Mirrors, Mirrors on the Wall...The Ubiquitous Multiple Reflection Error
ERIC Educational Resources Information Center
Lawson, Rebecca
2012-01-01
Participants decided when somebody, Janine, could see their face in a horizontal row of adjacent mirrors mounted flat on the same wall. They saw real mirrors and a shop-dummy representing Janine. Such coplanar mirrors reflect different, non-overlapping areas of a scene. However, almost everybody made an unexpected error: they claimed that Janine…
Tabelow, Karsten; König, Reinhard; Polzehl, Jörg
2016-01-01
Estimation of learning curves is ubiquitously based on proportions of correct responses within moving trial windows. Thereby, it is tacitly assumed that learning performance is constant within the moving windows, which, however, is often not the case. In the present study we demonstrate that violations of this assumption lead to systematic errors in the analysis of learning curves, and we explored the dependency of these errors on window size, different statistical models, and learning phase. To reduce these errors in the analysis of single-subject data as well as on the population level, we propose adequate statistical methods for the estimation of learning curves and the construction of confidence intervals, trial by trial. Applied to data from an avoidance learning experiment with rodents, these methods revealed performance changes occurring at multiple time scales within and across training sessions which were otherwise obscured in the conventional analysis. Our work shows that the proper assessment of the behavioral dynamics of learning at high temporal resolution can shed new light on specific learning processes, and, thus, allows to refine existing learning concepts. It further disambiguates the interpretation of neurophysiological signal changes recorded during training in relation to learning. PMID:27303809
ERIC Educational Resources Information Center
Stanley, Julian C.; Livingston, Samuel A.
Besides the ubiquitous Pearson product-moment r, there are a number of other measures of relationship that are attenuated by errors of measurement and for which the relationship between true measures can be estimated. Among these are the correlation ratio (eta squared), Kelley's unbiased correlation ratio (epsilon squared), Hays' omega squared,…
Optimization of Trade-offs in Error-free Image Transmission
NASA Astrophysics Data System (ADS)
Cox, Jerome R.; Moore, Stephen M.; Blaine, G. James; Zimmerman, John B.; Wallace, Gregory K.
1989-05-01
The availability of ubiquitous wide-area channels of both modest cost and higher transmission rate than voice-grade lines promises to allow the expansion of electronic radiology services to a larger community. The band-widths of the new services becoming available from the Integrated Services Digital Network (ISDN) are typically limited to 128 Kb/s, almost two orders of magnitude lower than popular LANs can support. Using Discrete Cosine Transform (DCT) techniques, a compressed approximation to an image may be rapidly transmitted. However, intensity or resampling transformations of the reconstructed image may reveal otherwise invisible artifacts of the approximate encoding. A progressive transmission scheme reported in ISO Working Paper N800 offers an attractive solution to this problem by rapidly reconstructing an apparently undistorted image from the DCT coefficients and then subse-quently transmitting the error image corresponding to the difference between the original and the reconstructed images. This approach achieves an error-free transmission without sacrificing the perception of rapid image delivery. Furthermore, subsequent intensity and resampling manipulations can be carried out with confidence. DCT coefficient precision affects the amount of error information that must be transmitted and, hence the delivery speed of error-free images. This study calculates the overall information coding rate for six radiographic images as a function of DCT coefficient precision. The results demonstrate that a minimum occurs for each of the six images at an average coefficient precision of between 0.5 and 1.0 bits per pixel (b/p). Apparently undistorted versions of these six images can be transmitted with a coding rate of between 0.25 and 0.75 b/p while error-free versions can be transmitted with an overall coding rate between 4.5 and 6.5 b/p.
Diagnostic Hypothesis Generation and Human Judgment
ERIC Educational Resources Information Center
Thomas, Rick P.; Dougherty, Michael R.; Sprenger, Amber M.; Harbison, J. Isaiah
2008-01-01
Diagnostic hypothesis-generation processes are ubiquitous in human reasoning. For example, clinicians generate disease hypotheses to explain symptoms and help guide treatment, auditors generate hypotheses for identifying sources of accounting errors, and laypeople generate hypotheses to explain patterns of information (i.e., data) in the…
Ubiquitous Fast Propagating Intensity Disturbances in Solar Chromosphere
NASA Technical Reports Server (NTRS)
Kubo, M.; Katsukawa, Y.; Suematsu, Y.; Kano, R.; Bando, T.; Narukage, N.; Ishikawa, R.; Hara, H.; Giono, G.; Winebarger, A.;
2016-01-01
High cadence observations by the slit-jaw (SJ) optics system of the sounding rocket experiment "the Chromospheric Lyman Alpha SpectroPolarimeter (CLASP)" reveal ubiquitous intensity disturbances that recurrently propagate in either the chromosphere, transition region, or both at a speed much higher than the sound speed.
The organization and expression of the mdm2 gene.
de Oca Luna, R M; Tabor, A D; Eberspaecher, H; Hulboy, D L; Worth, L L; Colman, M S; Finlay, C A; Lozano, G
1996-05-01
The mdm2 gene encodes a zinc finger protein that negatively regulates p53 function by binding and masking the p53 transcriptional activation domain. Two different promoters control expression of mdm2, one of which is also transactivated by p53. We cloned and characterized the mdm2 gene from a murine 129 library. It contained at least 12 exons and spanned approximately 25 kb of DNA. Sequencing of the mdm2 gene revealed three nucleotide differences that resulted in amino acid substitutions in the previously published mdm2 sequence. Sequencing of normal BalbC/J DNA and the original cosmid clone isolated from the 3T3DM cell line revealed that they are identical, suggesting that the published sequence is in error at these three positions. In addition, we analyzed the expression pattern of mdm2 and found ubiquitous low-level expression throughout embryo development and in adult tissues. Analysis of mRNA from numerous tissues for several mdm2 spliced variants that had been identified in the transformed 3T3DM cell line revealed that these variants could not be detected in the developing embryo or in adult tissues.
Unreliable numbers: error and harm induced by bad design can be reduced by better design
Thimbleby, Harold; Oladimeji, Patrick; Cairns, Paul
2015-01-01
Number entry is a ubiquitous activity and is often performed in safety- and mission-critical procedures, such as healthcare, science, finance, aviation and in many other areas. We show that Monte Carlo methods can quickly and easily compare the reliability of different number entry systems. A surprising finding is that many common, widely used systems are defective, and induce unnecessary human error. We show that Monte Carlo methods enable designers to explore the implications of normal and unexpected operator behaviour, and to design systems to be more resilient to use error. We demonstrate novel designs with improved resilience, implying that the common problems identified and the errors they induce are avoidable. PMID:26354830
Visual Salience of Algebraic Transformations
ERIC Educational Resources Information Center
Kirshner, David; Awtry, Thomas
2004-01-01
Information processing researchers have assumed that algebra symbol skills depend on mastery of the abstract rules presented in the curriculum (Matz, 1980; Sleeman, 1986). Thus, students' ubiquitous algebra errors have been taken as indicating the need to embed algebra in rich contextual settings (Kaput, 1995; National Council of Teachers of…
Reducing number entry errors: solving a widespread, serious problem.
Thimbleby, Harold; Cairns, Paul
2010-10-06
Number entry is ubiquitous: it is required in many fields including science, healthcare, education, government, mathematics and finance. People entering numbers are to be expected to make errors, but shockingly few systems make any effort to detect, block or otherwise manage errors. Worse, errors may be ignored but processed in arbitrary ways, with unintended results. A standard class of error (defined in the paper) is an 'out by 10 error', which is easily made by miskeying a decimal point or a zero. In safety-critical domains, such as drug delivery, out by 10 errors generally have adverse consequences. Here, we expose the extent of the problem of numeric errors in a very wide range of systems. An analysis of better error management is presented: under reasonable assumptions, we show that the probability of out by 10 errors can be halved by better user interface design. We provide a demonstration user interface to show that the approach is practical.To kill an error is as good a service as, and sometimes even better than, the establishing of a new truth or fact. (Charles Darwin 1879 [2008], p. 229).
Precision enhancement of pavement roughness localization with connected vehicles
NASA Astrophysics Data System (ADS)
Bridgelall, R.; Huang, Y.; Zhang, Z.; Deng, F.
2016-02-01
Transportation agencies rely on the accurate localization and reporting of roadway anomalies that could pose serious hazards to the traveling public. However, the cost and technical limitations of present methods prevent their scaling to all roadways. Connected vehicles with on-board accelerometers and conventional geospatial position receivers offer an attractive alternative because of their potential to monitor all roadways in real-time. The conventional global positioning system is ubiquitous and essentially free to use but it produces impractically large position errors. This study evaluated the improvement in precision achievable by augmenting the conventional geo-fence system with a standard speed bump or an existing anomaly at a pre-determined position to establish a reference inertial marker. The speed sensor subsequently generates position tags for the remaining inertial samples by computing their path distances relative to the reference position. The error model and a case study using smartphones to emulate connected vehicles revealed that the precision in localization improves from tens of metres to sub-centimetre levels, and the accuracy of measuring localized roughness more than doubles. The research results demonstrate that transportation agencies will benefit from using the connected vehicle method to achieve precision and accuracy levels that are comparable to existing laser-based inertial profilers.
Nonword Repetition Errors of Children with and without Specific Language Impairments (SLI)
ERIC Educational Resources Information Center
Burke, Heidi L.; Coady, Jeffry A.
2015-01-01
Background: Two ubiquitous findings from the literature are that (1) children with specific language impairments (SLI) repeat nonwords less accurately than peers with typical language development (TLD), and (2) all children repeat nonwords with frequent phonotactic patterns more accurately than low-probability nonwords. Many studies have examined…
Improving Advising Using Technology and Data Analytics
ERIC Educational Resources Information Center
Phillips, Elizabeth D.
2013-01-01
Traditionally, the collegiate advising system provides each student with a personal academic advisor who designs a pathway to the degree for that student in face-to-face meetings. Ideally, this is a supportive mentoring relationship. In truth, however, this system is highly inefficient, error prone, expensive, and a source of ubiquitous student…
Is there contextuality in behavioural and social systems?
Dzhafarov, E N; Zhang, Ru; Kujala, Janne
2016-01-13
Most behavioural and social experiments aimed at revealing contextuality are confined to cyclic systems with binary outcomes. In quantum physics, this broad class of systems includes as special cases Klyachko-Can-Binicioglu-Shumovsky-type, Einstein-Podolsky-Rosen-Bell-type and Suppes-Zanotti-Leggett-Garg-type systems. The theory of contextuality known as contextuality-by-default allows one to define and measure contextuality in all such systems, even if there are context-dependent errors in measurements, or if something in the contexts directly interacts with the measurements. This makes the theory especially suitable for behavioural and social systems, where direct interactions of 'everything with everything' are ubiquitous. For cyclic systems with binary outcomes, the theory provides necessary and sufficient conditions for non-contextuality, and these conditions are known to be breached in certain quantum systems. We review several behavioural and social datasets (from polls of public opinion to visual illusions to conjoint choices to word combinations to psychophysical matching), and none of these data provides any evidence for contextuality. Our working hypothesis is that this may be a broadly applicable rule: behavioural and social systems are non-contextual, i.e. all 'contextual effects' in them result from the ubiquitous dependence of response distributions on the elements of contexts other than the ones to which the response is presumably or normatively directed. © 2015 The Author(s).
Hippocampal Processing of Ambiguity Enhances Fear Memory
Amadi, Ugwechi; Lim, Seh Hong; Liu, Elizabeth; Baratta, Michael V.; Goosens, Ki Ann
2016-01-01
Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, where dangerous situations can lead to unpleasant outcomes in unpredictable ways. Here we varied the timing of aversive events following predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of CA1 cells during aversive negative prediction errors prevented this enhancement of fear without impacting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning. PMID:28182526
Hippocampal Processing of Ambiguity Enhances Fear Memory.
Amadi, Ugwechi; Lim, Seh Hong; Liu, Elizabeth; Baratta, Michael V; Goosens, Ki A
2017-02-01
Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, in which dangerous situations can lead to unpleasant outcomes in unpredictable ways. In the current experiments, we varied the timing of aversive events after predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of cornu ammonis 1 cells during aversive negative prediction errors prevented this enhancement of fear without affecting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial-reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning.
Newman, Craig G J; Bevins, Adam D; Zajicek, John P; Hodges, John R; Vuillermoz, Emil; Dickenson, Jennifer M; Kelly, Denise S; Brown, Simona; Noad, Rupert F
2018-01-01
Ensuring reliable administration and reporting of cognitive screening tests are fundamental in establishing good clinical practice and research. This study captured the rate and type of errors in clinical practice, using the Addenbrooke's Cognitive Examination-III (ACE-III), and then the reduction in error rate using a computerized alternative, the ACEmobile app. In study 1, we evaluated ACE-III assessments completed in National Health Service (NHS) clinics ( n = 87) for administrator error. In study 2, ACEmobile and ACE-III were then evaluated for their ability to capture accurate measurement. In study 1, 78% of clinically administered ACE-IIIs were either scored incorrectly or had arithmetical errors. In study 2, error rates seen in the ACE-III were reduced by 85%-93% using ACEmobile. Error rates are ubiquitous in routine clinical use of cognitive screening tests and the ACE-III. ACEmobile provides a framework for supporting reduced administration, scoring, and arithmetical error during cognitive screening.
A General Approach for Estimating Scale Score Reliability for Panel Survey Data
ERIC Educational Resources Information Center
Biemer, Paul P.; Christ, Sharon L.; Wiesen, Christopher A.
2009-01-01
Scale score measures are ubiquitous in the psychological literature and can be used as both dependent and independent variables in data analysis. Poor reliability of scale score measures leads to inflated standard errors and/or biased estimates, particularly in multivariate analysis. Reliability estimation is usually an integral step to assess…
Circulating Laptops: Lessons Learned in an Academic Library
ERIC Educational Resources Information Center
Sharpe, Paul A.
2009-01-01
Laptops have become ubiquitous in academic libraries, as has the practice of circulating laptops for student use. Several studies have analyzed the how-to of loaning laptops, and a number of surveys have focused on how they are being used. However, little has been written of the practical lessons learned; the trial and error of those on the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, M. P.; Centre for Quantum Technologies, National University of Singapore; QuTech, Delft University of Technology, Lorentzweg 1, 2611 CJ Delft
2016-02-15
Instances of discrete quantum systems coupled to a continuum of oscillators are ubiquitous in physics. Often the continua are approximated by a discrete set of modes. We derive error bounds on expectation values of system observables that have been time evolved under such discretised Hamiltonians. These bounds take on the form of a function of time and the number of discrete modes, where the discrete modes are chosen according to Gauss quadrature rules. The derivation makes use of tools from the field of Lieb-Robinson bounds and the theory of orthonormal polynomials.
NASA Astrophysics Data System (ADS)
Shoushtari, M. A.; Sadeghi-Niaraki, H.
2014-10-01
The growing trend in technological advances and Micro Electro Mechanical Systems (MEMS) has targeted for intelligent human lives. Accordingly, Ubiquitous Computing Approach was proposed by Mark Weiser. This paper proposes an ubiquitous surveying solution in Geometrics and surveying field. Ubiquitous Surveying provides cost-effective, smart and available surveying techniques while traditional surveying equipment are so expensive and have small availability specially in indoor and daily surveying jobs. In order to have a smart surveying instrument, different information technology methods and tools like Triangle method, Received Signal Strength Indicator (RSSI) method and laser sensor are used. These new ways in combine with surveying equations introduces a modern surveying equipment called Ubi-Total Station that also employed different sensors embedded in smartphone and mobile stand. RSSI-based localization and Triangle method technique are easy and well known methods to predict the position of an unknown node in indoor environments whereas additional measures are required for a sufficient accuracy. In this paper the main goal is to introduce the Ubiquitous Total Station as a development in smart and ubiquitous GIS. In order to public use of the surveying equipment, design and implementation of this instrument has been done. Conceptual model of Smartphone-based system is designed for this study and based on this model, an Android application as a first sample is developed. Finally the evaluations shows that absolute errors in X and Y calculation are 0.028 and 0.057 meter respectively. Also RMSE of 0.26 was calculated in RSSI method for distance measurement. The high price of traditional equipment and their requirement for professional surveyors has given way to intelligent surveying. In the suggested system, smartphones can be used as tools for positioning and coordinating geometric information of objects.
The current approach to human error and blame in the NHS.
Ottewill, Melanie
There is a large body of research to suggest that serious errors are widespread throughout medicine. The traditional response to these adverse events has been to adopt a 'person approach' - blaming the individual seen as 'responsible'. The culture of medicine is highly complicit in this response. Such an approach results in enormous personal costs to the individuals concerned and does little to address the root causes of errors and thus prevent their recurrence. Other industries, such as aviation, where safety is a paramount concern and which have similar structures to the medical profession, have, over the past decade or so, adopted a 'systems' approach to error, recognizing that human error is ubiquitous and inevitable and that systems need to be developed with this in mind. This approach has been highly successful, but has necessitated, first and foremost, a cultural shift. It is in the best interests of patients, and medical professionals alike, that such a shift is embraced in the NHS.
The Timing of Feedback on Mathematics Problem Solving in a Classroom Setting
ERIC Educational Resources Information Center
Fyfe, Emily R.; Rittle-Johnson, Bethany
2015-01-01
Feedback is a ubiquitous learning tool that is theorized to help learners detect and correct their errors. The goal of this study was to examine the effects of feedback in a classroom context for children solving math equivalence problems (problems with operations on both sides of the equal sign). The authors worked with children in 7 second-grade…
Chromosomal locus tracking with proper accounting of static and dynamic errors
Backlund, Mikael P.; Joyner, Ryan; Moerner, W. E.
2015-01-01
The mean-squared displacement (MSD) and velocity autocorrelation (VAC) of tracked single particles or molecules are ubiquitous metrics for extracting parameters that describe the object’s motion, but they are both corrupted by experimental errors that hinder the quantitative extraction of underlying parameters. For the simple case of pure Brownian motion, the effects of localization error due to photon statistics (“static error”) and motion blur due to finite exposure time (“dynamic error”) on the MSD and VAC are already routinely treated. However, particles moving through complex environments such as cells, nuclei, or polymers often exhibit anomalous diffusion, for which the effects of these errors are less often sufficiently treated. We present data from tracked chromosomal loci in yeast that demonstrate the necessity of properly accounting for both static and dynamic error in the context of an anomalous diffusion that is consistent with a fractional Brownian motion (FBM). We compare these data to analytical forms of the expected values of the MSD and VAC for a general FBM in the presence of these errors. PMID:26172745
Tian, Zengshan; Xu, Kunjie; Yu, Xiang
2014-01-01
This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs) in logarithmic received signal strength (RSS) varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs) as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future. PMID:24683349
Zhou, Mu; Tian, Zengshan; Xu, Kunjie; Yu, Xiang; Wu, Haibo
2014-01-01
This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs) in logarithmic received signal strength (RSS) varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs) as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future.
Zhang, Yi; Askenazi, Manor; Jiang, Jingrui; Luckey, C. John; Griffin, James D.; Marto, Jarrod A.
2010-01-01
The FLT3 receptor tyrosine kinase plays an important role in normal hematopoietic development and leukemogenesis. Point mutations within the activation loop and in-frame tandem duplications of the juxtamembrane domain represent the most frequent molecular abnormalities observed in acute myeloid leukemia. Interestingly these gain-of-function mutations correlate with different clinical outcomes, suggesting that signals from constitutive FLT3 mutants activate different downstream targets. In principle, mass spectrometry offers a powerful means to quantify protein phosphorylation and identify signaling events associated with constitutively active kinases or other oncogenic events. However, regulation of individual phosphorylation sites presents a challenging case for proteomics studies whereby quantification is based on individual peptides rather than an average across different peptides derived from the same protein. Here we describe a robust experimental framework and associated error model for iTRAQ-based quantification on an Orbitrap mass spectrometer that relates variance of peptide ratios to mass spectral peak height and provides for assignment of p value, q value, and confidence interval to every peptide identification, all based on routine measurements, obviating the need for detailed characterization of individual ion peaks. Moreover, we demonstrate that our model is stable over time and can be applied in a manner directly analogous to ubiquitously used external mass calibration routines. Application of our error model to quantitative proteomics data for FLT3 signaling provides evidence that phosphorylation of tyrosine phosphatase SHP1 abrogates the transformative potential, but not overall kinase activity, of FLT3-D835Y in acute myeloid leukemia. PMID:20019052
Recognizing and managing errors of cognitive underspecification.
Duthie, Elizabeth A
2014-03-01
James Reason describes cognitive underspecification as incomplete communication that creates a knowledge gap. Errors occur when an information mismatch occurs in bridging that gap with a resulting lack of shared mental models during the communication process. There is a paucity of studies in health care examining this cognitive error and the role it plays in patient harm. The goal of the following case analyses is to facilitate accurate recognition, identify how it contributes to patient harm, and suggest appropriate management strategies. Reason's human error theory is applied in case analyses of errors of cognitive underspecification. Sidney Dekker's theory of human incident investigation is applied to event investigation to facilitate identification of this little recognized error. Contributory factors leading to errors of cognitive underspecification include workload demands, interruptions, inexperienced practitioners, and lack of a shared mental model. Detecting errors of cognitive underspecification relies on blame-free listening and timely incident investigation. Strategies for interception include two-way interactive communication, standardization of communication processes, and technological support to ensure timely access to documented clinical information. Although errors of cognitive underspecification arise at the sharp end with the care provider, effective management is dependent upon system redesign that mitigates the latent contributory factors. Cognitive underspecification is ubiquitous whenever communication occurs. Accurate identification is essential if effective system redesign is to occur.
Ke, Pei-Chih; Huang, Chun-Kai; Tsai, Tsai-Hsuan; Chang, Hsien-Tsung; Shieh, Wann-Yun; Chan, Hsiao-Lung; Chen, Chih-Kuang; Pei, Yu-Cheng
2012-01-01
The key components of caring for the elderly are diet, living, transportation, education, and safety issues, and telemedical systems can offer great assistance. Through the integration of personal to community information technology platforms, we have developed a new Intelligent Comprehensive Interactive Care (ICIC) system to provide comprehensive services for elderly care. The ICIC system consists of six items, including medical care (physiological measuring system, Medication Reminder, and Dr. Ubiquitous), diet, living, transportation, education (Intelligent Watch), entertainment (Sharetouch), and safety (Fall Detection). In this study, we specifically evaluated the users' intention of using the Medication Reminder, Dr. Ubiquitous, Sharetouch, and Intelligent Watch using a modified technological acceptance model (TAM). A total of 121 elderly subjects (48 males and 73 females) were recruited. The modified TAM questionnaires were collected after they had used these products. For most of the ICIC units, the elderly subjects revealed great willingness and/or satisfaction in using this system. The elderly users of the Intelligent Watch showed the greatest willingness and satisfaction, while the elderly users of Dr. Ubiquitous revealed fair willingness in the dimension of perceived ease of use. The old-old age group revealed greater satisfaction in the dimension of result demonstrability for the users of the Medication Reminder as compared to the young-old and oldest-old age groups. The women revealed greater satisfaction in the dimension of perceived ease of use for the users of Dr. Ubiquitous as compared to the men. There were no statistically significant differences in terms of gender, age, and education level in the other dimensions. The modified TAM showed its effectiveness in evaluating the acceptance and characteristics of technologic products for the elderly user. The ICIC system offers a user-friendly solution in telemedical care and improves the quality of care for the elderly. PMID:22870200
Wong, Alice M K; Chang, Wei-Han; Ke, Pei-Chih; Huang, Chun-Kai; Tsai, Tsai-Hsuan; Chang, Hsien-Tsung; Shieh, Wann-Yun; Chan, Hsiao-Lung; Chen, Chih-Kuang; Pei, Yu-Cheng
2012-01-01
The key components of caring for the elderly are diet, living, transportation, education, and safety issues, and telemedical systems can offer great assistance. Through the integration of personal to community information technology platforms, we have developed a new Intelligent Comprehensive Interactive Care (ICIC) system to provide comprehensive services for elderly care. The ICIC system consists of six items, including medical care (physiological measuring system, Medication Reminder, and Dr. Ubiquitous), diet, living, transportation, education (Intelligent Watch), entertainment (Sharetouch), and safety (Fall Detection). In this study, we specifically evaluated the users' intention of using the Medication Reminder, Dr. Ubiquitous, Sharetouch, and Intelligent Watch using a modified technological acceptance model (TAM). A total of 121 elderly subjects (48 males and 73 females) were recruited. The modified TAM questionnaires were collected after they had used these products. For most of the ICIC units, the elderly subjects revealed great willingness and/or satisfaction in using this system. The elderly users of the Intelligent Watch showed the greatest willingness and satisfaction, while the elderly users of Dr. Ubiquitous revealed fair willingness in the dimension of perceived ease of use. The old-old age group revealed greater satisfaction in the dimension of result demonstrability for the users of the Medication Reminder as compared to the young-old and oldest-old age groups. The women revealed greater satisfaction in the dimension of perceived ease of use for the users of Dr. Ubiquitous as compared to the men. There were no statistically significant differences in terms of gender, age, and education level in the other dimensions. The modified TAM showed its effectiveness in evaluating the acceptance and characteristics of technologic products for the elderly user. The ICIC system offers a user-friendly solution in telemedical care and improves the quality of care for the elderly.
Exchange-Correlation Effects for Noncovalent Interactions in Density Functional Theory.
Otero-de-la-Roza, A; DiLabio, Gino A; Johnson, Erin R
2016-07-12
In this article, we develop an understanding of how errors from exchange-correlation functionals affect the modeling of noncovalent interactions in dispersion-corrected density-functional theory. Computed CCSD(T) reference binding energies for a collection of small-molecule clusters are decomposed via a molecular many-body expansion and are used to benchmark density-functional approximations, including the effect of semilocal approximation, exact-exchange admixture, and range separation. Three sources of error are identified. Repulsion error arises from the choice of semilocal functional approximation. This error affects intermolecular repulsions and is present in all n-body exchange-repulsion energies with a sign that alternates with the order n of the interaction. Delocalization error is independent of the choice of semilocal functional but does depend on the exact exchange fraction. Delocalization error misrepresents the induction energies, leading to overbinding in all induction n-body terms, and underestimates the electrostatic contribution to the 2-body energies. Deformation error affects only monomer relaxation (deformation) energies and behaves similarly to bond-dissociation energy errors. Delocalization and deformation errors affect systems with significant intermolecular orbital interactions (e.g., hydrogen- and halogen-bonded systems), whereas repulsion error is ubiquitous. Many-body errors from the underlying exchange-correlation functional greatly exceed in general the magnitude of the many-body dispersion energy term. A functional built to accurately model noncovalent interactions must contain a dispersion correction, semilocal exchange, and correlation components that minimize the repulsion error independently and must also incorporate exact exchange in such a way that delocalization error is absent.
Ubiquitousness of link-density and link-pattern communities in real-world networks
NASA Astrophysics Data System (ADS)
Šubelj, L.; Bajec, M.
2012-01-01
Community structure appears to be an intrinsic property of many complex real-world networks. However, recent work shows that real-world networks reveal even more sophisticated modules than classical cohesive (link-density) communities. In particular, networks can also be naturally partitioned according to similar patterns of connectedness among the nodes, revealing link-pattern communities. We here propose a propagation based algorithm that can extract both link-density and link-pattern communities, without any prior knowledge of the true structure. The algorithm was first validated on different classes of synthetic benchmark networks with community structure, and also on random networks. We have further applied the algorithm to different social, information, technological and biological networks, where it indeed reveals meaningful (composites of) link-density and link-pattern communities. The results thus seem to imply that, similarly as link-density counterparts, link-pattern communities appear ubiquitous in nature and design.
Ultrahigh Error Threshold for Surface Codes with Biased Noise
NASA Astrophysics Data System (ADS)
Tuckett, David K.; Bartlett, Stephen D.; Flammia, Steven T.
2018-02-01
We show that a simple modification of the surface code can exhibit an enormous gain in the error correction threshold for a noise model in which Pauli Z errors occur more frequently than X or Y errors. Such biased noise, where dephasing dominates, is ubiquitous in many quantum architectures. In the limit of pure dephasing noise we find a threshold of 43.7(1)% using a tensor network decoder proposed by Bravyi, Suchara, and Vargo. The threshold remains surprisingly large in the regime of realistic noise bias ratios, for example 28.2(2)% at a bias of 10. The performance is, in fact, at or near the hashing bound for all values of the bias. The modified surface code still uses only weight-4 stabilizers on a square lattice, but merely requires measuring products of Y instead of Z around the faces, as this doubles the number of useful syndrome bits associated with the dominant Z errors. Our results demonstrate that large efficiency gains can be found by appropriately tailoring codes and decoders to realistic noise models, even under the locality constraints of topological codes.
Towards the Ubiquitous Deployment of DNSSEC
2016-01-01
with other deployment partners around the world, there is now a significant and growing number of TLDs that have been signed, and a number of...as Google Earth, the Blackberry 10 operating system, and the entire set of K Desktop Environment (KDE) windowing system applications are based on...differentiate between transient errors and legitimate DNS spoofing attacks is likely going to be very important as deployment grows . The importance of
2007-03-27
This nighttime movie of the depths of the north pole of Saturn reveals a dynamic, active planet lurking underneath the ubiquitous cover of upper-level hazes. The defining feature of Saturn north polar regions
Zhou, Mu; Xu, Yu Bin; Ma, Lin; Tian, Shuo
2012-01-01
The expected errors of RADAR sensor networks with linear probabilistic location fingerprints inside buildings with varying Wi-Fi Gaussian strength are discussed. As far as we know, the statistical errors of equal and unequal-weighted RADAR networks have been suggested as a better way to evaluate the behavior of different system parameters and the deployment of reference points (RPs). However, up to now, there is still not enough related work on the relations between the statistical errors, system parameters, number and interval of the RPs, let alone calculating the correlated analytical expressions of concern. Therefore, in response to this compelling problem, under a simple linear distribution model, much attention will be paid to the mathematical relations of the linear expected errors, number of neighbors, number and interval of RPs, parameters in logarithmic attenuation model and variations of radio signal strength (RSS) at the test point (TP) with the purpose of constructing more practical and reliable RADAR location sensor networks (RLSNs) and also guaranteeing the accuracy requirements for the location based services in future ubiquitous context-awareness environments. Moreover, the numerical results and some real experimental evaluations of the error theories addressed in this paper will also be presented for our future extended analysis. PMID:22737027
Zhou, Mu; Xu, Yu Bin; Ma, Lin; Tian, Shuo
2012-01-01
The expected errors of RADAR sensor networks with linear probabilistic location fingerprints inside buildings with varying Wi-Fi Gaussian strength are discussed. As far as we know, the statistical errors of equal and unequal-weighted RADAR networks have been suggested as a better way to evaluate the behavior of different system parameters and the deployment of reference points (RPs). However, up to now, there is still not enough related work on the relations between the statistical errors, system parameters, number and interval of the RPs, let alone calculating the correlated analytical expressions of concern. Therefore, in response to this compelling problem, under a simple linear distribution model, much attention will be paid to the mathematical relations of the linear expected errors, number of neighbors, number and interval of RPs, parameters in logarithmic attenuation model and variations of radio signal strength (RSS) at the test point (TP) with the purpose of constructing more practical and reliable RADAR location sensor networks (RLSNs) and also guaranteeing the accuracy requirements for the location based services in future ubiquitous context-awareness environments. Moreover, the numerical results and some real experimental evaluations of the error theories addressed in this paper will also be presented for our future extended analysis.
Bordner, Andrew J; Gorin, Andrey A
2008-05-12
Protein-protein interactions are ubiquitous and essential for all cellular processes. High-resolution X-ray crystallographic structures of protein complexes can reveal the details of their function and provide a basis for many computational and experimental approaches. Differentiation between biological and non-biological contacts and reconstruction of the intact complex is a challenging computational problem. A successful solution can provide additional insights into the fundamental principles of biological recognition and reduce errors in many algorithms and databases utilizing interaction information extracted from the Protein Data Bank (PDB). We have developed a method for identifying protein complexes in the PDB X-ray structures by a four step procedure: (1) comprehensively collecting all protein-protein interfaces; (2) clustering similar protein-protein interfaces together; (3) estimating the probability that each cluster is relevant based on a diverse set of properties; and (4) combining these scores for each PDB entry in order to predict the complex structure. The resulting clusters of biologically relevant interfaces provide a reliable catalog of evolutionary conserved protein-protein interactions. These interfaces, as well as the predicted protein complexes, are available from the Protein Interface Server (PInS) website (see Availability and requirements section). Our method demonstrates an almost two-fold reduction of the annotation error rate as evaluated on a large benchmark set of complexes validated from the literature. We also estimate relative contributions of each interface property to the accurate discrimination of biologically relevant interfaces and discuss possible directions for further improving the prediction method.
Robust estimation of adaptive tensors of curvature by tensor voting.
Tong, Wai-Shun; Tang, Chi-Keung
2005-03-01
Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated. Our quantitative estimation is an improvement over the previous two-pass algorithm, where only qualitative curvature estimation (sign of Gaussian curvature) is performed. To overcome misalignment errors, our improved method automatically corrects input point locations at subvoxel precision, which also rejects outliers that are uncorrectable. To adapt to different scales locally, we define the RadiusHit of a curvature tensor to quantify estimation accuracy and applicability. Our curvature estimation algorithm has been proven with detailed quantitative experiments, performing better in a variety of standard error metrics (percentage error in curvature magnitudes, absolute angle difference in curvature direction) in the presence of a large amount of misalignment noise.
Unexpected but Incidental Positive Outcomes Predict Real-World Gambling.
Otto, A Ross; Fleming, Stephen M; Glimcher, Paul W
2016-03-01
Positive mood can affect a person's tendency to gamble, possibly because positive mood fosters unrealistic optimism. At the same time, unexpected positive outcomes, often called prediction errors, influence mood. However, a linkage between positive prediction errors-the difference between expected and obtained outcomes-and consequent risk taking has yet to be demonstrated. Using a large data set of New York City lottery gambling and a model inspired by computational accounts of reward learning, we found that people gamble more when incidental outcomes in the environment (e.g., local sporting events and sunshine) are better than expected. When local sports teams performed better than expected, or a sunny day followed a streak of cloudy days, residents gambled more. The observed relationship between prediction errors and gambling was ubiquitous across the city's socioeconomically diverse neighborhoods and was specific to sports and weather events occurring locally in New York City. Our results suggest that unexpected but incidental positive outcomes influence risk taking. © The Author(s) 2016.
PPARα-independent transcriptional targets of perfluoroalkyl acids revealed by transcript profiling
Perfluoroalkyl acids (PFAAs) are ubiquitous and persistent environmental contaminants. Compounds such as perfluoroocanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS) are readily found in the tissues of humans...
A Bayesian approach to model structural error and input variability in groundwater modeling
NASA Astrophysics Data System (ADS)
Xu, T.; Valocchi, A. J.; Lin, Y. F. F.; Liang, F.
2015-12-01
Effective water resource management typically relies on numerical models to analyze groundwater flow and solute transport processes. Model structural error (due to simplification and/or misrepresentation of the "true" environmental system) and input forcing variability (which commonly arises since some inputs are uncontrolled or estimated with high uncertainty) are ubiquitous in groundwater models. Calibration that overlooks errors in model structure and input data can lead to biased parameter estimates and compromised predictions. We present a fully Bayesian approach for a complete assessment of uncertainty for spatially distributed groundwater models. The approach explicitly recognizes stochastic input and uses data-driven error models based on nonparametric kernel methods to account for model structural error. We employ exploratory data analysis to assist in specifying informative prior for error models to improve identifiability. The inference is facilitated by an efficient sampling algorithm based on DREAM-ZS and a parameter subspace multiple-try strategy to reduce the required number of forward simulations of the groundwater model. We demonstrate the Bayesian approach through a synthetic case study of surface-ground water interaction under changing pumping conditions. It is found that explicit treatment of errors in model structure and input data (groundwater pumping rate) has substantial impact on the posterior distribution of groundwater model parameters. Using error models reduces predictive bias caused by parameter compensation. In addition, input variability increases parametric and predictive uncertainty. The Bayesian approach allows for a comparison among the contributions from various error sources, which could inform future model improvement and data collection efforts on how to best direct resources towards reducing predictive uncertainty.
Augmenting intracortical brain-machine interface with neurally driven error detectors
NASA Astrophysics Data System (ADS)
Even-Chen, Nir; Stavisky, Sergey D.; Kao, Jonathan C.; Ryu, Stephen I.; Shenoy, Krishna V.
2017-12-01
Objective. Making mistakes is inevitable, but identifying them allows us to correct or adapt our behavior to improve future performance. Current brain-machine interfaces (BMIs) make errors that need to be explicitly corrected by the user, thereby consuming time and thus hindering performance. We hypothesized that neural correlates of the user perceiving the mistake could be used by the BMI to automatically correct errors. However, it was unknown whether intracortical outcome error signals were present in the premotor and primary motor cortices, brain regions successfully used for intracortical BMIs. Approach. We report here for the first time a putative outcome error signal in spiking activity within these cortices when rhesus macaques performed an intracortical BMI computer cursor task. Main results. We decoded BMI trial outcomes shortly after and even before a trial ended with 96% and 84% accuracy, respectively. This led us to develop and implement in real-time a first-of-its-kind intracortical BMI error ‘detect-and-act’ system that attempts to automatically ‘undo’ or ‘prevent’ mistakes. The detect-and-act system works independently and in parallel to a kinematic BMI decoder. In a challenging task that resulted in substantial errors, this approach improved the performance of a BMI employing two variants of the ubiquitous Kalman velocity filter, including a state-of-the-art decoder (ReFIT-KF). Significance. Detecting errors in real-time from the same brain regions that are commonly used to control BMIs should improve the clinical viability of BMIs aimed at restoring motor function to people with paralysis.
NASA Technical Reports Server (NTRS)
Cirtain, Jonathan
2013-01-01
Hi-C obtained the highest spatial and temporal resolution observatoins ever taken in the solar corona. Hi-C reveals dynamics and structure at the limit of its temporal and spatial resolution. Hi-C observed ubiquitous fine-scale flows consistent with the local sound speed.
Trainable hardware for dynamical computing using error backpropagation through physical media.
Hermans, Michiel; Burm, Michaël; Van Vaerenbergh, Thomas; Dambre, Joni; Bienstman, Peter
2015-03-24
Neural networks are currently implemented on digital Von Neumann machines, which do not fully leverage their intrinsic parallelism. We demonstrate how to use a novel class of reconfigurable dynamical systems for analogue information processing, mitigating this problem. Our generic hardware platform for dynamic, analogue computing consists of a reciprocal linear dynamical system with nonlinear feedback. Thanks to reciprocity, a ubiquitous property of many physical phenomena like the propagation of light and sound, the error backpropagation-a crucial step for tuning such systems towards a specific task-can happen in hardware. This can potentially speed up the optimization process significantly, offering important benefits for the scalability of neuro-inspired hardware. In this paper, we show, using one experimentally validated and one conceptual example, that such systems may provide a straightforward mechanism for constructing highly scalable, fully dynamical analogue computers.
Trainable hardware for dynamical computing using error backpropagation through physical media
NASA Astrophysics Data System (ADS)
Hermans, Michiel; Burm, Michaël; van Vaerenbergh, Thomas; Dambre, Joni; Bienstman, Peter
2015-03-01
Neural networks are currently implemented on digital Von Neumann machines, which do not fully leverage their intrinsic parallelism. We demonstrate how to use a novel class of reconfigurable dynamical systems for analogue information processing, mitigating this problem. Our generic hardware platform for dynamic, analogue computing consists of a reciprocal linear dynamical system with nonlinear feedback. Thanks to reciprocity, a ubiquitous property of many physical phenomena like the propagation of light and sound, the error backpropagation—a crucial step for tuning such systems towards a specific task—can happen in hardware. This can potentially speed up the optimization process significantly, offering important benefits for the scalability of neuro-inspired hardware. In this paper, we show, using one experimentally validated and one conceptual example, that such systems may provide a straightforward mechanism for constructing highly scalable, fully dynamical analogue computers.
Gupta, Puneet; Bhowmick, Brojeshwar; Pal, Arpan
2017-07-01
Camera-equipped devices are ubiquitous and proliferating in the day-to-day life. Accurate heart rate (HR) estimation from the face videos acquired from the low cost cameras in a non-contact manner, can be used in many real-world scenarios and hence, require rigorous exploration. This paper has presented an accurate and near real-time HR estimation system using these face videos. It is based on the phenomenon that the color and motion variations in the face video are closely related to the heart beat. The variations also contain the noise due to facial expressions, respiration, eye blinking and environmental factors which are handled by the proposed system. Neither Eulerian nor Lagrangian temporal signals can provide accurate HR in all the cases. The cases where Eulerian temporal signals perform spuriously are determined using a novel poorness measure and then both the Eulerian and Lagrangian temporal signals are employed for better HR estimation. Such a fusion is referred as serial fusion. Experimental results reveal that the error introduced in the proposed algorithm is 1.8±3.6 which is significantly lower than the existing well known systems.
Ubiquitous Sensor Networking for Development (USN4D): an application to pollution monitoring.
Bagula, Antoine; Zennaro, Marco; Inggs, Gordon; Scott, Simon; Gascon, David
2012-01-01
This paper presents a new Ubiquitous Sensor Network (USN) Architecture to be used in developing countries and reveals its usefulness by highlighting some of its key features. In complement to a previous ITU proposal, our architecture referred to as "Ubiquitous Sensor Network for Development (USN4D)" integrates in its layers features such as opportunistic data dissemination, long distance deployment and localisation of information to meet the requirements of the developing world. Besides describing some of the most important requirements for the sensor equipment to be used in a USN4D setting, we present the main features and experiments conducted using the "WaspNet" as one of the wireless sensor deployment platforms that meets these requirements. Furthermore, building upon "WaspNet" platform, we present an application to Air pollution Monitoring in the city of Cape Town, in South Africa as one of the first steps towards building community wireless sensor networks (CSN) in the developing world using off-the-shelf sensor equipment.
Ubiquitous Sensor Networking for Development (USN4D): An Application to Pollution Monitoring
Bagula, Antoine; Zennaro, Marco; Inggs, Gordon; Scott, Simon; Gascon, David
2012-01-01
This paper presents a new Ubiquitous Sensor Network (USN) Architecture to be used in developing countries and reveals its usefulness by highlighting some of its key features. In complement to a previous ITU proposal, our architecture referred to as “Ubiquitous Sensor Network for Development (USN4D)” integrates in its layers features such as opportunistic data dissemination, long distance deployment and localisation of information to meet the requirements of the developing world. Besides describing some of the most important requirements for the sensor equipment to be used in a USN4D setting, we present the main features and experiments conducted using the “WaspNet” as one of the wireless sensor deployment platforms that meets these requirements. Furthermore, building upon “WaspNet” platform, we present an application to Air pollution Monitoring in the city of Cape Town, in South Africa as one of the first steps towards building community wireless sensor networks (CSN) in the developing world using off-the-shelf sensor equipment. PMID:22368476
Lee, Norman; Ward, Jessica L; Vélez, Alejandro; Micheyl, Christophe; Bee, Mark A
2017-03-06
Noise is a ubiquitous source of errors in all forms of communication [1]. Noise-induced errors in speech communication, for example, make it difficult for humans to converse in noisy social settings, a challenge aptly named the "cocktail party problem" [2]. Many nonhuman animals also communicate acoustically in noisy social groups and thus face biologically analogous problems [3]. However, we know little about how the perceptual systems of receivers are evolutionarily adapted to avoid the costs of noise-induced errors in communication. In this study of Cope's gray treefrog (Hyla chrysoscelis; Hylidae), we investigated whether receivers exploit a potential statistical regularity present in noisy acoustic scenes to reduce errors in signal recognition and discrimination. We developed an anatomical/physiological model of the peripheral auditory system to show that temporal correlation in amplitude fluctuations across the frequency spectrum ("comodulation") [4-6] is a feature of the noise generated by large breeding choruses of sexually advertising males. In four psychophysical experiments, we investigated whether females exploit comodulation in background noise to mitigate noise-induced errors in evolutionarily critical mate-choice decisions. Subjects experienced fewer errors in recognizing conspecific calls and in selecting the calls of high-quality mates in the presence of simulated chorus noise that was comodulated. These data show unequivocally, and for the first time, that exploiting statistical regularities present in noisy acoustic scenes is an important biological strategy for solving cocktail-party-like problems in nonhuman animal communication. Copyright © 2017 Elsevier Ltd. All rights reserved.
Constructing Motivation through Choice, Interest, and Interestingness
ERIC Educational Resources Information Center
Patall, Erika A.
2013-01-01
Psychological research and theory have traditionally suggested that opportunities for choosing will lead to motivation and performance benefits. However, evidence on choice effects has not been ubiquitously positive, and recent investigations have revealed factors that diminish or reverse the effects of choosing. This investigation sought to…
Huang, Yili; Feng, Hao; Lu, Hang; Zeng, Yanhua
2017-07-01
It is believed that sphingomonads are ubiquitously distributed in environments. However detailed information about their community structure and their co-relationship with environmental parameters remain unclear. In this study, novel sphingomonads-specific primers based on the 16S rRNA gene were designed to investigate the distribution of sphingomonads in 10 different niches. Both in silico and in-practice tests on pure cultures and environmental samples showed that Sph384f/Sph701r was an efficient primer set. Illumina MiSeq sequencing revealed that community structures of sphingomonads were significantly different among the 10 samples, although 12 sphingomonad genera were present in all samples. Based on RDA analysis and Monte Carlo permutation test, sphingomonad community structure was significantly correlated with limnetic and marine habitat types. Among these niches, the genus Sphingomicrobium showed strong positive correlation with marine habitats, whereas genera Sphingobium, Novosphingobium, Sphingopyxis, and Sphingorhabdus showed strong positive correlation with limnetic habitats. Our study provided direct evidence that sphingomonads are ubiquitously distributed in environments, and revealed for the first time that their community structure can be correlated with habitats.
