, J.; Takeda, H.
2016-01-01
Summary Objectives The objectives of this paper are to review and discuss the methods that are being used internationally to report on, mitigate, and eliminate technology-induced errors. Methods The IMIA Working Group for Health Informatics for Patient Safety worked together to review and synthesize some of the main methods and approaches associated with technology-induced error reporting, reduction, and mitigation. The work involved a review of the evidence-based literature as well as guideline publications specific to health informatics. Results The paper presents a rich overview of current approaches, issues, and methods associated with: (1) safe HIT design, (2) safe HIT implementation, (3) reporting on technology-induced errors, (4) technology-induced error analysis, and (5) health information technology (HIT) risk management. The work is based on research from around the world. Conclusions Internationally, researchers have been developing methods that can be used to identify, report on, mitigate, and eliminate technology-induced errors. Although there remain issues and challenges associated with the methodologies, they have been shown to improve the quality and safety of HIT. Since the first publications documenting technology-induced errors in healthcare in 2005, we have seen in a short 10 years researchers develop ways of identifying and addressing these types of errors. We have also seen organizations begin to use these approaches. Knowledge has been translated into practice in a short ten years whereas the norm for other research areas is of 20 years. PMID:27830228
Human Reliability and the Cost of Doing Business
NASA Technical Reports Server (NTRS)
DeMott, Diana
2014-01-01
Most businesses recognize that people will make mistakes and assume errors are just part of the cost of doing business, but does it need to be? Companies with high risk, or major consequences, should consider the effect of human error. In a variety of industries, Human Errors have caused costly failures and workplace injuries. These have included: airline mishaps, medical malpractice, administration of medication and major oil spills have all been blamed on human error. A technique to mitigate or even eliminate some of these costly human errors is the use of Human Reliability Analysis (HRA). Various methodologies are available to perform Human Reliability Assessments that range from identifying the most likely areas for concern to detailed assessments with human error failure probabilities calculated. Which methodology to use would be based on a variety of factors that would include: 1) how people react and act in different industries, and differing expectations based on industries standards, 2) factors that influence how the human errors could occur such as tasks, tools, environment, workplace, support, training and procedure, 3) type and availability of data and 4) how the industry views risk & reliability influences ( types of emergencies, contingencies and routine tasks versus cost based concerns). The Human Reliability Assessments should be the first step to reduce, mitigate or eliminate the costly mistakes or catastrophic failures. Using Human Reliability techniques to identify and classify human error risks allows a company more opportunities to mitigate or eliminate these risks and prevent costly failures.
A Dual Frequency Carrier Phase Error Difference Checking Algorithm for the GNSS Compass.
Liu, Shuo; Zhang, Lei; Li, Jian
2016-11-24
The performance of the Global Navigation Satellite System (GNSS) compass is related to the quality of carrier phase measurement. How to process the carrier phase error properly is important to improve the GNSS compass accuracy. In this work, we propose a dual frequency carrier phase error difference checking algorithm for the GNSS compass. The algorithm aims at eliminating large carrier phase error in dual frequency double differenced carrier phase measurement according to the error difference between two frequencies. The advantage of the proposed algorithm is that it does not need additional environment information and has a good performance on multiple large errors compared with previous research. The core of the proposed algorithm is removing the geographical distance from the dual frequency carrier phase measurement, then the carrier phase error is separated and detectable. We generate the Double Differenced Geometry-Free (DDGF) measurement according to the characteristic that the different frequency carrier phase measurements contain the same geometrical distance. Then, we propose the DDGF detection to detect the large carrier phase error difference between two frequencies. The theoretical performance of the proposed DDGF detection is analyzed. An open sky test, a manmade multipath test and an urban vehicle test were carried out to evaluate the performance of the proposed algorithm. The result shows that the proposed DDGF detection is able to detect large error in dual frequency carrier phase measurement by checking the error difference between two frequencies. After the DDGF detection, the accuracy of the baseline vector is improved in the GNSS compass.
Aqil, M; Kita, I; Yano, A; Nishiyama, S
2006-01-01
It is widely accepted that an efficient flood alarm system may significantly improve public safety and mitigate economical damages caused by inundations. In this paper, a modified adaptive neuro-fuzzy system is proposed to modify the traditional neuro-fuzzy model. This new method employs a rule-correction based algorithm to replace the error back propagation algorithm that is employed by the traditional neuro-fuzzy method in backward pass calculation. The final value obtained during the backward pass calculation using the rule-correction algorithm is then considered as a mapping function of the learning mechanism of the modified neuro-fuzzy system. Effectiveness of the proposed identification technique is demonstrated through a simulation study on the flood series of the Citarum River in Indonesia. The first four-year data (1987 to 1990) was used for model training/calibration, while the other remaining data (1991 to 2002) was used for testing the model. The number of antecedent flows that should be included in the input variables was determined by two statistical methods, i.e. autocorrelation and partial autocorrelation between the variables. Performance accuracy of the model was evaluated in terms of two statistical indices, i.e. mean average percentage error and root mean square error. The algorithm was developed in a decision support system environment in order to enable users to process the data. The decision support system is found to be useful due to its interactive nature, flexibility in approach, and evolving graphical features, and can be adopted for any similar situation to predict the streamflow. The main data processing includes gauging station selection, input generation, lead-time selection/generation, and length of prediction. This program enables users to process the flood data, to train/test the model using various input options, and to visualize results. The program code consists of a set of files, which can be modified as well to match other purposes. This program may also serve as a tool for real-time flood monitoring and process control. The results indicate that the modified neuro-fuzzy model applied to the flood prediction seems to have reached encouraging results for the river basin under examination. The comparison of the modified neuro-fuzzy predictions with the observed data was satisfactory, where the error resulted from the testing period was varied between 2.632% and 5.560%. Thus, this program may also serve as a tool for real-time flood monitoring and process control.
A quantitative comparison of soil moisture inversion algorithms
NASA Technical Reports Server (NTRS)
Zyl, J. J. van; Kim, Y.
2001-01-01
This paper compares the performance of four bare surface radar soil moisture inversion algorithms in the presence of measurement errors. The particular errors considered include calibration errors, system thermal noise, local topography and vegetation cover.
Halftoning Algorithms and Systems.
1996-08-01
TERMS 15. NUMBER IF PAGESi. Halftoning algorithms; error diffusions ; color printing; topographic maps 16. PRICE CODE 17. SECURITY CLASSIFICATION 18...graylevels for each screen level. In the case of error diffusion algorithms, the calibration procedure using the new centering concept manifests itself as a...Novel Centering Concept for Overlapping Correction Paper / Transparency (Patent Applied 5/94)I * Applications To Error Diffusion * To Dithering (IS&T
NASA Technical Reports Server (NTRS)
Fiske, David R.
2004-01-01
In an earlier paper, Misner (2004, Class. Quant. Grav., 21, S243) presented a novel algorithm for computing the spherical harmonic components of data represented on a cubic grid. I extend Misner s original analysis by making detailed error estimates of the numerical errors accrued by the algorithm, by using symmetry arguments to suggest a more efficient implementation scheme, and by explaining how the algorithm can be applied efficiently on data with explicit reflection symmetries.
New Syndrome Decoding Techniques for the (n, K) Convolutional Codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1983-01-01
This paper presents a new syndrome decoding algorithm for the (n,k) convolutional codes (CC) which differs completely from an earlier syndrome decoding algorithm of Schalkwijk and Vinck. The new algorithm is based on the general solution of the syndrome equation, a linear Diophantine equation for the error polynomial vector E(D). The set of Diophantine solutions is a coset of the CC. In this error coset a recursive, Viterbi-like algorithm is developed to find the minimum weight error vector (circumflex)E(D). An example, illustrating the new decoding algorithm, is given for the binary nonsystemmatic (3,1)CC.
Simplified Syndrome Decoding of (n, 1) Convolutional Codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1983-01-01
A new syndrome decoding algorithm for the (n, 1) convolutional codes (CC) that is different and simpler than the previous syndrome decoding algorithm of Schalkwijk and Vinck is presented. The new algorithm uses the general solution of the polynomial linear Diophantine equation for the error polynomial vector E(D). This set of Diophantine solutions is a coset of the CC space. A recursive or Viterbi-like algorithm is developed to find the minimum weight error vector cirumflex E(D) in this error coset. An example illustrating the new decoding algorithm is given for the binary nonsymmetric (2,1)CC.
An improved reversible data hiding algorithm based on modification of prediction errors
NASA Astrophysics Data System (ADS)
Jafar, Iyad F.; Hiary, Sawsan A.; Darabkh, Khalid A.
2014-04-01
Reversible data hiding algorithms are concerned with the ability of hiding data and recovering the original digital image upon extraction. This issue is of interest in medical and military imaging applications. One particular class of such algorithms relies on the idea of histogram shifting of prediction errors. In this paper, we propose an improvement over one popular algorithm in this class. The improvement is achieved by employing a different predictor, the use of more bins in the prediction error histogram in addition to multilevel embedding. The proposed extension shows significant improvement over the original algorithm and its variations.
Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClean, Jarrod R.; Kimchi-Schwartz, Mollie E.; Carter, Jonathan
Using quantum devices supported by classical computational resources is a promising approach to quantum-enabled computation. One powerful example of such a hybrid quantum-classical approach optimized for classically intractable eigenvalue problems is the variational quantum eigensolver, built to utilize quantum resources for the solution of eigenvalue problems and optimizations with minimal coherence time requirements by leveraging classical computational resources. These algorithms have been placed as leaders among the candidates for the first to achieve supremacy over classical computation. Here, we provide evidence for the conjecture that variational approaches can automatically suppress even nonsystematic decoherence errors by introducing an exactly solvable channelmore » model of variational state preparation. Moreover, we develop a more general hierarchy of measurement and classical computation that allows one to obtain increasingly accurate solutions by leveraging additional measurements and classical resources. In conclusion, we demonstrate numerically on a sample electronic system that this method both allows for the accurate determination of excited electronic states as well as reduces the impact of decoherence, without using any additional quantum coherence time or formal error-correction codes.« less
Tactically Extensible and Modular Communications - X-Band TEMCOM-X
NASA Technical Reports Server (NTRS)
Sims, William Herbert; Varnavas, Kosta A.; Casas, Joseph; Spehn, Stephen L.; Kendrick, Neal; Cross, Stephen; Sanderson, Paul; Booth, Janet C.
2015-01-01
This paper will discuss a proposed CubeSat size (3U) telemetry system concept being developed at Marshall Space Flight Center (MSFC) in cooperation with the U.S. Department of the Army and Dynetics Corporation. This telemetry system incorporates efficient, high-bandwidth communications by developing flight-ready, low-cost, Protoflight software defined radio (SDR) and Electronically Steerable Patch Array (ESPA) antenna subsystems for use on platforms as small as CubeSats and unmanned aircraft systems (UASs). The current telemetry system is slightly larger in dimension of footprint than required to fit within a 0.5U CubeSat volume. Extensible and modular communications for CubeSat technologies will partially mitigate current capability gaps between traditional strategic space platforms and lower-cost small satellite solutions. Higher bandwidth capacity will enable high-volume, low error-rate data transfer to and from tactical forces or sensors operating in austere locations (e.g., direct imagery download, unattended ground sensor data exfiltration, interlink communications), while also providing additional bandwidth and error correction margin to accommodate more complex encryption algorithms and higher user volume.
QR images: optimized image embedding in QR codes.
Garateguy, Gonzalo J; Arce, Gonzalo R; Lau, Daniel L; Villarreal, Ofelia P
2014-07-01
This paper introduces the concept of QR images, an automatic method to embed QR codes into color images with bounded probability of detection error. These embeddings are compatible with standard decoding applications and can be applied to any color image with full area coverage. The QR information bits are encoded into the luminance values of the image, taking advantage of the immunity of QR readers against local luminance disturbances. To mitigate the visual distortion of the QR image, the algorithm utilizes halftoning masks for the selection of modified pixels and nonlinear programming techniques to locally optimize luminance levels. A tractable model for the probability of error is developed and models of the human visual system are considered in the quality metric used to optimize the luminance levels of the QR image. To minimize the processing time, the optimization techniques proposed to consider the mechanics of a common binarization method and are designed to be amenable for parallel implementations. Experimental results show the graceful degradation of the decoding rate and the perceptual quality as a function the embedding parameters. A visual comparison between the proposed and existing methods is presented.
Receiver IQ mismatch estimation in PDM CO-OFDM system using training symbol
NASA Astrophysics Data System (ADS)
Peng, Dandan; Ma, Xiurong; Yao, Xin; Zhang, Haoyuan
2017-07-01
Receiver in-phase/quadrature (IQ) mismatch is hard to mitigate at the receiver via using conventional method in polarization division multiplexed (PDM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. In this paper, a novel training symbol structure is proposed to estimate IQ mismatch and channel distortion. Combined this structure with Gram Schmidt orthogonalization procedure (GSOP) algorithm, we can get lower bit error rate (BER). Meanwhile, based on this structure one estimation method is deduced in frequency domain which can achieve the estimation of IQ mismatch and channel distortion independently and improve the system performance obviously. Numerical simulation shows that the proposed two methods have better performance than compared method at 100 Gb/s after 480 km fiber transmission. Besides, the calculation complexity is also analyzed.
Wilk, Szymon; Michalowski, Wojtek; Michalowski, Martin; Farion, Ken; Hing, Marisela Mainegra; Mohapatra, Subhra
2013-04-01
We propose a new method to mitigate (identify and address) adverse interactions (drug-drug or drug-disease) that occur when a patient with comorbid diseases is managed according to two concurrently applied clinical practice guidelines (CPGs). A lack of methods to facilitate the concurrent application of CPGs severely limits their use in clinical practice and the development of such methods is one of the grand challenges for clinical decision support. The proposed method responds to this challenge. We introduce and formally define logical models of CPGs and other related concepts, and develop the mitigation algorithm that operates on these concepts. In the algorithm we combine domain knowledge encoded as interaction and revision operators using the constraint logic programming (CLP) paradigm. The operators characterize adverse interactions and describe revisions to logical models required to address these interactions, while CLP allows us to efficiently solve the logical models - a solution represents a feasible therapy that may be safely applied to a patient. The mitigation algorithm accepts two CPGs and available (likely incomplete) patient information. It reports whether mitigation has been successful or not, and on success it gives a feasible therapy and points at identified interactions (if any) together with the revisions that address them. Thus, we consider the mitigation algorithm as an alerting tool to support a physician in the concurrent application of CPGs that can be implemented as a component of a clinical decision support system. We illustrate our method in the context of two clinical scenarios involving a patient with duodenal ulcer who experiences an episode of transient ischemic attack. Copyright © 2013 Elsevier Inc. All rights reserved.
Error mitigation for CCSD compressed imager data
NASA Astrophysics Data System (ADS)
Gladkova, Irina; Grossberg, Michael; Gottipati, Srikanth; Shahriar, Fazlul; Bonev, George
2009-08-01
To efficiently use the limited bandwidth available on the downlink from satellite to ground station, imager data is usually compressed before transmission. Transmission introduces unavoidable errors, which are only partially removed by forward error correction and packetization. In the case of the commonly used CCSD Rice-based compression, it results in a contiguous sequence of dummy values along scan lines in a band of the imager data. We have developed a method capable of using the image statistics to provide a principled estimate of the missing data. Our method outperforms interpolation yet can be performed fast enough to provide uninterrupted data flow. The estimation of the lost data provides significant value to end users who may use only part of the data, may not have statistical tools, or lack the expertise to mitigate the impact of the lost data. Since the locations of the lost data will be clearly marked as meta-data in the HDF or NetCDF header, experts who prefer to handle error mitigation themselves will be free to use or ignore our estimates as they see fit.
Uncertainty Analysis in Large Area Aboveground Biomass Mapping
NASA Astrophysics Data System (ADS)
Baccini, A.; Carvalho, L.; Dubayah, R.; Goetz, S. J.; Friedl, M. A.
2011-12-01
Satellite and aircraft-based remote sensing observations are being more frequently used to generate spatially explicit estimates of aboveground carbon stock of forest ecosystems. Because deforestation and forest degradation account for circa 10% of anthropogenic carbon emissions to the atmosphere, policy mechanisms are increasingly recognized as a low-cost mitigation option to reduce carbon emission. They are, however, contingent upon the capacity to accurately measures carbon stored in the forests. Here we examine the sources of uncertainty and error propagation in generating maps of aboveground biomass. We focus on characterizing uncertainties associated with maps at the pixel and spatially aggregated national scales. We pursue three strategies to describe the error and uncertainty properties of aboveground biomass maps, including: (1) model-based assessment using confidence intervals derived from linear regression methods; (2) data-mining algorithms such as regression trees and ensembles of these; (3) empirical assessments using independently collected data sets.. The latter effort explores error propagation using field data acquired within satellite-based lidar (GLAS) acquisitions versus alternative in situ methods that rely upon field measurements that have not been systematically collected for this purpose (e.g. from forest inventory data sets). A key goal of our effort is to provide multi-level characterizations that provide both pixel and biome-level estimates of uncertainties at different scales.
NASA Astrophysics Data System (ADS)
Gou, Y.
2017-12-01
Quantitative Precipitation Estimation (QPE) is one of the important applications of weather radars. However, in complex terrain such as Tibetan Plateau, it is a challenging task to obtain an optimal Z-R relation due to the complex space time variability in precipitation microphysics. This paper develops two radar QPE schemes respectively based on Reflectivity Threshold (RT) and Storm Cell Identification and Tracking (SCIT) algorithms using observations from 11 Doppler weather radars and 3294 rain gauges over the Eastern Tibetan Plateau (ETP). These two QPE methodologies are evaluated extensively using four precipitation events that are characterized by different meteorological features. Precipitation characteristics of independent storm cells associated with these four events, as well as the storm-scale differences, are investigated using short-term vertical profiles of reflectivity clusters. Evaluation results show that the SCIT-based rainfall approach performs better than the simple RT-based method in all precipitation events in terms of score comparison using validation gauge measurements as references, with higher correlation (than 75.74%), lower mean absolute error (than 82.38%) and root-mean-square error (than 89.04%) of all the comparative frames. It is also found that the SCIT-based approach can effectively mitigate the radar QPE local error and represent precipitation spatiotemporal variability better than RT-based scheme.
Local-search based prediction of medical image registration error
NASA Astrophysics Data System (ADS)
Saygili, Görkem
2018-03-01
Medical image registration is a crucial task in many different medical imaging applications. Hence, considerable amount of work has been published recently that aim to predict the error in a registration without any human effort. If provided, these error predictions can be used as a feedback to the registration algorithm to further improve its performance. Recent methods generally start with extracting image-based and deformation-based features, then apply feature pooling and finally train a Random Forest (RF) regressor to predict the real registration error. Image-based features can be calculated after applying a single registration but provide limited accuracy whereas deformation-based features such as variation of deformation vector field may require up to 20 registrations which is a considerably high time-consuming task. This paper proposes to use extracted features from a local search algorithm as image-based features to estimate the error of a registration. The proposed method comprises a local search algorithm to find corresponding voxels between registered image pairs and based on the amount of shifts and stereo confidence measures, it predicts the amount of registration error in millimetres densely using a RF regressor. Compared to other algorithms in the literature, the proposed algorithm does not require multiple registrations, can be efficiently implemented on a Graphical Processing Unit (GPU) and can still provide highly accurate error predictions in existence of large registration error. Experimental results with real registrations on a public dataset indicate a substantially high accuracy achieved by using features from the local search algorithm.
Research on wind field algorithm of wind lidar based on BP neural network and grey prediction
NASA Astrophysics Data System (ADS)
Chen, Yong; Chen, Chun-Li; Luo, Xiong; Zhang, Yan; Yang, Ze-hou; Zhou, Jie; Shi, Xiao-ding; Wang, Lei
2018-01-01
This paper uses the BP neural network and grey algorithm to forecast and study radar wind field. In order to reduce the residual error in the wind field prediction which uses BP neural network and grey algorithm, calculating the minimum value of residual error function, adopting the residuals of the gray algorithm trained by BP neural network, using the trained network model to forecast the residual sequence, using the predicted residual error sequence to modify the forecast sequence of the grey algorithm. The test data show that using the grey algorithm modified by BP neural network can effectively reduce the residual value and improve the prediction precision.
NASA Technical Reports Server (NTRS)
Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.;
2006-01-01
A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5 -resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%-80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5deg resolution is relatively small (less than 6% at 5 mm day.1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%-35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%-15% at 5 mm day.1, with proportionate reductions in latent heating sampling errors.
Injecting Errors for Testing Built-In Test Software
NASA Technical Reports Server (NTRS)
Gender, Thomas K.; Chow, James
2010-01-01
Two algorithms have been conceived to enable automated, thorough testing of Built-in test (BIT) software. The first algorithm applies to BIT routines that define pass/fail criteria based on values of data read from such hardware devices as memories, input ports, or registers. This algorithm simulates effects of errors in a device under test by (1) intercepting data from the device and (2) performing AND operations between the data and the data mask specific to the device. This operation yields values not expected by the BIT routine. This algorithm entails very small, permanent instrumentation of the software under test (SUT) for performing the AND operations. The second algorithm applies to BIT programs that provide services to users application programs via commands or callable interfaces and requires a capability for test-driver software to read and write the memory used in execution of the SUT. This algorithm identifies all SUT code execution addresses where errors are to be injected, then temporarily replaces the code at those addresses with small test code sequences to inject latent severe errors, then determines whether, as desired, the SUT detects the errors and recovers
Stochastic characterization of phase detection algorithms in phase-shifting interferometry
Munteanu, Florin
2016-11-01
Phase-shifting interferometry (PSI) is the preferred non-contact method for profiling sub-nanometer surfaces. Based on monochromatic light interference, the method computes the surface profile from a set of interferograms collected at separate stepping positions. Errors in the estimated profile are introduced when these positions are not located correctly. In order to cope with this problem, various algorithms that minimize the effects of certain types of stepping errors (linear, sinusoidal, etc.) have been developed. Despite the relatively large number of algorithms suggested in the literature, there is no unified way of characterizing their performance when additional unaccounted random errors are present. Here,more » we suggest a procedure for quantifying the expected behavior of each algorithm in the presence of independent and identically distributed (i.i.d.) random stepping errors, which can occur in addition to the systematic errors for which the algorithm has been designed. As a result, the usefulness of this method derives from the fact that it can guide the selection of the best algorithm for specific measurement situations.« less
Comparison of a single-view and a double-view aerosol optical depth retrieval algorithm
NASA Astrophysics Data System (ADS)
Henderson, Bradley G.; Chylek, Petr
2003-11-01
We compare the results of a single-view and a double-view aerosol optical depth (AOD) retrieval algorithm applied to image pairs acquired over NASA Stennis Space Center, Mississippi. The image data were acquired by the Department of Energy's (DOE) Multispectral Thermal Imager (MTI), a pushbroom satellite imager with 15 bands from the visible to the thermal infrared. MTI has the ability to acquire imagery in pairs in which the first image is a near-nadir view and the second image is off-nadir with a zenith angle of approximately 60°. A total of 15 image pairs were used in the analysis. For a given image pair, AOD retrieval is performed twice---once using a single-view algorithm applied to the near-nadir image, then again using a double-view algorithm. Errors for both retrievals are computed by comparing the results to AERONET AOD measurements obtained at the same time and place. The single-view algorithm showed an RMS error about the mean of 0.076 in AOD units, whereas the double-view algorithm showed a modest improvement with an RMS error of 0.06. The single-view errors show a positive bias which is presumed to be a result of the empirical relationship used to determine ground reflectance in the visible. A plot of AOD error of the double-view algorithm versus time shows a noticeable trend which is interpreted to be a calibration drift. When this trend is removed, the RMS error of the double-view algorithm drops to 0.030. The single-view algorithm qualitatively appears to perform better during the spring and summer whereas the double-view algorithm seems to be less sensitive to season.
A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM
Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei
2018-01-01
Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model’s performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM’s parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models’ performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors. PMID:29342942
G-Guidance Interface Design for Small Body Mission Simulation
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Carson, John; Phan, Linh
2008-01-01
The G-Guidance software implements a guidance and control (G and C) algorithm for small-body, autonomous proximity operations, developed under the Small Body GN and C task at JPL. The software is written in Matlab and interfaces with G-OPT, a JPL-developed optimization package written in C that provides G-Guidance with guaranteed convergence to a solution in a finite computation time with a prescribed accuracy. The resulting program is computationally efficient and is a prototype of an onboard, real-time algorithm for autonomous guidance and control. Two thruster firing schemes are available in G-Guidance, allowing tailoring of the software for specific mission maneuvers. For example, descent, landing, or rendezvous benefit from a thruster firing at the maneuver termination to mitigate velocity errors. Conversely, ascent or separation maneuvers benefit from an immediate firing to avoid potential drift toward a second body. The guidance portion of this software explicitly enforces user-defined control constraints and thruster silence times while minimizing total fuel usage. This program is currently specialized to small-body proximity operations, but the underlying method can be generalized to other applications.
Unified framework for automated iris segmentation using distantly acquired face images.
Tan, Chun-Wei; Kumar, Ajay
2012-09-01
Remote human identification using iris biometrics has high civilian and surveillance applications and its success requires the development of robust segmentation algorithm to automatically extract the iris region. This paper presents a new iris segmentation framework which can robustly segment the iris images acquired using near infrared or visible illumination. The proposed approach exploits multiple higher order local pixel dependencies to robustly classify the eye region pixels into iris or noniris regions. Face and eye detection modules have been incorporated in the unified framework to automatically provide the localized eye region from facial image for iris segmentation. We develop robust postprocessing operations algorithm to effectively mitigate the noisy pixels caused by the misclassification. Experimental results presented in this paper suggest significant improvement in the average segmentation errors over the previously proposed approaches, i.e., 47.5%, 34.1%, and 32.6% on UBIRIS.v2, FRGC, and CASIA.v4 at-a-distance databases, respectively. The usefulness of the proposed approach is also ascertained from recognition experiments on three different publicly available databases.
Flexible methods for segmentation evaluation: results from CT-based luggage screening.
Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry
2014-01-01
Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms' behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms.
NASA Astrophysics Data System (ADS)
Torres, Jhon James Granada; Soto, Ana María Cárdenas; González, Neil Guerrero
2016-10-01
In the context of gridless optical multicarrier systems, we propose a method for intercarrier interference (ICI) mitigation which allows bit error correction in scenarios of nonspectral flatness between the subcarriers composing the multicarrier system and sub-Nyquist carrier spacing. We propose a hybrid ICI mitigation technique which exploits the advantages of signal equalization at both levels: the physical level for any digital and analog pulse shaping, and the bit-data level and its ability to incorporate advanced correcting codes. The concatenation of these two complementary techniques consists of a nondata-aided equalizer applied to each optical subcarrier, and a hard-decision forward error correction applied to the sequence of bits distributed along the optical subcarriers regardless of prior subchannel quality assessment as performed in orthogonal frequency-division multiplexing modulations for the implementation of the bit-loading technique. The impact of the ICI is systematically evaluated in terms of bit-error-rate as a function of the carrier frequency spacing and the roll-off factor of the digital pulse-shaping filter for a simulated 3×32-Gbaud single-polarization quadrature phase shift keying Nyquist-wavelength division multiplexing system. After the ICI mitigation, a back-to-back error-free decoding was obtained for sub-Nyquist carrier spacings of 28.5 and 30 GHz and roll-off values of 0.1 and 0.4, respectively.
Kumaravel, Rasadurai; Narayanaswamy, Kumaratharan
2015-01-01
Multi carrier code division multiple access (MC-CDMA) system is a promising multi carrier modulation (MCM) technique for high data rate wireless communication over frequency selective fading channels. MC-CDMA system is a combination of code division multiple access (CDMA) and orthogonal frequency division multiplexing (OFDM). The OFDM parts reduce multipath fading and inter symbol interference (ISI) and the CDMA part increases spectrum utilization. Advantages of this technique are its robustness in case of multipath propagation and improve security with the minimize ISI. Nevertheless, due to the loss of orthogonality at the receiver in a mobile environment, the multiple access interference (MAI) appears. The MAI is one of the factors that degrade the bit error rate (BER) performance of MC-CDMA system. The multiuser detection (MUD) and turbo coding are the two dominant techniques for enhancing the performance of the MC-CDMA systems in terms of BER as a solution of overcome to MAI effects. In this paper a low complexity iterative soft sensitive bits algorithm (SBA) aided logarithmic-Maximum a-Posteriori algorithm (Log MAP) based turbo MUD is proposed. Simulation results show that the proposed method provides better BER performance with low complexity decoding, by mitigating the detrimental effects of MAI. PMID:25714917
Hromadka, T.V.; Guymon, G.L.
1985-01-01
An algorithm is presented for the numerical solution of the Laplace equation boundary-value problem, which is assumed to apply to soil freezing or thawing. The Laplace equation is numerically approximated by the complex-variable boundary-element method. The algorithm aids in reducing integrated relative error by providing a true measure of modeling error along the solution domain boundary. This measure of error can be used to select locations for adding, removing, or relocating nodal points on the boundary or to provide bounds for the integrated relative error of unknown nodal variable values along the boundary.
Motion correction for improved estimation of heart rate using a visual spectrum camera
NASA Astrophysics Data System (ADS)
Tarbox, Elizabeth A.; Rios, Christian; Kaur, Balvinder; Meyer, Shaun; Hirt, Lauren; Tran, Vy; Scott, Kaitlyn; Ikonomidou, Vasiliki
2017-05-01
Heart rate measurement using a visual spectrum recording of the face has drawn interest over the last few years as a technology that can have various health and security applications. In our previous work, we have shown that it is possible to estimate the heart beat timing accurately enough to perform heart rate variability analysis for contactless stress detection. However, a major confounding factor in this approach is the presence of movement, which can interfere with the measurements. To mitigate the effects of movement, in this work we propose the use of face detection and tracking based on the Karhunen-Loewe algorithm in order to counteract measurement errors introduced by normal subject motion, as expected during a common seated conversation setting. We analyze the requirements on image acquisition for the algorithm to work, and its performance under different ranges of motion, changes of distance to the camera, as well and the effect of illumination changes due to different positioning with respect to light sources on the acquired signal. Our results suggest that the effect of face tracking on visual-spectrum based cardiac signal estimation depends on the amplitude of the motion. While for larger-scale conversation-induced motion it can significantly improve estimation accuracy, with smaller-scale movements, such as the ones caused by breathing or talking without major movement errors in facial tracking may interfere with signal estimation. Overall, employing facial tracking is a crucial step in adapting this technology to real-life situations with satisfactory results.
New syndrome decoding techniques for the (n, k) convolutional codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1984-01-01
This paper presents a new syndrome decoding algorithm for the (n, k) convolutional codes (CC) which differs completely from an earlier syndrome decoding algorithm of Schalkwijk and Vinck. The new algorithm is based on the general solution of the syndrome equation, a linear Diophantine equation for the error polynomial vector E(D). The set of Diophantine solutions is a coset of the CC. In this error coset a recursive, Viterbi-like algorithm is developed to find the minimum weight error vector (circumflex)E(D). An example, illustrating the new decoding algorithm, is given for the binary nonsystemmatic (3, 1)CC. Previously announced in STAR as N83-34964
Dwell time method based on Richardson-Lucy algorithm
NASA Astrophysics Data System (ADS)
Jiang, Bo; Ma, Zhen
2017-10-01
When the noise in the surface error data given by the interferometer has no effect on the iterative convergence of the RL algorithm, the RL algorithm for deconvolution in image restoration can be applied to the CCOS model to solve the dwell time. By extending the initial error function on the edge and denoising the noise in the surface error data given by the interferometer , it makes the result more available . The simulation results show the final residual error 10.7912nm nm in PV and 0.4305 nm in RMS, when the initial surface error is 107.2414 nm in PV and 15.1331 nm in RMS. The convergence rates of the PV and RMS values can reach up to 89.9% and 96.0%, respectively . The algorithms can satisfy the requirement of fabrication very well.
Ogawa, Takahiro; Haseyama, Miki
2013-03-01
A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.
An Analysis of Computational Errors in the Use of Division Algorithms by Fourth-Grade Students.
ERIC Educational Resources Information Center
Stefanich, Greg P.; Rokusek, Teri
1992-01-01
Presents a study that analyzed errors made by randomly chosen fourth grade students (25 of 57) while using the division algorithm and investigated the effect of remediation on identified systematic errors. Results affirm that error pattern diagnosis and directed remediation lead to new learning and long-term retention. (MDH)
NASA Astrophysics Data System (ADS)
Liu, Wei; Sneeuw, Nico; Jiang, Weiping
2017-04-01
GRACE mission has contributed greatly to the temporal gravity field monitoring in the past few years. However, ocean tides cause notable alias errors for single-pair spaceborne gravimetry missions like GRACE in two ways. First, undersampling from satellite orbit induces the aliasing of high-frequency tidal signals into the gravity signal. Second, ocean tide models used for de-aliasing in the gravity field retrieval carry errors, which will directly alias into the recovered gravity field. GRACE satellites are in non-repeat orbit, disabling the alias error spectral estimation based on the repeat period. Moreover, the gravity field recovery is conducted in non-strictly monthly interval and has occasional gaps, which result in an unevenly sampled time series. In view of the two aspects above, we investigate the data-driven method to mitigate the ocean tide alias error in a post-processing mode.
Error Mitigation for Short-Depth Quantum Circuits
NASA Astrophysics Data System (ADS)
Temme, Kristan; Bravyi, Sergey; Gambetta, Jay M.
2017-11-01
Two schemes are presented that mitigate the effect of errors and decoherence in short-depth quantum circuits. The size of the circuits for which these techniques can be applied is limited by the rate at which the errors in the computation are introduced. Near-term applications of early quantum devices, such as quantum simulations, rely on accurate estimates of expectation values to become relevant. Decoherence and gate errors lead to wrong estimates of the expectation values of observables used to evaluate the noisy circuit. The two schemes we discuss are deliberately simple and do not require additional qubit resources, so to be as practically relevant in current experiments as possible. The first method, extrapolation to the zero noise limit, subsequently cancels powers of the noise perturbations by an application of Richardson's deferred approach to the limit. The second method cancels errors by resampling randomized circuits according to a quasiprobability distribution.
Microscopic saw mark analysis: an empirical approach.
Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Peters, Charles
2015-01-01
Microscopic saw mark analysis is a well published and generally accepted qualitative analytical method. However, little research has focused on identifying and mitigating potential sources of error associated with the method. The presented study proposes the use of classification trees and random forest classifiers as an optimal, statistically sound approach to mitigate the potential for error of variability and outcome error in microscopic saw mark analysis. The statistical model was applied to 58 experimental saw marks created with four types of saws. The saw marks were made in fresh human femurs obtained through anatomical gift and were analyzed using a Keyence digital microscope. The statistical approach weighed the variables based on discriminatory value and produced decision trees with an associated outcome error rate of 8.62-17.82%. © 2014 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Sabir, Zeeshan; Babar, M. Inayatullah; Shah, Syed Waqar
2012-12-01
Mobile adhoc network (MANET) refers to an arrangement of wireless mobile nodes that have the tendency of dynamically and freely self-organizing into temporary and arbitrary network topologies. Orthogonal frequency division multiplexing (OFDM) is the foremost choice for MANET system designers at the Physical Layer due to its inherent property of high data rate transmission that corresponds to its lofty spectrum efficiency. The downside of OFDM includes its sensitivity to synchronization errors (frequency offsets and symbol time). Most of the present day techniques employing OFDM for data transmission support mobility as one of the primary features. This mobility causes small frequency offsets due to the production of Doppler frequencies. It results in intercarrier interference (ICI) which degrades the signal quality due to a crosstalk between the subcarriers of OFDM symbol. An efficient frequency-domain block-type pilot-assisted ICI mitigation scheme is proposed in this article which nullifies the effect of channel frequency offsets from the received OFDM symbols. Second problem addressed in this article is the noise effect induced by different sources into the received symbol increasing its bit error rate and making it unsuitable for many applications. Forward-error-correcting turbo codes have been employed into the proposed model which adds redundant bits into the system which are later used for error detection and correction purpose. At the receiver end, maximum a posteriori (MAP) decoding algorithm is implemented using two component MAP decoders. These decoders tend to exchange interleaved extrinsic soft information among each other in the form of log likelihood ratio improving the previous estimate regarding the decoded bit in each iteration.
NASA Astrophysics Data System (ADS)
Son, Young-Sun; Kim, Hyun-cheol
2018-05-01
Chlorophyll (Chl) concentration is one of the key indicators identifying changes in the Arctic marine ecosystem. However, current Chl algorithms are not accurate in the Arctic Ocean due to different bio-optical properties from those in the lower latitude oceans. In this study, we evaluated the current Chl algorithms and analyzed the cause of the error in the western coastal waters of Svalbard, which are known to be sensitive to climate change. The NASA standard algorithms showed to overestimate the Chl concentration in the region. This was due to the high non-algal particles (NAP) absorption and colored dissolved organic matter (CDOM) variability at the blue wavelength. In addition, at lower Chl concentrations (0.1-0.3 mg m-3), chlorophyll-specific absorption coefficients were ∼2.3 times higher than those of other Arctic oceans. This was another reason for the overestimation of Chl concentration. OC4 algorithm-based regionally tuned-Svalbard Chl (SC4) algorithm for retrieving more accurate Chl estimates reduced the mean absolute percentage difference (APD) error from 215% to 49%, the mean relative percentage difference (RPD) error from 212% to 16%, and the normalized root mean square (RMS) error from 211% to 68%. This region has abundant suspended matter due to the melting of tidal glaciers. We evaluated the performance of total suspended matter (TSM) algorithms. Previous published TSM algorithms generally overestimated the TSM concentration in this region. The Svalbard TSM-single band algorithm for low TSM range (ST-SB-L) decreased the APD and RPD errors by 52% and 14%, respectively, but the RMS error still remained high (105%).
The Error Structure of the SMAP Single and Dual Channel Soil Moisture Retrievals
NASA Astrophysics Data System (ADS)
Dong, Jianzhi; Crow, Wade T.; Bindlish, Rajat
2018-01-01
Knowledge of the temporal error structure for remotely sensed surface soil moisture retrievals can improve our ability to exploit them for hydrologic and climate studies. This study employs a triple collocation analysis to investigate both the total variance and temporal autocorrelation of errors in Soil Moisture Active and Passive (SMAP) products generated from two separate soil moisture retrieval algorithms, the vertically polarized brightness temperature-based single-channel algorithm (SCA-V, the current baseline SMAP algorithm) and the dual-channel algorithm (DCA). A key assumption made in SCA-V is that real-time vegetation opacity can be accurately captured using only a climatology for vegetation opacity. Results demonstrate that while SCA-V generally outperforms DCA, SCA-V can produce larger total errors when this assumption is significantly violated by interannual variability in vegetation health and biomass. Furthermore, larger autocorrelated errors in SCA-V retrievals are found in areas with relatively large vegetation opacity deviations from climatological expectations. This implies that a significant portion of the autocorrelated error in SCA-V is attributable to the violation of its vegetation opacity climatology assumption and suggests that utilizing a real (as opposed to climatological) vegetation opacity time series in the SCA-V algorithm would reduce the magnitude of autocorrelated soil moisture retrieval errors.
DOT National Transportation Integrated Search
2010-02-12
Information provided through analysis of runway incursions is useful in many ways. Analysis of the errors made by pilots, controllers, and vehicle drivers is the first step toward developing error mitigation strategies. Furthermore, successful design...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caillet, V; Colvill, E; Royal North Shore Hospital, St Leonards, Sydney
2016-06-15
Purpose: Multi-leaf collimator (MLC) tracking is being clinically pioneered to continuously compensate for thoracic and abdominal motion during radiotherapy. The purpose of this work is to characterize the performance of two MLC tracking algorithms for cancer radiotherapy, based on a direct optimization and a piecewise leaf fitting approach respectively. Methods: To test the algorithms, both physical and in silico experiments were performed. Previously published high and low modulation VMAT plans for lung and prostate cancer cases were used along with eight patient-measured organ-specific trajectories. For both MLC tracking algorithm, the plans were run with their corresponding patient trajectories. The physicalmore » experiments were performed on a Trilogy Varian linac and a programmable phantom (HexaMotion platform). For each MLC tracking algorithm, plan and patient trajectory, the tracking accuracy was quantified as the difference in aperture area between ideal and fitted MLC. To compare algorithms, the average cumulative tracking error area for each experiment was calculated. The two-sample Kolmogorov-Smirnov (KS) test was used to evaluate the cumulative tracking errors between algorithms. Results: Comparison of tracking errors for the physical and in silico experiments showed minor differences between the two algorithms. The KS D-statistics for the physical experiments were below 0.05 denoting no significant differences between the two distributions pattern and the average error area (direct optimization/piecewise leaf-fitting) were comparable (66.64 cm2/65.65 cm2). For the in silico experiments, the KS D-statistics were below 0.05 and the average errors area were also equivalent (49.38 cm2/48.98 cm2). Conclusion: The comparison between the two leaf fittings algorithms demonstrated no significant differences in tracking errors, neither in a clinically realistic environment nor in silico. The similarities in the two independent algorithms give confidence in the use of either algorithm for clinical implementation.« less
NASA Technical Reports Server (NTRS)
Truong, T. K.; Hsu, I. S.; Eastman, W. L.; Reed, I. S.
1987-01-01
It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial and the error evaluator polynomial in Berlekamp's key equation needed to decode a Reed-Solomon (RS) code. A simplified procedure is developed and proved to correct erasures as well as errors by replacing the initial condition of the Euclidean algorithm by the erasure locator polynomial and the Forney syndrome polynomial. By this means, the errata locator polynomial and the errata evaluator polynomial can be obtained, simultaneously and simply, by the Euclidean algorithm only. With this improved technique the complexity of time domain RS decoders for correcting both errors and erasures is reduced substantially from previous approaches. As a consequence, decoders for correcting both errors and erasures of RS codes can be made more modular, regular, simple, and naturally suitable for both VLSI and software implementation. An example illustrating this modified decoding procedure is given for a (15, 9) RS code.
Schmidt, Taly Gilat; Wang, Adam S; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh
2016-10-01
The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was [Formula: see text], with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors.
Schmidt, Taly Gilat; Wang, Adam S.; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh
2016-01-01
Abstract. The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was −7%, with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors. PMID:27921070
New Developments in Error Detection and Correction Strategies for Critical Applications
NASA Technical Reports Server (NTRS)
Berg, Melanie; LaBel, Ken
2016-01-01
The presentation will cover a variety of mitigation strategies that were developed for critical applications. An emphasis is placed on strengths and weaknesses per mitigation technique as it pertains to different FPGA device types.
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc
1998-01-01
In a coded communication system with equiprobable signaling, MLD minimizes the word error probability and delivers the most likely codeword associated with the corresponding received sequence. This decoding has two drawbacks. First, minimization of the word error probability is not equivalent to minimization of the bit error probability. Therefore, MLD becomes suboptimum with respect to the bit error probability. Second, MLD delivers a hard-decision estimate of the received sequence, so that information is lost between the input and output of the ML decoder. This information is important in coded schemes where the decoded sequence is further processed, such as concatenated coding schemes, multi-stage and iterative decoding schemes. In this chapter, we first present a decoding algorithm which both minimizes bit error probability, and provides the corresponding soft information at the output of the decoder. This algorithm is referred to as the MAP (maximum aposteriori probability) decoding algorithm.
Cluster mislocation in kinematic Sunyaev-Zel'dovich effect extraction
NASA Astrophysics Data System (ADS)
Calafut, Victoria; Bean, Rachel; Yu, Byeonghee
2017-12-01
We investigate the impact of a variety of analysis assumptions that influence cluster identification and location on the kinematic Sunyaev-Zel'dovich (kSZ) pairwise momentum signal and covariance estimation. Photometric and spectroscopic galaxy tracers from SDSS, WISE, and DECaLs, spanning redshifts 0.05
Wang, Jindong; Chen, Peng; Deng, Yufen; Guo, Junjie
2018-01-01
As a three-dimensional measuring instrument, the laser tracker is widely used in industrial measurement. To avoid the influence of angle measurement error on the overall measurement accuracy, the multi-station and time-sharing measurement with a laser tracker is introduced on the basis of the global positioning system (GPS) principle in this paper. For the proposed method, how to accurately determine the coordinates of each measuring point by using a large amount of measured data is a critical issue. Taking detecting motion error of a numerical control machine tool, for example, the corresponding measurement algorithms are investigated thoroughly. By establishing the mathematical model of detecting motion error of a machine tool with this method, the analytical algorithm concerning on base station calibration and measuring point determination is deduced without selecting the initial iterative value in calculation. However, when the motion area of the machine tool is in a 2D plane, the coefficient matrix of base station calibration is singular, which generates a distortion result. In order to overcome the limitation of the original algorithm, an improved analytical algorithm is also derived. Meanwhile, the calibration accuracy of the base station with the improved algorithm is compared with that with the original analytical algorithm and some iterative algorithms, such as the Gauss-Newton algorithm and Levenberg-Marquardt algorithm. The experiment further verifies the feasibility and effectiveness of the improved algorithm. In addition, the different motion areas of the machine tool have certain influence on the calibration accuracy of the base station, and the corresponding influence of measurement error on the calibration result of the base station depending on the condition number of coefficient matrix are analyzed.
NASA Astrophysics Data System (ADS)
Wang, Jindong; Chen, Peng; Deng, Yufen; Guo, Junjie
2018-01-01
As a three-dimensional measuring instrument, the laser tracker is widely used in industrial measurement. To avoid the influence of angle measurement error on the overall measurement accuracy, the multi-station and time-sharing measurement with a laser tracker is introduced on the basis of the global positioning system (GPS) principle in this paper. For the proposed method, how to accurately determine the coordinates of each measuring point by using a large amount of measured data is a critical issue. Taking detecting motion error of a numerical control machine tool, for example, the corresponding measurement algorithms are investigated thoroughly. By establishing the mathematical model of detecting motion error of a machine tool with this method, the analytical algorithm concerning on base station calibration and measuring point determination is deduced without selecting the initial iterative value in calculation. However, when the motion area of the machine tool is in a 2D plane, the coefficient matrix of base station calibration is singular, which generates a distortion result. In order to overcome the limitation of the original algorithm, an improved analytical algorithm is also derived. Meanwhile, the calibration accuracy of the base station with the improved algorithm is compared with that with the original analytical algorithm and some iterative algorithms, such as the Gauss-Newton algorithm and Levenberg-Marquardt algorithm. The experiment further verifies the feasibility and effectiveness of the improved algorithm. In addition, the different motion areas of the machine tool have certain influence on the calibration accuracy of the base station, and the corresponding influence of measurement error on the calibration result of the base station depending on the condition number of coefficient matrix are analyzed.
Ensemble-type numerical uncertainty information from single model integrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauser, Florian, E-mail: florian.rauser@mpimet.mpg.de; Marotzke, Jochem; Korn, Peter
2015-07-01
We suggest an algorithm that quantifies the discretization error of time-dependent physical quantities of interest (goals) for numerical models of geophysical fluid dynamics. The goal discretization error is estimated using a sum of weighted local discretization errors. The key feature of our algorithm is that these local discretization errors are interpreted as realizations of a random process. The random process is determined by the model and the flow state. From a class of local error random processes we select a suitable specific random process by integrating the model over a short time interval at different resolutions. The weights of themore » influences of the local discretization errors on the goal are modeled as goal sensitivities, which are calculated via automatic differentiation. The integration of the weighted realizations of local error random processes yields a posterior ensemble of goal approximations from a single run of the numerical model. From the posterior ensemble we derive the uncertainty information of the goal discretization error. This algorithm bypasses the requirement of detailed knowledge about the models discretization to generate numerical error estimates. The algorithm is evaluated for the spherical shallow-water equations. For two standard test cases we successfully estimate the error of regional potential energy, track its evolution, and compare it to standard ensemble techniques. The posterior ensemble shares linear-error-growth properties with ensembles of multiple model integrations when comparably perturbed. The posterior ensemble numerical error estimates are of comparable size as those of a stochastic physics ensemble.« less
NASA Technical Reports Server (NTRS)
Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.
2004-01-01
A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating/drying profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and non-convective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud resolving model simulations, and from the Bayesian formulation itself. Synthetic rain rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in instantaneous rain rate estimates at 0.5 deg resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. These errors represent about 70-90% of the mean random deviation between collocated passive microwave and spaceborne radar rain rate estimates. The cumulative algorithm error in TMI estimates at monthly, 2.5 deg resolution is relatively small (less than 6% at 5 mm/day) compared to the random error due to infrequent satellite temporal sampling (8-35% at the same rain rate).
A provisional effective evaluation when errors are present in independent variables
NASA Technical Reports Server (NTRS)
Gurin, L. S.
1983-01-01
Algorithms are examined for evaluating the parameters of a regression model when there are errors in the independent variables. The algorithms are fast and the estimates they yield are stable with respect to the correlation of errors and measurements of both the dependent variable and the independent variables.
New algorithm for detecting smaller retinal blood vessels in fundus images
NASA Astrophysics Data System (ADS)
LeAnder, Robert; Bidari, Praveen I.; Mohammed, Tauseef A.; Das, Moumita; Umbaugh, Scott E.
2010-03-01
About 4.1 million Americans suffer from diabetic retinopathy. To help automatically diagnose various stages of the disease, a new blood-vessel-segmentation algorithm based on spatial high-pass filtering was developed to automatically segment blood vessels, including the smaller ones, with low noise. Methods: Image database: Forty, 584 x 565-pixel images were collected from the DRIVE image database. Preprocessing: Green-band extraction was used to obtain better contrast, which facilitated better visualization of retinal blood vessels. A spatial highpass filter of mask-size 11 was applied. A histogram stretch was performed to enhance contrast. A median filter was applied to mitigate noise. At this point, the gray-scale image was converted to a binary image using a binary thresholding operation. Then, a NOT operation was performed by gray-level value inversion between 0 and 255. Postprocessing: The resulting image was AND-ed with its corresponding ring mask to remove the outer-ring (lens-edge) artifact. At this point, the above algorithm steps had extracted most of the major and minor vessels, with some intersections and bifurcations missing. Vessel segments were reintegrated using the Hough transform. Results: After applying the Hough transform, both the average peak SNR and the RMS error improved by 10%. Pratt's Figure of Merit (PFM) was decreased by 6%. Those averages were better than [1] by 10-30%. Conclusions: The new algorithm successfully preserved the details of smaller blood vessels and should prove successful as a segmentation step for automatically identifying diseases that affect retinal blood vessels.
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Kaufman, Y. J.; Fraser, R. H.; Jin, J.-Z.; Park, W. M.; Lau, William K. M. (Technical Monitor)
2001-01-01
Two fixed-threshold Canada Centre for Remote Sensing and European Space Agency (CCRS and ESA) and three contextual GIGLIO, International Geosphere and Biosphere Project, and Moderate Resolution Imaging Spectroradiometer (GIGLIO, IGBP, and MODIS) algorithms were used for fire detection with Advanced Very High Resolution Radiometer (AVHRR) data acquired over Canada during the 1995 fire season. The CCRS algorithm was developed for the boreal ecosystem, while the other four are for global application. The MODIS algorithm, although developed specifically for use with the MODIS sensor data, was applied to AVHRR in this study for comparative purposes. Fire detection accuracy assessment for the algorithms was based on comparisons with available 1995 burned area ground survey maps covering five Canadian provinces. Overall accuracy estimations in terms of omission (CCRS=46%, ESA=81%, GIGLIO=75%, IGBP=51%, MODIS=81%) and commission (CCRS=0.35%, ESA=0.08%, GIGLIO=0.56%, IGBP=0.75%, MODIS=0.08%) errors over forested areas revealed large differences in performance between the algorithms, with no relevance to type (fixed-threshold or contextual). CCRS performed best in detecting real forest fires, with the least omission error, while ESA and MODIS produced the highest omission error, probably because of their relatively high threshold values designed for global application. The commission error values appear small because the area of pixels falsely identified by each algorithm was expressed as a ratio of the vast unburned forest area. More detailed study shows that most commission errors in all the algorithms were incurred in nonforest agricultural areas, especially on days with very high surface temperatures. The advantage of the high thresholds in ESA and MODIS was that they incurred the least commission errors.
Improving the Numerical Stability of Fast Matrix Multiplication
Ballard, Grey; Benson, Austin R.; Druinsky, Alex; ...
2016-10-04
Fast algorithms for matrix multiplication, namely those that perform asymptotically fewer scalar operations than the classical algorithm, have been considered primarily of theoretical interest. Apart from Strassen's original algorithm, few fast algorithms have been efficiently implemented or used in practical applications. However, there exist many practical alternatives to Strassen's algorithm with varying performance and numerical properties. Fast algorithms are known to be numerically stable, but because their error bounds are slightly weaker than the classical algorithm, they are not used even in cases where they provide a performance benefit. We argue in this study that the numerical sacrifice of fastmore » algorithms, particularly for the typical use cases of practical algorithms, is not prohibitive, and we explore ways to improve the accuracy both theoretically and empirically. The numerical accuracy of fast matrix multiplication depends on properties of the algorithm and of the input matrices, and we consider both contributions independently. We generalize and tighten previous error analyses of fast algorithms and compare their properties. We discuss algorithmic techniques for improving the error guarantees from two perspectives: manipulating the algorithms, and reducing input anomalies by various forms of diagonal scaling. In conclusion, we benchmark performance and demonstrate our improved numerical accuracy.« less
New Developments in Error Detection and Correction Strategies for Critical Applications
NASA Technical Reports Server (NTRS)
Berg, Melanie; Label, Ken
2017-01-01
The presentation will cover a variety of mitigation strategies that were developed for critical applications. An emphasis is placed on strengths and weaknesses per mitigation technique as it pertains to different Field programmable gate array (FPGA) device types.
Simulations in site error estimation for direction finders
NASA Astrophysics Data System (ADS)
López, Raúl E.; Passi, Ranjit M.
1991-08-01
The performance of an algorithm for the recovery of site-specific errors of direction finder (DF) networks is tested under controlled simulated conditions. The simulations show that the algorithm has some inherent shortcomings for the recovery of site errors from the measured azimuth data. These limitations are fundamental to the problem of site error estimation using azimuth information. Several ways for resolving or ameliorating these basic complications are tested by means of simulations. From these it appears that for the effective implementation of the site error determination algorithm, one should design the networks with at least four DFs, improve the alignment of the antennas, and increase the gain of the DFs as much as it is compatible with other operational requirements. The use of a nonzero initial estimate of the site errors when working with data from networks of four or more DFs also improves the accuracy of the site error recovery. Even for networks of three DFs, reasonable site error corrections could be obtained if the antennas could be well aligned.
Validation of YCAR algorithm over East Asia TCCON sites
NASA Astrophysics Data System (ADS)
Kim, W.; Kim, J.; Jung, Y.; Lee, H.; Goo, T. Y.; Cho, C. H.; Lee, S.
2016-12-01
In order to reduce the retrieval error of TANSO-FTS column averaged CO2 concentration (XCO2) induced by aerosol, we develop the Yonsei university CArbon Retrieval (YCAR) algorithm using aerosol information from TANSO-Cloud and Aerosol Imager (TANSO-CAI), providing simultaneous aerosol optical depth properties for the same geometry and optical path along with the FTS. Also we validate the retrieved results using ground-based TCCON measurement. Particularly this study first utilized the measurements at Anmyeondo, the only TCCON site located in South Korea, which can improve the quality of validation in East Asia. After the post screening process, YCAR algorithms have higher data availability by 33 - 85 % than other operational algorithms (NIES, ACOS, UoL). Although the YCAR algorithm has higher data availability, regression analysis with TCCON measurements are better or similar to other algorithms; Regression line of YCAR algorithm is close to linear identity function with RMSE of 2.05, bias of - 0.86 ppm. According to error analysis, retrieval error of YCAR algorithm is 1.394 - 1.478 ppm at East Asia. In addition, spatio-temporal sampling error of 0.324 - 0.358 ppm for each single sounding retrieval is also analyzed with Carbon Tracker - Asia data. These results of error analysis reveal the reliability and accuracy of latest version of our YCAR algorithm. Both XCO2 values retrieved using YCAR algorithm on TANSO-FTS and TCCON measurements show the consistent increasing trend about 2.3 - 2.6 ppm per year. Comparing to the increasing rate of global background CO2 amount measured in Mauna Loa, Hawaii (2 ppm per year), the increasing trend in East Asia shows about 30% higher trend due to the rapid increase of CO2 emission from the source region.
Landmark-Based Drift Compensation Algorithm for Inertial Pedestrian Navigation
Munoz Diaz, Estefania; Caamano, Maria; Fuentes Sánchez, Francisco Javier
2017-01-01
The navigation of pedestrians based on inertial sensors, i.e., accelerometers and gyroscopes, has experienced a great growth over the last years. However, the noise of medium- and low-cost sensors causes a high error in the orientation estimation, particularly in the yaw angle. This error, called drift, is due to the bias of the z-axis gyroscope and other slow changing errors, such as temperature variations. We propose a seamless landmark-based drift compensation algorithm that only uses inertial measurements. The proposed algorithm adds a great value to the state of the art, because the vast majority of the drift elimination algorithms apply corrections to the estimated position, but not to the yaw angle estimation. Instead, the presented algorithm computes the drift value and uses it to prevent yaw errors and therefore position errors. In order to achieve this goal, a detector of landmarks, i.e., corners and stairs, and an association algorithm have been developed. The results of the experiments show that it is possible to reliably detect corners and stairs using only inertial measurements eliminating the need that the user takes any action, e.g., pressing a button. Associations between re-visited landmarks are successfully made taking into account the uncertainty of the position. After that, the drift is computed out of all associations and used during a post-processing stage to obtain a low-drifted yaw angle estimation, that leads to successfully drift compensated trajectories. The proposed algorithm has been tested with quasi-error-free turn rate measurements introducing known biases and with medium-cost gyroscopes in 3D indoor and outdoor scenarios. PMID:28671622
COMPLEX VARIABLE BOUNDARY ELEMENT METHOD: APPLICATIONS.
Hromadka, T.V.; Yen, C.C.; Guymon, G.L.
1985-01-01
The complex variable boundary element method (CVBEM) is used to approximate several potential problems where analytical solutions are known. A modeling result produced from the CVBEM is a measure of relative error in matching the known boundary condition values of the problem. A CVBEM error-reduction algorithm is used to reduce the relative error of the approximation by adding nodal points in boundary regions where error is large. From the test problems, overall error is reduced significantly by utilizing the adaptive integration algorithm.
Wake Turbulence Mitigation for Departures (WTMD) Prototype System - Software Design Document
NASA Technical Reports Server (NTRS)
Sturdy, James L.
2008-01-01
This document describes the software design of a prototype Wake Turbulence Mitigation for Departures (WTMD) system that was evaluated in shadow mode operation at the Saint Louis (KSTL) and Houston (KIAH) airports. This document describes the software that provides the system framework, communications, user displays, and hosts the Wind Forecasting Algorithm (WFA) software developed by the M.I.T. Lincoln Laboratory (MIT-LL). The WFA algorithms and software are described in a separate document produced by MIT-LL.
USDA-ARS?s Scientific Manuscript database
If not properly account for, auto-correlated errors in observations can lead to inaccurate results in soil moisture data analysis and reanalysis. Here, we propose a more generalized form of the triple collocation algorithm (GTC) capable of decomposing the total error variance of remotely-sensed surf...
NASA Astrophysics Data System (ADS)
Rizvi, Syed S.; Shah, Dipali; Riasat, Aasia
The Time Wrap algorithm [3] offers a run time recovery mechanism that deals with the causality errors. These run time recovery mechanisms consists of rollback, anti-message, and Global Virtual Time (GVT) techniques. For rollback, there is a need to compute GVT which is used in discrete-event simulation to reclaim the memory, commit the output, detect the termination, and handle the errors. However, the computation of GVT requires dealing with transient message problem and the simultaneous reporting problem. These problems can be dealt in an efficient manner by the Samadi's algorithm [8] which works fine in the presence of causality errors. However, the performance of both Time Wrap and Samadi's algorithms depends on the latency involve in GVT computation. Both algorithms give poor latency for large simulation systems especially in the presence of causality errors. To improve the latency and reduce the processor ideal time, we implement tree and butterflies barriers with the optimistic algorithm. Our analysis shows that the use of synchronous barriers such as tree and butterfly with the optimistic algorithm not only minimizes the GVT latency but also minimizes the processor idle time.
Flexible methods for segmentation evaluation: Results from CT-based luggage screening
Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry
2017-01-01
BACKGROUND Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms’ behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. OBJECTIVE To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. METHODS We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. RESULTS Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. CONCLUSIONS Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms. PMID:24699346
A Robust Sound Source Localization Approach for Microphone Array with Model Errors
NASA Astrophysics Data System (ADS)
Xiao, Hua; Shao, Huai-Zong; Peng, Qi-Cong
In this paper, a robust sound source localization approach is proposed. The approach retains good performance even when model errors exist. Compared with previous work in this field, the contributions of this paper are as follows. First, an improved broad-band and near-field array model is proposed. It takes array gain, phase perturbations into account and is based on the actual positions of the elements. It can be used in arbitrary planar geometry arrays. Second, a subspace model errors estimation algorithm and a Weighted 2-Dimension Multiple Signal Classification (W2D-MUSIC) algorithm are proposed. The subspace model errors estimation algorithm estimates unknown parameters of the array model, i. e., gain, phase perturbations, and positions of the elements, with high accuracy. The performance of this algorithm is improved with the increasing of SNR or number of snapshots. The W2D-MUSIC algorithm based on the improved array model is implemented to locate sound sources. These two algorithms compose the robust sound source approach. The more accurate steering vectors can be provided for further processing such as adaptive beamforming algorithm. Numerical examples confirm effectiveness of this proposed approach.
Numerical stability of the error diffusion concept
NASA Astrophysics Data System (ADS)
Weissbach, Severin; Wyrowski, Frank
1992-10-01
The error diffusion algorithm is an easy implementable mean to handle nonlinearities in signal processing, e.g. in picture binarization and coding of diffractive elements. The numerical stability of the algorithm depends on the choice of the diffusion weights. A criterion for the stability of the algorithm is presented and evaluated for some examples.
2014-01-01
We propose a smooth approximation l 0-norm constrained affine projection algorithm (SL0-APA) to improve the convergence speed and the steady-state error of affine projection algorithm (APA) for sparse channel estimation. The proposed algorithm ensures improved performance in terms of the convergence speed and the steady-state error via the combination of a smooth approximation l 0-norm (SL0) penalty on the coefficients into the standard APA cost function, which gives rise to a zero attractor that promotes the sparsity of the channel taps in the channel estimation and hence accelerates the convergence speed and reduces the steady-state error when the channel is sparse. The simulation results demonstrate that our proposed SL0-APA is superior to the standard APA and its sparsity-aware algorithms in terms of both the convergence speed and the steady-state behavior in a designated sparse channel. Furthermore, SL0-APA is shown to have smaller steady-state error than the previously proposed sparsity-aware algorithms when the number of nonzero taps in the sparse channel increases. PMID:24790588
NASA Technical Reports Server (NTRS)
Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.
2006-01-01
Rainfall rate estimates from spaceborne microwave radiometers are generally accepted as reliable by a majority of the atmospheric science community. One of the Tropical Rainfall Measuring Mission (TRMM) facility rain-rate algorithms is based upon passive microwave observations from the TRMM Microwave Imager (TMI). In Part I of this series, improvements of the TMI algorithm that are required to introduce latent heating as an additional algorithm product are described. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, 0.5 deg. -resolution estimates of surface rain rate over ocean from the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over earlier algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly 2.5 -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data is limited, TMI-estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain-rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with (a) additional contextual information brought to the estimation problem and/or (b) physically consistent and representative databases supporting the algorithm. A model of the random error in instantaneous 0.5 deg. -resolution rain-rate estimates appears to be consistent with the levels of error determined from TMI comparisons with collocated radar. Error model modifications for nonraining situations will be required, however. Sampling error represents only a portion of the total error in monthly 2.5 -resolution TMI estimates; the remaining error is attributed to random and systematic algorithm errors arising from the physical inconsistency and/or nonrepresentativeness of cloud-resolving-model-simulated profiles that support the algorithm.
A Unified Approach to Measurement Error and Missing Data: Overview and Applications
ERIC Educational Resources Information Center
Blackwell, Matthew; Honaker, James; King, Gary
2017-01-01
Although social scientists devote considerable effort to mitigating measurement error during data collection, they often ignore the issue during data analysis. And although many statistical methods have been proposed for reducing measurement error-induced biases, few have been widely used because of implausible assumptions, high levels of model…
An advanced SEU tolerant latch based on error detection
NASA Astrophysics Data System (ADS)
Xu, Hui; Zhu, Jianwei; Lu, Xiaoping; Li, Jingzhao
2018-05-01
This paper proposes a latch that can mitigate SEUs via an error detection circuit. The error detection circuit is hardened by a C-element and a stacked PMOS. In the hold state, a particle strikes the latch or the error detection circuit may cause a fault logic state of the circuit. The error detection circuit can detect the upset node in the latch and the fault output will be corrected. The upset node in the error detection circuit can be corrected by the C-element. The power dissipation and propagation delay of the proposed latch are analyzed by HSPICE simulations. The proposed latch consumes about 77.5% less energy and 33.1% less propagation delay than the triple modular redundancy (TMR) latch. Simulation results demonstrate that the proposed latch can mitigate SEU effectively. Project supported by the National Natural Science Foundation of China (Nos. 61404001, 61306046), the Anhui Province University Natural Science Research Major Project (No. KJ2014ZD12), the Huainan Science and Technology Program (No. 2013A4011), and the National Natural Science Foundation of China (No. 61371025).
Amiralizadeh, Siamak; Nguyen, An T; Rusch, Leslie A
2013-08-26
We investigate the performance of digital filter back-propagation (DFBP) using coarse parameter estimation for mitigating SOA nonlinearity in coherent communication systems. We introduce a simple, low overhead method for parameter estimation for DFBP based on error vector magnitude (EVM) as a figure of merit. The bit error rate (BER) penalty achieved with this method has negligible penalty as compared to DFBP with fine parameter estimation. We examine different bias currents for two commercial SOAs used as booster amplifiers in our experiments to find optimum operating points and experimentally validate our method. The coarse parameter DFBP efficiently compensates SOA-induced nonlinearity for both SOA types in 80 km propagation of 16-QAM signal at 22 Gbaud.
Novel bio-inspired smart control for hazard mitigation of civil structures
NASA Astrophysics Data System (ADS)
Kim, Yeesock; Kim, Changwon; Langari, Reza
2010-11-01
In this paper, a new bio-inspired controller is proposed for vibration mitigation of smart structures subjected to ground disturbances (i.e. earthquakes). The control system is developed through the integration of a brain emotional learning (BEL) algorithm with a proportional-integral-derivative (PID) controller and a semiactive inversion (Inv) algorithm. The BEL algorithm is based on the neurologically inspired computational model of the amygdala and the orbitofrontal cortex. To demonstrate the effectiveness of the proposed hybrid BEL-PID-Inv control algorithm, a seismically excited building structure equipped with a magnetorheological (MR) damper is investigated. The performance of the proposed hybrid BEL-PID-Inv control algorithm is compared with that of passive, PID, linear quadratic Gaussian (LQG), and BEL control systems. In the simulation, the robustness of the hybrid BEL-PID-Inv control algorithm in the presence of modeling uncertainties as well as external disturbances is investigated. It is shown that the proposed hybrid BEL-PID-Inv control algorithm is effective in improving the dynamic responses of seismically excited building structure-MR damper systems.
Complete Tri-Axis Magnetometer Calibration with a Gyro Auxiliary
Yang, Deng; You, Zheng; Li, Bin; Duan, Wenrui; Yuan, Binwen
2017-01-01
Magnetometers combined with inertial sensors are widely used for orientation estimation, and calibrations are necessary to achieve high accuracy. This paper presents a complete tri-axis magnetometer calibration algorithm with a gyro auxiliary. The magnetic distortions and sensor errors, including the misalignment error between the magnetometer and assembled platform, are compensated after calibration. With the gyro auxiliary, the magnetometer linear interpolation outputs are calculated, and the error parameters are evaluated under linear operations of magnetometer interpolation outputs. The simulation and experiment are performed to illustrate the efficiency of the algorithm. After calibration, the heading errors calculated by magnetometers are reduced to 0.5° (1σ). This calibration algorithm can also be applied to tri-axis accelerometers whose error model is similar to tri-axis magnetometers. PMID:28587115
Chaudhry, Jehanzeb Hameed; Estep, Don; Tavener, Simon; Carey, Varis; Sandelin, Jeff
2016-01-01
We consider numerical methods for initial value problems that employ a two stage approach consisting of solution on a relatively coarse discretization followed by solution on a relatively fine discretization. Examples include adaptive error control, parallel-in-time solution schemes, and efficient solution of adjoint problems for computing a posteriori error estimates. We describe a general formulation of two stage computations then perform a general a posteriori error analysis based on computable residuals and solution of an adjoint problem. The analysis accommodates various variations in the two stage computation and in formulation of the adjoint problems. We apply the analysis to compute "dual-weighted" a posteriori error estimates, to develop novel algorithms for efficient solution that take into account cancellation of error, and to the Parareal Algorithm. We test the various results using several numerical examples.
NASA Astrophysics Data System (ADS)
Nanda, Swadhin; Pepijn Veefkind, J.; de Graaf, Martin; Sneep, Maarten; Stammes, Piet; de Haan, Johan F.; Sanders, Abram F. J.; Apituley, Arnoud; Tuinder, Olaf; Levelt, Pieternel F.
2018-06-01
This paper presents a weighted least squares approach to retrieve aerosol layer height from top-of-atmosphere reflectance measurements in the oxygen A band (758-770 nm) over bright surfaces. A property of the measurement error covariance matrix is discussed, due to which photons travelling from the surface are given a higher preference over photons that scatter back from the aerosol layer. This is a potential source of biases in the estimation of aerosol properties over land, which can be mitigated by revisiting the design of the measurement error covariance matrix. The alternative proposed in this paper, which we call the dynamic scaling method, introduces a scene-dependent and wavelength-dependent modification in the measurement signal-to-noise ratio in order to influence this matrix. This method is generally applicable to other retrieval algorithms using weighted least squares. To test this method, synthetic experiments are done in addition to application to GOME-2A and GOME-2B measurements of the oxygen A band over the August 2010 Russian wildfires and the October 2017 Portugal wildfire plume over western Europe.
Using medication list--problem list mismatches as markers of potential error.
Carpenter, James D.; Gorman, Paul N.
2002-01-01
The goal of this project was to specify and develop an algorithm that will check for drug and problem list mismatches in an electronic medical record (EMR). The algorithm is based on the premise that a patient's problem list and medication list should agree, and a mismatch may indicate medication error. Successful development of this algorithm could mean detection of some errors, such as medication orders entered into a wrong patient record, or drug therapy omissions, that are not otherwise detected via automated means. Additionally, mismatches may identify opportunities to improve problem list integrity. To assess the concept's feasibility, this study compared medications listed in a pharmacy information system with findings in an online nursing adult admission assessment, serving as a proxy for the problem list. Where drug and problem list mismatches were discovered, examination of the patient record confirmed the mismatch, and identified any potential causes. Evaluation of the algorithm in diabetes treatment indicates that it successfully detects both potential medication error and opportunities to improve problem list completeness. This algorithm, once fully developed and deployed, could prove a valuable way to improve the patient problem list, and could decrease the risk of medication error. PMID:12463796
NASA Technical Reports Server (NTRS)
Schoenwald, Adam J.; Bradley, Damon C.; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Wong, Mark
2016-01-01
Radio-frequency interference (RFI) is a known problem for passive remote sensing as evidenced in the L-band radiometers SMOS, Aquarius and more recently, SMAP. Various algorithms have been developed and implemented on SMAP to improve science measurements. This was achieved by the use of a digital microwave radiometer. RFI mitigation becomes more challenging for microwave radiometers operating at higher frequencies in shared allocations. At higher frequencies larger bandwidths are also desirable for lower measurement noise further adding to processing challenges. This work focuses on finding improved RFI mitigation techniques that will be effective at additional frequencies and at higher bandwidths. To aid the development and testing of applicable detection and mitigation techniques, a wide-band RFI algorithm testing environment has been developed using the Reconfigurable Open Architecture Computing Hardware System (ROACH) built by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) Group. The testing environment also consists of various test equipment used to reproduce typical signals that a radiometer may see including those with and without RFI. The testing environment permits quick evaluations of RFI mitigation algorithms as well as show that they are implementable in hardware. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The complex signal kurtosis detector showed improved performance over the real kurtosis detector under certain conditions. The real kurtosis is implemented on SMAP at 24 MHz bandwidth. The complex signal kurtosis algorithm was then implemented in hardware at 200 MHz bandwidth using the ROACH. In this work, performance of the complex signal kurtosis and the real signal kurtosis are compared. Performance evaluations and comparisons in both simulation as well as experimental hardware implementations were done with the use of receiver operating characteristic (ROC) curves.
Mitigating Errors in External Respiratory Surrogate-Based Models of Tumor Position
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malinowski, Kathleen T.; Fischell Department of Bioengineering, University of Maryland, College Park, MD; McAvoy, Thomas J.
2012-04-01
Purpose: To investigate the effect of tumor site, measurement precision, tumor-surrogate correlation, training data selection, model design, and interpatient and interfraction variations on the accuracy of external marker-based models of tumor position. Methods and Materials: Cyberknife Synchrony system log files comprising synchronously acquired positions of external markers and the tumor from 167 treatment fractions were analyzed. The accuracy of Synchrony, ordinary-least-squares regression, and partial-least-squares regression models for predicting the tumor position from the external markers was evaluated. The quantity and timing of the data used to build the predictive model were varied. The effects of tumor-surrogate correlation and the precisionmore » in both the tumor and the external surrogate position measurements were explored by adding noise to the data. Results: The tumor position prediction errors increased during the duration of a fraction. Increasing the training data quantities did not always lead to more accurate models. Adding uncorrelated noise to the external marker-based inputs degraded the tumor-surrogate correlation models by 16% for partial-least-squares and 57% for ordinary-least-squares. External marker and tumor position measurement errors led to tumor position prediction changes 0.3-3.6 times the magnitude of the measurement errors, varying widely with model algorithm. The tumor position prediction errors were significantly associated with the patient index but not with the fraction index or tumor site. Partial-least-squares was as accurate as Synchrony and more accurate than ordinary-least-squares. Conclusions: The accuracy of surrogate-based inferential models of tumor position was affected by all the investigated factors, except for the tumor site and fraction index.« less
Lim, Jun-Seok; Pang, Hee-Suk
2016-01-01
In this paper an [Formula: see text]-regularized recursive total least squares (RTLS) algorithm is considered for the sparse system identification. Although recursive least squares (RLS) has been successfully applied in sparse system identification, the estimation performance in RLS based algorithms becomes worse, when both input and output are contaminated by noise (the error-in-variables problem). We proposed an algorithm to handle the error-in-variables problem. The proposed [Formula: see text]-RTLS algorithm is an RLS like iteration using the [Formula: see text] regularization. The proposed algorithm not only gives excellent performance but also reduces the required complexity through the effective inversion matrix handling. Simulations demonstrate the superiority of the proposed [Formula: see text]-regularized RTLS for the sparse system identification setting.
Canovas, Carmen; Alarcon, Aixa; Rosén, Robert; Kasthurirangan, Sanjeev; Ma, Joseph J K; Koch, Douglas D; Piers, Patricia
2018-02-01
To assess the accuracy of toric intraocular lens (IOL) power calculations of a new algorithm that incorporates the effect of posterior corneal astigmatism (PCA). Abbott Medical Optics, Inc., Groningen, the Netherlands. Retrospective case report. In eyes implanted with toric IOLs, the exact vergence formula of the Tecnis toric calculator was used to predict refractive astigmatism from preoperative biometry, surgeon-estimated surgically induced astigmatism (SIA), and implanted IOL power, with and without including the new PCA algorithm. For each calculation method, the error in predicted refractive astigmatism was calculated as the vector difference between the prediction and the actual refraction. Calculations were also made using postoperative keratometry (K) values to eliminate the potential effect of incorrect SIA estimates. The study comprised 274 eyes. The PCA algorithm significantly reduced the centroid error in predicted refractive astigmatism (P < .001). With the PCA algorithm, the centroid error reduced from 0.50 @ 1 to 0.19 @ 3 when using preoperative K values and from 0.30 @ 0 to 0.02 @ 84 when using postoperative K values. Patients who had anterior corneal against-the-rule, with-the-rule, and oblique astigmatism had improvement with the PCA algorithm. In addition, the PCA algorithm reduced the median absolute error in all groups (P < .001). The use of the new PCA algorithm decreased the error in the prediction of residual refractive astigmatism in eyes implanted with toric IOLs. Therefore, the new PCA algorithm, in combination with an exact vergence IOL power calculation formula, led to an increased predictability of toric IOL power. Copyright © 2018 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Comparison of algorithms for automatic border detection of melanoma in dermoscopy images
NASA Astrophysics Data System (ADS)
Srinivasa Raghavan, Sowmya; Kaur, Ravneet; LeAnder, Robert
2016-09-01
Melanoma is one of the most rapidly accelerating cancers in the world [1]. Early diagnosis is critical to an effective cure. We propose a new algorithm for more accurately detecting melanoma borders in dermoscopy images. Proper border detection requires eliminating occlusions like hair and bubbles by processing the original image. The preprocessing step involves transforming the RGB image to the CIE L*u*v* color space, in order to decouple brightness from color information, then increasing contrast, using contrast-limited adaptive histogram equalization (CLAHE), followed by artifacts removal using a Gaussian filter. After preprocessing, the Chen-Vese technique segments the preprocessed images to create a lesion mask which undergoes a morphological closing operation. Next, the largest central blob in the lesion is detected, after which, the blob is dilated to generate an image output mask. Finally, the automatically-generated mask is compared to the manual mask by calculating the XOR error [3]. Our border detection algorithm was developed using training and test sets of 30 and 20 images, respectively. This detection method was compared to the SRM method [4] by calculating the average XOR error for each of the two algorithms. Average error for test images was 0.10, using the new algorithm, and 0.99, using SRM method. In comparing the average error values produced by the two algorithms, it is evident that the average XOR error for our technique is lower than the SRM method, thereby implying that the new algorithm detects borders of melanomas more accurately than the SRM algorithm.
NASA Astrophysics Data System (ADS)
Sabaka, Terence J.; Olsen, Nils; Tyler, Robert H.; Kuvshinov, Alexey
2015-03-01
A comprehensive magnetic field model named CM5 has been derived from CHAMP, Ørsted and SAC-C satellite and observatory hourly-means data from 2000 August to 2013 January using the Swarm Level-2 Comprehensive Inversion (CI) algorithm. Swarm is a recently launched constellation of three satellites to map the Earth's magnetic field. The CI technique includes several interesting features such as the bias mitigation scheme known as Selective Infinite Variance Weighting (SIVW), a new treatment for attitude error in satellite vector measurements, and the inclusion of 3-D conductivity for ionospheric induction. SIVW has allowed for a much improved lithospheric field recovery over CM4 by exploiting CHAMP along-track difference data yielding resolution levels up to spherical harmonic degree 107, and has allowed for the successful extraction of the oceanic M2 tidal magnetic field from quiet, nightside data. The 3-D induction now captures anomalous Solar-quiet features in coastal observatory daily records. CM5 provides a satisfactory, continuous description of the major magnetic fields in the near-Earth region over this time span, and its lithospheric, ionospheric and oceanic M2 tidal constituents may be used as validation tools for future Swarm Level-2 products coming from the CI algorithm and other dedicated product algorithms.
An Improved Strong Tracking Cubature Kalman Filter for GPS/INS Integrated Navigation Systems.
Feng, Kaiqiang; Li, Jie; Zhang, Xi; Zhang, Xiaoming; Shen, Chong; Cao, Huiliang; Yang, Yanyu; Liu, Jun
2018-06-12
The cubature Kalman filter (CKF) is widely used in the application of GPS/INS integrated navigation systems. However, its performance may decline in accuracy and even diverge in the presence of process uncertainties. To solve the problem, a new algorithm named improved strong tracking seventh-degree spherical simplex-radial cubature Kalman filter (IST-7thSSRCKF) is proposed in this paper. In the proposed algorithm, the effect of process uncertainty is mitigated by using the improved strong tracking Kalman filter technique, in which the hypothesis testing method is adopted to identify the process uncertainty and the prior state estimate covariance in the CKF is further modified online according to the change in vehicle dynamics. In addition, a new seventh-degree spherical simplex-radial rule is employed to further improve the estimation accuracy of the strong tracking cubature Kalman filter. In this way, the proposed comprehensive algorithm integrates the advantage of 7thSSRCKF’s high accuracy and strong tracking filter’s strong robustness against process uncertainties. The GPS/INS integrated navigation problem with significant dynamic model errors is utilized to validate the performance of proposed IST-7thSSRCKF. Results demonstrate that the improved strong tracking cubature Kalman filter can achieve higher accuracy than the existing CKF and ST-CKF, and is more robust for the GPS/INS integrated navigation system.
NASA Technical Reports Server (NTRS)
Sabaka, Terence J.; Olsen, Nils; Tyler, Robert H.; Kuvshinov, Alexey
2014-01-01
A comprehensive magnetic field model named CM5 has been derived from CHAMP, Ørsted and SAC-C satellite and observatory hourly-means data from 2000 August to 2013 January using the Swarm Level-2 Comprehensive Inversion (CI) algorithm. Swarm is a recently launched constellation of three satellites to map the Earth's magnetic field. The CI technique includes several interesting features such as the bias mitigation scheme known as Selective Infinite Variance Weighting (SIVW), a new treatment for attitude error in satellite vector measurements, and the inclusion of 3-D conductivity for ionospheric induction. SIVW has allowed for a much improved lithospheric field recovery over CM4 by exploiting CHAMP along-track difference data yielding resolution levels up to spherical harmonic degree 107, and has allowed for the successful extraction of the oceanic M2 tidal magnetic field from quiet, nightside data. The 3-D induction now captures anomalous Solar-quiet features in coastal observatory daily records. CM5 provides a satisfactory, continuous description of the major magnetic fields in the near-Earth region over this time span, and its lithospheric, ionospheric and oceanic M2 tidal constituents may be used as validation tools for future Swarm Level-2 products coming from the CI algorithm and other dedicated product algorithms.
Adaboost multi-view face detection based on YCgCr skin color model
NASA Astrophysics Data System (ADS)
Lan, Qi; Xu, Zhiyong
2016-09-01
Traditional Adaboost face detection algorithm uses Haar-like features training face classifiers, whose detection error rate is low in the face region. While under the complex background, the classifiers will make wrong detection easily to the background regions with the similar faces gray level distribution, which leads to the error detection rate of traditional Adaboost algorithm is high. As one of the most important features of a face, skin in YCgCr color space has good clustering. We can fast exclude the non-face areas through the skin color model. Therefore, combining with the advantages of the Adaboost algorithm and skin color detection algorithm, this paper proposes Adaboost face detection algorithm method that bases on YCgCr skin color model. Experiments show that, compared with traditional algorithm, the method we proposed has improved significantly in the detection accuracy and errors.
Relative and Absolute Error Control in a Finite-Difference Method Solution of Poisson's Equation
ERIC Educational Resources Information Center
Prentice, J. S. C.
2012-01-01
An algorithm for error control (absolute and relative) in the five-point finite-difference method applied to Poisson's equation is described. The algorithm is based on discretization of the domain of the problem by means of three rectilinear grids, each of different resolution. We discuss some hardware limitations associated with the algorithm,…
An error-based micro-sensor capture system for real-time motion estimation
NASA Astrophysics Data System (ADS)
Yang, Lin; Ye, Shiwei; Wang, Zhibo; Huang, Zhipei; Wu, Jiankang; Kong, Yongmei; Zhang, Li
2017-10-01
A wearable micro-sensor motion capture system with 16 IMUs and an error-compensatory complementary filter algorithm for real-time motion estimation has been developed to acquire accurate 3D orientation and displacement in real life activities. In the proposed filter algorithm, the gyroscope bias error, orientation error and magnetic disturbance error are estimated and compensated, significantly reducing the orientation estimation error due to sensor noise and drift. Displacement estimation, especially for activities such as jumping, has been the challenge in micro-sensor motion capture. An adaptive gait phase detection algorithm has been developed to accommodate accurate displacement estimation in different types of activities. The performance of this system is benchmarked with respect to the results of VICON optical capture system. The experimental results have demonstrated effectiveness of the system in daily activities tracking, with estimation error 0.16 ± 0.06 m for normal walking and 0.13 ± 0.11 m for jumping motions. Research supported by the National Natural Science Foundation of China (Nos. 61431017, 81272166).
NASA Astrophysics Data System (ADS)
Gilat-Schmidt, Taly; Wang, Adam; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh
2016-03-01
The overall goal of this work is to develop a rapid, accurate and fully automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using a deterministic Boltzmann Transport Equation solver and automated CT segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. The investigated algorithm uses a combination of feature-based and atlas-based methods. A multiatlas approach was also investigated. We hypothesize that the auto-segmentation algorithm is sufficiently accurate to provide organ dose estimates since random errors at the organ boundaries will average out when computing the total organ dose. To test this hypothesis, twenty head-neck CT scans were expertly segmented into nine regions. A leave-one-out validation study was performed, where every case was automatically segmented with each of the remaining cases used as the expert atlas, resulting in nineteen automated segmentations for each of the twenty datasets. The segmented regions were applied to gold-standard Monte Carlo dose maps to estimate mean and peak organ doses. The results demonstrated that the fully automated segmentation algorithm estimated the mean organ dose to within 10% of the expert segmentation for regions other than the spinal canal, with median error for each organ region below 2%. In the spinal canal region, the median error was 7% across all data sets and atlases, with a maximum error of 20%. The error in peak organ dose was below 10% for all regions, with a median error below 4% for all organ regions. The multiple-case atlas reduced the variation in the dose estimates and additional improvements may be possible with more robust multi-atlas approaches. Overall, the results support potential feasibility of an automated segmentation algorithm to provide accurate organ dose estimates.
Sidick, Erkin
2013-09-10
An adaptive periodic-correlation (APC) algorithm was developed for use in extended-scene Shack-Hartmann wavefront sensors. It provides high accuracy even when the subimages in a frame captured by a Shack-Hartmann camera are not only shifted but also distorted relative to each other. Recently we found that the shift estimate error of the APC algorithm has a component that depends on the content of the extended scene. In this paper, we assess the amount of that error and propose a method to minimize it.
NASA Technical Reports Server (NTRS)
Sidick, Erkin
2012-01-01
Adaptive Periodic-Correlation (APC) algorithm was developed for use in extended-scene Shack-Hartmann wavefront sensors. It provides high-accuracy even when the sub-images in a frame captured by a Shack-Hartmann camera are not only shifted but also distorted relative to each other. Recently we found that the shift-estimate error of the APC algorithm has a component that depends on the content of extended-scene. In this paper we assess the amount of that error and propose a method to minimize it.
Focal mechanism determination for induced seismicity using the neighbourhood algorithm
NASA Astrophysics Data System (ADS)
Tan, Yuyang; Zhang, Haijiang; Li, Junlun; Yin, Chen; Wu, Furong
2018-06-01
Induced seismicity is widely detected during hydraulic fracture stimulation. To better understand the fracturing process, a thorough knowledge of the source mechanism is required. In this study, we develop a new method to determine the focal mechanism for induced seismicity. Three misfit functions are used in our method to measure the differences between observed and modeled data from different aspects, including the waveform, P wave polarity and S/P amplitude ratio. We minimize these misfit functions simultaneously using the neighbourhood algorithm. Through synthetic data tests, we show the ability of our method to yield reliable focal mechanism solutions and study the effect of velocity inaccuracy and location error on the solutions. To mitigate the impact of the uncertainties, we develop a joint inversion method to find the optimal source depth and focal mechanism simultaneously. Using the proposed method, we determine the focal mechanisms of 40 stimulation induced seismic events in an oil/gas field in Oman. By investigating the results, we find that the reactivation of pre-existing faults is the main cause of the induced seismicity in the monitored area. Other observations obtained from the focal mechanism solutions are also consistent with earlier studies in the same area.
Designing an algorithm to preserve privacy for medical record linkage with error-prone data.
Pal, Doyel; Chen, Tingting; Zhong, Sheng; Khethavath, Praveen
2014-01-20
Linking medical records across different medical service providers is important to the enhancement of health care quality and public health surveillance. In records linkage, protecting the patients' privacy is a primary requirement. In real-world health care databases, records may well contain errors due to various reasons such as typos. Linking the error-prone data and preserving data privacy at the same time are very difficult. Existing privacy preserving solutions for this problem are only restricted to textual data. To enable different medical service providers to link their error-prone data in a private way, our aim was to provide a holistic solution by designing and developing a medical record linkage system for medical service providers. To initiate a record linkage, one provider selects one of its collaborators in the Connection Management Module, chooses some attributes of the database to be matched, and establishes the connection with the collaborator after the negotiation. In the Data Matching Module, for error-free data, our solution offered two different choices for cryptographic schemes. For error-prone numerical data, we proposed a newly designed privacy preserving linking algorithm named the Error-Tolerant Linking Algorithm, that allows the error-prone data to be correctly matched if the distance between the two records is below a threshold. We designed and developed a comprehensive and user-friendly software system that provides privacy preserving record linkage functions for medical service providers, which meets the regulation of Health Insurance Portability and Accountability Act. It does not require a third party and it is secure in that neither entity can learn the records in the other's database. Moreover, our novel Error-Tolerant Linking Algorithm implemented in this software can work well with error-prone numerical data. We theoretically proved the correctness and security of our Error-Tolerant Linking Algorithm. We have also fully implemented the software. The experimental results showed that it is reliable and efficient. The design of our software is open so that the existing textual matching methods can be easily integrated into the system. Designing algorithms to enable medical records linkage for error-prone numerical data and protect data privacy at the same time is difficult. Our proposed solution does not need a trusted third party and is secure in that in the linking process, neither entity can learn the records in the other's database.
"ON ALGEBRAIC DECODING OF Q-ARY REED-MULLER AND PRODUCT REED-SOLOMON CODES"
DOE Office of Scientific and Technical Information (OSTI.GOV)
SANTHI, NANDAKISHORE
We consider a list decoding algorithm recently proposed by Pellikaan-Wu for q-ary Reed-Muller codes RM{sub q}({ell}, m, n) of length n {le} q{sup m} when {ell} {le} q. A simple and easily accessible correctness proof is given which shows that this algorithm achieves a relative error-correction radius of {tau} {le} (1-{radical}{ell}q{sup m-1}/n). This is an improvement over the proof using one-point Algebraic-Geometric decoding method given in. The described algorithm can be adapted to decode product Reed-Solomon codes. We then propose a new low complexity recursive aJgebraic decoding algorithm for product Reed-Solomon codes and Reed-Muller codes. This algorithm achieves a relativemore » error correction radius of {tau} {le} {Pi}{sub i=1}{sup m} (1 - {radical}k{sub i}/q). This algorithm is then proved to outperform the Pellikaan-Wu algorithm in both complexity and error correction radius over a wide range of code rates.« less
NASA Technical Reports Server (NTRS)
Schoenwald, Adam J.; Bradley, Damon C.; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Wong, Mark
2016-01-01
Radio-frequency interference (RFI) is a known problem for passive remote sensing as evidenced in the L-band radiometers SMOS, Aquarius and more recently, SMAP. Various algorithms have been developed and implemented on SMAP to improve science measurements. This was achieved by the use of a digital microwave radiometer. RFI mitigation becomes more challenging for microwave radiometers operating at higher frequencies in shared allocations. At higher frequencies larger bandwidths are also desirable for lower measurement noise further adding to processing challenges. This work focuses on finding improved RFI mitigation techniques that will be effective at additional frequencies and at higher bandwidths. To aid the development and testing of applicable detection and mitigation techniques, a wide-band RFI algorithm testing environment has been developed using the Reconfigurable Open Architecture Computing Hardware System (ROACH) built by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) Group. The testing environment also consists of various test equipment used to reproduce typical signals that a radiometer may see including those with and without RFI. The testing environment permits quick evaluations of RFI mitigation algorithms as well as show that they are implementable in hardware. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The complex signal kurtosis detector showed improved performance over the real kurtosis detector under certain conditions. The real kurtosis is implemented on SMAP at 24 MHz bandwidth. The complex signal kurtosis algorithm was then implemented in hardware at 200 MHz bandwidth using the ROACH. In this work, performance of the complex signal kurtosis and the real signal kurtosis are compared. Performance evaluations and comparisons in both simulation as well as experimental hardware implementations were done with the use of receiver operating characteristic (ROC) curves. The complex kurtosis algorithm has the potential to reduce data rate due to onboard processing in addition to improving RFI detection performance.
Assessment of C-band Polarimetric Radar Rainfall Measurements During Strong Attenuation.
NASA Astrophysics Data System (ADS)
Paredes-Victoria, P. N.; Rico-Ramirez, M. A.; Pedrozo-Acuña, A.
2016-12-01
In the modern hydrological modelling and their applications on flood forecasting systems and climate modelling, reliable spatiotemporal rainfall measurements are the keystone. Raingauges are the foundation in hydrology to collect rainfall data, however they are prone to errors (e.g. systematic, malfunctioning, and instrumental errors). Moreover rainfall data from gauges is often used to calibrate and validate weather radar rainfall, which is distributed in space. Therefore, it is important to apply techniques to control the quality of the raingauge data in order to guarantee a high level of confidence in rainfall measurements for radar calibration and numerical weather modelling. Also, the reliability of radar data is often limited because of the errors in the radar signal (e.g. clutter, variation of the vertical reflectivity profile, beam blockage, attenuation, etc) which need to be corrected in order to increase the accuracy of the radar rainfall estimation. This paper presents a method for raingauge-measurement quality-control correction based on the inverse distance weighted as a function of correlated climatology (i.e. performed by using the reflectivity from weather radar). Also a Clutter Mitigation Decision (CMD) algorithm is applied for clutter filtering process, finally three algorithms based on differential phase measurements are applied for radar signal attenuation correction. The quality-control method proves that correlated climatology is very sensitive in the first 100 kilometres for this area. The results also showed that ground clutter affects slightly the radar measurements due to the low gradient of the terrain in the area. However, strong radar signal attenuation is often found in this data set due to the heavy storms that take place in this region and the differential phase measurements are crucial to correct for attenuation at C-band frequencies. The study area is located in Sabancuy-Campeche, Mexico (Latitude 18.97 N, Longitude 91.17º W) and the radar rainfall measurements are obtained from a C-band polarimetric radar whereas raingauge measurements come from stations with 10-min and 24-hr time resolutions.
A novel artificial fish swarm algorithm for recalibration of fiber optic gyroscope error parameters.
Gao, Yanbin; Guan, Lianwu; Wang, Tingjun; Sun, Yunlong
2015-05-05
The artificial fish swarm algorithm (AFSA) is one of the state-of-the-art swarm intelligent techniques, which is widely utilized for optimization purposes. Fiber optic gyroscope (FOG) error parameters such as scale factors, biases and misalignment errors are relatively unstable, especially with the environmental disturbances and the aging of fiber coils. These uncalibrated error parameters are the main reasons that the precision of FOG-based strapdown inertial navigation system (SINS) degraded. This research is mainly on the application of a novel artificial fish swarm algorithm (NAFSA) on FOG error coefficients recalibration/identification. First, the NAFSA avoided the demerits (e.g., lack of using artificial fishes' pervious experiences, lack of existing balance between exploration and exploitation, and high computational cost) of the standard AFSA during the optimization process. To solve these weak points, functional behaviors and the overall procedures of AFSA have been improved with some parameters eliminated and several supplementary parameters added. Second, a hybrid FOG error coefficients recalibration algorithm has been proposed based on NAFSA and Monte Carlo simulation (MCS) approaches. This combination leads to maximum utilization of the involved approaches for FOG error coefficients recalibration. After that, the NAFSA is verified with simulation and experiments and its priorities are compared with that of the conventional calibration method and optimal AFSA. Results demonstrate high efficiency of the NAFSA on FOG error coefficients recalibration.
NASA Astrophysics Data System (ADS)
Pieper, Michael; Manolakis, Dimitris; Truslow, Eric; Cooley, Thomas; Brueggeman, Michael; Jacobson, John; Weisner, Andrew
2017-08-01
Accurate estimation or retrieval of surface emissivity from long-wave infrared or thermal infrared (TIR) hyperspectral imaging data acquired by airborne or spaceborne sensors is necessary for many scientific and defense applications. This process consists of two interwoven steps: atmospheric compensation and temperature-emissivity separation (TES). The most widely used TES algorithms for hyperspectral imaging data assume that the emissivity spectra for solids are smooth compared to the atmospheric transmission function. We develop a model to explain and evaluate the performance of TES algorithms using a smoothing approach. Based on this model, we identify three sources of error: the smoothing error of the emissivity spectrum, the emissivity error from using the incorrect temperature, and the errors caused by sensor noise. For each TES smoothing technique, we analyze the bias and variability of the temperature errors, which translate to emissivity errors. The performance model explains how the errors interact to generate temperature errors. Since we assume exact knowledge of the atmosphere, the presented results provide an upper bound on the performance of TES algorithms based on the smoothness assumption.
OFDM Coupled Compressive Sensing Algorithm for Stepped-Frequency Ground Penetrating Radar
2014-10-01
These frequencies are combined in such a way to achieve orthogonality between the carrier frequencies, while mitigating any interference between...in such a way to achieve orthogonality between the carrier frequencies, while mitigating any interference between said frequencies. In CS, a signal...frequency tones is mitigated . Orthogonality requires that the sub-bands are spaced at = is the OFDM symbol period, and k is any
ERIC Educational Resources Information Center
Tian, Wei; Cai, Li; Thissen, David; Xin, Tao
2013-01-01
In item response theory (IRT) modeling, the item parameter error covariance matrix plays a critical role in statistical inference procedures. When item parameters are estimated using the EM algorithm, the parameter error covariance matrix is not an automatic by-product of item calibration. Cai proposed the use of Supplemented EM algorithm for…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duchaineau, M.; Wolinsky, M.; Sigeti, D.E.
Real-time terrain rendering for interactive visualization remains a demanding task. We present a novel algorithm with several advantages over previous methods: our method is unusually stingy with polygons yet achieves real-time performance and is scalable to arbitrary regions and resolutions. The method provides a continuous terrain mesh of specified triangle count having provably minimum error in restricted but reasonably general classes of permissible meshes and error metrics. Our method provides an elegant solution to guaranteeing certain elusive types of consistency in scenes produced by multiple scene generators which share a common finest-resolution database but which otherwise operate entirely independently. Thismore » consistency is achieved by exploiting the freedom of choice of error metric allowed by the algorithm to provide, for example, multiple exact lines-of-sight in real-time. Our methods rely on an off-line pre-processing phase to construct a multi-scale data structure consisting of triangular terrain approximations enhanced ({open_quotes}thickened{close_quotes}) with world-space error information. In real time, this error data is efficiently transformed into screen-space where it is used to guide a greedy top-down triangle subdivision algorithm which produces the desired minimal error continuous terrain mesh. Our algorithm has been implemented and it operates at real-time rates.« less
Jeyasingh, Suganthi; Veluchamy, Malathi
2017-05-01
Early diagnosis of breast cancer is essential to save lives of patients. Usually, medical datasets include a large variety of data that can lead to confusion during diagnosis. The Knowledge Discovery on Database (KDD) process helps to improve efficiency. It requires elimination of inappropriate and repeated data from the dataset before final diagnosis. This can be done using any of the feature selection algorithms available in data mining. Feature selection is considered as a vital step to increase the classification accuracy. This paper proposes a Modified Bat Algorithm (MBA) for feature selection to eliminate irrelevant features from an original dataset. The Bat algorithm was modified using simple random sampling to select the random instances from the dataset. Ranking was with the global best features to recognize the predominant features available in the dataset. The selected features are used to train a Random Forest (RF) classification algorithm. The MBA feature selection algorithm enhanced the classification accuracy of RF in identifying the occurrence of breast cancer. The Wisconsin Diagnosis Breast Cancer Dataset (WDBC) was used for estimating the performance analysis of the proposed MBA feature selection algorithm. The proposed algorithm achieved better performance in terms of Kappa statistic, Mathew’s Correlation Coefficient, Precision, F-measure, Recall, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Absolute Error (RAE) and Root Relative Squared Error (RRSE). Creative Commons Attribution License
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egan, A; Laub, W
2014-06-15
Purpose: Several shortcomings of the current implementation of the analytic anisotropic algorithm (AAA) may lead to dose calculation errors in highly modulated treatments delivered to highly heterogeneous geometries. Here we introduce a set of dosimetric error predictors that can be applied to a clinical treatment plan and patient geometry in order to identify high risk plans. Once a problematic plan is identified, the treatment can be recalculated with more accurate algorithm in order to better assess its viability. Methods: Here we focus on three distinct sources dosimetric error in the AAA algorithm. First, due to a combination of discrepancies inmore » smallfield beam modeling as well as volume averaging effects, dose calculated through small MLC apertures can be underestimated, while that behind small MLC blocks can overestimated. Second, due the rectilinear scaling of the Monte Carlo generated pencil beam kernel, energy is not properly transported through heterogeneities near, but not impeding, the central axis of the beamlet. And third, AAA overestimates dose in regions very low density (< 0.2 g/cm{sup 3}). We have developed an algorithm to detect the location and magnitude of each scenario within the patient geometry, namely the field-size index (FSI), the heterogeneous scatter index (HSI), and the lowdensity index (LDI) respectively. Results: Error indices successfully identify deviations between AAA and Monte Carlo dose distributions in simple phantom geometries. Algorithms are currently implemented in the MATLAB computing environment and are able to run on a typical RapidArc head and neck geometry in less than an hour. Conclusion: Because these error indices successfully identify each type of error in contrived cases, with sufficient benchmarking, this method can be developed into a clinical tool that may be able to help estimate AAA dose calculation errors and when it might be advisable to use Monte Carlo calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Carl A., E-mail: bauerca@colorado.ed; Werner, Gregory R.; Cary, John R.
A new frequency-domain electromagnetics algorithm is developed for simulating curved interfaces between anisotropic dielectrics embedded in a Yee mesh with second-order error in resonant frequencies. The algorithm is systematically derived using the finite integration formulation of Maxwell's equations on the Yee mesh. Second-order convergence of the error in resonant frequencies is achieved by guaranteeing first-order error on dielectric boundaries and second-order error in bulk (possibly anisotropic) regions. Convergence studies, conducted for an analytically solvable problem and for a photonic crystal of ellipsoids with anisotropic dielectric constant, both show second-order convergence of frequency error; the convergence is sufficiently smooth that Richardsonmore » extrapolation yields roughly third-order convergence. The convergence of electric fields near the dielectric interface for the analytic problem is also presented.« less
Xu, Z N
2014-12-01
In this study, an error analysis is performed to study real water drop images and the corresponding numerically generated water drop profiles for three widely used static contact angle algorithms: the circle- and ellipse-fitting algorithms and the axisymmetric drop shape analysis-profile (ADSA-P) algorithm. The results demonstrate the accuracy of the numerically generated drop profiles based on the Laplace equation. A significant number of water drop profiles with different volumes, contact angles, and noise levels are generated, and the influences of the three factors on the accuracies of the three algorithms are systematically investigated. The results reveal that the above-mentioned three algorithms are complementary. In fact, the circle- and ellipse-fitting algorithms show low errors and are highly resistant to noise for water drops with small/medium volumes and contact angles, while for water drop with large volumes and contact angles just the ADSA-P algorithm can meet accuracy requirement. However, this algorithm introduces significant errors in the case of small volumes and contact angles because of its high sensitivity to noise. The critical water drop volumes of the circle- and ellipse-fitting algorithms corresponding to a certain contact angle error are obtained through a significant amount of computation. To improve the precision of the static contact angle measurement, a more accurate algorithm based on a combination of the three algorithms is proposed. Following a systematic investigation, the algorithm selection rule is described in detail, while maintaining the advantages of the three algorithms and overcoming their deficiencies. In general, static contact angles over the entire hydrophobicity range can be accurately evaluated using the proposed algorithm. The ease of erroneous judgment in static contact angle measurements is avoided. The proposed algorithm is validated by a static contact angle evaluation of real and numerically generated water drop images with different hydrophobicity values and volumes.