Practice increases procedural errors after task interruption.
Altmann, Erik M; Hambrick, David Z
2017-05-01
Positive effects of practice are ubiquitous in human performance, but a finding from memory research suggests that negative effects are possible also. The finding is that memory for items on a list depends on the time interval between item presentations. This finding predicts a negative effect of practice on procedural performance under conditions of task interruption. As steps of a procedure are performed more quickly, memory for past performance should become less accurate, increasing the rate of skipped or repeated steps after an interruption. We found this effect, with practice generally improving speed and accuracy, but impairing accuracy after interruptions. The results show that positive effects of practice can interact with architectural constraints on episodic memory to have negative effects on performance. In practical terms, the results suggest that practice can be a risk factor for procedural errors in task environments with a high incidence of task interruption. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NB-PLC channel modelling with cyclostationary noise addition & OFDM implementation for smart grid
NASA Astrophysics Data System (ADS)
Thomas, Togis; Gupta, K. K.
2016-03-01
Power line communication (PLC) technology can be a viable solution for the future ubiquitous networks because it provides a cheaper alternative to other wired technology currently being used for communication. In smart grid Power Line Communication (PLC) is used to support communication with low rate on low voltage (LV) distribution network. In this paper, we propose the channel modelling of narrowband (NB) PLC in the frequency range 5 KHz to 500 KHz by using ABCD parameter with cyclostationary noise addition. Behaviour of the channel was studied by the addition of 11KV/230V transformer, by varying load location and load. Bit error rate (BER) Vs signal to noise ratio SNR) was plotted for the proposed model by employing OFDM. Our simulation results based on the proposed channel model show an acceptable performance in terms of bit error rate versus signal to noise ratio, which enables communication required for smart grid applications.
USDA-ARS?s Scientific Manuscript database
Rhizoctonia solani is a ubiquitous basidiomycetous soilborne fungal pathogen causing damping off of seedlings, aerial blights and postharvest diseases. To gain insight into the molecular mechanisms of pathogenesis a global approach based on analysis of expressed sequence tags (ESTs) was undertaken. ...
USDA-ARS?s Scientific Manuscript database
Bitter gourd (Momordica charantia L.) is a commercially and nutritionally important market vegetable in Asia cultivated mainly by smallholder farmers. Cucurbit powdery mildew (CPM) caused by Podosphaera xanthii (Px) is a nearly ubiquitous and serious fungal disease of bitter gourd. Five bitter gourd...
Errors Analysis of Students in Mathematics Department to Learn Plane Geometry
NASA Astrophysics Data System (ADS)
Mirna, M.
2018-04-01
This article describes the results of qualitative descriptive research that reveal the locations, types and causes of student error in answering the problem of plane geometry at the problem-solving level. Answers from 59 students on three test items informed that students showed errors ranging from understanding the concepts and principles of geometry itself to the error in applying it to problem solving. Their type of error consists of concept errors, principle errors and operational errors. The results of reflection with four subjects reveal the causes of the error are: 1) student learning motivation is very low, 2) in high school learning experience, geometry has been seen as unimportant, 3) the students' experience using their reasoning in solving the problem is very less, and 4) students' reasoning ability is still very low.
Crosby, Richard; Mena, Leandro; Yarber, William L.; Graham, Cynthia A.; Sanders, Stephanie A.; Milhausen, Robin R.
2015-01-01
Objective To describe self-reported frequencies of selected condom use errors and problems among young (ages 15–29) Black MSM (YBMSM) and to compare the observed prevalence of these errors/problems by HIV serostatus. Methods Between September 2012 October 2014, electronic interview data were collected from 369 YBMSM attending a federally supported STI clinic located in the southern U.S. Seventeen condom use errors and problems were assessed. Chi-square tests were used to detect significant differences in the prevalence of these 17 errors and problems between HIV-negative and HIV-positive men. Results The recall period was the past 90 days. The overall mean number of errors/problems was 2.98 (sd=2.29). The mean for HIV-negative men was 2.91 (sd=2.15) and the mean for HIV-positive men was 3.18 (sd=2.57). These means were not significantly different (t=1.02, df=367, P=.31). Only two significant differences were observed between HIV-negative and HIV-positive men. Breakage (P = .002) and slippage (P = .005) were about twice as likely among HIV-positive men. Breakage occurred for nearly 30% of the HIV-positive men compared to about 15% among HIV-negative men. Slippage occurred for about 16% of the HIV-positive men compared to about 9% among HIV-negative men. Conclusion A need exists to help YBMSM acquire the skills needed to avert breakage and slippage issues that could lead to HIV transmission. Beyond these two exceptions, condom use errors and problems were ubiquitous in this population regardless of HIV serostatus. Clinic-based intervention is warranted for these young men, including education about correct condom use and provision of free condoms and long-lasting lubricants. PMID:26462188
[Errors in medicine. Causes, impact and improvement measures to improve patient safety].
Waeschle, R M; Bauer, M; Schmidt, C E
2015-09-01
The guarantee of quality of care and patient safety is of major importance in hospitals even though increased economic pressure and work intensification are ubiquitously present. Nevertheless, adverse events still occur in 3-4 % of hospital stays and of these 25-50 % are estimated to be avoidable. The identification of possible causes of error and the development of measures for the prevention of medical errors are essential for patient safety. The implementation and continuous development of a constructive culture of error tolerance are fundamental.The origins of errors can be differentiated into systemic latent and individual active causes and components of both categories are typically involved when an error occurs. Systemic causes are, for example out of date structural environments, lack of clinical standards and low personnel density. These causes arise far away from the patient, e.g. management decisions and can remain unrecognized for a long time. Individual causes involve, e.g. confirmation bias, error of fixation and prospective memory failure. These causes have a direct impact on patient care and can result in immediate injury to patients. Stress, unclear information, complex systems and a lack of professional experience can promote individual causes. Awareness of possible causes of error is a fundamental precondition to establishing appropriate countermeasures.Error prevention should include actions directly affecting the causes of error and includes checklists and standard operating procedures (SOP) to avoid fixation and prospective memory failure and team resource management to improve communication and the generation of collective mental models. Critical incident reporting systems (CIRS) provide the opportunity to learn from previous incidents without resulting in injury to patients. Information technology (IT) support systems, such as the computerized physician order entry system, assist in the prevention of medication errors by providing information on dosage, pharmacological interactions, side effects and contraindications of medications.The major challenges for quality and risk management, for the heads of departments and the executive board is the implementation and support of the described actions and a sustained guidance of the staff involved in the modification management process. The global trigger tool is suitable for improving transparency and objectifying the frequency of medical errors.
The Reformer Knows Best: Destroying the Teacher's Vocation
ERIC Educational Resources Information Center
Goodson, Ivor
2006-01-01
Drawing on data from a major Spencer Foundation study, this article focuses on the effects of major restructuring initiatives in New York State on a gifted and utterly committed teacher. It challenges the now ubiquitous assumption that "the reformer knows best" and reveals the gradual demise of an immensely gifted, dedicated teacher--a…
Understanding Narrative Relations in Teacher Education
ERIC Educational Resources Information Center
Forrest, Michelle; Keener, Terrah; Harkins, Mary Jane
2010-01-01
The use of stories in teacher education is ubiquitous; yet, the question regarding how stories help teachers make sense of their professional lives is more complex than it first appears. The authors draw from Adriana Cavarero's understanding of narrative relations as the political site where one's unique singularity is revealed in the desire to…
A Case for Ubiquitous, Integrated Computing in Teacher Education
ERIC Educational Resources Information Center
Kay, Robin H.; Knaack, Liesel
2005-01-01
The purpose of this study was to evaluate the effect of an integrated, laptop-based approach on pre-service teachers' computer attitudes, ability and use. Pre-post program analysis revealed significant differences in behavioural attitudes and perceived control (self-efficacy), but not in affective and cognitive attitudes. In addition, there was a…
Concentrations of the naturally occurring radionucleides Pb-210, Po-210, and Ra-226 in aquatic fauna
NASA Technical Reports Server (NTRS)
Holtzman, R. B.
1969-01-01
Study reveals naturally occurring radionuclides are ubiquitous and contribute a substantial fraction of the natural radiation dose to humans and various biota. Measurements may be useful in ecological and other biological problems such as tracing food chains of animals and study of the metabolism of these elements.
Gálvez, Carlos; Rivera-Cogollos, María Jesus; Galiana-Ivars, María; Bolufer, Sergio; Martínez-Adsuar, Francisco
2015-01-01
The management of surgical and medical intraoperative emergencies are included in the group of high acuity (high potential severity of an event and the patient impact) and low opportunity (the frequency in which the team is required to manage the event). This combination places the patient into a situation where medical errors could happen more frequently. Although medical error are ubiquitous and inevitable we should try to establish the necessary knowledge, skills and attitudes needed for effective team performance and to guide the development of a critical event. This strategy would probably reduce the incidence of error and improve decision-making. The way to apply it comes from the application of the management of critical events in the airline industry. Its use in a surgical environment is through the crisis resource management (CRM) principles. The CRM tries to develop all the non-technical skills necessary in a critical situation, but not only that, also includes all the tools needed to prevent them. The purpose of this special issue is to appraise and summarize the design, implementation, and efficacy of simulation-based CRM training programs for a specific surgery such as the non-intubated video-assisted thoracoscopic surgery. PMID:26046052
Heading Estimation for Pedestrian Dead Reckoning Based on Robust Adaptive Kalman Filtering.
Wu, Dongjin; Xia, Linyuan; Geng, Jijun
2018-06-19
Pedestrian dead reckoning (PDR) using smart phone-embedded micro-electro-mechanical system (MEMS) sensors plays a key role in ubiquitous localization indoors and outdoors. However, as a relative localization method, it suffers from the problem of error accumulation which prevents it from long term independent running. Heading estimation error is one of the main location error sources, and therefore, in order to improve the location tracking performance of the PDR method in complex environments, an approach based on robust adaptive Kalman filtering (RAKF) for estimating accurate headings is proposed. In our approach, outputs from gyroscope, accelerometer, and magnetometer sensors are fused using the solution of Kalman filtering (KF) that the heading measurements derived from accelerations and magnetic field data are used to correct the states integrated from angular rates. In order to identify and control measurement outliers, a maximum likelihood-type estimator (M-estimator)-based model is used. Moreover, an adaptive factor is applied to resist the negative effects of state model disturbances. Extensive experiments under static and dynamic conditions were conducted in indoor environments. The experimental results demonstrate the proposed approach provides more accurate heading estimates and supports more robust and dynamic adaptive location tracking, compared with methods based on conventional KF.
Predictors of Errors of Novice Java Programmers
ERIC Educational Resources Information Center
Bringula, Rex P.; Manabat, Geecee Maybelline A.; Tolentino, Miguel Angelo A.; Torres, Edmon L.
2012-01-01
This descriptive study determined which of the sources of errors would predict the errors committed by novice Java programmers. Descriptive statistics revealed that the respondents perceived that they committed the identified eighteen errors infrequently. Thought error was perceived to be the main source of error during the laboratory programming…
Subthreshold muscle twitches dissociate oscillatory neural signatures of conflicts from errors.
Cohen, Michael X; van Gaal, Simon
2014-02-01
We investigated the neural systems underlying conflict detection and error monitoring during rapid online error correction/monitoring mechanisms. We combined data from four separate cognitive tasks and 64 subjects in which EEG and EMG (muscle activity from the thumb used to respond) were recorded. In typical neuroscience experiments, behavioral responses are classified as "error" or "correct"; however, closer inspection of our data revealed that correct responses were often accompanied by "partial errors" - a muscle twitch of the incorrect hand ("mixed correct trials," ~13% of the trials). We found that these muscle twitches dissociated conflicts from errors in time-frequency domain analyses of EEG data. In particular, both mixed-correct trials and full error trials were associated with enhanced theta-band power (4-9Hz) compared to correct trials. However, full errors were additionally associated with power and frontal-parietal synchrony in the delta band. Single-trial robust multiple regression analyses revealed a significant modulation of theta power as a function of partial error correction time, thus linking trial-to-trial fluctuations in power to conflict. Furthermore, single-trial correlation analyses revealed a qualitative dissociation between conflict and error processing, such that mixed correct trials were associated with positive theta-RT correlations whereas full error trials were associated with negative delta-RT correlations. These findings shed new light on the local and global network mechanisms of conflict monitoring and error detection, and their relationship to online action adjustment. © 2013.
a New Ubiquitous-Based Indoor Positioning System with Minimum Extra Hardware Using Smart Phones
NASA Astrophysics Data System (ADS)
Hassany Pazoky, S.; Chehreghan, A.; Sadeghi Niaraki, A.; Abbaspour, R. Ali
2014-10-01
Knowing the position has been an ambition in many areas such as science, military, business, etc. GPS was the realization of this wish in 1970s. Technological advances such as ubiquitous computing, as a conquering perspective, requires any service to work for any user, any place, anytime, and via any network. As GPS cannot provide services in indoor environments, many scientists began to develop indoor positioning systems (IPS). Smart phones penetrating our everyday lives were a great platform to host IPS applications. Sensors in smart phones were another big motive to develop IPS applications. Many researchers have been working on the topic developing various applications. However, the applications introduced lack simplicity. In other words, they need to install a step counter or smart phone on the ankle, which makes it awkward and inapplicable in many situations. In the current study, a new IPS methodology is introduced using only the usual embedded sensors in the smart phones. The robustness of this methodology cannot compete with those of the aforementioned approaches. The price paid for simplicity was decreasing robustness and complicating the methods and formulations. However, methods or tricks to harness the errors to an acceptable range are introduced as the future works.
Threshold Things That Think: Authorisation for Resharing
NASA Astrophysics Data System (ADS)
Peeters, Roel; Kohlweiss, Markulf; Preneel, Bart
As we are evolving towards ubiquitous computing, users carry an increasing number of mobile devices with sensitive information. The security of this information can be protected using threshold cryptography, in which secret computations are shared between multiple devices. Threshold cryptography can be made more robust by resharing protocols, which allow recovery from partial compromises. This paper introduces user-friendly and secure protocols for the authorisation of resharing protocols. We present both automatic and manual protocols, utilising a group manual authentication protocol to add a new device. We analyse the security of these protocols: our analysis considers permanent and temporary compromises, denial of service attacks and manual authentications errors of the user.
Black, Anne C; Serowik, Kristin L; Ablondi, Karen M; Rosen, Marc I
2013-01-01
The need for accurate and reliable information about income and resources available to individuals with psychiatric disabilities is critical for the assessment of need and evaluation of programs designed to alleviate financial hardship or affect finance allocation. Measurement of finances is ubiquitous in studies of economics, poverty, and social services. However, evidence has demonstrated that these measures often contain error. We compare the 1-week test-retest reliability of income and finance data from 24 adult psychiatric outpatients using assessment-as-usual (AAU) and a new instrument, the Timeline Historical Review of Income and Financial Transactions (THRIFT). Reliability estimates obtained with the THRIFT for Income (0.77), Expenses (0.91), and Debt (0.99) domains were significantly better than those obtained with AAU. Reliability estimates for Balance did not differ. THRIFT reduced measurement error and provided more reliable information than AAU for assessment of personal finances in psychiatric patients receiving Social Security benefits. The instrument also may be useful with other low-income groups.
NASA Astrophysics Data System (ADS)
Mandal, Gour Chandra; Mukherjee, Rahul; Das, Binoy; Patra, Ardhendu Sekhar
2018-03-01
An innovative low cost reflective semiconductor amplifier (RSOA) based bidirectional Triple-play services (TPS) using wavelength division multiplexed radio on free-space-optics passive optical network (WDM-RoFSO-PON) is proposed and experimentally demonstrated to transmit data, voice and video services simultaneously. In this paper, the TPS (10 Gb/s data/voice and 1.49 Gb/s HDTV signal) are successfully transmitted over a 500 m free-space link in downstream and RSOA is utilized at the receiving site to broadcast 1.25 Gb/s data/voice signal over same free-space link in upstream by reusing the carrier, that makes the system cost-effective. High receiver sensitivity and signal-to-noise ratio (SNR), low bit-error-rate (BER) and low error vector magnitude (EVM), and excellent eye-diagrams in our proposed network build the system more reliable and stable with acceptable performance. Therefore, proposed WDM-RoFSO-PON could be the viable solution for future ubiquitous multiservice wireless network in the scenario of TPS.
Remember 9-11! White Belligerency in the Academy
ERIC Educational Resources Information Center
Valandra, Edward C.
2003-01-01
This author states that, although white belligerency is not new, it exists in a ubiquitous low to midlevel state. As nonwhite experiences reveal and the white historical record distinctly shows, there has been an ongoing controversy over a whole host of issues within the academy that involve the Color Line, like a racially separate but unequal…
USDA-ARS?s Scientific Manuscript database
Pre-harvest aflatoxin contamination (PAC) is a major problem facing peanut production worldwide. Produced by the ubiquitous soil fungus, Aspergillus flavus, aflatoxin is the most potent naturally occurring known carcinogen. The interaction between fungus and host resulting in PAC is complex, and b...
Effect of electrical coupling on ionic current and synaptic potential measurements.
Rabbah, Pascale; Golowasch, Jorge; Nadim, Farzan
2005-07-01
Recent studies have found electrical coupling to be more ubiquitous than previously thought, and coupling through gap junctions is known to play a crucial role in neuronal function and network output. In particular, current spread through gap junctions may affect the activation of voltage-dependent conductances as well as chemical synaptic release. Using voltage-clamp recordings of two strongly electrically coupled neurons of the lobster stomatogastric ganglion and conductance-based models of these neurons, we identified effects of electrical coupling on the measurement of leak and voltage-gated outward currents, as well as synaptic potentials. Experimental measurements showed that both leak and voltage-gated outward currents are recruited by gap junctions from neurons coupled to the clamped cell. Nevertheless, in spite of the strong coupling between these neurons, the errors made in estimating voltage-gated conductance parameters were relatively minor (<10%). Thus in many cases isolation of coupled neurons may not be required if a small degree of measurement error of the voltage-gated currents or the synaptic potentials is acceptable. Modeling results show, however, that such errors may be as high as 20% if the gap-junction position is near the recording site or as high as 90% when measuring smaller voltage-gated ionic currents. Paradoxically, improved space clamp increases the errors arising from electrical coupling because voltage control across gap junctions is poor for even the highest realistic coupling conductances. Furthermore, the common procedure of leak subtraction can add an extra error to the conductance measurement, the sign of which depends on the maximal conductance.
Fisher, Moria E; Huang, Felix C; Wright, Zachary A; Patton, James L
2014-01-01
Manipulation of error feedback has been of great interest to recent studies in motor control and rehabilitation. Typically, motor adaptation is shown as a change in performance with a single scalar metric for each trial, yet such an approach might overlook details about how error evolves through the movement. We believe that statistical distributions of movement error through the extent of the trajectory can reveal unique patterns of adaption and possibly reveal clues to how the motor system processes information about error. This paper describes different possible ordinate domains, focusing on representations in time and state-space, used to quantify reaching errors. We hypothesized that the domain with the lowest amount of variability would lead to a predictive model of reaching error with the highest accuracy. Here we showed that errors represented in a time domain demonstrate the least variance and allow for the highest predictive model of reaching errors. These predictive models will give rise to more specialized methods of robotic feedback and improve previous techniques of error augmentation.
Cytochemical Detection of Peroxisomes in Light and Electron Microscopy with 3,3'-diaminobenzidine.
Fahimi, H Dariush
2017-01-01
Peroxisomes are ubiquitous dynamic and multifunctional organelles that contribute to numerous anabolic and catabolic pathways, being essential for human health and development. Their best known functions include the oxidation of fatty acids and metabolism of hydrogen peroxide with catalase as a marker enzyme. Indeed, historically, it was the cytochemical staining of catalase in many different cells and tissues that revealed the ubiquitous presence of peroxisomes in almost all animal and plant cells. In this chapter, the method for cytochemical staining of catalase with the alkaline 3, 3'-diaminobenzidine (DAB) is described. Since aldehyde fixation is a prerequisite for staining of catalase with DAB, a method for perfusion fixation of rat liver with glutaraldehyde is presented prior to the cytochemical staining method and the subsequent tissue processing for light and electron microscopy.
USDA-ARS?s Scientific Manuscript database
The fall armyworm (Spodoptera frugiperda, J.E. Smith) is a major and ubiquitous noctuid pest of agricultural in the Western Hemisphere. Infestations have recently been identified in several locations in Africa, indicating its establishment in the Eastern Hemisphere where it poses an immediate and si...
Weights and measures: a new look at bisection behaviour in neglect.
McIntosh, Robert D; Schindler, Igor; Birchall, Daniel; Milner, A David
2005-12-01
Horizontal line bisection is a ubiquitous task in the investigation of visual neglect. Patients with left neglect typically make rightward errors that increase with line length and for lines at more leftward positions. For short lines, or for lines presented in right space, these errors may 'cross over' to become leftward. We have taken a new approach to these phenomena by employing a different set of dependent and independent variables for their description. Rather than recording bisection error, we record the lateral position of the response within the workspace. We have studied how this varies when the locations of the left and right endpoints are manipulated independently. Across 30 patients with left neglect, we have observed a characteristic asymmetry between the 'weightings' accorded to the two endpoints, such that responses are less affected by changes in the location of the left endpoint than by changes in the location of the right. We show that a simple endpoint weightings analysis accounts readily for the effects of line length and spatial position, including cross-over effects, and leads to an index of neglect that is more sensitive than the standard measure. We argue that this novel approach is more parsimonious than the standard model and yields fresh insights into the nature of neglect impairment.
ERIC Educational Resources Information Center
Bernstein, Stuart E.
2009-01-01
A descriptive study of vowel spelling errors made by children first diagnosed with dyslexia (n = 79) revealed that phonological errors, such as "bet" for "bat", outnumbered orthographic errors, such as "bate" for "bait". These errors were more frequent in nonwords than words, suggesting that lexical context helps with vowel spelling. In a second…
Kay, Jennifer E.; Na, Li; Rowland, Elizabeth A.; Winther, Kelly E.; Chow, Danielle N.; Kimoto, Takafumi; Matsuguchi, Tetsuya; Jonnalagadda, Vidya S.; Maklakova, Vilena I.; Singh, Vijay R.; Wadduwage, Dushan N.; Rajapakse, Jagath; So, Peter T. C.; Collier, Lara S.; Engelward, Bevin P.
2014-01-01
Homologous recombination (HR) is critical for the repair of double strand breaks and broken replication forks. Although HR is mostly error free, inherent or environmental conditions that either suppress or induce HR cause genomic instability. Despite its importance in carcinogenesis, due to limitations in our ability to detect HR in vivo, little is known about HR in mammalian tissues. Here, we describe a mouse model in which a direct repeat HR substrate is targeted to the ubiquitously expressed Rosa26 locus. In the Rosa26 Direct Repeat-GFP (RaDR-GFP) mice, HR between two truncated EGFP expression cassettes can yield a fluorescent signal. In-house image analysis software provides a rapid method for quantifying recombination events within intact tissues, and the frequency of recombinant cells can be evaluated by flow cytometry. A comparison among 11 tissues shows that the frequency of recombinant cells varies by more than two orders of magnitude among tissues, wherein HR in the brain is the lowest. Additionally, de novo recombination events accumulate with age in the colon, showing that this mouse model can be used to study the impact of chronic exposures on genomic stability. Exposure to N-methyl-N-nitrosourea, an alkylating agent similar to the cancer chemotherapeutic temozolomide, shows that the colon, liver and pancreas are susceptible to DNA damage-induced HR. Finally, histological analysis of the underlying cell types reveals that pancreatic acinar cells and liver hepatocytes undergo HR and also that HR can be specifically detected in colonic somatic stem cells. Taken together, the RaDR-GFP mouse model provides new understanding of how tissue and age impact susceptibility to HR, and enables future studies of genetic, environmental and physiological factors that modulate HR in mammals. PMID:24901438
Conformational and chemical selection by a trans-acting editing domain
Danhart, Eric M.; Bakhtina, Marina; Cantara, William A.; Kuzmishin, Alexandra B.; Ma, Xiao; Sanford, Brianne L.; Vargas-Rodriguez, Oscar; Košutić, Marija; Goto, Yuki; Suga, Hiroaki; Nakanishi, Kotaro; Micura, Ronald; Musier-Forsyth, Karin
2017-01-01
Molecular sieves ensure proper pairing of tRNAs and amino acids during aminoacyl-tRNA biosynthesis, thereby avoiding detrimental effects of mistranslation on cell growth and viability. Mischarging errors are often corrected through the activity of specialized editing domains present in some aminoacyl-tRNA synthetases or via single-domain trans-editing proteins. ProXp-ala is a ubiquitous trans-editing enzyme that edits Ala-tRNAPro, the product of Ala mischarging by prolyl-tRNA synthetase, although the structural basis for discrimination between correctly charged Pro-tRNAPro and mischarged Ala-tRNAAla is unclear. Deacylation assays using substrate analogs reveal that size discrimination is only one component of selectivity. We used NMR spectroscopy and sequence conservation to guide extensive site-directed mutagenesis of Caulobacter crescentus ProXp-ala, along with binding and deacylation assays to map specificity determinants. Chemical shift perturbations induced by an uncharged tRNAPro acceptor stem mimic, microhelixPro, or a nonhydrolyzable mischarged Ala-microhelixPro substrate analog identified residues important for binding and deacylation. Backbone 15N NMR relaxation experiments revealed dynamics for a helix flanking the substrate binding site in free ProXp-ala, likely reflecting sampling of open and closed conformations. Dynamics persist on binding to the uncharged microhelix, but are attenuated when the stably mischarged analog is bound. Computational docking and molecular dynamics simulations provide structural context for these findings and predict a role for the substrate primary α-amine group in substrate recognition. Overall, our results illuminate strategies used by a trans-editing domain to ensure acceptance of only mischarged Ala-tRNAPro, including conformational selection by a dynamic helix, size-based exclusion, and optimal positioning of substrate chemical groups. PMID:28768811
Valle, Denis; Lima, Joanna M Tucker; Millar, Justin; Amratia, Punam; Haque, Ubydul
2015-11-04
Logistic regression is a statistical model widely used in cross-sectional and cohort studies to identify and quantify the effects of potential disease risk factors. However, the impact of imperfect tests on adjusted odds ratios (and thus on the identification of risk factors) is under-appreciated. The purpose of this article is to draw attention to the problem associated with modelling imperfect diagnostic tests, and propose simple Bayesian models to adequately address this issue. A systematic literature review was conducted to determine the proportion of malaria studies that appropriately accounted for false-negatives/false-positives in a logistic regression setting. Inference from the standard logistic regression was also compared with that from three proposed Bayesian models using simulations and malaria data from the western Brazilian Amazon. A systematic literature review suggests that malaria epidemiologists are largely unaware of the problem of using logistic regression to model imperfect diagnostic test results. Simulation results reveal that statistical inference can be substantially improved when using the proposed Bayesian models versus the standard logistic regression. Finally, analysis of original malaria data with one of the proposed Bayesian models reveals that microscopy sensitivity is strongly influenced by how long people have lived in the study region, and an important risk factor (i.e., participation in forest extractivism) is identified that would have been missed by standard logistic regression. Given the numerous diagnostic methods employed by malaria researchers and the ubiquitous use of logistic regression to model the results of these diagnostic tests, this paper provides critical guidelines to improve data analysis practice in the presence of misclassification error. Easy-to-use code that can be readily adapted to WinBUGS is provided, enabling straightforward implementation of the proposed Bayesian models.
Revisiting the Estimation of Dinosaur Growth Rates
Myhrvold, Nathan P.
2013-01-01
Previous growth-rate studies covering 14 dinosaur taxa, as represented by 31 data sets, are critically examined and reanalyzed by using improved statistical techniques. The examination reveals that some previously reported results cannot be replicated by using the methods originally reported; results from new methods are in many cases different, in both the quantitative rates and the qualitative nature of the growth, from results in the prior literature. Asymptotic growth curves, which have been hypothesized to be ubiquitous, are shown to provide best fits for only four of the 14 taxa. Possible reasons for non-asymptotic growth patterns are discussed; they include systematic errors in the age-estimation process and, more likely, a bias toward younger ages among the specimens analyzed. Analysis of the data sets finds that only three taxa include specimens that could be considered skeletally mature (i.e., having attained 90% of maximum body size predicted by asymptotic curve fits), and eleven taxa are quite immature, with the largest specimen having attained less than 62% of predicted asymptotic size. The three taxa that include skeletally mature specimens are included in the four taxa that are best fit by asymptotic curves. The totality of results presented here suggests that previous estimates of both maximum dinosaur growth rates and maximum dinosaur sizes have little statistical support. Suggestions for future research are presented. PMID:24358133
Dereli, Büsra; Ortuño, Manuel A; Cramer, Christopher J
2018-04-17
Copper is ubiquitous and its one-electron redox chemistry is central to many catalytic processes. Modeling such chemistry requires electronic structure methods capable of the accurate prediction of ionization energies (IEs) for compounds including copper in different oxidation states and supported by various ligands. Herein, we estimate IEs for 12 mononuclear Cu species previously reported in the literature by using 21 modern density functionals and the DLPNO-CCSD(T) wave function theory model; we consider extrapolated values of the latter to provide reference values of acceptable accuracy. Our results reveal a considerable diversity in functional performance. Although there is nearly always at least one functional that performs well for any given species, there are none that do so for every member of the test set, and certain cases are particularly pathological. Over the entire test set, the SOGGA11-X functional performs best with a mean unsigned error (MUE) of 0.22 eV. PBE0, ωB97X-D, CAM-B3LYP, M11-L, B3LYP, and M11 exhibit MUEs ranging between 0.23 and 0.34 eV. When including relativistic effects with the zero-order regular approximation, ωB97X-D, CAM-B3LYP, and PBE0 are found to provide the best accuracy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Error-Analysis for Correctness, Effectiveness, and Composing Procedure.
ERIC Educational Resources Information Center
Ewald, Helen Rothschild
The assumptions underpinning grammatical mistakes can often be detected by looking for patterns of errors in a student's work. Assumptions that negatively influence rhetorical effectiveness can similarly be detected through error analysis. On a smaller scale, error analysis can also reveal assumptions affecting rhetorical choice. Snags in the…
NASA Astrophysics Data System (ADS)
Gao, Jing; Burt, James E.
2017-12-01
This study investigates the usefulness of a per-pixel bias-variance error decomposition (BVD) for understanding and improving spatially-explicit data-driven models of continuous variables in environmental remote sensing (ERS). BVD is a model evaluation method originated from machine learning and have not been examined for ERS applications. Demonstrated with a showcase regression tree model mapping land imperviousness (0-100%) using Landsat images, our results showed that BVD can reveal sources of estimation errors, map how these sources vary across space, reveal the effects of various model characteristics on estimation accuracy, and enable in-depth comparison of different error metrics. Specifically, BVD bias maps can help analysts identify and delineate model spatial non-stationarity; BVD variance maps can indicate potential effects of ensemble methods (e.g. bagging), and inform efficient training sample allocation - training samples should capture the full complexity of the modeled process, and more samples should be allocated to regions with more complex underlying processes rather than regions covering larger areas. Through examining the relationships between model characteristics and their effects on estimation accuracy revealed by BVD for both absolute and squared errors (i.e. error is the absolute or the squared value of the difference between observation and estimate), we found that the two error metrics embody different diagnostic emphases, can lead to different conclusions about the same model, and may suggest different solutions for performance improvement. We emphasize BVD's strength in revealing the connection between model characteristics and estimation accuracy, as understanding this relationship empowers analysts to effectively steer performance through model adjustments.
Anderson, Nathaniel D; Dell, Gary S
2018-04-03
Speakers implicitly learn novel phonotactic patterns by producing strings of syllables. The learning is revealed in their speech errors. First-order patterns, such as "/f/ must be a syllable onset," can be distinguished from contingent, or second-order, patterns, such as "/f/ must be an onset if the vowel is /a/, but a coda if the vowel is /o/." A metaanalysis of 19 experiments clearly demonstrated that first-order patterns affect speech errors to a very great extent in a single experimental session, but second-order vowel-contingent patterns only affect errors on the second day of testing, suggesting the need for a consolidation period. Two experiments tested an analogue to these studies involving sequences of button pushes, with fingers as "consonants" and thumbs as "vowels." The button-push errors revealed two of the key speech-error findings: first-order patterns are learned quickly, but second-order thumb-contingent patterns are only strongly revealed in the errors on the second day of testing. The influence of computational complexity on the implicit learning of phonotactic patterns in speech production may be a general feature of sequence production.
Voronina, Olga L.; Kunda, Marina S.; Aksenova, Ekaterina I.; Ryzhova, Natalia N.; Semenov, Andrey N.; Petrov, Evgeny M.; Didenko, Lubov V.; Lunin, Vladimir G.; Ananyina, Yuliya V.; Gintsburg, Alexandr L.
2014-01-01
Background and Aim. Leptospira, the causal agent of leptospirosis, has been isolated from the environment, patients, and wide spectrum of animals in Russia. However, the genetic diversity of Leptospira in natural and anthropurgic foci was not clearly defined. Methods. The recent MLST scheme was used for the analysis of seven pathogenic species. 454 pyrosequencing technology was the base of the whole genome sequencing (WGS). Results. The most wide spread and prevalent Leptospira species in Russia were L. interrogans, L. kirschneri, and L. borgpetersenii. Five STs, common for Russian strains: 37, 17, 199, 110, and 146, were identified as having a longtime and ubiquitous distribution in various geographic areas. Unexpected properties were revealed for the environmental Leptospira strain Bairam-Ali. WGS of this strain genome suggested that it combined the features of the pathogenic and nonpathogenic strains and may be a reservoir of the natural resistance genes. Results of the comparative analysis of rrs and rpoB genes and MLST loci for different Leptospira species strains and phenotypic and serological properties of the strain Bairam-Ali suggested that it represented separate Leptospira species. Conclusions. Thus, the natural and anthropurgic foci supported ubiquitous Leptospira species and the pool of genes important for bacterial adaptivity to various conditions. PMID:25276806
Ubiquitous equatorial accretion disc winds in black hole soft states
NASA Astrophysics Data System (ADS)
Ponti, G.; Fender, R. P.; Begelman, M. C.; Dunn, R. J. H.; Neilsen, J.; Coriat, M.
2012-05-01
High-resolution spectra of Galactic black holes (GBHs) reveal the presence of highly ionized absorbers. In one GBH, accreting close to the Eddington limit for more than a decade, a powerful accretion disc wind is observed to be present in softer X-ray states and it has been suggested that it can carry away enough mass and energy to quench the radio jet. Here we report that these winds, which may have mass outflow rates of the order of the inner accretion rate or higher, are a ubiquitous component of the jet-free soft states of all GBHs. We furthermore demonstrate that these winds have an equatorial geometry with opening angles of few tens of degrees, and so are only observed in sources in which the disc is inclined at a large angle to the line of sight. The decrease in Fe XXV/Fe XXVI line ratio with Compton temperature, observed in the soft state, suggests a link between higher wind ionization and harder spectral shapes. Although the physical interaction between the wind, accretion flow and jet is still not fully understood, the mass flux and power of these winds and their presence ubiquitously during the soft X-ray states suggest they are fundamental components of the accretion phenomenon.
Chromospheric Activity in Cool Luminous Stars
NASA Astrophysics Data System (ADS)
Dupree, Andrea
2018-04-01
Spatially unresolved spectra of giant and supergiant stars demonstrate ubiquitous signatures of chromospheric activity, variable outflows, and winds. The advent of imaging techniques and spatially resolved spectra reveal complex structures in these extended stellar atmospheres that we do not understand. The presence and behavior of these atmospheres is wide ranging and impacts stellar activity, magnetic fields, angular momentum loss, abundance determinations, and the understanding of stellar cluster populations.
ERIC Educational Resources Information Center
Ehrlich, Stacy B.; Sporte, Susan E.; Sebring, Penny Bender
2013-01-01
Technology use is ubiquitous in America's colleges and most workplaces, and it is fast becoming accepted as fact that all students--elementary and high school--must be exposed to technology. Whether schools are doing this is an open question. A 2002 report by the University of Chicago Consortium on Chicago School Research (CCSR) revealed large…
A Collaborative Model for Ubiquitous Learning Environments
ERIC Educational Resources Information Center
Barbosa, Jorge; Barbosa, Debora; Rabello, Solon
2016-01-01
Use of mobile devices and widespread adoption of wireless networks have enabled the emergence of Ubiquitous Computing. Application of this technology to improving education strategies gave rise to Ubiquitous e-Learning, also known as Ubiquitous Learning. There are several approaches to organizing ubiquitous learning environments, but most of them…
Elimination of Emergency Department Medication Errors Due To Estimated Weights.
Greenwalt, Mary; Griffen, David; Wilkerson, Jim
2017-01-01
From 7/2014 through 6/2015, 10 emergency department (ED) medication dosing errors were reported through the electronic incident reporting system of an urban academic medical center. Analysis of these medication errors identified inaccurate estimated weight on patients as the root cause. The goal of this project was to reduce weight-based dosing medication errors due to inaccurate estimated weights on patients presenting to the ED. Chart review revealed that 13.8% of estimated weights documented on admitted ED patients varied more than 10% from subsequent actual admission weights recorded. A random sample of 100 charts containing estimated weights revealed 2 previously unreported significant medication dosage errors (.02 significant error rate). Key improvements included removing barriers to weighing ED patients, storytelling to engage staff and change culture, and removal of the estimated weight documentation field from the ED electronic health record (EHR) forms. With these improvements estimated weights on ED patients, and the resulting medication errors, were eliminated.
Data Mining on Numeric Error in Computerized Physician Order Entry System Prescriptions.
Wu, Xue; Wu, Changxu
2017-01-01
This study revealed the numeric error patterns related to dosage when doctors prescribed in computerized physician order entry system. Error categories showed that the '6','7', and '9' key produced a higher incidence of errors in Numpad typing, while the '2','3', and '0' key produced a higher incidence of errors in main keyboard digit line typing. Errors categorized as omission and substitution were higher in prevalence than transposition and intrusion.
Bellman's GAP--a language and compiler for dynamic programming in sequence analysis.
Sauthoff, Georg; Möhl, Mathias; Janssen, Stefan; Giegerich, Robert
2013-03-01
Dynamic programming is ubiquitous in bioinformatics. Developing and implementing non-trivial dynamic programming algorithms is often error prone and tedious. Bellman's GAP is a new programming system, designed to ease the development of bioinformatics tools based on the dynamic programming technique. In Bellman's GAP, dynamic programming algorithms are described in a declarative style by tree grammars, evaluation algebras and products formed thereof. This bypasses the design of explicit dynamic programming recurrences and yields programs that are free of subscript errors, modular and easy to modify. The declarative modules are compiled into C++ code that is competitive to carefully hand-crafted implementations. This article introduces the Bellman's GAP system and its language, GAP-L. It then demonstrates the ease of development and the degree of re-use by creating variants of two common bioinformatics algorithms. Finally, it evaluates Bellman's GAP as an implementation platform of 'real-world' bioinformatics tools. Bellman's GAP is available under GPL license from http://bibiserv.cebitec.uni-bielefeld.de/bellmansgap. This Web site includes a repository of re-usable modules for RNA folding based on thermodynamics.
Comparative genomics and mutagenesis analyses of choline metabolism in the marine R oseobacter clade
Lidbury, Ian; Kimberley, George; Scanlan, David J.; Murrell, J. Colin
2015-01-01
Summary Choline is ubiquitous in marine eukaryotes and appears to be widely distributed in surface marine waters; however, its metabolism by marine bacteria is poorly understood. Here, using comparative genomics and molecular genetic approaches, we reveal that the capacity for choline catabolism is widespread in marine heterotrophs of the marine Roseobacter clade (MRC). Using the model bacterium R uegeria pomeroyi, we confirm that the bet A, bet B and bet C genes, encoding choline dehydrogenase, betaine aldehyde dehydrogenase and choline sulfatase, respectively, are involved in choline metabolism. The bet T gene, encoding an organic solute transporter, was essential for the rapid uptake of choline but not glycine betaine (GBT). Growth of choline and GBT as a sole carbon source resulted in the re‐mineralization of these nitrogen‐rich compounds into ammonium. Oxidation of the methyl groups from choline requires formyltetrahydrofolate synthetase encoded by fhs in R . pomeroyi, deletion of which resulted in incomplete degradation of GBT. We demonstrate that this was due to an imbalance in the supply of reducing equivalents required for choline catabolism, which can be alleviated by the addition of formate. Together, our results demonstrate that choline metabolism is ubiquitous in the MRC and reveal the role of Fhs in methyl group oxidation in R . pomeroyi. PMID:26058574
Knowledge of healthcare professionals about medication errors in hospitals
Abdel-Latif, Mohamed M. M.
2016-01-01
Context: Medication errors are the most common types of medical errors in hospitals and leading cause of morbidity and mortality among patients. Aims: The aim of the present study was to assess the knowledge of healthcare professionals about medication errors in hospitals. Settings and Design: A self-administered questionnaire was distributed to randomly selected healthcare professionals in eight hospitals in Madinah, Saudi Arabia. Subjects and Methods: An 18-item survey was designed and comprised questions on demographic data, knowledge of medication errors, availability of reporting systems in hospitals, attitudes toward error reporting, causes of medication errors. Statistical Analysis Used: Data were analyzed with Statistical Package for the Social Sciences software Version 17. Results: A total of 323 of healthcare professionals completed the questionnaire with 64.6% response rate of 138 (42.72%) physicians, 34 (10.53%) pharmacists, and 151 (46.75%) nurses. A majority of the participants had a good knowledge about medication errors concept and their dangers on patients. Only 68.7% of them were aware of reporting systems in hospitals. Healthcare professionals revealed that there was no clear mechanism available for reporting of errors in most hospitals. Prescribing (46.5%) and administration (29%) errors were the main causes of errors. The most frequently encountered medication errors were anti-hypertensives, antidiabetics, antibiotics, digoxin, and insulin. Conclusions: This study revealed differences in the awareness among healthcare professionals toward medication errors in hospitals. The poor knowledge about medication errors emphasized the urgent necessity to adopt appropriate measures to raise awareness about medication errors in Saudi hospitals. PMID:27330261
Magnetometer-enhanced personal locator for tunnels and GPS-denied outdoor environments
NASA Astrophysics Data System (ADS)
Kwanmuang, Surat; Ojeda, Lauro; Borenstein, Johann
2011-06-01
This paper describes recent advances with our earlier developed Personal Dead-reckoning (PDR) system for GPS-denied environments. The PDR system uses a foot-mounted Inertial Measurement Unit (IMU) that also houses a three axismagnetometer. In earlier work we developed methods for correcting the drift errors in the accelerometers, thereby allowing very accurate measurements of distance traveled. In addition, we developed a powerful heuristic method for correcting heading errors caused by gyro drift. The heuristics exploit the rectilinear features found in almost all manmade structures and therefore limit this technology to indoor use only. Most recently we integrated a three-axis magnetometer with the IMU, using a Kalman Filter. While it is well known that the ubiquitous magnetic disturbances found in most modern buildings render magnetometers almost completely useless indoors, these sensors are nonetheless very effective in pristine outdoor environments as well as in some tunnels and caves. The present paper describes the integrated magnetometer/IMU system and presents detailed experimental results. Specifically, the paper reports results of an objective test conducted by Firefighters of California's CAL-FIRE. In this particular test, two firefighters in full operational gear and one civilian hiked up a two-mile long mountain trail over rocky, sometimes steeply inclined terrain, each wearing one of our magnetometer-enhanced PDR systems but not using any GPS. During the hour-long hike the average position error was about 20 meters and the maximum error was less than 45 meters, which is about 1.4% of distance traveled for all three PDR systems.
Technology to improve quality and accountability.
Kay, Jonathan
2006-01-01
A body of evidence has been accumulated to demonstrate that current practice is not sufficiently safe for several stages of central laboratory testing. In particular, while analytical and perianalytical steps that take place within the laboratory are subjected to quality control procedures, this is not the case for several pre- and post-analytical steps. The ubiquitous application of auto-identification technology seems to represent a valuable tool for reducing error rates. A series of projects in Oxford has attempted to improve processes which support several areas of laboratory medicine, including point-of-care testing, blood transfusion, delivery and interpretation of reports, and support of decision-making by clinicians. The key tools are auto-identification, Internet communication technology, process re-engineering, and knowledge management.
Extending nonlinear analysis to short ecological time series.
Hsieh, Chih-hao; Anderson, Christian; Sugihara, George
2008-01-01
Nonlinearity is important and ubiquitous in ecology. Though detectable in principle, nonlinear behavior is often difficult to characterize, analyze, and incorporate mechanistically into models of ecosystem function. One obvious reason is that quantitative nonlinear analysis tools are data intensive (require long time series), and time series in ecology are generally short. Here we demonstrate a useful method that circumvents data limitation and reduces sampling error by combining ecologically similar multispecies time series into one long time series. With this technique, individual ecological time series containing as few as 20 data points can be mined for such important information as (1) significantly improved forecast ability, (2) the presence and location of nonlinearity, and (3) the effective dimensionality (the number of relevant variables) of an ecological system.
Human Action Recognition Using Wireless Wearable In-Ear Microphone
NASA Astrophysics Data System (ADS)
Nishimura, Jun; Kuroda, Tadahiro
To realize the ubiquitous eating habits monitoring, we proposed the use of sounds sensed by an in-ear placed wireless wearable microphone. A prototype of wireless wearable in-ear microphone was developed by utilizing a common Bluetooth headset. We proposed a robust chewing action recognition algorithm which consists of two recognition stages: “chew-like” signal detection and chewing sound verification stages. We also provide empirical results on other action recognition using in-ear sound including swallowing, cough, belch, and etc. The average chewing number counting error rate of 1.93% is achieved. Lastly, chewing sound mapping is proposed as a new prototypical approach to provide an additional intuitive feedback on food groups to be able to infer the eating habits in their daily life context.