A greedy algorithm for species selection in dimension reduction of combustion chemistry
NASA Astrophysics Data System (ADS)
Hiremath, Varun; Ren, Zhuyin; Pope, Stephen B.
2010-09-01
Computational calculations of combustion problems involving large numbers of species and reactions with a detailed description of the chemistry can be very expensive. Numerous dimension reduction techniques have been developed in the past to reduce the computational cost. In this paper, we consider the rate controlled constrained-equilibrium (RCCE) dimension reduction method, in which a set of constrained species is specified. For a given number of constrained species, the 'optimal' set of constrained species is that which minimizes the dimension reduction error. The direct determination of the optimal set is computationally infeasible, and instead we present a greedy algorithm which aims at determining a 'good' set of constrained species; that is, one leading to near-minimal dimension reduction error. The partially-stirred reactor (PaSR) involving methane premixed combustion with chemistry described by the GRI-Mech 1.2 mechanism containing 31 species is used to test the algorithm. Results on dimension reduction errors for different sets of constrained species are presented to assess the effectiveness of the greedy algorithm. It is shown that the first four constrained species selected using the proposed greedy algorithm produce lower dimension reduction error than constraints on the major species: CH4, O2, CO2 and H2O. It is also shown that the first ten constrained species selected using the proposed greedy algorithm produce a non-increasing dimension reduction error with every additional constrained species; and produce the lowest dimension reduction error in many cases tested over a wide range of equivalence ratios, pressures and initial temperatures.
NASA Technical Reports Server (NTRS)
Yueh, Simon H.; Chaubell, Mario J.
2012-01-01
Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed for warm waters (25 C). To achieve the required 0.2 psu accuracy, the impact of sea surface roughness (e.g. wind-generated ripples) on the observed brightness temperature has to be corrected to better than one tenth of a degree Kelvin. With this algorithm, the accuracy of retrieved wind speed will be high, varying from a few tenths to 0.6 m/s. The expected direction accuracy is also excellent (less than 10 ) for mid to high winds, but degrades for lower speeds (less than 7 m/s).
Threshold raw retrieved contrast in coronagraphs is limited by internal polarization
NASA Astrophysics Data System (ADS)
Breckinridge, James
The objective of this work is to provide the exoplanet program with an accurate model of the coronagraph complex point spread function, methods to correct chromatic aberration in the presence of polarization aberrations, device requirements to minimize and compensate for these aberrations at levels needed for exoplanet coronagraphy, and exoplanet retrieval algorithms in the presence of polarizaiton aberrations. Currently, space based coronagraphs are designed and performance analyzed using scalar wave aberration theory. Breckinridge, Lam & Chipman (2015) PASP 127: 445-468 and Breckinridge & Oppenheimer (2004) ApJ 600: 1091-1098 showed that astronomical telescopes designed for exoplanet and precision astrometric science require polarization or vector-wave analysis. Internal instrument polarization limits both threshold raw contrast and measurements of the vector wave properties of the electromagnetic radiation from stars, exoplanets, gas and dust. The threshold raw contrast obtained using only scalar wave theory is much more optimistic than that obtained using the more hardware-realistic vector wave theory. Internal polarization reduces system contrast, increases scattered light, alters radiometric measurements, distorts diffraction-limited star images and reduces signal-to-noise ratio. For example, a vector-wave analysis shows that the WFIRST-CGI instrument will have a threshold raw contrast of 10-7 not the 10-8 forecasted using the scalar wave analysis given in the WFIRST-CGI 2015 report. The physical nature of the complex point spread function determines the exoplanet scientific yield of coronagraphs. We propose to use the Polaris-M polarization aberration ray-tracing software developed at the College of Optical Science of the University of Arizona to ray trace both a "typical" exoplanet coronagraph system as well as the WFIRST-CGI system. Threshold raw contrast and the field across the complex PSF will be calculated as a function of optical device vector E&M requirements on: 1. Lyot coronagraph mask and stop size, configuration, location and composition, 2. Uniformity of the complex reflectance of the highly reflecting metal mirrors with their dielectric overcoats, and 3. Opto-mechanical layout. Once these requirements are developed polarization aberration mitigation studies can begin to identify a practical solution to compensate polarization errors, not unlike the more developed technology of A/O compensates for pointing and manufacturing errors. Several methods to compensate for chromatic aberration in coronagraphs further compounds the complex PSF errors that require compensation to maximize the best retrieved raw contrast in the presence of exoplanets in the vicinity of stars. Internal instrument polarization introduces partial coherence into the wavefront to distort the speckle-pattern complex-field in the dark hole. An additional factor that determines retrieved raw contrast is our ability to effectively process the polarizationdistorted field within the dark hole. This study is essential to the correct calculation of exoplanet coronagraph science yield, development of requirements on subsystem devices (mirrors, stops, masks, spectrometers, wavefront error mitigation optics and opto-mechanical layout) and the development of exoplanet retrieval algorithms.
Mitigating leakage errors due to cavity modes in a superconducting quantum computer
NASA Astrophysics Data System (ADS)
McConkey, T. G.; Béjanin, J. H.; Earnest, C. T.; McRae, C. R. H.; Pagel, Z.; Rinehart, J. R.; Mariantoni, M.
2018-07-01
A practical quantum computer requires quantum bit (qubit) operations with low error probabilities in extensible architectures. We study a packaging method that makes it possible to address hundreds of superconducting qubits by means of coaxial Pogo pins. A qubit chip is housed in a superconducting box, where both box and chip dimensions lead to unwanted modes that can interfere with qubit operations. We analyze these interference effects in the context of qubit coherent leakage and qubit decoherence induced by damped modes. We propose two methods, half-wave fencing and antinode pinning, to mitigate the resulting errors by detuning the resonance frequency of the modes from the qubit frequency. We perform electromagnetic field simulations indicating that the resonance frequency of the modes increases with the number of installed pins and can be engineered to be significantly higher than the highest qubit frequency. We estimate that the error probabilities and decoherence rates due to suitably shifted modes in realistic scenarios can be up to two orders of magnitude lower than the state-of-the-art superconducting qubit error and decoherence rates. Our methods can be extended to different types of packages that do not rely on Pogo pins. Conductive bump bonds, for example, can serve the same purpose in qubit architectures based on flip chip technology. Metalized vias, instead, can be used to mitigate modes due to the increasing size of the dielectric substrate on which qubit arrays are patterned.
NASA Astrophysics Data System (ADS)
Gou, Pengqi; Wang, Kaihui; Qin, Chaoyi; Yu, Jianjun
2017-03-01
We experimentally demonstrate a 16-ary quadrature amplitude modulation (16QAM) DFT-spread optical orthogonal frequency division multiplexing (OFDM) transmission system utilizing a cost-effective directly modulated laser (DML) and direct detection. For 20-Gbaud 16QAM-OFDM signal, with the aid of nonlinear equalization (NLE) algorithm, we respectively provide 6.2-dB and 5.2-dB receiver sensitivity improvement under the hard-decision forward-error-correction (HD-FEC) threshold of 3.8×10-3 for the back-to-back (BTB) case and after transmission over 10-km standard single mode fiber (SSMF) case, related to only adopt post-equalization scheme. To our knowledge, this is the first time to use dynamic nonlinear equalizer (NLE) based on the summation of the square of the difference between samples in one IM/DD OFDM system with DML to mitigate nonlinear distortion.
Transmission Scheduling and Routing Algorithms for Delay Tolerant Networks
NASA Technical Reports Server (NTRS)
Dudukovich, Rachel; Raible, Daniel E.
2016-01-01
The challenges of data processing, transmission scheduling and routing within a space network present a multi-criteria optimization problem. Long delays, intermittent connectivity, asymmetric data rates and potentially high error rates make traditional networking approaches unsuitable. The delay tolerant networking architecture and protocols attempt to mitigate many of these issues, yet transmission scheduling is largely manually configured and routes are determined by a static contact routing graph. A high level of variability exists among the requirements and environmental characteristics of different missions, some of which may allow for the use of more opportunistic routing methods. In all cases, resource allocation and constraints must be balanced with the optimization of data throughput and quality of service. Much work has been done researching routing techniques for terrestrial-based challenged networks in an attempt to optimize contact opportunities and resource usage. This paper examines several popular methods to determine their potential applicability to space networks.
Decoding mobile-phone image sensor rolling shutter effect for visible light communications
NASA Astrophysics Data System (ADS)
Liu, Yang
2016-01-01
Optical wireless communication (OWC) using visible lights, also known as visible light communication (VLC), has attracted significant attention recently. As the traditional OWC and VLC receivers (Rxs) are based on PIN photo-diode or avalanche photo-diode, deploying the complementary metal-oxide-semiconductor (CMOS) image sensor as the VLC Rx is attractive since nowadays nearly every person has a smart phone with embedded CMOS image sensor. However, deploying the CMOS image sensor as the VLC Rx is challenging. In this work, we propose and demonstrate two simple contrast ratio (CR) enhancement schemes to improve the contrast of the rolling shutter pattern. Then we describe their processing algorithms one by one. The experimental results show that both the proposed CR enhancement schemes can significantly mitigate the high-intensity fluctuations of the rolling shutter pattern and improve the bit-error-rate performance.
The evolution of Crew Resource Management training in commercial aviation
NASA Technical Reports Server (NTRS)
Helmreich, R. L.; Merritt, A. C.; Wilhelm, J. A.
1999-01-01
In this study, we describe changes in the nature of Crew Resource Management (CRM) training in commercial aviation, including its shift from cockpit to crew resource management. Validation of the impact of CRM is discussed. Limitations of CRM, including lack of cross-cultural generality are considered. An overarching framework that stresses error management to increase acceptance of CRM concepts is presented. The error management approach defines behavioral strategies taught in CRM as error countermeasures that are employed to avoid error, to trap errors committed, and to mitigate the consequences of error.
Faster and More Accurate Transport Procedures for HZETRN
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Blattnig, Steve R.; Badavi, Francis F.
2010-01-01
Several aspects of code verification are examined for HZETRN. First, a detailed derivation of the numerical marching algorithms is given. Next, a new numerical method for light particle transport is presented, and improvements to the heavy ion transport algorithm are discussed. A summary of various coding errors is also given, and the impact of these errors on exposure quantities is shown. Finally, a coupled convergence study is conducted. From this study, it is shown that past efforts in quantifying the numerical error in HZETRN were hindered by single precision calculations and computational resources. It is also determined that almost all of the discretization error in HZETRN is caused by charged target fragments below 50 AMeV. Total discretization errors are given for the old and new algorithms, and the improved accuracy of the new numerical methods is demonstrated. Run time comparisons are given for three applications in which HZETRN is commonly used. The new algorithms are found to be almost 100 times faster for solar particle event simulations and almost 10 times faster for galactic cosmic ray simulations.
a Gross Error Elimination Method for Point Cloud Data Based on Kd-Tree
NASA Astrophysics Data System (ADS)
Kang, Q.; Huang, G.; Yang, S.
2018-04-01
Point cloud data has been one type of widely used data sources in the field of remote sensing. Key steps of point cloud data's pro-processing focus on gross error elimination and quality control. Owing to the volume feature of point could data, existed gross error elimination methods need spend massive memory both in space and time. This paper employed a new method which based on Kd-tree algorithm to construct, k-nearest neighbor algorithm to search, settled appropriate threshold to determine with result turns out a judgement that whether target point is or not an outlier. Experimental results show that, our proposed algorithm will help to delete gross error in point cloud data and facilitate to decrease memory consumption, improve efficiency.
Research on correction algorithm of laser positioning system based on four quadrant detector
NASA Astrophysics Data System (ADS)
Gao, Qingsong; Meng, Xiangyong; Qian, Weixian; Cai, Guixia
2018-02-01
This paper first introduces the basic principle of the four quadrant detector, and a set of laser positioning experiment system is built based on the four quadrant detector. Four quadrant laser positioning system in the actual application, not only exist interference of background light and detector dark current noise, and the influence of random noise, system stability, spot equivalent error can't be ignored, so it is very important to system calibration and correction. This paper analyzes the various factors of system positioning error, and then propose an algorithm for correcting the system error, the results of simulation and experiment show that the modified algorithm can improve the effect of system error on positioning and improve the positioning accuracy.
NASA Astrophysics Data System (ADS)
Piretzidis, Dimitrios; Sra, Gurveer; Karantaidis, George; Sideris, Michael G.
2017-04-01
A new method for identifying correlated errors in Gravity Recovery and Climate Experiment (GRACE) monthly harmonic coefficients has been developed and tested. Correlated errors are present in the differences between monthly GRACE solutions, and can be suppressed using a de-correlation filter. In principle, the de-correlation filter should be implemented only on coefficient series with correlated errors to avoid losing useful geophysical information. In previous studies, two main methods of implementing the de-correlation filter have been utilized. In the first one, the de-correlation filter is implemented starting from a specific minimum order until the maximum order of the monthly solution examined. In the second one, the de-correlation filter is implemented only on specific coefficient series, the selection of which is based on statistical testing. The method proposed in the present study exploits the capabilities of supervised machine learning algorithms such as neural networks and support vector machines (SVMs). The pattern of correlated errors can be described by several numerical and geometric features of the harmonic coefficient series. The features of extreme cases of both correlated and uncorrelated coefficients are extracted and used for the training of the machine learning algorithms. The trained machine learning algorithms are later used to identify correlated errors and provide the probability of a coefficient series to be correlated. Regarding SVMs algorithms, an extensive study is performed with various kernel functions in order to find the optimal training model for prediction. The selection of the optimal training model is based on the classification accuracy of the trained SVM algorithm on the same samples used for training. Results show excellent performance of all algorithms with a classification accuracy of 97% - 100% on a pre-selected set of training samples, both in the validation stage of the training procedure and in the subsequent use of the trained algorithms to classify independent coefficients. This accuracy is also confirmed by the external validation of the trained algorithms using the hydrology model GLDAS NOAH. The proposed method meet the requirement of identifying and de-correlating only coefficients with correlated errors. Also, there is no need of applying statistical testing or other techniques that require prior de-correlation of the harmonic coefficients.
Negri, Lucas; Nied, Ademir; Kalinowski, Hypolito; Paterno, Aleksander
2011-01-01
This paper presents a benchmark for peak detection algorithms employed in fiber Bragg grating spectrometric interrogation systems. The accuracy, precision, and computational performance of currently used algorithms and those of a new proposed artificial neural network algorithm are compared. Centroid and gaussian fitting algorithms are shown to have the highest precision but produce systematic errors that depend on the FBG refractive index modulation profile. The proposed neural network displays relatively good precision with reduced systematic errors and improved computational performance when compared to other networks. Additionally, suitable algorithms may be chosen with the general guidelines presented. PMID:22163806
A hybrid frame concealment algorithm for H.264/AVC.
Yan, Bo; Gharavi, Hamid
2010-01-01
In packet-based video transmissions, packets loss due to channel errors may result in the loss of the whole video frame. Recently, many error concealment algorithms have been proposed in order to combat channel errors; however, most of the existing algorithms can only deal with the loss of macroblocks and are not able to conceal the whole missing frame. In order to resolve this problem, in this paper, we have proposed a new hybrid motion vector extrapolation (HMVE) algorithm to recover the whole missing frame, and it is able to provide more accurate estimation for the motion vectors of the missing frame than other conventional methods. Simulation results show that it is highly effective and significantly outperforms other existing frame recovery methods.
Henrion, Sebastian; Spoor, Cees W; Pieters, Remco P M; Müller, Ulrike K; van Leeuwen, Johan L
2015-07-07
Images of underwater objects are distorted by refraction at the water-glass-air interfaces and these distortions can lead to substantial errors when reconstructing the objects' position and shape. So far, aquatic locomotion studies have minimized refraction in their experimental setups and used the direct linear transform algorithm (DLT) to reconstruct position information, which does not model refraction explicitly. Here we present a refraction corrected ray-tracing algorithm (RCRT) that reconstructs position information using Snell's law. We validated this reconstruction by calculating 3D reconstruction error-the difference between actual and reconstructed position of a marker. We found that reconstruction error is small (typically less than 1%). Compared with the DLT algorithm, the RCRT has overall lower reconstruction errors, especially outside the calibration volume, and errors are essentially insensitive to camera position and orientation and the number and position of the calibration points. To demonstrate the effectiveness of the RCRT, we tracked an anatomical marker on a seahorse recorded with four cameras to reconstruct the swimming trajectory for six different camera configurations. The RCRT algorithm is accurate and robust and it allows cameras to be oriented at large angles of incidence and facilitates the development of accurate tracking algorithms to quantify aquatic manoeuvers.
Relative-Error-Covariance Algorithms
NASA Technical Reports Server (NTRS)
Bierman, Gerald J.; Wolff, Peter J.
1991-01-01
Two algorithms compute error covariance of difference between optimal estimates, based on data acquired during overlapping or disjoint intervals, of state of discrete linear system. Provides quantitative measure of mutual consistency or inconsistency of estimates of states. Relative-error-covariance concept applied, to determine degree of correlation between trajectories calculated from two overlapping sets of measurements and construct real-time test of consistency of state estimates based upon recently acquired data.
Error floor behavior study of LDPC codes for concatenated codes design
NASA Astrophysics Data System (ADS)
Chen, Weigang; Yin, Liuguo; Lu, Jianhua
2007-11-01
Error floor behavior of low-density parity-check (LDPC) codes using quantized decoding algorithms is statistically studied with experimental results on a hardware evaluation platform. The results present the distribution of the residual errors after decoding failure and reveal that the number of residual error bits in a codeword is usually very small using quantized sum-product (SP) algorithm. Therefore, LDPC code may serve as the inner code in a concatenated coding system with a high code rate outer code and thus an ultra low error floor can be achieved. This conclusion is also verified by the experimental results.
Spot-shadowing optimization to mitigate damage growth in a high-energy-laser amplifier chain.
Bahk, Seung-Whan; Zuegel, Jonathan D; Fienup, James R; Widmayer, C Clay; Heebner, John
2008-12-10
A spot-shadowing technique to mitigate damage growth in a high-energy laser is studied. Its goal is to minimize the energy loss and undesirable hot spots in intermediate planes of the laser. A nonlinear optimization algorithm solves for the complex fields required to mitigate damage growth in the National Ignition Facility amplifier chain. The method is generally applicable to any large fusion laser.
Total Survey Error & Institutional Research: A Case Study of the University Experience Survey
ERIC Educational Resources Information Center
Whiteley, Sonia
2014-01-01
Total Survey Error (TSE) is a component of Total Survey Quality (TSQ) that supports the assessment of the extent to which a survey is "fit-for-purpose". While TSQ looks at a number of dimensions, such as relevance, credibility and accessibility, TSE is has a more operational focus on accuracy and minimising errors. Mitigating survey…
Preventable Medical Errors Driven Modeling of Medical Best Practice Guidance Systems.
Ou, Andrew Y-Z; Jiang, Yu; Wu, Po-Liang; Sha, Lui; Berlin, Richard B
2017-01-01
In a medical environment such as Intensive Care Unit, there are many possible reasons to cause errors, and one important reason is the effect of human intellectual tasks. When designing an interactive healthcare system such as medical Cyber-Physical-Human Systems (CPHSystems), it is important to consider whether the system design can mitigate the errors caused by these tasks or not. In this paper, we first introduce five categories of generic intellectual tasks of humans, where tasks among each category may lead to potential medical errors. Then, we present an integrated modeling framework to model a medical CPHSystem and use UPPAAL as the foundation to integrate and verify the whole medical CPHSystem design models. With a verified and comprehensive model capturing the human intellectual tasks effects, we can design a more accurate and acceptable system. We use a cardiac arrest resuscitation guidance and navigation system (CAR-GNSystem) for such medical CPHSystem modeling. Experimental results show that the CPHSystem models help determine system design flaws and can mitigate the potential medical errors caused by the human intellectual tasks.
North Alabama Lightning Mapping Array (LMA): VHF Source Retrieval Algorithm and Error Analyses
NASA Technical Reports Server (NTRS)
Koshak, W. J.; Solakiewicz, R. J.; Blakeslee, R. J.; Goodman, S. J.; Christian, H. J.; Hall, J.; Bailey, J.; Krider, E. P.; Bateman, M. G.; Boccippio, D.
2003-01-01
Two approaches are used to characterize how accurately the North Alabama Lightning Mapping Array (LMA) is able to locate lightning VHF sources in space and in time. The first method uses a Monte Carlo computer simulation to estimate source retrieval errors. The simulation applies a VHF source retrieval algorithm that was recently developed at the NASA Marshall Space Flight Center (MSFC) and that is similar, but not identical to, the standard New Mexico Tech retrieval algorithm. The second method uses a purely theoretical technique (i.e., chi-squared Curvature Matrix Theory) to estimate retrieval errors. Both methods assume that the LMA system has an overall rms timing error of 50 ns, but all other possible errors (e.g., multiple sources per retrieval attempt) are neglected. The detailed spatial distributions of retrieval errors are provided. Given that the two methods are completely independent of one another, it is shown that they provide remarkably similar results. However, for many source locations, the Curvature Matrix Theory produces larger altitude error estimates than the (more realistic) Monte Carlo simulation.
Wang, Lingling; Fu, Li
2018-01-01
In order to decrease the velocity sculling error under vibration environments, a new sculling error compensation algorithm for strapdown inertial navigation system (SINS) using angular rate and specific force measurements as inputs is proposed in this paper. First, the sculling error formula in incremental velocity update is analytically derived in terms of the angular rate and specific force. Next, two-time scale perturbation models of the angular rate and specific force are constructed. The new sculling correction term is derived and a gravitational search optimization method is used to determine the parameters in the two-time scale perturbation models. Finally, the performance of the proposed algorithm is evaluated in a stochastic real sculling environment, which is different from the conventional algorithms simulated in a pure sculling circumstance. A series of test results demonstrate that the new sculling compensation algorithm can achieve balanced real/pseudo sculling correction performance during velocity update with the advantage of less computation load compared with conventional algorithms. PMID:29346323
NASA Technical Reports Server (NTRS)
Loughman, R.; Flittner, D.; Herman, B.; Bhartia, P.; Hilsenrath, E.; McPeters, R.; Rault, D.
2002-01-01
The SOLSE (Shuttle Ozone Limb Sounding Experiment) and LORE (Limb Ozone Retrieval Experiment) instruments are scheduled for reflight on Space Shuttle flight STS-107 in July 2002. In addition, the SAGE III (Stratospheric Aerosol and Gas Experiment) instrument will begin to make limb scattering measurements during Spring 2002. The optimal estimation technique is used to analyze visible and ultraviolet limb scattered radiances and produce a retrieved ozone profile. The algorithm used to analyze data from the initial flight of the SOLSE/LORE instruments (on Space Shuttle flight STS-87 in November 1997) forms the basis of the current algorithms, with expansion to take advantage of the increased multispectral information provided by SOLSE/LORE-2 and SAGE III. We also present detailed sensitivity analysis for these ozone retrieval algorithms. The primary source of ozone retrieval error is tangent height misregistration (i.e., instrument pointing error), which is relevant throughout the altitude range of interest, and can produce retrieval errors on the order of 10-20 percent due to a tangent height registration error of 0.5 km at the tangent point. Other significant sources of error are sensitivity to stratospheric aerosol and sensitivity to error in the a priori ozone estimate (given assumed instrument signal-to-noise = 200). These can produce errors up to 10 percent for the ozone retrieval at altitudes less than 20 km, but produce little error above that level.
A selective-update affine projection algorithm with selective input vectors
NASA Astrophysics Data System (ADS)
Kong, NamWoong; Shin, JaeWook; Park, PooGyeon
2011-10-01
This paper proposes an affine projection algorithm (APA) with selective input vectors, which based on the concept of selective-update in order to reduce estimation errors and computations. The algorithm consists of two procedures: input- vector-selection and state-decision. The input-vector-selection procedure determines the number of input vectors by checking with mean square error (MSE) whether the input vectors have enough information for update. The state-decision procedure determines the current state of the adaptive filter by using the state-decision criterion. As the adaptive filter is in transient state, the algorithm updates the filter coefficients with the selected input vectors. On the other hand, as soon as the adaptive filter reaches the steady state, the update procedure is not performed. Through these two procedures, the proposed algorithm achieves small steady-state estimation errors, low computational complexity and low update complexity for colored input signals.
Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm
Sun, Baoliang; Jiang, Chunlan; Li, Ming
2016-01-01
An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN) to solve the multi-node target tracking problem of wireless sensor networks (WSNs). Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs. PMID:27809271
Error Estimation for the Linearized Auto-Localization Algorithm
Guevara, Jorge; Jiménez, Antonio R.; Prieto, Jose Carlos; Seco, Fernando
2012-01-01
The Linearized Auto-Localization (LAL) algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs), using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL), the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method. PMID:22736965
Predicting the random drift of MEMS gyroscope based on K-means clustering and OLS RBF Neural Network
NASA Astrophysics Data System (ADS)
Wang, Zhen-yu; Zhang, Li-jie
2017-10-01
Measure error of the sensor can be effectively compensated with prediction. Aiming at large random drift error of MEMS(Micro Electro Mechanical System))gyroscope, an improved learning algorithm of Radial Basis Function(RBF) Neural Network(NN) based on K-means clustering and Orthogonal Least-Squares (OLS) is proposed in this paper. The algorithm selects the typical samples as the initial cluster centers of RBF NN firstly, candidates centers with K-means algorithm secondly, and optimizes the candidate centers with OLS algorithm thirdly, which makes the network structure simpler and makes the prediction performance better. Experimental results show that the proposed K-means clustering OLS learning algorithm can predict the random drift of MEMS gyroscope effectively, the prediction error of which is 9.8019e-007°/s and the prediction time of which is 2.4169e-006s
AveBoost2: Boosting for Noisy Data
NASA Technical Reports Server (NTRS)
Oza, Nikunj C.
2004-01-01
AdaBoost is a well-known ensemble learning algorithm that constructs its constituent or base models in sequence. A key step in AdaBoost is constructing a distribution over the training examples to create each base model. This distribution, represented as a vector, is constructed to be orthogonal to the vector of mistakes made by the pre- vious base model in the sequence. The idea is to make the next base model's errors uncorrelated with those of the previous model. In previous work, we developed an algorithm, AveBoost, that constructed distributions orthogonal to the mistake vectors of all the previous models, and then averaged them to create the next base model s distribution. Our experiments demonstrated the superior accuracy of our approach. In this paper, we slightly revise our algorithm to allow us to obtain non-trivial theoretical results: bounds on the training error and generalization error (difference between training and test error). Our averaging process has a regularizing effect which, as expected, leads us to a worse training error bound for our algorithm than for AdaBoost but a superior generalization error bound. For this paper, we experimented with the data that we used in both as originally supplied and with added label noise-a small fraction of the data has its original label changed. Noisy data are notoriously difficult for AdaBoost to learn. Our algorithm's performance improvement over AdaBoost is even greater on the noisy data than the original data.
Parallel Processing of Broad-Band PPM Signals
NASA Technical Reports Server (NTRS)
Gray, Andrew; Kang, Edward; Lay, Norman; Vilnrotter, Victor; Srinivasan, Meera; Lee, Clement
2010-01-01
A parallel-processing algorithm and a hardware architecture to implement the algorithm have been devised for timeslot synchronization in the reception of pulse-position-modulated (PPM) optical or radio signals. As in the cases of some prior algorithms and architectures for parallel, discrete-time, digital processing of signals other than PPM, an incoming broadband signal is divided into multiple parallel narrower-band signals by means of sub-sampling and filtering. The number of parallel streams is chosen so that the frequency content of the narrower-band signals is low enough to enable processing by relatively-low speed complementary metal oxide semiconductor (CMOS) electronic circuitry. The algorithm and architecture are intended to satisfy requirements for time-varying time-slot synchronization and post-detection filtering, with correction of timing errors independent of estimation of timing errors. They are also intended to afford flexibility for dynamic reconfiguration and upgrading. The architecture is implemented in a reconfigurable CMOS processor in the form of a field-programmable gate array. The algorithm and its hardware implementation incorporate three separate time-varying filter banks for three distinct functions: correction of sub-sample timing errors, post-detection filtering, and post-detection estimation of timing errors. The design of the filter bank for correction of timing errors, the method of estimating timing errors, and the design of a feedback-loop filter are governed by a host of parameters, the most critical one, with regard to processing very broadband signals with CMOS hardware, being the number of parallel streams (equivalently, the rate-reduction parameter).
NASA Technical Reports Server (NTRS)
Ni, Jianjun David
2011-01-01
This presentation briefly discusses a research effort on mitigation techniques of pulsed radio frequency interference (RFI) on a Low-Density-Parity-Check (LDPC) code. This problem is of considerable interest in the context of providing reliable communications to the space vehicle which might suffer severe degradation due to pulsed RFI sources such as large radars. The LDPC code is one of modern forward-error-correction (FEC) codes which have the decoding performance to approach the Shannon Limit. The LDPC code studied here is the AR4JA (2048, 1024) code recommended by the Consultative Committee for Space Data Systems (CCSDS) and it has been chosen for some spacecraft design. Even though this code is designed as a powerful FEC code in the additive white Gaussian noise channel, simulation data and test results show that the performance of this LDPC decoder is severely degraded when exposed to the pulsed RFI specified in the spacecraft s transponder specifications. An analysis work (through modeling and simulation) has been conducted to evaluate the impact of the pulsed RFI and a few implemental techniques have been investigated to mitigate the pulsed RFI impact by reshuffling the soft-decision-data available at the input of the LDPC decoder. The simulation results show that the LDPC decoding performance of codeword error rate (CWER) under pulsed RFI can be improved up to four orders of magnitude through a simple soft-decision-data reshuffle scheme. This study reveals that an error floor of LDPC decoding performance appears around CWER=1E-4 when the proposed technique is applied to mitigate the pulsed RFI impact. The mechanism causing this error floor remains unknown, further investigation is necessary.
Accounting for hardware imperfections in EIT image reconstruction algorithms.
Hartinger, Alzbeta E; Gagnon, Hervé; Guardo, Robert
2007-07-01
Electrical impedance tomography (EIT) is a non-invasive technique for imaging the conductivity distribution of a body section. Different types of EIT images can be reconstructed: absolute, time difference and frequency difference. Reconstruction algorithms are sensitive to many errors which translate into image artefacts. These errors generally result from incorrect modelling or inaccurate measurements. Every reconstruction algorithm incorporates a model of the physical set-up which must be as accurate as possible since any discrepancy with the actual set-up will cause image artefacts. Several methods have been proposed in the literature to improve the model realism, such as creating anatomical-shaped meshes, adding a complete electrode model and tracking changes in electrode contact impedances and positions. Absolute and frequency difference reconstruction algorithms are particularly sensitive to measurement errors and generally assume that measurements are made with an ideal EIT system. Real EIT systems have hardware imperfections that cause measurement errors. These errors translate into image artefacts since the reconstruction algorithm cannot properly discriminate genuine measurement variations produced by the medium under study from those caused by hardware imperfections. We therefore propose a method for eliminating these artefacts by integrating a model of the system hardware imperfections into the reconstruction algorithms. The effectiveness of the method has been evaluated by reconstructing absolute, time difference and frequency difference images with and without the hardware model from data acquired on a resistor mesh phantom. Results have shown that artefacts are smaller for images reconstructed with the model, especially for frequency difference imaging.
Hard decoding algorithm for optimizing thresholds under general Markovian noise
NASA Astrophysics Data System (ADS)
Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond
2017-04-01
Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.
NASA Astrophysics Data System (ADS)
Park, Sang-Gon; Jeong, Dong-Seok
2000-12-01
In this paper, we propose a fast adaptive diamond search algorithm (FADS) for block matching motion estimation. Many fast motion estimation algorithms reduce the computational complexity by the UESA (Unimodal Error Surface Assumption) where the matching error monotonically increases as the search moves away from the global minimum point. Recently, many fast BMAs (Block Matching Algorithms) make use of the fact that global minimum points in real world video sequences are centered at the position of zero motion. But these BMAs, especially in large motion, are easily trapped into the local minima and result in poor matching accuracy. So, we propose a new motion estimation algorithm using the spatial correlation among the neighboring blocks. We move the search origin according to the motion vectors of the spatially neighboring blocks and their MAEs (Mean Absolute Errors). The computer simulation shows that the proposed algorithm has almost the same computational complexity with DS (Diamond Search), but enhances PSNR. Moreover, the proposed algorithm gives almost the same PSNR as that of FS (Full Search), even for the large motion with half the computational load.
NASA Technical Reports Server (NTRS)
Herman, G. C.
1986-01-01
A lateral guidance algorithm which controls the location of the line of intersection between the actual and desired orbital planes (the hinge line) is developed for the aerobraking phase of a lift-modulated orbital transfer vehicle. The on-board targeting algorithm associated with this lateral guidance algorithm is simple and concise which is very desirable since computation time and space are limited on an on-board flight computer. A variational equation which describes the movement of the hinge line is derived. Simple relationships between the plane error, the desired hinge line position, the position out-of-plane error, and the velocity out-of-plane error are found. A computer simulation is developed to test the lateral guidance algorithm for a variety of operating conditions. The algorithm does reduce the total burn magnitude needed to achieve the desired orbit by allowing the plane correction and perigee-raising burn to be combined in a single maneuver. The algorithm performs well under vacuum perigee dispersions, pot-hole density disturbance, and thick atmospheres. The results for many different operating conditions are presented.
Designing an Algorithm to Preserve Privacy for Medical Record Linkage With Error-Prone Data
Pal, Doyel; Chen, Tingting; Khethavath, Praveen
2014-01-01
Background Linking medical records across different medical service providers is important to the enhancement of health care quality and public health surveillance. In records linkage, protecting the patients’ privacy is a primary requirement. In real-world health care databases, records may well contain errors due to various reasons such as typos. Linking the error-prone data and preserving data privacy at the same time are very difficult. Existing privacy preserving solutions for this problem are only restricted to textual data. Objective To enable different medical service providers to link their error-prone data in a private way, our aim was to provide a holistic solution by designing and developing a medical record linkage system for medical service providers. Methods To initiate a record linkage, one provider selects one of its collaborators in the Connection Management Module, chooses some attributes of the database to be matched, and establishes the connection with the collaborator after the negotiation. In the Data Matching Module, for error-free data, our solution offered two different choices for cryptographic schemes. For error-prone numerical data, we proposed a newly designed privacy preserving linking algorithm named the Error-Tolerant Linking Algorithm, that allows the error-prone data to be correctly matched if the distance between the two records is below a threshold. Results We designed and developed a comprehensive and user-friendly software system that provides privacy preserving record linkage functions for medical service providers, which meets the regulation of Health Insurance Portability and Accountability Act. It does not require a third party and it is secure in that neither entity can learn the records in the other’s database. Moreover, our novel Error-Tolerant Linking Algorithm implemented in this software can work well with error-prone numerical data. We theoretically proved the correctness and security of our Error-Tolerant Linking Algorithm. We have also fully implemented the software. The experimental results showed that it is reliable and efficient. The design of our software is open so that the existing textual matching methods can be easily integrated into the system. Conclusions Designing algorithms to enable medical records linkage for error-prone numerical data and protect data privacy at the same time is difficult. Our proposed solution does not need a trusted third party and is secure in that in the linking process, neither entity can learn the records in the other’s database. PMID:25600786
Time Series Reconstruction of Surface Flow Velocity on Marine-terminating Outlet Glaciers
NASA Astrophysics Data System (ADS)
Jeong, Seongsu
The flow velocity of glacier and its fluctuation are valuable data to study the contribution of sea level rise of ice sheet by understanding its dynamic structure. Repeat-image feature tracking (RIFT) is a platform-independent, feature tracking-based velocity measurement methodology effective for building a time series of velocity maps from optical images. However, limited availability of perfectly-conditioned images motivated to improve robustness of the algorithm. With this background, we developed an improved RIFT algorithm based on multiple-image multiple-chip algorithm presented in Ahn and Howat (2011). The test results affirm improvement in the new RIFT algorithm in avoiding outlier, and the analysis of the multiple matching results clarified that each individual matching results worked in complementary manner to deduce the correct displacements. LANDSAT 8 is a new satellite in LANDSAT program that has begun its operation since 2013. The improved radiometric performance of OLI aboard the satellite is expected to enable better velocity mapping results than ETM+ aboard LANDSAT 7. However, it was not yet well studied that in what cases the new will sensor will be beneficial, and how much the improvement will be obtained. We carried out a simulation-based comparison between ETM+ and OLI and confirmed OLI outperforms ETM+ especially in low contrast conditions, especially in polar night, translucent cloud covers, and bright upglacier with less texture. We have identified a rift on ice shelf of Pine island glacier located in western Antarctic ice sheet. Unlike the previous events, the evolution of the current started from the center of the ice shelf. In order to analyze this unique event, we utilized the improved RIFT algorithm to its OLI images to retrieve time series of velocity maps. We discovered from the analyses that the part of ice shelf below the rift is changing its speed, and shifting of splashing crevasses on shear margin is migrating to the center of the shelf. Concerning the concurrent disintegration of ice melange on its western part of the terminus, we postulate that change in flow regime attributes to loss of resistance force exerted by the melange. There are several topics that need to be addressed for further improve the RIFT algorithm. As coregistration error is significant contributor to the velocity measurement, a method to mitigate that error needs to be devised. Also, considering that the domain of RIFT product spans not only in space but also in time, its regridding and gap filling work will benefit from extending its domain to both space and time.
Robust THP Transceiver Designs for Multiuser MIMO Downlink with Imperfect CSIT
NASA Astrophysics Data System (ADS)
Ubaidulla, P.; Chockalingam, A.
2009-12-01
We present robust joint nonlinear transceiver designs for multiuser multiple-input multiple-output (MIMO) downlink in the presence of imperfections in the channel state information at the transmitter (CSIT). The base station (BS) is equipped with multiple transmit antennas, and each user terminal is equipped with one or more receive antennas. The BS employs Tomlinson-Harashima precoding (THP) for interuser interference precancellation at the transmitter. We consider robust transceiver designs that jointly optimize the transmit THP filters and receive filter for two models of CSIT errors. The first model is a stochastic error (SE) model, where the CSIT error is Gaussian-distributed. This model is applicable when the CSIT error is dominated by channel estimation error. In this case, the proposed robust transceiver design seeks to minimize a stochastic function of the sum mean square error (SMSE) under a constraint on the total BS transmit power. We propose an iterative algorithm to solve this problem. The other model we consider is a norm-bounded error (NBE) model, where the CSIT error can be specified by an uncertainty set. This model is applicable when the CSIT error is dominated by quantization errors. In this case, we consider a worst-case design. For this model, we consider robust (i) minimum SMSE, (ii) MSE-constrained, and (iii) MSE-balancing transceiver designs. We propose iterative algorithms to solve these problems, wherein each iteration involves a pair of semidefinite programs (SDPs). Further, we consider an extension of the proposed algorithm to the case with per-antenna power constraints. We evaluate the robustness of the proposed algorithms to imperfections in CSIT through simulation, and show that the proposed robust designs outperform nonrobust designs as well as robust linear transceiver designs reported in the recent literature.
NASA Technical Reports Server (NTRS)
Radomski, M. S.; Doll, C. E.
1991-01-01
This investigation concerns the effects on Ocean Topography Experiment (TOPEX) spacecraft operational orbit determination of ionospheric refraction error affecting tracking measurements from the Tracking and Data Relay Satellite System (TDRSS). Although tracking error from this source is mitigated by the high frequencies (K-band) used for the space-to-ground links and by the high altitudes for the space-to-space links, these effects are of concern for the relatively high-altitude (1334 kilometers) TOPEX mission. This concern is due to the accuracy required for operational orbit-determination by the Goddard Space Flight Center (GSFC) and to the expectation that solar activity will still be relatively high at TOPEX launch in mid-1992. The ionospheric refraction error on S-band space-to-space links was calculated by a prototype observation-correction algorithm using the Bent model of ionosphere electron densities implemented in the context of the Goddard Trajectory Determination System (GTDS). Orbit determination error was evaluated by comparing parallel TOPEX orbit solutions, applying and omitting the correction, using the same simulated TDRSS tracking observations. The tracking scenarios simulated those planned for the observation phase of the TOPEX mission, with a preponderance of one-way return-link Doppler measurements. The results of the analysis showed most TOPEX operational accuracy requirements to be little affected by space-to-space ionospheric error. The determination of along-track velocity changes after ground-track adjustment maneuvers, however, is significantly affected when compared with the stringent 0.1-millimeter-per-second accuracy requirements, assuming uncoupled premaneuver and postmaneuver orbit determination. Space-to-space ionospheric refraction on the 24-hour postmaneuver arc alone causes 0.2 millimeter-per-second errors in along-track delta-v determination using uncoupled solutions. Coupling the premaneuver and postmaneuver solutions, however, appears likely to reduce this figure substantially. Plans and recommendations for response to these findings are presented.
An ILP based Algorithm for Optimal Customer Selection for Demand Response in SmartGrids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuppannagari, Sanmukh R.; Kannan, Rajgopal; Prasanna, Viktor K.
Demand Response (DR) events are initiated by utilities during peak demand periods to curtail consumption. They ensure system reliability and minimize the utility’s expenditure. Selection of the right customers and strategies is critical for a DR event. An effective DR scheduling algorithm minimizes the curtailment error which is the absolute difference between the achieved curtailment value and the target. State-of-the-art heuristics exist for customer selection, however their curtailment errors are unbounded and can be as high as 70%. In this work, we develop an Integer Linear Programming (ILP) formulation for optimally selecting customers and curtailment strategies that minimize the curtailmentmore » error during DR events in SmartGrids. We perform experiments on real world data obtained from the University of Southern California’s SmartGrid and show that our algorithm achieves near exact curtailment values with errors in the range of 10 -7 to 10 -5, which are within the range of numerical errors. We compare our results against the state-of-the-art heuristic being deployed in practice in the USC SmartGrid. We show that for the same set of available customer strategy pairs our algorithm performs 103 to 107 times better in terms of the curtailment errors incurred.« less
Highlights of TOMS Version 9 Total Ozone Algorithm
NASA Technical Reports Server (NTRS)
Bhartia, Pawan; Haffner, David
2012-01-01
The fundamental basis of TOMS total ozone algorithm was developed some 45 years ago by Dave and Mateer. It was designed to estimate total ozone from satellite measurements of the backscattered UV radiances at few discrete wavelengths in the Huggins ozone absorption band (310-340 nm). Over the years, as the need for higher accuracy in measuring total ozone from space has increased, several improvements to the basic algorithms have been made. They include: better correction for the effects of aerosols and clouds, an improved method to account for the variation in shape of ozone profiles with season, latitude, and total ozone, and a multi-wavelength correction for remaining profile shape errors. These improvements have made it possible to retrieve total ozone with just 3 spectral channels of moderate spectral resolution (approx. 1 nm) with accuracy comparable to state-of-the-art spectral fitting algorithms like DOAS that require high spectral resolution measurements at large number of wavelengths. One of the deficiencies of the TOMS algorithm has been that it doesn't provide an error estimate. This is a particular problem in high latitudes when the profile shape errors become significant and vary with latitude, season, total ozone, and instrument viewing geometry. The primary objective of the TOMS V9 algorithm is to account for these effects in estimating the error bars. This is done by a straightforward implementation of the Rodgers optimum estimation method using a priori ozone profiles and their error covariances matrices constructed using Aura MLS and ozonesonde data. The algorithm produces a vertical ozone profile that contains 1-2.5 pieces of information (degrees of freedom of signal) depending upon solar zenith angle (SZA). The profile is integrated to obtain the total column. We provide information that shows the altitude range in which the profile is best determined by the measurements. One can use this information in data assimilation and analysis. A side benefit of this algorithm is that it is considerably simpler than the present algorithm that uses a database of 1512 profiles to retrieve total ozone. These profiles are tedious to construct and modify. Though conceptually similar to the SBUV V8 algorithm that was developed about a decade ago, the SBUV and TOMS V9 algorithms differ in detail. The TOMS algorithm uses 3 wavelengths to retrieve the profile while the SBUV algorithm uses 6-9 wavelengths, so TOMS provides less profile information. However both algorithms have comparable total ozone information and TOMS V9 can be easily adapted to use additional wavelengths from instruments like GOME, OMI and OMPS to provide better profile information at smaller SZAs. The other significant difference between the two algorithms is that while the SBUV algorithm has been optimized for deriving monthly zonal means by making an appropriate choice of the a priori error covariance matrix, the TOMS algorithm has been optimized for tracking short-term variability using month and latitude dependent covariance matrices.
AUV Underwater Positioning Algorithm Based on Interactive Assistance of SINS and LBL.
Zhang, Tao; Chen, Liping; Li, Yao
2015-12-30
This paper studies an underwater positioning algorithm based on the interactive assistance of a strapdown inertial navigation system (SINS) and LBL, and this algorithm mainly includes an optimal correlation algorithm with aided tracking of an SINS/Doppler velocity log (DVL)/magnetic compass pilot (MCP), a three-dimensional TDOA positioning algorithm of Taylor series expansion and a multi-sensor information fusion algorithm. The final simulation results show that compared to traditional underwater positioning algorithms, this scheme can not only directly correct accumulative errors caused by a dead reckoning algorithm, but also solves the problem of ambiguous correlation peaks caused by multipath transmission of underwater acoustic signals. The proposed method can calibrate the accumulative error of the AUV position more directly and effectively, which prolongs the underwater operating duration of the AUV.
Automatic Detection of Steganographic Content
2005-06-30
Practically, it is mostly embedded into the media files, especially the image files. Consequently, a lot of the anti- steganography algorithms work with raw...1: not enough memory * -2: error running the removal algorithm EXPORT IMAGE *StegRemove( IMAGE * image , int *error); 2.8 Steganography Extraction API...researcher just invented a reliable algorithm that can detect the existence of a steganography if it is embedded anywhere in any uncompressed image . The
Nonconvergence of the Wang-Landau algorithms with multiple random walkers.
Belardinelli, R E; Pereyra, V D
2016-05-01
This paper discusses some convergence properties in the entropic sampling Monte Carlo methods with multiple random walkers, particularly in the Wang-Landau (WL) and 1/t algorithms. The classical algorithms are modified by the use of m-independent random walkers in the energy landscape to calculate the density of states (DOS). The Ising model is used to show the convergence properties in the calculation of the DOS, as well as the critical temperature, while the calculation of the number π by multiple dimensional integration is used in the continuum approximation. In each case, the error is obtained separately for each walker at a fixed time, t; then, the average over m walkers is performed. It is observed that the error goes as 1/sqrt[m]. However, if the number of walkers increases above a certain critical value m>m_{x}, the error reaches a constant value (i.e., it saturates). This occurs for both algorithms; however, it is shown that for a given system, the 1/t algorithm is more efficient and accurate than the similar version of the WL algorithm. It follows that it makes no sense to increase the number of walkers above a critical value m_{x}, since it does not reduce the error in the calculation. Therefore, the number of walkers does not guarantee convergence.
A Decision Theoretic Approach to Evaluate Radiation Detection Algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nobles, Mallory A.; Sego, Landon H.; Cooley, Scott K.
2013-07-01
There are a variety of sensor systems deployed at U.S. border crossings and ports of entry that scan for illicit nuclear material. In this work, we develop a framework for comparing the performance of detection algorithms that interpret the output of these scans and determine when secondary screening is needed. We optimize each algorithm to minimize its risk, or expected loss. We measure an algorithm’s risk by considering its performance over a sample, the probability distribution of threat sources, and the consequence of detection errors. While it is common to optimize algorithms by fixing one error rate and minimizing another,more » our framework allows one to simultaneously consider multiple types of detection errors. Our framework is flexible and easily adapted to many different assumptions regarding the probability of a vehicle containing illicit material, and the relative consequences of a false positive and false negative errors. Our methods can therefore inform decision makers of the algorithm family and parameter values which best reduce the threat from illicit nuclear material, given their understanding of the environment at any point in time. To illustrate the applicability of our methods, in this paper, we compare the risk from two families of detection algorithms and discuss the policy implications of our results.« less
NASA Astrophysics Data System (ADS)
Chen, Shanyong; Li, Shengyi; Wang, Guilin
2014-11-01
The wavefront error of large telescopes requires to be measured to check the system quality and also estimate the misalignment of the telescope optics including the primary, the secondary and so on. It is usually realized by a focal plane interferometer and an autocollimator flat (ACF) of the same aperture with the telescope. However, it is challenging for meter class telescopes due to high cost and technological challenges in producing the large ACF. Subaperture test with a smaller ACF is hence proposed in combination with advanced stitching algorithms. Major error sources include the surface error of the ACF, misalignment of the ACF and measurement noises. Different error sources have different impacts on the wavefront error. Basically the surface error of the ACF behaves like systematic error and the astigmatism will be cumulated and enlarged if the azimuth of subapertures remains fixed. It is difficult to accurately calibrate the ACF because it suffers considerable deformation induced by gravity or mechanical clamping force. Therefore a selfcalibrated stitching algorithm is employed to separate the ACF surface error from the subaperture wavefront error. We suggest the ACF be rotated around the optical axis of the telescope for subaperture test. The algorithm is also able to correct the subaperture tip-tilt based on the overlapping consistency. Since all subaperture measurements are obtained in the same imaging plane, lateral shift of the subapertures is always known and the real overlapping points can be recognized in this plane. Therefore lateral positioning error of subapertures has no impact on the stitched wavefront. In contrast, the angular positioning error changes the azimuth of the ACF and finally changes the systematic error. We propose an angularly uneven layout of subapertures to minimize the stitching error, which is very different from our knowledge. At last, measurement noises could never be corrected but be suppressed by means of averaging and environmental control. We simulate the performance of the stitching algorithm dealing with surface error and misalignment of the ACF, and noise suppression, which provides guidelines to optomechanical design of the stitching test system.
Han, Yaoqiang; Dang, Anhong; Ren, Yongxiong; Tang, Junxiong; Guo, Hong
2010-12-20
In free space optical communication (FSOC) systems, channel fading caused by atmospheric turbulence degrades the system performance seriously. However, channel coding combined with diversity techniques can be exploited to mitigate channel fading. In this paper, based on the experimental study of the channel fading effects, we propose to use turbo product code (TPC) as the channel coding scheme, which features good resistance to burst errors and no error floor. However, only channel coding cannot cope with burst errors caused by channel fading, interleaving is also used. We investigate the efficiency of interleaving for different interleaving depths, and then the optimum interleaving depth for TPC is also determined. Finally, an experimental study of TPC with interleaving is demonstrated, and we show that TPC with interleaving can significantly mitigate channel fading in FSOC systems.
Geomagnetic matching navigation algorithm based on robust estimation
NASA Astrophysics Data System (ADS)
Xie, Weinan; Huang, Liping; Qu, Zhenshen; Wang, Zhenhuan
2017-08-01
The outliers in the geomagnetic survey data seriously affect the precision of the geomagnetic matching navigation and badly disrupt its reliability. A novel algorithm which can eliminate the outliers influence is investigated in this paper. First, the weight function is designed and its principle of the robust estimation is introduced. By combining the relation equation between the matching trajectory and the reference trajectory with the Taylor series expansion for geomagnetic information, a mathematical expression of the longitude, latitude and heading errors is acquired. The robust target function is obtained by the weight function and the mathematical expression. Then the geomagnetic matching problem is converted to the solutions of nonlinear equations. Finally, Newton iteration is applied to implement the novel algorithm. Simulation results show that the matching error of the novel algorithm is decreased to 7.75% compared to the conventional mean square difference (MSD) algorithm, and is decreased to 18.39% to the conventional iterative contour matching algorithm when the outlier is 40nT. Meanwhile, the position error of the novel algorithm is 0.017° while the other two algorithms fail to match when the outlier is 400nT.
Coastal Zone Color Scanner atmospheric correction algorithm - Multiple scattering effects
NASA Technical Reports Server (NTRS)
Gordon, Howard R.; Castano, Diego J.
1987-01-01
Errors due to multiple scattering which are expected to be encountered in application of the current Coastal Zone Color Scanner (CZCS) atmospheric correction algorithm are analyzed. The analysis is based on radiative transfer computations in model atmospheres, in which the aerosols and molecules are distributed vertically in an exponential manner, with most of the aerosol scattering located below the molecular scattering. A unique feature of the analysis is that it is carried out in scan coordinates rather than typical earth-sun coordinates, making it possible to determine the errors along typical CZCS scan lines. Information provided by the analysis makes it possible to judge the efficacy of the current algorithm with the current sensor and to estimate the impact of the algorithm-induced errors on a variety of applications.
Optimizing the learning rate for adaptive estimation of neural encoding models
2018-01-01
Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains. PMID:29813069
Optimizing the learning rate for adaptive estimation of neural encoding models.
Hsieh, Han-Lin; Shanechi, Maryam M
2018-05-01
Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains.
Recursive least-squares learning algorithms for neural networks
NASA Astrophysics Data System (ADS)
Lewis, Paul S.; Hwang, Jenq N.
1990-11-01
This paper presents the development of a pair of recursive least squares (ItLS) algorithms for online training of multilayer perceptrons which are a class of feedforward artificial neural networks. These algorithms incorporate second order information about the training error surface in order to achieve faster learning rates than are possible using first order gradient descent algorithms such as the generalized delta rule. A least squares formulation is derived from a linearization of the training error function. Individual training pattern errors are linearized about the network parameters that were in effect when the pattern was presented. This permits the recursive solution of the least squares approximation either via conventional RLS recursions or by recursive QR decomposition-based techniques. The computational complexity of the update is 0(N2) where N is the number of network parameters. This is due to the estimation of the N x N inverse Hessian matrix. Less computationally intensive approximations of the ilLS algorithms can be easily derived by using only block diagonal elements of this matrix thereby partitioning the learning into independent sets. A simulation example is presented in which a neural network is trained to approximate a two dimensional Gaussian bump. In this example RLS training required an order of magnitude fewer iterations on average (527) than did training with the generalized delta rule (6 1 BACKGROUND Artificial neural networks (ANNs) offer an interesting and potentially useful paradigm for signal processing and pattern recognition. The majority of ANN applications employ the feed-forward multilayer perceptron (MLP) network architecture in which network parameters are " trained" by a supervised learning algorithm employing the generalized delta rule (GDIt) [1 2]. The GDR algorithm approximates a fixed step steepest descent algorithm using derivatives computed by error backpropagatiori. The GDII algorithm is sometimes referred to as the backpropagation algorithm. However in this paper we will use the term backpropagation to refer only to the process of computing error derivatives. While multilayer perceptrons provide a very powerful nonlinear modeling capability GDR training can be very slow and inefficient. In linear adaptive filtering the analog of the GDR algorithm is the leastmean- squares (LMS) algorithm. Steepest descent-based algorithms such as GDR or LMS are first order because they use only first derivative or gradient information about the training error to be minimized. To speed up the training process second order algorithms may be employed that take advantage of second derivative or Hessian matrix information. Second order information can be incorporated into MLP training in different ways. In many applications especially in the area of pattern recognition the training set is finite. In these cases block learning can be applied using standard nonlinear optimization techniques [3 4 5].
Analysis of estimation algorithms for CDTI and CAS applications
NASA Technical Reports Server (NTRS)
Goka, T.
1985-01-01
Estimation algorithms for Cockpit Display of Traffic Information (CDTI) and Collision Avoidance System (CAS) applications were analyzed and/or developed. The algorithms are based on actual or projected operational and performance characteristics of an Enhanced TCAS II traffic sensor developed by Bendix and the Federal Aviation Administration. Three algorithm areas are examined and discussed. These are horizontal x and y, range and altitude estimation algorithms. Raw estimation errors are quantified using Monte Carlo simulations developed for each application; the raw errors are then used to infer impacts on the CDTI and CAS applications. Applications of smoothing algorithms to CDTI problems are also discussed briefly. Technical conclusions are summarized based on the analysis of simulation results.
Understanding Effective Diameter and Its Application to Terrestrial Radiation in Ice Clouds
NASA Technical Reports Server (NTRS)
Mitchell, D. L.; Lawson, R. P.; Baker, B.
2011-01-01
The cloud property known as "effective diameter" or "effective radius", which in essence is the cloud particle size distribution (PSD) volume at bulk density divided by its projected area, is used extensively in atmospheric radiation transfer, climate modeling and remote sensing. This derives from the assumption that PSD optical properties can be uniquely described in terms of their effective diameter, D(sub e), and their cloud water content (CWC), henceforth referred to as the D(sub e)-CWC assumption. This study challenges this assumption, showing that while the D(sub e)-CWC assumption appears generally valid for liquid water clouds, it appears less valid for ice clouds in regions where (1) absorption is not primarily a function of either the PSD ice water content (IWC) or the PSD projected area, and (2) where wave resonance (i.e. photon tunneling) contributes significantly to absorption. These two regions often strongly coincide at terrestrial wavelengths when De less than 60 m, which is where this D(sub e)-CWC assumption appears poorest. Treating optical properties solely in terms of D(sub e) and IWC may lead to errors up to 24%, 26% and 20% for terrestrial radiation in the window region regarding the absorption and extinction coefficients and the single scattering albedo, respectively. Outside the window region, errors may reach 33% and 42% regarding absorption and extinction. The magnitude and sign of these errors can change rapidly with wavelength, which may produce significant errors in climate modeling, remote sensing and other applications concerned with the wavelength dependence of radiation. Where the D(sub e)-CWC assumption breaks down, ice cloud optical properties appear to depend on D(sub e), IWC and the PSD shape. Optical property parameterizations in climate models and remote sensing algorithms based on historical PSD measurements may exhibit errors due to previously unknown PSD errors (i.e. the presence of ice artifacts due to the shattering of larger ice particles on the probe inlet tube during sampling). More recently developed cloud probes are designed to mitigate this shattering problem. Using realistic PSD shapes for a given temperature (and/or IWC) and cloud type may minimize errors associated with PSD shape in ice optics parameterizations and remote sensing algorithms. While this topic was investigated using two ice optics schemes (the Yang et al., 2005 database and the modified anomalous diffraction approximation, or MADA), a physical understanding of the limitations of the D(sub e)-IWC assumption was made possible by using MADA. MADA allows one to approximate the contribution of photon tunneling to absorption relative to other optical processes, which reveals that part of the error regarding the D(sub e)-IWC assumption can be associated with tunneling. By relating the remaining error to the radiation penetration depth in bulk ice (DELTA L) due to absorption, the domain where the D(sub e)-IWC assumption is weakest was described in terms of D(sub e) and DELTA L.
Understanding effective diameter and its application to terrestrial radiation in ice clouds
NASA Astrophysics Data System (ADS)
Mitchell, D. L.; Lawson, R. P.; Baker, B.
2010-12-01
The cloud property known as "effective diameter" or "effective radius", which in essence is the cloud particle size distribution (PSD) volume at bulk density divided by its projected area, is used extensively in atmospheric radiation transfer, climate modeling and remote sensing. This derives from the assumption that PSD optical properties can be uniquely described in terms of their effective diameter, De, and their cloud water content (CWC), henceforth referred to as the De-CWC assumption. This study challenges this assumption, showing that while the De-CWC assumption appears generally valid for liquid water clouds, it appears less valid for ice clouds in regions where (1) absorption is not primarily a function of either the PSD ice water content (IWC) or the PSD projected area, and (2) where wave resonance (i.e. photon tunneling) contributes significantly to absorption. These two regions often strongly coincide at terrestrial wavelengths when De<∼60 μm, which is where this De-CWC assumption appears poorest. Treating optical properties solely in terms of De and IWC may lead to errors up to 24%, 26% and 20% for terrestrial radiation in the window region regarding the absorption and extinction coefficients and the single scattering albedo, respectively. Outside the window region, errors may reach 33% and 42% regarding absorption and extinction. The magnitude and sign of these errors can change rapidly with wavelength, which may produce significant errors in climate modeling, remote sensing and other applications concerned with the wavelength dependence of radiation. Where the De-CWC assumption breaks down, ice cloud optical properties appear to depend on De, IWC and the PSD shape. Optical property parameterizations in climate models and remote sensing algorithms based on historical PSD measurements may exhibit errors due to previously unknown PSD errors (i.e. the presence of ice artifacts due to the shattering of larger ice particles on the probe inlet tube during sampling). More recently developed cloud probes are designed to mitigate this shattering problem. Using realistic PSD shapes for a given temperature (and/or IWC) and cloud type may minimize errors associated with PSD shape in ice optics parameterizations and remote sensing algorithms. While this topic was investigated using two ice optics schemes (the Yang et al. (2005) database and the modified anomalous diffraction approximation, or MADA), a physical understanding of the limitations of the De-IWC assumption was made possible by using MADA. MADA allows one to separate the photon tunneling process from the other optical processes, which reveals that much of the error regarding the De-IWC assumption can be associated with tunneling. By relating the remaining error to the radiation penetration depth in bulk ice (ΔL) due to absorption, the domain where the De-IWC assumption is weakest was described in terms of De and ΔL.
Efficient Solar Scene Wavefront Estimation with Reduced Systematic and RMS Errors: Summary
NASA Astrophysics Data System (ADS)
Anugu, N.; Garcia, P.
2016-04-01
Wave front sensing for solar telescopes is commonly implemented with the Shack-Hartmann sensors. Correlation algorithms are usually used to estimate the extended scene Shack-Hartmann sub-aperture image shifts or slopes. The image shift is computed by correlating a reference sub-aperture image with the target distorted sub-aperture image. The pixel position where the maximum correlation is located gives the image shift in integer pixel coordinates. Sub-pixel precision image shifts are computed by applying a peak-finding algorithm to the correlation peak Poyneer (2003); Löfdahl (2010). However, the peak-finding algorithm results are usually biased towards the integer pixels, these errors are called as systematic bias errors Sjödahl (1994). These errors are caused due to the low pixel sampling of the images. The amplitude of these errors depends on the type of correlation algorithm and the type of peak-finding algorithm being used. To study the systematic errors in detail, solar sub-aperture synthetic images are constructed by using a Swedish Solar Telescope solar granulation image1. The performance of cross-correlation algorithm in combination with different peak-finding algorithms is investigated. The studied peak-finding algorithms are: parabola Poyneer (2003); quadratic polynomial Löfdahl (2010); threshold center of gravity Bailey (2003); Gaussian Nobach & Honkanen (2005) and Pyramid Bailey (2003). The systematic error study reveals that that the pyramid fit is the most robust to pixel locking effects. The RMS error analysis study reveals that the threshold centre of gravity behaves better in low SNR, although the systematic errors in the measurement are large. It is found that no algorithm is best for both the systematic and the RMS error reduction. To overcome the above problem, a new solution is proposed. In this solution, the image sampling is increased prior to the actual correlation matching. The method is realized in two steps to improve its computational efficiency. In the first step, the cross-correlation is implemented at the original image spatial resolution grid (1 pixel). In the second step, the cross-correlation is performed using a sub-pixel level grid by limiting the field of search to 4 × 4 pixels centered at the first step delivered initial position. The generation of these sub-pixel grid based region of interest images is achieved with the bi-cubic interpolation. The correlation matching with sub-pixel grid technique was previously reported in electronic speckle photography Sjö'dahl (1994). This technique is applied here for the solar wavefront sensing. A large dynamic range and a better accuracy in the measurements are achieved with the combination of the original pixel grid based correlation matching in a large field of view and a sub-pixel interpolated image grid based correlation matching within a small field of view. The results revealed that the proposed method outperforms all the different peak-finding algorithms studied in the first approach. It reduces both the systematic error and the RMS error by a factor of 5 (i.e., 75% systematic error reduction), when 5 times improved image sampling was used. This measurement is achieved at the expense of twice the computational cost. With the 5 times improved image sampling, the wave front accuracy is increased by a factor of 5. The proposed solution is strongly recommended for wave front sensing in the solar telescopes, particularly, for measuring large dynamic image shifts involved open loop adaptive optics. Also, by choosing an appropriate increment of image sampling in trade-off between the computational speed limitation and the aimed sub-pixel image shift accuracy, it can be employed in closed loop adaptive optics. The study is extended to three other class of sub-aperture images (a point source; a laser guide star; a Galactic Center extended scene). The results are planned to submit for the Optical Express journal.
Correction of Measured Taxicab Exhaust Emission Data Based on Cmem Modle
NASA Astrophysics Data System (ADS)
Li, Q.; Jia, T.
2017-09-01
Carbon dioxide emissions from urban road traffic mainly come from automobile exhaust. However, the carbon dioxide emissions obtained by the instruments are unreliable due to time delay error. In order to improve the reliability of data, we propose a method to correct the measured vehicles' carbon dioxide emissions from instrument based on the CMEM model. Firstly, the synthetic time series of carbon dioxide emissions are simulated by CMEM model and GPS velocity data. Then, taking the simulation data as the control group, the time delay error of the measured carbon dioxide emissions can be estimated by the asynchronous correlation analysis, and the outliers can be automatically identified and corrected using the principle of DTW algorithm. Taking the taxi trajectory data of Wuhan as an example, the results show that (1) the correlation coefficient between the measured data and the control group data can be improved from 0.52 to 0.59 by mitigating the systematic time delay error. Furthermore, by adjusting the outliers which account for 4.73 % of the total data, the correlation coefficient can raise to 0.63, which suggests strong correlation. The construction of low carbon traffic has become the focus of the local government. In order to respond to the slogan of energy saving and emission reduction, the distribution of carbon emissions from motor vehicle exhaust emission was studied. So our corrected data can be used to make further air quality analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jerban, Saeed, E-mail: saeed.jerban@usherbrooke.ca
2016-08-15
The pore interconnection size of β-tricalcium phosphate scaffolds plays an essential role in the bone repair process. Although, the μCT technique is widely used in the biomaterial community, it is rarely used to measure the interconnection size because of the lack of algorithms. In addition, discrete nature of the μCT introduces large systematic errors due to the convex geometry of interconnections. We proposed, verified and validated a novel pore-level algorithm to accurately characterize the individual pores and interconnections. Specifically, pores and interconnections were isolated, labeled, and individually analyzed with high accuracy. The technique was verified thoroughly by visually inspecting andmore » verifying over 3474 properties of randomly selected pores. This extensive verification process has passed a one-percent accuracy criterion. Scanning errors inherent in the discretization, which lead to both dummy and significantly overestimated interconnections, have been examined using computer-based simulations and additional high-resolution scanning. Then accurate correction charts were developed and used to reduce the scanning errors. Only after the corrections, both the μCT and SEM-based results converged, and the novel algorithm was validated. Material scientists with access to all geometrical properties of individual pores and interconnections, using the novel algorithm, will have a more-detailed and accurate description of the substitute architecture and a potentially deeper understanding of the link between the geometric and biological interaction. - Highlights: •An algorithm is developed to analyze individually all pores and interconnections. •After pore isolating, the discretization errors in interconnections were corrected. •Dummy interconnections and overestimated sizes were due to thin material walls. •The isolating algorithm was verified through visual inspection (99% accurate). •After correcting for the systematic errors, algorithm was validated successfully.« less
NASA Technical Reports Server (NTRS)
Taylor, Thomas E.; O'Dell, Christopher W.; Frankenberg, Christian; Partain, Philip; Cronk, Heather W.; Savtchenko, Andrey; Nelson, Robert R.; Rosenthal, Emily J.; Chang, Albert; Crisp, David;
2015-01-01
The retrieval of the column-averaged carbon dioxide (CO2) dry air mole fraction (XCO2 ) from satellite measurements of reflected sunlight in the near-infrared can be biased due to contamination by clouds and aerosols within the instrument's field of view (FOV). Therefore, accurate aerosol and cloud screening of soundings is required prior to their use in the computationally expensive XCO2 retrieval algorithm. Robust cloud screening methods have been an important focus of the retrieval algorithm team for the National Aeronautics and Space Administration (NASA) Orbiting Carbon Observatory-2 (OCO-2), which was successfully launched into orbit on July 2, 2014. Two distinct spectrally-based algorithms have been developed for the purpose of cloud clearing OCO-2 soundings. The A-Band Preprocessor (ABP) performs a retrieval of surface pressure using measurements in the 0.76 micron O2 A-band to distinguish changes in the expected photon path length. The Iterative Maximum A-Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) (IDP) algorithm is a non- scattering routine that operates on the O2 A-band as well as two CO2 absorption bands at 1.6 m (weak CO2 band) and 2.0 m (strong CO2 band) to provide band-dependent estimates of CO2 and H2O. Spectral ratios of retrieved CO2 and H2O identify measurements contaminated with cloud and scattering aerosols. Information from the two preprocessors is feed into a sounding selection tool to strategically down select from the order one million daily soundings collected by OCO-2 to a manageable number (order 10 to 20%) to be processed by the OCO-2 L2 XCO2 retrieval algorithm. Regional biases or errors in the selection of clear-sky soundings will introduce errors in the final retrieved XCO2 values, ultimately yielding errors in the flux inversion models used to determine global sources and sinks of CO2. In this work collocated measurements from NASA's Moderate Resolution Imaging Spectrometer (MODIS), aboard the Aqua platform, and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite, are used as a reference to access the accuracy and strengths and weaknesses of the OCO-2 screening algorithms. The combination of the ABP and IDP algorithms is shown to provide very robust and complimentary cloud filtering as compared to the results from MODIS and CALIOP. With idealized algorithm tuning to allow throughputs of 20-25%, correct classification of scenes, i.e., accuracies, are found to be ' 80-90% over several orbit repeat cycles in both the win ter and spring time for the three main viewing configurations of OCO-2; nadir-land, glint-land and glint-water. Investigation unveiled no major spatial or temporal dependencies, although slight differences in the seasonal data sets do exist and classification tends to be more problematic with increasing solar zenith angle and when surfaces are covered in snow and ice. An in depth analysis on both a simulated data set and real OCO-2 measurements against CALIOP highlight the strength of the ABP in identifying high, thin clouds while it often misses clouds near the surface even when the optical thickness is greater than 1. Fortunately, by combining the ABP with the IDP, the number of thick low clouds passing the preprocessors is partially mitigated.
Trajectory Design to Mitigate Risk on the Transiting Exoplanet Survey Satellite (TESS) Mission
NASA Technical Reports Server (NTRS)
Dichmann, Donald
2016-01-01
The Transiting Exoplanet Survey Satellite (TESS) will employ a highly eccentric Earth orbit, in 2:1 lunar resonance, reached with a lunar flyby preceded by 3.5 phasing loops. The TESS mission has limited propellant and several orbit constraints. Based on analysis and simulation, we have designed the phasing loops to reduce delta-V and to mitigate risk due to maneuver execution errors. We have automated the trajectory design process and use distributed processing to generate and to optimize nominal trajectories, check constraint satisfaction, and finally model the effects of maneuver errors to identify trajectories that best meet the mission requirements.
Estimating IMU heading error from SAR images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin Walter
Angular orientation errors of the real antenna for Synthetic Aperture Radar (SAR) will manifest as undesired illumination gradients in SAR images. These gradients can be measured, and the pointing error can be calculated. This can be done for single images, but done more robustly using multi-image methods. Several methods are provided in this report. The pointing error can then be fed back to the navigation Kalman filter to correct for problematic heading (yaw) error drift. This can mitigate the need for uncomfortable and undesired IMU alignment maneuvers such as S-turns.
Xu, Z N; Wang, S Y
2015-02-01
To improve the accuracy in the calculation of dynamic contact angle for drops on the inclined surface, a significant number of numerical drop profiles on the inclined surface with different inclination angles, drop volumes, and contact angles are generated based on the finite difference method, a least-squares ellipse-fitting algorithm is used to calculate the dynamic contact angle. The influences of the above three factors are systematically investigated. The results reveal that the dynamic contact angle errors, including the errors of the left and right contact angles, evaluated by the ellipse-fitting algorithm tend to increase with inclination angle/drop volume/contact angle. If the drop volume and the solid substrate are fixed, the errors of the left and right contact angles increase with inclination angle. After performing a tremendous amount of computation, the critical dimensionless drop volumes corresponding to the critical contact angle error are obtained. Based on the values of the critical volumes, a highly accurate dynamic contact angle algorithm is proposed and fully validated. Within nearly the whole hydrophobicity range, it can decrease the dynamic contact angle error in the inclined plane method to less than a certain value even for different types of liquids.
Decoding of DBEC-TBED Reed-Solomon codes. [Double-Byte-Error-Correcting, Triple-Byte-Error-Detecting
NASA Technical Reports Server (NTRS)
Deng, Robert H.; Costello, Daniel J., Jr.
1987-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256 K bit DRAM's are organized in 32 K x 8 bit-bytes. Byte-oriented codes such as Reed-Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. The paper presents a special decoding technique for double-byte-error-correcting, triple-byte-error-detecting RS codes which is capable of high-speed operation. This technique is designed to find the error locations and the error values directly from the syndrome without having to use the iterative algorithm to find the error locator polynomial.
Obstacle Detection in Indoor Environment for Visually Impaired Using Mobile Camera
NASA Astrophysics Data System (ADS)
Rahman, Samiur; Ullah, Sana; Ullah, Sehat
2018-01-01
Obstacle detection can improve the mobility as well as the safety of visually impaired people. In this paper, we present a system using mobile camera for visually impaired people. The proposed algorithm works in indoor environment and it uses a very simple technique of using few pre-stored floor images. In indoor environment all unique floor types are considered and a single image is stored for each unique floor type. These floor images are considered as reference images. The algorithm acquires an input image frame and then a region of interest is selected and is scanned for obstacle using pre-stored floor images. The algorithm compares the present frame and the next frame and compute mean square error of the two frames. If mean square error is less than a threshold value α then it means that there is no obstacle in the next frame. If mean square error is greater than α then there are two possibilities; either there is an obstacle or the floor type is changed. In order to check if the floor is changed, the algorithm computes mean square error of next frame and all stored floor types. If minimum of mean square error is less than a threshold value α then flour is changed otherwise there exist an obstacle. The proposed algorithm works in real-time and 96% accuracy has been achieved.
Peak-locking centroid bias in Shack-Hartmann wavefront sensing
NASA Astrophysics Data System (ADS)
Anugu, Narsireddy; Garcia, Paulo J. V.; Correia, Carlos M.
2018-05-01
Shack-Hartmann wavefront sensing relies on accurate spot centre measurement. Several algorithms were developed with this aim, mostly focused on precision, i.e. minimizing random errors. In the solar and extended scene community, the importance of the accuracy (bias error due to peak-locking, quantization, or sampling) of the centroid determination was identified and solutions proposed. But these solutions only allow partial bias corrections. To date, no systematic study of the bias error was conducted. This article bridges the gap by quantifying the bias error for different correlation peak-finding algorithms and types of sub-aperture images and by proposing a practical solution to minimize its effects. Four classes of sub-aperture images (point source, elongated laser guide star, crowded field, and solar extended scene) together with five types of peak-finding algorithms (1D parabola, the centre of gravity, Gaussian, 2D quadratic polynomial, and pyramid) are considered, in a variety of signal-to-noise conditions. The best performing peak-finding algorithm depends on the sub-aperture image type, but none is satisfactory to both bias and random errors. A practical solution is proposed that relies on the antisymmetric response of the bias to the sub-pixel position of the true centre. The solution decreases the bias by a factor of ˜7 to values of ≲ 0.02 pix. The computational cost is typically twice of current cross-correlation algorithms.
NASA Technical Reports Server (NTRS)
Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.
2004-01-01
Rainfall rate estimates from space-borne k&ents are generally accepted as reliable by a majority of the atmospheric science commu&y. One-of the Tropical Rainfall Measuring Mission (TRh4M) facility rain rate algorithms is based upon passive microwave observations fiom the TRMM Microwave Imager (TMI). Part I of this study describes improvements in the TMI algorithm that are required to introduce cloud latent heating and drying as additional algorithm products. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, OP5resolution estimates of surface rain rate over ocean fiom the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over forerunning algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm, and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly, 2.5 deg. -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data are limited, TMI estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with: (a) additional contextual information brought to the estimation problem, and/or; (b) physically-consistent and representative databases supporting the algorithm. A model of the random error in instantaneous, 0.5 deg-resolution rain rate estimates appears to be consistent with the levels of error determined from TMI comparisons to collocated radar. Error model modifications for non-raining situations will be required, however. Sampling error appears to represent only a fraction of the total error in monthly, 2S0-resolution TMI estimates; the remaining error is attributed to physical inconsistency or non-representativeness of cloud-resolving model simulated profiles supporting the algorithm.
Emken, Jeremy L; Benitez, Raul; Reinkensmeyer, David J
2007-03-28
A prevailing paradigm of physical rehabilitation following neurologic injury is to "assist-as-needed" in completing desired movements. Several research groups are attempting to automate this principle with robotic movement training devices and patient cooperative algorithms that encourage voluntary participation. These attempts are currently not based on computational models of motor learning. Here we assume that motor recovery from a neurologic injury can be modelled as a process of learning a novel sensory motor transformation, which allows us to study a simplified experimental protocol amenable to mathematical description. Specifically, we use a robotic force field paradigm to impose a virtual impairment on the left leg of unimpaired subjects walking on a treadmill. We then derive an "assist-as-needed" robotic training algorithm to help subjects overcome the virtual impairment and walk normally. The problem is posed as an optimization of performance error and robotic assistance. The optimal robotic movement trainer becomes an error-based controller with a forgetting factor that bounds kinematic errors while systematically reducing its assistance when those errors are small. As humans have a natural range of movement variability, we introduce an error weighting function that causes the robotic trainer to disregard this variability. We experimentally validated the controller with ten unimpaired subjects by demonstrating how it helped the subjects learn the novel sensory motor transformation necessary to counteract the virtual impairment, while also preventing them from experiencing large kinematic errors. The addition of the error weighting function allowed the robot assistance to fade to zero even though the subjects' movements were variable. We also show that in order to assist-as-needed, the robot must relax its assistance at a rate faster than that of the learning human. The assist-as-needed algorithm proposed here can limit error during the learning of a dynamic motor task. The algorithm encourages learning by decreasing its assistance as a function of the ongoing progression of movement error. This type of algorithm is well suited for helping people learn dynamic tasks for which large kinematic errors are dangerous or discouraging, and thus may prove useful for robot-assisted movement training of walking or reaching following neurologic injury.
NASA Technical Reports Server (NTRS)
Gardner, Robert; Gillis, James W.; Griesel, Ann; Pardo, Bruce
1985-01-01
An analysis of the direction finding (DF) and fix estimation algorithms in TRAILBLAZER is presented. The TRAILBLAZER software analyzed is old and not currently used in the field. However, the algorithms analyzed are used in other current IEW systems. The underlying algorithm assumptions (including unmodeled errors) are examined along with their appropriateness for TRAILBLAZER. Coding and documentation problems are then discussed. A detailed error budget is presented.
Smart-Divert Powered Descent Guidance to Avoid the Backshell Landing Dispersion Ellipse
NASA Technical Reports Server (NTRS)
Carson, John M.; Acikmese, Behcet
2013-01-01
A smart-divert capability has been added into the Powered Descent Guidance (PDG) software originally developed for Mars pinpoint and precision landing. The smart-divert algorithm accounts for the landing dispersions of the entry backshell, which separates from the lander vehicle at the end of the parachute descent phase and prior to powered descent. The smart-divert PDG algorithm utilizes the onboard fuel and vehicle thrust vectoring to mitigate landing error in an intelligent way: ensuring that the lander touches down with minimum- fuel usage at the minimum distance from the desired landing location that also avoids impact by the descending backshell. The smart-divert PDG software implements a computationally efficient, convex formulation of the powered-descent guidance problem to provide pinpoint or precision-landing guidance solutions that are fuel-optimal and satisfy physical thrust bound and pointing constraints, as well as position and speed constraints. The initial smart-divert implementation enforced a lateral-divert corridor parallel to the ground velocity vector; this was based on guidance requirements for MSL (Mars Science Laboratory) landings. This initial method was overly conservative since the divert corridor was infinite in the down-range direction despite the backshell landing inside a calculable dispersion ellipse. Basing the divert constraint instead on a local tangent to the backshell dispersion ellipse in the direction of the desired landing site provides a far less conservative constraint. The resulting enhanced smart-divert PDG algorithm avoids impact with the descending backshell and has reduced conservatism.
NASA Technical Reports Server (NTRS)
Li, Yue (Inventor); Bruck, Jehoshua (Inventor)
2018-01-01
A data device includes a memory having a plurality of memory cells configured to store data values in accordance with a predetermined rank modulation scheme that is optional and a memory controller that receives a current error count from an error decoder of the data device for one or more data operations of the flash memory device and selects an operating mode for data scrubbing in accordance with the received error count and a program cycles count.
Management of high-risk perioperative systems.
Dain, Steven
2006-06-01
The perioperative system is a complex system that requires people, materials, and processes to come together in a highly ordered and timely manner. However, when working in this high-risk system, even well-organized, knowledgeable, vigilant, and well-intentioned individuals will eventually make errors. All systems need to be evaluated on a continual basis to reduce the risk of errors, make errors more easily recognizable, and provide methods for error mitigation. A simple approach to risk management that may be applied in clinical medicine is discussed.
Poisson-Based Inference for Perturbation Models in Adaptive Spelling Training
ERIC Educational Resources Information Center
Baschera, Gian-Marco; Gross, Markus
2010-01-01
We present an inference algorithm for perturbation models based on Poisson regression. The algorithm is designed to handle unclassified input with multiple errors described by independent mal-rules. This knowledge representation provides an intelligent tutoring system with local and global information about a student, such as error classification…
AUV Underwater Positioning Algorithm Based on Interactive Assistance of SINS and LBL
Zhang, Tao; Chen, Liping; Li, Yao
2015-01-01
This paper studies an underwater positioning algorithm based on the interactive assistance of a strapdown inertial navigation system (SINS) and LBL, and this algorithm mainly includes an optimal correlation algorithm with aided tracking of an SINS/Doppler velocity log (DVL)/magnetic compass pilot (MCP), a three-dimensional TDOA positioning algorithm of Taylor series expansion and a multi-sensor information fusion algorithm. The final simulation results show that compared to traditional underwater positioning algorithms, this scheme can not only directly correct accumulative errors caused by a dead reckoning algorithm, but also solves the problem of ambiguous correlation peaks caused by multipath transmission of underwater acoustic signals. The proposed method can calibrate the accumulative error of the AUV position more directly and effectively, which prolongs the underwater operating duration of the AUV. PMID:26729120
NASA Astrophysics Data System (ADS)
Bunai, Tasya; Rokhmatuloh; Wibowo, Adi
2018-05-01
In this paper, two methods to retrieve the Land Surface Temperature (LST) from thermal infrared data supplied by band 10 and 11 of the Thermal Infrared Sensor (TIRS) onboard the Landsat 8 is compared. The first is mono window algorithm developed by Qin et al. and the second is split window algorithm by Rozenstein et al. The purpose of this study is to perform the spatial distribution of land surface temperature, as well as to determine more accurate algorithm for retrieving land surface temperature by calculated root mean square error (RMSE). Finally, we present comparison the spatial distribution of land surface temperature by both of algorithm, and more accurate algorithm is split window algorithm refers to the root mean square error (RMSE) is 7.69° C.
Advanced Health Management Algorithms for Crew Exploration Applications
NASA Technical Reports Server (NTRS)
Davidson, Matt; Stephens, John; Jones, Judit
2005-01-01
Achieving the goals of the President's Vision for Exploration will require new and innovative ways to achieve reliability increases of key systems and sub-systems. The most prominent approach used in current systems is to maintain hardware redundancy. This imposes constraints to the system and utilizes weight that could be used for payload for extended lunar, Martian, or other deep space missions. A technique to improve reliability while reducing the system weight and constraints is through the use of an Advanced Health Management System (AHMS). This system contains diagnostic algorithms and decision logic to mitigate or minimize the impact of system anomalies on propulsion system performance throughout the powered flight regime. The purposes of the AHMS are to increase the probability of successfully placing the vehicle into the intended orbit (Earth, Lunar, or Martian escape trajectory), increase the probability of being able to safely execute an abort after it has developed anomalous performance during launch or ascent phases of the mission, and to minimize or mitigate anomalies during the cruise portion of the mission. This is accomplished by improving the knowledge of the state of the propulsion system operation at any given turbomachinery vibration protection logic and an overall system analysis algorithm that utilizes an underlying physical model and a wide array of engine system operational parameters to detect and mitigate predefined engine anomalies. These algorithms are generic enough to be utilized on any propulsion system yet can be easily tailored to each application by changing input data and engine specific parameters. The key to the advancement of such a system is the verification of the algorithms. These algorithms will be validated through the use of a database of nominal and anomalous performance from a large propulsion system where data exists for catastrophic and noncatastrophic propulsion sytem failures.
Constrained independent component analysis approach to nonobtrusive pulse rate measurements
NASA Astrophysics Data System (ADS)
Tsouri, Gill R.; Kyal, Survi; Dianat, Sohail; Mestha, Lalit K.
2012-07-01
Nonobtrusive pulse rate measurement using a webcam is considered. We demonstrate how state-of-the-art algorithms based on independent component analysis suffer from a sorting problem which hinders their performance, and propose a novel algorithm based on constrained independent component analysis to improve performance. We present how the proposed algorithm extracts a photoplethysmography signal and resolves the sorting problem. In addition, we perform a comparative study between the proposed algorithm and state-of-the-art algorithms over 45 video streams using a finger probe oxymeter for reference measurements. The proposed algorithm provides improved accuracy: the root mean square error is decreased from 20.6 and 9.5 beats per minute (bpm) for existing algorithms to 3.5 bpm for the proposed algorithm. An error of 3.5 bpm is within the inaccuracy expected from the reference measurements. This implies that the proposed algorithm provided performance of equal accuracy to the finger probe oximeter.
Constrained independent component analysis approach to nonobtrusive pulse rate measurements.
Tsouri, Gill R; Kyal, Survi; Dianat, Sohail; Mestha, Lalit K
2012-07-01
Nonobtrusive pulse rate measurement using a webcam is considered. We demonstrate how state-of-the-art algorithms based on independent component analysis suffer from a sorting problem which hinders their performance, and propose a novel algorithm based on constrained independent component analysis to improve performance. We present how the proposed algorithm extracts a photoplethysmography signal and resolves the sorting problem. In addition, we perform a comparative study between the proposed algorithm and state-of-the-art algorithms over 45 video streams using a finger probe oxymeter for reference measurements. The proposed algorithm provides improved accuracy: the root mean square error is decreased from 20.6 and 9.5 beats per minute (bpm) for existing algorithms to 3.5 bpm for the proposed algorithm. An error of 3.5 bpm is within the inaccuracy expected from the reference measurements. This implies that the proposed algorithm provided performance of equal accuracy to the finger probe oximeter.
NASA Astrophysics Data System (ADS)
Mandal, Swagata; Saini, Jogender; Zabołotny, Wojciech M.; Sau, Suman; Chakrabarti, Amlan; Chattopadhyay, Subhasis
2017-03-01
Due to the dramatic increase of data volume in modern high energy physics (HEP) experiments, a robust high-speed data acquisition (DAQ) system is very much needed to gather the data generated during different nuclear interactions. As the DAQ works under harsh radiation environment, there is a fair chance of data corruption due to various energetic particles like alpha, beta, or neutron. Hence, a major challenge in the development of DAQ in the HEP experiment is to establish an error resilient communication system between front-end sensors or detectors and back-end data processing computing nodes. Here, we have implemented the DAQ using field-programmable gate array (FPGA) due to some of its inherent advantages over the application-specific integrated circuit. A novel orthogonal concatenated code and cyclic redundancy check (CRC) have been used to mitigate the effects of data corruption in the user data. Scrubbing with a 32-b CRC has been used against error in the configuration memory of FPGA. Data from front-end sensors will reach to the back-end processing nodes through multiple stages that may add an uncertain amount of delay to the different data packets. We have also proposed a novel memory management algorithm that helps to process the data at the back-end computing nodes removing the added path delays. To the best of our knowledge, the proposed FPGA-based DAQ utilizing optical link with channel coding and efficient memory management modules can be considered as first of its kind. Performance estimation of the implemented DAQ system is done based on resource utilization, bit error rate, efficiency, and robustness to radiation.
NASA Astrophysics Data System (ADS)
Lei, Hebing; Yao, Yong; Liu, Haopeng; Tian, Yiting; Yang, Yanfu; Gu, Yinglong
2018-06-01
An accurate algorithm by combing Gram-Schmidt orthonormalization and least square ellipse fitting technology is proposed, which could be used for phase extraction from two or three interferograms. The DC term of background intensity is suppressed by subtraction operation on three interferograms or by high-pass filter on two interferograms. Performing Gram-Schmidt orthonormalization on pre-processing interferograms, the phase shift error is corrected and a general ellipse form is derived. Then the background intensity error and the corrected error could be compensated by least square ellipse fitting method. Finally, the phase could be extracted rapidly. The algorithm could cope with the two or three interferograms with environmental disturbance, low fringe number or small phase shifts. The accuracy and effectiveness of the proposed algorithm are verified by both of the numerical simulations and experiments.
The successively temporal error concealment algorithm using error-adaptive block matching principle
NASA Astrophysics Data System (ADS)
Lee, Yu-Hsuan; Wu, Tsai-Hsing; Chen, Chao-Chyun
2014-09-01
Generally, the temporal error concealment (TEC) adopts the blocks around the corrupted block (CB) as the search pattern to find the best-match block in previous frame. Once the CB is recovered, it is referred to as the recovered block (RB). Although RB can be the search pattern to find the best-match block of another CB, RB is not the same as its original block (OB). The error between the RB and its OB limits the performance of TEC. The successively temporal error concealment (STEC) algorithm is proposed to alleviate this error. The STEC procedure consists of tier-1 and tier-2. The tier-1 divides a corrupted macroblock into four corrupted 8 × 8 blocks and generates a recovering order for them. The corrupted 8 × 8 block with the first place of recovering order is recovered in tier-1, and remaining 8 × 8 CBs are recovered in tier-2 along the recovering order. In tier-2, the error-adaptive block matching principle (EA-BMP) is proposed for the RB as the search pattern to recover remaining corrupted 8 × 8 blocks. The proposed STEC outperforms sophisticated TEC algorithms on average PSNR by 0.3 dB on the packet error rate of 20% at least.
Whittington, James C. R.; Bogacz, Rafal
2017-01-01
To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in synaptic weights is a complex function of weights and activities of neurons not directly connected with the synapse being modified, whereas the changes in biological synapses are determined only by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that approximate the backpropagation algorithm with local synaptic plasticity, but these models require complex external control over the network or relatively complex plasticity rules. Here we show that a network developed in the predictive coding framework can efficiently perform supervised learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for certain parameters, the weight change in the predictive coding model converges to that of the backpropagation algorithm. This suggests that it is possible for cortical networks with simple Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas on multiple levels of hierarchy are modified to minimize the error on the output. PMID:28333583
Expeditious reconciliation for practical quantum key distribution
NASA Astrophysics Data System (ADS)
Nakassis, Anastase; Bienfang, Joshua C.; Williams, Carl J.
2004-08-01
The paper proposes algorithmic and environmental modifications to the extant reconciliation algorithms within the BB84 protocol so as to speed up reconciliation and privacy amplification. These algorithms have been known to be a performance bottleneck 1 and can process data at rates that are six times slower than the quantum channel they serve2. As improvements in single-photon sources and detectors are expected to improve the quantum channel throughput by two or three orders of magnitude, it becomes imperative to improve the performance of the classical software. We developed a Cascade-like algorithm that relies on a symmetric formulation of the problem, error estimation through the segmentation process, outright elimination of segments with many errors, Forward Error Correction, recognition of the distinct data subpopulations that emerge as the algorithm runs, ability to operate on massive amounts of data (of the order of 1 Mbit), and a few other minor improvements. The data from the experimental algorithm we developed show that by operating on massive arrays of data we can improve software performance by better than three orders of magnitude while retaining nearly as many bits (typically more than 90%) as the algorithms that were designed for optimal bit retention.
Whittington, James C R; Bogacz, Rafal
2017-05-01
To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in synaptic weights is a complex function of weights and activities of neurons not directly connected with the synapse being modified, whereas the changes in biological synapses are determined only by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that approximate the backpropagation algorithm with local synaptic plasticity, but these models require complex external control over the network or relatively complex plasticity rules. Here we show that a network developed in the predictive coding framework can efficiently perform supervised learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for certain parameters, the weight change in the predictive coding model converges to that of the backpropagation algorithm. This suggests that it is possible for cortical networks with simple Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas on multiple levels of hierarchy are modified to minimize the error on the output.
Detection of dechallenge in spontaneous reporting systems: a comparison of Bayes methods.
Banu, A Bazila; Alias Balamurugan, S Appavu; Thirumalaikolundusubramanian, Ponniah
2014-01-01
Dechallenge is a response observed for the reduction or disappearance of adverse drug reactions (ADR) on withdrawal of a drug from a patient. Currently available algorithms to detect dechallenge have limitations. Hence, there is a need to compare available new methods. To detect dechallenge in Spontaneous Reporting Systems, data-mining algorithms like Naive Bayes and Improved Naive Bayes were applied for comparing the performance of the algorithms in terms of accuracy and error. Analyzing the factors of dechallenge like outcome and disease category will help medical practitioners and pharmaceutical industries to determine the reasons for dechallenge in order to take essential steps toward drug safety. Adverse drug reactions of the year 2011 and 2012 were downloaded from the United States Food and Drug Administration's database. The outcome of classification algorithms showed that Improved Naive Bayes algorithm outperformed Naive Bayes with accuracy of 90.11% and error of 9.8% in detecting the dechallenge. Detecting dechallenge for unknown samples are essential for proper prescription. To overcome the issues exposed by Naive Bayes algorithm, Improved Naive Bayes algorithm can be used to detect dechallenge in terms of higher accuracy and minimal error.
Huo, Ju; Zhang, Guiyang; Yang, Ming
2018-04-20
This paper is concerned with the anisotropic and non-identical gray distribution of feature points clinging to the curved surface, upon which a high precision and uncertainty-resistance algorithm for pose estimation is proposed. Weighted contribution of uncertainty to the objective function of feature points measuring error is analyzed. Then a novel error objective function based on the spatial collinear error is constructed by transforming the uncertainty into a covariance-weighted matrix, which is suitable for the practical applications. Further, the optimized generalized orthogonal iterative (GOI) algorithm is utilized for iterative solutions such that it avoids the poor convergence and significantly resists the uncertainty. Hence, the optimized GOI algorithm extends the field-of-view applications and improves the accuracy and robustness of the measuring results by the redundant information. Finally, simulation and practical experiments show that the maximum error of re-projection image coordinates of the target is less than 0.110 pixels. Within the space 3000 mm×3000 mm×4000 mm, the maximum estimation errors of static and dynamic measurement for rocket nozzle motion are superior to 0.065° and 0.128°, respectively. Results verify the high accuracy and uncertainty attenuation performance of the proposed approach and should therefore have potential for engineering applications.
The ITER disruption mitigation trigger: developing its preliminary design
NASA Astrophysics Data System (ADS)
Pautasso, G.; de Vries, P. C.; Humphreys, D.; Lehnen, M.; Rapson, C.; Raupp, G.; Snipes, J. A.; Treutterer, W.; Vergara-Fernandez, A.; Zabeo, L.
2018-03-01
A concept for the generation of the trigger for the ITER disruption mitigation system is described in this paper. The issuing of the trigger will be the result of a complex decision process, taken by the plasma control system, or by the central interlock system, determining that the plasma is unavoidably going to disrupt—or has disrupted—and that a fast mitigated shut-down is required. Given the redundancy of the mitigation system, the plasma control system must also formulate an injection scheme and specify when and how the injectors of the mitigation system should be activated. The parameters and the conceptual algorithms required for the configuration and generation of the trigger are discussed.
Human error mitigation initiative (HEMI) : summary report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Susan M.; Ramos, M. Victoria; Wenner, Caren A.
2004-11-01
Despite continuing efforts to apply existing hazard analysis methods and comply with requirements, human errors persist across the nuclear weapons complex. Due to a number of factors, current retroactive and proactive methods to understand and minimize human error are highly subjective, inconsistent in numerous dimensions, and are cumbersome to characterize as thorough. An alternative and proposed method begins with leveraging historical data to understand what the systemic issues are and where resources need to be brought to bear proactively to minimize the risk of future occurrences. An illustrative analysis was performed using existing incident databases specific to Pantex weapons operationsmore » indicating systemic issues associated with operating procedures that undergo notably less development rigor relative to other task elements such as tooling and process flow. Future recommended steps to improve the objectivity, consistency, and thoroughness of hazard analysis and mitigation were delineated.« less
NASA Astrophysics Data System (ADS)
Lehner, Flavio; Wood, Andrew W.; Llewellyn, Dagmar; Blatchford, Douglas B.; Goodbody, Angus G.; Pappenberger, Florian
2017-12-01
Seasonal streamflow predictions provide a critical management tool for water managers in the American Southwest. In recent decades, persistent prediction errors for spring and summer runoff volumes have been observed in a number of watersheds in the American Southwest. While mostly driven by decadal precipitation trends, these errors also relate to the influence of increasing temperature on streamflow in these basins. Here we show that incorporating seasonal temperature forecasts from operational global climate prediction models into streamflow forecasting models adds prediction skill for watersheds in the headwaters of the Colorado and Rio Grande River basins. Current dynamical seasonal temperature forecasts now show sufficient skill to reduce streamflow forecast errors in snowmelt-driven regions. Such predictions can increase the resilience of streamflow forecasting and water management systems in the face of continuing warming as well as decadal-scale temperature variability and thus help to mitigate the impacts of climate nonstationarity on streamflow predictability.
Two-Step Fair Scheduling of Continuous Media Streams over Error-Prone Wireless Channels
NASA Astrophysics Data System (ADS)
Oh, Soohyun; Lee, Jin Wook; Park, Taejoon; Jo, Tae-Chang
In wireless cellular networks, streaming of continuous media (with strict QoS requirements) over wireless links is challenging due to their inherent unreliability characterized by location-dependent, bursty errors. To address this challenge, we present a two-step scheduling algorithm for a base station to provide streaming of continuous media to wireless clients over the error-prone wireless links. The proposed algorithm is capable of minimizing the packet loss rate of individual clients in the presence of error bursts, by transmitting packets in the round-robin manner and also adopting a mechanism for channel prediction and swapping.
Poster error probability in the Mu-11 Sequential Ranging System
NASA Technical Reports Server (NTRS)
Coyle, C. W.
1981-01-01
An expression is derived for the posterior error probability in the Mu-2 Sequential Ranging System. An algorithm is developed which closely bounds the exact answer and can be implemented in the machine software. A computer simulation is provided to illustrate the improved level of confidence in a ranging acquisition using this figure of merit as compared to that using only the prior probabilities. In a simulation of 20,000 acquisitions with an experimentally determined threshold setting, the algorithm detected 90% of the actual errors and made false indication of errors on 0.2% of the acquisitions.
A post-processing algorithm for time domain pitch trackers
NASA Astrophysics Data System (ADS)
Specker, P.
1983-01-01
This paper describes a powerful post-processing algorithm for time-domain pitch trackers. On two successive passes, the post-processing algorithm eliminates errors produced during a first pass by a time-domain pitch tracker. During the second pass, incorrect pitch values are detected as outliers by computing the distribution of values over a sliding 80 msec window. During the third pass (based on artificial intelligence techniques), remaining pitch pulses are used as anchor points to reconstruct the pitch train from the original waveform. The algorithm produced a decrease in the error rate from 21% obtained with the original time domain pitch tracker to 2% for isolated words and sentences produced in an office environment by 3 male and 3 female talkers. In a noisy computer room errors decreased from 52% to 2.9% for the same stimuli produced by 2 male talkers. The algorithm is efficient, accurate, and resistant to noise. The fundamental frequency micro-structure is tracked sufficiently well to be used in extracting phonetic features in a feature-based recognition system.
Label consistent K-SVD: learning a discriminative dictionary for recognition.
Jiang, Zhuolin; Lin, Zhe; Davis, Larry S
2013-11-01
A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discriminability in sparse codes during the dictionary learning process. More specifically, we introduce a new label consistency constraint called "discriminative sparse-code error" and combine it with the reconstruction error and the classification error to form a unified objective function. The optimal solution is efficiently obtained using the K-SVD algorithm. Our algorithm learns a single overcomplete dictionary and an optimal linear classifier jointly. The incremental dictionary learning algorithm is presented for the situation of limited memory resources. It yields dictionaries so that feature points with the same class labels have similar sparse codes. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse-coding techniques for face, action, scene, and object category recognition under the same learning conditions.
Ebtehaj, Isa; Bonakdari, Hossein
2014-01-01
The existence of sediments in wastewater greatly affects the performance of the sewer and wastewater transmission systems. Increased sedimentation in wastewater collection systems causes problems such as reduced transmission capacity and early combined sewer overflow. The article reviews the performance of the genetic algorithm (GA) and imperialist competitive algorithm (ICA) in minimizing the target function (mean square error of observed and predicted Froude number). To study the impact of bed load transport parameters, using four non-dimensional groups, six different models have been presented. Moreover, the roulette wheel selection method is used to select the parents. The ICA with root mean square error (RMSE) = 0.007, mean absolute percentage error (MAPE) = 3.5% show better results than GA (RMSE = 0.007, MAPE = 5.6%) for the selected model. All six models return better results than the GA. Also, the results of these two algorithms were compared with multi-layer perceptron and existing equations.
Measurement of pattern roughness and local size variation using CD-SEM: current status
NASA Astrophysics Data System (ADS)
Fukuda, Hiroshi; Kawasaki, Takahiro; Kawada, Hiroki; Sakai, Kei; Kato, Takashi; Yamaguchi, Satoru; Ikota, Masami; Momonoi, Yoshinori
2018-03-01
Measurement of line edge roughness (LER) is discussed from four aspects: edge detection, PSD prediction, sampling strategy, and noise mitigation, and general guidelines and practical solutions for LER measurement today are introduced. Advanced edge detection algorithms such as wave-matching method are shown effective for robustly detecting edges from low SNR images, while conventional algorithm with weak filtering is still effective in suppressing SEM noise and aliasing. Advanced PSD prediction method such as multi-taper method is effective in suppressing sampling noise within a line edge to analyze, while number of lines is still required for suppressing line to line variation. Two types of SEM noise mitigation methods, "apparent noise floor" subtraction method and LER-noise decomposition using regression analysis are verified to successfully mitigate SEM noise from PSD curves. These results are extended to LCDU measurement to clarify the impact of SEM noise and sampling noise on LCDU.
IPTV multicast with peer-assisted lossy error control
NASA Astrophysics Data System (ADS)
Li, Zhi; Zhu, Xiaoqing; Begen, Ali C.; Girod, Bernd
2010-07-01
Emerging IPTV technology uses source-specific IP multicast to deliver television programs to end-users. To provide reliable IPTV services over the error-prone DSL access networks, a combination of multicast forward error correction (FEC) and unicast retransmissions is employed to mitigate the impulse noises in DSL links. In existing systems, the retransmission function is provided by the Retransmission Servers sitting at the edge of the core network. In this work, we propose an alternative distributed solution where the burden of packet loss repair is partially shifted to the peer IP set-top boxes. Through Peer-Assisted Repair (PAR) protocol, we demonstrate how the packet repairs can be delivered in a timely, reliable and decentralized manner using the combination of server-peer coordination and redundancy of repairs. We also show that this distributed protocol can be seamlessly integrated with an application-layer source-aware error protection mechanism called forward and retransmitted Systematic Lossy Error Protection (SLEP/SLEPr). Simulations show that this joint PARSLEP/ SLEPr framework not only effectively mitigates the bottleneck experienced by the Retransmission Servers, thus greatly enhancing the scalability of the system, but also efficiently improves the resistance to the impulse noise.
New syndrome decoder for (n, 1) convolutional codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1983-01-01
The letter presents a new syndrome decoding algorithm for the (n, 1) convolutional codes (CC) that is different and simpler than the previous syndrome decoding algorithm of Schalkwijk and Vinck. The new technique uses the general solution of the polynomial linear Diophantine equation for the error polynomial vector E(D). A recursive, Viterbi-like, algorithm is developed to find the minimum weight error vector E(D). An example is given for the binary nonsystematic (2, 1) CC.