Citation Help in Databases: The More Things Change, the More They Stay the Same
ERIC Educational Resources Information Center
Van Ullen, Mary; Kessler, Jane
2012-01-01
In 2005, the authors reviewed citation help in databases and found an error rate of 4.4 errors per citation. This article describes a follow-up study that revealed a modest improvement in the error rate to 3.4 errors per citation, still unacceptably high. The most problematic area was retrieval statements. The authors conclude that librarians…
Quantifying Errors in TRMM-Based Multi-Sensor QPE Products Over Land in Preparation for GPM
NASA Technical Reports Server (NTRS)
Peters-Lidard, Christa D.; Tian, Yudong
2011-01-01
Determining uncertainties in satellite-based multi-sensor quantitative precipitation estimates over land of fundamental importance to both data producers and hydro climatological applications. ,Evaluating TRMM-era products also lays the groundwork and sets the direction for algorithm and applications development for future missions including GPM. QPE uncertainties result mostly from the interplay of systematic errors and random errors. In this work, we will synthesize our recent results quantifying the error characteristics of satellite-based precipitation estimates. Both systematic errors and total uncertainties have been analyzed for six different TRMM-era precipitation products (3B42, 3B42RT, CMORPH, PERSIANN, NRL and GSMap). For systematic errors, we devised an error decomposition scheme to separate errors in precipitation estimates into three independent components, hit biases, missed precipitation and false precipitation. This decomposition scheme reveals hydroclimatologically-relevant error features and provides a better link to the error sources than conventional analysis, because in the latter these error components tend to cancel one another when aggregated or averaged in space or time. For the random errors, we calculated the measurement spread from the ensemble of these six quasi-independent products, and thus produced a global map of measurement uncertainties. The map yields a global view of the error characteristics and their regional and seasonal variations, reveals many undocumented error features over areas with no validation data available, and provides better guidance to global assimilation of satellite-based precipitation data. Insights gained from these results and how they could help with GPM will be highlighted.
ERIC Educational Resources Information Center
Taha, Haitham; Ibrahim, Raphiq; Khateb, Asaid
2014-01-01
The dominant error types were investigated as a function of phonological processing (PP) deficit severity in four groups of impaired readers. For this aim, an error analysis paradigm distinguishing between four error types was used. The findings revealed that the different types of impaired readers were characterized by differing predominant error…
NASA Astrophysics Data System (ADS)
Wünsch, Urban; Murphy, Kathleen; Stedmon, Colin
2017-04-01
Absorbance and fluorescence spectroscopy are efficient tools for tracing the supply, turnover and fate of dissolved organic matter (DOM). The fluorescent fraction of DOM (FDOM) can be characterized by measuring excitation-emission matrices and decomposing the combined fluorescence signal into independent underlying fraction using Parallel Factor Analysis (PARAFAC). Comparisons between studies, facilitated by the OpenFluor database, reveal highly similar components across different aquatic systems and between studies. To obtain PARAFAC models in sufficient quality, scientists traditionally rely on analyzing dozens to hundreds of samples spanning environmental gradients. A cross-validation of this approach using different analytical tools has not yet been accomplished. In this study, we applied high-performance size-exclusion chromatography (HPSEC) to characterize the size-dependent optical properties of dissolved organic matter of samples from contrasting aquatic environments with online absorbance and fluorescence detectors. Each sample produced hundreds of absorbance spectra of colored DOM (CDOM) and hundreds of matrices of FDOM intensities. This approach facilitated the detailed study of CDOM spectral slopes and further allowed the reliable implementation of PARAFAC on individual samples. This revealed a high degree of overlap in the spectral properties of components identified from different sites. Moreover, many of the model components showed significant spectral congruence with spectra in the OpenFluor database. Our results provide evidence of the presence of ubiquitous FDOM components and additionally provide further evidence for the supramolecular assembly hypothesis. They demonstrate the potential for HPSEC to provide a wealth of new insights into the relationship between optical and chemical properties of DOM.
Ubiquitous Learning Environments in Higher Education: A Scoping Literature Review
ERIC Educational Resources Information Center
Virtanen, Mari Aulikki; Haavisto, Elina; Liikanen, Eeva; Kääriäinen, Maria
2018-01-01
Ubiquitous learning and the use of ubiquitous learning environments heralds a new era in higher education. Ubiquitous learning environments enhance context-aware and seamless learning experiences available from any location at any time. They support smooth interaction between authentic and digital learning resources and provide personalized…
Integrating Collaborative and Decentralized Models to Support Ubiquitous Learning
ERIC Educational Resources Information Center
Barbosa, Jorge Luis Victória; Barbosa, Débora Nice Ferrari; Rigo, Sandro José; de Oliveira, Jezer Machado; Rabello, Solon Andrade, Jr.
2014-01-01
The application of ubiquitous technologies in the improvement of education strategies is called Ubiquitous Learning. This article proposes the integration between two models dedicated to support ubiquitous learning environments, called Global and CoolEdu. CoolEdu is a generic collaboration model for decentralized environments. Global is an…
The Construction of an Ontology-Based Ubiquitous Learning Grid
ERIC Educational Resources Information Center
Liao, Ching-Jung; Chou, Chien-Chih; Yang, Jin-Tan David
2009-01-01
The purpose of this study is to incorporate adaptive ontology into ubiquitous learning grid to achieve seamless learning environment. Ubiquitous learning grid uses ubiquitous computing environment to infer and determine the most adaptive learning contents and procedures in anytime, any place and with any device. To achieve the goal, an…
Cryptographically supported NFC tags in medication for better inpatient safety.
Özcanhan, Mehmet Hilal; Dalkılıç, Gökhan; Utku, Semih
2014-08-01
Reliable sources report that errors in drug administration are increasing the number of harmed or killed inpatients, during healthcare. This development is in contradiction to patient safety norms. A correctly designed hospital-wide ubiquitous system, using advanced inpatient identification and matching techniques, should provide correct medicine and dosage at the right time. Researchers are still making grouping proof protocol proposals based on the EPC Global Class 1 Generation 2 ver. 1.2 standard tags, for drug administration. Analyses show that such protocols make medication unsecure and hence fail to guarantee inpatient safety. Thus, the original goal of patient safety still remains. In this paper, a very recent proposal (EKATE) upgraded by a cryptographic function is shown to fall short of expectations. Then, an alternative proposal IMS-NFC which uses a more suitable and newer technology; namely Near Field Communication (NFC), is described. The proposed protocol has the additional support of stronger security primitives and it is compliant to ISO communication and security standards. Unlike previous works, the proposal is a complete ubiquitous system that guarantees full patient safety; and it is based on off-the-shelf, new technology products available in every corner of the world. To prove the claims the performance, cost, security and scope of IMS-NFC are compared with previous proposals. Evaluation shows that the proposed system has stronger security, increased patient safety and equal efficiency, at little extra cost.
Early math and reading achievement are associated with the error positivity.
Kim, Matthew H; Grammer, Jennie K; Marulis, Loren M; Carrasco, Melisa; Morrison, Frederick J; Gehring, William J
2016-12-01
Executive functioning (EF) and motivation are associated with academic achievement and error-related ERPs. The present study explores whether early academic skills predict variability in the error-related negativity (ERN) and error positivity (Pe). Data from 113 three- to seven-year-old children in a Go/No-Go task revealed that stronger early reading and math skills predicted a larger Pe. Closer examination revealed that this relation was quadratic and significant for children performing at or near grade level, but not significant for above-average achievers. Early academics did not predict the ERN. These findings suggest that the Pe - which reflects individual differences in motivational processes as well as attention - may be associated with early academic achievement. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Nelson, David R; Khraiwesh, Basel; Fu, Weiqi; Alseekh, Saleh; Jaiswal, Ashish; Chaiboonchoe, Amphun; Hazzouri, Khaled M; O'Connor, Matthew J; Butterfoss, Glenn L; Drou, Nizar; Rowe, Jillian D; Harb, Jamil; Fernie, Alisdair R; Gunsalus, Kristin C; Salehi-Ashtiani, Kourosh
2017-06-17
To investigate the phenomic and genomic traits that allow green algae to survive in deserts, we characterized a ubiquitous species, Chloroidium sp. UTEX 3007 , which we isolated from multiple locations in the United Arab Emirates (UAE). Metabolomic analyses of Chloroidium sp. UTEX 3007 indicated that the alga accumulates a broad range of carbon sources, including several desiccation tolerance-promoting sugars and unusually large stores of palmitate. Growth assays revealed capacities to grow in salinities from zero to 60 g/L and to grow heterotrophically on >40 distinct carbon sources. Assembly and annotation of genomic reads yielded a 52.5 Mbp genome with 8153 functionally annotated genes. Comparison with other sequenced green algae revealed unique protein families involved in osmotic stress tolerance and saccharide metabolism that support phenomic studies. Our results reveal the robust and flexible biology utilized by a green alga to successfully inhabit a desert coastline.
YY1 Regulates Melanocyte Development and Function by Cooperating with MITF
Bell, Robert J. A.; Tran, Thanh-Nga T.; Haq, Rizwan; Liu, Huifei; Love, Kevin T.; Langer, Robert; Anderson, Daniel G.; Larue, Lionel; Fisher, David E.
2012-01-01
Studies of coat color mutants have greatly contributed to the discovery of genes that regulate melanocyte development and function. Here, we generated Yy1 conditional knockout mice in the melanocyte-lineage and observed profound melanocyte deficiency and premature gray hair, similar to the loss of melanocytes in human piebaldism and Waardenburg syndrome. Although YY1 is a ubiquitous transcription factor, YY1 interacts with M-MITF, the Waardenburg Syndrome IIA gene and a master transcriptional regulator of melanocytes. YY1 cooperates with M-MITF in regulating the expression of piebaldism gene KIT and multiple additional pigmentation genes. Moreover, ChIP–seq identified genome-wide YY1 targets in the melanocyte lineage. These studies mechanistically link genes implicated in human conditions of melanocyte deficiency and reveal how a ubiquitous factor (YY1) gains lineage-specific functions by co-regulating gene expression with a lineage-restricted factor (M-MITF)—a general mechanism which may confer tissue-specific gene expression in multiple lineages. PMID:22570637
Linking performance decline to choking: players' perceptions in basketball.
Fryer, Ashley Marie; Tenenbaum, Gershon; Chow, Graig M
2018-02-01
This study was aimed at examining how basketball players view unexpected performance errors in basketball, and under what conditions they perceive them as choking. Fifty-three basketball players were randomly assigned into 2 groups (game half) to evaluate the linkage between performance decline and choking as a function of game-time, score gap and game half. Within each group, players viewed 8 scenario clips, which featured a different player conducting an error, and subsequently rated the extent of performance decline, the instance of choking and the salience of various performance attributions regarding the error. The analysis revealed that choking was most salient in the 2nd half of the game, but an error was perceived as choking more saliently in the beginning of the 2nd half. This trend was also shown for players' perception of performance decline. Players' ratings of the attributions assigned to errors, however, revealed that during the end of the 2nd half, time pressure and lack of concentration were the causes of errors. Overall, the results provide evidence towards a conceptual framework linking performance decline to the perception of choking, and that errors conducted by players are perceived as choking when there is not a salient reason to suggest its occurrence.
ERIC Educational Resources Information Center
Huang, Yueh-Min; Huang, Yong-Ming; Huang, Shu-Hsien; Lin, Yen-Ting
2012-01-01
English vocabulary learning and ubiquitous learning have separately received considerable attention in recent years. However, research on English vocabulary learning in ubiquitous learning contexts has been less studied. In this study, we develop a ubiquitous English vocabulary learning (UEVL) system to assist students in experiencing a systematic…
ERIC Educational Resources Information Center
McAnear, Anita
2006-01-01
When we planned the editorial calendar with the topic ubiquitous computing, we were thinking of ubiquitous computing as the one-to-one ratio of computers to students and teachers and 24/7 access to electronic resources. At the time, we were aware that ubiquitous computing in the computer science field had more to do with wearable computers. Our…
A Dynamic Ubiquitous Learning Resource Model with Context and Its Effects on Ubiquitous Learning
ERIC Educational Resources Information Center
Chen, Min; Yu, Sheng Quan; Chiang, Feng Kuang
2017-01-01
Most ubiquitous learning researchers use resource recommendation and retrieving based on context to provide contextualized learning resources, but it is the kind of one-way context matching. Learners always obtain fixed digital learning resources, which present all learning contents in any context. This study proposed a dynamic ubiquitous learning…
Topographical gradients of semantics and phonology revealed by temporal lobe stimulation.
Miozzo, Michele; Williams, Alicia C; McKhann, Guy M; Hamberger, Marla J
2017-02-01
Word retrieval is a fundamental component of oral communication, and it is well established that this function is supported by left temporal cortex. Nevertheless, the specific temporal areas mediating word retrieval and the particular linguistic processes these regions support have not been well delineated. Toward this end, we analyzed over 1000 naming errors induced by left temporal cortical stimulation in epilepsy surgery patients. Errors were primarily semantic (lemon → "pear"), phonological (horn → "corn"), non-responses, and delayed responses (correct responses after a delay), and each error type appeared predominantly in a specific region: semantic errors in mid-middle temporal gyrus (TG), phonological errors and delayed responses in middle and posterior superior TG, and non-responses in anterior inferior TG. To the extent that semantic errors, phonological errors and delayed responses reflect disruptions in different processes, our results imply topographical specialization of semantic and phonological processing. Specifically, results revealed an inferior-to-superior gradient, with more superior regions associated with phonological processing. Further, errors were increasingly semantically related to targets toward posterior temporal cortex. We speculate that detailed semantic input is needed to support phonological retrieval, and thus, the specificity of semantic input increases progressively toward posterior temporal regions implicated in phonological processing. Hum Brain Mapp 38:688-703, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Addressing the Problem of Negative Lexical Transfer Errors in Chilean University Students
ERIC Educational Resources Information Center
Dissington, Paul Anthony
2018-01-01
Studies of second language learning have revealed a connection between first language transfer and errors in second language production. This paper describes an action research study carried out among Chilean university students studying English as part of their degree programmes. The study focuses on common lexical errors made by Chilean…
Attention to Form or Meaning? Error Treatment in the Bangalore Project.
ERIC Educational Resources Information Center
Beretta, Alan
1989-01-01
Reports on an evaluation of the Bangalore/Madras Communicational Teaching Project (CTP), a content-based approach to language learning. Analysis of 21 lesson transcripts revealed a greater incidence of error treatment of content than linguistic error, consonant with the CTP focus on meaning rather than form. (26 references) (Author/CB)
Shame, guilt, and the medical learner: ignored connections and why we should care.
Bynum, William E; Goodie, Jeffrey L
2014-11-01
Shame and guilt are subjective emotional responses that occur in response to negative events such as the making of mistakes or an experience of mistreatment, and have been studied extensively in the field of psychology. Despite their potentially damaging effects and ubiquitous presence in everyday life, very little has been written about the impact of shame and guilt in medical education. The authors reference the psychology literature to define shame and guilt and then focus on one area in medical education in which they manifest: the response of the learner and teacher to medical errors. Evidence is provided from the psychology literature to show associations between shame and negative coping mechanisms, decreased empathy and impaired self-forgiveness following a transgression. The authors link this evidence to existing findings in the medical literature that may be related to unrecognised shame and guilt, and propose novel ways of thinking about a learner's ability to cope, remain empathetic and forgive him or herself following an error. The authors combine the discussion of shame, guilt and learner error with findings from the medical education literature and outline three specific ways in which teachers might lead learners to a shame-free response to errors: by acknowledging the presence of shame and guilt in the learner; by avoiding humiliation, and by leveraging effective feedback. The authors conclude with recommendations for research on shame and guilt and their influence on the experience of the medical learner. This critical research plus enhanced recognition of shame and guilt will allow teachers and institutions to further cultivate the engaged, empathetic and shame-resilient learners they strive to create. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
ERIC Educational Resources Information Center
Liu, Tsung-Yu; Chu, Yu-Ling
2010-01-01
This paper reports the results of a study which aimed to investigate how ubiquitous games influence English learning achievement and motivation through a context-aware ubiquitous learning environment. An English curriculum was conducted on a school campus by using a context-aware ubiquitous learning environment called the Handheld English Language…
1989-09-01
technologies during the days of the Industrial Revolution . [8:229) Those words while almost five years old still hold true as computer-based...Within the seeds of this revolution in technology lies potential for change as potent and ubiquitous as that brought about by changes in manufacturing...with the largest increases coming from the microcomputer industry . A set of companies recently studied revealed growth rates from 30 to 100 percent
Calpain cleavage within dysferlin exon 40a releases a synaptotagmin-like module for membrane repair
Redpath, G. M. I.; Woolger, N.; Piper, A. K.; Lemckert, F. A.; Lek, A.; Greer, P. A.; North, K. N.; Cooper, S. T.
2014-01-01
Dysferlin and calpain are important mediators of the emergency response to repair plasma membrane injury. Our previous research revealed that membrane injury induces cleavage of dysferlin to release a synaptotagmin-like C-terminal module we termed mini-dysferlinC72. Here we show that injury-activated cleavage of dysferlin is mediated by the ubiquitous calpains via a cleavage motif encoded by alternately spliced exon 40a. An exon 40a–specific antibody recognizing cleaved mini-dysferlinC72 intensely labels the circumference of injury sites, supporting a key role for dysferlinExon40a isoforms in membrane repair and consistent with our evidence suggesting that the calpain-cleaved C-terminal module is the form specifically recruited to injury sites. Calpain cleavage of dysferlin is a ubiquitous response to membrane injury in multiple cell lineages and occurs independently of the membrane repair protein MG53. Our study links calpain and dysferlin in the calcium-activated vesicle fusion of membrane repair, placing calpains as upstream mediators of a membrane repair cascade that elicits cleaved dysferlin as an effector. Of importance, we reveal that myoferlin and otoferlin are also cleaved enzymatically to release similar C-terminal modules, bearing two C2 domains and a transmembrane domain. Evolutionary preservation of this feature highlights its functional importance and suggests that this highly conserved C-terminal region of ferlins represents a functionally specialized vesicle fusion module. PMID:25143396
Müller, Daniel B.; Schubert, Olga T.; Röst, Hannes; Aebersold, Ruedi; Vorholt, Julia A.
2016-01-01
Plants are colonized by a diverse community of microorganisms, the plant microbiota, exhibiting a defined and conserved taxonomic structure. Niche separation based on spatial segregation and complementary adaptation strategies likely forms the basis for coexistence of the various microorganisms in the plant environment. To gain insights into organism-specific adaptations on a molecular level, we selected two exemplary community members of the core leaf microbiota and profiled their proteomes upon Arabidopsis phyllosphere colonization. The highly quantitative mass spectrometric technique SWATH MS was used and allowed for the analysis of over two thousand proteins spanning more than three orders of magnitude in abundance for each of the model strains. The data suggest that Sphingomonas melonis utilizes amino acids and hydrocarbon compounds during colonization of leaves whereas Methylobacterium extorquens relies on methanol metabolism in addition to oxalate metabolism, aerobic anoxygenic photosynthesis and alkanesulfonate utilization. Comparative genomic analyses indicates that utilization of oxalate and alkanesulfonates is widespread among leaf microbiota members whereas, aerobic anoxygenic photosynthesis is almost exclusively found in Methylobacteria. Despite the apparent niche separation between these two strains we also found a relatively small subset of proteins to be coregulated, indicating common mechanisms, underlying successful leaf colonization. Overall, our results reveal for two ubiquitous phyllosphere commensals species-specific adaptations to the host environment and provide evidence for niche separation within the plant microbiota. PMID:27457762
Nowak, Michał S; Goś, Roman; Smigielski, Janusz
2008-01-01
To determine the prevalence of refractive errors in population. A retrospective review of medical examinations for entry to the military service from The Area Military Medical Commission in Lodz. Ophthalmic examinations were performed. We used statistic analysis to review the results. Statistic analysis revealed that refractive errors occurred in 21.68% of the population. The most commen refractive error was myopia. 1) The most commen ocular diseases are refractive errors, especially myopia (21.68% in total). 2) Refractive surgery and contact lenses should be allowed as the possible correction of refractive errors for military service.
Host Control of Fungal Infections: Lessons from Basic Studies and Human Cohorts.
Lionakis, Michail S; Levitz, Stuart M
2018-04-26
In the last few decades, the AIDS pandemic and the significant advances in the medical management of individuals with neoplastic and inflammatory conditions have resulted in a dramatic increase in the population of immunosuppressed patients with opportunistic, life-threatening fungal infections. The parallel development of clinically relevant mouse models of fungal disease and the discovery and characterization of several inborn errors of immune-related genes that underlie inherited human susceptibility to opportunistic mycoses have significantly expanded our understanding of the innate and adaptive immune mechanisms that protect against ubiquitous fungal exposures. This review synthesizes immunological knowledge derived from basic mouse studies and from human cohorts and provides an overview of mammalian antifungal host defenses that show promise for informing therapeutic and vaccination strategies for vulnerable patients.
Optical properties of poly-HCN and their astronomical applications
NASA Technical Reports Server (NTRS)
Khare, B. N.; Sagan, C.; Thompson, W. R.; Arakawa, E. T.; Meisse, C.; Tuminello, P. S.
1994-01-01
Matthews (1992) has proposed that HCN "polymer" is ubiquitous in the solar system. We apply vacuum deposition and spectroscopic techniques previously used on synthetic organic heteropolymers (tholins), kerogens, and meteoritic organic residues to the measurement of the optical constants of poly-HCN in the wavelength range 0.05-40 micrometers. These measurements allow quantitative comparison with spectrophotometry of organic-rich bodies in the outer solar system. In a specific test of Matthews' hypothesis, poly-HCN fails to match the optical constants of the haze of the Saturnian moon, Titan, in the visible and near-infrared derived from astronomical observations and standard models of the Titan atmosphere. In contrast, a tholin produced from a simulated Titan atmosphere matches within the probable errors. Poly-HCN is much more N-rich than Titan tholin.
Evaluation of circularity error in drilling of syntactic foam composites
NASA Astrophysics Data System (ADS)
Ashrith H., S.; Doddamani, Mrityunjay; Gaitonde, Vinayak
2018-04-01
Syntactic foams are widely used in structural applications of automobiles, aircrafts and underwater vehicles due to their lightweight properties combined with high compression strength and low moisture absorption. Structural application requires drilling of holes for assembly purpose. In this investigation response surface methodology based mathematical models are used to analyze the effects of cutting speed, feed, drill diameter and filler content on circularity error both at entry and exit level in drilling of glass microballoon reinforced epoxy syntactic foam. Experiments are conducted based on full factorial design using solid coated tungsten carbide twist drills. The parametric analysis reveals that circularity error is highly influenced by drill diameter followed by spindle speed at the entry and exit level. Parametric analysis also reveals that increasing filler content decreases circularity error by 13.65 and 11.96% respectively at entry and exit levels. Average circularity error at the entry level is found to be 23.73% higher than at the exit level.
ERIC Educational Resources Information Center
Müller, Amanda
2015-01-01
This paper attempts to demonstrate the differences in writing between International English Language Testing System (IELTS) bands 6.0, 6.5 and 7.0. An analysis of exemplars provided from the IELTS test makers reveals that IELTS 6.0, 6.5 and 7.0 writers can make a minimum of 206 errors, 96 errors and 35 errors per 1000 words. The following section…
LANDSAT 4 band 6 data evaluation
NASA Technical Reports Server (NTRS)
1985-01-01
Comparison of underflight data with satellite estimates of temperature revealed significant gain calibration errors. The source of the LANDSAT 5 band 6 error and its reproducibility is not yet adequately defined. The error can be accounted for using underflight or ground truth data. When underflight data are used to correct the satellite data, the residual error for the scene studied was 1.3K when the predicted temperatures were compared to measured surface temperature.
From Many-to-One to One-to-Many: The Evolution of Ubiquitous Computing in Education
ERIC Educational Resources Information Center
Chen, Wenli; Lim, Carolyn; Tan, Ashley
2011-01-01
Personal, Internet-connected technologies are becoming ubiquitous in the lives of students, and ubiquitous computing initiatives are already expanding in educational contexts. Historically in the field of education, the terms one-to-one (1:1) computing and ubiquitous computing have been interpreted in a number of ways and have at times been used…
ERIC Educational Resources Information Center
Drayton, Brian; Falk, Joni K.; Stroud, Rena; Hobbs, Kathryn; Hammerman, James
2010-01-01
There are few studies of the impact of ubiquitous computing on high school science, and the majority of studies of ubiquitous computing report only on the early stages of implementation. The present study presents data on 3 high schools with carefully elaborated ubiquitous computing systems that have gone through at least one "obsolescence cycle"…
Beyond crisis resource management: new frontiers in human factors training for acute care medicine.
Petrosoniak, Andrew; Hicks, Christopher M
2013-12-01
Error is ubiquitous in medicine, particularly during critical events and resuscitation. A significant proportion of adverse events can be attributed to inadequate team-based skills such as communication, leadership, situation awareness and resource utilization. Aviation-based crisis resource management (CRM) training using high-fidelity simulation has been proposed as a strategy to improve team behaviours. This review will address key considerations in CRM training and outline recommendations for the future of human factors education in healthcare. A critical examination of the current literature yields several important considerations to guide the development and implementation of effective simulation-based CRM training. These include defining a priori domain-specific objectives, creating an immersive environment that encourages deliberate practice and transfer-appropriate processing, and the importance of effective team debriefing. Building on research from high-risk industry, we suggest that traditional CRM training may be augmented with new training techniques that promote the development of shared mental models for team and task processes, address the effect of acute stress on team performance, and integrate strategies to improve clinical reasoning and the detection of cognitive errors. The evolution of CRM training involves a 'Triple Threat' approach that integrates mental model theory for team and task processes, training for stressful situations and metacognition and error theory towards a more comprehensive training paradigm, with roots in high-risk industry and cognitive psychology. Further research is required to evaluate the impact of this approach on patient-oriented outcomes.
Salie, Rishard; Kneissel, Michaela; Vukevic, Mirko; Zamurovic, Natasa; Kramer, Ina; Evans, Glenda; Gerwin, Nicole; Mueller, Matthias; Kinzel, Bernd; Susa, Mira
2010-03-01
The transcription factor Hey1, a known Notch target gene of the HES family, has recently been described as a target gene of bone morphogenetic protein-2 (BMP-2) during osteoblastic differentiation in vitro. As the role of Hey1 in skeletal physiology is unknown, we analyzed bones of mice ubiquitously lacking or overexpressing Hey1. This strategy enabled us to evaluate whether Hey1 modulation in the whole organism could serve as a drug or antibody target for therapy of diseases associated with bone loss. Hey1 deficiency resulted in modest osteopenia in vivo and increased number and activity of osteoclasts generated ex vivo. Hey1 overexpression resulted in distinct progressive osteopenia and inhibition of osteoblasts ex vivo, an effect apparently dominant to a mild inhibition of osteoclasts. In both Hey1 deficient and overexpressing mice, males were less affected than females and skeleton was not affected during development. Bone histomorphometry did not reveal major changes in animals at 20 weeks, suggesting that modulation had occurred before. Adult Hey1 transgenics also displayed increased type X collagen expression and an enlarged hypertrophic zone in the growth plate. Taken together, our data suggest that ubiquitous in vivo Hey1 regulation affects osteoblasts, osteoclasts and chondrocytes. Due to the complex role of Hey1 in bone, inhibition of Hey1 does not appear to be a straightforward therapeutic strategy to increase the bone mass.
A system for ubiquitous health monitoring in the bedroom via a Bluetooth network and wireless LAN.
Choi, J M; Choi, B H; Seo, J W; Sohn, R H; Ryu, M S; Yi, W; Park, K S
2004-01-01
Advances in information technology have enabled ubiquitous health monitoring at home, which is particularly useful for patients, who have to live alone. We have focused on the automatic and unobtrusive measurement of biomedical signals and activities of patients. We have constructed wireless communication networks in order to transfer data. The networks consist of Bluetooth and Wireless Local Area Network (WLAN). In this paper, we present the concept of a ubiquitous-Bedroom (u-Bedroom) which is a part of a ubiquitous-House (u-House) and we present our systems for ubiquitous health monitoring.
What proverb understanding reveals about how people think.
Gibbs, R W; Beitel, D
1995-07-01
The ability to understand proverbial sayings, such as a rolling stone gathers no moss, has been of great interest to researchers in many areas of psychology. Most psychologists assume that understanding the figurative meanings of proverbs requires various kinds of higher order cognitive abilities. The authors review the findings on proverb interpretation to examine the question of what proverb use and understanding reveals about the ways normal and dysfunctional individuals think. The widely held idea that failure to provide a figurative interpretation of a proverb necessarily reflects a deficit in specialized abstract thinking is rejected. Moreover, the ability to correctly explain what a proverb means does not necessarily imply that an individual can think abstractly. Various empirical evidence, nonetheless, suggests that the ability to understand many proverbs reveals the presence of metaphorical schemes that are ubiquitous in everyday thought.
Mental representation of symbols as revealed by vocabulary errors in two bonobos (Pan paniscus).
Lyn, Heidi
2007-10-01
Error analysis has been used in humans to detect implicit representations and categories in language use. The present study utilizes the same technique to report on mental representations and categories in symbol use from two bonobos (Pan paniscus). These bonobos have been shown in published reports to comprehend English at the level of a two-and-a-half year old child and to use a keyboard with over 200 visuographic symbols (lexigrams). In this study, vocabulary test errors from over 10 years of data revealed auditory, visual, and spatio-temporal generalizations (errors were more likely items that looked like sounded like, or were frequently associated with the sample item in space or in time), as well as hierarchical and conceptual categorizations. These error data, like those of humans, are a result of spontaneous responding rather than specific training and do not solely depend upon the sample mode (e.g. auditory similarity errors are not universally more frequent with an English sample, nor were visual similarity errors universally more frequent with a photograph sample). However, unlike humans, these bonobos do not make errors based on syntactical confusions (e.g. confusing semantically unrelated nouns), suggesting that they may not separate syntactical and semantic information. These data suggest that apes spontaneously create a complex, hierarchical, web of representations when exposed to a symbol system.
Adaptive UEP and Packet Size Assignment for Scalable Video Transmission over Burst-Error Channels
NASA Astrophysics Data System (ADS)
Lee, Chen-Wei; Yang, Chu-Sing; Su, Yih-Ching
2006-12-01
This work proposes an adaptive unequal error protection (UEP) and packet size assignment scheme for scalable video transmission over a burst-error channel. An analytic model is developed to evaluate the impact of channel bit error rate on the quality of streaming scalable video. A video transmission scheme, which combines the adaptive assignment of packet size with unequal error protection to increase the end-to-end video quality, is proposed. Several distinct scalable video transmission schemes over burst-error channel have been compared, and the simulation results reveal that the proposed transmission schemes can react to varying channel conditions with less and smoother quality degradation.
A ubiquitous ice size bias in simulations of tropical deep convection
NASA Astrophysics Data System (ADS)
Stanford, McKenna W.; Varble, Adam; Zipser, Ed; Strapp, J. Walter; Leroy, Delphine; Schwarzenboeck, Alfons; Potts, Rodney; Protat, Alain
2017-08-01
The High Altitude Ice Crystals - High Ice Water Content (HAIC-HIWC) joint field campaign produced aircraft retrievals of total condensed water content (TWC), hydrometeor particle size distributions (PSDs), and vertical velocity (w) in high ice water content regions of mature and decaying tropical mesoscale convective systems (MCSs). The resulting dataset is used here to explore causes of the commonly documented high bias in radar reflectivity within cloud-resolving simulations of deep convection. This bias has been linked to overly strong simulated convective updrafts lofting excessive condensate mass but is also modulated by parameterizations of hydrometeor size distributions, single particle properties, species separation, and microphysical processes. Observations are compared with three Weather Research and Forecasting model simulations of an observed MCS using different microphysics parameterizations while controlling for w, TWC, and temperature. Two popular bulk microphysics schemes (Thompson and Morrison) and one bin microphysics scheme (fast spectral bin microphysics) are compared. For temperatures between -10 and -40 °C and TWC > 1 g m-3, all microphysics schemes produce median mass diameters (MMDs) that are generally larger than observed, and the precipitating ice species that controls this size bias varies by scheme, temperature, and w. Despite a much greater number of samples, all simulations fail to reproduce observed high-TWC conditions ( > 2 g m-3) between -20 and -40 °C in which only a small fraction of condensate mass is found in relatively large particle sizes greater than 1 mm in diameter. Although more mass is distributed to large particle sizes relative to those observed across all schemes when controlling for temperature, w, and TWC, differences with observations are significantly variable between the schemes tested. As a result, this bias is hypothesized to partly result from errors in parameterized hydrometeor PSD and single particle properties, but because it is present in all schemes, it may also partly result from errors in parameterized microphysical processes present in all schemes. Because of these ubiquitous ice size biases, the frequently used microphysical parameterizations evaluated in this study inherently produce a high bias in convective reflectivity for a wide range of temperatures, vertical velocities, and TWCs.
Daye, Pierre M.; Blohm, Gunnar; Lefèvre, Phillippe
2014-01-01
This study analyzes how human participants combine saccadic and pursuit gaze movements when they track an oscillating target moving along a randomly oriented straight line with the head free to move. We found that to track the moving target appropriately, participants triggered more saccades with increasing target oscillation frequency to compensate for imperfect tracking gains. Our sinusoidal paradigm allowed us to show that saccade amplitude was better correlated with internal estimates of position and velocity error at saccade onset than with those parameters 100 ms before saccade onset as head-restrained studies have shown. An analysis of saccadic onset time revealed that most of the saccades were triggered when the target was accelerating. Finally, we found that most saccades were triggered when small position errors were combined with large velocity errors at saccade onset. This could explain why saccade amplitude was better correlated with velocity error than with position error. Therefore, our results indicate that the triggering mechanism of head-unrestrained catch-up saccades combines position and velocity error at saccade onset to program and correct saccade amplitude rather than using sensory information 100 ms before saccade onset. PMID:24424378
Virtually Naked: Virtual Environment Reveals Sex-Dependent Nature of Skin Disclosure
Lomanowska, Anna M.; Guitton, Matthieu J.
2012-01-01
The human tendency to reveal or cover naked skin reflects a competition between the individual propensity for social interactions related to sexual appeal and interpersonal touch versus climatic, environmental, physical, and cultural constraints. However, due to the ubiquitous nature of these constraints, isolating on a large scale the spontaneous human tendency to reveal naked skin has remained impossible. Using the online 3-dimensional virtual world of Second Life, we examined spontaneous human skin-covering behavior unhindered by real-world climatic, environmental, and physical variables. Analysis of hundreds of avatars revealed that virtual females disclose substantially more naked skin than virtual males. This phenomenon was not related to avatar hypersexualization as evaluated by measurement of sexually dimorphic body proportions. Furthermore, analysis of skin-covering behavior of a population of culturally homogeneous avatars indicated that the propensity of female avatars to reveal naked skin persisted despite explicit cultural norms promoting less revealing attire. These findings have implications for further understanding how sex-specific aspects of skin disclosure influence human social interactions in both virtual and real settings. PMID:23300580
Virtually naked: virtual environment reveals sex-dependent nature of skin disclosure.
Lomanowska, Anna M; Guitton, Matthieu J
2012-01-01
The human tendency to reveal or cover naked skin reflects a competition between the individual propensity for social interactions related to sexual appeal and interpersonal touch versus climatic, environmental, physical, and cultural constraints. However, due to the ubiquitous nature of these constraints, isolating on a large scale the spontaneous human tendency to reveal naked skin has remained impossible. Using the online 3-dimensional virtual world of Second Life, we examined spontaneous human skin-covering behavior unhindered by real-world climatic, environmental, and physical variables. Analysis of hundreds of avatars revealed that virtual females disclose substantially more naked skin than virtual males. This phenomenon was not related to avatar hypersexualization as evaluated by measurement of sexually dimorphic body proportions. Furthermore, analysis of skin-covering behavior of a population of culturally homogeneous avatars indicated that the propensity of female avatars to reveal naked skin persisted despite explicit cultural norms promoting less revealing attire. These findings have implications for further understanding how sex-specific aspects of skin disclosure influence human social interactions in both virtual and real settings.
Atwood, E.L.
1958-01-01
Response bias errors are studied by comparing questionnaire responses from waterfowl hunters using four large public hunting areas with actual hunting data from these areas during two hunting seasons. To the extent that the data permit, the sources of the error in the responses were studied and the contribution of each type to the total error was measured. Response bias errors, including both prestige and memory bias, were found to be very large as compared to non-response and sampling errors. Good fits were obtained with the seasonal kill distribution of the actual hunting data and the negative binomial distribution and a good fit was obtained with the distribution of total season hunting activity and the semi-logarithmic curve. A comparison of the actual seasonal distributions with the questionnaire response distributions revealed that the prestige and memory bias errors are both positive. The comparisons also revealed the tendency for memory bias errors to occur at digit frequencies divisible by five and for prestige bias errors to occur at frequencies which are multiples of the legal daily bag limit. A graphical adjustment of the response distributions was carried out by developing a smooth curve from those frequency classes not included in the predictable biased frequency classes referred to above. Group averages were used in constructing the curve, as suggested by Ezekiel [1950]. The efficiency of the technique described for reducing response bias errors in hunter questionnaire responses on seasonal waterfowl kill is high in large samples. The graphical method is not as efficient in removing response bias errors in hunter questionnaire responses on seasonal hunting activity where an average of 60 percent was removed.
CILT2000: Ubiquitous Computing--Spanning the Digital Divide.
ERIC Educational Resources Information Center
Tinker, Robert; Vahey, Philip
2002-01-01
Discusses the role of ubiquitous and handheld computers in education. Summarizes the contributions of the Center for Innovative Learning Technologies (CILT) and describes the ubiquitous computing sessions at the CILT2000 Conference. (Author/YDS)
Error Discounting in Probabilistic Category Learning
Craig, Stewart; Lewandowsky, Stephan; Little, Daniel R.
2011-01-01
Some current theories of probabilistic categorization assume that people gradually attenuate their learning in response to unavoidable error. However, existing evidence for this error discounting is sparse and open to alternative interpretations. We report two probabilistic-categorization experiments that investigated error discounting by shifting feedback probabilities to new values after different amounts of training. In both experiments, responding gradually became less responsive to errors, and learning was slowed for some time after the feedback shift. Both results are indicative of error discounting. Quantitative modeling of the data revealed that adding a mechanism for error discounting significantly improved the fits of an exemplar-based and a rule-based associative learning model, as well as of a recency-based model of categorization. We conclude that error discounting is an important component of probabilistic learning. PMID:21355666
A Method of Calculating Motion Error in a Linear Motion Bearing Stage
Khim, Gyungho; Park, Chun Hong; Oh, Jeong Seok
2015-01-01
We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement. PMID:25705715
A wearable context aware system for ubiquitous healthcare.
Kang, Dong-Oh; Lee, Hyung-Jik; Ko, Eun-Jung; Kang, Kyuchang; Lee, Jeunwoo
2006-01-01
Recent developments of information technologies are leading the advent of the era of ubiquitous healthcare, which means healthcare services at any time and at any places. The ubiquitous healthcare service needs a wearable system for more continual measurement of biological signals of a user, which gives information of the user from wearable sensors. In this paper, we propose a wearable context aware system for ubiquitous healthcare, and its systematic design process of a ubiquitous healthcare service. Some wearable sensor systems are introduced with Zigbee communication. We develop a context aware framework to send information from wearable sensors to healthcare service entities as a middleware to solve the interoperability problem between sensor makers and healthcare service providers. And, we propose a systematic process of design of ubiquitous healthcare services with the context aware framework. In order to show the feasibility of the proposed system, some application examples are given, which are applied to remote monitoring, and a self check service.
Error floor behavior study of LDPC codes for concatenated codes design
NASA Astrophysics Data System (ADS)
Chen, Weigang; Yin, Liuguo; Lu, Jianhua
2007-11-01
Error floor behavior of low-density parity-check (LDPC) codes using quantized decoding algorithms is statistically studied with experimental results on a hardware evaluation platform. The results present the distribution of the residual errors after decoding failure and reveal that the number of residual error bits in a codeword is usually very small using quantized sum-product (SP) algorithm. Therefore, LDPC code may serve as the inner code in a concatenated coding system with a high code rate outer code and thus an ultra low error floor can be achieved. This conclusion is also verified by the experimental results.
A study for systematic errors of the GLA forecast model in tropical regions
NASA Technical Reports Server (NTRS)
Chen, Tsing-Chang; Baker, Wayman E.; Pfaendtner, James; Corrigan, Martin
1988-01-01
From the sensitivity studies performed with the Goddard Laboratory for Atmospheres (GLA) analysis/forecast system, it was revealed that the forecast errors in the tropics affect the ability to forecast midlatitude weather in some cases. Apparently, the forecast errors occurring in the tropics can propagate to midlatitudes. Therefore, the systematic error analysis of the GLA forecast system becomes a necessary step in improving the model's forecast performance. The major effort of this study is to examine the possible impact of the hydrological-cycle forecast error on dynamical fields in the GLA forecast system.
Masked and unmasked error-related potentials during continuous control and feedback
NASA Astrophysics Data System (ADS)
Lopes Dias, Catarina; Sburlea, Andreea I.; Müller-Putz, Gernot R.
2018-06-01
The detection of error-related potentials (ErrPs) in tasks with discrete feedback is well established in the brain–computer interface (BCI) field. However, the decoding of ErrPs in tasks with continuous feedback is still in its early stages. Objective. We developed a task in which subjects have continuous control of a cursor’s position by means of a joystick. The cursor’s position was shown to the participants in two different modalities of continuous feedback: normal and jittered. The jittered feedback was created to mimic the instability that could exist if participants controlled the trajectory directly with brain signals. Approach. This paper studies the electroencephalographic (EEG)—measurable signatures caused by a loss of control over the cursor’s trajectory, causing a target miss. Main results. In both feedback modalities, time-locked potentials revealed the typical frontal-central components of error-related potentials. Errors occurring during the jittered feedback (masked errors) were delayed in comparison to errors occurring during normal feedback (unmasked errors). Masked errors displayed lower peak amplitudes than unmasked errors. Time-locked classification analysis allowed a good distinction between correct and error classes (average Cohen-, average TPR = 81.8% and average TNR = 96.4%). Time-locked classification analysis between masked error and unmasked error classes revealed results at chance level (average Cohen-, average TPR = 60.9% and average TNR = 58.3%). Afterwards, we performed asynchronous detection of ErrPs, combining both masked and unmasked trials. The asynchronous detection of ErrPs in a simulated online scenario resulted in an average TNR of 84.0% and in an average TPR of 64.9%. Significance. The time-locked classification results suggest that the masked and unmasked errors were indistinguishable in terms of classification. The asynchronous classification results suggest that the feedback modality did not hinder the asynchronous detection of ErrPs.
New functionalities in abundant element oxides: ubiquitous element strategy
Hosono, Hideo; Hayashi, Katsuro; Kamiya, Toshio; Atou, Toshiyuki; Susaki, Tomofumi
2011-01-01
While most ceramics are composed of ubiquitous elements (the ten most abundant elements within the Earth's crust), many advanced materials are based on rare elements. A ‘rare-element crisis’ is approaching owing to the imbalance between the limited supply of rare elements and the increasing demand. Therefore, we propose a ‘ubiquitous element strategy’ for materials research, which aims to apply abundant elements in a variety of innovative applications. Creation of innovative oxide materials and devices based on conventional ceramics is one specific challenge. This review describes the concept of ubiquitous element strategy and gives some highlights of our recent research on the synthesis of electronic, thermionic and structural materials using ubiquitous elements. PMID:27877391
Technologies for Achieving Field Ubiquitous Computing
NASA Astrophysics Data System (ADS)
Nagashima, Akira
Although the term “ubiquitous” may sound like jargon used in information appliances, ubiquitous computing is an emerging concept in industrial automation. This paper presents the author's visions of field ubiquitous computing, which is based on the novel Internet Protocol IPv6. IPv6-based instrumentation will realize the next generation manufacturing excellence. This paper focuses on the following five key issues: 1. IPv6 standardization; 2. IPv6 interfaces embedded in field devices; 3. Compatibility with FOUNDATION fieldbus; 4. Network securities for field applications; and 5. Wireless technologies to complement IP instrumentation. Furthermore, the principles of digital plant operations and ubiquitous production to support the above key technologies to achieve field ubiquitous systems are discussed.
The Extended HANDS Characterization and Analysis of Metric Biases
NASA Astrophysics Data System (ADS)
Kelecy, T.; Knox, R.; Cognion, R.
The Extended High Accuracy Network Determination System (Extended HANDS) consists of a network of low cost, high accuracy optical telescopes designed to support space surveillance and development of space object characterization technologies. Comprising off-the-shelf components, the telescopes are designed to provide sub arc-second astrometric accuracy. The design and analysis team are in the process of characterizing the system through development of an error allocation tree whose assessment is supported by simulation, data analysis, and calibration tests. The metric calibration process has revealed 1-2 arc-second biases in the right ascension and declination measurements of reference satellite position, and these have been observed to have fairly distinct characteristics that appear to have some dependence on orbit geometry and tracking rates. The work presented here outlines error models developed to aid in development of the system error budget, and examines characteristic errors (biases, time dependence, etc.) that might be present in each of the relevant system elements used in the data collection and processing, including the metric calibration processing. The relevant reference frames are identified, and include the sensor (CCD camera) reference frame, Earth-fixed topocentric frame, topocentric inertial reference frame, and the geocentric inertial reference frame. The errors modeled in each of these reference frames, when mapped into the topocentric inertial measurement frame, reveal how errors might manifest themselves through the calibration process. The error analysis results that are presented use satellite-sensor geometries taken from periods where actual measurements were collected, and reveal how modeled errors manifest themselves over those specific time periods. These results are compared to the real calibration metric data (right ascension and declination residuals), and sources of the bias are hypothesized. In turn, the actual right ascension and declination calibration residuals are also mapped to other relevant reference frames in an attempt to validate the source of the bias errors. These results will serve as the basis for more focused investigation into specific components embedded in the system and system processes that might contain the source of the observed biases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dékány, I.; Minniti, D.; Majaess, D.
2015-10-20
Solid insight into the physics of the inner Milky Way is key to understanding our Galaxy’s evolution, but extreme dust obscuration has historically hindered efforts to map the area along the Galactic mid-plane. New comprehensive near-infrared time-series photometry from the VVV Survey has revealed 35 classical Cepheids, tracing a previously unobserved component of the inner Galaxy, namely a ubiquitous inner thin disk of young stars along the Galactic mid-plane, traversing across the bulge. The discovered period (age) spread of these classical Cepheids implies a continuous supply of newly formed stars in the central region of the Galaxy over the lastmore » 100 million years.« less
V and K-band Mass-Luminosity Relations for M Dwarf Stars
NASA Astrophysics Data System (ADS)
Benedict, George Frederick; Henry, Todd J.; McArthur, Barbara E.; Franz, Otto; Wasserman, Larry H.; Dieterich, Sergio
2015-08-01
Applying Hubble Space Telescope Fine Guidance Sensor astrometric techniques developed to establish relative orbits for binary stars (Franz et al. 1998, AJ, 116, 1432), determine masses of binary components (Benedict et al. 2001, AJ, 121, 1607), and measure companion masses of exoplanet host stars (McArthur et al. 2010, ApJ, 715, 1203), we derive masses with an average 2% error for 28 components of 14 M dwarf binary star systems. With these and other published masses we update the lower Main Sequence V-band Mass-Luminosity Relation first shown in Henry et al. 1999, ApJ, 512, 864. We demonstrate that a Mass-Luminosity Relation in the K-band has far less scatter. These relations can be used to estimate the masses of the ubiquitous red dwarfs (75% of all stars) to an accuracy of better than 5%.
Errors in finite-difference computations on curvilinear coordinate systems
NASA Technical Reports Server (NTRS)
Mastin, C. W.; Thompson, J. F.
1980-01-01
Curvilinear coordinate systems were used extensively to solve partial differential equations on arbitrary regions. An analysis of truncation error in the computation of derivatives revealed why numerical results may be erroneous. A more accurate method of computing derivatives is presented.
Counting OCR errors in typeset text
NASA Astrophysics Data System (ADS)
Sandberg, Jonathan S.
1995-03-01
Frequently object recognition accuracy is a key component in the performance analysis of pattern matching systems. In the past three years, the results of numerous excellent and rigorous studies of OCR system typeset-character accuracy (henceforth OCR accuracy) have been published, encouraging performance comparisons between a variety of OCR products and technologies. These published figures are important; OCR vendor advertisements in the popular trade magazines lead readers to believe that published OCR accuracy figures effect market share in the lucrative OCR market. Curiously, a detailed review of many of these OCR error occurrence counting results reveals that they are not reproducible as published and they are not strictly comparable due to larger variances in the counts than would be expected by the sampling variance. Naturally, since OCR accuracy is based on a ratio of the number of OCR errors over the size of the text searched for errors, imprecise OCR error accounting leads to similar imprecision in OCR accuracy. Some published papers use informal, non-automatic, or intuitively correct OCR error accounting. Still other published results present OCR error accounting methods based on string matching algorithms such as dynamic programming using Levenshtein (edit) distance but omit critical implementation details (such as the existence of suspect markers in the OCR generated output or the weights used in the dynamic programming minimization procedure). The problem with not specifically revealing the accounting method is that the number of errors found by different methods are significantly different. This paper identifies the basic accounting methods used to measure OCR errors in typeset text and offers an evaluation and comparison of the various accounting methods.
In vivo functional mapping of the conserved protein domains within murine Themis1.
Zvezdova, Ekaterina; Lee, Jan; El-Khoury, Dalal; Barr, Valarie; Akpan, Itoro; Samelson, Lawrence; Love, Paul E
2014-09-01
Thymocyte development requires the coordinated input of signals that originate from numerous cell surface molecules. Although the majority of thymocyte signal-initiating receptors are lineage-specific, most trigger 'ubiquitous' downstream signaling pathways. T-lineage-specific receptors are coupled to these signaling pathways by lymphocyte-restricted adapter molecules. We and others recently identified a new putative adapter protein, Themis1, whose expression is largely restricted to the T lineage. Mice lacking Themis1 exhibit a severe block in thymocyte development and a striking paucity of mature T cells revealing a critical role for Themis1 in T-cell maturation. Themis1 orthologs contain three conserved domains: a proline-rich region (PRR) that binds to the ubiquitous cytosolic adapter Grb2, a nuclear localization sequence (NLS), and two copies of a novel cysteine-containing globular (CABIT) domain. In the present study, we evaluated the functional importance of each of these motifs by retroviral reconstitution of Themis1(-/-) progenitor cells. The results demonstrate an essential requirement for the PRR and NLS motifs but not the conserved CABIT cysteines for Themis1 function.
Single cell genomic study of Dehalococcoidites in deep sea sediments of Peru Margin 1230
NASA Astrophysics Data System (ADS)
Kaster, A.; Meyer-Blackwell, K.; Spormann, A. M.
2013-12-01
Dehalogenating Chloroflexi, such as Dehalococcoidites Dhc were originally discovered as the key microorganisms mediating reductive dehalogenation of the prevalent groundwater contaminants tetrachloroethene and trichloroethene. Molecular and genomic studies on their key enzymes for energy conservation, reductive dehalogenases rdh, have provided evidence for ubiquitous horizontal gene transfer. A pioneering study by Futagami et al. discovered novel putative rdh phylotypes in sediments from the Pacific, revealing an unknown and surprising abundance of rdh genes in pristine habitats. The frequent detection of Dhc-related 16S rRNA genes from these environments implied the occurrence of dissimilatory dehalorespiration in marine subsurface sediments, however, pristine Dhc could never be linked to this activity. Despite being ubiquitous in those environments, metabolic life style or ecological function of Dhc in the absence of anthropogenic contaminants is still completely unknown. We therefore analyzed a non-contaminated deep sea sediment sample of the Peru Margin 1230 site by a single cell genomic (SGC) approach. We present for the first time data on three single Dhc cells, helping to elucidate their role in the poorly understood oligotrophic marine sub-surface environment.
Structure of the vault, a ubiquitous celular component.
Kong, L B; Siva, A C; Rome, L H; Stewart, P L
1999-04-15
The vault is a ubiquitous and highly conserved ribonucleoprotein particle of approximately 13 MDa. This particle has been shown to be upregulated in certain multidrug-resistant cancer cell lines and to share a protein component with the telomerase complex. Determination of the structure of the vault was undertaken to provide a first step towards understanding the role of this cellular component in normal metabolism and perhaps to shed some light on its role in mediating drug resistance. Over 1300 particle images were combined to calculate an approximately 31 A resolution structure of the vault. Rotational power spectra did not yield a clear symmetry peak, either because of the thin, smooth walls or inherent flexibility of the vault. Although cyclic eightfold (C8) symmetry was imposed, the resulting reconstruction may be partially cylindrically averaged about the eightfold axis. Our results reveal the vault to be a hollow, barrel-like structure with two protruding caps and an invaginated waist. Although the normal cellular function of the vault is as yet undetermined, the structure of the vault is consistent with either a role in subcellular transport, as previously suggested, or in sequestering macromolecular assemblies.
A Ubiquitous Sensor Network Platform for Integrating Smart Devices into the Semantic Sensor Web
de Vera, David Díaz Pardo; Izquierdo, Álvaro Sigüenza; Vercher, Jesús Bernat; Gómez, Luis Alfonso Hernández
2014-01-01
Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs. PMID:24945678
A Novel Certificateless Signature Scheme for Smart Objects in the Internet-of-Things.
Yeh, Kuo-Hui; Su, Chunhua; Choo, Kim-Kwang Raymond; Chiu, Wayne
2017-05-01
Rapid advances in wireless communications and pervasive computing technologies have resulted in increasing interest and popularity of Internet-of-Things (IoT) architecture, ubiquitously providing intelligence and convenience to our daily life. In IoT-based network environments, smart objects are embedded everywhere as ubiquitous things connected in a pervasive manner. Ensuring security for interactions between these smart things is significantly more important, and a topic of ongoing interest. In this paper, we present a certificateless signature scheme for smart objects in IoT-based pervasive computing environments. We evaluate the utility of the proposed scheme in IoT-oriented testbeds, i.e., Arduino Uno and Raspberry PI 2. Experiment results present the practicability of the proposed scheme. Moreover, we revisit the scheme of Wang et al. (2015) and revealed that a malicious super type I adversary can easily forge a legitimate signature to cheat any receiver as he/she wishes in the scheme. The superiority of the proposed certificateless signature scheme over relevant studies is demonstrated in terms of the summarized security and performance comparisons.
A ubiquitous sensor network platform for integrating smart devices into the semantic sensor web.
de Vera, David Díaz Pardo; Izquierdo, Alvaro Sigüenza; Vercher, Jesús Bernat; Hernández Gómez, Luis Alfonso
2014-06-18
Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs.
Tamura, Kazune; Hemsworth, Glyn R; Déjean, Guillaume; Rogers, Theresa E; Pudlo, Nicholas A; Urs, Karthik; Jain, Namrata; Davies, Gideon J; Martens, Eric C; Brumer, Harry
2017-10-10
Microbial utilization of complex polysaccharides is a major driving force in shaping the composition of the human gut microbiota. There is a growing appreciation that finely tuned polysaccharide utilization loci enable ubiquitous gut Bacteroidetes to thrive on the plethora of complex polysaccharides that constitute "dietary fiber." Mixed-linkage β(1,3)/β(1,4)-glucans (MLGs) are a key family of plant cell wall polysaccharides with recognized health benefits but whose mechanism of utilization has remained unclear. Here, we provide molecular insight into the function of an archetypal MLG utilization locus (MLGUL) through a combination of biochemistry, enzymology, structural biology, and microbiology. Comparative genomics coupled with growth studies demonstrated further that syntenic MLGULs serve as genetic markers for MLG catabolism across commensal gut bacteria. In turn, we surveyed human gut metagenomes to reveal that MLGULs are ubiquitous in human populations globally, which underscores the importance of gut microbial metabolism of MLG as a common cereal polysaccharide. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
A Novel Certificateless Signature Scheme for Smart Objects in the Internet-of-Things
Yeh, Kuo-Hui; Su, Chunhua; Choo, Kim-Kwang Raymond; Chiu, Wayne
2017-01-01
Rapid advances in wireless communications and pervasive computing technologies have resulted in increasing interest and popularity of Internet-of-Things (IoT) architecture, ubiquitously providing intelligence and convenience to our daily life. In IoT-based network environments, smart objects are embedded everywhere as ubiquitous things connected in a pervasive manner. Ensuring security for interactions between these smart things is significantly more important, and a topic of ongoing interest. In this paper, we present a certificateless signature scheme for smart objects in IoT-based pervasive computing environments. We evaluate the utility of the proposed scheme in IoT-oriented testbeds, i.e., Arduino Uno and Raspberry PI 2. Experiment results present the practicability of the proposed scheme. Moreover, we revisit the scheme of Wang et al. (2015) and revealed that a malicious super type I adversary can easily forge a legitimate signature to cheat any receiver as he/she wishes in the scheme. The superiority of the proposed certificateless signature scheme over relevant studies is demonstrated in terms of the summarized security and performance comparisons. PMID:28468313
Nelson, David R; Khraiwesh, Basel; Fu, Weiqi; Alseekh, Saleh; Jaiswal, Ashish; Chaiboonchoe, Amphun; Hazzouri, Khaled M; O’Connor, Matthew J; Butterfoss, Glenn L; Drou, Nizar; Rowe, Jillian D; Harb, Jamil; Fernie, Alisdair R; Gunsalus, Kristin C; Salehi-Ashtiani, Kourosh
2017-01-01
To investigate the phenomic and genomic traits that allow green algae to survive in deserts, we characterized a ubiquitous species, Chloroidium sp. UTEX 3007, which we isolated from multiple locations in the United Arab Emirates (UAE). Metabolomic analyses of Chloroidium sp. UTEX 3007 indicated that the alga accumulates a broad range of carbon sources, including several desiccation tolerance-promoting sugars and unusually large stores of palmitate. Growth assays revealed capacities to grow in salinities from zero to 60 g/L and to grow heterotrophically on >40 distinct carbon sources. Assembly and annotation of genomic reads yielded a 52.5 Mbp genome with 8153 functionally annotated genes. Comparison with other sequenced green algae revealed unique protein families involved in osmotic stress tolerance and saccharide metabolism that support phenomic studies. Our results reveal the robust and flexible biology utilized by a green alga to successfully inhabit a desert coastline. DOI: http://dx.doi.org/10.7554/eLife.25783.001 PMID:28623667
A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes.
Larsbrink, Johan; Rogers, Theresa E; Hemsworth, Glyn R; McKee, Lauren S; Tauzin, Alexandra S; Spadiut, Oliver; Klinter, Stefan; Pudlo, Nicholas A; Urs, Karthik; Koropatkin, Nicole M; Creagh, A Louise; Haynes, Charles A; Kelly, Amelia G; Cederholm, Stefan Nilsson; Davies, Gideon J; Martens, Eric C; Brumer, Harry
2014-02-27
A well-balanced human diet includes a significant intake of non-starch polysaccharides, collectively termed 'dietary fibre', from the cell walls of diverse fruits and vegetables. Owing to the paucity of alimentary enzymes encoded by the human genome, our ability to derive energy from dietary fibre depends on the saccharification and fermentation of complex carbohydrates by the massive microbial community residing in our distal gut. The xyloglucans (XyGs) are a ubiquitous family of highly branched plant cell wall polysaccharides whose mechanism(s) of degradation in the human gut and consequent importance in nutrition have been unclear. Here we demonstrate that a single, complex gene locus in Bacteroides ovatus confers XyG catabolism in this common colonic symbiont. Through targeted gene disruption, biochemical analysis of all predicted glycoside hydrolases and carbohydrate-binding proteins, and three-dimensional structural determination of the vanguard endo-xyloglucanase, we reveal the molecular mechanisms through which XyGs are hydrolysed to component monosaccharides for further metabolism. We also observe that orthologous XyG utilization loci (XyGULs) serve as genetic markers of XyG catabolism in Bacteroidetes, that XyGULs are restricted to a limited number of phylogenetically diverse strains, and that XyGULs are ubiquitous in surveyed human metagenomes. Our findings reveal that the metabolism of even highly abundant components of dietary fibre may be mediated by niche species, which has immediate fundamental and practical implications for gut symbiont population ecology in the context of human diet, nutrition and health.
Müller, Daniel B; Schubert, Olga T; Röst, Hannes; Aebersold, Ruedi; Vorholt, Julia A
2016-10-01
Plants are colonized by a diverse community of microorganisms, the plant microbiota, exhibiting a defined and conserved taxonomic structure. Niche separation based on spatial segregation and complementary adaptation strategies likely forms the basis for coexistence of the various microorganisms in the plant environment. To gain insights into organism-specific adaptations on a molecular level, we selected two exemplary community members of the core leaf microbiota and profiled their proteomes upon Arabidopsis phyllosphere colonization. The highly quantitative mass spectrometric technique SWATH MS was used and allowed for the analysis of over two thousand proteins spanning more than three orders of magnitude in abundance for each of the model strains. The data suggest that Sphingomonas melonis utilizes amino acids and hydrocarbon compounds during colonization of leaves whereas Methylobacterium extorquens relies on methanol metabolism in addition to oxalate metabolism, aerobic anoxygenic photosynthesis and alkanesulfonate utilization. Comparative genomic analyses indicates that utilization of oxalate and alkanesulfonates is widespread among leaf microbiota members whereas, aerobic anoxygenic photosynthesis is almost exclusively found in Methylobacteria. Despite the apparent niche separation between these two strains we also found a relatively small subset of proteins to be coregulated, indicating common mechanisms, underlying successful leaf colonization. Overall, our results reveal for two ubiquitous phyllosphere commensals species-specific adaptations to the host environment and provide evidence for niche separation within the plant microbiota. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Busslinger, M; Portmann, R; Irminger, J C; Birnstiel, M L
1980-01-01
The DNA sequences of the entire structural H4, H3, H2A and H2B genes and of their 5' flanking regions have been determined in the histone DNA clone h19 of the sea urchin Psammechinus miliaris. In clone h19 the polarity of transcription and the relative arrangement of the histone genes is identical to that in clone h22 of the same species. The histone proteins encoded by h19 DNA differ in their primary structure from those encoded by clone h22 and have been compared to histone protein sequences of other sea urchin species as well as other eukaryotes. A comparative analysis of the 5' flanking DNA sequences of the structural histone genes in both clones revealed four ubiquitous sequence motifs; a pentameric element GATCC, followed at short distance by the Hogness box GTATAAATAG, a conserved sequence PyCATTCPu, in or near which the 5' ends of the mRNAs map in h22 DNA and lastly a sequence A, containing the initiation codon. These sequences are also found, sometimes in modified version, in front of other eukaryotic genes transcribed by polymerase II. When prelude sequences of isocoding histone genes in clone h19 and h22 are compared areas of homology are seen to extend beyond the ubiquitous sequence motifs towards the divergent AT-rich spacer and terminate between approximately 140 and 240 nucleotides away from the structural gene. These prelude regions contain quite large conservative sequence blocks which are specific for each type of histone genes. Images PMID:7443547
Fullerton, Heather; Hager, Kevin W; McAllister, Sean M; Moyer, Craig L
2017-08-01
The Zetaproteobacteria are ubiquitous in marine environments, yet this class of Proteobacteria is only represented by a few closely-related cultured isolates. In high-iron environments, such as diffuse hydrothermal vents, the Zetaproteobacteria are important members of the community driving its structure. Biogeography of Zetaproteobacteria has shown two ubiquitous operational taxonomic units (OTUs), yet much is unknown about their genomic diversity. Genome-resolved metagenomics allows for the specific binning of microbial genomes based on genomic signatures present in composite metagenome assemblies. This resulted in the recovery of 93 genome bins, of which 34 were classified as Zetaproteobacteria. Form II ribulose 1,5-bisphosphate carboxylase genes were recovered from nearly all the Zetaproteobacteria genome bins. In addition, the Zetaproteobacteria genome bins contain genes for uptake and utilization of bioavailable nitrogen, detoxification of arsenic, and a terminal electron acceptor adapted for low oxygen concentration. Our results also support the hypothesis of a Cyc2-like protein as the site for iron oxidation, now detected across a majority of the Zetaproteobacteria genome bins. Whole genome comparisons showed a high genomic diversity across the Zetaproteobacteria OTUs and genome bins that were previously unidentified by SSU rRNA gene analysis. A single lineage of cosmopolitan Zetaproteobacteria (zOTU 2) was found to be monophyletic, based on cluster analysis of average nucleotide identity and average amino acid identity comparisons. From these data, we can begin to pinpoint genomic adaptations of the more ecologically ubiquitous Zetaproteobacteria, and further understand their environmental constraints and metabolic potential.
Ubiquitous and temperature-dependent neural plasticity in hibernators.
von der Ohe, Christina G; Darian-Smith, Corinna; Garner, Craig C; Heller, H Craig
2006-10-11
Hibernating mammals are remarkable for surviving near-freezing brain temperatures and near cessation of neural activity for a week or more at a time. This extreme physiological state is associated with dendritic and synaptic changes in hippocampal neurons. Here, we investigate whether these changes are a ubiquitous phenomenon throughout the brain that is driven by temperature. We iontophoretically injected Lucifer yellow into several types of neurons in fixed slices from hibernating ground squirrels. We analyzed neuronal microstructure from animals at several stages of torpor at two different ambient temperatures, and during the summer. We show that neuronal cell bodies, dendrites, and spines from several cell types in hibernating ground squirrels retract on entry into torpor, change little over the course of several days, and then regrow during the 2 h return to euthermia. Similar structural changes take place in neurons from the hippocampus, cortex, and thalamus, suggesting a global phenomenon. Investigation of neural microstructure from groups of animals hibernating at different ambient temperatures revealed that there is a linear relationship between neural retraction and minimum body temperature. Despite significant temperature-dependent differences in extent of retraction during torpor, recovery reaches the same final values of cell body area, dendritic arbor complexity, and spine density. This study demonstrates large-scale and seemingly ubiquitous neural plasticity in the ground squirrel brain during torpor. It also defines a temperature-driven model of dramatic neural plasticity, which provides a unique opportunity to explore mechanisms of large-scale regrowth in adult mammals, and the effects of remodeling on learning and memory.
NASA Technical Reports Server (NTRS)
Morris, A. Terry
1999-01-01
This paper examines various sources of error in MIT's improved top oil temperature rise over ambient temperature model and estimation process. The sources of error are the current parameter estimation technique, quantization noise, and post-processing of the transformer data. Results from this paper will show that an output error parameter estimation technique should be selected to replace the current least squares estimation technique. The output error technique obtained accurate predictions of transformer behavior, revealed the best error covariance, obtained consistent parameter estimates, and provided for valid and sensible parameters. This paper will also show that the output error technique should be used to minimize errors attributed to post-processing (decimation) of the transformer data. Models used in this paper are validated using data from a large transformer in service.
Iampietro, Mary; Giovannetti, Tania; Drabick, Deborah A. G.; Kessler, Rachel K.
2013-01-01
Executive function (EF) deficits in schizophrenia (SZ) are well documented, although much less is known about patterns of EF deficits and their association to differential impairments in everyday functioning. The present study empirically defined SZ groups based on measures of various EF abilities and then compared these EF groups on everyday action errors. Participants (n=45) completed various subtests from the Delis–Kaplan Executive Function System (D-KEFS) and the Naturalistic Action Test (NAT), a performance-based measure of everyday action that yields scores reflecting total errors and a range of different error types (e.g., omission, perseveration). Results of a latent class analysis revealed three distinct EF groups, characterized by (a) multiple EF deficits, (b) relatively spared EF, and (c) perseverative responding. Follow-up analyses revealed that the classes differed significantly on NAT total errors, total commission errors, and total perseveration errors; the two classes with EF impairment performed comparably on the NAT but performed worse than the class with relatively spared EF. In sum, people with SZ demonstrate variable patterns of EF deficits, and distinct aspects of these EF deficit patterns (i.e., poor mental control abilities) may be associated with everyday functioning capabilities. PMID:23035705
Context Aware Ubiquitous Learning Environments for Peer-to-Peer Collaborative Learning
ERIC Educational Resources Information Center
Yang, Stephen J. H.
2006-01-01
A ubiquitous learning environment provides an interoperable, pervasive, and seamless learning architecture to connect, integrate, and share three major dimensions of learning resources: learning collaborators, learning contents, and learning services. Ubiquitous learning is characterized by providing intuitive ways for identifying right learning…
Internet messenger based smart virtual class learning using ubiquitous computing
NASA Astrophysics Data System (ADS)
Umam, K.; Mardi, S. N. S.; Hariadi, M.
2017-06-01
Internet messenger (IM) has become an important educational technology component in college education, IM makes it possible for students to engage in learning and collaborating at smart virtual class learning (SVCL) using ubiquitous computing. However, the model of IM-based smart virtual class learning using ubiquitous computing and empirical evidence that would favor a broad application to improve engagement and behavior are still limited. In addition, the expectation that IM based SVCL using ubiquitous computing could improve engagement and behavior on smart class cannot be confirmed because the majority of the reviewed studies followed instructions paradigms. This article aims to present the model of IM-based SVCL using ubiquitous computing and showing learners’ experiences in improved engagement and behavior for learner-learner and learner-lecturer interactions. The method applied in this paper includes design process and quantitative analysis techniques, with the purpose of identifying scenarios of ubiquitous computing and realize the impressions of learners and lecturers about engagement and behavior aspect and its contribution to learning
Hatcher, Irene; Sullivan, Mark; Hutchinson, James; Thurman, Susan; Gaffney, F Andrew
2004-10-01
Improving medication safety at the point of care--particularly for high-risk drugs--is a major concern of nursing administrators. The medication errors most likely to cause harm are administration errors related to infusion of high-risk medications. An intravenous medication safety system is designed to prevent high-risk infusion medication errors and to capture continuous quality improvement data for best practice improvement. Initial testing with 50 systems in 2 units at Vanderbilt University Medical Center revealed that, even in the presence of a fully mature computerized prescriber order-entry system, the new safety system averted 99 potential infusion errors in 8 months.
Image-Based Localization Aided Indoor Pedestrian Trajectory Estimation Using Smartphones
Zhou, Yan; Zheng, Xianwei; Chen, Ruizhi; Xiong, Hanjiang; Guo, Sheng
2018-01-01
Accurately determining pedestrian location in indoor environments using consumer smartphones is a significant step in the development of ubiquitous localization services. Many different map-matching methods have been combined with pedestrian dead reckoning (PDR) to achieve low-cost and bias-free pedestrian tracking. However, this works only in areas with dense map constraints and the error accumulates in open areas. In order to achieve reliable localization without map constraints, an improved image-based localization aided pedestrian trajectory estimation method is proposed in this paper. The image-based localization recovers the pose of the camera from the 2D-3D correspondences between the 2D image positions and the 3D points of the scene model, previously reconstructed by a structure-from-motion (SfM) pipeline. This enables us to determine the initial location and eliminate the accumulative error of PDR when an image is successfully registered. However, the image is not always registered since the traditional 2D-to-3D matching rejects more and more correct matches when the scene becomes large. We thus adopt a robust image registration strategy that recovers initially unregistered images by integrating 3D-to-2D search. In the process, the visibility and co-visibility information is adopted to improve the efficiency when searching for the correspondences from both sides. The performance of the proposed method was evaluated through several experiments and the results demonstrate that it can offer highly acceptable pedestrian localization results in long-term tracking, with an error of only 0.56 m, without the need for dedicated infrastructures. PMID:29342123
Effective implementation of work-hour limits and systemic improvements.
Landrigan, Christopher P; Czeisler, Charles A; Barger, Laura K; Ayas, Najib T; Rothschild, Jeffrey M; Lockley, Steven W
2007-11-01
Sleep deprivation, ubiquitous among nurses and physicians, recently has been shown to greatly increase rates of serious medical errors and occupational injuries among health care workers in the United States. The Accreditation Council for Graduate Medical Education's current work-hour limits for physicians-in-training allow work hours well in excess of those proven safe. No regulations limit the work hours of other groups of health care providers in the United States. Consequently, nursing work shifts exceeding 12 hours remain common. Physician-in-training shifts of 30 consecutive hours continue to be endorsed officially, and data demonstrate that even the 30-hour limit is exceeded routinely. By contrast, European health care workers are limited by law to 13 consecutive hours of work and to 48-56 hours of work per week. Except for a few institutions that have eliminated 24-hour shifts, as a whole, the United States lags far behind other industrialized nations in ensuring safe work hours. Preventing health care provider sleep deprivation could be an extremely powerful means of addressing the epidemic of medical errors in the United States. Implementation of evidence-based work-hour limits, scientifically designed work schedules, and infrastructural changes, such as the development of standardized handoff systems, are urgently needed.
Bellman’s GAP—a language and compiler for dynamic programming in sequence analysis
Sauthoff, Georg; Möhl, Mathias; Janssen, Stefan; Giegerich, Robert
2013-01-01
Motivation: Dynamic programming is ubiquitous in bioinformatics. Developing and implementing non-trivial dynamic programming algorithms is often error prone and tedious. Bellman’s GAP is a new programming system, designed to ease the development of bioinformatics tools based on the dynamic programming technique. Results: In Bellman’s GAP, dynamic programming algorithms are described in a declarative style by tree grammars, evaluation algebras and products formed thereof. This bypasses the design of explicit dynamic programming recurrences and yields programs that are free of subscript errors, modular and easy to modify. The declarative modules are compiled into C++ code that is competitive to carefully hand-crafted implementations. This article introduces the Bellman’s GAP system and its language, GAP-L. It then demonstrates the ease of development and the degree of re-use by creating variants of two common bioinformatics algorithms. Finally, it evaluates Bellman’s GAP as an implementation platform of ‘real-world’ bioinformatics tools. Availability: Bellman’s GAP is available under GPL license from http://bibiserv.cebitec.uni-bielefeld.de/bellmansgap. This Web site includes a repository of re-usable modules for RNA folding based on thermodynamics. Contact: robert@techfak.uni-bielefeld.de Supplementary information: Supplementary data are available at Bioinformatics online PMID:23355290
A Map/INS/Wi-Fi Integrated System for Indoor Location-Based Service Applications
Yu, Chunyang; Lan, Haiyu; Gu, Fuqiang; Yu, Fei; El-Sheimy, Naser
2017-01-01
In this research, a new Map/INS/Wi-Fi integrated system for indoor location-based service (LBS) applications based on a cascaded Particle/Kalman filter framework structure is proposed. Two-dimension indoor map information, together with measurements from an inertial measurement unit (IMU) and Received Signal Strength Indicator (RSSI) value, are integrated for estimating positioning information. The main challenge of this research is how to make effective use of various measurements that complement each other in order to obtain an accurate, continuous, and low-cost position solution without increasing the computational burden of the system. Therefore, to eliminate the cumulative drift caused by low-cost IMU sensor errors, the ubiquitous Wi-Fi signal and non-holonomic constraints are rationally used to correct the IMU-derived navigation solution through the extended Kalman Filter (EKF). Moreover, the map-aiding method and map-matching method are innovatively combined to constrain the primary Wi-Fi/IMU-derived position through an Auxiliary Value Particle Filter (AVPF). Different sources of information are incorporated through a cascaded structure EKF/AVPF filter algorithm. Indoor tests show that the proposed method can effectively reduce the accumulation of positioning errors of a stand-alone Inertial Navigation System (INS), and provide a stable, continuous and reliable indoor location service. PMID:28574471
A Map/INS/Wi-Fi Integrated System for Indoor Location-Based Service Applications.
Yu, Chunyang; Lan, Haiyu; Gu, Fuqiang; Yu, Fei; El-Sheimy, Naser
2017-06-02
In this research, a new Map/INS/Wi-Fi integrated system for indoor location-based service (LBS) applications based on a cascaded Particle/Kalman filter framework structure is proposed. Two-dimension indoor map information, together with measurements from an inertial measurement unit (IMU) and Received Signal Strength Indicator (RSSI) value, are integrated for estimating positioning information. The main challenge of this research is how to make effective use of various measurements that complement each other in order to obtain an accurate, continuous, and low-cost position solution without increasing the computational burden of the system. Therefore, to eliminate the cumulative drift caused by low-cost IMU sensor errors, the ubiquitous Wi-Fi signal and non-holonomic constraints are rationally used to correct the IMU-derived navigation solution through the extended Kalman Filter (EKF). Moreover, the map-aiding method and map-matching method are innovatively combined to constrain the primary Wi-Fi/IMU-derived position through an Auxiliary Value Particle Filter (AVPF). Different sources of information are incorporated through a cascaded structure EKF/AVPF filter algorithm. Indoor tests show that the proposed method can effectively reduce the accumulation of positioning errors of a stand-alone Inertial Navigation System (INS), and provide a stable, continuous and reliable indoor location service.
Dashboard for Analyzing Ubiquitous Learning Log
ERIC Educational Resources Information Center
Lkhagvasuren, Erdenesaikhan; Matsuura, Kenji; Mouri, Kousuke; Ogata, Hiroaki
2016-01-01
Mobile and ubiquitous technologies have been applied to a wide range of learning fields such as science, social science, history and language learning. Many researchers have been investigating the development of ubiquitous learning environments; nevertheless, to date, there have not been enough research works related to the reflection, analysis…
ERIC Educational Resources Information Center
Straalen-Sanderse, Wilma van; And Others
1986-01-01
Following an experiment which revealed that production of grammatically correct sentences and correction of grammatically problematic sentences in French are essentially different skills, a progressive training method for finding and correcting grammatical errors was developed. (MSE)
Maidhof, Clemens; Rieger, Martina; Prinz, Wolfgang; Koelsch, Stefan
2009-01-01
Background One central question in the context of motor control and action monitoring is at what point in time errors can be detected. Previous electrophysiological studies investigating this issue focused on brain potentials elicited after erroneous responses, mainly in simple speeded response tasks. In the present study, we investigated brain potentials before the commission of errors in a natural and complex situation. Methodology/Principal Findings Expert pianists bimanually played scales and patterns while the electroencephalogram (EEG) was recorded. Event-related potentials (ERPs) were computed for correct and incorrect performances. Results revealed differences already 100 ms prior to the onset of a note (i.e., prior to auditory feedback). We further observed that erroneous keystrokes were delayed in time and pressed more slowly. Conclusions Our data reveal neural mechanisms in musicians that are able to detect errors prior to the execution of erroneous movements. The underlying mechanism probably relies on predictive control processes that compare the predicted outcome of an action with the action goal. PMID:19337379
Learning with Ubiquitous Computing
ERIC Educational Resources Information Center
Rosenheck, Louisa
2008-01-01
If ubiquitous computing becomes a reality and is widely adopted, it will inevitably have an impact on education. This article reviews the background of ubiquitous computing and current research projects done involving educational "ubicomp." Finally it explores how ubicomp may and may not change education in both formal and informal settings and…
Implications of Ubiquitous Computing for the Social Studies Curriculum
ERIC Educational Resources Information Center
van Hover, Stephanie D.; Berson, Michael J.; Bolick, Cheryl Mason; Swan, Kathleen Owings
2004-01-01
In March 2002, members of the National Technology Leadership Initiative (NTLI) met in Charlottesville, Virginia to discuss the potential effects of ubiquitous computing on the field of education. Ubiquitous computing, or "on-demand availability of task-necessary computing power," involves providing every student with a handheld computer--a…
Visualisation of Interaction Footprints for Engagement in Online Communities
ERIC Educational Resources Information Center
Glahn, Christian; Specht, Marcus; Koper, Rob
2009-01-01
Contextualised and ubiquitous learning are relatively new research areas that combine the latest developments in ubiquitous and context aware computing with educational approaches in order to provide structure to more situated and context aware learning. The majority of recent activities in contextualised and ubiquitous learning focus on mobile…
Ubiquitous computing in the military environment
NASA Astrophysics Data System (ADS)
Scholtz, Jean
2001-08-01
Increasingly people work and live on the move. To support this mobile lifestyle, especially as our work becomes more intensely information-based, companies are producing various portable and embedded information devices. The late Mark Weiser coined the term, 'ubiquitous computing' to describe an environment where computers have disappeared and are integrated into physical objects. Much industry research today is concerned with ubiquitous computing in the work and home environments. A ubiquitous computing environment would facilitate mobility by allowing information users to easily access and use information anytime, anywhere. As war fighters are inherently mobile, the question is what effect a ubiquitous computing environment would have on current military operations and doctrine. And, if ubiquitous computing is viewed as beneficial for the military, what research would be necessary to achieve a military ubiquitous computing environment? What is a vision for the use of mobile information access in a battle space? Are there different requirements for civilian and military users of this technology? What are those differences? Are there opportunities for research that will support both worlds? What type of research has been supported by the military and what areas need to be investigated? Although we don't yet have all the answers to these questions, this paper discusses the issues and presents the work we are doing to address these issues.
Interconversion of intrinsic defects in SrTi O3(001 )
NASA Astrophysics Data System (ADS)
Chambers, S. A.; Du, Y.; Zhu, Z.; Wang, J.; Wahila, M. J.; Piper, L. F. J.; Prakash, A.; Yue, J.; Jalan, B.; Spurgeon, S. R.; Kepaptsoglou, D. M.; Ramasse, Q. M.; Sushko, P. V.
2018-06-01
Photoemission features associated with states deep in the band gap of n -SrTi O3(001 ) are found to be ubiquitous in bulk crystals and epitaxial films. These features are present even when there is little signal near the Fermi level. Analysis reveals that these states are deep-level traps associated with defects. The commonly investigated defects—O vacancies, Sr vacancies, and aliovalent impurity cations on the Ti sites—cannot account for these features. Rather, ab initio modeling points to these states resulting from interstitial oxygen and its interaction with donor electrons.
De Sá Teixeira, Nuno Alexandre
2014-12-01
Given its conspicuous nature, gravity has been acknowledged by several research lines as a prime factor in structuring the spatial perception of one's environment. One such line of enquiry has focused on errors in spatial localization aimed at the vanishing location of moving objects - it has been systematically reported that humans mislocalize spatial positions forward, in the direction of motion (representational momentum) and downward in the direction of gravity (representational gravity). Moreover, spatial localization errors were found to evolve dynamically with time in a pattern congruent with an anticipated trajectory (representational trajectory). The present study attempts to ascertain the degree to which vestibular information plays a role in these phenomena. Human observers performed a spatial localization task while tilted to varying degrees and referring to the vanishing locations of targets moving along several directions. A Fourier decomposition of the obtained spatial localization errors revealed that although spatial errors were increased "downward" mainly along the body's longitudinal axis (idiotropic dominance), the degree of misalignment between the latter and physical gravity modulated the time course of the localization responses. This pattern is surmised to reflect increased uncertainty about the internal model when faced with conflicting cues regarding the perceived "downward" direction.
Conjoint Analysis for Mobile Devices for Ubiquitous Learning in Higher Education: The Korean Case
ERIC Educational Resources Information Center
Lee, Hyeongjik
2013-01-01
Despite the increasing importance of mobile devices in education, the essential features of these devices for ubiquitous learning have not been empirically addressed. This study empirically investigated the necessary conditions for using mobile devices as an educational tool for ubiquitous learning in higher education by a conjoint method. The…
ERIC Educational Resources Information Center
Wu, Po-Han; Hwang, Gwo-Jen; Tsai, Wen-Hung
2013-01-01
Context-aware ubiquitous learning has been recognized as being a promising approach that enables students to interact with real-world learning targets with supports from the digital world. Several researchers have indicated the importance of providing learning guidance or hints to individual students during the context-aware ubiquitous learning…
ERIC Educational Resources Information Center
Peng, Hsinyi; Chou, Chien; Chang, Chun-Yu
2008-01-01
Computing devices and applications are now used beyond the desktop, in diverse environments, and this trend toward ubiquitous computing is evolving. In this study, we re-visit the interactivity concept and its applications for interactive function design in a ubiquitous-learning system (ULS). Further, we compare interactivity dimensions and…
The Future of Ubiquitous Elearning
ERIC Educational Resources Information Center
Arndt, Timothy
2014-01-01
Post-secondary students are increasingly receiving instruction by eLearning. Many or these are part-time students or are working while taking classes. In such circumstances, students may find themselves short of time to study. One mechanism that can be exploited to make the best use of available time is ubiquitous eLearning. Ubiquitous eLearning…
Zittrain, Jonathan
2008-10-28
Ubiquitous computing means network connectivity everywhere, linking devices and systems as small as a drawing pin and as large as a worldwide product distribution chain. What could happen when people are so readily networked? This paper explores issues arising from two possible emerging models of ubiquitous human computing: fungible networked brainpower and collective personal vital sign monitoring.
From Learning Object to Learning Cell: A Resource Organization Model for Ubiquitous Learning
ERIC Educational Resources Information Center
Yu, Shengquan; Yang, Xianmin; Cheng, Gang
2013-01-01
The key to implementing ubiquitous learning is the construction and organization of learning resources. While current research on ubiquitous learning has primarily focused on concept models, supportive environments and small-scale empirical research, exploring ways to organize learning resources to make them available anywhere on-demand is also…
Ubiquitous Learning: Determinants Impacting Learners' Satisfaction and Performance with Smartphones
ERIC Educational Resources Information Center
Jung, Hee-Jung
2014-01-01
Although the concept of ubiquitous technologies has been introduced to many parts of society, there have been limited applications, and little is known about learners' behavior toward ubiquitous technologies, particularly in the context of English learning. This study considers a sample of Korean students to identify the key factors that influence…
Ubiquitous Computing: The Universal Use of Computers on College Campuses.
ERIC Educational Resources Information Center
Brown, David G., Ed.
This book is a collection of vignettes from 13 universities where everyone on campus has his or her own computer. These 13 institutions have instituted "ubiquitous computing" in very different ways at very different costs. The chapters are: (1) "Introduction: The Ubiquitous Computing Movement" (David G. Brown); (2) "Dartmouth College" (Malcolm…
NASA Astrophysics Data System (ADS)
Umam, K.; Mardi, S. N. S.; Hariadi, M.
2017-01-01
The recent popularity of internet messenger based smartphone technologies has motivated some university lecturers to use them for educational activities. These technologies have enormous potential to enhance the teaching and ubiquitous learning experience for smart campus development. However, the design ubiquitous learning model using interactive internet messenger group (IIMG) and empirical evidence that would favor a broad application of mobile and ubiquitous learning in smart campus settings to improve engagement and behavior is still limited. In addition, the expectation that mobile learning could improve engagement and behavior on smart campus cannot be confirmed because the majority of the reviewed studies followed instructions paradigms. This article aims to present ubiquitous learning model design and showing learners’ experiences in improved engagement and behavior using IIMG for learner-learner and learner-lecturer interactions. The method applied in this paper includes design process and quantitative analysis techniques, with the purpose of identifying scenarios of ubiquitous learning and realize the impressions of learners and lecturers about engagement and behavior aspect, and its contribution to learning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Taoran, E-mail: taoran.li.duke@gmail.com; Wu, Qiuwen; Yang, Yun
Purpose: An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. Methods: The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system wasmore » designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system’s performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery. Results: Online adapted plans were found to have similar delivery accuracy in comparison to clinical IMRT plans when validated with portal dosimetry IMRT QA. FEMs for the simulated deliveries with intentional MLC errors exhibited distinct patterns for different MLC error magnitudes and directions, indicating that the proposed delivery monitoring system is highly specific in detecting the source of errors. Implementing the proposed QA system for online adapted plans revealed excellent delivery accuracy: over 99% of leaf position differences were within 0.5 mm, and >99% of pixels in the FEMs had fluence errors within 0.5 MU. Patterns present in the FEMs and MLC control point analysis for actual patient cases agreed with the error pattern analysis results, further validating the system’s ability to reveal and differentiate MLC deviations. Calculation of the fluence map based on the DMI was performed within 2 ms after receiving each DMI input. Conclusions: The proposed online delivery monitoring system requires minimal additional resources and time commitment to the current clinical workflow while still maintaining high sensitivity to leaf position errors and specificity to error types. The presented online delivery monitoring system therefore represents a promising QA system candidate for online adaptive radiation therapy.« less
Li, Taoran; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q
2015-01-01
An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system's performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery. Online adapted plans were found to have similar delivery accuracy in comparison to clinical IMRT plans when validated with portal dosimetry IMRT QA. FEMs for the simulated deliveries with intentional MLC errors exhibited distinct patterns for different MLC error magnitudes and directions, indicating that the proposed delivery monitoring system is highly specific in detecting the source of errors. Implementing the proposed QA system for online adapted plans revealed excellent delivery accuracy: over 99% of leaf position differences were within 0.5 mm, and >99% of pixels in the FEMs had fluence errors within 0.5 MU. Patterns present in the FEMs and MLC control point analysis for actual patient cases agreed with the error pattern analysis results, further validating the system's ability to reveal and differentiate MLC deviations. Calculation of the fluence map based on the DMI was performed within 2 ms after receiving each DMI input. The proposed online delivery monitoring system requires minimal additional resources and time commitment to the current clinical workflow while still maintaining high sensitivity to leaf position errors and specificity to error types. The presented online delivery monitoring system therefore represents a promising QA system candidate for online adaptive radiation therapy.
Mining the preferences of patients for ubiquitous clinic recommendation.
Chen, Tin-Chih Toly; Chiu, Min-Chi
2018-03-06
A challenge facing all ubiquitous clinic recommendation systems is that patients often have difficulty articulating their requirements. To overcome this problem, a ubiquitous clinic recommendation mechanism was designed in this study by mining the clinic preferences of patients. Their preferences were defined using the weights in the ubiquitous clinic recommendation mechanism. An integer nonlinear programming problem was solved to tune the values of the weights on a rolling basis. In addition, since it may take a long time to adjust the values of weights to their asymptotic values, the back propagation network (BPN)-response surface method (RSM) method is applied to estimate the asymptotic values of weights. The proposed methodology was tested in a regional study. Experimental results indicated that the ubiquitous clinic recommendation system outperformed several existing methods in improving the successful recommendation rate.
Lin, Yanli; Moran, Tim P; Schroder, Hans S; Moser, Jason S
2015-10-01
Anxious apprehension/worry is associated with exaggerated error monitoring; however, the precise mechanisms underlying this relationship remain unclear. The current study tested the hypothesis that the worry-error monitoring relationship involves left-lateralized linguistic brain activity by examining the relationship between worry and error monitoring, indexed by the error-related negativity (ERN), as a function of hand of error (Experiment 1) and stimulus orientation (Experiment 2). Results revealed that worry was exclusively related to the ERN on right-handed errors committed by the linguistically dominant left hemisphere. Moreover, the right-hand ERN-worry relationship emerged only when stimuli were presented horizontally (known to activate verbal processes) but not vertically. Together, these findings suggest that the worry-ERN relationship involves left hemisphere verbal processing, elucidating a potential mechanism to explain error monitoring abnormalities in anxiety. Implications for theory and practice are discussed. © 2015 Society for Psychophysiological Research.