A Novel Grid SINS/DVL Integrated Navigation Algorithm for Marine Application
Kang, Yingyao; Zhao, Lin; Cheng, Jianhua; Fan, Xiaoliang
2018-01-01
Integrated navigation algorithms under the grid frame have been proposed based on the Kalman filter (KF) to solve the problem of navigation in some special regions. However, in the existing study of grid strapdown inertial navigation system (SINS)/Doppler velocity log (DVL) integrated navigation algorithms, the Earth models of the filter dynamic model and the SINS mechanization are not unified. Besides, traditional integrated systems with the KF based correction scheme are susceptible to measurement errors, which would decrease the accuracy and robustness of the system. In this paper, an adaptive robust Kalman filter (ARKF) based hybrid-correction grid SINS/DVL integrated navigation algorithm is designed with the unified reference ellipsoid Earth model to improve the navigation accuracy in middle-high latitude regions for marine application. Firstly, to unify the Earth models, the mechanization of grid SINS is introduced and the error equations are derived based on the same reference ellipsoid Earth model. Then, a more accurate grid SINS/DVL filter model is designed according to the new error equations. Finally, a hybrid-correction scheme based on the ARKF is proposed to resist the effect of measurement errors. Simulation and experiment results show that, compared with the traditional algorithms, the proposed navigation algorithm can effectively improve the navigation performance in middle-high latitude regions by the unified Earth models and the ARKF based hybrid-correction scheme. PMID:29373549
NASA Technical Reports Server (NTRS)
Balla, R. Jeffrey; Miller, Corey A.
2008-01-01
This study seeks a numerical algorithm which optimizes frequency precision for the damped sinusoids generated by the nonresonant LITA technique. It compares computed frequencies, frequency errors, and fit errors obtained using five primary signal analysis methods. Using variations on different algorithms within each primary method, results from 73 fits are presented. Best results are obtained using an AutoRegressive method. Compared to previous results using Prony s method, single shot waveform frequencies are reduced approx.0.4% and frequency errors are reduced by a factor of approx.20 at 303K to approx. 0.1%. We explore the advantages of high waveform sample rates and potential for measurements in low density gases.
NASA Astrophysics Data System (ADS)
Ren, Ruizhi; Gu, Lingjia; Fu, Haoyang; Sun, Chenglin
2017-04-01
An effective super-resolution (SR) algorithm is proposed for actual spectral remote sensing images based on sparse representation and wavelet preprocessing. The proposed SR algorithm mainly consists of dictionary training and image reconstruction. Wavelet preprocessing is used to establish four subbands, i.e., low frequency, horizontal, vertical, and diagonal high frequency, for an input image. As compared to the traditional approaches involving the direct training of image patches, the proposed approach focuses on the training of features derived from these four subbands. The proposed algorithm is verified using different spectral remote sensing images, e.g., moderate-resolution imaging spectroradiometer (MODIS) images with different bands, and the latest Chinese Jilin-1 satellite images with high spatial resolution. According to the visual experimental results obtained from the MODIS remote sensing data, the SR images using the proposed SR algorithm are superior to those using a conventional bicubic interpolation algorithm or traditional SR algorithms without preprocessing. Fusion algorithms, e.g., standard intensity-hue-saturation, principal component analysis, wavelet transform, and the proposed SR algorithms are utilized to merge the multispectral and panchromatic images acquired by the Jilin-1 satellite. The effectiveness of the proposed SR algorithm is assessed by parameters such as peak signal-to-noise ratio, structural similarity index, correlation coefficient, root-mean-square error, relative dimensionless global error in synthesis, relative average spectral error, spectral angle mapper, and the quality index Q4, and its performance is better than that of the standard image fusion algorithms.
NASA Astrophysics Data System (ADS)
Gao, Qian
For both the conventional radio frequency and the comparably recent optical wireless communication systems, extensive effort from the academia had been made in improving the network spectrum efficiency and/or reducing the error rate. To achieve these goals, many fundamental challenges such as power efficient constellation design, nonlinear distortion mitigation, channel training design, network scheduling and etc. need to be properly addressed. In this dissertation, novel schemes are proposed accordingly to deal with specific problems falling in category of these challenges. Rigorous proofs and analyses are provided for each of our work to make a fair comparison with the corresponding peer works to clearly demonstrate the advantages. The first part of this dissertation considers a multi-carrier optical wireless system employing intensity modulation (IM) and direct detection (DD). A block-wise constellation design is presented, which treats the DC-bias that conventionally used solely for biasing purpose as an information basis. Our scheme, we term it MSM-JDCM, takes advantage of the compactness of sphere packing in a higher dimensional space, and in turn power efficient constellations are obtained by solving an advanced convex optimization problem. Besides the significant power gains, the MSM-JDCM has many other merits such as being capable of mitigating nonlinear distortion by including a peak-to-power ratio (PAPR) constraint, minimizing inter-symbol-interference (ISI) caused by frequency-selective fading with a novel precoder designed and embedded, and further reducing the bit-error-rate (BER) by combining with an optimized labeling scheme. The second part addresses several optimization problems in a multi-color visible light communication system, including power efficient constellation design, joint pre-equalizer and constellation design, and modeling of different structured channels with cross-talks. Our novel constellation design scheme, termed CSK-Advanced, is compared with the conventional decoupled system with the same spectrum efficiency to demonstrate the power efficiency. Crucial lighting requirements are included as optimization constraints. To control non-linear distortion, the optical peak-to-average-power ratio (PAPR) of LEDs can be individually constrained. With a SVD-based pre-equalizer designed and employed, our scheme can achieve lower BER than counterparts applying zero-forcing (ZF) or linear minimum-mean-squared-error (LMMSE) based post-equalizers. Besides, a binary switching algorithm (BSA) is applied to improve BER performance. The third part looks into a problem of two-phase channel estimation in a relayed wireless network. The channel estimates in every phase are obtained by the linear minimum mean squared error (LMMSE) method. Inaccurate estimate of the relay to destination (RtD) channel in phase 1 could affect estimate of the source to relay (StR) channel in phase 2, which is made erroneous. We first derive a close-form expression for the averaged Bayesian mean-square estimation error (ABMSE) for both phase estimates in terms of the length of source and relay training slots, based on which an iterative searching algorithm is then proposed that optimally allocates training slots to the two phases such that estimation errors are balanced. Analysis shows how the ABMSE of the StD channel estimation varies with the lengths of relay training and source training slots, the relay amplification gain, and the channel prior information respectively. The last part deals with a transmission scheduling problem in a uplink multiple-input-multiple-output (MIMO) wireless network. Code division multiple access (CDMA) is assumed as a multiple access scheme and pseudo-random codes are employed for different users. We consider a heavy traffic scenario, in which each user always has packets to transmit in the scheduled time slots. If the relay is scheduled for transmission together with users, then it operates in a full-duplex mode, where the packets previously collected from users are transmitted to the destination while new packets are being collected from users. A novel expression of throughput is first derived and then used to develop a scheduling algorithm to maximize the throughput. Our full-duplex scheduling is compared with a half-duplex scheduling, random access, and time division multiple access (TDMA), and simulation results illustrate its superiority. Throughput gains due to employment of both MIMO and CDMA are observed.
An affine projection algorithm using grouping selection of input vectors
NASA Astrophysics Data System (ADS)
Shin, JaeWook; Kong, NamWoong; Park, PooGyeon
2011-10-01
This paper present an affine projection algorithm (APA) using grouping selection of input vectors. To improve the performance of conventional APA, the proposed algorithm adjusts the number of the input vectors using two procedures: grouping procedure and selection procedure. In grouping procedure, the some input vectors that have overlapping information for update is grouped using normalized inner product. Then, few input vectors that have enough information for for coefficient update is selected using steady-state mean square error (MSE) in selection procedure. Finally, the filter coefficients update using selected input vectors. The experimental results show that the proposed algorithm has small steady-state estimation errors comparing with the existing algorithms.
NASA Technical Reports Server (NTRS)
Gordon, Howard R.; Wang, Menghua
1992-01-01
The first step in the Coastal Zone Color Scanner (CZCS) atmospheric-correction algorithm is the computation of the Rayleigh-scattering (RS) contribution, L sub r, to the radiance leaving the top of the atmosphere over the ocean. In the present algorithm, L sub r is computed by assuming that the ocean surface is flat. Calculations of the radiance leaving an RS atmosphere overlying a rough Fresnel-reflecting ocean are presented to evaluate the radiance error caused by the flat-ocean assumption. Simulations are carried out to evaluate the error incurred when the CZCS-type algorithm is applied to a realistic ocean in which the surface is roughened by the wind. In situations where there is no direct sun glitter, it is concluded that the error induced by ignoring the Rayleigh-aerosol interaction is usually larger than that caused by ignoring the surface roughness. This suggests that, in refining algorithms for future sensors, more effort should be focused on dealing with the Rayleigh-aerosol interaction than on the roughness of the sea surface.
NASA Technical Reports Server (NTRS)
Sargent, Jeff Scott
1988-01-01
A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel new approaches to controlling error in parallel cell-placement algorithms; Heuristic Cell-Coloring and Adaptive (Parallel Move) Sequence Control. Heuristic Cell-Coloring identifies sets of noninteracting cells that can be moved repeatedly, and in parallel, with no buildup of error in the placement cost. Adaptive Sequence Control allows multiple parallel cell moves to take place between global cell-position updates. This feedback mechanism is based on an error bound derived analytically from the traditional annealing move-acceptance profile. Placement results are presented for real industry circuits and the performance is summarized of an implementation on the Intel iPSC/2 Hypercube. The runtime of this algorithm is 5 to 16 times faster than a previous program developed for the Hypercube, while producing equivalent quality placement. An integrated place and route program for the Intel iPSC/2 Hypercube is currently being developed.
NASA Astrophysics Data System (ADS)
Zhang, Ling; Cai, Yunlong; Li, Chunguang; de Lamare, Rodrigo C.
2017-12-01
In this work, we present low-complexity variable forgetting factor (VFF) techniques for diffusion recursive least squares (DRLS) algorithms. Particularly, we propose low-complexity VFF-DRLS algorithms for distributed parameter and spectrum estimation in sensor networks. For the proposed algorithms, they can adjust the forgetting factor automatically according to the posteriori error signal. We develop detailed analyses in terms of mean and mean square performance for the proposed algorithms and derive mathematical expressions for the mean square deviation (MSD) and the excess mean square error (EMSE). The simulation results show that the proposed low-complexity VFF-DRLS algorithms achieve superior performance to the existing DRLS algorithm with fixed forgetting factor when applied to scenarios of distributed parameter and spectrum estimation. Besides, the simulation results also demonstrate a good match for our proposed analytical expressions.
Trajectory Design Enhancements to Mitigate Risk for the Transiting Exoplanet Survey Satellite (TESS)
NASA Technical Reports Server (NTRS)
Dichmann, Donald; Parker, Joel; Nickel, Craig; Lutz, Stephen
2016-01-01
The Transiting Exoplanet Survey Satellite (TESS) will employ a highly eccentric Earth orbit, in 2:1 lunar resonance, which will be reached with a lunar flyby preceded by 3.5 phasing loops. The TESS mission has limited propellant and several constraints on the science orbit and on the phasing loops. Based on analysis and simulation, we have designed the phasing loops to reduce delta-V (DV) and to mitigate risk due to maneuver execution errors. We have automated the trajectory design process and use distributed processing to generate and optimal nominal trajectories; to check constraint satisfaction; and finally to model the effects of maneuver errors to identify trajectories that best meet the mission requirements.
Limited-memory adaptive snapshot selection for proper orthogonal decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxberry, Geoffrey M.; Kostova-Vassilevska, Tanya; Arrighi, Bill
2015-04-02
Reduced order models are useful for accelerating simulations in many-query contexts, such as optimization, uncertainty quantification, and sensitivity analysis. However, offline training of reduced order models can have prohibitively expensive memory and floating-point operation costs in high-performance computing applications, where memory per core is limited. To overcome this limitation for proper orthogonal decomposition, we propose a novel adaptive selection method for snapshots in time that limits offline training costs by selecting snapshots according an error control mechanism similar to that found in adaptive time-stepping ordinary differential equation solvers. The error estimator used in this work is related to theory boundingmore » the approximation error in time of proper orthogonal decomposition-based reduced order models, and memory usage is minimized by computing the singular value decomposition using a single-pass incremental algorithm. Results for a viscous Burgers’ test problem demonstrate convergence in the limit as the algorithm error tolerances go to zero; in this limit, the full order model is recovered to within discretization error. The resulting method can be used on supercomputers to generate proper orthogonal decomposition-based reduced order models, or as a subroutine within hyperreduction algorithms that require taking snapshots in time, or within greedy algorithms for sampling parameter space.« less
Selecting a restoration technique to minimize OCR error.
Cannon, M; Fugate, M; Hush, D R; Scovel, C
2003-01-01
This paper introduces a learning problem related to the task of converting printed documents to ASCII text files. The goal of the learning procedure is to produce a function that maps documents to restoration techniques in such a way that on average the restored documents have minimum optical character recognition error. We derive a general form for the optimal function and use it to motivate the development of a nonparametric method based on nearest neighbors. We also develop a direct method of solution based on empirical error minimization for which we prove a finite sample bound on estimation error that is independent of distribution. We show that this empirical error minimization problem is an extension of the empirical optimization problem for traditional M-class classification with general loss function and prove computational hardness for this problem. We then derive a simple iterative algorithm called generalized multiclass ratchet (GMR) and prove that it produces an optimal function asymptotically (with probability 1). To obtain the GMR algorithm we introduce a new data map that extends Kesler's construction for the multiclass problem and then apply an algorithm called Ratchet to this mapped data, where Ratchet is a modification of the Pocket algorithm . Finally, we apply these methods to a collection of documents and report on the experimental results.
Estimation of distributed Fermat-point location for wireless sensor networking.
Huang, Po-Hsian; Chen, Jiann-Liang; Larosa, Yanuarius Teofilus; Chiang, Tsui-Lien
2011-01-01
This work presents a localization scheme for use in wireless sensor networks (WSNs) that is based on a proposed connectivity-based RF localization strategy called the distributed Fermat-point location estimation algorithm (DFPLE). DFPLE applies triangle area of location estimation formed by intersections of three neighboring beacon nodes. The Fermat point is determined as the shortest path from three vertices of the triangle. The area of estimated location then refined using Fermat point to achieve minimum error in estimating sensor nodes location. DFPLE solves problems of large errors and poor performance encountered by localization schemes that are based on a bounding box algorithm. Performance analysis of a 200-node development environment reveals that, when the number of sensor nodes is below 150, the mean error decreases rapidly as the node density increases, and when the number of sensor nodes exceeds 170, the mean error remains below 1% as the node density increases. Second, when the number of beacon nodes is less than 60, normal nodes lack sufficient beacon nodes to enable their locations to be estimated. However, the mean error changes slightly as the number of beacon nodes increases above 60. Simulation results revealed that the proposed algorithm for estimating sensor positions is more accurate than existing algorithms, and improves upon conventional bounding box strategies.
Improved Snow Mapping Accuracy with Revised MODIS Snow Algorithm
NASA Technical Reports Server (NTRS)
Riggs, George; Hall, Dorothy K.
2012-01-01
The MODIS snow cover products have been used in over 225 published studies. From those reports, and our ongoing analysis, we have learned about the accuracy and errors in the snow products. Revisions have been made in the algorithms to improve the accuracy of snow cover detection in Collection 6 (C6), the next processing/reprocessing of the MODIS data archive planned to start in September 2012. Our objective in the C6 revision of the MODIS snow-cover algorithms and products is to maximize the capability to detect snow cover while minimizing snow detection errors of commission and omission. While the basic snow detection algorithm will not change, new screens will be applied to alleviate snow detection commission and omission errors, and only the fractional snow cover (FSC) will be output (the binary snow cover area (SCA) map will no longer be included).
Methods for increasing cooperation rates for surveys of family forest owners
Brett J. Butler; Jaketon H. Hewes; Mary L. Tyrrell; Sarah M. Butler
2016-01-01
To maximize the representativeness of results from surveys, coverage, sampling, nonresponse, measurement, and analysis errors must be minimized. Although not a cure-all, one approach for mitigating nonresponse errors is to maximize cooperation rates. In this study, personalizing mailings, token financial incentives, and the use of real stamps were tested for their...
Mitigating Errors of Representation: A Practical Case Study of the University Experience Survey
ERIC Educational Resources Information Center
Whiteley, Sonia
2014-01-01
The Total Survey Error (TSE) paradigm provides a framework that supports the effective planning of research, guides decision making about data collection and contextualises the interpretation and dissemination of findings. TSE also allows researchers to systematically evaluate and improve the design and execution of ongoing survey programs and…
Iterative updating of model error for Bayesian inversion
NASA Astrophysics Data System (ADS)
Calvetti, Daniela; Dunlop, Matthew; Somersalo, Erkki; Stuart, Andrew
2018-02-01
In computational inverse problems, it is common that a detailed and accurate forward model is approximated by a computationally less challenging substitute. The model reduction may be necessary to meet constraints in computing time when optimization algorithms are used to find a single estimate, or to speed up Markov chain Monte Carlo (MCMC) calculations in the Bayesian framework. The use of an approximate model introduces a discrepancy, or modeling error, that may have a detrimental effect on the solution of the ill-posed inverse problem, or it may severely distort the estimate of the posterior distribution. In the Bayesian paradigm, the modeling error can be considered as a random variable, and by using an estimate of the probability distribution of the unknown, one may estimate the probability distribution of the modeling error and incorporate it into the inversion. We introduce an algorithm which iterates this idea to update the distribution of the model error, leading to a sequence of posterior distributions that are demonstrated empirically to capture the underlying truth with increasing accuracy. Since the algorithm is not based on rejections, it requires only limited full model evaluations. We show analytically that, in the linear Gaussian case, the algorithm converges geometrically fast with respect to the number of iterations when the data is finite dimensional. For more general models, we introduce particle approximations of the iteratively generated sequence of distributions; we also prove that each element of the sequence converges in the large particle limit under a simplifying assumption. We show numerically that, as in the linear case, rapid convergence occurs with respect to the number of iterations. Additionally, we show through computed examples that point estimates obtained from this iterative algorithm are superior to those obtained by neglecting the model error.
Image registration of naval IR images
NASA Astrophysics Data System (ADS)
Rodland, Arne J.
1996-06-01
In a real world application an image from a stabilized sensor on a moving platform will not be 100 percent stabilized. There will always be a small unknown error in the stabilization due to factors such as dynamic deformations in the structure between sensor and reference Inertial Navigation Unit, servo inaccuracies, etc. For a high resolution imaging sensor this stabilization error causes the image to move several pixels in unknown direction between frames. TO be able to detect and track small moving objects from such a sensor, this unknown movement of the sensor image must be estimated. An algorithm that searches for land contours in the image has been evaluated. The algorithm searches for high contrast points distributed over the whole image. As long as moving objects in the scene only cover a small area of the scene, most of the points are located on solid ground. By matching the list of points from frame to frame, the movement of the image due to stabilization errors can be estimated and compensated. The point list is searched for points with diverging movement from the estimated stabilization error. These points are then assumed to be located on moving objects. Points assumed to be located on moving objects are gradually exchanged with new points located in the same area. Most of the processing is performed on the list of points and not on the complete image. The algorithm is therefore very fast and well suited for real time implementation. The algorithm has been tested on images from an experimental IR scanner. Stabilization errors were added artificially to the image such that the output from the algorithm could be compared with the artificially added stabilization errors.
Theoretical Bounds of Direct Binary Search Halftoning.
Liao, Jan-Ray
2015-11-01
Direct binary search (DBS) produces the images of the best quality among half-toning algorithms. The reason is that it minimizes the total squared perceived error instead of using heuristic approaches. The search for the optimal solution involves two operations: (1) toggle and (2) swap. Both operations try to find the binary states for each pixel to minimize the total squared perceived error. This error energy minimization leads to a conjecture that the absolute value of the filtered error after DBS converges is bounded by half of the peak value of the autocorrelation filter. However, a proof of the bound's existence has not yet been found. In this paper, we present a proof that shows the bound existed as conjectured under the condition that at least one swap occurs after toggle converges. The theoretical analysis also indicates that a swap with a pixel further away from the center of the autocorrelation filter results in a tighter bound. Therefore, we propose a new DBS algorithm which considers toggle and swap separately, and the swap operations are considered in the order from the edge to the center of the filter. Experimental results show that the new algorithm is more efficient than the previous algorithm and can produce half-toned images of the same quality as the previous algorithm.
A radio-aware routing algorithm for reliable directed diffusion in lossy wireless sensor networks.
Kim, Yong-Pyo; Jung, Euihyun; Park, Yong-Jin
2009-01-01
In Wireless Sensor Networks (WSNs), transmission errors occur frequently due to node failure, battery discharge, contention or interference by objects. Although Directed Diffusion has been considered as a prominent data-centric routing algorithm, it has some weaknesses due to unexpected network errors. In order to address these problems, we proposed a radio-aware routing algorithm to improve the reliability of Directed Diffusion in lossy WSNs. The proposed algorithm is aware of the network status based on the radio information from MAC and PHY layers using a cross-layer design. The cross-layer design can be used to get detailed information about current status of wireless network such as a link quality or transmission errors of communication links. The radio information indicating variant network conditions and link quality was used to determine an alternative route that provides reliable data transmission under lossy WSNs. According to the simulation result, the radio-aware reliable routing algorithm showed better performance in both grid and random topologies with various error rates. The proposed solution suggested the possibility of providing a reliable transmission method for QoS requests in lossy WSNs based on the radio-awareness. The energy and mobility issues will be addressed in the future work.
NASA Astrophysics Data System (ADS)
Liu, Xuan; Liu, Bo; Zhang, Li-jia; Xin, Xiang-jun; Zhang, Qi; Wang, Yong-jun; Tian, Qing-hua; Tian, Feng; Mao, Ya-ya
2018-01-01
Traditional clock recovery scheme achieves timing adjustment by digital interpolation, thus recovering the sampling sequence. Based on this, an improved clock recovery architecture joint channel equalization for coherent optical communication system is presented in this paper. The loop is different from the traditional clock recovery. In order to reduce the interpolation error caused by the distortion in the frequency domain of the interpolator and to suppress the spectral mirroring generated by the sampling rate change, the proposed algorithm joint equalization, improves the original interpolator in the loop, along with adaptive filtering, and makes error compensation for the original signals according to the balanced pre-filtering signals. Then the signals are adaptive interpolated through the feedback loop. Furthermore, the phase splitting timing recovery algorithm is adopted in this paper. The time error is calculated according to the improved algorithm when there is no transition between the adjacent symbols, making calculated timing error more accurate. Meanwhile, Carrier coarse synchronization module is placed before the beginning of timing recovery to eliminate the larger frequency offset interference, which effectively adjust the sampling clock phase. In this paper, the simulation results show that the timing error is greatly reduced after the loop is changed. Based on the phase splitting algorithm, the BER and MSE are better than those in the unvaried architecture. In the fiber channel, using MQAM modulation format, after 100 km-transmission of single-mode fiber, especially when ROF(roll-off factor) values tends to 0, the algorithm shows a better clock performance under different ROFs. When SNR values are less than 8, the BER could achieve 10-2 to 10-1 magnitude. Furthermore, the proposed timing recovery is more suitable for the situation with low SNR values.
Improved Soundings and Error Estimates using AIRS/AMSU Data
NASA Technical Reports Server (NTRS)
Susskind, Joel
2006-01-01
AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1 K, and layer precipitable water with an rms error of 20 percent, in cases with up to 80 percent effective cloud cover. The basic theory used to analyze AIRS/AMSU/HSB data in the presence of clouds, called the at-launch algorithm, and a post-launch algorithm which differed only in the minor details from the at-launch algorithm, have been described previously. The post-launch algorithm, referred to as AIRS Version 4.0, has been used by the Goddard DAAC to analyze and distribute AIRS retrieval products. In this paper we show progress made toward the AIRS Version 5.0 algorithm which will be used by the Goddard DAAC starting late in 2006. A new methodology has been developed to provide accurate case by case error estimates for retrieved geophysical parameters and for the channel by channel cloud cleared radiances used to derive the geophysical parameters from the AIRS/AMSU observations. These error estimates are in turn used for quality control of the derived geophysical parameters and clear column radiances. Improvements made to the retrieval algorithm since Version 4.0 are described as well as results comparing Version 5.0 retrieval accuracy and spatial coverage with those obtained using Version 4.0.
Land Surface Temperature Measurements form EOS MODIS Data
NASA Technical Reports Server (NTRS)
Wan, Zhengming
1996-01-01
We have developed a physics-based land-surface temperature (LST) algorithm for simultaneously retrieving surface band-averaged emissivities and temperatures from day/night pairs of MODIS (Moderate Resolution Imaging Spectroradiometer) data in seven thermal infrared bands. The set of 14 nonlinear equations in the algorithm is solved with the statistical regression method and the least-squares fit method. This new LST algorithm was tested with simulated MODIS data for 80 sets of band-averaged emissivities calculated from published spectral data of terrestrial materials in wide ranges of atmospheric and surface temperature conditions. Comprehensive sensitivity and error analysis has been made to evaluate the performance of the new LST algorithm and its dependence on variations in surface emissivity and temperature, upon atmospheric conditions, as well as the noise-equivalent temperature difference (NE(Delta)T) and calibration accuracy specifications of the MODIS instrument. In cases with a systematic calibration error of 0.5%, the standard deviations of errors in retrieved surface daytime and nighttime temperatures fall between 0.4-0.5 K over a wide range of surface temperatures for mid-latitude summer conditions. The standard deviations of errors in retrieved emissivities in bands 31 and 32 (in the 10-12.5 micrometer IR spectral window region) are 0.009, and the maximum error in retrieved LST values falls between 2-3 K. Several issues related to the day/night LST algorithm (uncertainties in the day/night registration and in surface emissivity changes caused by dew occurrence, and the cloud cover) have been investigated. The LST algorithms have been validated with MODIS Airborne Simulator (MAS) dada and ground-based measurement data in two field campaigns conducted in Railroad Valley playa, NV in 1995 and 1996. The MODIS LST version 1 software has been delivered.
A novel measure and significance testing in data analysis of cell image segmentation.
Wu, Jin Chu; Halter, Michael; Kacker, Raghu N; Elliott, John T; Plant, Anne L
2017-03-14
Cell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting significance testing are critical for evaluating and comparing the CIS algorithms for image-based cell assays in cytometry. Many measures and methods have been proposed and implemented to evaluate segmentation methods. However, computing the standard errors (SE) of the measures and their correlation coefficient is not described, and thus the statistical significance of performance differences between CIS algorithms cannot be assessed. We propose the total error rate (TER), a novel performance measure for segmenting all cells in the supervised evaluation. The TER statistically aggregates all misclassification error rates (MER) by taking cell sizes as weights. The MERs are for segmenting each single cell in the population. The TER is fully supported by the pairwise comparisons of MERs using 106 manually segmented ground-truth cells with different sizes and seven CIS algorithms taken from ImageJ. Further, the SE and 95% confidence interval (CI) of TER are computed based on the SE of MER that is calculated using the bootstrap method. An algorithm for computing the correlation coefficient of TERs between two CIS algorithms is also provided. Hence, the 95% CI error bars can be used to classify CIS algorithms. The SEs of TERs and their correlation coefficient can be employed to conduct the hypothesis testing, while the CIs overlap, to determine the statistical significance of the performance differences between CIS algorithms. A novel measure TER of CIS is proposed. The TER's SEs and correlation coefficient are computed. Thereafter, CIS algorithms can be evaluated and compared statistically by conducting the significance testing.
NASA GPM GV Science Requirements
NASA Technical Reports Server (NTRS)
Smith, E.
2003-01-01
An important scientific objective of the NASA portion of the GPM Mission is to generate quantitatively-based error characterization information along with the rainrate retrievals emanating from the GPM constellation of satellites. These data must serve four main purposes: (1) they must be of sufficient quality, uniformity, and timeliness to govern the observation weighting schemes used in the data assimilation modules of numerical weather prediction models; (2) they must extend over that portion of the globe accessible by the GPM core satellite to which the NASA GV program is focused - (approx.65 degree inclination); (3) they must have sufficient specificity to enable detection of physically-formulated microphysical and meteorological weaknesses in the standard physical level 2 rainrate algorithms to be used in the GPM Precipitation Processing System (PPS), i.e., algorithms which will have evolved from the TRMM standard physical level 2 algorithms; and (4) they must support the use of physical error modeling as a primary validation tool and as the eventual replacement of the conventional GV approach of statistically intercomparing surface rainrates fiom ground and satellite measurements. This approach to ground validation research represents a paradigm shift vis-&-vis the program developed for the TRMM mission, which conducted ground validation largely as a statistical intercomparison process between raingauge-derived or radar-derived rainrates and the TRMM satellite rainrate retrievals -- long after the original satellite retrievals were archived. This approach has been able to quantify averaged rainrate differences between the satellite algorithms and the ground instruments, but has not been able to explain causes of algorithm failures or produce error information directly compatible with the cost functions of data assimilation schemes. These schemes require periodic and near-realtime bias uncertainty (i.e., global space-time distributed conditional accuracy of the retrieved rainrates) and local error covariance structure (i.e., global space-time distributed error correlation information for the local 4-dimensional space-time domain -- or in simpler terms, the matrix form of precision error). This can only be accomplished by establishing a network of high quality-heavily instrumented supersites selectively distributed at a few oceanic, continental, and coastal sites. Economics and pragmatics dictate that the network must be made up of a relatively small number of sites (6-8) created through international cooperation. This presentation will address some of the details of the methodology behind the error characterization approach, some proposed solutions for expanding site-developed error properties to regional scales, a data processing and communications concept that would enable rapid implementation of algorithm improvement by the algorithm developers, and the likely available options for developing the supersite network.
RETRACTED — PMD mitigation through interleaving LDPC codes with polarization scramblers
NASA Astrophysics Data System (ADS)
Han, Dahai; Chen, Haoran; Xi, Lixia
2012-11-01
The combination of forward error correction (FEC) and distributed fast polarization scramblers (D-FPSs) is approved as an effective method to mitigate polarization mode dispersion (PMD) in high-speed optical fiber communication system. The low-density parity-check (LDPC) codes are newly introduced into the PMD mitigation scheme with D-FPSs in this paper as one of the promising FEC codes to achieve better performance. The scrambling speed of FPS for LDPC (2040, 1903) codes system is discussed, and the reasonable speed 10 MHz is obtained from the simulation results. For easy application in practical large scale integrated (LSI) circuit, the number of iterations in decoding LDPC codes is also investigated. The PMD tolerance and cut-off optical signal-to-noise ratio (OSNR) of LDPC codes are compared with Reed-Solomon (RS) codes in different conditions. In the simulation, the interleaving LDPC codes brings incremental performance of error correction, and the PMD tolerance is 10 ps at OSNR=11.4 dB. The results show that the meaning of the work is that LDPC codes are a substitute for traditional RS codes with D-FPSs and all of the executable code files are open for researchers who have practical LSI platform for PMD mitigation.
PMD mitigation through interleaving LDPC codes with polarization scramblers
NASA Astrophysics Data System (ADS)
Han, Dahai; Chen, Haoran; Xi, Lixia
2013-09-01
The combination of forward error correction (FEC) and distributed fast polarization scramblers (D-FPSs) is approved an effective method to mitigate polarization mode dispersion (PMD) in high-speed optical fiber communication system. The low-density parity-check (LDPC) codes are newly introduced into the PMD mitigation scheme with D-FPSs in this article as one of the promising FEC codes to achieve better performance. The scrambling speed of FPS for LDPC (2040, 1903) codes system is discussed, and the reasonable speed 10MHz is obtained from the simulation results. For easy application in practical large scale integrated (LSI) circuit, the number of iterations in decoding LDPC codes is also investigated. The PMD tolerance and cut-off optical signal-to-noise ratio (OSNR) of LDPC codes are compared with Reed-Solomon (RS) codes in different conditions. In the simulation, the interleaving LDPC codes bring incremental performance of error correction, and the PMD tolerance is 10ps at OSNR=11.4dB. The results show the meaning of the work is that LDPC codes are a substitute for traditional RS codes with D-FPSs and all of the executable code files are open for researchers who have practical LSI platform for PMD mitigation.
Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes
NASA Technical Reports Server (NTRS)
Lin, Shu
1998-01-01
A code trellis is a graphical representation of a code, block or convolutional, in which every path represents a codeword (or a code sequence for a convolutional code). This representation makes it possible to implement Maximum Likelihood Decoding (MLD) of a code with reduced decoding complexity. The most well known trellis-based MLD algorithm is the Viterbi algorithm. The trellis representation was first introduced and used for convolutional codes [23]. This representation, together with the Viterbi decoding algorithm, has resulted in a wide range of applications of convolutional codes for error control in digital communications over the last two decades. There are two major reasons for this inactive period of research in this area. First, most coding theorists at that time believed that block codes did not have simple trellis structure like convolutional codes and maximum likelihood decoding of linear block codes using the Viterbi algorithm was practically impossible, except for very short block codes. Second, since almost all of the linear block codes are constructed algebraically or based on finite geometries, it was the belief of many coding theorists that algebraic decoding was the only way to decode these codes. These two reasons seriously hindered the development of efficient soft-decision decoding methods for linear block codes and their applications to error control in digital communications. This led to a general belief that block codes are inferior to convolutional codes and hence, that they were not useful. Chapter 2 gives a brief review of linear block codes. The goal is to provide the essential background material for the development of trellis structure and trellis-based decoding algorithms for linear block codes in the later chapters. Chapters 3 through 6 present the fundamental concepts, finite-state machine model, state space formulation, basic structural properties, state labeling, construction procedures, complexity, minimality, and sectionalization of trellises. Chapter 7 discusses trellis decomposition and subtrellises for low-weight codewords. Chapter 8 first presents well known methods for constructing long powerful codes from short component codes or component codes of smaller dimensions, and then provides methods for constructing their trellises which include Shannon and Cartesian product techniques. Chapter 9 deals with convolutional codes, puncturing, zero-tail termination and tail-biting.Chapters 10 through 13 present various trellis-based decoding algorithms, old and new. Chapter 10 first discusses the application of the well known Viterbi decoding algorithm to linear block codes, optimum sectionalization of a code trellis to minimize computation complexity, and design issues for IC (integrated circuit) implementation of a Viterbi decoder. Then it presents a new decoding algorithm for convolutional codes, named Differential Trellis Decoding (DTD) algorithm. Chapter 12 presents a suboptimum reliability-based iterative decoding algorithm with a low-weight trellis search for the most likely codeword. This decoding algorithm provides a good trade-off between error performance and decoding complexity. All the decoding algorithms presented in Chapters 10 through 12 are devised to minimize word error probability. Chapter 13 presents decoding algorithms that minimize bit error probability and provide the corresponding soft (reliability) information at the output of the decoder. Decoding algorithms presented are the MAP (maximum a posteriori probability) decoding algorithm and the Soft-Output Viterbi Algorithm (SOVA) algorithm. Finally, the minimization of bit error probability in trellis-based MLD is discussed.
NASA Astrophysics Data System (ADS)
Bukhari, W.; Hong, S.-M.
2015-01-01
Motion-adaptive radiotherapy aims to deliver a conformal dose to the target tumour with minimal normal tissue exposure by compensating for tumour motion in real time. The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting and gating respiratory motion that utilizes a model-based and a model-free Bayesian framework by combining them in a cascade structure. The algorithm, named EKF-GPR+, implements a gating function without pre-specifying a particular region of the patient’s breathing cycle. The algorithm first employs an extended Kalman filter (LCM-EKF) to predict the respiratory motion and then uses a model-free Gaussian process regression (GPR) to correct the error of the LCM-EKF prediction. The GPR is a non-parametric Bayesian algorithm that yields predictive variance under Gaussian assumptions. The EKF-GPR+ algorithm utilizes the predictive variance from the GPR component to capture the uncertainty in the LCM-EKF prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification allows us to pause the treatment beam over such instances. EKF-GPR+ implements the gating function by using simple calculations based on the predictive variance with no additional detection mechanism. A sparse approximation of the GPR algorithm is employed to realize EKF-GPR+ in real time. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPR+. The experimental results show that the EKF-GPR+ algorithm effectively reduces the prediction error in a root-mean-square (RMS) sense by employing the gating function, albeit at the cost of a reduced duty cycle. As an example, EKF-GPR+ reduces the patient-wise RMS error to 37%, 39% and 42% in percent ratios relative to no prediction for a duty cycle of 80% at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The experiments also confirm that EKF-GPR+ controls the duty cycle with reasonable accuracy.
Enhanced Pedestrian Navigation Based on Course Angle Error Estimation Using Cascaded Kalman Filters
Park, Chan Gook
2018-01-01
An enhanced pedestrian dead reckoning (PDR) based navigation algorithm, which uses two cascaded Kalman filters (TCKF) for the estimation of course angle and navigation errors, is proposed. The proposed algorithm uses a foot-mounted inertial measurement unit (IMU), waist-mounted magnetic sensors, and a zero velocity update (ZUPT) based inertial navigation technique with TCKF. The first stage filter estimates the course angle error of a human, which is closely related to the heading error of the IMU. In order to obtain the course measurements, the filter uses magnetic sensors and a position-trace based course angle. For preventing magnetic disturbance from contaminating the estimation, the magnetic sensors are attached to the waistband. Because the course angle error is mainly due to the heading error of the IMU, and the characteristic error of the heading angle is highly dependent on that of the course angle, the estimated course angle error is used as a measurement for estimating the heading error in the second stage filter. At the second stage, an inertial navigation system-extended Kalman filter-ZUPT (INS-EKF-ZUPT) method is adopted. As the heading error is estimated directly by using course-angle error measurements, the estimation accuracy for the heading and yaw gyro bias can be enhanced, compared with the ZUPT-only case, which eventually enhances the position accuracy more efficiently. The performance enhancements are verified via experiments, and the way-point position error for the proposed method is compared with those for the ZUPT-only case and with other cases that use ZUPT and various types of magnetic heading measurements. The results show that the position errors are reduced by a maximum of 90% compared with the conventional ZUPT based PDR algorithms. PMID:29690539
A Family of Algorithms for Computing Consensus about Node State from Network Data
Brush, Eleanor R.; Krakauer, David C.; Flack, Jessica C.
2013-01-01
Biological and social networks are composed of heterogeneous nodes that contribute differentially to network structure and function. A number of algorithms have been developed to measure this variation. These algorithms have proven useful for applications that require assigning scores to individual nodes–from ranking websites to determining critical species in ecosystems–yet the mechanistic basis for why they produce good rankings remains poorly understood. We show that a unifying property of these algorithms is that they quantify consensus in the network about a node's state or capacity to perform a function. The algorithms capture consensus by either taking into account the number of a target node's direct connections, and, when the edges are weighted, the uniformity of its weighted in-degree distribution (breadth), or by measuring net flow into a target node (depth). Using data from communication, social, and biological networks we find that that how an algorithm measures consensus–through breadth or depth– impacts its ability to correctly score nodes. We also observe variation in sensitivity to source biases in interaction/adjacency matrices: errors arising from systematic error at the node level or direct manipulation of network connectivity by nodes. Our results indicate that the breadth algorithms, which are derived from information theory, correctly score nodes (assessed using independent data) and are robust to errors. However, in cases where nodes “form opinions” about other nodes using indirect information, like reputation, depth algorithms, like Eigenvector Centrality, are required. One caveat is that Eigenvector Centrality is not robust to error unless the network is transitive or assortative. In these cases the network structure allows the depth algorithms to effectively capture breadth as well as depth. Finally, we discuss the algorithms' cognitive and computational demands. This is an important consideration in systems in which individuals use the collective opinions of others to make decisions. PMID:23874167
The Pointing Self-calibration Algorithm for Aperture Synthesis Radio Telescopes
NASA Astrophysics Data System (ADS)
Bhatnagar, S.; Cornwell, T. J.
2017-11-01
This paper is concerned with algorithms for calibration of direction-dependent effects (DDE) in aperture synthesis radio telescopes (ASRT). After correction of direction-independent effects (DIE) using self-calibration, imaging performance can be limited by the imprecise knowledge of the forward gain of the elements in the array. In general, the forward gain pattern is directionally dependent and varies with time due to a number of reasons. Some factors, such as rotation of the primary beam with Parallactic Angle for Azimuth-Elevation mount antennas are known a priori. Some, such as antenna pointing errors and structural deformation/projection effects for aperture-array elements cannot be measured a priori. Thus, in addition to algorithms to correct for DD effects known a priori, algorithms to solve for DD gains are required for high dynamic range imaging. Here, we discuss a mathematical framework for antenna-based DDE calibration algorithms and show that this framework leads to computationally efficient optimal algorithms that scale well in a parallel computing environment. As an example of an antenna-based DD calibration algorithm, we demonstrate the Pointing SelfCal (PSC) algorithm to solve for the antenna pointing errors. Our analysis show that the sensitivity of modern ASRT is sufficient to solve for antenna pointing errors and other DD effects. We also discuss the use of the PSC algorithm in real-time calibration systems and extensions for antenna Shape SelfCal algorithm for real-time tracking and corrections for pointing offsets and changes in antenna shape.
The Pointing Self-calibration Algorithm for Aperture Synthesis Radio Telescopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatnagar, S.; Cornwell, T. J., E-mail: sbhatnag@nrao.edu
This paper is concerned with algorithms for calibration of direction-dependent effects (DDE) in aperture synthesis radio telescopes (ASRT). After correction of direction-independent effects (DIE) using self-calibration, imaging performance can be limited by the imprecise knowledge of the forward gain of the elements in the array. In general, the forward gain pattern is directionally dependent and varies with time due to a number of reasons. Some factors, such as rotation of the primary beam with Parallactic Angle for Azimuth–Elevation mount antennas are known a priori. Some, such as antenna pointing errors and structural deformation/projection effects for aperture-array elements cannot be measuredmore » a priori. Thus, in addition to algorithms to correct for DD effects known a priori, algorithms to solve for DD gains are required for high dynamic range imaging. Here, we discuss a mathematical framework for antenna-based DDE calibration algorithms and show that this framework leads to computationally efficient optimal algorithms that scale well in a parallel computing environment. As an example of an antenna-based DD calibration algorithm, we demonstrate the Pointing SelfCal (PSC) algorithm to solve for the antenna pointing errors. Our analysis show that the sensitivity of modern ASRT is sufficient to solve for antenna pointing errors and other DD effects. We also discuss the use of the PSC algorithm in real-time calibration systems and extensions for antenna Shape SelfCal algorithm for real-time tracking and corrections for pointing offsets and changes in antenna shape.« less
Finding Blackbody Temperature and Emissivity on a Sub-Pixel Scale
NASA Astrophysics Data System (ADS)
Bernstein, D. J.; Bausell, J.; Grigsby, S.; Kudela, R. M.
2015-12-01
Surface temperature and emissivity provide important insight into the ecosystem being remotely sensed. Dozier (1981) proposed a an algorithm to solve for percent coverage and temperatures of two different surface types (e.g. sea surface, cloud cover, etc.) within a given pixel, with a constant value for emissivity assumed. Here we build on Dozier (1981) by proposing an algorithm that solves for both temperature and emissivity of a water body within a satellite pixel by assuming known percent coverage of surface types within the pixel. Our algorithm generates thermal infrared (TIR) and emissivity end-member spectra for the two surface types. Our algorithm then superposes these end-member spectra on emissivity and TIR spectra emitted from four pixels with varying percent coverage of different surface types. The algorithm was tested preliminarily (48 iterations) using simulated pixels containing more than one surface type, with temperature and emissivity percent errors of ranging from 0 to 1.071% and 2.516 to 15.311% respectively[1]. We then tested the algorithm using a MASTER image from MASTER collected as part of the NASA Student Airborne Research Program (NASA SARP). Here the temperature of water was calculated to be within 0.22 K of in situ data. The algorithm calculated emissivity of water with an accuracy of 0.13 to 1.53% error for Salton Sea pixels collected with MASTER, also collected as part of NASA SARP. This method could improve retrievals for the HyspIRI sensor. [1] Percent error for emissivity was generated by averaging percent error across all selected bands widths.
Li, Qi; Melton, Kristin; Lingren, Todd; Kirkendall, Eric S; Hall, Eric; Zhai, Haijun; Ni, Yizhao; Kaiser, Megan; Stoutenborough, Laura; Solti, Imre
2014-01-01
Although electronic health records (EHRs) have the potential to provide a foundation for quality and safety algorithms, few studies have measured their impact on automated adverse event (AE) and medical error (ME) detection within the neonatal intensive care unit (NICU) environment. This paper presents two phenotyping AE and ME detection algorithms (ie, IV infiltrations, narcotic medication oversedation and dosing errors) and describes manual annotation of airway management and medication/fluid AEs from NICU EHRs. From 753 NICU patient EHRs from 2011, we developed two automatic AE/ME detection algorithms, and manually annotated 11 classes of AEs in 3263 clinical notes. Performance of the automatic AE/ME detection algorithms was compared to trigger tool and voluntary incident reporting results. AEs in clinical notes were double annotated and consensus achieved under neonatologist supervision. Sensitivity, positive predictive value (PPV), and specificity are reported. Twelve severe IV infiltrates were detected. The algorithm identified one more infiltrate than the trigger tool and eight more than incident reporting. One narcotic oversedation was detected demonstrating 100% agreement with the trigger tool. Additionally, 17 narcotic medication MEs were detected, an increase of 16 cases over voluntary incident reporting. Automated AE/ME detection algorithms provide higher sensitivity and PPV than currently used trigger tools or voluntary incident-reporting systems, including identification of potential dosing and frequency errors that current methods are unequipped to detect. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Reed Solomon codes for error control in byte organized computer memory systems
NASA Technical Reports Server (NTRS)
Lin, S.; Costello, D. J., Jr.
1984-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. Some special decoding techniques for extended single-and-double-error-correcting RS codes which are capable of high speed operation are presented. These techniques are designed to find the error locations and the error values directly from the syndrome without having to use the iterative algorithm to find the error locator polynomial.
Bio-Inspired Distributed Decision Algorithms for Anomaly Detection
2017-03-01
TERMS DIAMoND, Local Anomaly Detector, Total Impact Estimation, Threat Level Estimator 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU...21 4.2 Performance of the DIAMoND Algorithm as a DNS-Server Level Attack Detection and Mitigation...with 6 Nodes ........................................................................................ 13 8 Hierarchical 2- Level Topology
Decodoku: Quantum error rorrection as a simple puzzle game
NASA Astrophysics Data System (ADS)
Wootton, James
To build quantum computers, we need to detect and manage any noise that occurs. This will be done using quantum error correction. At the hardware level, QEC is a multipartite system that stores information non-locally. Certain measurements are made which do not disturb the stored information, but which do allow signatures of errors to be detected. Then there is a software problem. How to take these measurement outcomes and determine: a) The errors that caused them, and (b) how to remove their effects. For qubit error correction, the algorithms required to do this are well known. For qudits, however, current methods are far from optimal. We consider the error correction problem of qubit surface codes. At the most basic level, this is a problem that can be expressed in terms of a grid of numbers. Using this fact, we take the inherent problem at the heart of quantum error correction, remove it from its quantum context, and presented in terms of simple grid based puzzle games. We have developed three versions of these puzzle games, focussing on different aspects of the required algorithms. These have been presented and iOS and Android apps, allowing the public to try their hand at developing good algorithms to solve the puzzles. For more information, see www.decodoku.com. Funding from the NCCR QSIT.
Lock-in amplifier error prediction and correction in frequency sweep measurements.
Sonnaillon, Maximiliano Osvaldo; Bonetto, Fabian Jose
2007-01-01
This article proposes an analytical algorithm for predicting errors in lock-in amplifiers (LIAs) working with time-varying reference frequency. Furthermore, a simple method for correcting such errors is presented. The reference frequency can be swept in order to measure the frequency response of a system within a given spectrum. The continuous variation of the reference frequency produces a measurement error that depends on three factors: the sweep speed, the LIA low-pass filters, and the frequency response of the measured system. The proposed error prediction algorithm is based on the final value theorem of the Laplace transform. The correction method uses a double-sweep measurement. A mathematical analysis is presented and validated with computational simulations and experimental measurements.
Performance Evaluation of Multichannel Adaptive Algorithms for Local Active Noise Control
NASA Astrophysics Data System (ADS)
DE DIEGO, M.; GONZALEZ, A.
2001-07-01
This paper deals with the development of a multichannel active noise control (ANC) system inside an enclosed space. The purpose is to design a real practical system which works well in local ANC applications. Moreover, the algorithm implemented in the adaptive controller should be robust, of low computational complexity and it should manage to generate a uniform useful-size zone of quite in order to allow the head motion of a person seated on a seat inside a car. Experiments were carried out under semi-anechoic and listening room conditions to verify the successful implementation of the multichannel system. The developed prototype consists of an array of up to four microphones used as error sensors mounted on the headrest of a seat place inside the enclosure. One loudspeaker was used as single primary source and two secondary sources were placed facing the seat. The aim of this multichannel system is to reduce the sound pressure levels in an area around the error sensors, following a local control strategy. When using this technique, the cancellation points are not only the error sensor positions but an area around them, which is measured by using a monitoring microphone. Different multichannel adaptive algorithms for ANC have been analyzed and their performance verified. Multiple error algorithms are used in order to cancel out different types of primary noise (engine noise and random noise) with several configurations (up to four channels system). As an alternative to the multiple error LMS algorithm (multichannel version of the filtered-X LMS algorithm, MELMS), the least maximum mean squares (LMMS) and the scanning error-LMS algorithm have been developed in this work in order to reduce computational complexity and achieve a more uniform residual field. The ANC algorithms were programmed on a digital signal processing board equipped with a TMS320C40 floating point DSP processor. Measurements concerning real-time experiments on local noise reduction in two environments and at frequencies below 230 Hz are presented. Better noise levels attenuation is obtained in the semianechoic chamber due to the simplicity of the acoustic field. The size of the zone of quiet makes the system useful at relatively low frequencies and it is large enough to cover a listener's head movements. The spatial extent of the zones of quiet is generally observed to increase as the error sensors are moved away from the secondary source, they are put closer together or its number increases. In summary, different algorithms' performance and the viability of the multichannel system for local active noise control in real listening conditions are evaluated and some guidelines for designing such systems are then proposed.
Worldwide Ocean Optics Database (WOOD)
2002-09-30
attenuation estimated from diffuse attenuation and backscatter data). Error estimates will also be provided for the computed results. Extensive algorithm...empirical algorithms (e.g., beam attenuation estimated from diffuse attenuation and backscatter data). Error estimates will also be provided for the...properties, including diffuse attenuation, beam attenuation, and scattering. Data from ONR-funded bio-optical cruises will be given priority for loading
Worldwide Ocean Optics Database (WOOD)
2001-09-30
user can obtain values computed from empirical algorithms (e.g., beam attenuation estimated from diffuse attenuation and backscatter data). Error ...from empirical algorithms (e.g., beam attenuation estimated from diffuse attenuation and backscatter data). Error estimates will also be provided for...properties, including diffuse attenuation, beam attenuation, and scattering. The database shall be easy to use, Internet accessible, and frequently updated
Huang, Weiquan; Fang, Tao; Luo, Li; Zhao, Lin; Che, Fengzhu
2017-07-03
The grid strapdown inertial navigation system (SINS) used in polar navigation also includes three kinds of periodic oscillation errors as common SINS are based on a geographic coordinate system. Aiming ships which have the external information to conduct a system reset regularly, suppressing the Schuler periodic oscillation is an effective way to enhance navigation accuracy. The Kalman filter based on the grid SINS error model which applies to the ship is established in this paper. The errors of grid-level attitude angles can be accurately estimated when the external velocity contains constant error, and then correcting the errors of the grid-level attitude angles through feedback correction can effectively dampen the Schuler periodic oscillation. The simulation results show that with the aid of external reference velocity, the proposed external level damping algorithm based on the Kalman filter can suppress the Schuler periodic oscillation effectively. Compared with the traditional external level damping algorithm based on the damping network, the algorithm proposed in this paper can reduce the overshoot errors when the state of grid SINS is switched from the non-damping state to the damping state, and this effectively improves the navigation accuracy of the system.
Improved HDRG decoders for qudit and non-Abelian quantum error correction
NASA Astrophysics Data System (ADS)
Hutter, Adrian; Loss, Daniel; Wootton, James R.