Teaching Mistakes or Teachable Moments?
ERIC Educational Resources Information Center
Mueller, Mary; Yankelewitz, Dina
2014-01-01
Gain a new perspective on the sharing of erroneous solutions in classroom discussions. Based on their research in grades four and six, the authors reveal how student-to-student correction of errors promotes mathematical reasoning and understanding. Tips for teachers include strategies for using students' errors to encourage reasoning during…
Lexical and Semantic Binding in Verbal Short-Term Memory
ERIC Educational Resources Information Center
Jefferies, Elizabeth; Frankish, Clive R.; Ralph, Matthew A. Lambon
2006-01-01
Semantic dementia patients make numerous phoneme migration errors in their immediate serial recall of poorly comprehended words. In this study, similar errors were induced in the word recall of healthy participants by presenting unpredictable mixed lists of words and nonwords. This technique revealed that lexicality, word frequency, imageability,…
Belief propagation decoding of quantum channels by passing quantum messages
NASA Astrophysics Data System (ADS)
Renes, Joseph M.
2017-07-01
The belief propagation (BP) algorithm is a powerful tool in a wide range of disciplines from statistical physics to machine learning to computational biology, and is ubiquitous in decoding classical error-correcting codes. The algorithm works by passing messages between nodes of the factor graph associated with the code and enables efficient decoding of the channel, in some cases even up to the Shannon capacity. Here we construct the first BP algorithm which passes quantum messages on the factor graph and is capable of decoding the classical-quantum channel with pure state outputs. This gives explicit decoding circuits whose number of gates is quadratic in the code length. We also show that this decoder can be modified to work with polar codes for the pure state channel and as part of a decoder for transmitting quantum information over the amplitude damping channel. These represent the first explicit capacity-achieving decoders for non-Pauli channels.
All-organic optoelectronic sensor for pulse oximetry
NASA Astrophysics Data System (ADS)
Lochner, Claire M.; Khan, Yasser; Pierre, Adrien; Arias, Ana C.
2014-12-01
Pulse oximetry is a ubiquitous non-invasive medical sensing method for measuring pulse rate and arterial blood oxygenation. Conventional pulse oximeters use expensive optoelectronic components that restrict sensing locations to finger tips or ear lobes due to their rigid form and area-scaling complexity. In this work, we report a pulse oximeter sensor based on organic materials, which are compatible with flexible substrates. Green (532 nm) and red (626 nm) organic light-emitting diodes (OLEDs) are used with an organic photodiode (OPD) sensitive at the aforementioned wavelengths. The sensor’s active layers are deposited from solution-processed materials via spin-coating and printing techniques. The all-organic optoelectronic oximeter sensor is interfaced with conventional electronics at 1 kHz and the acquired pulse rate and oxygenation are calibrated and compared with a commercially available oximeter. The organic sensor accurately measures pulse rate and oxygenation with errors of 1% and 2%, respectively.
Wilkinson, David; Guinote, Ana; Weick, Mario; Molinari, Rosanna; Graham, Kylee
2010-12-01
Social power affects the manner in which people view themselves and act toward others, a finding that has attracted broad interest from the social and political sciences. However, there has been little interest from those within cognitive neuroscience. Here, we demonstrate that the effects of power extend beyond social interaction and invoke elementary spatial biases in behavior consistent with preferential hemispheric activation. In particular, participants who felt relatively powerless, compared with those who felt more powerful, were more likely to bisect horizontal lines to the left of center, and bump into the right-hand (as opposed to the left-hand) side when walking through a narrow passage. These results suggest that power induces hemispheric differences in visuomotor behavior, indicating that this ubiquitous phenomenon affects not only how we interact with one another, but also how we interact with the physical world.
Gestalt theory: implications for radiology education.
Koontz, Nicholas A; Gunderman, Richard B
2008-05-01
The Gestalt theory of modern psychology is grounded in the ideas that holistic rather than atomistic approaches are necessary to understand the mind, and that the mental whole is greater than the sum of its component parts. Although the Gestalt school fell out of favor due to its descriptive rather than explanatory nature, it permanently changed our understanding of perception. For the radiologist, such fundamental Gestalt concepts as figure-ground relationships and a variety of "grouping principles" (the laws of closure, proximity, similarity, common region, continuity, and symmetry) are ubiquitous in daily work, not to mention in art and personal life. By considering the applications of these principles and the stereotypical ways in which humans perceive visual stimuli, a radiology learner may incur fewer errors of diagnosis. This article serves to introduce several important principles of Gestalt theory, identify examples of these principles in widely recognizable fine art, and highlight their implications for radiology education.
Wang, Jianhui; Liu, Zhi; Chen, C L Philip; Zhang, Yun
2017-10-12
Hysteresis exists ubiquitously in physical actuators. Besides, actuator failures/faults may also occur in practice. Both effects would deteriorate the transient tracking performance, and even trigger instability. In this paper, we consider the problem of compensating for actuator failures and input hysteresis by proposing a fuzzy control scheme for stochastic nonlinear systems. Compared with the existing research on stochastic nonlinear uncertain systems, it is found that how to guarantee a prescribed transient tracking performance when taking into account actuator failures and hysteresis simultaneously also remains to be answered. Our proposed control scheme is designed on the basis of the fuzzy logic system and backstepping techniques for this purpose. It is proven that all the signals remain bounded and the tracking error is ensured to be within a preestablished bound with the failures of hysteretic actuator. Finally, simulations are provided to illustrate the effectiveness of the obtained theoretical results.
Stochastic Watershed Models for Risk Based Decision Making
NASA Astrophysics Data System (ADS)
Vogel, R. M.
2017-12-01
Over half a century ago, the Harvard Water Program introduced the field of operational or synthetic hydrology providing stochastic streamflow models (SSMs), which could generate ensembles of synthetic streamflow traces useful for hydrologic risk management. The application of SSMs, based on streamflow observations alone, revolutionized water resources planning activities, yet has fallen out of favor due, in part, to their inability to account for the now nearly ubiquitous anthropogenic influences on streamflow. This commentary advances the modern equivalent of SSMs, termed `stochastic watershed models' (SWMs) useful as input to nearly all modern risk based water resource decision making approaches. SWMs are deterministic watershed models implemented using stochastic meteorological series, model parameters and model errors, to generate ensembles of streamflow traces that represent the variability in possible future streamflows. SWMs combine deterministic watershed models, which are ideally suited to accounting for anthropogenic influences, with recent developments in uncertainty analysis and principles of stochastic simulation
Ultracoherent operation of spin qubits with superexchange coupling
NASA Astrophysics Data System (ADS)
Rančić, Marko J.; Burkard, Guido
2017-11-01
With the use of nuclear-spin-free materials such as silicon and germanium, spin-based quantum bits (qubits) have evolved to become among the most coherent systems for quantum information processing. The new frontier for spin qubits has therefore shifted to the ubiquitous charge noise and spin-orbit interaction, which are limiting the coherence times and gate fidelities of solid-state qubits. In this paper we investigate superexchange, as a means of indirect exchange interaction between two single electron spin qubits, each embedded in a single semiconductor quantum dot (QD), mediated by an intermediate, empty QD. Our results suggest the existence of "supersweet spots", in which the qubit operations implemented by superexchange interaction are simultaneously first-order-insensitive to charge noise and to errors due to spin-orbit interaction. The proposed spin-qubit architecture is scalable and within the manufacturing capabilities of semiconductor industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herberger, Sarah M.; Boring, Ronald L.
Abstract Objectives: This paper discusses the differences between classical human reliability analysis (HRA) dependence and the full spectrum of probabilistic dependence. Positive influence suggests an error increases the likelihood of subsequent errors or success increases the likelihood of subsequent success. Currently the typical method for dependence in HRA implements the Technique for Human Error Rate Prediction (THERP) positive dependence equations. This assumes that the dependence between two human failure events varies at discrete levels between zero and complete dependence (as defined by THERP). Dependence in THERP does not consistently span dependence values between 0 and 1. In contrast, probabilistic dependencemore » employs Bayes Law, and addresses a continuous range of dependence. Methods: Using the laws of probability, complete dependence and maximum positive dependence do not always agree. Maximum dependence is when two events overlap to their fullest amount. Maximum negative dependence is the smallest amount that two events can overlap. When the minimum probability of two events overlapping is less than independence, negative dependence occurs. For example, negative dependence is when an operator fails to actuate Pump A, thereby increasing his or her chance of actuating Pump B. The initial error actually increases the chance of subsequent success. Results: Comparing THERP and probability theory yields different results in certain scenarios; with the latter addressing negative dependence. Given that most human failure events are rare, the minimum overlap is typically 0. And when the second event is smaller than the first event the max dependence is less than 1, as defined by Bayes Law. As such alternative dependence equations are provided along with a look-up table defining the maximum and maximum negative dependence given the probability of two events. Conclusions: THERP dependence has been used ubiquitously for decades, and has provided approximations of the dependencies between two events. Since its inception, computational abilities have increased exponentially, and alternative approaches that follow the laws of probability dependence need to be implemented. These new approaches need to consider negative dependence and identify when THERP output is not appropriate.« less
Barnabe, Christian; Buitrago, Rosio; Bremond, Philippe; Aliaga, Claudia; Salas, Renata; Vidaurre, Pablo; Herrera, Claudia; Cerqueira, Frédérique; Bosseno, Marie-France; Waleckx, Etienne; Breniere, Simone Frédérique
2013-01-01
Trypanosoma cruzi, the causative agent of Chagas disease, is subdivided into six discrete typing units (DTUs; TcI–TcVI) of which TcI is ubiquitous and genetically highly variable. While clonality is the dominant mode of propagation, recombinant events play a significant evolutive role. Recently, foci of wild Triatoma infestans have been described in Bolivia, mainly infected by TcI. Hence, for the first time, we evaluated the level of genetic exchange within TcI natural potentially panmictic populations (single DTU, host, area and sampling time). Seventy-nine TcI stocks from wild T. infestans, belonging to six populations were characterized at eight microsatellite loci. For each population, Hardy-Weinberg equilibrium (HWE), linkage disequilibrium (LD), and presence of repeated multilocus genotypes (MLG) were analyzed by using a total of seven statistics, to test the null hypothesis of panmixia (H0). For three populations, none of the seven statistics allowed to rejecting H0; for another one the low size did not allow us to conclude, and for the two others the tests have given contradictory results. Interestingly, apparent panmixia was only observed in very restricted areas, and was not observed when grouping populations distant of only two kilometers or more. Nevertheless it is worth stressing that for the statistic tests of "HWE", in order to minimize the type I error (i. e. incorrect rejection of a true H0), we used the Bonferroni correction (BC) known to considerably increase the type II error ( i. e. failure to reject a false H0). For the other tests (LD and MLG), we did not use BC and the risk of type II error in these cases was acceptable. Thus, these results should be considered as a good indicator of the existence of panmixia in wild environment but this must be confirmed on larger samples to reduce the risk of type II error. PMID:24312410
Pratte, Michael S.; Park, Young Eun; Rademaker, Rosanne L.; Tong, Frank
2016-01-01
If we view a visual scene that contains many objects, then momentarily close our eyes, some details persist while others seem to fade. Discrete models of visual working memory (VWM) assume that only a few items can be actively maintained in memory, beyond which pure guessing will emerge. Alternatively, continuous resource models assume that all items in a visual scene can be stored with some precision. Distinguishing between these competing models is challenging, however, as resource models that allow for stochastically variable precision (across items and trials) can produce error distributions that resemble random guessing behavior. Here, we evaluated the hypothesis that a major source of variability in VWM performance arises from systematic variation in precision across the stimuli themselves; such stimulus-specific variability can be incorporated into both discrete-capacity and variable-precision resource models. Participants viewed multiple oriented gratings, and then reported the orientation of a cued grating from memory. When modeling the overall distribution of VWM errors, we found that the variable-precision resource model outperformed the discrete model. However, VWM errors revealed a pronounced “oblique effect”, with larger errors for oblique than cardinal orientations. After this source of variability was incorporated into both models, we found that the discrete model provided a better account of VWM errors. Our results demonstrate that variable precision across the stimulus space can lead to an unwarranted advantage for resource models that assume stochastically variable precision. When these deterministic sources are adequately modeled, human working memory performance reveals evidence of a discrete capacity limit. PMID:28004957
Pratte, Michael S; Park, Young Eun; Rademaker, Rosanne L; Tong, Frank
2017-01-01
If we view a visual scene that contains many objects, then momentarily close our eyes, some details persist while others seem to fade. Discrete models of visual working memory (VWM) assume that only a few items can be actively maintained in memory, beyond which pure guessing will emerge. Alternatively, continuous resource models assume that all items in a visual scene can be stored with some precision. Distinguishing between these competing models is challenging, however, as resource models that allow for stochastically variable precision (across items and trials) can produce error distributions that resemble random guessing behavior. Here, we evaluated the hypothesis that a major source of variability in VWM performance arises from systematic variation in precision across the stimuli themselves; such stimulus-specific variability can be incorporated into both discrete-capacity and variable-precision resource models. Participants viewed multiple oriented gratings, and then reported the orientation of a cued grating from memory. When modeling the overall distribution of VWM errors, we found that the variable-precision resource model outperformed the discrete model. However, VWM errors revealed a pronounced "oblique effect," with larger errors for oblique than cardinal orientations. After this source of variability was incorporated into both models, we found that the discrete model provided a better account of VWM errors. Our results demonstrate that variable precision across the stimulus space can lead to an unwarranted advantage for resource models that assume stochastically variable precision. When these deterministic sources are adequately modeled, human working memory performance reveals evidence of a discrete capacity limit. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Ubiquitous technologies in health: new challenges of opportunity, expectation, and responsibility.
Rigby, Michael
2006-01-01
In spite of their name, 'ubiquitous' technologies are not yet ubiquitous in the true sense of the word, but rather are 'novel', being at the research, pilot, and selective use stages. In future, the proliferation in types of application, the major increase in cases and data volumes, and above all the dependence on ubiquitous technologies will raise practical, ethical, and liability issues. Equally significantly, it will require health service redesign, including new response services. Health informaticians need to be active in stimulating consideration of all these issues, as part of both social and professional responsibility.
Using Context-Aware Ubiquitous Learning to Support Students' Understanding of Geometry
ERIC Educational Resources Information Center
Crompton, Helen
2015-01-01
In this study, context-aware ubiquitous learning was used to support 4th grade students as they learn angle concepts. Context-aware ubiquitous learning was provided to students primarily through the use of iPads to access real-world connections and a Dynamic Geometry Environment. Gravemeijer and van Eerde's (2009), design-based research (DBR)…
ERIC Educational Resources Information Center
Lim, Jeff
2013-01-01
"A ubiquitous English vocabulary learning system: evidence of active/passive attitudes vs. usefulness/ease-of-use" introduces and develops "Ubiquitous English Vocabulary Learning" (UEFL) system. It introduces to the memorization using the video clips. According to their paper the video clip gives a better chance for students to…
Role of Passive Capturing in a Ubiquitous Learning Environment
ERIC Educational Resources Information Center
Ogata, Hiroaki; Hou, Bin; Li, MengMeng; Uosaki, Noriko; Mouri, Kousuke
2013-01-01
Ubiquitous Learning Log (ULL) is defined as a digital record of what you have learned in the daily life using ubiquitous technologies. This paper focuses on how to capture learning experiences in our daily life for vocabulary learning. In our previous works, we developed a system named SCROLL (System for Capturing and Reminding Of Learning Log) in…
Construction of Course Ubiquitous Learning Based on Network
ERIC Educational Resources Information Center
Wang, Xue; Zhang, Wei; Yang, Xinhui
2017-01-01
Ubiquitous learning has been more and more recognized, which describes a new generation of learning from a new point of view. Ubiquitous learning will bring the new teaching practice and teaching reform, which will become an essential way of learning in 21st century. Taking translation course as a case study, this research constructed a system of…
Development of a Ubiquitous Learning Platform Based on a Real-Time Help-Seeking Mechanism
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Wu, Chih-Hsiang; Tseng, Judy C. R.; Huang, Iwen
2011-01-01
The popularity of mobile devices has encouraged the advance of ubiquitous learning, in which students are situated in a real-world learning environment with support from the digital world via the use of mobile, wireless communications, or even sensing technologies. Most of the ubiquitous learning systems are implemented with high-cost sensing…
ERIC Educational Resources Information Center
Peng, Hsinyi; Chuang, Po-Ya; Hwang, Gwo-Jen; Chu, Hui-Chun; Wu, Ting-Ting; Huang, Shu-Xian
2009-01-01
Researchers have conducted various studies on applying wireless communication and ubiquitous computing technologies to education, so that the technologies can provide learners and educators with more active and adaptive support. This study proposes a Ubiquitous Performance-support System (UPSS) that can facilitate the seamless use of powerful new…
Ubiquitous Learning Project Using Life-Logging Technology in Japan
ERIC Educational Resources Information Center
Ogata, Hiroaki; Hou, Bin; Li, Mengmeng; Uosaki, Noriko; Mouri, Kosuke; Liu, Songran
2014-01-01
A Ubiquitous Learning Log (ULL) is defined as a digital record of what a learner has learned in daily life using ubiquitous computing technologies. In this paper, a project which developed a system called SCROLL (System for Capturing and Reusing Of Learning Log) is presented. The aim of developing SCROLL is to help learners record, organize,…
A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes
Larsbrink, Johan; Rogers, Theresa E.; Hemsworth, Glyn R.; McKee, Lauren S.; Tauzin, Alexandra S.; Spadiut, Oliver; Klinter, Stefan; Pudlo, Nicholas A.; Urs, Karthik; Koropatkin, Nicole M.; Creagh, A. Louise; Haynes, Charles A.; Kelly, Amelia G.; Cederholm, Stefan Nilsson; Davies, Gideon J.; Martens, Eric C.; Brumer, Harry
2014-01-01
A well-balanced human diet includes a significant intake of non-starch polysaccharides, collectively termed “dietary fibre,” from the cell walls of diverse fruits and vegetables.1 Due to a paucity of alimentary enzymes encoded by the human genome,2 our ability to derive energy from dietary fibre depends on saccharification and fermentation of complex carbohydrates by the massive microbial community residing in our distal gut.3,4 The xyloglucans (XyGs), in particular, are a ubiquitous family of highly branched plant cell wall polysaccharides5,6 whose mechanism(s) of degradation in the human gut and consequent importance in nutrition was heretofore unknown.1,7,8 Here, we demonstrate that a single, complex gene locus in Bacteroides ovatus confers xyloglucan catabolism in this common colonic symbiont. Through targeted gene disruption, biochemical analysis of all predicted glycoside hydrolases and carbohydrate-binding proteins, and three-dimensional structural determination of the vanguard endo-xyloglucanase, we reveal the molecular mechanisms through which XyGs are hydrolysed to component monosaccharides for further metabolism. We also observe that orthologous xyloglucan utilization loci (XyGULs) serve as genetic markers of xyloglucan catabolism in Bacteroidetes, that XyGULs are restricted to a limited number of phylogenetically diverse strains, and that XyGULs are ubiquitous in surveyed human metagenomes. Our findings reveal that the metabolism of even highly abundant components of dietary fibre may be mediated by niche species, which has immediate fundamental and practical implications for gut symbiont population ecology in the context of human diet, nutrition and health.9–12 PMID:24463512
Lau, Maggie C. Y.; Cameron, Connor; Magnabosco, Cara; Brown, C. Titus; Schilkey, Faye; Grim, Sharon; Hendrickson, Sarah; Pullin, Michael; Sherwood Lollar, Barbara; van Heerden, Esta; Kieft, Thomas L.; Onstott, Tullis C.
2014-01-01
Comparative studies on community phylogenetics and phylogeography of microorganisms living in extreme environments are rare. Terrestrial subsurface habitats are valuable for studying microbial biogeographical patterns due to their isolation and the restricted dispersal mechanisms. Since the taxonomic identity of a microorganism does not always correspond well with its functional role in a particular community, the use of taxonomic assignments or patterns may give limited inference on how microbial functions are affected by historical, geographical and environmental factors. With seven metagenomic libraries generated from fracture water samples collected from five South African mines, this study was carried out to (1) screen for ubiquitous functions or pathways of biogeochemical cycling of CH4, S, and N; (2) to characterize the biodiversity represented by the common functional genes; (3) to investigate the subsurface biogeography as revealed by this subset of genes; and (4) to explore the possibility of using metagenomic data for evolutionary study. The ubiquitous functional genes are NarV, NPD, PAPS reductase, NifH, NifD, NifK, NifE, and NifN genes. Although these eight common functional genes were taxonomically and phylogenetically diverse and distinct from each other, the dissimilarity between samples did not correlate strongly with geographical or environmental parameters or residence time of the water. Por genes homologous to those of Thermodesulfovibrio yellowstonii detected in all metagenomes were deep lineages of Nitrospirae, suggesting that subsurface habitats have preserved ancestral genetic signatures that inform the study of the origin and evolution of prokaryotes. PMID:25400621
Zeiner, Carolyn A; Purvine, Samuel O; Zink, Erika M; Paša-Tolić, Ljiljana; Chaput, Dominique L; Wu, Si; Santelli, Cara M; Hansel, Colleen M
2017-09-01
Fungi generate a wide range of extracellular hydrolytic and oxidative enzymes and reactive metabolites, collectively known as the secretome, that synergistically drive plant litter decomposition in the environment. While secretome studies of model organisms have greatly expanded our knowledge of these enzymes, few have extended secretome characterization to environmental isolates, particularly filamentous Ascomycetes, or directly compared temporal patterns of enzyme utilization among diverse species. Thus, the mechanisms of carbon (C) degradation by many ubiquitous soil fungi remain poorly understood. Here we use a combination of iTRAQ proteomics and extracellular enzyme activity assays to compare the protein composition of the secretomes of four manganese(II)-oxidizing Ascomycete fungi over a three-week time course. We demonstrate that the fungi exhibit striking differences in the regulation of extracellular lignocellulose-degrading enzymes among species and over time, revealing species-specific and temporal shifts in C utilization strategies as they degrade the same substrate. Specifically, our findings suggest that Alternaria alternata SRC1lrK2f and Paraconiothyrium sporulosum AP3s5-JAC2a employ sequential enzyme secretion patterns concomitant with decreasing resource availability. Stagonospora sp. SRC1lsM3a preferentially degrades proteinaceous substrate before switching to carbohydrates, and Pyrenochaeta sp. DS3sAY3a utilizes primarily peptidases to aggressively attack carbon sources in a concentrated burst. This work highlights the diversity of operative metabolic strategies among understudied yet ubiquitous cellulose-degrading Ascomycetes, enhancing our understanding of their contribution to C turnover in the environment. Copyright © 2017. Published by Elsevier Inc.
Chemodiversity of dissolved organic matter in the Amazon Basin
NASA Astrophysics Data System (ADS)
Gonsior, Michael; Valle, Juliana; Schmitt-Kopplin, Philippe; Hertkorn, Norbert; Bastviken, David; Luek, Jenna; Harir, Mourad; Bastos, Wanderley; Enrich-Prast, Alex
2016-07-01
Regions in the Amazon Basin have been associated with specific biogeochemical processes, but a detailed chemical classification of the abundant and ubiquitous dissolved organic matter (DOM), beyond specific indicator compounds and bulk measurements, has not yet been established. We sampled water from different locations in the Negro, Madeira/Jamari and Tapajós River areas to characterize the molecular DOM composition and distribution. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) combined with excitation emission matrix (EEM) fluorescence spectroscopy and parallel factor analysis (PARAFAC) revealed a large proportion of ubiquitous DOM but also unique area-specific molecular signatures. Unique to the DOM of the Rio Negro area was the large abundance of high molecular weight, diverse hydrogen-deficient and highly oxidized molecular ions deviating from known lignin or tannin compositions, indicating substantial oxidative processing of these ultimately plant-derived polyphenols indicative of these black waters. In contrast, unique signatures in the Madeira/Jamari area were defined by presumably labile sulfur- and nitrogen-containing molecules in this white water river system. Waters from the Tapajós main stem did not show any substantial unique molecular signatures relative to those present in the Rio Madeira and Rio Negro, which implied a lower organic molecular complexity in this clear water tributary, even after mixing with the main stem of the Amazon River. Beside ubiquitous DOM at average H / C and O / C elemental ratios, a distinct and significant unique DOM pool prevailed in the black, white and clear water areas that were also highly correlated with EEM-PARAFAC components and define the frameworks for primary production and other aspects of aquatic life.
Risk Factors for Smartphone Addiction in Korean Adolescents: Smartphone Use Patterns.
Lee, Hyuk; Kim, Jun Won; Choi, Tae Young
2017-10-01
With widespread use of the smartphone, clinical evidence for smartphone addiction remains unclear. Against this background, we analyzed the effect of smartphone use patterns on smartphone addiction in Korean adolescents. A total of 370 middle school students participated. The severity of smartphone addiction was measured through clinical interviews and the Korean Smartphone Addiction Proneness Scale. As a result, 50 (13.5%) were in the smartphone addiction group and 320 (86.5%) were in the healthy group. To investigate the effect of smartphone use patterns on smartphone addiction, we performed self-report questionnaires that assessed the following items: smartphone functions mostly used, purpose of use, problematic use, and parental attitude regarding smartphone use. For smartphone functions mostly used, the addiction group showed significantly higher scores in "Online chat." For the purpose of use, the addiction group showed significantly higher "habitual use," "pleasure," "communication," "games," "stress relief," "ubiquitous trait," and "not to be left out." For problematic use, the addiction group showed significantly higher scores on "preoccupation," "tolerance," "lack of control," "withdrawal," "mood modification," "conflict," "lies," "excessive use," and "loss of interest." For parental attitude regarding children's smartphone use, the addiction group showed significantly higher scores in "parental punishment." Binary logistic regression analysis indicated that "female," "use for learning," "use for ubiquitous trait," "preoccupation," and "conflict" were significantly correlated with smartphone addiction. This study demonstrated that the risk factors for smartphone addiction were being female, preoccupation, conflict, and use for ubiquitous trait; the protective factor was use for learning. Future studies will be required to reveal the additional clinical evidence of the disease entity for smartphone addiction. © 2017 The Korean Academy of Medical Sciences.
Kofler, Michael J.; Raiker, Joseph S.; Sarver, Dustin E.; Wells, Erica L.; Soto, Elia F.
2016-01-01
Hyperactivity, or excess gross motor activity, is considered a core and ubiquitous characteristic of ADHD. Alternate models question this premise, and propose that hyperactive behavior reflects, to a large extent, purposeful behavior to cope with environmental demands that interact with underlying neurobiological vulnerabilities. The present review critically evaluates the ubiquity and environmental modifiability of hyperactivity in ADHD through meta-analysis of 63 studies of mechanically measured activity level in children, adolescents, and adults with ADHD relative to typically developing (TD) groups. Random effects models corrected for publication bias confirmed elevated gross motor activity in ADHD (d = 0.86); surprisingly, neither participant age (child vs. adult) nor the proportion of each ADHD sample diagnosed with the Inattentive subtype/presentation moderated this effect. In contrast, activity level assessed during high cognitive load conditions in general (d = 1.14) and high executive functioning demands in particular (d = 1.39) revealed significantly higher effect sizes than activity level during low cognitive load (d = 0.36) and in-class schoolwork (d = 0.50) settings. Low stimulation environments, more rigorous diagnostic practices, actigraph measurement of movement frequency and intensity, and ADHD samples that included fewer females were also associated with larger effects. Overall, the results are inconsistent with DSM-5 and ADHD models that a) describe hyperactivity as ubiquitous behavior, b) predict a developmental decline in hyperactivity, or c) differentiate subtypes/presentations according to perceived differences in hyperactive behavior. Instead, results suggest that the presence and magnitude of hyperactive behavior in ADHD may be influenced to a considerable extent by environmental factors in general, and cognitive/executive functioning demands in particular. PMID:27131918
Yang, Chunliang; Potts, Rosalind; Shanks, David R
2017-07-01
Generating errors followed by corrective feedback enhances retention more effectively than does reading-the benefit of errorful generation-but people tend to be unaware of this benefit. The current research explored this metacognitive unawareness, its effect on self-regulated learning, and how to alleviate or reverse it. People's beliefs about the relative learning efficacy of generating errors followed by corrective feedback compared to reading, and the effects of generation fluency, are also explored. In Experiments 1 and 2, lower judgments of learning (JOLs) were consistently given to incorrectly generated word pairs than to studied (read) pairs and led participants to distribute more study resources to incorrectly generated pairs, even though superior recall of these pairs was exhibited in the final test. In Experiment 3, a survey revealed that people believe that generating errors followed by corrective feedback is inferior to reading. Experiment 4 was designed to alter participants' metacognition by informing them of the errorful generation benefit prior to study. Although metacognitive misalignment was partly countered, participants still tended to be unaware of this benefit when making item-by-item JOLs. In Experiment 5, in a delayed JOL condition, higher JOLs were given to incorrectly generated pairs and read pairs were more likely to be selected for restudy. The current research reveals that people tend to underestimate the learning efficiency of generating errors followed by corrective feedback relative to reading when making immediate item-by-item JOLs. Informing people of the errorful generation benefit prior to study and asking them to make delayed JOLs are effective ways to alleviate this metacognitive miscalibration. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Relationship between Attributional Errors and At-Risk Behaviors among Juvenile Delinquents.
ERIC Educational Resources Information Center
Daley, Christine E.; Onwuegbuzie, Anthony J.
The purpose of this study was to determine whether at-risk behaviors (e.g., substance abuse, gun ownership, sexual activity, and gang membership) are associated with violence attribution errors, as measured by Daley and Onwuegbuzie's (1995) Violence Attribution Survey, among 82 incarcerated male juvenile delinquents. Analysis revealed that the…
An Elicited-Production Study of Inflectional Verb Morphology in Child Finnish
ERIC Educational Resources Information Center
Räsänen, Sanna H. M.; Ambridge, Ben; Pine, Julian M.
2016-01-01
Many generativist accounts (e.g., Wexler, 1998) argue for very early knowledge of inflection on the basis of very low rates of person/number marking errors in young children's speech. However, studies of Spanish (Aguado-Orea & Pine, 2015) and Brazilian Portuguese (Rubino & Pine, 1998) have revealed that these low overall error rates…
An investigation of condition mapping and plot proportion calculation issues
Demetrios Gatziolis
2007-01-01
A systematic examination of Forest Inventory and Analysis condition data collected under the annual inventory protocol in the Pacific Northwest region between 2000 and 2004 revealed the presence of errors both in condition topology and plot proportion computations. When plots were compiled to generate population estimates, proportion errors were found to cause...
ERIC Educational Resources Information Center
Lally, Vic; Sharples, Mike; Tracy, Frances; Bertram, Neil; Masters, Sherriden
2012-01-01
In this article, we examine the ethical dimensions of researching the mobile, ubiquitous and immersive technology enhanced learning (MUITEL), with a particular focus on learning in informal settings. We begin with an analysis of the interactions between mobile, ubiquitous and immersive technologies and the wider context of the digital economy. In…
ERIC Educational Resources Information Center
Palaigeorgiou, George; Pouloulis, Christos
2018-01-01
Ubiquitous music is a relatively new research area which seeks ways to involve novices in music learning, playing and improvisation. Despite the ambitious goals, ubiquitous music is still unknown territory in schools. In this study, we have tried to identify whether ubiquitous music environments can enable novice music students to participate in…
ERIC Educational Resources Information Center
Hwang, Gwo-Haur; Chu, Hui-Chun; Chen, Beyin; Cheng, Zheng Shan
2014-01-01
The rapid progress of wireless communication, sensing, and mobile technologies has enabled students to learn in an environment that combines learning resources from both the real world and the digital world. It can be viewed as a new learning style which has been called context-aware ubiquitous learning. Most context-aware ubiquitous learning…
Use of Ubiquitous Technologies in Military Logistic System in Iran
NASA Astrophysics Data System (ADS)
Jafari, P.; Sadeghi-Niaraki, A.
2013-09-01
This study is about integration and evaluation of RFID and ubiquitous technologies in military logistic system management. Firstly, supply chain management and the necessity of a revolution in logistic systems especially in military area, are explained. Secondly RFID and ubiquitous technologies and the advantages of their use in supply chain management are introduced. Lastly a system based on these technologies for controlling and increasing the speed and accuracy in military logistic system in Iran with its unique properties, is presented. The system is based on full control of military logistics (supplies) from the time of deployment to replenishment using sensor network, ubiquitous and RFID technologies.
Socio-technical Issues for Ubiquitous Information Society in 2010
NASA Astrophysics Data System (ADS)
Funabashi, Motohisa; Homma, Koichi; Sasaki, Toshiro; Sato, Yoshinori; Kido, Kunihiko; Fukumoto, Takashi; Yano, Koujin
Impact of the ubiquitous information technology on our society is so significant that directing technological development and preparing institutional apparatus are quite important and urgent. The present paper elaborates, with the efforts by both humanity and engineering disciplines, to find out the socio-technical issues of ubiquitous information society in 2010 by inspecting social implications of emerging technology as well as social expectations. In order to deliberate the issues, scenarios are developed that describes possible life in ubiquitous information society. The derived issues cover integrating information technology and human body, producing smart sharable environment, protecting individual rights, fostering new service business, and forming community.
Multimodal and ubiquitous computing systems: supporting independent-living older users.
Perry, Mark; Dowdall, Alan; Lines, Lorna; Hone, Kate
2004-09-01
We document the rationale and design of a multimodal interface to a pervasive/ubiquitous computing system that supports independent living by older people in their own homes. The Millennium Home system involves fitting a resident's home with sensors--these sensors can be used to trigger sequences of interaction with the resident to warn them about dangerous events, or to check if they need external help. We draw lessons from the design process and conclude the paper with implications for the design of multimodal interfaces to ubiquitous systems developed for the elderly and in healthcare, as well as for more general ubiquitous computing applications.
Rigby, Michael
2007-12-01
In spite of their name, 'ubiquitous' technologies are not yet ubiquitous in the true sense of the word, but rather are 'novel', being at the research, pilot, and selective use stages. In future, the proliferation in types of application, the major increase in cases and data volumes, and above all the dependence on ubiquitous technologies to monitor persons at risk, will raise practical, ethical, and liability issues. Equally significantly, it will require health service redesign, including new response services. Health informaticians need to be active in stimulating consideration of all these issues, as part of both social and professional responsibility.
Pandey, Vibha; Dhar, Yogeshwar Vikram; Gupta, Parul; Bag, Sumit K; Atri, Neelam; Asif, Mehar Hasan; Trivedi, Prabodh Kumar; Misra, Pratibha
2015-04-16
Sterol glycosyltransferases (SGTs) are ubiquitous but one of the most diverse group of enzymes of glycosyltransferases family. Members of this family modulate physical and chemical properties of secondary plant products important for various physiological processes. The role of SGTs has been demonstrated in the biosynthesis of pharmaceutically important molecules of medicinal plants like Withania somnifera. Analysis suggested conserved behaviour and high similarity in active sites of WsSGTs with other plant GTs. Substrate specificity of WsSGTs were analysed through docking performance of WsSGTs with different substrates (sterols and withanolides). Best docking results of WsSGTL1 in the form of stable enzyme-substrate complex having lowest binding energies were obtained with brassicasterol, transandrosteron and WsSGTL4 with solasodine, stigmasterol and 24-methylene cholesterol. This study reveals topological characters and conserved nature of two SGTs from W. somnifera (WsSGTs) i.e. WsSGTL1 and WsSGTL4. However, besides being ubiquitous in nature and with broad substrate specificity, difference between WsSGTL1 and WsSGTL4 is briefly described by difference in stability (binding energy) of enzyme-substrate complexes through comparative docking.
Electrostatic solitary waves generated by beam injection in LAPD
NASA Astrophysics Data System (ADS)
Chen, L.; Gekelman, W. N.; Lefebvre, B.; Kintner, P. M.; Pickett, J. S.; Pribyl, P.; Vincena, S. T.
2011-12-01
Spacecraft data have revealed that electrostatic solitary waves are ubiquitous in non-equilibrium collisionless space plasmas. These solitary waves are often the main constituents of the observed electrostatic turbulence. The ubiquitous presence of these solitary waves in space motivated laboratory studies on their generation and evolution in the Large Plasma Device (LAPD) at UCLA. In order to observe these structures, microprobes with scale sizes of order of the Debye length (30 microns) had to be built using Mems technology. A suprathermal electron beam was injected into the afterglow plasma, and solitary waves as well as nonlinear wave packets were measured. The solitary waves are interpreted as BGK electron holes based on their width, amplitude, and velocity characteristics. The ensuing turbulence, including the solitary waves and wave packets, exhibits a band dispersion relation with its central line consistent with the electrostatic whistler mode. One surprise brought by the laboratory experiments is that the electron holes were not generated through resonant two-stream instabilities, but likely through an instability due to parallel currents. The characteristics of the LAPD electron holes and those observed in space will be compared to motivate further theoretical, simulation, and experimental work.
Diuk, Carlos; Tsai, Karin; Wallis, Jonathan; Botvinick, Matthew; Niv, Yael
2013-03-27
Studies suggest that dopaminergic neurons report a unitary, global reward prediction error signal. However, learning in complex real-life tasks, in particular tasks that show hierarchical structure, requires multiple prediction errors that may coincide in time. We used functional neuroimaging to measure prediction error signals in humans performing such a hierarchical task involving simultaneous, uncorrelated prediction errors. Analysis of signals in a priori anatomical regions of interest in the ventral striatum and the ventral tegmental area indeed evidenced two simultaneous, but separable, prediction error signals corresponding to the two levels of hierarchy in the task. This result suggests that suitably designed tasks may reveal a more intricate pattern of firing in dopaminergic neurons. Moreover, the need for downstream separation of these signals implies possible limitations on the number of different task levels that we can learn about simultaneously.
Updating expected action outcome in the medial frontal cortex involves an evaluation of error type.
Maier, Martin E; Steinhauser, Marco
2013-10-02
Forming expectations about the outcome of an action is an important prerequisite for action control and reinforcement learning in the human brain. The medial frontal cortex (MFC) has been shown to play an important role in the representation of outcome expectations, particularly when an update of expected outcome becomes necessary because an error is detected. However, error detection alone is not always sufficient to compute expected outcome because errors can occur in various ways and different types of errors may be associated with different outcomes. In the present study, we therefore investigate whether updating expected outcome in the human MFC is based on an evaluation of error type. Our approach was to consider an electrophysiological correlate of MFC activity on errors, the error-related negativity (Ne/ERN), in a task in which two types of errors could occur. Because the two error types were associated with different amounts of monetary loss, updating expected outcomes on error trials required an evaluation of error type. Our data revealed a pattern of Ne/ERN amplitudes that closely mirrored the amount of monetary loss associated with each error type, suggesting that outcome expectations are updated based on an evaluation of error type. We propose that this is achieved by a proactive evaluation process that anticipates error types by continuously monitoring error sources or by dynamically representing possible response-outcome relations.
Estimation of distributed Fermat-point location for wireless sensor networking.
Huang, Po-Hsian; Chen, Jiann-Liang; Larosa, Yanuarius Teofilus; Chiang, Tsui-Lien
2011-01-01
This work presents a localization scheme for use in wireless sensor networks (WSNs) that is based on a proposed connectivity-based RF localization strategy called the distributed Fermat-point location estimation algorithm (DFPLE). DFPLE applies triangle area of location estimation formed by intersections of three neighboring beacon nodes. The Fermat point is determined as the shortest path from three vertices of the triangle. The area of estimated location then refined using Fermat point to achieve minimum error in estimating sensor nodes location. DFPLE solves problems of large errors and poor performance encountered by localization schemes that are based on a bounding box algorithm. Performance analysis of a 200-node development environment reveals that, when the number of sensor nodes is below 150, the mean error decreases rapidly as the node density increases, and when the number of sensor nodes exceeds 170, the mean error remains below 1% as the node density increases. Second, when the number of beacon nodes is less than 60, normal nodes lack sufficient beacon nodes to enable their locations to be estimated. However, the mean error changes slightly as the number of beacon nodes increases above 60. Simulation results revealed that the proposed algorithm for estimating sensor positions is more accurate than existing algorithms, and improves upon conventional bounding box strategies.
Optimal accelerometer placement on a robot arm for pose estimation
NASA Astrophysics Data System (ADS)
Wijayasinghe, Indika B.; Sanford, Joseph D.; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Das, Sumit K.; Popa, Dan O.
2017-05-01
The performance of robots to carry out tasks depends in part on the sensor information they can utilize. Usually, robots are fitted with angle joint encoders that are used to estimate the position and orientation (or the pose) of its end-effector. However, there are numerous situations, such as in legged locomotion, mobile manipulation, or prosthetics, where such joint sensors may not be present at every, or any joint. In this paper we study the use of inertial sensors, in particular accelerometers, placed on the robot that can be used to estimate the robot pose. Studying accelerometer placement on a robot involves many parameters that affect the performance of the intended positioning task. Parameters such as the number of accelerometers, their size, geometric placement and Signal-to-Noise Ratio (SNR) are included in our study of their effects for robot pose estimation. Due to the ubiquitous availability of inexpensive accelerometers, we investigated pose estimation gains resulting from using increasingly large numbers of sensors. Monte-Carlo simulations are performed with a two-link robot arm to obtain the expected value of an estimation error metric for different accelerometer configurations, which are then compared for optimization. Results show that, with a fixed SNR model, the pose estimation error decreases with increasing number of accelerometers, whereas for a SNR model that scales inversely to the accelerometer footprint, the pose estimation error increases with the number of accelerometers. It is also shown that the optimal placement of the accelerometers depends on the method used for pose estimation. The findings suggest that an integration-based method favors placement of accelerometers at the extremities of the robot links, whereas a kinematic-constraints-based method favors a more uniformly distributed placement along the robot links.
de Gusmão, Claudio M; Guerriero, Réjean M; Bernson-Leung, Miya Elizabeth; Pier, Danielle; Ibeziako, Patricia I; Bujoreanu, Simona; Maski, Kiran P; Urion, David K; Waugh, Jeff L
2014-08-01
In children, functional neurological symptom disorders are frequently the basis for presentation for emergency care. Pediatric epidemiological and outcome data remain scarce. Assess diagnostic accuracy of trainee's first impression in our pediatric emergency room; describe manner of presentation, demographic data, socioeconomic impact, and clinical outcomes, including parental satisfaction. (1) More than 1 year, psychiatry consultations for neurology patients with a functional neurological symptom disorder were retrospectively reviewed. (2) For 3 months, all children whose emergency room presentation suggested the diagnosis were prospectively collected. (3) Three to six months after prospective collection, families completed a structured telephone interview on outcome measures. Twenty-seven patients were retrospectively assessed; 31 patients were prospectively collected. Trainees' accurately predicted the diagnosis in 93% (retrospective) and 94% (prospective) cohorts. Mixed presentations were most common (usually sensory-motor changes, e.g. weakness and/or paresthesias). Associated stressors were mundane and ubiquitous, rarely severe. Families were substantially affected, reporting mean symptom duration 7.4 (standard error of the mean ± 1.33) weeks, missing 22.4 (standard error of the mean ± 5.47) days of school, and 8.3 (standard error of the mean ± 2.88) of parental workdays (prospective cohort). At follow-up, 78% were symptom free. Parental dissatisfaction was rare, attributed to poor rapport and/or insufficient information conveyed. Trainees' clinical impression was accurate in predicting a later diagnosis of functional neurological symptom disorder. Extraordinary life stressors are not required to trigger the disorder in children. Although prognosis is favorable, families incur substantial economic burden and negative educational impact. Improving recognition and appropriately communicating the diagnosis may speed access to treatment and potentially reduce the disability and cost of this disorder. Copyright © 2014 Elsevier Inc. All rights reserved.
Error Reduction Methods for Integrated-path Differential-absorption Lidar Measurements
NASA Technical Reports Server (NTRS)
Chen, Jeffrey R.; Numata, Kenji; Wu, Stewart T.
2012-01-01
We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and "log after averaging", or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of "averaging before log".
Solar Tracking Error Analysis of Fresnel Reflector
Zheng, Jiantao; Yan, Junjie; Pei, Jie; Liu, Guanjie
2014-01-01
Depending on the rotational structure of Fresnel reflector, the rotation angle of the mirror was deduced under the eccentric condition. By analyzing the influence of the sun tracking rotation angle error caused by main factors, the change rule and extent of the influence were revealed. It is concluded that the tracking errors caused by the difference between the rotation axis and true north meridian, at noon, were maximum under certain conditions and reduced at morning and afternoon gradually. The tracking error caused by other deviations such as rotating eccentric, latitude, and solar altitude was positive at morning, negative at afternoon, and zero at a certain moment of noon. PMID:24895664
Linguistic pattern analysis of misspellings of typically developing writers in grades 1-9.
Bahr, Ruth Huntley; Sillian, Elaine R; Berninger, Virginia W; Dow, Michael
2012-12-01
A mixed-methods approach, evaluating triple word-form theory, was used to describe linguistic patterns of misspellings. Spelling errors were taken from narrative and expository writing samples provided by 888 typically developing students in Grades 1-9. Errors were coded by category (phonological, orthographic, and morphological) and specific linguistic feature affected. Grade-level effects were analyzed with trend analysis. Qualitative analyses determined frequent error types and how use of specific linguistic features varied across grades. Phonological, orthographic, and morphological errors were noted across all grades, but orthographic errors predominated. Linear trends revealed developmental shifts in error proportions for the orthographic and morphological categories between Grades 4 and 5. Similar error types were noted across age groups, but the nature of linguistic feature error changed with age. Triple word-form theory was supported. By Grade 1, orthographic errors predominated, and phonological and morphological error patterns were evident. Morphological errors increased in relative frequency in older students, probably due to a combination of word-formation issues and vocabulary growth. These patterns suggest that normal spelling development reflects nonlinear growth and that it takes a long time to develop a robust orthographic lexicon that coordinates phonology, orthography, and morphology and supports word-specific, conventional spelling.
Identifying consumer-resource population dynamics using paleoecological data.
Einarsson, Árni; Hauptfleisch, Ulf; Leavitt, Peter R; Ives, Anthony R
2016-02-01
Ecologists have long been fascinated by cyclic population fluctuations, because they suggest strong interactions between exploiter and victim species. Nonetheless, even for populations showing high-amplitude fluctuations, it is often hard to identify which species are the key drivers of the dynamics, because data are generally only available for a single species. Here, we use a paleoecological approach to investigate fluctuations in the midge population in Lake Mývatn, Iceland, which ranges over several orders of magnitude in irregular, multigeneration cycles. Previous circumstantial evidence points to consumer-resource interactions between midges and their primary food, diatoms, as the cause of these high-amplitude fluctuations. Using a pair of sediment cores from the lake, we reconstructed 26 years of dynamics of midges using egg remains and of algal groups using diagnostic pigments. We analyzed these data using statistical methods that account for both the autocorrelated nature of paleoecological data and measurement error caused by the mixing of sediment layers. The analyses revealed a signature of consumer-resource interactions in the fluctuations of midges and diatoms: diatom abundance (as inferred from biomarker pigment diatoxanthin) increased when midge abundance was low, and midge abundance (inferred from egg capsules) decreased when diatom abundance was low. Similar patterns were not found for pigments characterizing the other dominant primary producer group in the lake (cyanobacteria), subdominant algae (cryptophytes), or ubiquitous but chemically unstable biomarkers of total algal abundance (chlorophyll a); however, a significant but weaker pattern was found for the chemically stable indicator of total algal populations (β-carotene) to which diatoms are the dominant contributor. These analyses provide the first paleoecological evaluation of specific trophic interactions underlying high amplitude population fluctuations in lakes.
Wood, Kathleen H; Johnson, Brian S; Welsh, Sarah A; Lee, Jun Y; Cui, Yue; Krizman, Elizabeth; Brodkin, Edward S; Blendy, Julie A; Robinson, Michael B; Bartolomei, Marisa S; Zhou, Zhaolan
2016-04-01
DNA methylation is recognized by methyl-CpG-binding domain (MBD) proteins. Multiple MBDs are linked to neurodevelopmental disorders in humans and mice. However, the functions of MBD2 are poorly understood. We characterized Mbd2 knockout mice and determined spatiotemporal expression of MBDs and MBD2-NuRD (nucleosome remodeling deacetylase) interactions. We analyzed behavioral phenotypes, generated biotin-tagged MBD1 and MBD2 knockin mice, and performed biochemical studies of MBD2-NuRD. Most behavioral measures are minimally affected in Mbd2 knockout mice. In contrast to other MBDs, MBD2 shows distinct expression patterns. Unlike most MBDs, MBD2 is ubiquitously expressed in all tissues examined and appears dispensable for brain functions measured in this study. We provide novel genetic tools and reveal new directions to investigate MBD2 functions in vivo.
Ishii, Junko; Shishido-Hara, Yukiko; Kawamoto, Michi; Fujiwara, Satoru; Imai, Yukihiro; Nakamichi, Kazuo; Kohara, Nobuo
2018-04-27
A 37-year-old woman with systemic lupus erythematosus (SLE) presented with gait disturbance and cognitive dysfunction. Brain magnetic resonance imaging (MRI) revealed small, punctate, T2-/fluid-attenuated inversion recovery-hyperintense and T1-hypointense lesions without gadolinium enhancement, which is atypical for progressive multifocal leukoencephalopathy (PML). On a pathological examination of biopsied brain tissues, JC virus-infected cells were hardly detected via immunohistochemistry but were certainly detected via in situ hybridization, conclusively verifying the PML diagnosis. After tapering off the immunosuppressant and mefloquine administration, the MRI findings revealed gradual improvement, and she has been stable for over 18 months. A punctate MRI pattern is not specific to natalizumab-associated PML but may be a ubiquitous early sign useful for the early diagnosis of PML.
Large landslides from oceanic volcanoes
Holcomb, R.T.; Searle, R.C.
1991-01-01
Large landslides are ubiquitous around the submarine flanks of Hawaiian volcanoes, and GLORIA has also revealed large landslides offshore from Tristan da Cunha and El Hierro. On both of the latter islands, steep flanks formerly attributed to tilting or marine erosion have been reinterpreted as landslide headwalls mantled by younger lava flows. These landslides occur in a wide range of settings and probably represent only a small sample from a large population. They may explain the large volumes of archipelagic aprons and the stellate shapes of many oceanic volcanoes. Large landslides and associated tsunamis pose hazards to many islands. -from Authors
Imposture, inauthenticity, and feeling fraudulent.
Gediman, H K
1985-01-01
This paper deals with imposturous tendencies as ubiquitous and heterogeneous. They may enter into neurotic conflict and compromise, and also reflect an ego function disturbance involving multiple, shifting identities and subsequent problems in the subjective sense of reality of the self and objects. Imposture in a person undergoing analysis is, however, not only a function of individual character and psychopathology; it is also a function of certain inevitable requirements of the analytic situation which constitute a "pull" for its emergence. Vulnerable individuals will respond to this pull in revealing ways. Three case summaries illustrate the spectrum of imposturous tendencies.
Sticking together: building a biofilm the Bacillus subtilis way
Vlamakis, Hera; Chai, Yunrong; Beauregard, Pascale; Losick, Richard; Kolter, Roberto
2014-01-01
Preface Biofilms are ubiquitous communities of tightly associated bacteria encased in an extracellular matrix. Bacillus subtilis has long-served as a robust model organism to examine the molecular mechanisms of biofilm formation and a number of studies have revealed that this process is subject to a number of integrated regulatory pathways. In this Review, we focus on the molecular mechanisms controlling biofilm assembly and briefly summarize the current state of knowledge regarding their disassembly. We also discuss recent progress that has expanded our understanding of biofilm formation on plant roots, which are a natural habitat for this soil bacterium. PMID:23353768
Sticking together: building a biofilm the Bacillus subtilis way.
Vlamakis, Hera; Chai, Yunrong; Beauregard, Pascale; Losick, Richard; Kolter, Roberto
2013-03-01
Biofilms are ubiquitous communities of tightly associated bacteria encased in an extracellular matrix. Bacillus subtilis has long served as a robust model organism to examine the molecular mechanisms of biofilm formation, and a number of studies have revealed that this process is regulated by several integrated pathways. In this Review, we focus on the molecular mechanisms that control B. subtilis biofilm assembly, and then briefly summarize the current state of knowledge regarding biofilm disassembly. We also discuss recent progress that has expanded our understanding of B. subtilis biofilm formation on plant roots, which are a natural habitat for this soil bacterium.
WE-H-BRC-05: Catastrophic Error Metrics for Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, S; Molloy, J
Purpose: Intuitive evaluation of complex radiotherapy treatments is impractical, while data transfer anomalies create the potential for catastrophic treatment delivery errors. Contrary to prevailing wisdom, logical scrutiny can be applied to patient-specific machine settings. Such tests can be automated, applied at the point of treatment delivery and can be dissociated from prior states of the treatment plan, potentially revealing errors introduced early in the process. Methods: Analytical metrics were formulated for conventional and intensity modulated RT (IMRT) treatments. These were designed to assess consistency between monitor unit settings, wedge values, prescription dose and leaf positioning (IMRT). Institutional metric averages formore » 218 clinical plans were stratified over multiple anatomical sites. Treatment delivery errors were simulated using a commercial treatment planning system and metric behavior assessed via receiver-operator-characteristic (ROC) analysis. A positive result was returned if the erred plan metric value exceeded a given number of standard deviations, e.g. 2. The finding was declared true positive if the dosimetric impact exceeded 25%. ROC curves were generated over a range of metric standard deviations. Results: Data for the conventional treatment metric indicated standard deviations of 3%, 12%, 11%, 8%, and 5 % for brain, pelvis, abdomen, lung and breast sites, respectively. Optimum error declaration thresholds yielded true positive rates (TPR) between 0.7 and 1, and false positive rates (FPR) between 0 and 0.2. Two proposed IMRT metrics possessed standard deviations of 23% and 37%. The superior metric returned TPR and FPR of 0.7 and 0.2, respectively, when both leaf position and MUs were modelled. Isolation to only leaf position errors yielded TPR and FPR values of 0.9 and 0.1. Conclusion: Logical tests can reveal treatment delivery errors and prevent large, catastrophic errors. Analytical metrics are able to identify errors in monitor units, wedging and leaf positions with favorable sensitivity and specificity. In part by Varian.« less
Towards Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice
Hahn, Jin-Oh; Inan, Omer T.; Mestha, Lalit K.; Kim, Chang-Sei; Töreyin, Hakan; Kyal, Survi
2015-01-01
Ubiquitous blood pressure (BP) monitoring is needed to improve hypertension detection and control and is becoming feasible due to recent technological advances such as in wearable sensing. Pulse transit time (PTT) represents a well-known, potential approach for ubiquitous BP monitoring. The goal of this review is to facilitate the achievement of reliable, ubiquitous BP monitoring via PTT. We explain the conventional BP measurement methods and their limitations; present models to summarize the theory of the PTT-BP relationship; outline the approach while pinpointing the key challenges; overview the previous work towards putting the theory to practice; make suggestions for best practice and future research; and discuss realistic expectations for the approach. PMID:26057530
Plachta, Michal; Halas, Agnieszka; McIntyre, Justyna; Sledziewska-Gojska, Ewa
2015-05-01
Polymerase eta (Pol eta) is a ubiquitous translesion DNA polymerase that is capable of bypassing UV-induced pyrimidine dimers in an error-free manner. However, this specialized polymerase is error prone when synthesizing through an undamaged DNA template. In Saccharomyces cerevisiae, both depletion and overproduction of Pol eta result in mutator phenotypes. Therefore, regulation of the cellular abundance of this enzyme is of particular interest. However, based on the investigation of variously tagged forms of Pol eta, mutually contradictory conclusions have been reached regarding the stability of this polymerase in yeast. Here, we optimized a protocol for the detection of untagged yeast Pol eta and established that the half-life of the native enzyme is 80 ± 14 min in asynchronously growing cultures. Experiments with synchronized cells indicated that the cellular abundance of this translesion polymerase changes throughout the cell cycle. Accordingly, we show that the stability of Pol eta, but not its mRNA level, is cell cycle stage dependent. The half-life of the polymerase is more than fourfold shorter in G1-arrested cells than in those at G2/M. Our results, in concert with previous data for Rev1, indicate that cell cycle regulation is a general property of Y family TLS polymerases in S. cerevisiae. Copyright © 2015 Elsevier B.V. All rights reserved.
Bjedov, Ivana; Dasgupta, Chitralekha Nag; Slade, Dea; Le Blastier, Sophie; Selva, Marjorie; Matic, Ivan
2007-01-01
Escherichia coli PolIV, a DNA polymerase capable of catalyzing synthesis past replication-blocking DNA lesions, belongs to the most ubiquitous branch of Y-family DNA polymerases. The goal of this study is to identify spontaneous DNA damage that is bypassed specifically and accurately by PolIV in vivo. We increased the amount of spontaneous DNA lesions using mutants deficient for different DNA repair pathways and measured mutation frequency in PolIV-proficient and -deficient backgrounds. We found that PolIV performs an error-free bypass of DNA damage that accumulates in the alkA tag genetic background. This result indicates that PolIV is involved in the error-free bypass of cytotoxic alkylating DNA lesions. When the amount of cytotoxic alkylating DNA lesions is increased by the treatment with chemical alkylating agents, PolIV is required for survival in an alkA tag-proficient genetic background as well. Our study, together with the reported involvement of the mammalian PolIV homolog, Polκ, in similar activity, indicates that Y-family DNA polymerases from the DinB branch can be added to the list of evolutionarily conserved molecular mechanisms that counteract cytotoxic effects of DNA alkylation. This activity is of major biological relevance because alkylating agents are continuously produced endogenously in all living cells and are also present in the environment. PMID:17483416
Shabbir, Javid
2018-01-01
In the present paper we propose an improved class of estimators in the presence of measurement error and non-response under stratified random sampling for estimating the finite population mean. The theoretical and numerical studies reveal that the proposed class of estimators performs better than other existing estimators. PMID:29401519
Reducing Check-in Errors at Brigham Young University through Statistical Process Control
ERIC Educational Resources Information Center
Spackman, N. Andrew
2005-01-01
The relationship between the library and its patrons is damaged and the library's reputation suffers when returned items are not checked in. An informal survey reveals librarians' concern for this problem and their efforts to combat it, although few libraries collect objective measurements of errors or the effects of improvement efforts. Brigham…
ERIC Educational Resources Information Center
High, Virginia Lacastro
Errors can be considered concrete representations of stages through which one must go in order to acquire one's native language and a second language. It has been discovered that certain errors appear systematically, revealing an approximate system, or "interlanguage," behind the erroneous utterances. Present research in second language…
Viète's Formula and an Error Bound without Taylor's Theorem
ERIC Educational Resources Information Center
Boucher, Chris
2018-01-01
This note presents a derivation of Viète's classic product approximation of pi that relies on only the Pythagorean Theorem. We also give a simple error bound for the approximation that, while not optimal, still reveals the exponential convergence of the approximation and whose derivation does not require Taylor's Theorem.
Mobile Life - Innovation in the Wild
NASA Astrophysics Data System (ADS)
Höök, Kristina
After a decade of work in our research labs on mobile and ubiquitous technology, often formed by the early visions of ubiquitous computing, with the urge to move interaction from the desktop out into the wild, these technologies have now moved out into the world - into the wild. We are in the middle of a second IT-revolution, caused by the spread of mobile and ubiquitous services, in combination with a broad consumer-oriented market pull. The first ITrevolution, the introduction and deployment of Internet and the World Wide Web during the 1990’s, had a major impact on all parts of our society. As mobile, ubiquitous technology now becomes wide-spread, the design and evaluation of mobile services - i.e. information technology that can be accessed and used in virtually any setting - represents an important business arena for the IT- and telecom industry. Together we have to look for a sustainable web of work, leisure and ubiquitous technology we can call the mobile life.
Preston, Jonathan L; Hull, Margaret; Edwards, Mary Louise
2013-05-01
To determine if speech error patterns in preschoolers with speech sound disorders (SSDs) predict articulation and phonological awareness (PA) outcomes almost 4 years later. Twenty-five children with histories of preschool SSDs (and normal receptive language) were tested at an average age of 4;6 (years;months) and were followed up at age 8;3. The frequency of occurrence of preschool distortion errors, typical substitution and syllable structure errors, and atypical substitution and syllable structure errors was used to predict later speech sound production, PA, and literacy outcomes. Group averages revealed below-average school-age articulation scores and low-average PA but age-appropriate reading and spelling. Preschool speech error patterns were related to school-age outcomes. Children for whom >10% of their speech sound errors were atypical had lower PA and literacy scores at school age than children who produced <10% atypical errors. Preschoolers who produced more distortion errors were likely to have lower school-age articulation scores than preschoolers who produced fewer distortion errors. Different preschool speech error patterns predict different school-age clinical outcomes. Many atypical speech sound errors in preschoolers may be indicative of weak phonological representations, leading to long-term PA weaknesses. Preschoolers' distortions may be resistant to change over time, leading to persisting speech sound production problems.
Panel positioning error and support mechanism for a 30-m THz radio telescope
NASA Astrophysics Data System (ADS)
Yang, De-Hua; Okoh, Daniel; Zhou, Guo-Hua; Li, Ai-Hua; Li, Guo-Ping; Cheng, Jing-Quan
2011-06-01
A 30-m TeraHertz (THz) radio telescope is proposed to operate at 200 μm with an active primary surface. This paper presents sensitivity analysis of active surface panel positioning errors with optical performance in terms of the Strehl ratio. Based on Ruze's surface error theory and using a Monte Carlo simulation, the effects of six rigid panel positioning errors, such as piston, tip, tilt, radial, azimuthal and twist displacements, were directly derived. The optical performance of the telescope was then evaluated using the standard Strehl ratio. We graphically illustrated the various panel error effects by presenting simulations of complete ensembles of full reflector surface errors for the six different rigid panel positioning errors. Study of the panel error sensitivity analysis revealed that the piston error and tilt/tip errors are dominant while the other rigid errors are much less important. Furthermore, as indicated by the results, we conceived of an alternative Master-Slave Concept-based (MSC-based) active surface by implementating a special Series-Parallel Concept-based (SPC-based) hexapod as the active panel support mechanism. A new 30-m active reflector based on the two concepts was demonstrated to achieve correction for all the six rigid panel positioning errors in an economically feasible way.
Bott, O J; Ammenwerth, E; Brigl, B; Knaup, P; Lang, E; Pilgram, R; Pfeifer, B; Ruderich, F; Wolff, A C; Haux, R; Kulikowski, C
2005-01-01
To review recent research efforts in the field of ubiquitous computing in health care. To identify current research trends and further challenges for medical informatics. Analysis of the contents of the Yearbook on Medical Informatics 2005 of the International Medical Informatics Association (IMIA). The Yearbook of Medical Informatics 2005 includes 34 original papers selected from 22 peer-reviewed scientific journals related to several distinct research areas: health and clinical management, patient records, health information systems, medical signal processing and biomedical imaging, decision support, knowledge representation and management, education and consumer informatics as well as bioinformatics. A special section on ubiquitous health care systems is devoted to recent developments in the application of ubiquitous computing in health care. Besides additional synoptical reviews of each of the sections the Yearbook includes invited reviews concerning E-Health strategies, primary care informatics and wearable healthcare. Several publications demonstrate the potential of ubiquitous computing to enhance effectiveness of health services delivery and organization. But ubiquitous computing is also a societal challenge, caused by the surrounding but unobtrusive character of this technology. Contributions from nearly all of the established sub-disciplines of medical informatics are demanded to turn the visions of this promising new research field into reality.
Tsai, Karin; Wallis, Jonathan; Botvinick, Matthew
2013-01-01
Studies suggest that dopaminergic neurons report a unitary, global reward prediction error signal. However, learning in complex real-life tasks, in particular tasks that show hierarchical structure, requires multiple prediction errors that may coincide in time. We used functional neuroimaging to measure prediction error signals in humans performing such a hierarchical task involving simultaneous, uncorrelated prediction errors. Analysis of signals in a priori anatomical regions of interest in the ventral striatum and the ventral tegmental area indeed evidenced two simultaneous, but separable, prediction error signals corresponding to the two levels of hierarchy in the task. This result suggests that suitably designed tasks may reveal a more intricate pattern of firing in dopaminergic neurons. Moreover, the need for downstream separation of these signals implies possible limitations on the number of different task levels that we can learn about simultaneously. PMID:23536092
Cole, Sindy; McNally, Gavan P
2007-10-01
Three experiments studied temporal-difference (TD) prediction errors during Pavlovian fear conditioning. In Stage I, rats received conditioned stimulus A (CSA) paired with shock. In Stage II, they received pairings of CSA and CSB with shock that blocked learning to CSB. In Stage III, a serial overlapping compound, CSB --> CSA, was followed by shock. The change in intratrial durations supported fear learning to CSB but reduced fear of CSA, revealing the operation of TD prediction errors. N-methyl- D-aspartate (NMDA) receptor antagonism prior to Stage III prevented learning, whereas opioid receptor antagonism selectively affected predictive learning. These findings support a role for TD prediction errors in fear conditioning. They suggest that NMDA receptors contribute to fear learning by acting on the product of predictive error, whereas opioid receptors contribute to predictive error. (PsycINFO Database Record (c) 2007 APA, all rights reserved).
Form Overrides Meaning When Bilinguals Monitor for Errors
Ivanova, Iva; Ferreira, Victor S.; Gollan, Tamar H.
2016-01-01
Bilinguals rarely produce unintended language switches, which may in part be because switches are detected and corrected by an internal monitor. But are language switches easier or harder to detect than within-language semantic errors? To approximate internal monitoring, bilinguals listened (Experiment 1) or read aloud (Experiment 2) stories, and detected language switches (translation equivalents or semantically unrelated to expected words) and within-language errors (semantically related or unrelated to expected words). Bilinguals detected semantically related within-language errors most slowly and least accurately, language switches more quickly and accurately than within-language errors, and (in Experiment 2), translation equivalents as quickly and accurately as unrelated language switches. These results suggest that internal monitoring of form (which can detect mismatches in language membership) completes earlier than, and is independent of, monitoring of meaning. However, analysis of reading times prior to error detection revealed meaning violations to be more disruptive for processing than language violations. PMID:28649169
Errors Affect Hypothetical Intertemporal Food Choice in Women
Sellitto, Manuela; di Pellegrino, Giuseppe
2014-01-01
Growing evidence suggests that the ability to control behavior is enhanced in contexts in which errors are more frequent. Here we investigated whether pairing desirable food with errors could decrease impulsive choice during hypothetical temporal decisions about food. To this end, healthy women performed a Stop-signal task in which one food cue predicted high-error rate, and another food cue predicted low-error rate. Afterwards, we measured participants’ intertemporal preferences during decisions between smaller-immediate and larger-delayed amounts of food. We expected reduced sensitivity to smaller-immediate amounts of food associated with high-error rate. Moreover, taking into account that deprivational states affect sensitivity for food, we controlled for participants’ hunger. Results showed that pairing food with high-error likelihood decreased temporal discounting. This effect was modulated by hunger, indicating that, the lower the hunger level, the more participants showed reduced impulsive preference for the food previously associated with a high number of errors as compared with the other food. These findings reveal that errors, which are motivationally salient events that recruit cognitive control and drive avoidance learning against error-prone behavior, are effective in reducing impulsive choice for edible outcomes. PMID:25244534
Your Health Care May Kill You: Medical Errors.
Anderson, James G; Abrahamson, Kathleen
2017-01-01
Recent studies of medical errors have estimated errors may account for as many as 251,000 deaths annually in the United States (U.S)., making medical errors the third leading cause of death. Error rates are significantly higher in the U.S. than in other developed countries such as Canada, Australia, New Zealand, Germany and the United Kingdom (U.K). At the same time less than 10 percent of medical errors are reported. This study describes the results of an investigation of the effectiveness of the implementation of the MEDMARX Medication Error Reporting system in 25 hospitals in Pennsylvania. Data were collected on 17,000 errors reported by participating hospitals over a 12-month period. Latent growth curve analysis revealed that reporting of errors by health care providers increased significantly over the four quarters. At the same time, the proportion of corrective actions taken by the hospitals remained relatively constant over the 12 months. A simulation model was constructed to examine the effect of potential organizational changes resulting from error reporting. Four interventions were simulated. The results suggest that improving patient safety requires more than voluntary reporting. Organizational changes need to be implemented and institutionalized as well.
[Analysis of intrusion errors in free recall].
Diesfeldt, H F A
2017-06-01
Extra-list intrusion errors during five trials of the eight-word list-learning task of the Amsterdam Dementia Screening Test (ADST) were investigated in 823 consecutive psychogeriatric patients (87.1% suffering from major neurocognitive disorder). Almost half of the participants (45.9%) produced one or more intrusion errors on the verbal recall test. Correct responses were lower when subjects made intrusion errors, but learning slopes did not differ between subjects who committed intrusion errors and those who did not so. Bivariate regression analyses revealed that participants who committed intrusion errors were more deficient on measures of eight-word recognition memory, delayed visual recognition and tests of executive control (the Behavioral Dyscontrol Scale and the ADST-Graphical Sequences as measures of response inhibition). Using hierarchical multiple regression, only free recall and delayed visual recognition retained an independent effect in the association with intrusion errors, such that deficient scores on tests of episodic memory were sufficient to explain the occurrence of intrusion errors. Measures of inhibitory control did not add significantly to the explanation of intrusion errors in free recall, which makes insufficient strength of memory traces rather than a primary deficit in inhibition the preferred account for intrusion errors in free recall.
Ontological analysis of SNOMED CT.
Héja, Gergely; Surján, György; Varga, Péter
2008-10-27
SNOMED CT is the most comprehensive medical terminology. However, its use for intelligent services based on formal reasoning is questionable. The analysis of the structure of SNOMED CT is based on the formal top-level ontology DOLCE. The analysis revealed several ontological and knowledge-engineering errors, the most important are errors in the hierarchy (mostly from an ontological point of view, but also regarding medical aspects) and the mixing of subsumption relations with other types (mostly 'part of'). The found errors impede formal reasoning. The paper presents a possible way to correct these problems.
Spatial Attention, Motor Intention, and Bayesian Cue Predictability in the Human Brain.
Kuhns, Anna B; Dombert, Pascasie L; Mengotti, Paola; Fink, Gereon R; Vossel, Simone
2017-05-24
Predictions about upcoming events influence how we perceive and respond to our environment. There is increasing evidence that predictions may be generated based upon previous observations following Bayesian principles, but little is known about the underlying cortical mechanisms and their specificity for different cognitive subsystems. The present study aimed at identifying common and distinct neural signatures of predictive processing in the spatial attentional and motor intentional system. Twenty-three female and male healthy human volunteers performed two probabilistic cueing tasks with either spatial or motor cues while lying in the fMRI scanner. In these tasks, the percentage of cue validity changed unpredictably over time. Trialwise estimates of cue predictability were derived from a Bayesian observer model of behavioral responses. These estimates were included as parametric regressors for analyzing the BOLD time series. Parametric effects of cue predictability in valid and invalid trials were considered to reflect belief updating by precision-weighted prediction errors. The brain areas exhibiting predictability-dependent effects dissociated between the spatial attention and motor intention task, with the right temporoparietal cortex being involved during spatial attention and the left angular gyrus and anterior cingulate cortex during motor intention. Connectivity analyses revealed that all three areas showed predictability-dependent coupling with the right hippocampus. These results suggest that precision-weighted prediction errors of stimulus locations and motor responses are encoded in distinct brain regions, but that crosstalk with the hippocampus may be necessary to integrate new trialwise outcomes in both cognitive systems. SIGNIFICANCE STATEMENT The brain is able to infer the environments' statistical structure and responds strongly to expectancy violations. In the spatial attentional domain, it has been shown that parts of the attentional networks are sensitive to the predictability of stimuli. It remains unknown, however, whether these effects are ubiquitous or if they are specific for different cognitive systems. The present study compared the influence of model-derived cue predictability on brain activity in the spatial attentional and motor intentional system. We identified areas with distinct predictability-dependent activation for spatial attention and motor intention, but also common connectivity changes of these regions with the hippocampus. These findings provide novel insights into the generality and specificity of predictive processing signatures in the human brain. Copyright © 2017 the authors 0270-6474/17/375334-11$15.00/0.
Intrusion errors in visuospatial working memory performance.
Cornoldi, Cesare; Mammarella, Nicola
2006-02-01
This study tested the hypothesis that failure in active visuospatial working memory tasks involves a difficulty in avoiding intrusions due to information that is already activated. Two experiments are described, in which participants were required to process several series of locations on a 4 x 4 matrix and then to produce only the final location of each series. Results revealed a higher number of errors due to already activated locations (intrusions) compared with errors due to new locations (inventions). Moreover, when participants were required to pay extra attention to some irrelevant (non-final) locations by tapping on the table, intrusion errors increased. Results are discussed in terms of current models of working memory functioning.
NASA Technical Reports Server (NTRS)
Moore, J. T.
1985-01-01
Data input for the AVE-SESAME I experiment are utilized to describe the effects of random errors in rawinsonde data on the computation of ageostrophic winds. Computer-generated random errors for wind direction and speed and temperature are introduced into the station soundings at 25 mb intervals from which isentropic data sets are created. Except for the isallobaric and the local wind tendency, all winds are computed for Apr. 10, 1979 at 2000 GMT. Divergence fields reveal that the isallobaric and inertial-geostrophic-advective divergences are less affected by rawinsonde random errors than the divergence of the local wind tendency or inertial-advective winds.
Preston, Jonathan L.; Hull, Margaret; Edwards, Mary Louise
2012-01-01
Purpose To determine if speech error patterns in preschoolers with speech sound disorders (SSDs) predict articulation and phonological awareness (PA) outcomes almost four years later. Method Twenty-five children with histories of preschool SSDs (and normal receptive language) were tested at an average age of 4;6 and followed up at 8;3. The frequency of occurrence of preschool distortion errors, typical substitution and syllable structure errors, and atypical substitution and syllable structure errors were used to predict later speech sound production, PA, and literacy outcomes. Results Group averages revealed below-average school-age articulation scores and low-average PA, but age-appropriate reading and spelling. Preschool speech error patterns were related to school-age outcomes. Children for whom more than 10% of their speech sound errors were atypical had lower PA and literacy scores at school-age than children who produced fewer than 10% atypical errors. Preschoolers who produced more distortion errors were likely to have lower school-age articulation scores. Conclusions Different preschool speech error patterns predict different school-age clinical outcomes. Many atypical speech sound errors in preschool may be indicative of weak phonological representations, leading to long-term PA weaknesses. Preschool distortions may be resistant to change over time, leading to persisting speech sound production problems. PMID:23184137
Linguistic Pattern Analysis of Misspellings of Typically Developing Writers in Grades 1 to 9
Bahr, Ruth Huntley; Silliman, Elaine R.; Berninger, Virginia W.; Dow, Michael
2012-01-01
Purpose A mixed methods approach, evaluating triple word form theory, was used to describe linguistic patterns of misspellings. Method Spelling errors were taken from narrative and expository writing samples provided by 888 typically developing students in grades 1–9. Errors were coded by category (phonological, orthographic, and morphological) and specific linguistic feature affected. Grade level effects were analyzed with trend analysis. Qualitative analyses determined frequent error types and how use of specific linguistic features varied across grades. Results Phonological, orthographic, and morphological errors were noted across all grades, but orthographic errors predominated. Linear trends revealed developmental shifts in error proportions for the orthographic and morphological categories between grades 4–5. Similar error types were noted across age groups but the nature of linguistic feature error changed with age. Conclusions Triple word-form theory was supported. By grade 1, orthographic errors predominated and phonological and morphological error patterns were evident. Morphological errors increased in relative frequency in older students, probably due to a combination of word-formation issues and vocabulary growth. These patterns suggest that normal spelling development reflects non-linear growth and that it takes a long time to develop a robust orthographic lexicon that coordinates phonology, orthography, and morphology and supports word-specific, conventional spelling. PMID:22473834
Ben Natan, Merav; Sharon, Ira; Mahajna, Marlen; Mahajna, Sara
2017-11-01
Medication errors are common among nursing students. Nonetheless, these errors are often underreported. To examine factors related to nursing students' intention to report medication errors, using the Theory of Planned Behavior, and to examine whether the theory is useful in predicting students' intention to report errors. This study has a descriptive cross-sectional design. Study population was recruited in a university and a large nursing school in central and northern Israel. A convenience sample of 250 nursing students took part in the study. The students completed a self-report questionnaire, based on the Theory of Planned Behavior. The findings indicate that students' intention to report medication errors was high. The Theory of Planned Behavior constructs explained 38% of variance in students' intention to report medication errors. The constructs of behavioral beliefs, subjective norms, and perceived behavioral control were found as affecting this intention, while the most significant factor was behavioral beliefs. The findings also reveal that students' fear of the reaction to disclosure of the error from superiors and colleagues may impede them from reporting the error. Understanding factors related to reporting medication errors is crucial to designing interventions that foster error reporting. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeiner, Carolyn A.; Purvine, Samuel O.; Zink, Erika M.
Fungi generate a wide range of extracellular hydrolytic and oxidative enzymes and reactive metabolites, collectively known as the secretome, that synergistically drive plant litter decomposition in the environment. While secretome studies of model organisms have greatly expanded our knowledge of these enzymes, few have extended secretome characterization to environmental isolates, particularly filamentous Ascomycetes, or directly compared temporal patterns of enzyme utilization among diverse species. Thus, the mechanisms of carbon (C) degradation by many ubiquitous soil fungi remain poorly understood. Here in this study we use a combination of iTRAQ proteomics and extracellular enzyme activity assays to compare the protein compositionmore » of the secretomes of four manganese(II)-oxidizing Ascomycete fungi over a three-week time course. We demonstrate that the fungi exhibit striking differences in the regulation of extracellular lignocellulose-degrading enzymes among species and over time, revealing species-specific and temporal shifts in C utilization strategies as they degrade the same substrate. Specifically, our findings suggest that Alternaria alternata SRC1lrK2f and Paraconiothyrium sporulosum AP3s5-JAC2a employ sequential enzyme secretion patterns concomitant with decreasing resource availability. Stagonospora sp. SRC1lsM3a preferentially degrades proteinaceous substrate before switching to carbohydrates, and Pyrenochaeta sp. DS3sAY3a utilizes primarily peptidases to aggressively attack carbon sources in a concentrated burst. In conclusion, this work highlights the diversity of operative metabolic strategies among understudied yet ubiquitous cellulose-degrading Ascomycetes, enhancing our understanding of their contribution to C turnover in the environment.« less
Zeiner, Carolyn A.; Purvine, Samuel O.; Zink, Erika M.; ...
2017-07-01
Fungi generate a wide range of extracellular hydrolytic and oxidative enzymes and reactive metabolites, collectively known as the secretome, that synergistically drive plant litter decomposition in the environment. While secretome studies of model organisms have greatly expanded our knowledge of these enzymes, few have extended secretome characterization to environmental isolates, particularly filamentous Ascomycetes, or directly compared temporal patterns of enzyme utilization among diverse species. Thus, the mechanisms of carbon (C) degradation by many ubiquitous soil fungi remain poorly understood. Here in this study we use a combination of iTRAQ proteomics and extracellular enzyme activity assays to compare the protein compositionmore » of the secretomes of four manganese(II)-oxidizing Ascomycete fungi over a three-week time course. We demonstrate that the fungi exhibit striking differences in the regulation of extracellular lignocellulose-degrading enzymes among species and over time, revealing species-specific and temporal shifts in C utilization strategies as they degrade the same substrate. Specifically, our findings suggest that Alternaria alternata SRC1lrK2f and Paraconiothyrium sporulosum AP3s5-JAC2a employ sequential enzyme secretion patterns concomitant with decreasing resource availability. Stagonospora sp. SRC1lsM3a preferentially degrades proteinaceous substrate before switching to carbohydrates, and Pyrenochaeta sp. DS3sAY3a utilizes primarily peptidases to aggressively attack carbon sources in a concentrated burst. In conclusion, this work highlights the diversity of operative metabolic strategies among understudied yet ubiquitous cellulose-degrading Ascomycetes, enhancing our understanding of their contribution to C turnover in the environment.« less
Privacy-Related Context Information for Ubiquitous Health
Nykänen, Pirkko; Ruotsalainen, Pekka
2014-01-01
Background Ubiquitous health has been defined as a dynamic network of interconnected systems. A system is composed of one or more information systems, their stakeholders, and the environment. These systems offer health services to individuals and thus implement ubiquitous computing. Privacy is the key challenge for ubiquitous health because of autonomous processing, rich contextual metadata, lack of predefined trust among participants, and the business objectives. Additionally, regulations and policies of stakeholders may be unknown to the individual. Context-sensitive privacy policies are needed to regulate information processing. Objective Our goal was to analyze privacy-related context information and to define the corresponding components and their properties that support privacy management in ubiquitous health. These properties should describe the privacy issues of information processing. With components and their properties, individuals can define context-aware privacy policies and set their privacy preferences that can change in different information-processing situations. Methods Scenarios and user stories are used to analyze typical activities in ubiquitous health to identify main actors, goals, tasks, and stakeholders. Context arises from an activity and, therefore, we can determine different situations, services, and systems to identify properties for privacy-related context information in information-processing situations. Results Privacy-related context information components are situation, environment, individual, information technology system, service, and stakeholder. Combining our analyses and previously identified characteristics of ubiquitous health, more detailed properties for the components are defined. Properties define explicitly what context information for different components is needed to create context-aware privacy policies that can control, limit, and constrain information processing. With properties, we can define, for example, how data can be processed or how components are regulated or in what kind of environment data can be processed. Conclusions This study added to the vision of ubiquitous health by analyzing information processing from the viewpoint of an individual’s privacy. We learned that health and wellness-related activities may happen in several environments and situations with multiple stakeholders, services, and systems. We have provided new knowledge regarding privacy-related context information and corresponding components by analyzing typical activities in ubiquitous health. With the identified components and their properties, individuals can define their personal preferences on information processing based on situational information, and privacy services can capture privacy-related context of the information-processing situation. PMID:25100084
Privacy-related context information for ubiquitous health.
Seppälä, Antto; Nykänen, Pirkko; Ruotsalainen, Pekka
2014-03-11
Ubiquitous health has been defined as a dynamic network of interconnected systems. A system is composed of one or more information systems, their stakeholders, and the environment. These systems offer health services to individuals and thus implement ubiquitous computing. Privacy is the key challenge for ubiquitous health because of autonomous processing, rich contextual metadata, lack of predefined trust among participants, and the business objectives. Additionally, regulations and policies of stakeholders may be unknown to the individual. Context-sensitive privacy policies are needed to regulate information processing. Our goal was to analyze privacy-related context information and to define the corresponding components and their properties that support privacy management in ubiquitous health. These properties should describe the privacy issues of information processing. With components and their properties, individuals can define context-aware privacy policies and set their privacy preferences that can change in different information-processing situations. Scenarios and user stories are used to analyze typical activities in ubiquitous health to identify main actors, goals, tasks, and stakeholders. Context arises from an activity and, therefore, we can determine different situations, services, and systems to identify properties for privacy-related context information in information-processing situations. Privacy-related context information components are situation, environment, individual, information technology system, service, and stakeholder. Combining our analyses and previously identified characteristics of ubiquitous health, more detailed properties for the components are defined. Properties define explicitly what context information for different components is needed to create context-aware privacy policies that can control, limit, and constrain information processing. With properties, we can define, for example, how data can be processed or how components are regulated or in what kind of environment data can be processed. This study added to the vision of ubiquitous health by analyzing information processing from the viewpoint of an individual's privacy. We learned that health and wellness-related activities may happen in several environments and situations with multiple stakeholders, services, and systems. We have provided new knowledge regarding privacy-related context information and corresponding components by analyzing typical activities in ubiquitous health. With the identified components and their properties, individuals can define their personal preferences on information processing based on situational information, and privacy services can capture privacy-related context of the information-processing situation.
Long-term care physical environments--effect on medication errors.
Mahmood, Atiya; Chaudhury, Habib; Gaumont, Alana; Rust, Tiana
2012-01-01
Few studies examine physical environmental factors and their effects on staff health, effectiveness, work errors and job satisfaction. To address this gap, this study aims to examine environmental features and their role in medication and nursing errors in long-term care facilities. A mixed methodological strategy was used. Data were collected via focus groups, observing medication preparation and administration, and a nursing staff survey in four facilities. The paper reveals that, during the medication preparation phase, physical design, such as medication room layout, is a major source of potential errors. During medication administration, social environment is more likely to contribute to errors. Interruptions, noise and staff shortages were particular problems. The survey's relatively small sample size needs to be considered when interpreting the findings. Also, actual error data could not be included as existing records were incomplete. The study offers several relatively low-cost recommendations to help staff reduce medication errors. Physical environmental factors are important when addressing measures to reduce errors. The findings of this study underscore the fact that the physical environment's influence on the possibility of medication errors is often neglected. This study contributes to the scarce empirical literature examining the relationship between physical design and patient safety.
Sleep, mental health status, and medical errors among hospital nurses in Japan.
Arimura, Mayumi; Imai, Makoto; Okawa, Masako; Fujimura, Toshimasa; Yamada, Naoto
2010-01-01
Medical error involving nurses is a critical issue since nurses' actions will have a direct and often significant effect on the prognosis of their patients. To investigate the significance of nurse health in Japan and its potential impact on patient services, a questionnaire-based survey amongst nurses working in hospitals was conducted, with the specific purpose of examining the relationship between shift work, mental health and self-reported medical errors. Multivariate analysis revealed significant associations between the shift work system, General Health Questionnaire (GHQ) scores and nurse errors: the odds ratios for shift system and GHQ were 2.1 and 1.1, respectively. It was confirmed that both sleep and mental health status among hospital nurses were relatively poor, and that shift work and poor mental health were significant factors contributing to medical errors.
Interval sampling methods and measurement error: a computer simulation.
Wirth, Oliver; Slaven, James; Taylor, Matthew A
2014-01-01
A simulation study was conducted to provide a more thorough account of measurement error associated with interval sampling methods. A computer program simulated the application of momentary time sampling, partial-interval recording, and whole-interval recording methods on target events randomly distributed across an observation period. The simulation yielded measures of error for multiple combinations of observation period, interval duration, event duration, and cumulative event duration. The simulations were conducted up to 100 times to yield measures of error variability. Although the present simulation confirmed some previously reported characteristics of interval sampling methods, it also revealed many new findings that pertain to each method's inherent strengths and weaknesses. The analysis and resulting error tables can help guide the selection of the most appropriate sampling method for observation-based behavioral assessments. © Society for the Experimental Analysis of Behavior.
Jing, Hongmei; Lacap, Donnabella C; Lau, Chui Yim; Pointing, Stephen B
2006-04-01
The 16S rRNA gene-defined bacterial diversity of tropical intertidal geothermal vents subject to varying degrees of seawater inundation was investigated. Shannon-Weaver diversity estimates of clone library-derived sequences revealed that the hottest pools located above the mean high-water mark that did not experience seawater inundation were most diverse, followed by those that were permanently submerged below the mean low-water mark. Pools located in the intertidal were the least biodiverse, and this is attributed to the fluctuating conditions caused by periodic seawater inundation rather than physicochemical conditions per se. Phylogenetic analysis revealed that a ubiquitous Oscillatoria-like phylotype accounted for 83% of clones. Synechococcus-like phylotypes were also encountered at each location, whilst others belonging to the Chroococcales, Oscillatoriales, and other non-phototrophic bacteria occurred only at specific locations along the gradient. All cyanobacterial phylotypes displayed highest phylogenetic affinity to terrestrial thermophilic counterparts rather than marine taxa.
O'Connell Motherway, Mary; Zomer, Aldert; Leahy, Sinead C.; Reunanen, Justus; Bottacini, Francesca; Claesson, Marcus J.; O'Brien, Frances; Flynn, Kiera; Casey, Patrick G.; Moreno Munoz, Jose Antonio; Kearney, Breda; Houston, Aileen M.; O'Mahony, Caitlin; Higgins, Des G.; Shanahan, Fergus; Palva, Airi; de Vos, Willem M.; Fitzgerald, Gerald F.; Ventura, Marco; O'Toole, Paul W.; van Sinderen, Douwe
2011-01-01
Development of the human gut microbiota commences at birth, with bifidobacteria being among the first colonizers of the sterile newborn gastrointestinal tract. To date, the genetic basis of Bifidobacterium colonization and persistence remains poorly understood. Transcriptome analysis of the Bifidobacterium breve UCC2003 2.42-Mb genome in a murine colonization model revealed differential expression of a type IVb tight adherence (Tad) pilus-encoding gene cluster designated “tad2003.” Mutational analysis demonstrated that the tad2003 gene cluster is essential for efficient in vivo murine gut colonization, and immunogold transmission electron microscopy confirmed the presence of Tad pili at the poles of B. breve UCC2003 cells. Conservation of the Tad pilus-encoding locus among other B. breve strains and among sequenced Bifidobacterium genomes supports the notion of a ubiquitous pili-mediated host colonization and persistence mechanism for bifidobacteria. PMID:21690406
On the Origin of Banded Structure in Dusty Protoplanetary Disks: HL Tau and TW Hya
NASA Astrophysics Data System (ADS)
Boley, A. C.
2017-11-01
Recent observations of HL Tau revealed remarkably detailed structure within the system’s circumstellar disk. A range of hypotheses have been proposed to explain the morphology, including, e.g., planet-disk interactions, condensation fronts, and secular gravitational instabilities. While embedded planets seem to be able to explain some of the major structure in the disk through interactions with gas and dust, the substructures, such as low-contrast rings and bands, are not so easily reproduced. Here, we show that dynamical interactions between three planets (only two of which are modeled) and an initial population of large planetesimals can potentially explain both the major and minor banded features within the system. In this context, the small grains, which are coupled to the gas and reveal the disk morphology, are produced by the collisional evolution of the newly formed planetesimals, which are ubiquitous in the system and are decoupled from the gas.
Exophiala angulospora Causes Systemic Mycosis in Atlantic Halibut: a Case Report.
Overy, David P; Groman, David; Giles, Jan; Duffy, Stephanie; Rommens, Mellisa; Johnson, Gerald
2015-03-01
Filamentous black yeasts from the genus Exophiala are ubiquitous, opportunistic pathogens causing both superficial and systemic mycoses in warm- and cold-blooded animals. Infections by black yeasts have been reported relatively frequently in a variety of captive and farmed freshwater and marine fishes. In November 2012, moribund and recently dead, farm-raised Atlantic Halibut Hippoglossus hippoglossus were necropsied to determine the cause of death. Histopathology revealed that three of seven fish were affected by a combination of an ascending trans-ductual granulomatous mycotic nephritis, necrotizing histiocytic encephalitis, and in one fish the addition of a fibrogranulomatous submucosal branchitis. Microbial cultures of kidney using selective mycotic media revealed pure growth of a black-pigmenting septated agent. Application of molecular and phenotypic taxonomy methodologies determined that all three isolates were genetically consistent with Exophiala angulospora. This is the first report of E. angulospora as the causal agent of systemic mycosis in Atlantic Halibut.