2015-03-01
Hard-decision renormalization group (HDRG) decoders are an important class of decoding algorithms for topological quantum error correction. Due to their versatility, they have been used to decode systems with fractal logical operators, color codes, qudit topological codes, and non-Abelian systems. In this work, we develop a method of performing HDRG decoding which combines strengths of existing decoders and further improves upon them. In particular, we increase the minimal number of errors necessary for a logical error in a system of linear size L from \\Theta ({{L}2/3}) to Ω ({{L}1-ε }) for any ε \\gt 0. We apply our algorithm to decoding D({{{Z}}d}) quantum double models and a non-Abelian anyon model with Fibonacci-like fusion rules, and show that it indeed significantly outperforms previous HDRG decoders. Furthermore, we provide the first study of continuous error correction with imperfect syndrome measurements for the D({{{Z}}d}) quantum double models. The parallelized runtime of our algorithm is poly(log L) for the perfect measurement case. In the continuous case with imperfect syndrome measurements, the averaged runtime is O(1) for Abelian systems, while continuous error correction for non-Abelian anyons stays an open problem.
Emken, Jeremy L; Benitez, Raul; Reinkensmeyer, David J
2007-01-01
Background A prevailing paradigm of physical rehabilitation following neurologic injury is to "assist-as-needed" in completing desired movements. Several research groups are attempting to automate this principle with robotic movement training devices and patient cooperative algorithms that encourage voluntary participation. These attempts are currently not based on computational models of motor learning. Methods Here we assume that motor recovery from a neurologic injury can be modelled as a process of learning a novel sensory motor transformation, which allows us to study a simplified experimental protocol amenable to mathematical description. Specifically, we use a robotic force field paradigm to impose a virtual impairment on the left leg of unimpaired subjects walking on a treadmill. We then derive an "assist-as-needed" robotic training algorithm to help subjects overcome the virtual impairment and walk normally. The problem is posed as an optimization of performance error and robotic assistance. The optimal robotic movement trainer becomes an error-based controller with a forgetting factor that bounds kinematic errors while systematically reducing its assistance when those errors are small. As humans have a natural range of movement variability, we introduce an error weighting function that causes the robotic trainer to disregard this variability. Results We experimentally validated the controller with ten unimpaired subjects by demonstrating how it helped the subjects learn the novel sensory motor transformation necessary to counteract the virtual impairment, while also preventing them from experiencing large kinematic errors. The addition of the error weighting function allowed the robot assistance to fade to zero even though the subjects' movements were variable. We also show that in order to assist-as-needed, the robot must relax its assistance at a rate faster than that of the learning human. Conclusion The assist-as-needed algorithm proposed here can limit error during the learning of a dynamic motor task. The algorithm encourages learning by decreasing its assistance as a function of the ongoing progression of movement error. This type of algorithm is well suited for helping people learn dynamic tasks for which large kinematic errors are dangerous or discouraging, and thus may prove useful for robot-assisted movement training of walking or reaching following neurologic injury. PMID:17391527
Desmond, Jill M; Collins, Leslie M; Throckmorton, Chandra S
2014-06-01
Many cochlear implant (CI) listeners experience decreased speech recognition in reverberant environments [Kokkinakis et al., J. Acoust. Soc. Am. 129(5), 3221-3232 (2011)], which may be caused by a combination of self- and overlap-masking [Bolt and MacDonald, J. Acoust. Soc. Am. 21(6), 577-580 (1949)]. Determining the extent to which these effects decrease speech recognition for CI listeners may influence reverberation mitigation algorithms. This study compared speech recognition with ideal self-masking mitigation, with ideal overlap-masking mitigation, and with no mitigation. Under these conditions, mitigating either self- or overlap-masking resulted in significant improvements in speech recognition for both normal hearing subjects utilizing an acoustic model and for CI listeners using their own devices.
Application of multi-agent coordination methods to the design of space debris mitigation tours
NASA Astrophysics Data System (ADS)
Stuart, Jeffrey; Howell, Kathleen; Wilson, Roby
2016-04-01
The growth in the number of defunct and fragmented objects near to the Earth poses a growing hazard to launch operations as well as existing on-orbit assets. Numerous studies have demonstrated the positive impact of active debris mitigation campaigns upon the growth of debris populations, but comparatively fewer investigations incorporate specific mission scenarios. Furthermore, while many active mitigation methods have been proposed, certain classes of debris objects are amenable to mitigation campaigns employing chaser spacecraft with existing chemical and low-thrust propulsive technologies. This investigation incorporates an ant colony optimization routing algorithm and multi-agent coordination via auctions into a debris mitigation tour scheme suitable for preliminary mission design and analysis as well as spacecraft flight operations.
Real-time sensing and gas jet mitigation of VDEs on Alcator C-Mod
NASA Astrophysics Data System (ADS)
Granetz, R. S.; Wolfe, S. M.; Izzo, V. A.; Reinke, M. L.; Terry, J. L.; Hughes, J. W.; Zhurovich, K.; Whyte, D. G.; Bakhtiari, M.; Wurden, G.
2006-10-01
Experiments have been carried out in Alcator C-Mod to test the effectiveness of gas jet disruption mitigation of VDEs with real-time detection and triggering by the C-Mod digital plasma control system (DPCS). The DPCS continuously computes the error in the plasma vertical position from the magnetics diagnostics. When this error exceeds an adjustable preset value, the DPCS triggers the gas jet valve (with a negligible latency time). The high-pressure gas (argon) only takes a few milliseconds to enter the vacuum chamber and begin affecting the plasma, but this is comparable to the VDE timescale on C-Mod. Nevertheless, gas jet injection reduced the halo current, increased the radiated power fraction, and reduced the heating of the divertor compared to unmitigated disruptions, but not quite as well as in earlier mitigation experiments with vertically stable plasmas. Presumably a faster overall response time would be beneficial, and several ways to achieve this will also be discussed.
Sun, Chao; Feng, Wenquan; Du, Songlin
2018-01-01
As multipath is one of the dominating error sources for high accuracy Global Navigation Satellite System (GNSS) applications, multipath mitigation approaches are employed to minimize this hazardous error in receivers. Binary offset carrier modulation (BOC), as a modernized signal structure, is adopted to achieve significant enhancement. However, because of its multi-peak autocorrelation function, conventional multipath mitigation techniques for binary phase shift keying (BPSK) signal would not be optimal. Currently, non-parametric and parametric approaches have been studied specifically aiming at multipath mitigation for BOC signals. Non-parametric techniques, such as Code Correlation Reference Waveforms (CCRW), usually have good feasibility with simple structures, but suffer from low universal applicability for different BOC signals. Parametric approaches can thoroughly eliminate multipath error by estimating multipath parameters. The problems with this category are at the high computation complexity and vulnerability to the noise. To tackle the problem, we present a practical parametric multipath estimation method in the frequency domain for BOC signals. The received signal is transferred to the frequency domain to separate out the multipath channel transfer function for multipath parameter estimation. During this process, we take the operations of segmentation and averaging to reduce both noise effect and computational load. The performance of the proposed method is evaluated and compared with the previous work in three scenarios. Results indicate that the proposed averaging-Fast Fourier Transform (averaging-FFT) method achieves good robustness in severe multipath environments with lower computational load for both low-order and high-order BOC signals. PMID:29495589
A Comparison of Forecast Error Generators for Modeling Wind and Load Uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ning; Diao, Ruisheng; Hafen, Ryan P.
2013-07-25
This paper presents four algorithms to generate random forecast error time series. The performance of four algorithms is compared. The error time series are used to create real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast time series that statistically match historically observed forecasting data sets used in power grid operation to study the net load balancing need in variable generation integration studies. The four algorithms are truncated-normal distribution models, state-space based Markov models, seasonal autoregressive moving average (ARMA) models, and a stochastic-optimization based approach. The comparison is made using historical DA load forecast and actual load valuesmore » to generate new sets of DA forecasts with similar stoical forecast error characteristics (i.e., mean, standard deviation, autocorrelation, and cross-correlation). The results show that all methods generate satisfactory results. One method may preserve one or two required statistical characteristics better the other methods, but may not preserve other statistical characteristics as well compared with the other methods. Because the wind and load forecast error generators are used in wind integration studies to produce wind and load forecasts time series for stochastic planning processes, it is sometimes critical to use multiple methods to generate the error time series to obtain a statistically robust result. Therefore, this paper discusses and compares the capabilities of each algorithm to preserve the characteristics of the historical forecast data sets.« less
A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation
Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao
2016-01-01
The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms. PMID:27999361
A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation.
Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao
2016-12-19
The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms.
Negotiating Multicollinearity with Spike-and-Slab Priors.
Ročková, Veronika; George, Edward I
2014-08-01
In multiple regression under the normal linear model, the presence of multicollinearity is well known to lead to unreliable and unstable maximum likelihood estimates. This can be particularly troublesome for the problem of variable selection where it becomes more difficult to distinguish between subset models. Here we show how adding a spike-and-slab prior mitigates this difficulty by filtering the likelihood surface into a posterior distribution that allocates the relevant likelihood information to each of the subset model modes. For identification of promising high posterior models in this setting, we consider three EM algorithms, the fast closed form EMVS version of Rockova and George (2014) and two new versions designed for variants of the spike-and-slab formulation. For a multimodal posterior under multicollinearity, we compare the regions of convergence of these three algorithms. Deterministic annealing versions of the EMVS algorithm are seen to substantially mitigate this multimodality. A single simple running example is used for illustration throughout.
Sum of the Magnitude for Hard Decision Decoding Algorithm Based on Loop Update Detection.
Meng, Jiahui; Zhao, Danfeng; Tian, Hai; Zhang, Liang
2018-01-15
In order to improve the performance of non-binary low-density parity check codes (LDPC) hard decision decoding algorithm and to reduce the complexity of decoding, a sum of the magnitude for hard decision decoding algorithm based on loop update detection is proposed. This will also ensure the reliability, stability and high transmission rate of 5G mobile communication. The algorithm is based on the hard decision decoding algorithm (HDA) and uses the soft information from the channel to calculate the reliability, while the sum of the variable nodes' (VN) magnitude is excluded for computing the reliability of the parity checks. At the same time, the reliability information of the variable node is considered and the loop update detection algorithm is introduced. The bit corresponding to the error code word is flipped multiple times, before this is searched in the order of most likely error probability to finally find the correct code word. Simulation results show that the performance of one of the improved schemes is better than the weighted symbol flipping (WSF) algorithm under different hexadecimal numbers by about 2.2 dB and 2.35 dB at the bit error rate (BER) of 10 -5 over an additive white Gaussian noise (AWGN) channel, respectively. Furthermore, the average number of decoding iterations is significantly reduced.
Fast and fully automatic phalanx segmentation using a grayscale-histogram morphology algorithm
NASA Astrophysics Data System (ADS)
Hsieh, Chi-Wen; Liu, Tzu-Chiang; Jong, Tai-Lang; Chen, Chih-Yen; Tiu, Chui-Mei; Chan, Din-Yuen
2011-08-01
Bone age assessment is a common radiological examination used in pediatrics to diagnose the discrepancy between the skeletal and chronological age of a child; therefore, it is beneficial to develop a computer-based bone age assessment to help junior pediatricians estimate bone age easily. Unfortunately, the phalanx on radiograms is not easily separated from the background and soft tissue. Therefore, we proposed a new method, called the grayscale-histogram morphology algorithm, to segment the phalanges fast and precisely. The algorithm includes three parts: a tri-stage sieve algorithm used to eliminate the background of hand radiograms, a centroid-edge dual scanning algorithm to frame the phalanx region, and finally a segmentation algorithm based on disk traverse-subtraction filter to segment the phalanx. Moreover, two more segmentation methods: adaptive two-mean and adaptive two-mean clustering were performed, and their results were compared with the segmentation algorithm based on disk traverse-subtraction filter using five indices comprising misclassification error, relative foreground area error, modified Hausdorff distances, edge mismatch, and region nonuniformity. In addition, the CPU time of the three segmentation methods was discussed. The result showed that our method had a better performance than the other two methods. Furthermore, satisfactory segmentation results were obtained with a low standard error.
Daytime Land Surface Temperature Extraction from MODIS Thermal Infrared Data under Cirrus Clouds
Fan, Xiwei; Tang, Bo-Hui; Wu, Hua; Yan, Guangjian; Li, Zhao-Liang
2015-01-01
Simulated data showed that cirrus clouds could lead to a maximum land surface temperature (LST) retrieval error of 11.0 K when using the generalized split-window (GSW) algorithm with a cirrus optical depth (COD) at 0.55 μm of 0.4 and in nadir view. A correction term in the COD linear function was added to the GSW algorithm to extend the GSW algorithm to cirrus cloudy conditions. The COD was acquired by a look up table of the isolated cirrus bidirectional reflectance at 0.55 μm. Additionally, the slope k of the linear function was expressed as a multiple linear model of the top of the atmospheric brightness temperatures of MODIS channels 31–34 and as the difference between split-window channel emissivities. The simulated data showed that the LST error could be reduced from 11.0 to 2.2 K. The sensitivity analysis indicated that the total errors from all the uncertainties of input parameters, extension algorithm accuracy, and GSW algorithm accuracy were less than 2.5 K in nadir view. Finally, the Great Lakes surface water temperatures measured by buoys showed that the retrieval accuracy of the GSW algorithm was improved by at least 1.5 K using the proposed extension algorithm for cirrus skies. PMID:25928059
Development and Evaluation of Algorithms for Breath Alcohol Screening.
Ljungblad, Jonas; Hök, Bertil; Ekström, Mikael
2016-04-01
Breath alcohol screening is important for traffic safety, access control and other areas of health promotion. A family of sensor devices useful for these purposes is being developed and evaluated. This paper is focusing on algorithms for the determination of breath alcohol concentration in diluted breath samples using carbon dioxide to compensate for the dilution. The examined algorithms make use of signal averaging, weighting and personalization to reduce estimation errors. Evaluation has been performed by using data from a previously conducted human study. It is concluded that these features in combination will significantly reduce the random error compared to the signal averaging algorithm taken alone.
A biomimetic algorithm for the improved detection of microarray features
NASA Astrophysics Data System (ADS)
Nicolau, Dan V., Jr.; Nicolau, Dan V.; Maini, Philip K.
2007-02-01
One the major difficulties of microarray technology relate to the processing of large and - importantly - error-loaded images of the dots on the chip surface. Whatever the source of these errors, those obtained in the first stage of data acquisition - segmentation - are passed down to the subsequent processes, with deleterious results. As it has been demonstrated recently that biological systems have evolved algorithms that are mathematically efficient, this contribution attempts to test an algorithm that mimics a bacterial-"patented" algorithm for the search of available space and nutrients to find, "zero-in" and eventually delimitate the features existent on the microarray surface.
Farace, Paolo; Righetto, Roberto; Deffet, Sylvain; Meijers, Arturs; Vander Stappen, Francois
2016-12-01
To introduce a fast ray-tracing algorithm in pencil proton radiography (PR) with a multilayer ionization chamber (MLIC) for in vivo range error mapping. Pencil beam PR was obtained by delivering spots uniformly positioned in a square (45 × 45 mm 2 field-of-view) of 9 × 9 spots capable of crossing the phantoms (210 MeV). The exit beam was collected by a MLIC to sample the integral depth dose (IDD MLIC ). PRs of an electron-density and of a head phantom were acquired by moving the couch to obtain multiple 45 × 45 mm 2 frames. To map the corresponding range errors, the two-dimensional set of IDD MLIC was compared with (i) the integral depth dose computed by the treatment planning system (TPS) by both analytic (IDD TPS ) and Monte Carlo (IDD MC ) algorithms in a volume of water simulating the MLIC at the CT, and (ii) the integral depth dose directly computed by a simple ray-tracing algorithm (IDD direct ) through the same CT data. The exact spatial position of the spot pattern was numerically adjusted testing different in-plane positions and selecting the one that minimized the range differences between IDD direct and IDD MLIC . Range error mapping was feasible by both the TPS and the ray-tracing methods, but very sensitive to even small misalignments. In homogeneous regions, the range errors computed by the direct ray-tracing algorithm matched the results obtained by both the analytic and the Monte Carlo algorithms. In both phantoms, lateral heterogeneities were better modeled by the ray-tracing and the Monte Carlo algorithms than by the analytic TPS computation. Accordingly, when the pencil beam crossed lateral heterogeneities, the range errors mapped by the direct algorithm matched better the Monte Carlo maps than those obtained by the analytic algorithm. Finally, the simplicity of the ray-tracing algorithm allowed to implement a prototype procedure for automated spatial alignment. The ray-tracing algorithm can reliably replace the TPS method in MLIC PR for in vivo range verification and it can be a key component to develop software tools for spatial alignment and correction of CT calibration.
RACER: Effective Race Detection Using AspectJ
NASA Technical Reports Server (NTRS)
Bodden, Eric; Havelund, Klaus
2008-01-01
The limits of coding with joint constraints on detected and undetected error rates Programming errors occur frequently in large software systems, and even more so if these systems are concurrent. In the past, researchers have developed specialized programs to aid programmers detecting concurrent programming errors such as deadlocks, livelocks, starvation and data races. In this work we propose a language extension to the aspect-oriented programming language AspectJ, in the form of three new built-in pointcuts, lock(), unlock() and may be Shared(), which allow programmers to monitor program events where locks are granted or handed back, and where values are accessed that may be shared amongst multiple Java threads. We decide thread-locality using a static thread-local objects analysis developed by others. Using the three new primitive pointcuts, researchers can directly implement efficient monitoring algorithms to detect concurrent programming errors online. As an example, we expose a new algorithm which we call RACER, an adoption of the well-known ERASER algorithm to the memory model of Java. We implemented the new pointcuts as an extension to the Aspect Bench Compiler, implemented the RACER algorithm using this language extension and then applied the algorithm to the NASA K9 Rover Executive. Our experiments proved our implementation very effective. In the Rover Executive RACER finds 70 data races. Only one of these races was previously known.We further applied the algorithm to two other multi-threaded programs written by Computer Science researchers, in which we found races as well.
Approximated affine projection algorithm for feedback cancellation in hearing aids.
Lee, Sangmin; Kim, In-Young; Park, Young-Cheol
2007-09-01
We propose an approximated affine projection (AP) algorithm for feedback cancellation in hearing aids. It is based on the conventional approach using the Gauss-Seidel (GS) iteration, but provides more stable convergence behaviour even with small step sizes. In the proposed algorithm, a residue of the weighted error vector, instead of the current error sample, is used to provide stable convergence. A new learning rate control scheme is also applied to the proposed algorithm to prevent signal cancellation and system instability. The new scheme determines step size in proportion to the prediction factor of the input, so that adaptation is inhibited whenever tone-like signals are present in the input. Simulation results verified the efficiency of the proposed algorithm.
Development of a Self-Calibrated MEMS Gyrocompass for North-Finding and Tracking
NASA Astrophysics Data System (ADS)
Prikhodko, Igor P.
This Ph.D. dissertation presents development of a microelectromechanical (MEMS) gyrocompass for north-finding and north-tracking applications. The central part of this work enabling these applications is control and self-calibration architectures for drift mitigation over thermal environments, validated using a MEMS quadruple mass gyroscope. The thesis contributions are the following: • Adapted and implemented bias and scale-factor drifts compensation algorithm relying on temperature self-sensing for MEMS gyroscopes with high quality factors. The real-time self-compensation reduced a total bias error to 2 °/hr and a scale-factor error to 500 ppm over temperature range of 25 °C to 55 °C (on par with the state-of-the-art). • Adapted and implemented a scale-factor self-calibration algorithm previously employed for macroscale hemispherical resonator gyroscope to MEMS Coriolis vibratory gyroscopes. An accuracy of 100 ppm was demonstrated by simultaneously measuring the true and estimated scale-factors over temperature variations (on par with the state-of-the art). • Demonstrated north-finding accuracy satisfying a typical mission requirement of 4 meter target location error at 1 kilometer stand-off distance (on par with a GPS accuracy). Analyzed north-finding mechanizations trade-offs for MEMS vibratory gyroscopes and demonstrated measurements of the Earth's rotation (15 °/hr). • Demonstrated, for the first time, an angle measuring MEMS gyroscope operation for north-tracking applications in a +/-500 °/s rate range and 100 Hz bandwidth, eliminating both bandwidth and range constraints of conventional open-loop Coriolis vibratory gyroscopes. • Investigated hypothesis that surface-tension driven glass-blowing microfabrication can create highly spherical shells for 3-D MEMS. Without any trimming or tuning of the natural frequencies, a 1 MHz glass-blown 3-D microshell resonator demonstrated a 0.63 % frequency mismatch between two degenerate 4-node wineglass modes. • Multi-axis rotation detection for nuclear magnetic resonance (NMR) gyroscope was proposed and developed. The analysis of cross-axis sensitivities for NMR gyroscope was performed. The framework for the analysis of NMR gyroscope dynamics for both open loop and closed loop modes of operation was developed.
Adaptive control in the presence of unmodeled dynamics. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Rohrs, C. E.
1982-01-01
Stability and robustness properties of a wide class of adaptive control algorithms in the presence of unmodeled dynamics and output disturbances were investigated. The class of adaptive algorithms considered are those commonly referred to as model reference adaptive control algorithms, self-tuning controllers, and dead beat adaptive controllers, developed for both continuous-time systems and discrete-time systems. A unified analytical approach was developed to examine the class of existing adaptive algorithms. It was discovered that all existing algorithms contain an infinite gain operator in the dynamic system that defines command reference errors and parameter errors; it is argued that such an infinite gain operator appears to be generic to all adaptive algorithms, whether they exhibit explicit or implicit parameter identification. It is concluded that none of the adaptive algorithms considered can be used with confidence in a practical control system design, because instability will set in with a high probability.
Simultaneous vibration control and energy harvesting using actor-critic based reinforcement learning
NASA Astrophysics Data System (ADS)
Loong, Cheng Ning; Chang, C. C.; Dimitrakopoulos, Elias G.
2018-03-01
Mitigating excessive vibration of civil engineering structures using various types of devices has been a conspicuous research topic in the past few decades. Some devices, such as electromagnetic transducers, which have a capability of exerting control forces while simultaneously harvesting energy, have been proposed recently. These devices make possible a self-regenerative system that can semi-actively mitigate structural vibration without the need of external energy. Integrating mechanical, electrical components, and control algorithms, these devices open up a new research domain that needs to be addressed. In this study, the feasibility of using an actor-critic based reinforcement learning control algorithm for simultaneous vibration control and energy harvesting for a civil engineering structure is investigated. The actor-critic based reinforcement learning control algorithm is a real-time, model-free adaptive technique that can adjust the controller parameters based on observations and reward signals without knowing the system characteristics. It is suitable for the control of a partially known nonlinear system with uncertain parameters. The feasibility of implementing this algorithm on a building structure equipped with an electromagnetic damper will be investigated in this study. Issues related to the modelling of learning algorithm, initialization and convergence will be presented and discussed.
Long-term surface EMG monitoring using K-means clustering and compressive sensing
NASA Astrophysics Data System (ADS)
Balouchestani, Mohammadreza; Krishnan, Sridhar
2015-05-01
In this work, we present an advanced K-means clustering algorithm based on Compressed Sensing theory (CS) in combination with the K-Singular Value Decomposition (K-SVD) method for Clustering of long-term recording of surface Electromyography (sEMG) signals. The long-term monitoring of sEMG signals aims at recording of the electrical activity produced by muscles which are very useful procedure for treatment and diagnostic purposes as well as for detection of various pathologies. The proposed algorithm is examined for three scenarios of sEMG signals including healthy person (sEMG-Healthy), a patient with myopathy (sEMG-Myopathy), and a patient with neuropathy (sEMG-Neuropathr), respectively. The proposed algorithm can easily scan large sEMG datasets of long-term sEMG recording. We test the proposed algorithm with Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) dimensionality reduction methods. Then, the output of the proposed algorithm is fed to K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers in order to calclute the clustering performance. The proposed algorithm achieves a classification accuracy of 99.22%. This ability allows reducing 17% of Average Classification Error (ACE), 9% of Training Error (TE), and 18% of Root Mean Square Error (RMSE). The proposed algorithm also reduces 14% clustering energy consumption compared to the existing K-Means clustering algorithm.
NASA Astrophysics Data System (ADS)
Alsudani, Ahlam
2018-05-01
In recent years, indoor positioning system (IPS) plays a very important role in several environments such as hospitals, airports, males, Etc. It is used to locate mobile stations such as human and robots inside buildings. Some of IPSs applications are: locating an elder or child needed for an urgent help in hospitals, emergency situations such as locating firefighters inside building on fire or policemen fitting terrorists inside building by a commander to help for expedite evacuation in case one of them need for help. In indoor positioning applications, the accuracy should be high as can as possible, in another word; the error should be less than 1 meter. The indoor environment is the major challenging to obtain such accuracy. In this paper, we present a novel algorithm to identify the line of sight (LOS) and non-line of sight (NLOS) channels and improve the positioning accuracy using ultra-wideband (UWB) technology implementing DW1000 devices.
NASA Astrophysics Data System (ADS)
Arif, C.; Fauzan, M. I.; Satyanto, K. S.; Budi, I. S.; Masaru, M.
2018-05-01
Water table in rice fields play important role to mitigate greenhouse gas (GHG) emissions from paddy fields. Continuous flooding by maintenance water table 2-5 cm above soil surface is not effective and release more GHG emissions. System of Rice Intensification (SRI) as alternative rice farming apply intermittent irrigation by maintaining lower water table is proven can reduce GHG emissions reducing productivity significantly. The objectives of this study were to develop automatic water table control system for SRI application and then evaluate the performances. The control system was developed based on fuzzy logic algorithms using the mini PC of Raspberry Pi. Based on laboratory and field tests, the developed system was working well as indicated by lower MAPE (mean absolute percentage error) values. MAPE values for simulation and field tests were 16.88% and 15.80%, respectively. This system can save irrigation water up to 42.54% without reducing productivity significantly when compared to manual irrigation systems.
An overview of state-of-the-art image restoration in electron microscopy.
Roels, J; Aelterman, J; Luong, H Q; Lippens, S; Pižurica, A; Saeys, Y; Philips, W
2018-06-08
In Life Science research, electron microscopy (EM) is an essential tool for morphological analysis at the subcellular level as it allows for visualization at nanometer resolution. However, electron micrographs contain image degradations such as noise and blur caused by electromagnetic interference, electron counting errors, magnetic lens imperfections, electron diffraction, etc. These imperfections in raw image quality are inevitable and hamper subsequent image analysis and visualization. In an effort to mitigate these artefacts, many electron microscopy image restoration algorithms have been proposed in the last years. Most of these methods rely on generic assumptions on the image or degradations and are therefore outperformed by advanced methods that are based on more accurate models. Ideally, a method will accurately model the specific degradations that fit the physical acquisition settings. In this overview paper, we discuss different electron microscopy image degradation solutions and demonstrate that dedicated artefact regularisation results in higher quality restoration and is applicable through recently developed probabilistic methods. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Uncertainty analysis technique for OMEGA Dante measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, M. J.; Widmann, K.; Sorce, C.
2010-10-15
The Dante is an 18 channel x-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g., hohlraums, etc.) at x-ray energies between 50 eV and 10 keV. It is a main diagnostic installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the x-ray diodes, filters and mirrors, and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determinedmore » flux using a Monte Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.« less
Uncertainty Analysis Technique for OMEGA Dante Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, M J; Widmann, K; Sorce, C
2010-05-07
The Dante is an 18 channel X-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g. hohlraums, etc.) at X-ray energies between 50 eV to 10 keV. It is a main diagnostics installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the X-ray diodes, filters and mirrors and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determinedmore » flux using a Monte-Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.« less
The cost of adherence mismeasurement in serious mental illness: a claims-based analysis.
Shafrin, Jason; Forma, Felicia; Scherer, Ethan; Hatch, Ainslie; Vytlacil, Edward; Lakdawalla, Darius
2017-05-01
To quantify how adherence mismeasurement affects the estimated impact of adherence on inpatient costs among patients with serious mental illness (SMI). Proportion of days covered (PDC) is a common claims-based measure of medication adherence. Because PDC does not measure medication ingestion, however, it may inaccurately measure adherence. We derived a formula to correct the bias that occurs in adherence-utilization studies resulting from errors in claims-based measures of adherence. We conducted a literature review to identify the correlation between gold-standard and claims-based adherence measures. We derived a bias-correction methodology to address claims-based medication adherence measurement error. We then applied this methodology to a case study of patients with SMI who initiated atypical antipsychotics in 2 large claims databases. Our literature review identified 6 studies of interest. The 4 most relevant ones measured correlations between 0.38 and 0.91. Our preferred estimate implies that the effect of adherence on inpatient spending estimated from claims data would understate the true effect by a factor of 5.3, if there were no other sources of bias. Although our procedure corrects for measurement error, such error also may amplify or mitigate other potential biases. For instance, if adherent patients are healthier than nonadherent ones, measurement error makes the resulting bias worse. On the other hand, if adherent patients are sicker, measurement error mitigates the other bias. Measurement error due to claims-based adherence measures is worth addressing, alongside other more widely emphasized sources of bias in inference.
Tsuchida, Satoshi; Thome, Kurtis
2017-01-01
Radiometric cross-calibration between the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) has been partially used to derive the ASTER radiometric calibration coefficient (RCC) curve as a function of date on visible to near-infrared bands. However, cross-calibration is not sufficiently accurate, since the effects of the differences in the sensor’s spectral and spatial responses are not fully mitigated. The present study attempts to evaluate radiometric consistency across two sensors using an improved cross-calibration algorithm to address the spectral and spatial effects and derive cross-calibration-based RCCs, which increases the ASTER calibration accuracy. Overall, radiances measured with ASTER bands 1 and 2 are on averages 3.9% and 3.6% greater than the ones measured on the same scene with their MODIS counterparts and ASTER band 3N (nadir) is 0.6% smaller than its MODIS counterpart in current radiance/reflectance products. The percentage root mean squared errors (%RMSEs) between the radiances of two sensors are 3.7, 4.2, and 2.3 for ASTER band 1, 2, and 3N, respectively, which are slightly greater or smaller than the required ASTER radiometric calibration accuracy (4%). The uncertainty of the cross-calibration is analyzed by elaborating the error budget table to evaluate the International System of Units (SI)-traceability of the results. The use of the derived RCCs will allow further reduction of errors in ASTER radiometric calibration and subsequently improve interoperability across sensors for synergistic applications. PMID:28777329
Pan, Shuguo; Chen, Weirong; Jin, Xiaodong; Shi, Xiaofei; He, Fan
2015-07-22
Satellite orbit error and clock bias are the keys to precise point positioning (PPP). The traditional PPP algorithm requires precise satellite products based on worldwide permanent reference stations. Such an algorithm requires considerable work and hardly achieves real-time performance. However, real-time positioning service will be the dominant mode in the future. IGS is providing such an operational service (RTS) and there are also commercial systems like Trimble RTX in operation. On the basis of the regional Continuous Operational Reference System (CORS), a real-time PPP algorithm is proposed to apply the coupling estimation of clock bias and orbit error. The projection of orbit error onto the satellite-receiver range has the same effects on positioning accuracy with clock bias. Therefore, in satellite clock estimation, part of the orbit error can be absorbed by the clock bias and the effects of residual orbit error on positioning accuracy can be weakened by the evenly distributed satellite geometry. In consideration of the simple structure of pseudorange equations and the high precision of carrier-phase equations, the clock bias estimation method coupled with orbit error is also improved. Rovers obtain PPP results by receiving broadcast ephemeris and real-time satellite clock bias coupled with orbit error. By applying the proposed algorithm, the precise orbit products provided by GNSS analysis centers are rendered no longer necessary. On the basis of previous theoretical analysis, a real-time PPP system was developed. Some experiments were then designed to verify this algorithm. Experimental results show that the newly proposed approach performs better than the traditional PPP based on International GNSS Service (IGS) real-time products. The positioning accuracies of the rovers inside and outside the network are improved by 38.8% and 36.1%, respectively. The PPP convergence speeds are improved by up to 61.4% and 65.9%. The new approach can change the traditional PPP mode because of its advantages of independence, high positioning precision, and real-time performance. It could be an alternative solution for regional positioning service before global PPP service comes into operation.
Pan, Shuguo; Chen, Weirong; Jin, Xiaodong; Shi, Xiaofei; He, Fan
2015-01-01
Satellite orbit error and clock bias are the keys to precise point positioning (PPP). The traditional PPP algorithm requires precise satellite products based on worldwide permanent reference stations. Such an algorithm requires considerable work and hardly achieves real-time performance. However, real-time positioning service will be the dominant mode in the future. IGS is providing such an operational service (RTS) and there are also commercial systems like Trimble RTX in operation. On the basis of the regional Continuous Operational Reference System (CORS), a real-time PPP algorithm is proposed to apply the coupling estimation of clock bias and orbit error. The projection of orbit error onto the satellite-receiver range has the same effects on positioning accuracy with clock bias. Therefore, in satellite clock estimation, part of the orbit error can be absorbed by the clock bias and the effects of residual orbit error on positioning accuracy can be weakened by the evenly distributed satellite geometry. In consideration of the simple structure of pseudorange equations and the high precision of carrier-phase equations, the clock bias estimation method coupled with orbit error is also improved. Rovers obtain PPP results by receiving broadcast ephemeris and real-time satellite clock bias coupled with orbit error. By applying the proposed algorithm, the precise orbit products provided by GNSS analysis centers are rendered no longer necessary. On the basis of previous theoretical analysis, a real-time PPP system was developed. Some experiments were then designed to verify this algorithm. Experimental results show that the newly proposed approach performs better than the traditional PPP based on International GNSS Service (IGS) real-time products. The positioning accuracies of the rovers inside and outside the network are improved by 38.8% and 36.1%, respectively. The PPP convergence speeds are improved by up to 61.4% and 65.9%. The new approach can change the traditional PPP mode because of its advantages of independence, high positioning precision, and real-time performance. It could be an alternative solution for regional positioning service before global PPP service comes into operation. PMID:26205276
A Well-Calibrated Ocean Algorithm for Special Sensor Microwave/Imager
NASA Technical Reports Server (NTRS)
Wentz, Frank J.
1997-01-01
I describe an algorithm for retrieving geophysical parameters over the ocean from special sensor microwave/imager (SSM/I) observations. This algorithm is based on a model for the brightness temperature T(sub B) of the ocean and intervening atmosphere. The retrieved parameters are the near-surface wind speed W, the columnar water vapor V, the columnar cloud liquid water L, and the line-of-sight wind W(sub LS). I restrict my analysis to ocean scenes free of rain, and when the algorithm detects rain, the retrievals are discarded. The model and algorithm are precisely calibrated using a very large in situ database containing 37,650 SSM/I overpasses of buoys and 35,108 overpasses of radiosonde sites. A detailed error analysis indicates that the T(sub B) model rms accuracy is between 0.5 and 1 K and that the rms retrieval accuracies for wind, vapor, and cloud are 0.9 m/s, 1.2 mm, and 0.025 mm, respectively. The error in specifying the cloud temperature will introduce an additional 10% error in the cloud water retrieval. The spatial resolution for these accuracies is 50 km. The systematic errors in the retrievals are smaller than the rms errors, being about 0.3 m/s, 0.6 mm, and 0.005 mm for W, V, and L, respectively. The one exception is the systematic error in wind speed of -1.0 m/s that occurs for observations within +/-20 deg of upwind. The inclusion of the line-of-sight wind W(sub LS) in the retrieval significantly reduces the error in wind speed due to wind direction variations. The wind error for upwind observations is reduced from -3.0 to -1.0 m/s. Finally, I find a small signal in the 19-GHz, horizontal polarization (h(sub pol) T(sub B) residual DeltaT(sub BH) that is related to the effective air pressure of the water vapor profile. This information may be of some use in specifying the vertical distribution of water vapor.
A short note on dynamic programming in a band.
Gibrat, Jean-François
2018-06-15
Third generation sequencing technologies generate long reads that exhibit high error rates, in particular for insertions and deletions which are usually the most difficult errors to cope with. The only exact algorithm capable of aligning sequences with insertions and deletions is a dynamic programming algorithm. In this note, for the sake of efficiency, we consider dynamic programming in a band. We show how to choose the band width in function of the long reads' error rates, thus obtaining an [Formula: see text] algorithm in space and time. We also propose a procedure to decide whether this algorithm, when applied to semi-global alignments, provides the optimal score. We suggest that dynamic programming in a band is well suited to the problem of aligning long reads between themselves and can be used as a core component of methods for obtaining a consensus sequence from the long reads alone. The function implementing the dynamic programming algorithm in a band is available, as a standalone program, at: https://forgemia.inra.fr/jean-francois.gibrat/BAND_DYN_PROG.git.
On the sensitivity of TG-119 and IROC credentialing to TPS commissioning errors.
McVicker, Drew; Yin, Fang-Fang; Adamson, Justus D
2016-01-08
We investigate the sensitivity of IMRT commissioning using the TG-119 C-shape phantom and credentialing with the IROC head and neck phantom to treatment planning system commissioning errors. We introduced errors into the various aspects of the commissioning process for a 6X photon energy modeled using the analytical anisotropic algorithm within a commercial treatment planning system. Errors were implemented into the various components of the dose calculation algorithm including primary photons, secondary photons, electron contamination, and MLC parameters. For each error we evaluated the probability that it could be committed unknowingly during the dose algorithm commissioning stage, and the probability of it being identified during the verification stage. The clinical impact of each commissioning error was evaluated using representative IMRT plans including low and intermediate risk prostate, head and neck, mesothelioma, and scalp; the sensitivity of the TG-119 and IROC phantoms was evaluated by comparing dosimetric changes to the dose planes where film measurements occur and change in point doses where dosimeter measurements occur. No commissioning errors were found to have both a low probability of detection and high clinical severity. When errors do occur, the IROC credentialing and TG 119 commissioning criteria are generally effective at detecting them; however, for the IROC phantom, OAR point-dose measurements are the most sensitive despite being currently excluded from IROC analysis. Point-dose measurements with an absolute dose constraint were the most effective at detecting errors, while film analysis using a gamma comparison and the IROC film distance to agreement criteria were less effective at detecting the specific commissioning errors implemented here.
Adaptive intercolor error prediction coder for lossless color (rgb) picutre compression
NASA Astrophysics Data System (ADS)
Mann, Y.; Peretz, Y.; Mitchell, Harvey B.
2001-09-01
Most of the current lossless compression algorithms, including the new international baseline JPEG-LS algorithm, do not exploit the interspectral correlations that exist between the color planes in an input color picture. To improve the compression performance (i.e., lower the bit rate) it is necessary to exploit these correlations. A major concern is to find efficient methods for exploiting the correlations that, at the same time, are compatible with and can be incorporated into the JPEG-LS algorithm. One such algorithm is the method of intercolor error prediction (IEP), which when used with the JPEG-LS algorithm, results on average in a reduction of 8% in the overall bit rate. We show how the IEP algorithm can be simply modified and that it nearly doubles the size of the reduction in bit rate to 15%.
Low Probability Tail Event Analysis and Mitigation in BPA Control Area: Task 2 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Shuai; Makarov, Yuri V.; McKinstry, Craig A.
Task report detailing low probability tail event analysis and mitigation in BPA control area. Tail event refers to the situation in a power system when unfavorable forecast errors of load and wind are superposed onto fast load and wind ramps, or non-wind generators falling short of scheduled output, causing the imbalance between generation and load to become very significant.
PID-based error signal modeling
NASA Astrophysics Data System (ADS)
Yohannes, Tesfay
1997-10-01
This paper introduces a PID based signal error modeling. The error modeling is based on the betterment process. The resulting iterative learning algorithm is introduced and a detailed proof is provided for both linear and nonlinear systems.
Evaluation and Application of Satellite-Based Latent Heating Profile Estimation Methods
NASA Technical Reports Server (NTRS)
Olson, William S.; Grecu, Mircea; Yang, Song; Tao, Wei-Kuo
2004-01-01
In recent years, methods for estimating atmospheric latent heating vertical structure from both passive and active microwave remote sensing have matured to the point where quantitative evaluation of these methods is the next logical step. Two approaches for heating algorithm evaluation are proposed: First, application of heating algorithms to synthetic data, based upon cloud-resolving model simulations, can be used to test the internal consistency of heating estimates in the absence of systematic errors in physical assumptions. Second, comparisons of satellite-retrieved vertical heating structures to independent ground-based estimates, such as rawinsonde-derived analyses of heating, provide an additional test. The two approaches are complementary, since systematic errors in heating indicated by the second approach may be confirmed by the first. A passive microwave and combined passive/active microwave heating retrieval algorithm are evaluated using the described approaches. In general, the passive microwave algorithm heating profile estimates are subject to biases due to the limited vertical heating structure information contained in the passive microwave observations. These biases may be partly overcome by including more environment-specific a priori information into the algorithm s database of candidate solution profiles. The combined passive/active microwave algorithm utilizes the much higher-resolution vertical structure information provided by spaceborne radar data to produce less biased estimates; however, the global spatio-temporal sampling by spaceborne radar is limited. In the present study, the passive/active microwave algorithm is used to construct a more physically-consistent and environment-specific set of candidate solution profiles for the passive microwave algorithm and to help evaluate errors in the passive algorithm s heating estimates. Although satellite estimates of latent heating are based upon instantaneous, footprint- scale data, suppression of random errors requires averaging to at least half-degree resolution. Analysis of mesoscale and larger space-time scale phenomena based upon passive and passive/active microwave heating estimates from TRMM, SSMI, and AMSR data will be presented at the conference.
A Combined Energy Management Algorithm for Wind Turbine/Battery Hybrid System
NASA Astrophysics Data System (ADS)
Altin, Necmi; Eyimaya, Süleyman Emre
2018-03-01
From an energy management standpoint, natural phenomena such as solar irradiation and wind speed are uncontrolled variables, so the correlation between the energy generated by renewable energy sources and energy demand cannot always be predicted. For this reason, energy storage systems are used to provide more efficient renewable energy systems. In these systems, energy management systems are used to control the energy storage system and establish a balance between the generated power and the power demand. In addition, especially in wind turbines, rapidly varying wind speeds cause wind power fluctuations, which threaten the power system stability, especially at high power levels. Energy storage systems are also used to mitigate the power fluctuations and sustain the power system's stability. In these systems, another controller which controls the energy storage system power to mitigate power fluctuations is required. These two controllers are different from each other. In this study, a combined energy management algorithm is proposed which can perform both as an energy control system and a power fluctuation mitigation system. The proposed controller is tested with wind energy conversion system modeled in MATLAB/Simulink. Simulation results show that the proposed controller acts as an energy management system while, at the same time, mitigating power fluctuations.
Algorithmic Classification of Five Characteristic Types of Paraphasias.
Fergadiotis, Gerasimos; Gorman, Kyle; Bedrick, Steven
2016-12-01
This study was intended to evaluate a series of algorithms developed to perform automatic classification of paraphasic errors (formal, semantic, mixed, neologistic, and unrelated errors). We analyzed 7,111 paraphasias from the Moss Aphasia Psycholinguistics Project Database (Mirman et al., 2010) and evaluated the classification accuracy of 3 automated tools. First, we used frequency norms from the SUBTLEXus database (Brysbaert & New, 2009) to differentiate nonword errors and real-word productions. Then we implemented a phonological-similarity algorithm to identify phonologically related real-word errors. Last, we assessed the performance of a semantic-similarity criterion that was based on word2vec (Mikolov, Yih, & Zweig, 2013). Overall, the algorithmic classification replicated human scoring for the major categories of paraphasias studied with high accuracy. The tool that was based on the SUBTLEXus frequency norms was more than 97% accurate in making lexicality judgments. The phonological-similarity criterion was approximately 91% accurate, and the overall classification accuracy of the semantic classifier ranged from 86% to 90%. Overall, the results highlight the potential of tools from the field of natural language processing for the development of highly reliable, cost-effective diagnostic tools suitable for collecting high-quality measurement data for research and clinical purposes.
NASA Astrophysics Data System (ADS)
Hu, Chia-Chang; Lin, Hsuan-Yu; Chen, Yu-Fan; Wen, Jyh-Horng
2006-12-01
An adaptive minimum mean-square error (MMSE) array receiver based on the fuzzy-logic recursive least-squares (RLS) algorithm is developed for asynchronous DS-CDMA interference suppression in the presence of frequency-selective multipath fading. This receiver employs a fuzzy-logic control mechanism to perform the nonlinear mapping of the squared error and squared error variation, denoted by ([InlineEquation not available: see fulltext.],[InlineEquation not available: see fulltext.]), into a forgetting factor[InlineEquation not available: see fulltext.]. For the real-time applicability, a computationally efficient version of the proposed receiver is derived based on the least-mean-square (LMS) algorithm using the fuzzy-inference-controlled step-size[InlineEquation not available: see fulltext.]. This receiver is capable of providing both fast convergence/tracking capability as well as small steady-state misadjustment as compared with conventional LMS- and RLS-based MMSE DS-CDMA receivers. Simulations show that the fuzzy-logic LMS and RLS algorithms outperform, respectively, other variable step-size LMS (VSS-LMS) and variable forgetting factor RLS (VFF-RLS) algorithms at least 3 dB and 1.5 dB in bit-error-rate (BER) for multipath fading channels.
A joint equalization algorithm in high speed communication systems
NASA Astrophysics Data System (ADS)
Hao, Xin; Lin, Changxing; Wang, Zhaohui; Cheng, Binbin; Deng, Xianjin
2018-02-01
This paper presents a joint equalization algorithm in high speed communication systems. This algorithm takes the advantages of traditional equalization algorithms to use pre-equalization and post-equalization. The pre-equalization algorithm takes the advantage of CMA algorithm, which is not sensitive to the frequency offset. Pre-equalization is located before the carrier recovery loop in order to make the carrier recovery loop a better performance and overcome most of the frequency offset. The post-equalization takes the advantage of MMA algorithm in order to overcome the residual frequency offset. This paper analyzes the advantages and disadvantages of several equalization algorithms in the first place, and then simulates the proposed joint equalization algorithm in Matlab platform. The simulation results shows the constellation diagrams and the bit error rate curve, both these results show that the proposed joint equalization algorithm is better than the traditional algorithms. The residual frequency offset is shown directly in the constellation diagrams. When SNR is 14dB, the bit error rate of the simulated system with the proposed joint equalization algorithm is 103 times better than CMA algorithm, 77 times better than MMA equalization, and 9 times better than CMA-MMA equalization.
A Multipath Mitigation Algorithm for vehicle with Smart Antenna
NASA Astrophysics Data System (ADS)
Ji, Jing; Zhang, Jiantong; Chen, Wei; Su, Deliang
2018-01-01
In this paper, the antenna array adaptive method is used to eliminate the multipath interference in the environment of GPS L1 frequency. Combined with the power inversion (PI) algorithm and the minimum variance no distortion response (MVDR) algorithm, the anti-Simulation and verification of the antenna array, and the program into the FPGA, the actual test on the CBD road, the theoretical analysis of the LCMV criteria and PI and MVDR algorithm principles and characteristics of MVDR algorithm to verify anti-multipath interference performance is better than PI algorithm, The satellite navigation in the field of vehicle engineering practice has some guidance and reference.
Applying Intelligent Algorithms to Automate the Identification of Error Factors.
Jin, Haizhe; Qu, Qingxing; Munechika, Masahiko; Sano, Masataka; Kajihara, Chisato; Duffy, Vincent G; Chen, Han
2018-05-03
Medical errors are the manifestation of the defects occurring in medical processes. Extracting and identifying defects as medical error factors from these processes are an effective approach to prevent medical errors. However, it is a difficult and time-consuming task and requires an analyst with a professional medical background. The issues of identifying a method to extract medical error factors and reduce the extraction difficulty need to be resolved. In this research, a systematic methodology to extract and identify error factors in the medical administration process was proposed. The design of the error report, extraction of the error factors, and identification of the error factors were analyzed. Based on 624 medical error cases across four medical institutes in both Japan and China, 19 error-related items and their levels were extracted. After which, they were closely related to 12 error factors. The relational model between the error-related items and error factors was established based on a genetic algorithm (GA)-back-propagation neural network (BPNN) model. Additionally, compared to GA-BPNN, BPNN, partial least squares regression and support vector regression, GA-BPNN exhibited a higher overall prediction accuracy, being able to promptly identify the error factors from the error-related items. The combination of "error-related items, their different levels, and the GA-BPNN model" was proposed as an error-factor identification technology, which could automatically identify medical error factors.
NASA Technical Reports Server (NTRS)
Hruby, R. J.; Bjorkman, W. S.; Schmidt, S. F.; Carestia, R. A.
1979-01-01
Algorithms were developed that attempt to identify which sensor in a tetrad configuration has experienced a step failure. An algorithm is also described that provides a measure of the confidence with which the correct identification was made. Experimental results are presented from real-time tests conducted on a three-axis motion facility utilizing an ortho-skew tetrad strapdown inertial sensor package. The effects of prediction errors and of quantization on correct failure identification are discussed as well as an algorithm for detecting second failures through prediction.
Extremal Optimization for estimation of the error threshold in topological subsystem codes at T = 0
NASA Astrophysics Data System (ADS)
Millán-Otoya, Jorge E.; Boettcher, Stefan
2014-03-01
Quantum decoherence is a problem that arises in implementations of quantum computing proposals. Topological subsystem codes (TSC) have been suggested as a way to overcome decoherence. These offer a higher optimal error tolerance when compared to typical error-correcting algorithms. A TSC has been translated into a planar Ising spin-glass with constrained bimodal three-spin couplings. This spin-glass has been considered at finite temperature to determine the phase boundary between the unstable phase and the stable phase, where error recovery is possible.[1] We approach the study of the error threshold problem by exploring ground states of this spin-glass with the Extremal Optimization algorithm (EO).[2] EO has proven to be a effective heuristic to explore ground state configurations of glassy spin-systems.[3
Zhang, Tao; Zhu, Yongyun; Zhou, Feng; Yan, Yaxiong; Tong, Jinwu
2017-06-17
Initial alignment of the strapdown inertial navigation system (SINS) is intended to determine the initial attitude matrix in a short time with certain accuracy. The alignment accuracy of the quaternion filter algorithm is remarkable, but the convergence rate is slow. To solve this problem, this paper proposes an improved quaternion filter algorithm for faster initial alignment based on the error model of the quaternion filter algorithm. The improved quaternion filter algorithm constructs the K matrix based on the principle of optimal quaternion algorithm, and rebuilds the measurement model by containing acceleration and velocity errors to make the convergence rate faster. A doppler velocity log (DVL) provides the reference velocity for the improved quaternion filter alignment algorithm. In order to demonstrate the performance of the improved quaternion filter algorithm in the field, a turntable experiment and a vehicle test are carried out. The results of the experiments show that the convergence rate of the proposed improved quaternion filter is faster than that of the tradition quaternion filter algorithm. In addition, the improved quaternion filter algorithm also demonstrates advantages in terms of correctness, effectiveness, and practicability.
Hybrid Guidance Control for a Hypervelocity Small Size Asteroid Interceptor Vehicle
NASA Technical Reports Server (NTRS)
Zebenay, Melak M.; Lyzhoft, Joshua R.; Barbee, Brent W.
2017-01-01
Near-Earth Objects (NEOs) are comets and/or asteroids that have orbits in proximity with Earth's own orbit. NEOs have collided with the Earth in the past, which can be seen at such places as Chicxulub crater, Barringer crater, and Manson crater, and will continue in the future with potentially significant and devastating results. Fortunately such NEO collisions with Earth are infrequent, but can happen at any time. Therefore it is necessary to develop and validate techniques as well as technologies necessary to prevent them. One approach to mitigate future NEO impacts is the concept of high-speed interceptor. This concept is to alter the NEO's trajectory via momentum exchange by using kinetic impactors as well as nuclear penetration devices. The interceptor has to hit a target NEO at relative velocity which imparts a sufficient change in NEO velocity. NASA's Deep Impact mission has demonstrated this scenario by intercepting Comet Temple 1, 5 km in diameter, with an impact relative speed of approximately 10 km/s. This paper focuses on the development of hybrid guidance navigation and control (GNC) algorithms for precision hypervelocity intercept of small sized NEOs. The spacecraft's hypervelocity and the NEO's small size are critical challenges for a successful mission as the NEO will not fill the field of view until a few seconds before intercept. The investigation needs to consider the error sources modeled in the navigation simulation such as spacecraft initial state uncertainties in position and velocity. Furthermore, the paper presents three selected spacecraft guidance algorithms for asteroid intercept and rendezvous missions. The selected algorithms are classical Proportional Navigation (PN) based guidance that use a first order difference to compute the derivatives, Three Plane Proportional Navigation (TPPN), and the Kinematic Impulse (KI). A manipulated Bennu orbit that has been changed to impact Earth will be used as a demonstrative example to compare the three methods. In addition, a hybrid approach that is a combination between proportional navigation and kinematic impulse will be investigated to find an effective, error tolerant, and power saving approach. A 3-dimension mission scenario for both the asteroid and the interceptor spacecraft software simulator is developed for testing of the controllers. The current result demonstrates that a miss distance magnitude of less than 10m is found using the PN and TPPN guidance laws for small asteroid in the presence of error in the spacecraft states. Moreover, the paper presents these results and also the hybrid control approach simulation results.
Optimized 3D stitching algorithm for whole body SPECT based on transition error minimization (TEM)
NASA Astrophysics Data System (ADS)
Cao, Xinhua; Xu, Xiaoyin; Voss, Stephan
2017-02-01
Standard Single Photon Emission Computed Tomography (SPECT) has a limited field of view (FOV) and cannot provide a 3D image of an entire long whole body SPECT. To produce a 3D whole body SPECT image, two to five overlapped SPECT FOVs from head to foot are acquired and assembled using image stitching. Most commercial software from medical imaging manufacturers applies a direct mid-slice stitching method to avoid blurring or ghosting from 3D image blending. Due to intensity changes across the middle slice of overlapped images, direct mid-slice stitching often produces visible seams in the coronal and sagittal views and maximal intensity projection (MIP). In this study, we proposed an optimized algorithm to reduce the visibility of stitching edges. The new algorithm computed, based on transition error minimization (TEM), a 3D stitching interface between two overlapped 3D SPECT images. To test the suggested algorithm, four studies of 2-FOV whole body SPECT were used and included two different reconstruction methods (filtered back projection (FBP) and ordered subset expectation maximization (OSEM)) as well as two different radiopharmaceuticals (Tc-99m MDP for bone metastases and I-131 MIBG for neuroblastoma tumors). Relative transition errors of stitched whole body SPECT using mid-slice stitching and the TEM-based algorithm were measured for objective evaluation. Preliminary experiments showed that the new algorithm reduced the visibility of the stitching interface in the coronal, sagittal, and MIP views. Average relative transition errors were reduced from 56.7% of mid-slice stitching to 11.7% of TEM-based stitching. The proposed algorithm also avoids blurring artifacts by preserving the noise properties of the original SPECT images.
Model-based color halftoning using direct binary search.
Agar, A Ufuk; Allebach, Jan P
2005-12-01
In this paper, we develop a model-based color halftoning method using the direct binary search (DBS) algorithm. Our method strives to minimize the perceived error between the continuous tone original color image and the color halftone image. We exploit the differences in how the human viewers respond to luminance and chrominance information and use the total squared error in a luminance/chrominance based space as our metric. Starting with an initial halftone, we minimize this error metric using the DBS algorithm. Our method also incorporates a measurement based color printer dot interaction model to prevent the artifacts due to dot overlap and to improve color texture quality. We calibrate our halftoning algorithm to ensure accurate colorant distributions in resulting halftones. We present the color halftones which demonstrate the efficacy of our method.
A comparison of VLSI architectures for time and transform domain decoding of Reed-Solomon codes
NASA Technical Reports Server (NTRS)
Hsu, I. S.; Truong, T. K.; Deutsch, L. J.; Satorius, E. H.; Reed, I. S.
1988-01-01
It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial needed to decode a Reed-Solomon (RS) code. It is shown that this algorithm can be used for both time and transform domain decoding by replacing its initial conditions with the Forney syndromes and the erasure locator polynomial. By this means both the errata locator polynomial and the errate evaluator polynomial can be obtained with the Euclidean algorithm. With these ideas, both time and transform domain Reed-Solomon decoders for correcting errors and erasures are simplified and compared. As a consequence, the architectures of Reed-Solomon decoders for correcting both errors and erasures can be made more modular, regular, simple, and naturally suitable for VLSI implementation.
Using Block-local Atomicity to Detect Stale-value Concurrency Errors
NASA Technical Reports Server (NTRS)
Artho, Cyrille; Havelund, Klaus; Biere, Armin
2004-01-01
Data races do not cover all kinds of concurrency errors. This paper presents a data-flow-based technique to find stale-value errors, which are not found by low-level and high-level data race algorithms. Stale values denote copies of shared data where the copy is no longer synchronized. The algorithm to detect such values works as a consistency check that does not require any assumptions or annotations of the program. It has been implemented as a static analysis in JNuke. The analysis is sound and requires only a single execution trace if implemented as a run-time checking algorithm. Being based on an analysis of Java bytecode, it encompasses the full program semantics, including arbitrarily complex expressions. Related techniques are more complex and more prone to over-reporting.
Error analysis of stochastic gradient descent ranking.
Chen, Hong; Tang, Yi; Li, Luoqing; Yuan, Yuan; Li, Xuelong; Tang, Yuanyan
2013-06-01
Ranking is always an important task in machine learning and information retrieval, e.g., collaborative filtering, recommender systems, drug discovery, etc. A kernel-based stochastic gradient descent algorithm with the least squares loss is proposed for ranking in this paper. The implementation of this algorithm is simple, and an expression of the solution is derived via a sampling operator and an integral operator. An explicit convergence rate for leaning a ranking function is given in terms of the suitable choices of the step size and the regularization parameter. The analysis technique used here is capacity independent and is novel in error analysis of ranking learning. Experimental results on real-world data have shown the effectiveness of the proposed algorithm in ranking tasks, which verifies the theoretical analysis in ranking error.
NASA Astrophysics Data System (ADS)
Zhu, Lianqing; Chen, Yunfang; Chen, Qingshan; Meng, Hao
2011-05-01
According to minimum zone condition, a method for evaluating the profile error of Archimedes helicoid surface based on Genetic Algorithm (GA) is proposed. The mathematic model of the surface is provided and the unknown parameters in the equation of surface are acquired through least square method. Principle of GA is explained. Then, the profile error of Archimedes Helicoid surface is obtained through GA optimization method. To validate the proposed method, the profile error of an Archimedes helicoid surface, Archimedes Cylindrical worm (ZA worm) surface, is evaluated. The results show that the proposed method is capable of correctly evaluating the profile error of Archimedes helicoid surface and satisfy the evaluation standard of the Minimum Zone Method. It can be applied to deal with the measured data of profile error of complex surface obtained by three coordinate measurement machines (CMM).
A Case for Soft Error Detection and Correction in Computational Chemistry.
van Dam, Hubertus J J; Vishnu, Abhinav; de Jong, Wibe A
2013-09-10
High performance computing platforms are expected to deliver 10(18) floating operations per second by the year 2022 through the deployment of millions of cores. Even if every core is highly reliable the sheer number of them will mean that the mean time between failures will become so short that most application runs will suffer at least one fault. In particular soft errors caused by intermittent incorrect behavior of the hardware are a concern as they lead to silent data corruption. In this paper we investigate the impact of soft errors on optimization algorithms using Hartree-Fock as a particular example. Optimization algorithms iteratively reduce the error in the initial guess to reach the intended solution. Therefore they may intuitively appear to be resilient to soft errors. Our results show that this is true for soft errors of small magnitudes but not for large errors. We suggest error detection and correction mechanisms for different classes of data structures. The results obtained with these mechanisms indicate that we can correct more than 95% of the soft errors at moderate increases in the computational cost.
An algorithm for propagating the square-root covariance matrix in triangular form
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Choe, C. Y.
1976-01-01
A method for propagating the square root of the state error covariance matrix in lower triangular form is described. The algorithm can be combined with any triangular square-root measurement update algorithm to obtain a triangular square-root sequential estimation algorithm. The triangular square-root algorithm compares favorably with the conventional sequential estimation algorithm with regard to computation time.
High capacity reversible watermarking for audio by histogram shifting and predicted error expansion.
Wang, Fei; Xie, Zhaoxin; Chen, Zuo
2014-01-01
Being reversible, the watermarking information embedded in audio signals can be extracted while the original audio data can achieve lossless recovery. Currently, the few reversible audio watermarking algorithms are confronted with following problems: relatively low SNR (signal-to-noise) of embedded audio; a large amount of auxiliary embedded location information; and the absence of accurate capacity control capability. In this paper, we present a novel reversible audio watermarking scheme based on improved prediction error expansion and histogram shifting. First, we use differential evolution algorithm to optimize prediction coefficients and then apply prediction error expansion to output stego data. Second, in order to reduce location map bits length, we introduced histogram shifting scheme. Meanwhile, the prediction error modification threshold according to a given embedding capacity can be computed by our proposed scheme. Experiments show that this algorithm improves the SNR of embedded audio signals and embedding capacity, drastically reduces location map bits length, and enhances capacity control capability.
SEC proton prediction model: verification and analysis.
Balch, C C
1999-06-01
This paper describes a model that has been used at the NOAA Space Environment Center since the early 1970s as a guide for the prediction of solar energetic particle events. The algorithms for proton event probability, peak flux, and rise time are described. The predictions are compared with observations. The current model shows some ability to distinguish between proton event associated flares and flares that are not associated with proton events. The comparisons of predicted and observed peak flux show considerable scatter, with an rms error of almost an order of magnitude. Rise time comparisons also show scatter, with an rms error of approximately 28 h. The model algorithms are analyzed using historical data and improvements are suggested. Implementation of the algorithm modifications reduces the rms error in the log10 of the flux prediction by 21%, and the rise time rms error by 31%. Improvements are also realized in the probability prediction by deriving the conditional climatology for proton event occurrence given flare characteristics.
QSRA: a quality-value guided de novo short read assembler.
Bryant, Douglas W; Wong, Weng-Keen; Mockler, Todd C
2009-02-24
New rapid high-throughput sequencing technologies have sparked the creation of a new class of assembler. Since all high-throughput sequencing platforms incorporate errors in their output, short-read assemblers must be designed to account for this error while utilizing all available data. We have designed and implemented an assembler, Quality-value guided Short Read Assembler, created to take advantage of quality-value scores as a further method of dealing with error. Compared to previous published algorithms, our assembler shows significant improvements not only in speed but also in output quality. QSRA generally produced the highest genomic coverage, while being faster than VCAKE. QSRA is extremely competitive in its longest contig and N50/N80 contig lengths, producing results of similar quality to those of EDENA and VELVET. QSRA provides a step closer to the goal of de novo assembly of complex genomes, improving upon the original VCAKE algorithm by not only drastically reducing runtimes but also increasing the viability of the assembly algorithm through further error handling capabilities.
Regier, Michael D; Moodie, Erica E M
2016-05-01
We propose an extension of the EM algorithm that exploits the common assumption of unique parameterization, corrects for biases due to missing data and measurement error, converges for the specified model when standard implementation of the EM algorithm has a low probability of convergence, and reduces a potentially complex algorithm into a sequence of smaller, simpler, self-contained EM algorithms. We use the theory surrounding the EM algorithm to derive the theoretical results of our proposal, showing that an optimal solution over the parameter space is obtained. A simulation study is used to explore the finite sample properties of the proposed extension when there is missing data and measurement error. We observe that partitioning the EM algorithm into simpler steps may provide better bias reduction in the estimation of model parameters. The ability to breakdown a complicated problem in to a series of simpler, more accessible problems will permit a broader implementation of the EM algorithm, permit the use of software packages that now implement and/or automate the EM algorithm, and make the EM algorithm more accessible to a wider and more general audience.
Segmented Mirror Image Degradation Due to Surface Dust, Alignment and Figure
NASA Technical Reports Server (NTRS)
Schreur, Julian J.
1999-01-01
In 1996 an algorithm was developed to include the effects of surface roughness in the calculation of the point spread function of a telescope mirror. This algorithm has been extended to include the effects of alignment errors and figure errors for the individual elements, and an overall contamination by surface dust. The final algorithm builds an array for a guard-banded pupil function of a mirror that may or may not have a central hole, a central reflecting segment, or an outer ring of segments. The central hole, central reflecting segment, and outer ring may be circular or polygonal, and the outer segments may have trimmed comers. The modeled point spread functions show that x-tilt and y-tilt, or the corresponding R-tilt and theta-tilt for a segment in an outer ring, is readily apparent for maximum wavefront errors of 0.1 lambda. A similar sized piston error is also apparent, but integral wavelength piston errors are not. Severe piston error introduces a focus error of the opposite sign, so piston could be adjusted to compensate for segments with varying focal lengths. Dust affects the image principally by decreasing the Strehl ratio, or peak intensity of the image. For an eight-meter telescope a 25% coverage by dust produced a scattered light intensity of 10(exp -9) of the peak intensity, a level well below detectability.
Inverse consistent non-rigid image registration based on robust point set matching
2014-01-01
Background Robust point matching (RPM) has been extensively used in non-rigid registration of images to robustly register two sets of image points. However, except for the location at control points, RPM cannot estimate the consistent correspondence between two images because RPM is a unidirectional image matching approach. Therefore, it is an important issue to make an improvement in image registration based on RPM. Methods In our work, a consistent image registration approach based on the point sets matching is proposed to incorporate the property of inverse consistency and improve registration accuracy. Instead of only estimating the forward transformation between the source point sets and the target point sets in state-of-the-art RPM algorithms, the forward and backward transformations between two point sets are estimated concurrently in our algorithm. The inverse consistency constraints are introduced to the cost function of RPM and the fuzzy correspondences between two point sets are estimated based on both the forward and backward transformations simultaneously. A modified consistent landmark thin-plate spline registration is discussed in detail to find the forward and backward transformations during the optimization of RPM. The similarity of image content is also incorporated into point matching in order to improve image matching. Results Synthetic data sets, medical images are employed to demonstrate and validate the performance of our approach. The inverse consistent errors of our algorithm are smaller than RPM. Especially, the topology of transformations is preserved well for our algorithm for the large deformation between point sets. Moreover, the distance errors of our algorithm are similar to that of RPM, and they maintain a downward trend as whole, which demonstrates the convergence of our algorithm. The registration errors for image registrations are evaluated also. Again, our algorithm achieves the lower registration errors in same iteration number. The determinant of the Jacobian matrix of the deformation field is used to analyse the smoothness of the forward and backward transformations. The forward and backward transformations estimated by our algorithm are smooth for small deformation. For registration of lung slices and individual brain slices, large or small determinant of the Jacobian matrix of the deformation fields are observed. Conclusions Results indicate the improvement of the proposed algorithm in bi-directional image registration and the decrease of the inverse consistent errors of the forward and the reverse transformations between two images. PMID:25559889
Unaccounted source of systematic errors in measurements of the Newtonian gravitational constant G
NASA Astrophysics Data System (ADS)
DeSalvo, Riccardo
2015-06-01
Many precision measurements of G have produced a spread of results incompatible with measurement errors. Clearly an unknown source of systematic errors is at work. It is proposed here that most of the discrepancies derive from subtle deviations from Hooke's law, caused by avalanches of entangled dislocations. The idea is supported by deviations from linearity reported by experimenters measuring G, similarly to what is observed, on a larger scale, in low-frequency spring oscillators. Some mitigating experimental apparatus modifications are suggested.
Preparations for Global Precipitation Measurement(GPM)Ground Validation
NASA Technical Reports Server (NTRS)
Bidwell, S. W.; Bibyk, I. K.; Duming, J. F.; Everett, D. F.; Smith, E. A.; Wolff, D. B.
2004-01-01
The Global Precipitation Measurement (GPM) program is an international partnership led by the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA). GPM will improve climate, weather, and hydro-meterorological forecasts through more frequent and more accurate measurement of precipitation across the globe. This paper describes the concept and the preparations for Ground Validation within the GPM program. Ground Validation (GV) plays a critical role in the program by investigating and quantitatively assessing the errors within the satellite retrievals. These quantitative estimates of retrieval errors will assist the scientific community by bounding the errors within their research products. The two fundamental requirements of the GPM Ground Validation program are: (1) error characterization of the precipitation retrievals and (2) continual improvement of the satellite retrieval algorithms. These two driving requirements determine the measurements, instrumentation, and location for ground observations. This paper describes GV plans for estimating the systematic and random components of retrieval error and for characterizing the spatial and temporal structure of the error. This paper describes the GPM program for algorithm improvement in which error models are developed and experimentally explored to uncover the physical causes of errors within the retrievals. GPM will ensure that information gained through Ground Validation is applied to future improvements in the spaceborne retrieval algorithms. This paper discusses the potential locations for validation measurement and research, the anticipated contributions of GPM's international partners, and the interaction of Ground Validation with other GPM program elements.
Iterative channel decoding of FEC-based multiple-description codes.
Chang, Seok-Ho; Cosman, Pamela C; Milstein, Laurence B
2012-03-01
Multiple description coding has been receiving attention as a robust transmission framework for multimedia services. This paper studies the iterative decoding of FEC-based multiple description codes. The proposed decoding algorithms take advantage of the error detection capability of Reed-Solomon (RS) erasure codes. The information of correctly decoded RS codewords is exploited to enhance the error correction capability of the Viterbi algorithm at the next iteration of decoding. In the proposed algorithm, an intradescription interleaver is synergistically combined with the iterative decoder. The interleaver does not affect the performance of noniterative decoding but greatly enhances the performance when the system is iteratively decoded. We also address the optimal allocation of RS parity symbols for unequal error protection. For the optimal allocation in iterative decoding, we derive mathematical equations from which the probability distributions of description erasures can be generated in a simple way. The performance of the algorithm is evaluated over an orthogonal frequency-division multiplexing system. The results show that the performance of the multiple description codes is significantly enhanced.
Unsupervised Indoor Localization Based on Smartphone Sensors, iBeacon and Wi-Fi.
Chen, Jing; Zhang, Yi; Xue, Wei
2018-04-28
In this paper, we propose UILoc, an unsupervised indoor localization scheme that uses a combination of smartphone sensors, iBeacons and Wi-Fi fingerprints for reliable and accurate indoor localization with zero labor cost. Firstly, compared with the fingerprint-based method, the UILoc system can build a fingerprint database automatically without any site survey and the database will be applied in the fingerprint localization algorithm. Secondly, since the initial position is vital to the system, UILoc will provide the basic location estimation through the pedestrian dead reckoning (PDR) method. To provide accurate initial localization, this paper proposes an initial localization module, a weighted fusion algorithm combined with a k-nearest neighbors (KNN) algorithm and a least squares algorithm. In UILoc, we have also designed a reliable model to reduce the landmark correction error. Experimental results show that the UILoc can provide accurate positioning, the average localization error is about 1.1 m in the steady state, and the maximum error is 2.77 m.
Neyman-Pearson classification algorithms and NP receiver operating characteristics
Tong, Xin; Feng, Yang; Li, Jingyi Jessica
2018-01-01
In many binary classification applications, such as disease diagnosis and spam detection, practitioners commonly face the need to limit type I error (that is, the conditional probability of misclassifying a class 0 observation as class 1) so that it remains below a desired threshold. To address this need, the Neyman-Pearson (NP) classification paradigm is a natural choice; it minimizes type II error (that is, the conditional probability of misclassifying a class 1 observation as class 0) while enforcing an upper bound, α, on the type I error. Despite its century-long history in hypothesis testing, the NP paradigm has not been well recognized and implemented in classification schemes. Common practices that directly limit the empirical type I error to no more than α do not satisfy the type I error control objective because the resulting classifiers are likely to have type I errors much larger than α, and the NP paradigm has not been properly implemented in practice. We develop the first umbrella algorithm that implements the NP paradigm for all scoring-type classification methods, such as logistic regression, support vector machines, and random forests. Powered by this algorithm, we propose a novel graphical tool for NP classification methods: NP receiver operating characteristic (NP-ROC) bands motivated by the popular ROC curves. NP-ROC bands will help choose α in a data-adaptive way and compare different NP classifiers. We demonstrate the use and properties of the NP umbrella algorithm and NP-ROC bands, available in the R package nproc, through simulation and real data studies. PMID:29423442
Neyman-Pearson classification algorithms and NP receiver operating characteristics.
Tong, Xin; Feng, Yang; Li, Jingyi Jessica
2018-02-01
In many binary classification applications, such as disease diagnosis and spam detection, practitioners commonly face the need to limit type I error (that is, the conditional probability of misclassifying a class 0 observation as class 1) so that it remains below a desired threshold. To address this need, the Neyman-Pearson (NP) classification paradigm is a natural choice; it minimizes type II error (that is, the conditional probability of misclassifying a class 1 observation as class 0) while enforcing an upper bound, α, on the type I error. Despite its century-long history in hypothesis testing, the NP paradigm has not been well recognized and implemented in classification schemes. Common practices that directly limit the empirical type I error to no more than α do not satisfy the type I error control objective because the resulting classifiers are likely to have type I errors much larger than α, and the NP paradigm has not been properly implemented in practice. We develop the first umbrella algorithm that implements the NP paradigm for all scoring-type classification methods, such as logistic regression, support vector machines, and random forests. Powered by this algorithm, we propose a novel graphical tool for NP classification methods: NP receiver operating characteristic (NP-ROC) bands motivated by the popular ROC curves. NP-ROC bands will help choose α in a data-adaptive way and compare different NP classifiers. We demonstrate the use and properties of the NP umbrella algorithm and NP-ROC bands, available in the R package nproc, through simulation and real data studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, B; Miften, M
2014-06-15
Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. We developed a method using these projections to determine the trajectory and dose of highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, where the trajectory mimicked a lung tumor with high amplitude (2.4 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each projection. A Gaussian probability density function for tumor position was calculated which best fit the observed trajectory ofmore » the BB in the imager geometry. Two methods to improve the accuracy of tumor track reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation, and second, using the Monte Carlo method to sample the estimated Gaussian tumor position distribution. 15 clinically-drawn abdominal/lung CTV volumes were used to evaluate the accuracy of the proposed methods by comparing the known and calculated BB trajectories. Results: With all methods, the mean position of the BB was determined with accuracy better than 0.1 mm, and root-mean-square (RMS) trajectory errors were lower than 5% of marker amplitude. Use of respiratory phase information decreased RMS errors by 30%, and decreased the fraction of large errors (>3 mm) by half. Mean dose to the clinical volumes was calculated with an average error of 0.1% and average absolute error of 0.3%. Dosimetric parameters D90/D95 were determined within 0.5% of maximum dose. Monte-Carlo sampling increased RMS trajectory and dosimetric errors slightly, but prevented over-estimation of dose in trajectories with high noise. Conclusions: Tumor trajectory and dose-of-the-day were accurately calculated using CBCT projections. This technique provides a widely-available method to evaluate highly-mobile tumors, and could facilitate better strategies to mitigate or compensate for motion during SBRT.« less
Association between split selection instability and predictive error in survival trees.
Radespiel-Tröger, M; Gefeller, O; Rabenstein, T; Hothorn, T
2006-01-01
To evaluate split selection instability in six survival tree algorithms and its relationship with predictive error by means of a bootstrap study. We study the following algorithms: logrank statistic with multivariate p-value adjustment without pruning (LR), Kaplan-Meier distance of survival curves (KM), martingale residuals (MR), Poisson regression for censored data (PR), within-node impurity (WI), and exponential log-likelihood loss (XL). With the exception of LR, initial trees are pruned by using split-complexity, and final trees are selected by means of cross-validation. We employ a real dataset from a clinical study of patients with gallbladder stones. The predictive error is evaluated using the integrated Brier score for censored data. The relationship between split selection instability and predictive error is evaluated by means of box-percentile plots, covariate and cutpoint selection entropy, and cutpoint selection coefficients of variation, respectively, in the root node. We found a positive association between covariate selection instability and predictive error in the root node. LR yields the lowest predictive error, while KM and MR yield the highest predictive error. The predictive error of survival trees is related to split selection instability. Based on the low predictive error of LR, we recommend the use of this algorithm for the construction of survival trees. Unpruned survival trees with multivariate p-value adjustment can perform equally well compared to pruned trees. The analysis of split selection instability can be used to communicate the results of tree-based analyses to clinicians and to support the application of survival trees.
NASA Astrophysics Data System (ADS)
Sun, Hong; Wu, Qian-zhong
2013-09-01
In order to improve the precision of optical-electric tracking device, proposing a kind of improved optical-electric tracking device based on MEMS, in allusion to the tracking error of gyroscope senor and the random drift, According to the principles of time series analysis of random sequence, establish AR model of gyro random error based on Kalman filter algorithm, then the output signals of gyro are multiple filtered with Kalman filter. And use ARM as micro controller servo motor is controlled by fuzzy PID full closed loop control algorithm, and add advanced correction and feed-forward links to improve response lag of angle input, Free-forward can make output perfectly follow input. The function of lead compensation link is to shorten the response of input signals, so as to reduce errors. Use the wireless video monitor module and remote monitoring software (Visual Basic 6.0) to monitor servo motor state in real time, the video monitor module gathers video signals, and the wireless video module will sent these signals to upper computer, so that show the motor running state in the window of Visual Basic 6.0. At the same time, take a detailed analysis to the main error source. Through the quantitative analysis of the errors from bandwidth and gyro sensor, it makes the proportion of each error in the whole error more intuitive, consequently, decrease the error of the system. Through the simulation and experiment results shows the system has good following characteristic, and it is very valuable for engineering application.
Adaptive control of nonlinear system using online error minimum neural networks.
Jia, Chao; Li, Xiaoli; Wang, Kang; Ding, Dawei
2016-11-01
In this paper, a new learning algorithm named OEM-ELM (Online Error Minimized-ELM) is proposed based on ELM (Extreme Learning Machine) neural network algorithm and the spreading of its main structure. The core idea of this OEM-ELM algorithm is: online learning, evaluation of network performance, and increasing of the number of hidden nodes. It combines the advantages of OS-ELM and EM-ELM, which can improve the capability of identification and avoid the redundancy of networks. The adaptive control based on the proposed algorithm OEM-ELM is set up which has stronger adaptive capability to the change of environment. The adaptive control of chemical process Continuous Stirred Tank Reactor (CSTR) is also given for application. The simulation results show that the proposed algorithm with respect to the traditional ELM algorithm can avoid network redundancy and improve the control performance greatly. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Wire-positioning algorithm for coreless Hall array sensors in current measurement
NASA Astrophysics Data System (ADS)
Chen, Wenli; Zhang, Huaiqing; Chen, Lin; Gu, Shanyun
2018-05-01
This paper presents a scheme of circular-arrayed, coreless Hall-effect current transformers. It can satisfy the demands of wide dynamic range and bandwidth current in the distribution system, as well as the demand of AC and DC simultaneous measurements. In order to improve the signal to noise ratio (SNR) of the sensor, a wire-positioning algorithm is proposed, which can improve the measurement accuracy based on the post-processing of measurement data. The simulation results demonstrate that the maximum errors are 70%, 6.1% and 0.95% corresponding to Ampère’s circuital method, approximate positioning algorithm and precise positioning algorithm, respectively. It is obvious that the accuracy of the positioning algorithm is significantly improved when compared with that of the Ampère’s circuital method. The maximum error of the positioning algorithm is smaller in the experiment.
Muenzing, Sascha E A; van Ginneken, Bram; Viergever, Max A; Pluim, Josien P W
2014-04-01
We introduce a boosting algorithm to improve on existing methods for deformable image registration (DIR). The proposed DIRBoost algorithm is inspired by the theory on hypothesis boosting, well known in the field of machine learning. DIRBoost utilizes a method for automatic registration error detection to obtain estimates of local registration quality. All areas detected as erroneously registered are subjected to boosting, i.e. undergo iterative registrations by employing boosting masks on both the fixed and moving image. We validated the DIRBoost algorithm on three different DIR methods (ANTS gSyn, NiftyReg, and DROP) on three independent reference datasets of pulmonary image scan pairs. DIRBoost reduced registration errors significantly and consistently on all reference datasets for each DIR algorithm, yielding an improvement of the registration accuracy by 5-34% depending on the dataset and the registration algorithm employed. Copyright © 2014 Elsevier B.V. All rights reserved.
Application of Least Mean Square Algorithms to Spacecraft Vibration Compensation
NASA Technical Reports Server (NTRS)
Woodard , Stanley E.; Nagchaudhuri, Abhijit
1998-01-01
This paper describes the application of the Least Mean Square (LMS) algorithm in tandem with the Filtered-X Least Mean Square algorithm for controlling a science instrument's line-of-sight pointing. Pointing error is caused by a periodic disturbance and spacecraft vibration. A least mean square algorithm is used on-orbit to produce the transfer function between the instrument's servo-mechanism and error sensor. The result is a set of adaptive transversal filter weights tuned to the transfer function. The Filtered-X LMS algorithm, which is an extension of the LMS, tunes a set of transversal filter weights to the transfer function between the disturbance source and the servo-mechanism's actuation signal. The servo-mechanism's resulting actuation counters the disturbance response and thus maintains accurate science instrumental pointing. A simulation model of the Upper Atmosphere Research Satellite is used to demonstrate the algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papantoni-Kazakos, P.; Paterakis, M.
1988-07-01
For many communication applications with time constraints (e.g., transmission of packetized voice messages), a critical performance measure is the percentage of messages transmitted within a given amount of time after their generation at the transmitting station. This report presents a random-access algorithm (RAA) suitable for time-constrained applications. Performance analysis demonstrates that significant message-delay improvement is attained at the expense of minimal traffic loss. Also considered is the case of noisy channels. The noise effect appears at erroneously observed channel feedback. Error sensitivity analysis shows that the proposed random-access algorithm is insensitive to feedback channel errors. Window Random-Access Algorithms (RAAs) aremore » considered next. These algorithms constitute an important subclass of Multiple-Access Algorithms (MAAs); they are distributive, and they attain high throughput and low delays by controlling the number of simultaneously transmitting users.« less
Optimal Design of Low-Density SNP Arrays for Genomic Prediction: Algorithm and Applications.
Wu, Xiao-Lin; Xu, Jiaqi; Feng, Guofei; Wiggans, George R; Taylor, Jeremy F; He, Jun; Qian, Changsong; Qiu, Jiansheng; Simpson, Barry; Walker, Jeremy; Bauck, Stewart
2016-01-01
Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for the optimal design of LD SNP chips. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optimal LD SNP chips that can be imputed accurately to medium-density (MD) or high-density (HD) SNP genotypes for genomic prediction. The objective function facilitates maximization of non-gap map length and system information for the SNP chip, and the latter is computed either as locus-averaged (LASE) or haplotype-averaged Shannon entropy (HASE) and adjusted for uniformity of the SNP distribution. HASE performed better than LASE with ≤1,000 SNPs, but required considerably more computing time. Nevertheless, the differences diminished when >5,000 SNPs were selected. Optimization was accomplished conditionally on the presence of SNPs that were obligated to each chromosome. The frame location of SNPs on a chip can be either uniform (evenly spaced) or non-uniform. For the latter design, a tunable empirical Beta distribution was used to guide location distribution of frame SNPs such that both ends of each chromosome were enriched with SNPs. The SNP distribution on each chromosome was finalized through the objective function that was locally and empirically maximized. This MOLO algorithm was capable of selecting a set of approximately evenly-spaced and highly-informative SNPs, which in turn led to increased imputation accuracy compared with selection solely of evenly-spaced SNPs. Imputation accuracy increased with LD chip size, and imputation error rate was extremely low for chips with ≥3,000 SNPs. Assuming that genotyping or imputation error occurs at random, imputation error rate can be viewed as the upper limit for genomic prediction error. Our results show that about 25% of imputation error rate was propagated to genomic prediction in an Angus population. The utility of this MOLO algorithm was also demonstrated in a real application, in which a 6K SNP panel was optimized conditional on 5,260 obligatory SNP selected based on SNP-trait association in U.S. Holstein animals. With this MOLO algorithm, both imputation error rate and genomic prediction error rate were minimal.
Optimal Design of Low-Density SNP Arrays for Genomic Prediction: Algorithm and Applications
Wu, Xiao-Lin; Xu, Jiaqi; Feng, Guofei; Wiggans, George R.; Taylor, Jeremy F.; He, Jun; Qian, Changsong; Qiu, Jiansheng; Simpson, Barry; Walker, Jeremy; Bauck, Stewart
2016-01-01
Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for the optimal design of LD SNP chips. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optimal LD SNP chips that can be imputed accurately to medium-density (MD) or high-density (HD) SNP genotypes for genomic prediction. The objective function facilitates maximization of non-gap map length and system information for the SNP chip, and the latter is computed either as locus-averaged (LASE) or haplotype-averaged Shannon entropy (HASE) and adjusted for uniformity of the SNP distribution. HASE performed better than LASE with ≤1,000 SNPs, but required considerably more computing time. Nevertheless, the differences diminished when >5,000 SNPs were selected. Optimization was accomplished conditionally on the presence of SNPs that were obligated to each chromosome. The frame location of SNPs on a chip can be either uniform (evenly spaced) or non-uniform. For the latter design, a tunable empirical Beta distribution was used to guide location distribution of frame SNPs such that both ends of each chromosome were enriched with SNPs. The SNP distribution on each chromosome was finalized through the objective function that was locally and empirically maximized. This MOLO algorithm was capable of selecting a set of approximately evenly-spaced and highly-informative SNPs, which in turn led to increased imputation accuracy compared with selection solely of evenly-spaced SNPs. Imputation accuracy increased with LD chip size, and imputation error rate was extremely low for chips with ≥3,000 SNPs. Assuming that genotyping or imputation error occurs at random, imputation error rate can be viewed as the upper limit for genomic prediction error. Our results show that about 25% of imputation error rate was propagated to genomic prediction in an Angus population. The utility of this MOLO algorithm was also demonstrated in a real application, in which a 6K SNP panel was optimized conditional on 5,260 obligatory SNP selected based on SNP-trait association in U.S. Holstein animals. With this MOLO algorithm, both imputation error rate and genomic prediction error rate were minimal. PMID:27583971
Sum of the Magnitude for Hard Decision Decoding Algorithm Based on Loop Update Detection
Meng, Jiahui; Zhao, Danfeng; Tian, Hai; Zhang, Liang
2018-01-01
In order to improve the performance of non-binary low-density parity check codes (LDPC) hard decision decoding algorithm and to reduce the complexity of decoding, a sum of the magnitude for hard decision decoding algorithm based on loop update detection is proposed. This will also ensure the reliability, stability and high transmission rate of 5G mobile communication. The algorithm is based on the hard decision decoding algorithm (HDA) and uses the soft information from the channel to calculate the reliability, while the sum of the variable nodes’ (VN) magnitude is excluded for computing the reliability of the parity checks. At the same time, the reliability information of the variable node is considered and the loop update detection algorithm is introduced. The bit corresponding to the error code word is flipped multiple times, before this is searched in the order of most likely error probability to finally find the correct code word. Simulation results show that the performance of one of the improved schemes is better than the weighted symbol flipping (WSF) algorithm under different hexadecimal numbers by about 2.2 dB and 2.35 dB at the bit error rate (BER) of 10−5 over an additive white Gaussian noise (AWGN) channel, respectively. Furthermore, the average number of decoding iterations is significantly reduced. PMID:29342963
Error Analyses of the North Alabama Lightning Mapping Array (LMA)
NASA Technical Reports Server (NTRS)
Koshak, W. J.; Solokiewicz, R. J.; Blakeslee, R. J.; Goodman, S. J.; Christian, H. J.; Hall, J. M.; Bailey, J. C.; Krider, E. P.; Bateman, M. G.; Boccippio, D. J.
2003-01-01
Two approaches are used to characterize how accurately the North Alabama Lightning Mapping Array (LMA) is able to locate lightning VHF sources in space and in time. The first method uses a Monte Carlo computer simulation to estimate source retrieval errors. The simulation applies a VHF source retrieval algorithm that was recently developed at the NASA-MSFC and that is similar, but not identical to, the standard New Mexico Tech retrieval algorithm. The second method uses a purely theoretical technique (i.e., chi-squared Curvature Matrix theory) to estimate retrieval errors. Both methods assume that the LMA system has an overall rms timing error of 50ns, but all other possible errors (e.g., multiple sources per retrieval attempt) are neglected. The detailed spatial distributions of retrieval errors are provided. Given that the two methods are completely independent of one another, it is shown that they provide remarkably similar results, except that the chi-squared theory produces larger altitude error estimates than the (more realistic) Monte Carlo simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H; Chen, J; Pouliot, J
2015-06-15
Purpose: Deformable image registration (DIR) is a powerful tool with the potential to deformably map dose from one computed-tomography (CT) image to another. Errors in the DIR, however, will produce errors in the transferred dose distribution. We have proposed a software tool, called AUTODIRECT (automated DIR evaluation of confidence tool), which predicts voxel-specific dose mapping errors on a patient-by-patient basis. This work validates the effectiveness of AUTODIRECT to predict dose mapping errors with virtual and physical phantom datasets. Methods: AUTODIRECT requires 4 inputs: moving and fixed CT images and two noise scans of a water phantom (for noise characterization). Then,more » AUTODIRECT uses algorithms to generate test deformations and applies them to the moving and fixed images (along with processing) to digitally create sets of test images, with known ground-truth deformations that are similar to the actual one. The clinical DIR algorithm is then applied to these test image sets (currently 4) . From these tests, AUTODIRECT generates spatial and dose uncertainty estimates for each image voxel based on a Student’s t distribution. This work compares these uncertainty estimates to the actual errors made by the Velocity Deformable Multi Pass algorithm on 11 virtual and 1 physical phantom datasets. Results: For 11 of the 12 tests, the predicted dose error distributions from AUTODIRECT are well matched to the actual error distributions within 1–6% for 10 virtual phantoms, and 9% for the physical phantom. For one of the cases though, the predictions underestimated the errors in the tail of the distribution. Conclusion: Overall, the AUTODIRECT algorithm performed well on the 12 phantom cases for Velocity and was shown to generate accurate estimates of dose warping uncertainty. AUTODIRECT is able to automatically generate patient-, organ- , and voxel-specific DIR uncertainty estimates. This ability would be useful for patient-specific DIR quality assurance.« less
Zhang, Qiuzhao; Yang, Wei; Zhang, Shubi; Liu, Xin
2018-01-12
Global Navigation Satellite System (GNSS) carrier phase measurement for short baseline meets the requirements of deformation monitoring of large structures. However, the carrier phase multipath effect is the main error source with double difference (DD) processing. There are lots of methods to deal with the multipath errors of Global Position System (GPS) carrier phase data. The BeiDou navigation satellite System (BDS) multipath mitigation is still a research hotspot because the unique constellation design of BDS makes it different to mitigate multipath effects compared to GPS. Multipath error periodically repeats for its strong correlation to geometry of satellites, reflective surface and antenna which is also repetitive. We analyzed the characteristics of orbital periods of BDS satellites which are consistent with multipath repeat periods of corresponding satellites. The results show that the orbital periods and multipath periods for BDS geostationary earth orbit (GEO) and inclined geosynchronous orbit (IGSO) satellites are about one day but the periods of MEO satellites are about seven days. The Kalman filter (KF) and Rauch-Tung-Striebel Smoother (RTSS) was introduced to extract the multipath models from single difference (SD) residuals with traditional sidereal filter (SF). Wavelet filter and Empirical mode decomposition (EMD) were also used to mitigate multipath effects. The experimental results show that the three filters methods all have obvious effect on improvement of baseline accuracy and the performance of KT-RTSS method is slightly better than that of wavelet filter and EMD filter. The baseline vector accuracy on east, north and up (E, N, U) components with KF-RTSS method were improved by 62.8%, 63.6%, 62.5% on day of year 280 and 57.3%, 53.4%, 55.9% on day of year 281, respectively.
Low complexity adaptive equalizers for underwater acoustic communications
NASA Astrophysics Data System (ADS)
Soflaei, Masoumeh; Azmi, Paeiz
2014-08-01
Interference signals due to scattering from surface and reflecting from bottom is one of the most important problems of reliable communications in shallow water channels. To solve this problem, one of the best suggested ways is to use adaptive equalizers. Convergence rate and misadjustment error in adaptive algorithms play important roles in adaptive equalizer performance. In this paper, affine projection algorithm (APA), selective regressor APA(SR-APA), family of selective partial update (SPU) algorithms, family of set-membership (SM) algorithms and selective partial update selective regressor APA (SPU-SR-APA) are compared with conventional algorithms such as the least mean square (LMS) in underwater acoustic communications. We apply experimental data from the Strait of Hormuz for demonstrating the efficiency of the proposed methods over shallow water channel. We observe that the values of the steady-state mean square error (MSE) of SR-APA, SPU-APA, SPU-normalized least mean square (SPU-NLMS), SPU-SR-APA, SM-APA and SM-NLMS algorithms decrease in comparison with the LMS algorithm. Also these algorithms have better convergence rates than LMS type algorithm.
Benchmarking homogenization algorithms for monthly data
NASA Astrophysics Data System (ADS)
Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M. J.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratiannil, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.; Willett, K.
2013-09-01
The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies. The algorithms were validated against a realistic benchmark dataset. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including i) the centered root mean square error relative to the true homogeneous values at various averaging scales, ii) the error in linear trend estimates and iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data. Moreover, state-of-the-art relative homogenization algorithms developed to work with an inhomogeneous reference are shown to perform best. The study showed that currently automatic algorithms can perform as well as manual ones.
An RFID Indoor Positioning Algorithm Based on Bayesian Probability and K-Nearest Neighbor.
Xu, He; Ding, Ye; Li, Peng; Wang, Ruchuan; Li, Yizhu
2017-08-05
The Global Positioning System (GPS) is widely used in outdoor environmental positioning. However, GPS cannot support indoor positioning because there is no signal for positioning in an indoor environment. Nowadays, there are many situations which require indoor positioning, such as searching for a book in a library, looking for luggage in an airport, emergence navigation for fire alarms, robot location, etc. Many technologies, such as ultrasonic, sensors, Bluetooth, WiFi, magnetic field, Radio Frequency Identification (RFID), etc., are used to perform indoor positioning. Compared with other technologies, RFID used in indoor positioning is more cost and energy efficient. The Traditional RFID indoor positioning algorithm LANDMARC utilizes a Received Signal Strength (RSS) indicator to track objects. However, the RSS value is easily affected by environmental noise and other interference. In this paper, our purpose is to reduce the location fluctuation and error caused by multipath and environmental interference in LANDMARC. We propose a novel indoor positioning algorithm based on Bayesian probability and K -Nearest Neighbor (BKNN). The experimental results show that the Gaussian filter can filter some abnormal RSS values. The proposed BKNN algorithm has the smallest location error compared with the Gaussian-based algorithm, LANDMARC and an improved KNN algorithm. The average error in location estimation is about 15 cm using our method.
Koprowski, Robert
2014-07-04
Dedicated, automatic algorithms for image analysis and processing are becoming more and more common in medical diagnosis. When creating dedicated algorithms, many factors must be taken into consideration. They are associated with selecting the appropriate algorithm parameters and taking into account the impact of data acquisition on the results obtained. An important feature of algorithms is the possibility of their use in other medical units by other operators. This problem, namely operator's (acquisition) impact on the results obtained from image analysis and processing, has been shown on a few examples. The analysed images were obtained from a variety of medical devices such as thermal imaging, tomography devices and those working in visible light. The objects of imaging were cellular elements, the anterior segment and fundus of the eye, postural defects and others. In total, almost 200'000 images coming from 8 different medical units were analysed. All image analysis algorithms were implemented in C and Matlab. For various algorithms and methods of medical imaging, the impact of image acquisition on the results obtained is different. There are different levels of algorithm sensitivity to changes in the parameters, for example: (1) for microscope settings and the brightness assessment of cellular elements there is a difference of 8%; (2) for the thyroid ultrasound images there is a difference in marking the thyroid lobe area which results in a brightness assessment difference of 2%. The method of image acquisition in image analysis and processing also affects: (3) the accuracy of determining the temperature in the characteristic areas on the patient's back for the thermal method - error of 31%; (4) the accuracy of finding characteristic points in photogrammetric images when evaluating postural defects - error of 11%; (5) the accuracy of performing ablative and non-ablative treatments in cosmetology - error of 18% for the nose, 10% for the cheeks, and 7% for the forehead. Similarly, when: (7) measuring the anterior eye chamber - there is an error of 20%; (8) measuring the tooth enamel thickness - error of 15%; (9) evaluating the mechanical properties of the cornea during pressure measurement - error of 47%. The paper presents vital, selected issues occurring when assessing the accuracy of designed automatic algorithms for image analysis and processing in bioengineering. The impact of acquisition of images on the problems arising in their analysis has been shown on selected examples. It has also been indicated to which elements of image analysis and processing special attention should be paid in their design.
An Indoor Continuous Positioning Algorithm on the Move by Fusing Sensors and Wi-Fi on Smartphones.
Li, Huaiyu; Chen, Xiuwan; Jing, Guifei; Wang, Yuan; Cao, Yanfeng; Li, Fei; Zhang, Xinlong; Xiao, Han
2015-12-11
Wi-Fi indoor positioning algorithms experience large positioning error and low stability when continuously positioning terminals that are on the move. This paper proposes a novel indoor continuous positioning algorithm that is on the move, fusing sensors and Wi-Fi on smartphones. The main innovative points include an improved Wi-Fi positioning algorithm and a novel positioning fusion algorithm named the Trust Chain Positioning Fusion (TCPF) algorithm. The improved Wi-Fi positioning algorithm was designed based on the properties of Wi-Fi signals on the move, which are found in a novel "quasi-dynamic" Wi-Fi signal experiment. The TCPF algorithm is proposed to realize the "process-level" fusion of Wi-Fi and Pedestrians Dead Reckoning (PDR) positioning, including three parts: trusted point determination, trust state and positioning fusion algorithm. An experiment is carried out for verification in a typical indoor environment, and the average positioning error on the move is 1.36 m, a decrease of 28.8% compared to an existing algorithm. The results show that the proposed algorithm can effectively reduce the influence caused by the unstable Wi-Fi signals, and improve the accuracy and stability of indoor continuous positioning on the move.
A novel hybrid algorithm for the design of the phase diffractive optical elements for beam shaping
NASA Astrophysics Data System (ADS)
Jiang, Wenbo; Wang, Jun; Dong, Xiucheng
2013-02-01
In this paper, a novel hybrid algorithm for the design of a phase diffractive optical elements (PDOE) is proposed. It combines the genetic algorithm (GA) with the transformable scale BFGS (Broyden, Fletcher, Goldfarb, Shanno) algorithm, the penalty function was used in the cost function definition. The novel hybrid algorithm has the global merits of the genetic algorithm as well as the local improvement capabilities of the transformable scale BFGS algorithm. We designed the PDOE using the conventional simulated annealing algorithm and the novel hybrid algorithm. To compare the performance of two algorithms, three indexes of the diffractive efficiency, uniformity error and the signal-to-noise ratio are considered in numerical simulation. The results show that the novel hybrid algorithm has good convergence property and good stability. As an application example, the PDOE was used for the Gaussian beam shaping; high diffractive efficiency, low uniformity error and high signal-to-noise were obtained. The PDOE can be used for high quality beam shaping such as inertial confinement fusion (ICF), excimer laser lithography, fiber coupling laser diode array, laser welding, etc. It shows wide application value.
Montuno, Michael A; Kohner, Andrew B; Foote, Kelly D; Okun, Michael S
2013-01-01
Deep brain stimulation (DBS) is an effective technique that has been utilized to treat advanced and medication-refractory movement and psychiatric disorders. In order to avoid implanted pulse generator (IPG) failure and consequent adverse symptoms, a better understanding of IPG battery longevity and management is necessary. Existing methods for battery estimation lack the specificity required for clinical incorporation. Technical challenges prevent higher accuracy longevity estimations, and a better approach to managing end of DBS battery life is needed. The literature was reviewed and DBS battery estimators were constructed by the authors and made available on the web at http://mdc.mbi.ufl.edu/surgery/dbs-battery-estimator. A clinical algorithm for management of DBS battery life was constructed. The algorithm takes into account battery estimations and clinical symptoms. Existing methods of DBS battery life estimation utilize an interpolation of averaged current drains to calculate how long a battery will last. Unfortunately, this technique can only provide general approximations. There are inherent errors in this technique, and these errors compound with each iteration of the battery estimation. Some of these errors cannot be accounted for in the estimation process, and some of the errors stem from device variation, battery voltage dependence, battery usage, battery chemistry, impedance fluctuations, interpolation error, usage patterns, and self-discharge. We present web-based battery estimators along with an algorithm for clinical management. We discuss the perils of using a battery estimator without taking into account the clinical picture. Future work will be needed to provide more reliable management of implanted device batteries; however, implementation of a clinical algorithm that accounts for both estimated battery life and for patient symptoms should improve the care of DBS patients. © 2012 International Neuromodulation Society.
Precise Aperture-Dependent Motion Compensation with Frequency Domain Fast Back-Projection Algorithm.
Zhang, Man; Wang, Guanyong; Zhang, Lei
2017-10-26
Precise azimuth-variant motion compensation (MOCO) is an essential and difficult task for high-resolution synthetic aperture radar (SAR) imagery. In conventional post-filtering approaches, residual azimuth-variant motion errors are generally compensated through a set of spatial post-filters, where the coarse-focused image is segmented into overlapped blocks concerning the azimuth-dependent residual errors. However, image domain post-filtering approaches, such as precise topography- and aperture-dependent motion compensation algorithm (PTA), have difficulty of robustness in declining, when strong motion errors are involved in the coarse-focused image. In this case, in order to capture the complete motion blurring function within each image block, both the block size and the overlapped part need necessary extension leading to degeneration of efficiency and robustness inevitably. Herein, a frequency domain fast back-projection algorithm (FDFBPA) is introduced to deal with strong azimuth-variant motion errors. FDFBPA disposes of the azimuth-variant motion errors based on a precise azimuth spectrum expression in the azimuth wavenumber domain. First, a wavenumber domain sub-aperture processing strategy is introduced to accelerate computation. After that, the azimuth wavenumber spectrum is partitioned into a set of wavenumber blocks, and each block is formed into a sub-aperture coarse resolution image via the back-projection integral. Then, the sub-aperture images are straightforwardly fused together in azimuth wavenumber domain to obtain a full resolution image. Moreover, chirp-Z transform (CZT) is also introduced to implement the sub-aperture back-projection integral, increasing the efficiency of the algorithm. By disusing the image domain post-filtering strategy, robustness of the proposed algorithm is improved. Both simulation and real-measured data experiments demonstrate the effectiveness and superiority of the proposal.
NASA Astrophysics Data System (ADS)
Wu, Hao; Wang, Xianhua; Ye, Hanhan; Jiang, Yun; Duan, Fenghua
2018-01-01
We developed an algorithm (named GMI_XCO2) to retrieve the global column-averaged dry air mole fraction of atmospheric carbon dioxide (XCO2) for greenhouse-gases monitor instrument (GMI) and directional polarized camera (DPC) on the GF-5 satellite. This algorithm is designed to work in cloudless atmospheric conditions with aerosol optical thickness (AOT)<0.3. To quantify the uncertainty level of the retrieved XCO2 when the aerosols and cirrus clouds occurred in retrieving XCO2 with the GMI short wave infrared (SWIR) data, we analyzed the errors rate caused by the six types of aerosols and cirrus clouds. The results indicated that in AOT range of 0.05 to 0.3 (550 nm), the uncertainties of aerosols could lead to errors of -0.27% to 0.59%, -0.32% to 1.43%, -0.10% to 0.49%, -0.12% to 1.17%, -0.35% to 0.49%, and -0.02% to -0.24% for rural, dust, clean continental, maritime, urban, and soot aerosols, respectively. The retrieval results presented a large error due to cirrus clouds. In the cirrus optical thickness range of 0.05 to 0.8 (500 nm), the most underestimation is up to 26.25% when the surface albedo is 0.05. The most overestimation is 8.1% when the surface albedo is 0.65. The retrieval results of GMI simulation data demonstrated that the accuracy of our algorithm is within 4 ppm (˜1%) using the simultaneous measurement of aerosols and clouds from DPC. Moreover, the speed of our algorithm is faster than full-physics (FP) methods. We verified our algorithm with Greenhouse-gases Observing Satellite (GOSAT) data in Beijing area during 2016. The retrieval errors of most observations are within 4 ppm except for summer. Compared with the results of GOSAT, the correlation coefficient is 0.55 for the whole year data, increasing to 0.62 after excluding the summer data.