O'Connell Motherway, Mary; Zomer, Aldert; Leahy, Sinead C; Reunanen, Justus; Bottacini, Francesca; Claesson, Marcus J; O'Brien, Frances; Flynn, Kiera; Casey, Patrick G; Munoz, Jose Antonio Moreno; Kearney, Breda; Houston, Aileen M; O'Mahony, Caitlin; Higgins, Des G; Shanahan, Fergus; Palva, Airi; de Vos, Willem M; Fitzgerald, Gerald F; Ventura, Marco; O'Toole, Paul W; van Sinderen, Douwe
2011-07-05
Development of the human gut microbiota commences at birth, with bifidobacteria being among the first colonizers of the sterile newborn gastrointestinal tract. To date, the genetic basis of Bifidobacterium colonization and persistence remains poorly understood. Transcriptome analysis of the Bifidobacterium breve UCC2003 2.42-Mb genome in a murine colonization model revealed differential expression of a type IVb tight adherence (Tad) pilus-encoding gene cluster designated "tad(2003)." Mutational analysis demonstrated that the tad(2003) gene cluster is essential for efficient in vivo murine gut colonization, and immunogold transmission electron microscopy confirmed the presence of Tad pili at the poles of B. breve UCC2003 cells. Conservation of the Tad pilus-encoding locus among other B. breve strains and among sequenced Bifidobacterium genomes supports the notion of a ubiquitous pili-mediated host colonization and persistence mechanism for bifidobacteria.
Rafkin, Scot C R; Sta Maria, Magdalena R V; Michaels, Timothy I
2002-10-17
Mesoscale (<100 km) atmospheric phenomena are ubiquitous on Mars, as revealed by Mars Orbiter Camera images. Numerical models provide an important means of investigating martian atmospheric dynamics, for which data availability is limited. But the resolution of general circulation models, which are traditionally used for such research, is not sufficient to resolve mesoscale phenomena. To provide better understanding of these relatively small-scale phenomena, mesoscale models have recently been introduced. Here we simulate the mesoscale spiral dust cloud observed over the caldera of the volcano Arsia Mons by using the Mars Regional Atmospheric Modelling System. Our simulation uses a hierarchy of nested models with grid sizes ranging from 240 km to 3 km, and reveals that the dust cloud is an indicator of a greater but optically thin thermal circulation that reaches heights of up to 30 km, and transports dust horizontally over thousands of kilometres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Punjabi, Alkesh; Ali, Halima
2011-02-15
Any canonical transformation of Hamiltonian equations is symplectic, and any area-preserving transformation in 2D is a symplectomorphism. Based on these, a discrete symplectic map and its continuous symplectic analog are derived for forward magnetic field line trajectories in natural canonical coordinates. The unperturbed axisymmetric Hamiltonian for magnetic field lines is constructed from the experimental data in the DIII-D [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The equilibrium Hamiltonian is a highly accurate, analytic, and realistic representation of the magnetic geometry of the DIII-D. These symplectic mathematical maps are used to calculate the magnetic footprint onmore » the inboard collector plate in the DIII-D. Internal statistical topological noise and field errors are irreducible and ubiquitous in magnetic confinement schemes for fusion. It is important to know the stochasticity and magnetic footprint from noise and error fields. The estimates of the spectrum and mode amplitudes of the spatial topological noise and magnetic errors in the DIII-D are used as magnetic perturbation. The discrete and continuous symplectic maps are used to calculate the magnetic footprint on the inboard collector plate of the DIII-D by inverting the natural coordinates to physical coordinates. The combination of highly accurate equilibrium generating function, natural canonical coordinates, symplecticity, and small step-size together gives a very accurate calculation of magnetic footprint. Radial variation of magnetic perturbation and the response of plasma to perturbation are not included. The inboard footprint from noise and errors are dominated by m=3, n=1 mode. The footprint is in the form of a toroidally winding helical strip. The width of stochastic layer scales as (1/2) power of amplitude. The area of footprint scales as first power of amplitude. The physical parameters such as toroidal angle, length, and poloidal angle covered before striking, and the safety factor all have fractal structure. The average field diffusion near the X-point for lines that strike and that do not strike differs by about three to four orders of magnitude. The magnetic footprint gives the maximal bounds on size and heat flux density on collector plate.« less
Simulations of a PSD Plastic Neutron Collar for Assaying Fresh Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hausladen, Paul; Newby, Jason; McElroy, Robert Dennis
The potential performance of a notional active coincidence collar for assaying uranium fuel based on segmented detectors constructed from the new PSD plastic fast organic scintillator with pulse shape discrimination capability was investigated in simulation. Like the International Atomic Energy Agency's present Uranium Neutron Collar for LEU (UNCL), the PSD plastic collar would also function by stimulating fission in the 235U content of the fuel with a moderated 241Am/Li neutron source and detecting instances of induced fission via neutron coincidence counting. In contrast to the moderated detectors of the UNCL, the fast time scale of detection in the scintillator eliminatesmore » statistical errors due to accidental coincidences that limit the performance of the UNCL. However, the potential to detect a single neutron multiple times historically has been one of the properties of organic scintillator detectors that has prevented their adoption for international safeguards applications. Consequently, as part of the analysis of simulated data, a method was developed by which true neutron-neutron coincidences can be distinguished from inter-detector scatter that takes advantage of the position and timing resolution of segmented detectors. Then, the performance of the notional simulated coincidence collar was evaluated for assaying a variety of fresh fuels, including some containing burnable poisons and partial defects. In these simulations, particular attention was paid to the analysis of fast mode measurements. In fast mode, a Cd liner is placed inside the collar to shield the fuel from the interrogating source and detector moderators, thereby eliminating the thermal neutron flux that is most sensitive to the presence of burnable poisons that are ubiquitous in modern nuclear fuels. The simulations indicate that the predicted precision of fast mode measurements is similar to what can be achieved by the present UNCL in thermal mode. For example, the statistical accuracy of a ten-minute measurement of fission coincidences collected in fast mode will be approximately 1% for most fuels of interest, yielding a ~1.4% error after subtraction of a five minute measurement of the spontaneous fissions from 238U in the fuel, a ~2% error in analyzed linear density after accounting for the slope of the calibration curve, and a ~2.9% total error after addition of an assumed systematic error of 2%.« less
Choi, Okkyung; Han, SangYong
2007-01-01
Ubiquitous Computing makes it possible to determine in real time the location and situations of service requesters in a web service environment as it enables access to computers at any time and in any place. Though research on various aspects of ubiquitous commerce is progressing at enterprises and research centers, both domestically and overseas, analysis of a customer's personal preferences based on semantic web and rule based services using semantics is not currently being conducted. This paper proposes a Ubiquitous Computing Services System that enables a rule based search as well as semantics based search to support the fact that the electronic space and the physical space can be combined into one and the real time search for web services and the construction of efficient web services thus become possible.
Privacy Policy Enforcement for Ambient Ubiquitous Services
NASA Astrophysics Data System (ADS)
Oyomno, Were; Jäppinen, Pekka; Kerttula, Esa
Ubiquitous service providers leverage miniaturised computing terminals equipped with wireless capabilities to avail new service models. These models are pivoted on personal and inexpensive terminals to customise services to individual preferences. Portability, small sizes and compact keyboards are few features popularising mobile terminals. Features enable storing and carrying of ever increasing proportions of personal data and ability to use them in service adaptations. Ubiquitous services automate deeper soliciting of personal data transparently without the need for user interactions. Transparent solicitations, acquisitions and handling of personal data legitimises privacy concerns regarding disclosures, retention and re-use of the data. This study presents a policy enforcement for ubiquitous services that safeguards handling of users personal data and monitors adherence to stipulated privacy policies. Enforcement structures towards usability and scalability are presented.
Di Pietro, M; Schnider, A; Ptak, R
2011-10-01
Patients with peripheral dysgraphia due to impairment at the allographic level produce writing errors that affect the letter-form and are characterized by case confusions or the failure to write in a specific case or style (e.g., cursive). We studied the writing errors of a patient with pure peripheral dysgraphia who had entirely intact oral spelling, but produced many well-formed letter errors in written spelling. The comparison of uppercase print and lowercase cursive spelling revealed an uncommon pattern: while most uppercase errors were case substitutions (e.g., A - a), almost all lowercase errors were letter substitutions (e.g., n - r). Analyses of the relationship between target letters and substitution errors showed that errors were neither influenced by consonant-vowel status nor by letter frequency, though word length affected error frequency in lowercase writing. Moreover, while graphomotor similarity did not predict either the occurrence of uppercase or lowercase errors, visuospatial similarity was a significant predictor of lowercase errors. These results suggest that lowercase representations of cursive letter-forms are based on a description of entire letters (visuospatial features) and are not - as previously found for uppercase letters - specified in terms of strokes (graphomotor features). Copyright © 2010 Elsevier Srl. All rights reserved.
Neural markers of errors as endophenotypes in neuropsychiatric disorders
Manoach, Dara S.; Agam, Yigal
2013-01-01
Learning from errors is fundamental to adaptive human behavior. It requires detecting errors, evaluating what went wrong, and adjusting behavior accordingly. These dynamic adjustments are at the heart of behavioral flexibility and accumulating evidence suggests that deficient error processing contributes to maladaptively rigid and repetitive behavior in a range of neuropsychiatric disorders. Neuroimaging and electrophysiological studies reveal highly reliable neural markers of error processing. In this review, we evaluate the evidence that abnormalities in these neural markers can serve as sensitive endophenotypes of neuropsychiatric disorders. We describe the behavioral and neural hallmarks of error processing, their mediation by common genetic polymorphisms, and impairments in schizophrenia, obsessive-compulsive disorder, and autism spectrum disorders. We conclude that neural markers of errors meet several important criteria as endophenotypes including heritability, established neuroanatomical and neurochemical substrates, association with neuropsychiatric disorders, presence in syndromally-unaffected family members, and evidence of genetic mediation. Understanding the mechanisms of error processing deficits in neuropsychiatric disorders may provide novel neural and behavioral targets for treatment and sensitive surrogate markers of treatment response. Treating error processing deficits may improve functional outcome since error signals provide crucial information for flexible adaptation to changing environments. Given the dearth of effective interventions for cognitive deficits in neuropsychiatric disorders, this represents a potentially promising approach. PMID:23882201
Neural markers of errors as endophenotypes in neuropsychiatric disorders.
Manoach, Dara S; Agam, Yigal
2013-01-01
Learning from errors is fundamental to adaptive human behavior. It requires detecting errors, evaluating what went wrong, and adjusting behavior accordingly. These dynamic adjustments are at the heart of behavioral flexibility and accumulating evidence suggests that deficient error processing contributes to maladaptively rigid and repetitive behavior in a range of neuropsychiatric disorders. Neuroimaging and electrophysiological studies reveal highly reliable neural markers of error processing. In this review, we evaluate the evidence that abnormalities in these neural markers can serve as sensitive endophenotypes of neuropsychiatric disorders. We describe the behavioral and neural hallmarks of error processing, their mediation by common genetic polymorphisms, and impairments in schizophrenia, obsessive-compulsive disorder, and autism spectrum disorders. We conclude that neural markers of errors meet several important criteria as endophenotypes including heritability, established neuroanatomical and neurochemical substrates, association with neuropsychiatric disorders, presence in syndromally-unaffected family members, and evidence of genetic mediation. Understanding the mechanisms of error processing deficits in neuropsychiatric disorders may provide novel neural and behavioral targets for treatment and sensitive surrogate markers of treatment response. Treating error processing deficits may improve functional outcome since error signals provide crucial information for flexible adaptation to changing environments. Given the dearth of effective interventions for cognitive deficits in neuropsychiatric disorders, this represents a potentially promising approach.
Trust information-based privacy architecture for ubiquitous health.
Ruotsalainen, Pekka Sakari; Blobel, Bernd; Seppälä, Antto; Nykänen, Pirkko
2013-10-08
Ubiquitous health is defined as a dynamic network of interconnected systems that offers health services independent of time and location to a data subject (DS). The network takes place in open and unsecure information space. It is created and managed by the DS who sets rules that regulate the way personal health information is collected and used. Compared to health care, it is impossible in ubiquitous health to assume the existence of a priori trust between the DS and service providers and to produce privacy using static security services. In ubiquitous health features, business goals and regulations systems followed often remain unknown. Furthermore, health care-specific regulations do not rule the ways health data is processed and shared. To be successful, ubiquitous health requires novel privacy architecture. The goal of this study was to develop a privacy management architecture that helps the DS to create and dynamically manage the network and to maintain information privacy. The architecture should enable the DS to dynamically define service and system-specific rules that regulate the way subject data is processed. The architecture should provide to the DS reliable trust information about systems and assist in the formulation of privacy policies. Furthermore, the architecture should give feedback upon how systems follow the policies of DS and offer protection against privacy and trust threats existing in ubiquitous environments. A sequential method that combines methodologies used in system theory, systems engineering, requirement analysis, and system design was used in the study. In the first phase, principles, trust and privacy models, and viewpoints were selected. Thereafter, functional requirements and services were developed on the basis of a careful analysis of existing research published in journals and conference proceedings. Based on principles, models, and requirements, architectural components and their interconnections were developed using system analysis. The architecture mimics the way humans use trust information in decision making, and enables the DS to design system-specific privacy policies using computational trust information that is based on systems' measured features. The trust attributes that were developed describe the level systems for support awareness and transparency, and how they follow general and domain-specific regulations and laws. The monitoring component of the architecture offers dynamic feedback concerning how the system enforces the polices of DS. The privacy management architecture developed in this study enables the DS to dynamically manage information privacy in ubiquitous health and to define individual policies for all systems considering their trust value and corresponding attributes. The DS can also set policies for secondary use and reuse of health information. The architecture offers protection against privacy threats existing in ubiquitous environments. Although the architecture is targeted to ubiquitous health, it can easily be modified to other ubiquitous applications.
Trust Information-Based Privacy Architecture for Ubiquitous Health
2013-01-01
Background Ubiquitous health is defined as a dynamic network of interconnected systems that offers health services independent of time and location to a data subject (DS). The network takes place in open and unsecure information space. It is created and managed by the DS who sets rules that regulate the way personal health information is collected and used. Compared to health care, it is impossible in ubiquitous health to assume the existence of a priori trust between the DS and service providers and to produce privacy using static security services. In ubiquitous health features, business goals and regulations systems followed often remain unknown. Furthermore, health care-specific regulations do not rule the ways health data is processed and shared. To be successful, ubiquitous health requires novel privacy architecture. Objective The goal of this study was to develop a privacy management architecture that helps the DS to create and dynamically manage the network and to maintain information privacy. The architecture should enable the DS to dynamically define service and system-specific rules that regulate the way subject data is processed. The architecture should provide to the DS reliable trust information about systems and assist in the formulation of privacy policies. Furthermore, the architecture should give feedback upon how systems follow the policies of DS and offer protection against privacy and trust threats existing in ubiquitous environments. Methods A sequential method that combines methodologies used in system theory, systems engineering, requirement analysis, and system design was used in the study. In the first phase, principles, trust and privacy models, and viewpoints were selected. Thereafter, functional requirements and services were developed on the basis of a careful analysis of existing research published in journals and conference proceedings. Based on principles, models, and requirements, architectural components and their interconnections were developed using system analysis. Results The architecture mimics the way humans use trust information in decision making, and enables the DS to design system-specific privacy policies using computational trust information that is based on systems’ measured features. The trust attributes that were developed describe the level systems for support awareness and transparency, and how they follow general and domain-specific regulations and laws. The monitoring component of the architecture offers dynamic feedback concerning how the system enforces the polices of DS. Conclusions The privacy management architecture developed in this study enables the DS to dynamically manage information privacy in ubiquitous health and to define individual policies for all systems considering their trust value and corresponding attributes. The DS can also set policies for secondary use and reuse of health information. The architecture offers protection against privacy threats existing in ubiquitous environments. Although the architecture is targeted to ubiquitous health, it can easily be modified to other ubiquitous applications. PMID:25099213
García-Blanco, Ana C; Perea, Manuel; Salmerón, Ladislao
2013-12-01
An antisaccade experiment, using happy, sad, and neutral faces, was conducted to examine the effect of mood-congruent information on inhibitory control (antisaccade task) and attentional orienting (prosaccade task) during the different episodes of bipolar disorder (BD) - manic (n=22), depressive (n=25), and euthymic (n=24). A group of 28 healthy controls was also included. Results revealed that symptomatic patients committed more antisaccade errors than healthy individuals, especially with mood-congruent faces. The manic group committed more antisaccade errors in response to happy faces, while the depressed group tended to commit more antisaccade errors in response to sad faces. Additionally, antisaccade latencies were slower in BD patients than in healthy individuals, whereas prosaccade latencies were slower in symptomatic patients. Taken together, these findings revealed the following: (a) slow inhibitory control in BD patients, regardless of their episode (i.e., a trait), and (b) impaired inhibitory control restricted to symptomatic patients (i.e., a state). Copyright © 2013 Elsevier B.V. All rights reserved.
Reactive ground-state pathways are not ubiquitous in red/green cyanobacteriochromes.
Chang, Che-Wei; Gottlieb, Sean M; Kim, Peter W; Rockwell, Nathan C; Lagarias, J Clark; Larsen, Delmar S
2013-09-26
Recent characterization of the red/green cyanobacteriochrome (CBCR) NpR6012g4 revealed a high quantum yield for its forward photoreaction [J. Am. Chem. Soc. 2012, 134, 130-133] that was ascribed to the activity of hidden, productive ground-state intermediates. The dynamics of the pathways involving these ground-state intermediates was resolved with femtosecond dispersed pump-dump-probe spectroscopy, the first such study reported for any CBCR. To address the ubiquity of such second-chance initiation dynamics (SCID) in CBCRs, we examined the closely related red/green CBCR NpF2164g6 from Nostoc punctiforme. Both NpF2164g6 and NpR6012g4 use phycocyanobilin as the chromophore precursor and exhibit similar excited-state dynamics. However, NpF2164g6 exhibits a lower quantum yield of 32% for the generation of the isomerized Lumi-R primary photoproduct, compared to 40% for NpR6012g4. This difference arises from significantly different ground-state dynamics between the two proteins, with the SCID mechanism deactivated in NpF2164g6. We present an integrated inhomogeneous target model that self-consistently fits the pump-probe and pump-dump-probe signals for both forward and reverse photoreactions in both proteins. This work demonstrates that reactive ground-state intermediates are not ubiquitous phenomena in CBCRs.
Eukaryotic DING Proteins Are Endogenous: An Immunohistological Study in Mouse Tissues
Collombet, Jean-Marc; Elias, Mikael; Gotthard, Guillaume; Four, Elise; Renault, Frédérique; Joffre, Aurélie; Baubichon, Dominique; Rochu, Daniel; Chabrière, Eric
2010-01-01
Background DING proteins encompass an intriguing protein family first characterized by their conserved N-terminal sequences. Some of these proteins seem to have key roles in various human diseases, e.g., rheumatoid arthritis, atherosclerosis, HIV suppression. Although this protein family seems to be ubiquitous in eukaryotes, their genes are consistently lacking from genomic databases. Such a lack has considerably hampered functional studies and has fostered therefore the hypothesis that DING proteins isolated from eukaryotes were in fact prokaryotic contaminants. Principal Findings In the framework of our study, we have performed a comprehensive immunological detection of DING proteins in mice. We demonstrate that DING proteins are present in all tissues tested as isoforms of various molecular weights (MWs). Their intracellular localization is tissue-dependant, being exclusively nuclear in neurons, but cytoplasmic and nuclear in other tissues. We also provide evidence that germ-free mouse plasma contains as much DING protein as wild-type. Significance Hence, data herein provide a valuable basis for future investigations aimed at eukaryotic DING proteins, revealing that these proteins seem ubiquitous in mouse tissue. Our results strongly suggest that mouse DING proteins are endogenous. Moreover, the determination in this study of the precise cellular localization of DING proteins constitute a precious evidence to understand their molecular involvements in their related human diseases. PMID:20161715
Hawley, Alyse K.; Brewer, Heather M.; Norbeck, Angela D.; Paša-Tolić, Ljiljana; Hallam, Steven J.
2014-01-01
Marine oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified waters. Currently OMZs are expanding due to global climate change with resulting feedback on marine ecosystem function. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally stratified fjord to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components for nitrification, anaerobic ammonium oxidation (anammox), denitrification, and inorganic carbon fixation were differentially expressed across the redoxcline and covaried with distribution patterns of ubiquitous OMZ microbes including Thaumarchaeota, Nitrospina, Nitrospira, Planctomycetes, and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters, and denitrification, sulfur oxidation, and inorganic carbon fixation pathways affiliated with the SUP05 group of nitrate-reducing sulfur oxidizers dominated suboxic and anoxic waters. Nitrifier nitrite oxidation and anammox pathways affiliated with Nirospina, Nitrospira, and Planctomycetes, respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The numerical abundance of SUP05 proteins mediating inorganic carbon fixation under anoxic conditions suggests that SUP05 will become increasingly important in global ocean carbon and nutrient cycling as OMZs expand. PMID:25053816
Hawley, Alyse K; Brewer, Heather M; Norbeck, Angela D; Paša-Tolić, Ljiljana; Hallam, Steven J
2014-08-05
Marine oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified waters. Currently OMZs are expanding due to global climate change with resulting feedback on marine ecosystem function. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally stratified fjord to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components for nitrification, anaerobic ammonium oxidation (anammox), denitrification, and inorganic carbon fixation were differentially expressed across the redoxcline and covaried with distribution patterns of ubiquitous OMZ microbes including Thaumarchaeota, Nitrospina, Nitrospira, Planctomycetes, and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters, and denitrification, sulfur oxidation, and inorganic carbon fixation pathways affiliated with the SUP05 group of nitrate-reducing sulfur oxidizers dominated suboxic and anoxic waters. Nitrifier nitrite oxidation and anammox pathways affiliated with Nirospina, Nitrospira, and Planctomycetes, respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The numerical abundance of SUP05 proteins mediating inorganic carbon fixation under anoxic conditions suggests that SUP05 will become increasingly important in global ocean carbon and nutrient cycling as OMZs expand.
UBIQUITOUS SOLAR ERUPTIONS DRIVEN BY MAGNETIZED VORTEX TUBES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitiashvili, I. N.; Kosovichev, A. G.; Lele, S. K.
2013-06-10
The solar surface is covered by high-speed jets transporting mass and energy into the solar corona and feeding the solar wind. The most prominent of these jets have been known as spicules. However, the mechanism initiating these eruption events is still unknown. Using realistic numerical simulations we find that small-scale eruptions are produced by ubiquitous magnetized vortex tubes generated by the Sun's turbulent convection in subsurface layers. The swirling vortex tubes (resembling tornadoes) penetrate into the solar atmosphere, capture and stretch background magnetic field, and push the surrounding material up, generating shocks. Our simulations reveal complicated high-speed flow patterns andmore » thermodynamic and magnetic structure in the erupting vortex tubes. The main new results are: (1) the eruptions are initiated in the subsurface layers and are driven by high-pressure gradients in the subphotosphere and photosphere and by the Lorentz force in the higher atmosphere layers; (2) the fluctuations in the vortex tubes penetrating into the chromosphere are quasi-periodic with a characteristic period of 2-5 minutes; and (3) the eruptions are highly non-uniform: the flows are predominantly downward in the vortex tube cores and upward in their surroundings; the plasma density and temperature vary significantly across the eruptions.« less
Life strategies of a ubiquitous and abundant subsurface archaeal group Bathyarchaeota
NASA Astrophysics Data System (ADS)
He, Y.; Li, M.; Perumal, V.; Feng, X.; Sievert, S. M.; Wang, F.
2015-12-01
Archaea belonging to the Miscellaneous Crenarchaeota Group (MCG, "Candidatus Bathyarchaeota") are widespread and abundant in the deep biosphere, yet their life strategies and ecological roles remain elusive. Metagenomic sequencing of a sample enriched in Bathyarchaeota (up to 74%) that originated from Guaymas Basin deep-sea vent sediments revealed 6 partial to nearly completed Bathyarchaeota genomic bins. ranging ~900kb-3.3Mb. The Bathyarchaeota bin size ranged from approximately 0.9 to 3.3 Mb, with coverage ranging from approximately 10× to 28×. The phylogeny based on 110 concatenated conserved archaeal single copy genes confirmed the placement of Bathyarchaeota into a novel archaeal phylum. Genes encoding for enzymes involved in the degradation of organic polymers such as protein, cellulose, chitin, and aromatic compounds, were identified. In addition, genes encoding glycolysis/gluconeogenesis, beta-oxidation pathways and the tricarboxylic acid cycle (except citrate synthase) were present in all genomic bins highlighting the heterotrophic life style of Bathyarchaeota. The presence of a wide variety of transporters of organic compounds further supports the versatile heterotrophic metabolism of Bathyarchaeota. This study highlights the life strategies of a ubiquitous and abundant subsurface archaeal group that thrives under energy-limited conditions, and expands the metabolic potentials of Archaea that play important roles in carbon cycling in marine sediments.
ERIC Educational Resources Information Center
Karoly, Adrienn
2012-01-01
This paper reports the findings of a study aiming to reveal the recurring patterns of lexical, syntactic and textual errors in student translations of a specialized EU genre from English into Hungarian. By comparing the student translations to the official translation of the text, this article uncovers the most frequent errors that students made…
Roll, Uri; Feldman, Anat; Novosolov, Maria; Allison, Allen; Bauer, Aaron M; Bernard, Rodolphe; Böhm, Monika; Castro-Herrera, Fernando; Chirio, Laurent; Collen, Ben; Colli, Guarino R; Dabool, Lital; Das, Indraneil; Doan, Tiffany M; Grismer, Lee L; Hoogmoed, Marinus; Itescu, Yuval; Kraus, Fred; LeBreton, Matthew; Lewin, Amir; Martins, Marcio; Maza, Erez; Meirte, Danny; Nagy, Zoltán T; de C Nogueira, Cristiano; Pauwels, Olivier S G; Pincheira-Donoso, Daniel; Powney, Gary D; Sindaco, Roberto; Tallowin, Oliver J S; Torres-Carvajal, Omar; Trape, Jean-François; Vidan, Enav; Uetz, Peter; Wagner, Philipp; Wang, Yuezhao; Orme, C David L; Grenyer, Richard; Meiri, Shai
2017-11-01
In this Article originally published, owing to a technical error, the author 'Laurent Chirio' was mistakenly designated as a corresponding author in the HTML version, the PDF was correct. This error has now been corrected in the HTML version. Further, in Supplementary Table 3, the authors misspelt the surname of 'Danny Meirte'; this file has now been replaced.
ERIC Educational Resources Information Center
Flynn, Alison B.; Featherstone, Ryan B.
2017-01-01
This study investigated students' successes, strategies, and common errors in their answers to questions that involved the electron-pushing (curved arrow) formalism (EPF), part of organic chemistry's language. We analyzed students' answers to two question types on midterms and final exams: (1) draw the electron-pushing arrows of a reaction step,…
ERIC Educational Resources Information Center
Carlstedt, Roland A.
2004-01-01
A line-bisecting test was administered to 250 highly skilled right-handed athletes and a control group of 60 right-handed age matched non-athletes. Results revealed that athletes made overwhelmingly more rightward errors than non-athletes, who predominantly bisected lines to the left of the veridical center. These findings were interpreted in the…
Mass change from GRACE: a simulated comparison of Level-1B analysis techniques
NASA Astrophysics Data System (ADS)
Andrews, Stuart B.; Moore, Philip; King, Matt. A.
2015-01-01
Spherical harmonic and mascon parameters have both been successfully applied in the recovery of time-varying gravity fields from Gravity Recovery and Climate Experiment (GRACE). However, direct comparison of any mass flux is difficult with solutions generated by different groups using different codes and algorithms. It is therefore opportune to compare these methodologies, within a common software base, to understand potential limitations associated with each technique. Here we use simulations to recover a known monthly surface mass distribution from GRACE KBRR data. The ability of spherical harmonic and mascon parameters to resolve basin-level mass change is quantified with an assessment of how the noise and errors, inherent in GRACE solutions, are handled. Recovery of a noise and error free GLDAS anomaly revealed no quantifiable difference between spherical harmonic and mascon parameters. Expansion of the GLDAS anomaly to degree and order 120 shows that both spherical harmonic and mascon parameters are affected by comparable omission errors. However, the inclusion of realistic KBRR noise and errors in the simulations reveals the advantage of the mascon parameters over spherical harmonics at reducing noise and errors in the higher degree and order harmonics with an rms (cm of EWH) to the GLDAS anomaly of 10.0 for the spherical harmonic solution and 8.8 (8.6) for the 4°(2°) mascon solutions. The introduction of a constraint matrix in the mascon solution based on parameters that share geophysical similarities is shown to further reduce the signal lost at all degrees. The recovery of a simulated Antarctic mass loss signal shows that the mascon methodology is superior to spherical harmonics for this region with an rms (cm of EWH) of 8.7 for the 2° mascon solution compared to 10.0 for the spherical harmonic solution. Investigating the noise and errors for a month when the satellites were in resonance revealed both the spherical harmonic and mascon methodologies are able to recover the GLDAS and Antarctic mass loss signal with either a comparable (spherical harmonic) or improved (mascon) rms compared to non-resonance periods.
Alfven Waves in the Solar Corona
NASA Astrophysics Data System (ADS)
Tomczyk, S.; McIntosh, S. W.; Keil, S. L.; Judge, P. G.; Schad, T.; Seeley, D. H.; Edmondson, J.
2007-12-01
We present observations of the coronal intensity, line-of-sight velocity, and linear polarization obtained in the FeXIII 1074.7 nm coronal emission line with the Coronal Multi-channel Polarimeter (CoMP) instrument. Analysis of these observations reveal ubiquitous upward propagating waves with phase speeds of 1-4 Mm/s and trajectories consistent with the direction of the magnetic field inferred from the linear polarization measurements. We can definitively identify these as Alfvén waves. An estimate of the energy carried by the waves that we spatially resolve indicates that they are unable to heat the solar corona, however, unresolved waves may carry sufficient energy.
Cutaneous Curvularia infection of the forearm.
Moody, Megan Nicole; Tschen, Jaime; Mesko, Michah
2012-02-01
Phaeohyphomycosis is the general term for infections caused by dematiaceous fungi. Although rare in humans, these infections are being reported at an increasing rate. Curvularia is a dematiaceous fungus that is ubiquitous among soil and vegetation in temperate areas and has only recently been revealed to cause human disease. Treatment guidelines have yet to be delineated due to the paucity of reported cases. We report the case of a 73-year-old man with chronic obstructive pulmonary disease, recent pneumonia caused by Actinomyces, and a localized plaque on his right lateral forearm extending to his medial arm caused by Curvularia species with complete resolution from itraconazole therapy.
MHz gravitational waves from short-term anisotropic inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Asuka; Soda, Jiro
2016-04-18
We reveal the universality of short-term anisotropic inflation. As a demonstration, we study inflation with an exponential type gauge kinetic function which is ubiquitous in models obtained by dimensional reduction from higher dimensional fundamental theory. It turns out that an anisotropic inflation universally takes place in the later stage of conventional inflation. Remarkably, we find that primordial gravitational waves with a peak amplitude around 10{sup −26}∼10{sup −27} are copiously produced in high-frequency bands 10 MHz∼100 MHz. If we could detect such gravitational waves in future, we would be able to probe higher dimensional fundamental theory.
Scaling and self-organized criticality in proteins II
Phillips, J. C.
2009-01-01
The complexity of proteins is substantially simplified by regarding them as archetypical examples of self-organized criticality (SOC). To test this idea and to elaborate it, this article applies the Moret–Zebende (MZ) SOC hydrophobicity scale to transport repeat proteins of the HEAT superfamily, importin β, and transportin, as well as the export protein Cse1p, and their ubiquitous cargo manager Ran. The difference between the MZ scale and conventional hydrophobicity scales reflects long-range conformational forces that are central to protein functionality. These compete with long-range Coulomb forces associated with cationic and anionic side chains in a revealing way. PMID:19124778
Lall, Chandan; Kumar, K Vinod; Raj, R Vimal; Vedhagiri, K; Vijayachari, P
2016-01-01
Leptospirosis is an emerging disease around the globe. South Andaman Island is an endemic region for leptospirosis. We herein compared the prevalence of leptospires in urban and rural areas of South Andaman Island. The PCR detection and isolation of Leptospira revealed that pathogenic leptospires were prevalent in sewage water and household drainage water in urban areas and in paddy fields, vegetable field water, and stream water in rural areas. These results demonstrate that intermediates are ubiquitously present in the environment and may be responsible for asymptomatic infections, and also provide an insight into disease ecology.
International Standards for Genomes, Transcriptomes, and Metagenomes
Mason, Christopher E.; Afshinnekoo, Ebrahim; Tighe, Scott; Wu, Shixiu; Levy, Shawn
2017-01-01
Challenges and biases in preparing, characterizing, and sequencing DNA and RNA can have significant impacts on research in genomics across all kingdoms of life, including experiments in single-cells, RNA profiling, and metagenomics (across multiple genomes). Technical artifacts and contamination can arise at each point of sample manipulation, extraction, sequencing, and analysis. Thus, the measurement and benchmarking of these potential sources of error are of paramount importance as next-generation sequencing (NGS) projects become more global and ubiquitous. Fortunately, a variety of methods, standards, and technologies have recently emerged that improve measurements in genomics and sequencing, from the initial input material to the computational pipelines that process and annotate the data. Here we review current standards and their applications in genomics, including whole genomes, transcriptomes, mixed genomic samples (metagenomes), and the modified bases within each (epigenomes and epitranscriptomes). These standards, tools, and metrics are critical for quantifying the accuracy of NGS methods, which will be essential for robust approaches in clinical genomics and precision medicine. PMID:28337071
Wu, Howard G; Miyamoto, Yohsuke R; Gonzalez Castro, Luis Nicolas; Ölveczky, Bence P; Smith, Maurice A
2014-02-01
Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning.
Low-complexity R-peak detection for ambulatory fetal monitoring.
Rooijakkers, Michael J; Rabotti, Chiara; Oei, S Guid; Mischi, Massimo
2012-07-01
Non-invasive fetal health monitoring during pregnancy is becoming increasingly important because of the increasing number of high-risk pregnancies. Despite recent advances in signal-processing technology, which have enabled fetal monitoring during pregnancy using abdominal electrocardiogram (ECG) recordings, ubiquitous fetal health monitoring is still unfeasible due to the computational complexity of noise-robust solutions. In this paper, an ECG R-peak detection algorithm for ambulatory R-peak detection is proposed, as part of a fetal ECG detection algorithm. The proposed algorithm is optimized to reduce computational complexity, without reducing the R-peak detection performance compared to the existing R-peak detection schemes. Validation of the algorithm is performed on three manually annotated datasets. With a detection error rate of 0.23%, 1.32% and 9.42% on the MIT/BIH Arrhythmia and in-house maternal and fetal databases, respectively, the detection rate of the proposed algorithm is comparable to the best state-of-the-art algorithms, at a reduced computational complexity.
Improving estimates of air pollution exposure through ubiquitous sensing technologies
de Nazelle, Audrey; Seto, Edmund; Donaire-Gonzalez, David; Mendez, Michelle; Matamala, Jaume; Nieuwenhuijsen, Mark J; Jerrett, Michael
2013-01-01
Traditional methods of exposure assessment in epidemiological studies often fail to integrate important information on activity patterns, which may lead to bias, loss of statistical power or both in health effects estimates. Novel sensing technologies integrated with mobile phones offer potential to reduce exposure measurement error. We sought to demonstrate the usability and relevance of the CalFit smartphone technology to track person-level time, geographic location, and physical activity patterns for improved air pollution exposure assessment. We deployed CalFit-equipped smartphones in a free living-population of 36 subjects in Barcelona, Spain. Information obtained on physical activity and geographic location was linked to space-time air pollution mapping. For instance, we found on average travel activities accounted for 6% of people’s time and 24% of their daily inhaled NO2. Due to the large number of mobile phone users, this technology potentially provides an unobtrusive means of collecting epidemiologic exposure data at low cost. PMID:23416743
Seven Pervasive Statistical Flaws in Cognitive Training Interventions
Moreau, David; Kirk, Ian J.; Waldie, Karen E.
2016-01-01
The prospect of enhancing cognition is undoubtedly among the most exciting research questions currently bridging psychology, neuroscience, and evidence-based medicine. Yet, convincing claims in this line of work stem from designs that are prone to several shortcomings, thus threatening the credibility of training-induced cognitive enhancement. Here, we present seven pervasive statistical flaws in intervention designs: (i) lack of power; (ii) sampling error; (iii) continuous variable splits; (iv) erroneous interpretations of correlated gain scores; (v) single transfer assessments; (vi) multiple comparisons; and (vii) publication bias. Each flaw is illustrated with a Monte Carlo simulation to present its underlying mechanisms, gauge its magnitude, and discuss potential remedies. Although not restricted to training studies, these flaws are typically exacerbated in such designs, due to ubiquitous practices in data collection or data analysis. The article reviews these practices, so as to avoid common pitfalls when designing or analyzing an intervention. More generally, it is also intended as a reference for anyone interested in evaluating claims of cognitive enhancement. PMID:27148010
Temporal structure of motor variability is dynamically regulated and predicts motor learning ability
Wu, Howard G; Miyamoto, Yohsuke R; Castro, Luis Nicolas Gonzalez; Ölveczky, Bence P; Smith, Maurice A
2015-01-01
Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning. PMID:24413700
Burke, C; Salas, E; Wilson-Donnelly, K; Priest, H
2004-01-01
There is no question that interdisciplinary teams are becoming ubiquitous in healthcare. It is also true that experts do not necessarily combine to make an expert team. However when teams work well they can serve as adaptive systems that allow organisations to mitigate errors within complex domains, thereby increasing safety. The medical community has begun to recognise the importance of teams and as such has begun to implement team training interventions. Over the past 20 years the military and aviation communities have made a large investment in understanding teams and their requisite training requirements. There are many lessons that can be learned from these communities to accelerate the impact of team training within the medical community. Therefore, the purpose of the current paper is to begin to translate some of the lessons learned from the military and aviation communities into practical guidance that can be used by the medical community. PMID:15465963
Davies, Trevor D.; Baum, Julia K.
2012-01-01
Anthropogenic disturbances are ubiquitous in the ocean, but their impacts on marine species are hotly debated. We evaluated marine fish statuses using conservation (Red List threatened or not) and fisheries (above or below reference points) metrics, compared their alignment, and diagnosed why discrepancies arise. Whereas only 13.5% of Red Listed marine fishes (n = 2952) are threatened, 40% and 21% of populations with stock assessments (n = 166) currently are below their more conservative and riskier reference points, respectively. Conservation and fisheries metrics aligned well (70.5% to 80.7%), despite their mathematical disconnect. Red Listings were not biased towards exaggerating threat status, and egregious errors, where populations were categorized at opposite extremes of fisheries and conservation metrics, were rare. Our analyses suggest conservation and fisheries scientists will agree on the statuses of exploited marine fishes in most cases, leaving only the question of appropriate management responses for populations of mutual concern still unresolved. PMID:22872806
Accounting for Chromatic Atmospheric Effects on Barycentric Corrections
NASA Astrophysics Data System (ADS)
Blackman, Ryan T.; Szymkowiak, Andrew E.; Fischer, Debra A.; Jurgenson, Colby A.
2017-03-01
Atmospheric effects on stellar radial velocity measurements for exoplanet discovery and characterization have not yet been fully investigated for extreme precision levels. We carry out calculations to determine the wavelength dependence of barycentric corrections across optical wavelengths, due to the ubiquitous variations in air mass during observations. We demonstrate that radial velocity errors of at least several cm s-1 can be incurred if the wavelength dependence is not included in the photon-weighted barycentric corrections. A minimum of four wavelength channels across optical spectra (380-680 nm) are required to account for this effect at the 10 cm s-1 level, with polynomial fits of the barycentric corrections applied to cover all wavelengths. Additional channels may be required in poor observing conditions or to avoid strong telluric absorption features. Furthermore, consistent flux sampling on the order of seconds throughout the observation is necessary to ensure that accurate photon weights are obtained. Finally, we describe how a multiple-channel exposure meter will be implemented in the EXtreme PREcision Spectrograph (EXPRES).
Davies, Trevor D; Baum, Julia K
2012-01-01
Anthropogenic disturbances are ubiquitous in the ocean, but their impacts on marine species are hotly debated. We evaluated marine fish statuses using conservation (Red List threatened or not) and fisheries (above or below reference points) metrics, compared their alignment, and diagnosed why discrepancies arise. Whereas only 13.5% of Red Listed marine fishes (n = 2952) are threatened, 40% and 21% of populations with stock assessments (n = 166) currently are below their more conservative and riskier reference points, respectively. Conservation and fisheries metrics aligned well (70.5% to 80.7%), despite their mathematical disconnect. Red Listings were not biased towards exaggerating threat status, and egregious errors, where populations were categorized at opposite extremes of fisheries and conservation metrics, were rare. Our analyses suggest conservation and fisheries scientists will agree on the statuses of exploited marine fishes in most cases, leaving only the question of appropriate management responses for populations of mutual concern still unresolved.
Disclosure of Medical Errors in Oman
Norrish, Mark I. K.
2015-01-01
Objectives: This study aimed to provide insight into the preferences for and perceptions of medical error disclosure (MED) by members of the public in Oman. Methods: Between January and June 2012, an online survey was used to collect responses from 205 members of the public across five governorates of Oman. Results: A disclosure gap was revealed between the respondents’ preferences for MED and perceived current MED practices in Oman. This disclosure gap extended to both the type of error and the person most likely to disclose the error. Errors resulting in patient harm were found to have a strong influence on individuals’ perceived quality of care. In addition, full disclosure was found to be highly valued by respondents and able to mitigate for a perceived lack of care in cases where medical errors led to damages. Conclusion: The perceived disclosure gap between respondents’ MED preferences and perceptions of current MED practices in Oman needs to be addressed in order to increase public confidence in the national health care system. PMID:26052463
Development and implementation of a human accuracy program in patient foodservice.
Eden, S H; Wood, S M; Ptak, K M
1987-04-01
For many years, industry has utilized the concept of human error rates to monitor and minimize human errors in the production process. A consistent quality-controlled product increases consumer satisfaction and repeat purchase of product. Administrative dietitians have applied the concepts of using human error rates (the number of errors divided by the number of opportunities for error) at four hospitals, with a total bed capacity of 788, within a tertiary-care medical center. Human error rate was used to monitor and evaluate trayline employee performance and to evaluate layout and tasks of trayline stations, in addition to evaluating employees in patient service areas. Long-term employees initially opposed the error rate system with some hostility and resentment, while newer employees accepted the system. All employees now believe that the constant feedback given by supervisors enhances their self-esteem and productivity. Employee error rates are monitored daily and are used to counsel employees when necessary; they are also utilized during annual performance evaluation. Average daily error rates for a facility staffed by new employees decreased from 7% to an acceptable 3%. In a facility staffed by long-term employees, the error rate increased, reflecting improper error documentation. Patient satisfaction surveys reveal satisfaction, for tray accuracy increased from 88% to 92% in the facility staffed by long-term employees and has remained above the 90% standard in the facility staffed by new employees.
Twice cutting method reduces tibial cutting error in unicompartmental knee arthroplasty.
Inui, Hiroshi; Taketomi, Shuji; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae
2016-01-01
Bone cutting error can be one of the causes of malalignment in unicompartmental knee arthroplasty (UKA). The amount of cutting error in total knee arthroplasty has been reported. However, none have investigated cutting error in UKA. The purpose of this study was to reveal the amount of cutting error in UKA when open cutting guide was used and clarify whether cutting the tibia horizontally twice using the same cutting guide reduced the cutting errors in UKA. We measured the alignment of the tibial cutting guides, the first-cut cutting surfaces and the second cut cutting surfaces using the navigation system in 50 UKAs. Cutting error was defined as the angular difference between the cutting guide and cutting surface. The mean absolute first-cut cutting error was 1.9° (1.1° varus) in the coronal plane and 1.1° (0.6° anterior slope) in the sagittal plane, whereas the mean absolute second-cut cutting error was 1.1° (0.6° varus) in the coronal plane and 1.1° (0.4° anterior slope) in the sagittal plane. Cutting the tibia horizontally twice reduced the cutting errors in the coronal plane significantly (P<0.05). Our study demonstrated that in UKA, cutting the tibia horizontally twice using the same cutting guide reduced cutting error in the coronal plane. Copyright © 2014 Elsevier B.V. All rights reserved.
Rabøl, Louise Isager; Andersen, Mette Lehmann; Østergaard, Doris; Bjørn, Brian; Lilja, Beth; Mogensen, Torben
2011-03-01
Poor teamwork and communication between healthcare staff are correlated to patient safety incidents. However, the organisational factors responsible for these issues are unexplored. Root cause analyses (RCA) use human factors thinking to analyse the systems behind severe patient safety incidents. The objective of this study is to review RCA reports (RCAR) for characteristics of verbal communication errors between hospital staff in an organisational perspective. Two independent raters analysed 84 RCARs, conducted in six Danish hospitals between 2004 and 2006, for descriptions and characteristics of verbal communication errors such as handover errors and error during teamwork. Raters found description of verbal communication errors in 44 reports (52%). These included handover errors (35 (86%)), communication errors between different staff groups (19 (43%)), misunderstandings (13 (30%)), communication errors between junior and senior staff members (11 (25%)), hesitance in speaking up (10 (23%)) and communication errors during teamwork (8 (18%)). The kappa values were 0.44-0.78. Unproceduralized communication and information exchange via telephone, related to transfer between units and consults from other specialties, were particularly vulnerable processes. With the risk of bias in mind, it is concluded that more than half of the RCARs described erroneous verbal communication between staff members as root causes of or contributing factors of severe patient safety incidents. The RCARs rich descriptions of the incidents revealed the organisational factors and needs related to these errors.