A Systematic Error Correction Method for TOVS Radiances
NASA Technical Reports Server (NTRS)
Joiner, Joanna; Rokke, Laurie; Einaudi, Franco (Technical Monitor)
2000-01-01
Treatment of systematic errors is crucial for the successful use of satellite data in a data assimilation system. Systematic errors in TOVS radiance measurements and radiative transfer calculations can be as large or larger than random instrument errors. The usual assumption in data assimilation is that observational errors are unbiased. If biases are not effectively removed prior to assimilation, the impact of satellite data will be lessened and can even be detrimental. Treatment of systematic errors is important for short-term forecast skill as well as the creation of climate data sets. A systematic error correction algorithm has been developed as part of a 1D radiance assimilation. This scheme corrects for spectroscopic errors, errors in the instrument response function, and other biases in the forward radiance calculation for TOVS. Such algorithms are often referred to as tuning of the radiances. The scheme is able to account for the complex, air-mass dependent biases that are seen in the differences between TOVS radiance observations and forward model calculations. We will show results of systematic error correction applied to the NOAA 15 Advanced TOVS as well as its predecessors. We will also discuss the ramifications of inter-instrument bias with a focus on stratospheric measurements.
Nonuniformity correction for an infrared focal plane array based on diamond search block matching.
Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian
2016-05-01
In scene-based nonuniformity correction algorithms, artificial ghosting and image blurring degrade the correction quality severely. In this paper, an improved algorithm based on the diamond search block matching algorithm and the adaptive learning rate is proposed. First, accurate transform pairs between two adjacent frames are estimated by the diamond search block matching algorithm. Then, based on the error between the corresponding transform pairs, the gradient descent algorithm is applied to update correction parameters. During the process of gradient descent, the local standard deviation and a threshold are utilized to control the learning rate to avoid the accumulation of matching error. Finally, the nonuniformity correction would be realized by a linear model with updated correction parameters. The performance of the proposed algorithm is thoroughly studied with four real infrared image sequences. Experimental results indicate that the proposed algorithm can reduce the nonuniformity with less ghosting artifacts in moving areas and can also overcome the problem of image blurring in static areas.
Analysis and improvement of the quantum image matching
NASA Astrophysics Data System (ADS)
Dang, Yijie; Jiang, Nan; Hu, Hao; Zhang, Wenyin
2017-11-01
We investigate the quantum image matching algorithm proposed by Jiang et al. (Quantum Inf Process 15(9):3543-3572, 2016). Although the complexity of this algorithm is much better than the classical exhaustive algorithm, there may be an error in it: After matching the area between two images, only the pixel at the upper left corner of the matched area played part in following steps. That is to say, the paper only matched one pixel, instead of an area. If more than one pixels in the big image are the same as the one at the upper left corner of the small image, the algorithm will randomly measure one of them, which causes the error. In this paper, an improved version is presented which takes full advantage of the whole matched area to locate a small image in a big image. The theoretical analysis indicates that the network complexity is higher than the previous algorithm, but it is still far lower than the classical algorithm. Hence, this algorithm is still efficient.
NASA Astrophysics Data System (ADS)
Rasim; Junaeti, E.; Wirantika, R.
2018-01-01
Accurate forecasting for the sale of a product depends on the forecasting method used. The purpose of this research is to build motorcycle sales forecasting application using Fuzzy Time Series method combined with interval determination using automatic clustering algorithm. Forecasting is done using the sales data of motorcycle sales in the last ten years. Then the error rate of forecasting is measured using Means Percentage Error (MPE) and Means Absolute Percentage Error (MAPE). The results of forecasting in the one-year period obtained in this study are included in good accuracy.
Chen, Xianlai; Fann, Yang C; McAuliffe, Matthew; Vismer, David
2017-01-01
Background As one of the several effective solutions for personal privacy protection, a global unique identifier (GUID) is linked with hash codes that are generated from combinations of personally identifiable information (PII) by a one-way hash algorithm. On the GUID server, no PII is permitted to be stored, and only GUID and hash codes are allowed. The quality of PII entry is critical to the GUID system. Objective The goal of our study was to explore a method of checking questionable entry of PII in this context without using or sending any portion of PII while registering a subject. Methods According to the principle of GUID system, all possible combination patterns of PII fields were analyzed and used to generate hash codes, which were stored on the GUID server. Based on the matching rules of the GUID system, an error-checking algorithm was developed using set theory to check PII entry errors. We selected 200,000 simulated individuals with randomly-planted errors to evaluate the proposed algorithm. These errors were placed in the required PII fields or optional PII fields. The performance of the proposed algorithm was also tested in the registering system of study subjects. Results There are 127,700 error-planted subjects, of which 114,464 (89.64%) can still be identified as the previous one and remaining 13,236 (10.36%, 13,236/127,700) are discriminated as new subjects. As expected, 100% of nonidentified subjects had errors within the required PII fields. The possibility that a subject is identified is related to the count and the type of incorrect PII field. For all identified subjects, their errors can be found by the proposed algorithm. The scope of questionable PII fields is also associated with the count and the type of the incorrect PII field. The best situation is to precisely find the exact incorrect PII fields, and the worst situation is to shrink the questionable scope only to a set of 13 PII fields. In the application, the proposed algorithm can give a hint of questionable PII entry and perform as an effective tool. Conclusions The GUID system has high error tolerance and may correctly identify and associate a subject even with few PII field errors. Correct data entry, especially required PII fields, is critical to avoiding false splits. In the context of one-way hash transformation, the questionable input of PII may be identified by applying set theory operators based on the hash codes. The count and the type of incorrect PII fields play an important role in identifying a subject and locating questionable PII fields. PMID:28213343
Chen, Xianlai; Fann, Yang C; McAuliffe, Matthew; Vismer, David; Yang, Rong
2017-02-17
As one of the several effective solutions for personal privacy protection, a global unique identifier (GUID) is linked with hash codes that are generated from combinations of personally identifiable information (PII) by a one-way hash algorithm. On the GUID server, no PII is permitted to be stored, and only GUID and hash codes are allowed. The quality of PII entry is critical to the GUID system. The goal of our study was to explore a method of checking questionable entry of PII in this context without using or sending any portion of PII while registering a subject. According to the principle of GUID system, all possible combination patterns of PII fields were analyzed and used to generate hash codes, which were stored on the GUID server. Based on the matching rules of the GUID system, an error-checking algorithm was developed using set theory to check PII entry errors. We selected 200,000 simulated individuals with randomly-planted errors to evaluate the proposed algorithm. These errors were placed in the required PII fields or optional PII fields. The performance of the proposed algorithm was also tested in the registering system of study subjects. There are 127,700 error-planted subjects, of which 114,464 (89.64%) can still be identified as the previous one and remaining 13,236 (10.36%, 13,236/127,700) are discriminated as new subjects. As expected, 100% of nonidentified subjects had errors within the required PII fields. The possibility that a subject is identified is related to the count and the type of incorrect PII field. For all identified subjects, their errors can be found by the proposed algorithm. The scope of questionable PII fields is also associated with the count and the type of the incorrect PII field. The best situation is to precisely find the exact incorrect PII fields, and the worst situation is to shrink the questionable scope only to a set of 13 PII fields. In the application, the proposed algorithm can give a hint of questionable PII entry and perform as an effective tool. The GUID system has high error tolerance and may correctly identify and associate a subject even with few PII field errors. Correct data entry, especially required PII fields, is critical to avoiding false splits. In the context of one-way hash transformation, the questionable input of PII may be identified by applying set theory operators based on the hash codes. The count and the type of incorrect PII fields play an important role in identifying a subject and locating questionable PII fields. ©Xianlai Chen, Yang C Fann, Matthew McAuliffe, David Vismer, Rong Yang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.02.2017.
NASA Astrophysics Data System (ADS)
Zhongqin, G.; Chen, Y.
2017-12-01
Abstract Quickly identify the spatial distribution of landslides automatically is essential for the prevention, mitigation and assessment of the landslide hazard. It's still a challenging job owing to the complicated characteristics and vague boundary of the landslide areas on the image. The high resolution remote sensing image has multi-scales, complex spatial distribution and abundant features, the object-oriented image classification methods can make full use of the above information and thus effectively detect the landslides after the hazard happened. In this research we present a new semi-supervised workflow, taking advantages of recent object-oriented image analysis and machine learning algorithms to quick locate the different origins of landslides of some areas on the southwest part of China. Besides a sequence of image segmentation, feature selection, object classification and error test, this workflow ensemble the feature selection and classifier selection. The feature this study utilized were normalized difference vegetation index (NDVI) change, textural feature derived from the gray level co-occurrence matrices (GLCM), spectral feature and etc. The improvement of this study shows this algorithm significantly removes some redundant feature and the classifiers get fully used. All these improvements lead to a higher accuracy on the determination of the shape of landslides on the high resolution remote sensing image, in particular the flexibility aimed at different kinds of landslides.
Qualification of a Null Lens Using Image-Based Phase Retrieval
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.; Aronstein, David L.; Hill, Peter C.; Smith, J. Scott; Zielinski, Thomas P.
2012-01-01
In measuring the figure error of an aspheric optic using a null lens, the wavefront contribution from the null lens must be independently and accurately characterized in order to isolate the optical performance of the aspheric optic alone. Various techniques can be used to characterize such a null lens, including interferometry, profilometry and image-based methods. Only image-based methods, such as phase retrieval, can measure the null-lens wavefront in situ - in single-pass, and at the same conjugates and in the same alignment state in which the null lens will ultimately be used - with no additional optical components. Due to the intended purpose of a Dull lens (e.g., to null a large aspheric wavefront with a near-equal-but-opposite spherical wavefront), characterizing a null-lens wavefront presents several challenges to image-based phase retrieval: Large wavefront slopes and high-dynamic-range data decrease the capture range of phase-retrieval algorithms, increase the requirements on the fidelity of the forward model of the optical system, and make it difficult to extract diagnostic information (e.g., the system F/#) from the image data. In this paper, we present a study of these effects on phase-retrieval algorithms in the context of a null lens used in component development for the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Approaches for mitigation are also discussed.
NASA Astrophysics Data System (ADS)
Shastri, Niket; Pathak, Kamlesh
2018-05-01
The water vapor content in atmosphere plays very important role in climate. In this paper the application of GPS signal in meteorology is discussed, which is useful technique that is used to estimate the perceptible water vapor of atmosphere. In this paper various algorithms like artificial neural network, support vector machine and multiple linear regression are use to predict perceptible water vapor. The comparative studies in terms of root mean square error and mean absolute errors are also carried out for all the algorithms.
Brodic, Darko; Milivojevic, Dragan R.; Milivojevic, Zoran N.
2011-01-01
The paper introduces a testing framework for the evaluation and validation of text line segmentation algorithms. Text line segmentation represents the key action for correct optical character recognition. Many of the tests for the evaluation of text line segmentation algorithms deal with text databases as reference templates. Because of the mismatch, the reliable testing framework is required. Hence, a new approach to a comprehensive experimental framework for the evaluation of text line segmentation algorithms is proposed. It consists of synthetic multi-like text samples and real handwritten text as well. Although the tests are mutually independent, the results are cross-linked. The proposed method can be used for different types of scripts and languages. Furthermore, two different procedures for the evaluation of algorithm efficiency based on the obtained error type classification are proposed. The first is based on the segmentation line error description, while the second one incorporates well-known signal detection theory. Each of them has different capabilities and convenience, but they can be used as supplements to make the evaluation process efficient. Overall the proposed procedure based on the segmentation line error description has some advantages, characterized by five measures that describe measurement procedures. PMID:22164106
Brodic, Darko; Milivojevic, Dragan R; Milivojevic, Zoran N
2011-01-01
The paper introduces a testing framework for the evaluation and validation of text line segmentation algorithms. Text line segmentation represents the key action for correct optical character recognition. Many of the tests for the evaluation of text line segmentation algorithms deal with text databases as reference templates. Because of the mismatch, the reliable testing framework is required. Hence, a new approach to a comprehensive experimental framework for the evaluation of text line segmentation algorithms is proposed. It consists of synthetic multi-like text samples and real handwritten text as well. Although the tests are mutually independent, the results are cross-linked. The proposed method can be used for different types of scripts and languages. Furthermore, two different procedures for the evaluation of algorithm efficiency based on the obtained error type classification are proposed. The first is based on the segmentation line error description, while the second one incorporates well-known signal detection theory. Each of them has different capabilities and convenience, but they can be used as supplements to make the evaluation process efficient. Overall the proposed procedure based on the segmentation line error description has some advantages, characterized by five measures that describe measurement procedures.
Han, Miaomiao; Guo, Zhirong; Liu, Haifeng; Li, Qinghua
2018-05-01
Tomographic Gamma Scanning (TGS) is a method used for the nondestructive assay of radioactive wastes. In TGS, the actual irregular edge voxels are regarded as regular cubic voxels in the traditional treatment method. In this study, in order to improve the performance of TGS, a novel edge treatment method is proposed that considers the actual shapes of these voxels. The two different edge voxel treatment methods were compared by computing the pixel-level relative errors and normalized mean square errors (NMSEs) between the reconstructed transmission images and the ideal images. Both methods were coupled with two different interative algorithms comprising Algebraic Reconstruction Technique (ART) with a non-negativity constraint and Maximum Likelihood Expectation Maximization (MLEM). The results demonstrated that the traditional method for edge voxel treatment can introduce significant error and that the real irregular edge voxel treatment method can improve the performance of TGS by obtaining better transmission reconstruction images. With the real irregular edge voxel treatment method, MLEM algorithm and ART algorithm can be comparable when assaying homogenous matrices, but MLEM algorithm is superior to ART algorithm when assaying heterogeneous matrices. Copyright © 2018 Elsevier Ltd. All rights reserved.
Guaranteeing Failsafe Operation of Extended-Scene Shack-Hartmann Wavefront Sensor Algorithm
NASA Technical Reports Server (NTRS)
Sidick, Erikin
2009-01-01
A Shack-Hartmann sensor (SHS) is an optical instrument consisting of a lenslet array and a camera. It is widely used for wavefront sensing in optical testing and astronomical adaptive optics. The camera is placed at the focal point of the lenslet array and points at a star or any other point source. The image captured is an array of spot images. When the wavefront error at the lenslet array changes, the position of each spot measurably shifts from its original position. Determining the shifts of the spot images from their reference points shows the extent of the wavefront error. An adaptive cross-correlation (ACC) algorithm has been developed to use scenes as well as point sources for wavefront error detection. Qualifying an extended scene image is often not an easy task due to changing conditions in scene content, illumination level, background, Poisson noise, read-out noise, dark current, sampling format, and field of view. The proposed new technique based on ACC algorithm analyzes the effects of these conditions on the performance of the ACC algorithm and determines the viability of an extended scene image. If it is viable, then it can be used for error correction; if it is not, the image fails and will not be further processed. By potentially testing for a wide variety of conditions, the algorithm s accuracy can be virtually guaranteed. In a typical application, the ACC algorithm finds image shifts of more than 500 Shack-Hartmann camera sub-images relative to a reference sub -image or cell when performing one wavefront sensing iteration. In the proposed new technique, a pair of test and reference cells is selected from the same frame, preferably from two well-separated locations. The test cell is shifted by an integer number of pixels, say, for example, from m= -5 to 5 along the x-direction by choosing a different area on the same sub-image, and the shifts are estimated using the ACC algorithm. The same is done in the y-direction. If the resulting shift estimate errors are less than a pre-determined threshold (e.g., 0.03 pixel), the image is accepted. Otherwise, it is rejected.
NASA Astrophysics Data System (ADS)
Wang, Yue; Yu, Jingjun; Pei, Xu
2018-06-01
A new forward kinematics algorithm for the mechanism of 3-RPS (R: Revolute; P: Prismatic; S: Spherical) parallel manipulators is proposed in this study. This algorithm is primarily based on the special geometric conditions of the 3-RPS parallel mechanism, and it eliminates the errors produced by parasitic motions to improve and ensure accuracy. Specifically, the errors can be less than 10-6. In this method, only the group of solutions that is consistent with the actual situation of the platform is obtained rapidly. This algorithm substantially improves calculation efficiency because the selected initial values are reasonable, and all the formulas in the calculation are analytical. This novel forward kinematics algorithm is well suited for real-time and high-precision control of the 3-RPS parallel mechanism.
NASA Astrophysics Data System (ADS)
Zhao, Shengmei; Wang, Le; Zou, Li; Gong, Longyan; Cheng, Weiwen; Zheng, Baoyu; Chen, Hanwu
2016-10-01
A free-space optical (FSO) communication link with multiplexed orbital angular momentum (OAM) modes has been demonstrated to largely enhance the system capacity without a corresponding increase in spectral bandwidth, but the performance of the link is unavoidably degraded by atmospheric turbulence (AT). In this paper, we propose a turbulence mitigation scheme to improve AT tolerance of the OAM-multiplexed FSO communication link using both channel coding and wavefront correction. In the scheme, we utilize a wavefront correction method to mitigate the phase distortion first, and then we use a channel code to further correct the errors in each OAM mode. The improvement of AT tolerance is discussed over the performance of the link with or without channel coding/wavefront correction. The results show that the bit error rate performance has been improved greatly. The detrimental effect of AT on the OAM-multiplexed FSO communication link could be removed by the proposed scheme even in the relatively strong turbulence regime, such as Cn2 = 3.6 ×10-14m - 2 / 3.
NASA Astrophysics Data System (ADS)
Zhao, Lei; Lee, Xuhui; Liu, Shoudong
2013-09-01
Solar radiation at the Earth's surface is an important driver of meteorological and ecological processes. The objective of this study is to evaluate the accuracy of the reanalysis solar radiation produced by NARR (North American Regional Reanalysis) and MERRA (Modern-Era Retrospective Analysis for Research and Applications) against the FLUXNET measurements in North America. We found that both assimilation systems systematically overestimated the surface solar radiation flux on the monthly and annual scale, with an average bias error of +37.2 Wm-2 for NARR and of +20.2 Wm-2 for MERRA. The bias errors were larger under cloudy skies than under clear skies. A postreanalysis algorithm consisting of empirical relationships between model bias, a clearness index, and site elevation was proposed to correct the model errors. Results show that the algorithm can remove the systematic bias errors for both FLUXNET calibration sites (sites used to establish the algorithm) and independent validation sites. After correction, the average annual mean bias errors were reduced to +1.3 Wm-2 for NARR and +2.7 Wm-2 for MERRA. Applying the correction algorithm to the global domain of MERRA brought the global mean surface incoming shortwave radiation down by 17.3 W m-2 to 175.5 W m-2. Under the constraint of the energy balance, other radiation and energy balance terms at the Earth's surface, estimated from independent global data products, also support the need for a downward adjustment of the MERRA surface solar radiation.
Gamma Ray Observatory (GRO) OBC attitude error analysis
NASA Technical Reports Server (NTRS)
Harman, R. R.
1990-01-01
This analysis involves an in-depth look into the onboard computer (OBC) attitude determination algorithm. A review of TRW error analysis and necessary ground simulations to understand the onboard attitude determination process are performed. In addition, a plan is generated for the in-flight calibration and validation of OBC computed attitudes. Pre-mission expected accuracies are summarized and sensitivity of onboard algorithms to sensor anomalies and filter tuning parameters are addressed.
Pitch-Learning Algorithm For Speech Encoders
NASA Technical Reports Server (NTRS)
Bhaskar, B. R. Udaya
1988-01-01
Adaptive algorithm detects and corrects errors in sequence of estimates of pitch period of speech. Algorithm operates in conjunction with techniques used to estimate pitch period. Used in such parametric and hybrid speech coders as linear predictive coders and adaptive predictive coders.
NASA Astrophysics Data System (ADS)
Bowen, S. R.; Nyflot, M. J.; Herrmann, C.; Groh, C. M.; Meyer, J.; Wollenweber, S. D.; Stearns, C. W.; Kinahan, P. E.; Sandison, G. A.
2015-05-01
Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [18F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses, and 2%-2 mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10-20%, treatment planning errors were 5-10%, and treatment delivery errors were 5-30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5-10% in PET/CT imaging, <5% in treatment planning, and <2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT planning, and RT delivery under a dose painting paradigm is feasible within an integrated respiratory motion phantom workflow. For a limited set of cases, the magnitude of errors was comparable during PET/CT imaging and treatment delivery without motion compensation. Errors were moderately mitigated during PET/CT imaging and significantly mitigated during RT delivery with motion compensation. This dynamic motion phantom end-to-end workflow provides a method for quality assurance of 4D PET/CT-guided radiotherapy, including evaluation of respiratory motion compensation methods during imaging and treatment delivery.
Bowen, S R; Nyflot, M J; Herrmann, C; Groh, C M; Meyer, J; Wollenweber, S D; Stearns, C W; Kinahan, P E; Sandison, G A
2015-05-07
Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [(18)F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses, and 2%-2 mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10-20%, treatment planning errors were 5-10%, and treatment delivery errors were 5-30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5-10% in PET/CT imaging, <5% in treatment planning, and <2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT planning, and RT delivery under a dose painting paradigm is feasible within an integrated respiratory motion phantom workflow. For a limited set of cases, the magnitude of errors was comparable during PET/CT imaging and treatment delivery without motion compensation. Errors were moderately mitigated during PET/CT imaging and significantly mitigated during RT delivery with motion compensation. This dynamic motion phantom end-to-end workflow provides a method for quality assurance of 4D PET/CT-guided radiotherapy, including evaluation of respiratory motion compensation methods during imaging and treatment delivery.
Bowen, S R; Nyflot, M J; Hermann, C; Groh, C; Meyer, J; Wollenweber, S D; Stearns, C W; Kinahan, P E; Sandison, G A
2015-01-01
Effective positron emission tomography/computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [18F]FDG. The lung lesion insert was driven by 6 different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy (VMAT) were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses (EUD), and 2%-2mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10–20%, treatment planning errors were 5–10%, and treatment delivery errors were 5–30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5–10% in PET/CT imaging, < 5% in treatment planning, and < 2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT planning, and RT delivery under a dose painting paradigm is feasible within an integrated respiratory motion phantom workflow. For a limited set of cases, the magnitude of errors was comparable during PET/CT imaging and treatment delivery without motion compensation. Errors were moderately mitigated during PET/CT imaging and significantly mitigated during RT delivery with motion compensation. This dynamic motion phantom end-to-end workflow provides a method for quality assurance of 4D PET/CT-guided radiotherapy, including evaluation of respiratory motion compensation methods during imaging and treatment delivery. PMID:25884892
Symmetry boost of the fidelity of Shor factoring
NASA Astrophysics Data System (ADS)
Nam, Y. S.; Blümel, R.
2018-05-01
In Shor's algorithm quantum subroutines occur with the structure F U F-1 , where F is a unitary transform and U is performing a quantum computation. Examples are quantum adders and subunits of quantum modulo adders. In this paper we show, both analytically and numerically, that if, in analogy to spin echoes, F and F-1 can be implemented symmetrically when executing Shor's algorithm on actual, imperfect quantum hardware, such that F and F-1 have the same hardware errors, a symmetry boost in the fidelity of the combined F U F-1 quantum operation results when compared to the case in which the errors in F and F-1 are independently random. Running the complete gate-by-gate implemented Shor algorithm, we show that the symmetry-induced fidelity boost can be as large as a factor 4. While most of our analytical and numerical results concern the case of over- and under-rotation of controlled rotation gates, in the numerically accessible case of Shor's algorithm with a small number of qubits, we show explicitly that the symmetry boost is robust with respect to more general types of errors. While, expectedly, additional error types reduce the symmetry boost, we show explicitly, by implementing general off-diagonal SU (N ) errors (N =2 ,4 ,8 ), that the boost factor scales like a Lorentzian in δ /σ , where σ and δ are the error strengths of the diagonal over- and underrotation errors and the off-diagonal SU (N ) errors, respectively. The Lorentzian shape also shows that, while the boost factor may become small with increasing δ , it declines slowly (essentially like a power law) and is never completely erased. We also investigate the effect of diagonal nonunitary errors, which, in analogy to unitary errors, reduce but never erase the symmetry boost. Going beyond the case of small quantum processors, we present analytical scaling results that show that the symmetry boost persists in the practically interesting case of a large number of qubits. We illustrate this result explicitly for the case of Shor factoring of the semiprime RSA-1024, where, analytically, focusing on over- and underrotation errors, we obtain a boost factor of about 10. In addition, we provide a proof of the fidelity product formula, including its range of applicability.
NASA Astrophysics Data System (ADS)
Bukhari, W.; Hong, S.-M.
2016-03-01
The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the radiation treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting respiratory motion in 3D space and realizing a gating function without pre-specifying a particular phase of the patient’s breathing cycle. The algorithm, named EKF-GPRN+ , first employs an extended Kalman filter (EKF) independently along each coordinate to predict the respiratory motion and then uses a Gaussian process regression network (GPRN) to correct the prediction error of the EKF in 3D space. The GPRN is a nonparametric Bayesian algorithm for modeling input-dependent correlations between the output variables in multi-output regression. Inference in GPRN is intractable and we employ variational inference with mean field approximation to compute an approximate predictive mean and predictive covariance matrix. The approximate predictive mean is used to correct the prediction error of the EKF. The trace of the approximate predictive covariance matrix is utilized to capture the uncertainty in EKF-GPRN+ prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification enables us to pause the treatment beam over such instances. EKF-GPRN+ implements a gating function by using simple calculations based on the trace of the predictive covariance matrix. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPRN+ . The experimental results show that the EKF-GPRN+ algorithm reduces the patient-wise prediction error to 38%, 40% and 40% in root-mean-square, compared to no prediction, at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The EKF-GPRN+ algorithm can further reduce the prediction error by employing the gating function, albeit at the cost of reduced duty cycle. The error reduction allows the clinical target volume to planning target volume (CTV-PTV) margin to be reduced, leading to decreased normal-tissue toxicity and possible dose escalation. The CTV-PTV margin is also evaluated to quantify clinical benefits of EKF-GPRN+ prediction.
Wognum, S; Heethuis, S E; Rosario, T; Hoogeman, M S; Bel, A
2014-07-01
The spatial accuracy of deformable image registration (DIR) is important in the implementation of image guided adaptive radiotherapy techniques for cancer in the pelvic region. Validation of algorithms is best performed on phantoms with fiducial markers undergoing controlled large deformations. Excised porcine bladders, exhibiting similar filling and voiding behavior as human bladders, provide such an environment. The aim of this study was to determine the spatial accuracy of different DIR algorithms on CT images of ex vivo porcine bladders with radiopaque fiducial markers applied to the outer surface, for a range of bladder volumes, using various accuracy metrics. Five excised porcine bladders with a grid of 30-40 radiopaque fiducial markers attached to the outer wall were suspended inside a water-filled phantom. The bladder was filled with a controlled amount of water with added contrast medium for a range of filling volumes (100-400 ml in steps of 50 ml) using a luer lock syringe, and CT scans were acquired at each filling volume. DIR was performed for each data set, with the 100 ml bladder as the reference image. Six intensity-based algorithms (optical flow or demons-based) implemented in theMATLAB platform DIRART, a b-spline algorithm implemented in the commercial software package VelocityAI, and a structure-based algorithm (Symmetric Thin Plate Spline Robust Point Matching) were validated, using adequate parameter settings according to values previously published. The resulting deformation vector field from each registration was applied to the contoured bladder structures and to the marker coordinates for spatial error calculation. The quality of the algorithms was assessed by comparing the different error metrics across the different algorithms, and by comparing the effect of deformation magnitude (bladder volume difference) per algorithm, using the Independent Samples Kruskal-Wallis test. The authors found good structure accuracy without dependency on bladder volume difference for all but one algorithm, and with the best result for the structure-based algorithm. Spatial accuracy as assessed from marker errors was disappointing for all algorithms, especially for large volume differences, implying that the deformations described by the registration did not represent anatomically correct deformations. The structure-based algorithm performed the best in terms of marker error for the large volume difference (100-400 ml). In general, for the small volume difference (100-150 ml) the algorithms performed relatively similarly. The structure-based algorithm exhibited the best balance in performance between small and large volume differences, and among the intensity-based algorithms, the algorithm implemented in VelocityAI exhibited the best balance. Validation of multiple DIR algorithms on a novel physiological bladder phantom revealed that the structure accuracy was good for most algorithms, but that the spatial accuracy as assessed from markers was low for all algorithms, especially for large deformations. Hence, many of the available algorithms exhibit sufficient accuracy for contour propagation purposes, but possibly not for accurate dose accumulation.
Negotiating Multicollinearity with Spike-and-Slab Priors
Ročková, Veronika
2014-01-01
In multiple regression under the normal linear model, the presence of multicollinearity is well known to lead to unreliable and unstable maximum likelihood estimates. This can be particularly troublesome for the problem of variable selection where it becomes more difficult to distinguish between subset models. Here we show how adding a spike-and-slab prior mitigates this difficulty by filtering the likelihood surface into a posterior distribution that allocates the relevant likelihood information to each of the subset model modes. For identification of promising high posterior models in this setting, we consider three EM algorithms, the fast closed form EMVS version of Rockova and George (2014) and two new versions designed for variants of the spike-and-slab formulation. For a multimodal posterior under multicollinearity, we compare the regions of convergence of these three algorithms. Deterministic annealing versions of the EMVS algorithm are seen to substantially mitigate this multimodality. A single simple running example is used for illustration throughout. PMID:25419004
Improved Algorithm For Finite-Field Normal-Basis Multipliers
NASA Technical Reports Server (NTRS)
Wang, C. C.
1989-01-01
Improved algorithm reduces complexity of calculations that must precede design of Massey-Omura finite-field normal-basis multipliers, used in error-correcting-code equipment and cryptographic devices. Algorithm represents an extension of development reported in "Algorithm To Design Finite-Field Normal-Basis Multipliers" (NPO-17109), NASA Tech Briefs, Vol. 12, No. 5, page 82.
Bai, Mingsian R; Hsieh, Ping-Ju; Hur, Kur-Nan
2009-02-01
The performance of the minimum mean-square error noise reduction (MMSE-NR) algorithm in conjunction with time-recursive averaging (TRA) for noise estimation is found to be very sensitive to the choice of two recursion parameters. To address this problem in a more systematic manner, this paper proposes an optimization method to efficiently search the optimal parameters of the MMSE-TRA-NR algorithms. The objective function is based on a regression model, whereas the optimization process is carried out with the simulated annealing algorithm that is well suited for problems with many local optima. Another NR algorithm proposed in the paper employs linear prediction coding as a preprocessor for extracting the correlated portion of human speech. Objective and subjective tests were undertaken to compare the optimized MMSE-TRA-NR algorithm with several conventional NR algorithms. The results of subjective tests were processed by using analysis of variance to justify the statistic significance. A post hoc test, Tukey's Honestly Significant Difference, was conducted to further assess the pairwise difference between the NR algorithms.
Error minimization algorithm for comparative quantitative PCR analysis: Q-Anal.
OConnor, William; Runquist, Elizabeth A
2008-07-01
Current methods for comparative quantitative polymerase chain reaction (qPCR) analysis, the threshold and extrapolation methods, either make assumptions about PCR efficiency that require an arbitrary threshold selection process or extrapolate to estimate relative levels of messenger RNA (mRNA) transcripts. Here we describe an algorithm, Q-Anal, that blends elements from current methods to by-pass assumptions regarding PCR efficiency and improve the threshold selection process to minimize error in comparative qPCR analysis. This algorithm uses iterative linear regression to identify the exponential phase for both target and reference amplicons and then selects, by minimizing linear regression error, a fluorescence threshold where efficiencies for both amplicons have been defined. From this defined fluorescence threshold, cycle time (Ct) and the error for both amplicons are calculated and used to determine the expression ratio. Ratios in complementary DNA (cDNA) dilution assays from qPCR data were analyzed by the Q-Anal method and compared with the threshold method and an extrapolation method. Dilution ratios determined by the Q-Anal and threshold methods were 86 to 118% of the expected cDNA ratios, but relative errors for the Q-Anal method were 4 to 10% in comparison with 4 to 34% for the threshold method. In contrast, ratios determined by an extrapolation method were 32 to 242% of the expected cDNA ratios, with relative errors of 67 to 193%. Q-Anal will be a valuable and quick method for minimizing error in comparative qPCR analysis.
Characterizing the SWOT discharge error budget on the Sacramento River, CA
NASA Astrophysics Data System (ADS)
Yoon, Y.; Durand, M. T.; Minear, J. T.; Smith, L.; Merry, C. J.
2013-12-01
The Surface Water and Ocean Topography (SWOT) is an upcoming satellite mission (2020 year) that will provide surface-water elevation and surface-water extent globally. One goal of SWOT is the estimation of river discharge directly from SWOT measurements. SWOT discharge uncertainty is due to two sources. First, SWOT cannot measure channel bathymetry and determine roughness coefficient data necessary for discharge calculations directly; these parameters must be estimated from the measurements or from a priori information. Second, SWOT measurement errors directly impact the discharge estimate accuracy. This study focuses on characterizing parameter and measurement uncertainties for SWOT river discharge estimation. A Bayesian Markov Chain Monte Carlo scheme is used to calculate parameter estimates, given the measurements of river height, slope and width, and mass and momentum constraints. The algorithm is evaluated using simulated both SWOT and AirSWOT (the airborne version of SWOT) observations over seven reaches (about 40 km) of the Sacramento River. The SWOT and AirSWOT observations are simulated by corrupting the ';true' HEC-RAS hydraulic modeling results with the instrument error. This experiment answers how unknown bathymetry and roughness coefficients affect the accuracy of the river discharge algorithm. From the experiment, the discharge error budget is almost completely dominated by unknown bathymetry and roughness; 81% of the variance error is explained by uncertainties in bathymetry and roughness. Second, we show how the errors in water surface, slope, and width observations influence the accuracy of discharge estimates. Indeed, there is a significant sensitivity to water surface, slope, and width errors due to the sensitivity of bathymetry and roughness to measurement errors. Increasing water-surface error above 10 cm leads to a corresponding sharper increase of errors in bathymetry and roughness. Increasing slope error above 1.5 cm/km leads to a significant degradation due to direct error in the discharge estimates. As the width error increases past 20%, the discharge error budget is dominated by the width error. Above two experiments are performed based on AirSWOT scenarios. In addition, we explore the sensitivity of the algorithm to the SWOT scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, Yu; Lin, Yu; Yu, Guoqiang, E-mail: guoqiang.yu@uky.edu
2014-05-12
Conventional semi-infinite solution for extracting blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements may cause errors in estimation of BFI (αD{sub B}) in tissues with small volume and large curvature. We proposed an algorithm integrating Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in tissue for the extraction of αD{sub B}. The volume and geometry of the measured tissue were incorporated in the Monte Carlo simulation, which overcome the semi-infinite restrictions. The algorithm was tested using computer simulations on four tissue models with varied volumes/geometries and applied on an in vivo strokemore » model of mouse. Computer simulations shows that the high-order (N ≥ 5) linear algorithm was more accurate in extracting αD{sub B} (errors < ±2%) from the noise-free DCS data than the semi-infinite solution (errors: −5.3% to −18.0%) for different tissue models. Although adding random noises to DCS data resulted in αD{sub B} variations, the mean values of errors in extracting αD{sub B} were similar to those reconstructed from the noise-free DCS data. In addition, the errors in extracting the relative changes of αD{sub B} using both linear algorithm and semi-infinite solution were fairly small (errors < ±2.0%) and did not rely on the tissue volume/geometry. The experimental results from the in vivo stroke mice agreed with those in simulations, demonstrating the robustness of the linear algorithm. DCS with the high-order linear algorithm shows the potential for the inter-subject comparison and longitudinal monitoring of absolute BFI in a variety of tissues/organs with different volumes/geometries.« less
Tests of a Semi-Analytical Case 1 and Gelbstoff Case 2 SeaWiFS Algorithm with a Global Data Set
NASA Technical Reports Server (NTRS)
Carder, Kendall L.; Hawes, Steve K.; Lee, Zhongping
1997-01-01
A semi-analytical algorithm was tested with a total of 733 points of either unpackaged or packaged-pigment data, with corresponding algorithm parameters for each data type. The 'unpackaged' type consisted of data sets that were generally consistent with the Case 1 CZCS algorithm and other well calibrated data sets. The 'packaged' type consisted of data sets apparently containing somewhat more packaged pigments, requiring modification of the absorption parameters of the model consistent with the CalCOFI study area. This resulted in two equally divided data sets. A more thorough scrutiny of these and other data sets using a semianalytical model requires improved knowledge of the phytoplankton and gelbstoff of the specific environment studied. Since the semi-analytical algorithm is dependent upon 4 spectral channels including the 412 nm channel, while most other algorithms are not, a means of testing data sets for consistency was sought. A numerical filter was developed to classify data sets into the above classes. The filter uses reflectance ratios, which can be determined from space. The sensitivity of such numerical filters to measurement resulting from atmospheric correction and sensor noise errors requires further study. The semi-analytical algorithm performed superbly on each of the data sets after classification, resulting in RMS1 errors of 0.107 and 0.121, respectively, for the unpackaged and packaged data-set classes, with little bias and slopes near 1.0. In combination, the RMS1 performance was 0.114. While these numbers appear rather sterling, one must bear in mind what mis-classification does to the results. Using an average or compromise parameterization on the modified global data set yielded an RMS1 error of 0.171, while using the unpackaged parameterization on the global evaluation data set yielded an RMS1 error of 0.284. So, without classification, the algorithm performs better globally using the average parameters than it does using the unpackaged parameters. Finally, the effects of even more extreme pigment packaging must be examined in order to improve algorithm performance at high latitudes. Note, however, that the North Sea and Mississippi River plume studies contributed data to the packaged and unpackaged classess, respectively, with little effect on algorithm performance. This suggests that gelbstoff-rich Case 2 waters do not seriously degrade performance of the semi-analytical algorithm.
SU-F-T-20: Novel Catheter Lumen Recognition Algorithm for Rapid Digitization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dise, J; McDonald, D; Ashenafi, M
Purpose: Manual catheter recognition remains a time-consuming aspect of high-dose-rate brachytherapy (HDR) treatment planning. In this work, a novel catheter lumen recognition algorithm was created for accurate and rapid digitization. Methods: MatLab v8.5 was used to create the catheter recognition algorithm. Initially, the algorithm searches the patient CT dataset using an intensity based k-means filter designed to locate catheters. Once the catheters have been located, seed points are manually selected to initialize digitization of each catheter. From each seed point, the algorithm searches locally in order to automatically digitize the remaining catheter. This digitization is accomplished by finding pixels withmore » similar image curvature and divergence parameters compared to the seed pixel. Newly digitized pixels are treated as new seed positions, and hessian image analysis is used to direct the algorithm toward neighboring catheter pixels, and to make the algorithm insensitive to adjacent catheters that are unresolvable on CT, air pockets, and high Z artifacts. The algorithm was tested using 11 HDR treatment plans, including the Syed template, tandem and ovoid applicator, and multi-catheter lung brachytherapy. Digitization error was calculated by comparing manually determined catheter positions to those determined by the algorithm. Results: he digitization error was 0.23 mm ± 0.14 mm axially and 0.62 mm ± 0.13 mm longitudinally at the tip. The time of digitization, following initial seed placement was less than 1 second per catheter. The maximum total time required to digitize all tested applicators was 4 minutes (Syed template with 15 needles). Conclusion: This algorithm successfully digitizes HDR catheters for a variety of applicators with or without CT markers. The minimal axial error demonstrates the accuracy of the algorithm, and its insensitivity to image artifacts and challenging catheter positioning. Future work to automatically place initial seed positions would improve the algorithm speed.« less
Simulating Urban Tree Effects on Air, Water, and Heat Pollution Mitigation: iTree-Hydro Model
NASA Astrophysics Data System (ADS)
Yang, Y.; Endreny, T. A.; Nowak, D.
2011-12-01
Urban and suburban development changes land surface thermal, radiative, porous, and roughness properties and pollutant loading rates, with the combined effect leading to increased air, water, and heat pollution (e.g., urban heat islands). In this research we present the USDA Forest Service urban forest ecosystem and hydrology model, iTree Eco and Hydro, used to analyze how tree cover can deliver valuable ecosystem services to mitigate air, water, and heat pollution. Air pollution mitigation is simulated by dry deposition processes based on detected pollutant levels for CO, NO2, SO2, O3 and atmospheric stability and leaf area indices. Water quality mitigation is simulated with event mean concentration loading algorithms for N, P, metals, and TSS, and by green infrastructure pollutant filtering algorithms that consider flow path dispersal areas. Urban cooling considers direct shading and indirect evapotranspiration. Spatially distributed estimates of hourly tree evapotranspiration during the growing season are used to estimate human thermal comfort. Two main factors regulating evapotranspiration are soil moisture and canopy radiation. Spatial variation of soil moisture is represented by a modified urban topographic index and radiation for each tree is modified by considering aspect, slope and shade from surrounding buildings or hills. We compare the urban cooling algorithms used in iTree-Hydro with the urban canopy and land surface physics schemes used in the Weather Research and Forecasting model. We conclude by identifying biophysical feedbacks between tree-modulated air and water quality environmental services and how these may respond to urban heating and cooling. Improvements to this iTree model are intended to assist managers identify valuable tree services for urban living.
Numerical optimization in Hilbert space using inexact function and gradient evaluations
NASA Technical Reports Server (NTRS)
Carter, Richard G.
1989-01-01
Trust region algorithms provide a robust iterative technique for solving non-convex unstrained optimization problems, but in many instances it is prohibitively expensive to compute high accuracy function and gradient values for the method. Of particular interest are inverse and parameter estimation problems, since function and gradient evaluations involve numerically solving large systems of differential equations. A global convergence theory is presented for trust region algorithms in which neither function nor gradient values are known exactly. The theory is formulated in a Hilbert space setting so that it can be applied to variational problems as well as the finite dimensional problems normally seen in trust region literature. The conditions concerning allowable error are remarkably relaxed: relative errors in the gradient error condition is automatically satisfied if the error is orthogonal to the gradient approximation. A technique for estimating gradient error and improving the approximation is also presented.
Classification-Based Spatial Error Concealment for Visual Communications
NASA Astrophysics Data System (ADS)
Chen, Meng; Zheng, Yefeng; Wu, Min
2006-12-01
In an error-prone transmission environment, error concealment is an effective technique to reconstruct the damaged visual content. Due to large variations of image characteristics, different concealment approaches are necessary to accommodate the different nature of the lost image content. In this paper, we address this issue and propose using classification to integrate the state-of-the-art error concealment techniques. The proposed approach takes advantage of multiple concealment algorithms and adaptively selects the suitable algorithm for each damaged image area. With growing awareness that the design of sender and receiver systems should be jointly considered for efficient and reliable multimedia communications, we proposed a set of classification-based block concealment schemes, including receiver-side classification, sender-side attachment, and sender-side embedding. Our experimental results provide extensive performance comparisons and demonstrate that the proposed classification-based error concealment approaches outperform the conventional approaches.
Random synaptic feedback weights support error backpropagation for deep learning
NASA Astrophysics Data System (ADS)
Lillicrap, Timothy P.; Cownden, Daniel; Tweed, Douglas B.; Akerman, Colin J.
2016-11-01
The brain processes information through multiple layers of neurons. This deep architecture is representationally powerful, but complicates learning because it is difficult to identify the responsible neurons when a mistake is made. In machine learning, the backpropagation algorithm assigns blame by multiplying error signals with all the synaptic weights on each neuron's axon and further downstream. However, this involves a precise, symmetric backward connectivity pattern, which is thought to be impossible in the brain. Here we demonstrate that this strong architectural constraint is not required for effective error propagation. We present a surprisingly simple mechanism that assigns blame by multiplying errors by even random synaptic weights. This mechanism can transmit teaching signals across multiple layers of neurons and performs as effectively as backpropagation on a variety of tasks. Our results help reopen questions about how the brain could use error signals and dispel long-held assumptions about algorithmic constraints on learning.
Random synaptic feedback weights support error backpropagation for deep learning
Lillicrap, Timothy P.; Cownden, Daniel; Tweed, Douglas B.; Akerman, Colin J.
2016-01-01
The brain processes information through multiple layers of neurons. This deep architecture is representationally powerful, but complicates learning because it is difficult to identify the responsible neurons when a mistake is made. In machine learning, the backpropagation algorithm assigns blame by multiplying error signals with all the synaptic weights on each neuron's axon and further downstream. However, this involves a precise, symmetric backward connectivity pattern, which is thought to be impossible in the brain. Here we demonstrate that this strong architectural constraint is not required for effective error propagation. We present a surprisingly simple mechanism that assigns blame by multiplying errors by even random synaptic weights. This mechanism can transmit teaching signals across multiple layers of neurons and performs as effectively as backpropagation on a variety of tasks. Our results help reopen questions about how the brain could use error signals and dispel long-held assumptions about algorithmic constraints on learning. PMID:27824044
NASA Astrophysics Data System (ADS)
Hoang Khanh Linh, N.; Van Chuong, H.
2015-04-01
Urban climate, one of the challenges of human being in 21 century, is known as the results of land use/cover transformation. Its characteristics are distinguished by different varieties of climatic conditions in comparison with those of less built-up areas. The alterations lead to "Urban Heat Island", in which temperature in urban places is higher than surrounding environment. This happens not only in mega cities but also in less urbanized sites. The results determine the change of land use/cover and land surface temperature in Danang city by using multi-temporal Landsat and ASTER data for the period of 1990-2009. Based on the supervised classification method of maximum likelihood algorithm, satellite images in 1990, 2003, 2009 were classified into five classes: water, forest, shrub, agriculture, barren land and built-up area. For accuracy assessment, the error metric tabulations of mapped classes and reference classes were made. The Kappa statistics, derived from error matrices, were over 80% for all of land use maps. An comparison change detection algorithm was made in three intervals, 1990-2003, 2003-2009 and 1990-2009. The results showed that built-up area increased from 8.95% to 17.87% between 1990 and 2009, while agriculture, shrub and barren decreased from 12.98% to 7.53%, 15.72% to 9.89% and 3.88% to 1.77% due to urbanization that resulted from increasing of urban population and economic development, respectively. Land surface temperature (LST) maps were retrieved from thermal infrared bands of Landsat and ASTER data. The result indicated that the temperature in study area increased from 39oC to 41oC for the period of 1990-2009. Our analysis showed that built-up area had the highest LST values, whereas water bodies had the least LST. This study is expected to be useful for decision makers to make an appropriate land use planning which can mitigate the effect to urban climate.
New Developments in FPGA: SEUs and Fail-Safe Strategies from the NASA Goddard Perspective
NASA Technical Reports Server (NTRS)
Berg, Melanie D.; Label, Kenneth A.; Pellish, Jonathan
2016-01-01
It has been shown that, when exposed to radiation environments, each Field Programmable Gate Array (FPGA) device has unique error signatures. Subsequently, fail-safe and mitigation strategies will differ per FPGA type. In this session several design approaches for safe systems will be presented. It will also explore the benefits and limitations of several mitigation techniques. The intention of the presentation is to provide information regarding FPGA types, their susceptibilities, and proven fail-safe strategies; so that users can select appropriate mitigation and perform the required trade for system insertion. The presentation will describe three types of FPGA devices and their susceptibilities in radiation environments.
New Developments in FPGA: SEUs and Fail-Safe Strategies from the NASA Goddard Perspective
NASA Technical Reports Server (NTRS)
Berg, Melanie D.; LaBel, Kenneth; Pellish, Jonathan
2015-01-01
It has been shown that, when exposed to radiation environments, each Field Programmable Gate Array (FPGA) device has unique error signatures. Subsequently, fail-safe and mitigation strategies will differ per FPGA type. In this session several design approaches for safe systems will be presented. It will also explore the benefits and limitations of several mitigation techniques. The intention of the presentation is to provide information regarding FPGA types, their susceptibilities, and proven fail-safe strategies; so that users can select appropriate mitigation and perform the required trade for system insertion. The presentation will describe three types of FPGA devices and their susceptibilities in radiation environments.
Accurate Heart Rate Monitoring During Physical Exercises Using PPG.
Temko, Andriy
2017-09-01
The challenging task of heart rate (HR) estimation from the photoplethysmographic (PPG) signal, during intensive physical exercises, is tackled in this paper. The study presents a detailed analysis of a novel algorithm (WFPV) that exploits a Wiener filter to attenuate the motion artifacts, a phase vocoder to refine the HR estimate and user-adaptive post-processing to track the subject physiology. Additionally, an offline version of the HR estimation algorithm that uses Viterbi decoding is designed for scenarios that do not require online HR monitoring (WFPV+VD). The performance of the HR estimation systems is rigorously compared with existing algorithms on the publically available database of 23 PPG recordings. On the whole dataset of 23 PPG recordings, the algorithms result in average absolute errors of 1.97 and 1.37 BPM in the online and offline modes, respectively. On the test dataset of 10 PPG recordings which were most corrupted with motion artifacts, WFPV has an error of 2.95 BPM on its own and 2.32 BPM in an ensemble with two existing algorithms. The error rate is significantly reduced when compared with the state-of-the art PPG-based HR estimation methods. The proposed system is shown to be accurate in the presence of strong motion artifacts and in contrast to existing alternatives has very few free parameters to tune. The algorithm has a low computational cost and can be used for fitness tracking and health monitoring in wearable devices. The MATLAB implementation of the algorithm is provided online.
An outlet breaching algorithm for the treatment of closed depressions in a raster DEM
NASA Astrophysics Data System (ADS)
Martz, Lawrence W.; Garbrecht, Jurgen
1999-08-01
Automated drainage analysis of raster DEMs typically begins with the simulated filling of all closed depressions and the imposition of a drainage pattern on the resulting flat areas. The elimination of closed depressions by filling implicitly assumes that all depressions are caused by elevation underestimation. This assumption is difficult to support, as depressions can be produced by overestimation as well as by underestimation of DEM values.This paper presents a new algorithm that is applied in conjunction with conventional depression filling to provide a more realistic treatment of those depressions that are likely due to overestimation errors. The algorithm lowers the elevation of selected cells on the edge of closed depressions to simulate breaching of the depression outlets. Application of this breaching algorithm prior to depression filling can substantially reduce the number and size of depressions that need to be filled, especially in low relief terrain.Removing or reducing the size of a depression by breaching implicitly assumes that the depression is due to a spurious flow blockage caused by elevation overestimation. Removing a depression by filling, on the other hand, implicitly assumes that the depression is a direct artifact of elevation underestimation. Although the breaching algorithm cannot distinguish between overestimation and underestimation errors in a DEM, a constraining parameter for breaching length can be used to restrict breaching to closed depressions caused by narrow blockages along well-defined drainage courses. These are considered the depressions most likely to have arisen from overestimation errors. Applying the constrained breaching algorithm prior to a conventional depression-filling algorithm allows both positive and negative elevation adjustments to be used to remove depressions.The breaching algorithm was incorporated into the DEM pre-processing operations of the TOPAZ software system. The effect of the algorithm is illustrated by the application of TOPAZ to a DEM of a low-relief landscape. The use of the breaching algorithm during DEM pre-processing substantially reduced the number of cells that needed to be subsequently raised in elevation to remove depressions. The number and kind of depression cells that were eliminated by the breaching algorithm suggested that the algorithm effectively targeted those topographic situations for which it was intended. A detailed inspection of a portion of the DEM that was processed using breaching algorithm in conjunction with depression-filling also suggested the effects of the algorithm were as intended.The breaching algorithm provides an empirically satisfactory and robust approach to treating closed depressions in a raster DEM. It recognises that depressions in certain topographic settings are as likely to be due to elevation overestimation as to elevation underestimation errors. The algorithm allows a more realistic treatment of depressions in these situations than conventional methods that rely solely on depression-filling.
Evaluation of algorithms for geological thermal-inertia mapping
NASA Technical Reports Server (NTRS)
Miller, S. H.; Watson, K.
1977-01-01
The errors incurred in producing a thermal inertia map are of three general types: measurement, analysis, and model simplification. To emphasize the geophysical relevance of these errors, they were expressed in terms of uncertainty in thermal inertia and compared with the thermal inertia values of geologic materials. Thus the applications and practical limitations of the technique were illustrated. All errors were calculated using the parameter values appropriate to a site at the Raft River, Id. Although these error values serve to illustrate the magnitudes that can be expected from the three general types of errors, extrapolation to other sites should be done using parameter values particular to the area. Three surface temperature algorithms were evaluated: linear Fourier series, finite difference, and Laplace transform. In terms of resulting errors in thermal inertia, the Laplace transform method is the most accurate (260 TIU), the forward finite difference method is intermediate (300 TIU), and the linear Fourier series method the least accurate (460 TIU).