Evaluation of the 29-km Eta Model for Weather Support to the United States Space Program
NASA Technical Reports Server (NTRS)
Manobianco, John; Nutter, Paul
1997-01-01
The Applied Meteorology Unit (AMU) conducted a year-long evaluation of NCEP's 29-km mesoscale Eta (meso-eta) weather prediction model in order to identify added value to forecast operations in support of the United States space program. The evaluation was stratified over warm and cool seasons and considered both objective and subjective verification methodologies. Objective verification results generally indicate that meso-eta model point forecasts at selected stations exhibit minimal error growth in terms of RMS errors and are reasonably unbiased. Conversely, results from the subjective verification demonstrate that model forecasts of developing weather events such as thunderstorms, sea breezes, and cold fronts, are not always as accurate as implied by the seasonal error statistics. Sea-breeze case studies reveal that the model generates a dynamically-consistent thermally direct circulation over the Florida peninsula, although at a larger scale than observed. Thunderstorm verification reveals that the meso-eta model is capable of predicting areas of organized convection, particularly during the late afternoon hours but is not capable of forecasting individual thunderstorms. Verification of cold fronts during the cool season reveals that the model is capable of forecasting a majority of cold frontal passages through east central Florida to within +1-h of observed frontal passage.
Kim, Kyong-Jee; Hwang, Jee-Young
2016-03-01
Ubiquitous testing has the potential to affect medical education by enhancing the authenticity of the assessment using multimedia items. This study explored medical students' experience with ubiquitous testing and its impact on student learning. A cohort (n=48) of third-year students at a medical school in South Korea participated in this study. The students were divided into two groups and were given different versions of 10 content-matched items: one in text version (the text group) and the other in multimedia version (the multimedia group). Multimedia items were delivered using tablets. Item response analyses were performed to compare item characteristics between the two versions. Additionally, focus group interviews were held to investigate the students' experiences of ubiquitous testing. The mean test score was significantly higher in the text group. Item difficulty and discrimination did not differ between text and multimedia items. The participants generally showed positive responses on ubiquitous testing. Still, they felt that the lectures that they had taken in preclinical years did not prepare them enough for this type of assessment and clinical encounters during clerkships were more helpful. To be better prepared, the participants felt that they needed to engage more actively in learning in clinical clerkships and have more access to multimedia learning resources. Ubiquitous testing can positively affect student learning by reinforcing the importance of being able to understand and apply knowledge in clinical contexts, which drives students to engage more actively in learning in clinical settings.
An improved anonymous authentication scheme for roaming in ubiquitous networks.
Lee, Hakjun; Lee, Donghoon; Moon, Jongho; Jung, Jaewook; Kang, Dongwoo; Kim, Hyoungshick; Won, Dongho
2018-01-01
With the evolution of communication technology and the exponential increase of mobile devices, the ubiquitous networking allows people to use our data and computing resources anytime and everywhere. However, numerous security concerns and complicated requirements arise as these ubiquitous networks are deployed throughout people's lives. To meet the challenge, the user authentication schemes in ubiquitous networks should ensure the essential security properties for the preservation of the privacy with low computational cost. In 2017, Chaudhry et al. proposed a password-based authentication scheme for the roaming in ubiquitous networks to enhance the security. Unfortunately, we found that their scheme remains insecure in its protection of the user privacy. In this paper, we prove that Chaudhry et al.'s scheme is vulnerable to the stolen-mobile device and user impersonation attacks, and its drawbacks comprise the absence of the incorrect login-input detection, the incorrectness of the password change phase, and the absence of the revocation provision. Moreover, we suggest a possible way to fix the security flaw in Chaudhry et al's scheme by using the biometric-based authentication for which the bio-hash is applied in the implementation of a three-factor authentication. We prove the security of the proposed scheme with the random oracle model and formally verify its security properties using a tool named ProVerif, and analyze it in terms of the computational and communication cost. The analysis result shows that the proposed scheme is suitable for resource-constrained ubiquitous environments.
An improved anonymous authentication scheme for roaming in ubiquitous networks
Lee, Hakjun; Lee, Donghoon; Moon, Jongho; Jung, Jaewook; Kang, Dongwoo; Kim, Hyoungshick
2018-01-01
With the evolution of communication technology and the exponential increase of mobile devices, the ubiquitous networking allows people to use our data and computing resources anytime and everywhere. However, numerous security concerns and complicated requirements arise as these ubiquitous networks are deployed throughout people’s lives. To meet the challenge, the user authentication schemes in ubiquitous networks should ensure the essential security properties for the preservation of the privacy with low computational cost. In 2017, Chaudhry et al. proposed a password-based authentication scheme for the roaming in ubiquitous networks to enhance the security. Unfortunately, we found that their scheme remains insecure in its protection of the user privacy. In this paper, we prove that Chaudhry et al.’s scheme is vulnerable to the stolen-mobile device and user impersonation attacks, and its drawbacks comprise the absence of the incorrect login-input detection, the incorrectness of the password change phase, and the absence of the revocation provision. Moreover, we suggest a possible way to fix the security flaw in Chaudhry et al’s scheme by using the biometric-based authentication for which the bio-hash is applied in the implementation of a three-factor authentication. We prove the security of the proposed scheme with the random oracle model and formally verify its security properties using a tool named ProVerif, and analyze it in terms of the computational and communication cost. The analysis result shows that the proposed scheme is suitable for resource-constrained ubiquitous environments. PMID:29505575
Simba, Kenneth Renny; Bui, Ba Dinh; Msukwa, Mathew Renny; Uchiyama, Naoki
2018-04-01
In feed drive systems, particularly machine tools, a contour error is more significant than the individual axial tracking errors from the view point of enhancing precision in manufacturing and production systems. The contour error must be within the permissible tolerance of given products. In machining complex or sharp-corner products, large contour errors occur mainly owing to discontinuous trajectories and the existence of nonlinear uncertainties. Therefore, it is indispensable to design robust controllers that can enhance the tracking ability of feed drive systems. In this study, an iterative learning contouring controller consisting of a classical Proportional-Derivative (PD) controller and disturbance observer is proposed. The proposed controller was evaluated experimentally by using a typical sharp-corner trajectory, and its performance was compared with that of conventional controllers. The results revealed that the maximum contour error can be reduced by about 37% on average. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Error of the slanted edge method for measuring the modulation transfer function of imaging systems.
Xie, Xufen; Fan, Hongda; Wang, Hongyuan; Wang, Zebin; Zou, Nianyu
2018-03-01
The slanted edge method is a basic approach for measuring the modulation transfer function (MTF) of imaging systems; however, its measurement accuracy is limited in practice. Theoretical analysis of the slanted edge MTF measurement method performed in this paper reveals that inappropriate edge angles and random noise reduce this accuracy. The error caused by edge angles is analyzed using sampling and reconstruction theory. Furthermore, an error model combining noise and edge angles is proposed. We verify the analyses and model with respect to (i) the edge angle, (ii) a statistical analysis of the measurement error, (iii) the full width at half-maximum of a point spread function, and (iv) the error model. The experimental results verify the theoretical findings. This research can be referential for applications of the slanted edge MTF measurement method.
Dambacher, Michael; Hübner, Ronald; Schlösser, Jan
2011-01-01
The influence of monetary incentives on performance has been widely investigated among various disciplines. While the results reveal positive incentive effects only under specific conditions, the exact nature, and the contribution of mediating factors are largely unexplored. The present study examined influences of payoff schemes as one of these factors. In particular, we manipulated penalties for errors and slow responses in a speeded categorization task. The data show improved performance for monetary over symbolic incentives when (a) penalties are higher for slow responses than for errors, and (b) neither slow responses nor errors are punished. Conversely, payoff schemes with stronger punishment for errors than for slow responses resulted in worse performance under monetary incentives. The findings suggest that an emphasis of speed is favorable for positive influences of monetary incentives, whereas an emphasis of accuracy under time pressure has the opposite effect. PMID:21980316
Extraction and Analysis of Display Data
NASA Technical Reports Server (NTRS)
Land, Chris; Moye, Kathryn
2008-01-01
The Display Audit Suite is an integrated package of software tools that partly automates the detection of Portable Computer System (PCS) Display errors. [PCS is a lap top computer used onboard the International Space Station (ISS).] The need for automation stems from the large quantity of PCS displays (6,000+, with 1,000,000+ lines of command and telemetry data). The Display Audit Suite includes data-extraction tools, automatic error detection tools, and database tools for generating analysis spread sheets. These spread sheets allow engineers to more easily identify many different kinds of possible errors. The Suite supports over 40 independent analyses, 16 NASA Tech Briefs, November 2008 and complements formal testing by being comprehensive (all displays can be checked) and by revealing errors that are difficult to detect via test. In addition, the Suite can be run early in the development cycle to find and correct errors in advance of testing.
Analyzing human errors in flight mission operations
NASA Technical Reports Server (NTRS)
Bruno, Kristin J.; Welz, Linda L.; Barnes, G. Michael; Sherif, Josef
1993-01-01
A long-term program is in progress at JPL to reduce cost and risk of flight mission operations through a defect prevention/error management program. The main thrust of this program is to create an environment in which the performance of the total system, both the human operator and the computer system, is optimized. To this end, 1580 Incident Surprise Anomaly reports (ISA's) from 1977-1991 were analyzed from the Voyager and Magellan projects. A Pareto analysis revealed that 38 percent of the errors were classified as human errors. A preliminary cluster analysis based on the Magellan human errors (204 ISA's) is presented here. The resulting clusters described the underlying relationships among the ISA's. Initial models of human error in flight mission operations are presented. Next, the Voyager ISA's will be scored and included in the analysis. Eventually, these relationships will be used to derive a theoretically motivated and empirically validated model of human error in flight mission operations. Ultimately, this analysis will be used to make continuous process improvements continuous process improvements to end-user applications and training requirements. This Total Quality Management approach will enable the management and prevention of errors in the future.
SU-E-J-117: Verification Method for the Detection Accuracy of Automatic Winston Lutz Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, A; Chan, K; Fee, F
2014-06-01
Purpose: Winston Lutz test (WLT) has been a standard QA procedure performed prior to SRS treatment, to verify the mechanical iso-center setup accuracy upon different Gantry/Couch movements. Several detection algorithms exist,for analyzing the ball-radiation field alignment automatically. However, the accuracy of these algorithms have not been fully addressed. Here, we reveal the possible errors arise from each step in WLT, and verify the software detection accuracy with the Rectilinear Phantom Pointer (RLPP), a tool commonly used for aligning treatment plan coordinate with mechanical iso-center. Methods: WLT was performed with the radio-opaque ball mounted on a MIS and irradiated onto EDR2more » films. The films were scanned and processed with an in-house Matlab program for automatic iso-center detection. Tests were also performed to identify the errors arise from setup, film development and scanning process. The radioopaque ball was then mounted onto the RLPP, and offset laterally and longitudinally in 7 known positions ( 0, ±0.2, ±0.5, ±0.8 mm) manually for irradiations. The gantry and couch was set to zero degree for all irradiation. The same scanned images were processed repeatedly to check the repeatability of the software. Results: Miminal discrepancies (mean=0.05mm) were detected with 2 films overlapped and irradiated but developed separately. This reveals the error arise from film processor and scanner alone. Maximum setup errors were found to be around 0.2mm, by analyzing data collected from 10 irradiations over 2 months. For the known shift introduced using the RLPP, the results agree with the manual offset, and fit linearly (R{sup 2}>0.99) when plotted relative to the first ball with zero shift. Conclusion: We systematically reveal the possible errors arise from each step in WLT, and introduce a simple method to verify the detection accuracy of our in-house software using a clinically available tool.« less
NASA Astrophysics Data System (ADS)
Raleigh, M. S.; Lundquist, J. D.; Clark, M. P.
2015-07-01
Physically based models provide insights into key hydrologic processes but are associated with uncertainties due to deficiencies in forcing data, model parameters, and model structure. Forcing uncertainty is enhanced in snow-affected catchments, where weather stations are scarce and prone to measurement errors, and meteorological variables exhibit high variability. Hence, there is limited understanding of how forcing error characteristics affect simulations of cold region hydrology and which error characteristics are most important. Here we employ global sensitivity analysis to explore how (1) different error types (i.e., bias, random errors), (2) different error probability distributions, and (3) different error magnitudes influence physically based simulations of four snow variables (snow water equivalent, ablation rates, snow disappearance, and sublimation). We use the Sobol' global sensitivity analysis, which is typically used for model parameters but adapted here for testing model sensitivity to coexisting errors in all forcings. We quantify the Utah Energy Balance model's sensitivity to forcing errors with 1 840 000 Monte Carlo simulations across four sites and five different scenarios. Model outputs were (1) consistently more sensitive to forcing biases than random errors, (2) generally less sensitive to forcing error distributions, and (3) critically sensitive to different forcings depending on the relative magnitude of errors. For typical error magnitudes found in areas with drifting snow, precipitation bias was the most important factor for snow water equivalent, ablation rates, and snow disappearance timing, but other forcings had a more dominant impact when precipitation uncertainty was due solely to gauge undercatch. Additionally, the relative importance of forcing errors depended on the model output of interest. Sensitivity analysis can reveal which forcing error characteristics matter most for hydrologic modeling.
Ubiquitous Accessibility for People with Visual Impairments: Are We There Yet?
Billah, Syed Masum; Ashok, Vikas; Porter, Donald E.; Ramakrishnan, IV
2017-01-01
Ubiquitous access is an increasingly common vision of computing, wherein users can interact with any computing device or service from anywhere, at any time. In the era of personal computing, users with visual impairments required special-purpose, assistive technologies, such as screen readers, to interact with computers. This paper investigates whether technologies like screen readers have kept pace with, or have created a barrier to, the trend toward ubiquitous access, with a specific focus on desktop computing as this is still the primary way computers are used in education and employment. Towards that, the paper presents a user study with 21 visually-impaired participants, specifically involving the switching of screen readers within and across different computing platforms, and the use of screen readers in remote access scenarios. Among the findings, the study shows that, even for remote desktop access—an early forerunner of true ubiquitous access—screen readers are too limited, if not unusable. The study also identifies several accessibility needs, such as uniformity of navigational experience across devices, and recommends potential solutions. In summary, assistive technologies have not made the jump into the era of ubiquitous access, and multiple, inconsistent screen readers create new practical problems for users with visual impairments. PMID:28782061
Study on the context-aware middleware for ubiquitous greenhouses using wireless sensor networks.
Hwang, Jeonghwang; Yoe, Hyun
2011-01-01
Wireless Sensor Network (WSN) technology is one of the important technologies to implement the ubiquitous society, and it could increase productivity of agricultural and livestock products, and secure transparency of distribution channels if such a WSN technology were successfully applied to the agricultural sector. Middleware, which can connect WSN hardware, applications, and enterprise systems, is required to construct ubiquitous agriculture environment combining WSN technology with agricultural sector applications, but there have been insufficient studies in the field of WSN middleware in the agricultural environment, compared to other industries. This paper proposes a context-aware middleware to efficiently process data collected from ubiquitous greenhouses by applying WSN technology and used to implement combined services through organic connectivity of data. The proposed middleware abstracts heterogeneous sensor nodes to integrate different forms of data, and provides intelligent context-aware, event service, and filtering functions to maximize operability and scalability of the middleware. To evaluate the performance of the middleware, an integrated management system for ubiquitous greenhouses was implemented by applying the proposed middleware to an existing greenhouse, and it was tested by measuring the level of load through CPU usage and the response time for users' requests when the system is working.
Ubiquitous Accessibility for People with Visual Impairments: Are We There Yet?
Billah, Syed Masum; Ashok, Vikas; Porter, Donald E; Ramakrishnan, I V
2017-05-01
Ubiquitous access is an increasingly common vision of computing, wherein users can interact with any computing device or service from anywhere, at any time. In the era of personal computing, users with visual impairments required special-purpose, assistive technologies, such as screen readers, to interact with computers. This paper investigates whether technologies like screen readers have kept pace with, or have created a barrier to, the trend toward ubiquitous access, with a specific focus on desktop computing as this is still the primary way computers are used in education and employment. Towards that, the paper presents a user study with 21 visually-impaired participants, specifically involving the switching of screen readers within and across different computing platforms, and the use of screen readers in remote access scenarios. Among the findings, the study shows that, even for remote desktop access-an early forerunner of true ubiquitous access-screen readers are too limited, if not unusable. The study also identifies several accessibility needs, such as uniformity of navigational experience across devices, and recommends potential solutions. In summary, assistive technologies have not made the jump into the era of ubiquitous access, and multiple, inconsistent screen readers create new practical problems for users with visual impairments.
Kinematic Analysis of Speech Sound Sequencing Errors Induced by Delayed Auditory Feedback.
Cler, Gabriel J; Lee, Jackson C; Mittelman, Talia; Stepp, Cara E; Bohland, Jason W
2017-06-22
Delayed auditory feedback (DAF) causes speakers to become disfluent and make phonological errors. Methods for assessing the kinematics of speech errors are lacking, with most DAF studies relying on auditory perceptual analyses, which may be problematic, as errors judged to be categorical may actually represent blends of sounds or articulatory errors. Eight typical speakers produced nonsense syllable sequences under normal and DAF (200 ms). Lip and tongue kinematics were captured with electromagnetic articulography. Time-locked acoustic recordings were transcribed, and the kinematics of utterances with and without perceived errors were analyzed with existing and novel quantitative methods. New multivariate measures showed that for 5 participants, kinematic variability for productions perceived to be error free was significantly increased under delay; these results were validated by using the spatiotemporal index measure. Analysis of error trials revealed both typical productions of a nontarget syllable and productions with articulatory kinematics that incorporated aspects of both the target and the perceived utterance. This study is among the first to characterize articulatory changes under DAF and provides evidence for different classes of speech errors, which may not be perceptually salient. New methods were developed that may aid visualization and analysis of large kinematic data sets. https://doi.org/10.23641/asha.5103067.
Kinematic Analysis of Speech Sound Sequencing Errors Induced by Delayed Auditory Feedback
Lee, Jackson C.; Mittelman, Talia; Stepp, Cara E.; Bohland, Jason W.
2017-01-01
Purpose Delayed auditory feedback (DAF) causes speakers to become disfluent and make phonological errors. Methods for assessing the kinematics of speech errors are lacking, with most DAF studies relying on auditory perceptual analyses, which may be problematic, as errors judged to be categorical may actually represent blends of sounds or articulatory errors. Method Eight typical speakers produced nonsense syllable sequences under normal and DAF (200 ms). Lip and tongue kinematics were captured with electromagnetic articulography. Time-locked acoustic recordings were transcribed, and the kinematics of utterances with and without perceived errors were analyzed with existing and novel quantitative methods. Results New multivariate measures showed that for 5 participants, kinematic variability for productions perceived to be error free was significantly increased under delay; these results were validated by using the spatiotemporal index measure. Analysis of error trials revealed both typical productions of a nontarget syllable and productions with articulatory kinematics that incorporated aspects of both the target and the perceived utterance. Conclusions This study is among the first to characterize articulatory changes under DAF and provides evidence for different classes of speech errors, which may not be perceptually salient. New methods were developed that may aid visualization and analysis of large kinematic data sets. Supplemental Material https://doi.org/10.23641/asha.5103067 PMID:28655038
iRAGu: A Novel Inducible and Reversible Mouse Model for Ubiquitous Recombinase Activity
Bonnet, Marie; Sarmento, Leonor Morais; Martins, Ana C.; Sobral, Daniel; Silva, Joana; Demengeot, Jocelyne
2017-01-01
Developing lymphocytes express the recombination activating genes (RAGs) 1 and 2 products that form a site specific recombinase complex (RAG), introducing double strand DNA breaks (DSBs) at recombination signal sequences (RSSs) flanking the V, D, and J gene segments in the antigen receptor loci. The subsequent steps in the reaction consist in the ligation of DSBs by ubiquitous enzymes of the non-homologous end joining DNA repair pathway. This mutagenesis process is responsible for the generation of the very large clonal diversity of T and B lymphocytes, itself allowing the recognition of a virtually open-ended antigenic universe. Sequences resembling RSS are found at high frequency all over the genome, and involved in RAG mediated illegitimate recombination and translocations. Hence, natural and induced ectopic activity of RAG is a threat to the genome only recently underscored. Here, we report and characterize a novel mouse transgenic system for which ubiquitous expression of the recombinase is inducible. In this system, the RAG1 protein is constitutively expressed and functional, while the RAG2 protein, coupled to the estrogen receptor, becomes functionally active upon 4-hydroxytamoxifen (TAM) administration. We describe two transgenic lines. The first one, when introgressed into an endogenous Rag2−/− genetic background is faithfully recapitulating lymphocyte development, repertoire dynamics and cryptic rearrangements, in a TAM-dependent manner. In this model, deprivation of TAM is followed by lymphocyte development arrest, evidencing the reversibility of the system. The second transgenic line is leaky, as the transgenes promote lymphocyte differentiation in absence of TAM treatment. Upon TAM-induction defects in lymphocytes composition and global health reveals the deleterious effect of uncontrolled RAG activity. Overall, this novel transgenic model provides a tool where RAG activity can be specifically manipulated to assess the dynamics of lymphocyte differentiation and the challenges imposed by the recombinase on the vertebrate genome. PMID:29176980
Risk Factors for Smartphone Addiction in Korean Adolescents: Smartphone Use Patterns
2017-01-01
With widespread use of the smartphone, clinical evidence for smartphone addiction remains unclear. Against this background, we analyzed the effect of smartphone use patterns on smartphone addiction in Korean adolescents. A total of 370 middle school students participated. The severity of smartphone addiction was measured through clinical interviews and the Korean Smartphone Addiction Proneness Scale. As a result, 50 (13.5%) were in the smartphone addiction group and 320 (86.5%) were in the healthy group. To investigate the effect of smartphone use patterns on smartphone addiction, we performed self-report questionnaires that assessed the following items: smartphone functions mostly used, purpose of use, problematic use, and parental attitude regarding smartphone use. For smartphone functions mostly used, the addiction group showed significantly higher scores in “Online chat.” For the purpose of use, the addiction group showed significantly higher “habitual use,” “pleasure,” “communication,” “games,” “stress relief,” “ubiquitous trait,” and “not to be left out.” For problematic use, the addiction group showed significantly higher scores on “preoccupation,” “tolerance,” “lack of control,” “withdrawal,” “mood modification,” “conflict,” “lies,” “excessive use,” and “loss of interest.” For parental attitude regarding children's smartphone use, the addiction group showed significantly higher scores in “parental punishment.” Binary logistic regression analysis indicated that “female,” “use for learning,” “use for ubiquitous trait,” “preoccupation,” and “conflict” were significantly correlated with smartphone addiction. This study demonstrated that the risk factors for smartphone addiction were being female, preoccupation, conflict, and use for ubiquitous trait; the protective factor was use for learning. Future studies will be required to reveal the additional clinical evidence of the disease entity for smartphone addiction. PMID:28875613
NASA Astrophysics Data System (ADS)
Zhang, Wei; Qu, Zhengyi; Wang, Yingping; Yao, Chunlin; Bai, Xueyuan; Bian, Shuai; Zhao, Bing
2015-03-01
Ginsenosides in plant samples have been extensively studied because protopanaxadiol saponins are ubiquitous in Chinese patent medicines, in which they can be used in promoting human health as the main active ingredients. A method for rapid determination of two ginsenosides (Rg1 and Re) in Naosaitong (NST) samples using near-infrared reflectance spectroscopy (NIRS) is studied to determine the contents of ginsenoside Rg1 and Re in this work. Partial least square (PLS) regression was used for building the calibration models, and the effects of spectral preprocessing and variable selection on the models are investigated for optimization of the models. A total of 93 samples were scanned by NIRS, and also by high performance liquid chromatography coupled to a diode array detector to determine the contents of ginsenoside Rg1 and Re. The calibration models for Rg1 and Re had high values of the coefficient of determination (R2) (0.9766 and 0.9764) and low root mean square error of cross validation (RMSECV) (0.0136 and 0.0104), and the values of the standard error of prediction set (SEP) are 0.00764 and 0.0103, which indicate a good correlation between reference values and NIRS predicted values. The overall results show that NIRS could be applied for the rapid determination of the contents of ginsenosides in Ginseng byproducts for pharmaceuticals that develop high-quality Chinese patent medicines.
Hoffman, Paul; Jefferies, Elizabeth; Ralph, Matthew A Lambon
2011-02-01
More efficient processing of high frequency (HF) words is a ubiquitous finding in healthy individuals, yet frequency effects are often small or absent in stroke aphasia. We propose that some patients fail to show the expected frequency effect because processing of HF words places strong demands on semantic control and regulation processes, counteracting the usual effect. This may occur because HF words appear in a wide range of linguistic contexts, each associated with distinct semantic information. This theory predicts that in extreme circumstances, patients with impaired semantic control should show an outright reversal of the normal frequency effect. To test this prediction, we tested two patients with impaired semantic control with a delayed repetition task that emphasised activation of semantic representations. By alternating HF and low frequency (LF) trials, we demonstrated a significant repetition advantage for LF words, principally because of perseverative errors in which patients produced the previous LF response in place of the HF target. These errors indicated that HF words were more weakly activated than LF words. We suggest that when presented with no contextual information, patients generate a weak and unstable pattern of semantic activation for HF words because information relating to many possible contexts and interpretations is activated. In contrast, LF words are associated with more stable patterns of activation because similar semantic information is activated whenever they are encountered. Copyright © 2011 Elsevier Ltd. All rights reserved.
Environmental boundaries as a mechanism for correcting and anchoring spatial maps
2016-01-01
Abstract Ubiquitous throughout the animal kingdom, path integration‐based navigation allows an animal to take a circuitous route out from a home base and using only self‐motion cues, calculate a direct vector back. Despite variation in an animal's running speed and direction, medial entorhinal grid cells fire in repeating place‐specific locations, pointing to the medial entorhinal circuit as a potential neural substrate for path integration‐based spatial navigation. Supporting this idea, grid cells appear to provide an environment‐independent metric representation of the animal's location in space and preserve their periodic firing structure even in complete darkness. However, a series of recent experiments indicate that spatially responsive medial entorhinal neurons depend on environmental cues in a more complex manner than previously proposed. While multiple types of landmarks may influence entorhinal spatial codes, environmental boundaries have emerged as salient landmarks that both correct error in entorhinal grid cells and bind internal spatial representations to the geometry of the external spatial world. The influence of boundaries on error correction and grid symmetry points to medial entorhinal border cells, which fire at a high rate only near environmental boundaries, as a potential neural substrate for landmark‐driven control of spatial codes. The influence of border cells on other entorhinal cell populations, such as grid cells, could depend on plasticity, raising the possibility that experience plays a critical role in determining how external cues influence internal spatial representations. PMID:26563618
Assessing Gaussian Assumption of PMU Measurement Error Using Field Data
Wang, Shaobu; Zhao, Junbo; Huang, Zhenyu; ...
2017-10-13
Gaussian PMU measurement error has been assumed for many power system applications, such as state estimation, oscillatory modes monitoring, voltage stability analysis, to cite a few. This letter proposes a simple yet effective approach to assess this assumption by using the stability property of a probability distribution and the concept of redundant measurement. Extensive results using field PMU data from WECC system reveal that the Gaussian assumption is questionable.
Medication Review and Transitions of Care: A Case Report of a Decade-Old Medication Error.
Comer, Rachel; Lizer, Mitsi
2017-10-01
A 69-year-old Caucasian male with a 25-year history of paranoid schizophrenia was brought to the emergency department because of violence toward the staff in his nursing facility. He was diagnosed with a urinary tract infection and was admitted to the behavioral health unit for medication stabilization. History included a five-year state psychiatric hospital admission and nursing facility placement. Because of poor cognitive function, the patient was unable to corroborate medication history, so the pharmacy student on rotation performed an in-depth chart review. The review revealed a transcription error in 2003 deleting amantadine 100 mg twice daily and adding amiodarone 100 mg twice daily. Subsequent hospitalization resulted in another transcription error increasing the amiodarone to 200 mg twice daily. All electrocardiograms conducted were negative for atrial fibrillation. Once detected, the consulted cardiologist discontinued the amiodarone, and the primary care provider was notified via letter and discharge papers. An admission four months later revealed that the nursing facility restarted the amiodarone. Amiodarone was discontinued and the facility was again notified. This case reviews how a 10-year-old medication error went undetected in the electronic medical records through numerous medication reconciliations, but was uncovered when a single comprehensive medication review was conducted.
Prevalence and pattern of prescription errors in a Nigerian kidney hospital.
Babatunde, Kehinde M; Akinbodewa, Akinwumi A; Akinboye, Ayodele O; Adejumo, Ademola O
2016-12-01
To determine (i) the prevalence and pattern of prescription errors in our Centre and, (ii) appraise pharmacists' intervention and correction of identified prescription errors. A descriptive, single blinded cross-sectional study. Kidney Care Centre is a public Specialist hospital. The monthly patient load averages 60 General Out-patient cases and 17.4 in-patients. A total of 31 medical doctors (comprising of 2 Consultant Nephrologists, 15 Medical Officers, 14 House Officers), 40 nurses and 24 ward assistants participated in the study. One pharmacist runs the daily call schedule. Prescribers were blinded to the study. Prescriptions containing only galenicals were excluded. An error detection mechanism was set up to identify and correct prescription errors. Life-threatening prescriptions were discussed with the Quality Assurance Team of the Centre who conveyed such errors to the prescriber without revealing the on-going study. Prevalence of prescription errors, pattern of prescription errors, pharmacist's intervention. A total of 2,660 (75.0%) combined prescription errors were found to have one form of error or the other; illegitimacy 1,388 (52.18%), omission 1,221(45.90%), wrong dose 51(1.92%) and no error of style was detected. Life-threatening errors were low (1.1-2.2%). Errors were found more commonly among junior doctors and non-medical doctors. Only 56 (1.6%) of the errors were detected and corrected during the process of dispensing. Prescription errors related to illegitimacy and omissions were highly prevalent. There is a need to improve on patient-to-healthcare giver ratio. A medication quality assurance unit is needed in our hospitals. No financial support was received by any of the authors for this study.
Kim, Matthew H.; Marulis, Loren M.; Grammer, Jennie K.; Morrison, Frederick J.; Gehring, William J.
2016-01-01
Motivational beliefs and values influence how children approach challenging activities. The present study explores motivational processes from an expectancy-value theory framework by studying children's mistakes and their responses to them by focusing on two ERP components, the error-related negativity (ERN) and error positivity (Pe). Motivation was assessed using a child-friendly challenge puzzle task and a brief interview measure prior to ERP testing. Data from 50 four- to six-year-old children revealed that greater perceived competence beliefs were related to a larger Pe, while stronger intrinsic task value beliefs were associated with a smaller Pe. Motivation was unrelated to the ERN. Individual differences in early motivational processes may reflect electrophysiological activity related to conscious error awareness. PMID:27898304
A model for ubiquitous care of noncommunicable diseases.
Vianna, Henrique Damasceno; Barbosa, Jorge Luis Victória
2014-09-01
The ubiquitous computing, or ubicomp, is a promising technology to help chronic diseases patients managing activities, offering support to them anytime, anywhere. Hence, ubicomp can aid community and health organizations to continuously communicate with patients and to offer useful resources for their self-management activities. Communication is prioritized in works of ubiquitous health for noncommunicable diseases care, but the management of resources is not commonly employed. We propose the UDuctor, a model for ubiquitous care of noncommunicable diseases. UDuctor focuses the resources offering, without losing self-management and communication supports. We implemented a system and applied it in two practical experiments. First, ten chronic patients tried the system and filled out a questionnaire based on the technology acceptance model. After this initial evaluation, an alpha test was done. The system was used daily for one month and a half by a chronic patient. The results were encouraging and show potential for implementing UDuctor in real-life situations.
Garde, Sebastian; Hovenga, Evelyn; Buck, Jasmin; Knaup, Petra
2006-01-01
Ubiquitous computing requires ubiquitous access to information and knowledge. With the release of openEHR Version 1.0 there is a common model available to solve some of the problems related to accessing information and knowledge by improving semantic interoperability between clinical systems. Considerable work has been undertaken by various bodies to standardise Clinical Data Sets. Notwithstanding their value, several problems remain unsolved with Clinical Data Sets without the use of a common model underpinning them. This paper outlines these problems like incompatible basic data types and overlapping and incompatible definitions of clinical content. A solution to this based on openEHR archetypes is motivated and an approach to transform existing Clinical Data Sets into archetypes is presented. To avoid significant overlaps and unnecessary effort during archetype development, archetype development needs to be coordinated nationwide and beyond and also across the various health professions in a formalized process.
Navigation studies based on the ubiquitous positioning technologies
NASA Astrophysics Data System (ADS)
Ye, Lei; Mi, Weijie; Wang, Defeng
2007-11-01
This paper summarized the nowadays positioning technologies, such as absolute positioning methods and relative positioning methods, indoor positioning and outdoor positioning, active positioning and passive positioning. Global Navigation Satellite System (GNSS) technologies were introduced as the omnipresent out-door positioning technologies, including GPS, GLONASS, Galileo and BD-1/2. After analysis of the shortcomings of GNSS, indoor positioning technologies were discussed and compared, including A-GPS, Cellular network, Infrared, Electromagnetism, Computer Vision Cognition, Embedded Pressure Sensor, Ultrasonic, RFID (Radio Frequency IDentification), Bluetooth, WLAN etc.. Then the concept and characteristics of Ubiquitous Positioning was proposed. After the ubiquitous positioning technologies contrast and selection followed by system engineering methodology, a navigation system model based on Incorporate Indoor-Outdoor Positioning Solution was proposed. And this model was simulated in the Galileo Demonstration for World Expo Shanghai project. In the conclusion, the prospects of ubiquitous positioning based navigation were shown, especially to satisfy the public location information acquiring requirement.
Kim, Kyong-Jee; Hwang, Jee-Young
2016-01-01
Purpose: Ubiquitous testing has the potential to affect medical education by enhancing the authenticity of the assessment using multimedia items. This study explored medical students’ experience with ubiquitous testing and its impact on student learning. Methods: A cohort (n=48) of third-year students at a medical school in South Korea participated in this study. The students were divided into two groups and were given different versions of 10 content-matched items: one in text version (the text group) and the other in multimedia version (the multimedia group). Multimedia items were delivered using tablets. Item response analyses were performed to compare item characteristics between the two versions. Additionally, focus group interviews were held to investigate the students’ experiences of ubiquitous testing. Results: The mean test score was significantly higher in the text group. Item difficulty and discrimination did not differ between text and multimedia items. The participants generally showed positive responses on ubiquitous testing. Still, they felt that the lectures that they had taken in preclinical years did not prepare them enough for this type of assessment and clinical encounters during clerkships were more helpful. To be better prepared, the participants felt that they needed to engage more actively in learning in clinical clerkships and have more access to multimedia learning resources. Conclusion: Ubiquitous testing can positively affect student learning by reinforcing the importance of being able to understand and apply knowledge in clinical contexts, which drives students to engage more actively in learning in clinical settings. PMID:26838569
Clinical Dental Faculty Members' Perceptions of Diagnostic Errors and How to Avoid Them.
Nikdel, Cathy; Nikdel, Kian; Ibarra-Noriega, Ana; Kalenderian, Elsbeth; Walji, Muhammad F
2018-04-01
Diagnostic errors are increasingly recognized as a source of preventable harm in medicine, yet little is known about their occurrence in dentistry. The aim of this study was to gain a deeper understanding of clinical dental faculty members' perceptions of diagnostic errors, types of errors that may occur, and possible contributing factors. The authors conducted semi-structured interviews with ten domain experts at one U.S. dental school in May-August 2016 about their perceptions of diagnostic errors and their causes. The interviews were analyzed using an inductive process to identify themes and key findings. The results showed that the participants varied in their definitions of diagnostic errors. While all identified missed diagnosis and wrong diagnosis, only four participants perceived that a delay in diagnosis was a diagnostic error. Some participants perceived that an error occurs only when the choice of treatment leads to harm. Contributing factors associated with diagnostic errors included the knowledge and skills of the dentist, not taking adequate time, lack of communication among colleagues, and cognitive biases such as premature closure based on previous experience. Strategies suggested by the participants to prevent these errors were taking adequate time when investigating a case, forming study groups, increasing communication, and putting more emphasis on differential diagnosis. These interviews revealed differing perceptions of dental diagnostic errors among clinical dental faculty members. To address the variations, the authors recommend adopting shared language developed by the medical profession to increase understanding.
Medication Incidents Involving Antiepileptic Drugs in Canadian Hospitals: A Multi-Incident Analysis.
Cheng, Roger; Yang, Yu Daisy; Chan, Matthew; Patel, Tejal
2017-01-01
Medication errors involving antiepileptic drugs (AEDs) are not well studied but have the potential to cause significant harm. We investigated the occurrence of medication incidents in Canadian hospitals that involve AEDs, their severity and contributing factors by analyzing data from two national databases. Our multi-incident analysis revealed that while medication errors were rarely fatal, errors do occur of which some are serious. Medication incidents were most commonly caused by dose omissions, the dose or its frequency being incorrect and the wrong AED being given. Our analysis could augment quality-improvement initiatives by medication safety administrators to reduce AED medication incidents in hospitals.
NASA Technical Reports Server (NTRS)
Casper, Paul W.; Bent, Rodney B.
1991-01-01
The algorithm used in previous technology time-of-arrival lightning mapping systems was based on the assumption that the earth is a perfect spheroid. These systems yield highly-accurate lightning locations, which is their major strength. However, extensive analysis of tower strike data has revealed occasionally significant (one to two kilometer) systematic offset errors which are not explained by the usual error sources. It was determined that these systematic errors reduce dramatically (in some cases) when the oblate shape of the earth is taken into account. The oblate spheroid correction algorithm and a case example is presented.
Hohwy, Jakob
2017-01-01
I discuss top-down modulation of perception in terms of a variable Bayesian learning rate, revealing a wide range of prior hierarchical expectations that can modulate perception. I then switch to the prediction error minimization framework and seek to conceive cognitive penetration specifically as prediction error minimization deviations from a variable Bayesian learning rate. This approach retains cognitive penetration as a category somewhat distinct from other top-down effects, and carves a reasonable route between penetrability and impenetrability. It prevents rampant, relativistic cognitive penetration of perception and yet is consistent with the continuity of cognition and perception. Copyright © 2016 Elsevier Inc. All rights reserved.
Problem of Mistakes in Databases, Processing and Interpretation of Observations of the Sun. I.
NASA Astrophysics Data System (ADS)
Lozitska, N. I.
In databases of observations unnoticed mistakes and misprints could occur at any stage of observation, preparation and processing of databases. The current detection of errors is complicated by the fact that the works of observer, databases compiler and researcher were divided. Data acquisition from a spacecraft requires the greater amount of researchers than for ground-based observations. As a result, the probability of errors is increasing. Keeping track of the errors on each stage is very difficult, so we use of cross-comparison of data from different sources. We revealed some misprints in the typographic and digital results of sunspot group area measurements.
Laboratory errors and patient safety.
Miligy, Dawlat A
2015-01-01
Laboratory data are extensively used in medical practice; consequently, laboratory errors have a tremendous impact on patient safety. Therefore, programs designed to identify and reduce laboratory errors, as well as, setting specific strategies are required to minimize these errors and improve patient safety. The purpose of this paper is to identify part of the commonly encountered laboratory errors throughout our practice in laboratory work, their hazards on patient health care and some measures and recommendations to minimize or to eliminate these errors. Recording the encountered laboratory errors during May 2008 and their statistical evaluation (using simple percent distribution) have been done in the department of laboratory of one of the private hospitals in Egypt. Errors have been classified according to the laboratory phases and according to their implication on patient health. Data obtained out of 1,600 testing procedure revealed that the total number of encountered errors is 14 tests (0.87 percent of total testing procedures). Most of the encountered errors lay in the pre- and post-analytic phases of testing cycle (representing 35.7 and 50 percent, respectively, of total errors). While the number of test errors encountered in the analytic phase represented only 14.3 percent of total errors. About 85.7 percent of total errors were of non-significant implication on patients health being detected before test reports have been submitted to the patients. On the other hand, the number of test errors that have been already submitted to patients and reach the physician represented 14.3 percent of total errors. Only 7.1 percent of the errors could have an impact on patient diagnosis. The findings of this study were concomitant with those published from the USA and other countries. This proves that laboratory problems are universal and need general standardization and bench marking measures. Original being the first data published from Arabic countries that evaluated the encountered laboratory errors and launch the great need for universal standardization and bench marking measures to control the laboratory work.
Zhou, Shuntai; Jones, Corbin; Mieczkowski, Piotr
2015-01-01
ABSTRACT Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nucleotides in the cDNA primer. We now show that low-abundance Primer IDs (offspring Primer IDs) are generated due to PCR/sequencing errors. These artifactual Primer IDs can be removed using a cutoff model for the number of reads required to make a template consensus sequence. We have modeled the fraction of sequences lost due to Primer ID resampling. For a typical sequencing run, less than 10% of the raw reads are lost to offspring Primer ID filtering and resampling. The remaining raw reads are used to correct for PCR resampling and sequencing errors. We also demonstrate that Primer ID reveals bias intrinsic to PCR, especially at low template input or utilization. cDNA synthesis and PCR convert ca. 20% of RNA templates into recoverable sequences, and 30-fold sequence coverage recovers most of these template sequences. We have directly measured the residual error rate to be around 1 in 10,000 nucleotides. We use this error rate and the Poisson distribution to define the cutoff to identify preexisting drug resistance mutations at low abundance in an HIV-infected subject. Collectively, these studies show that >90% of the raw sequence reads can be used to validate template sampling depth and to dramatically reduce the error rate in assessing a genetically diverse viral population using NGS. IMPORTANCE Although next-generation sequencing (NGS) has revolutionized sequencing strategies, it suffers from serious limitations in defining sequence heterogeneity in a genetically diverse population, such as HIV-1 due to PCR resampling and PCR/sequencing errors. The Primer ID approach reveals the true sampling depth and greatly reduces errors. Knowing the sampling depth allows the construction of a model of how to maximize the recovery of sequences from input templates and to reduce resampling of the Primer ID so that appropriate multiplexing can be included in the experimental design. With the defined sampling depth and measured error rate, we are able to assign cutoffs for the accurate detection of minority variants in viral populations. This approach allows the power of NGS to be realized without having to guess about sampling depth or to ignore the problem of PCR resampling, while also being able to correct most of the errors in the data set. PMID:26041299
Dynamic assertion testing of flight control software
NASA Technical Reports Server (NTRS)
Andrews, D. M.; Mahmood, A.; Mccluskey, E. J.
1985-01-01
An experiment in using assertions to dynamically test fault tolerant flight software is described. The experiment showed that 87% of typical errors introduced into the program would be detected by assertions. Detailed analysis of the test data showed that the number of assertions needed to detect those errors could be reduced to a minimal set. The analysis also revealed that the most effective assertions tested program parameters that provided greater indirect (collateral) testing of other parameters.
NASA: Model development for human factors interfacing
NASA Technical Reports Server (NTRS)
Smith, L. L.
1984-01-01
The results of an intensive literature review in the general topics of human error analysis, stress and job performance, and accident and safety analysis revealed no usable techniques or approaches for analyzing human error in ground or space operations tasks. A task review model is described and proposed to be developed in order to reduce the degree of labor intensiveness in ground and space operations tasks. An extensive number of annotated references are provided.
[Improving blood safety: errors management in transfusion medicine].
Bujandrić, Nevenka; Grujić, Jasmina; Krga-Milanović, Mirjana
2014-01-01
The concept of blood safety includes the entire transfusion chain starting with the collection of blood from the blood donor, and ending with blood transfusion to the patient. The concept involves quality management system as the systematic monitoring of adverse reactions and incidents regarding the blood donor or patient. Monitoring of near-miss errors show the critical points in the working process and increase transfusion safety. The aim of the study was to present the analysis results of adverse and unexpected events in transfusion practice with a potential risk to the health of blood donors and patients. One-year retrospective study was based on the collection, analysis and interpretation of written reports on medical errors in the Blood Transfusion Institute of Vojvodina. Errors were distributed according to the type, frequency and part of the working process where they occurred. Possible causes and corrective actions were described for each error. The study showed that there were not errors with potential health consequences for the blood donor/patient. Errors with potentially damaging consequences for patients were detected throughout the entire transfusion chain. Most of the errors were identified in the preanalytical phase. The human factor was responsible for the largest number of errors. Error reporting system has an important role in the error management and the reduction of transfusion-related risk of adverse events and incidents. The ongoing analysis reveals the strengths and weaknesses of the entire process and indicates the necessary changes. Errors in transfusion medicine can be avoided in a large percentage and prevention is cost-effective, systematic and applicable.
A Vision-Based Self-Calibration Method for Robotic Visual Inspection Systems
Yin, Shibin; Ren, Yongjie; Zhu, Jigui; Yang, Shourui; Ye, Shenghua
2013-01-01
A vision-based robot self-calibration method is proposed in this paper to evaluate the kinematic parameter errors of a robot using a visual sensor mounted on its end-effector. This approach could be performed in the industrial field without external, expensive apparatus or an elaborate setup. A robot Tool Center Point (TCP) is defined in the structural model of a line-structured laser sensor, and aligned to a reference point fixed in the robot workspace. A mathematical model is established to formulate the misalignment errors with kinematic parameter errors and TCP position errors. Based on the fixed point constraints, the kinematic parameter errors and TCP position errors are identified with an iterative algorithm. Compared to the conventional methods, this proposed method eliminates the need for a robot-based-frame and hand-to-eye calibrations, shortens the error propagation chain, and makes the calibration process more accurate and convenient. A validation experiment is performed on an ABB IRB2400 robot. An optimal configuration on the number and distribution of fixed points in the robot workspace is obtained based on the experimental results. Comparative experiments reveal that there is a significant improvement of the measuring accuracy of the robotic visual inspection system. PMID:24300597
NASA Technical Reports Server (NTRS)
Westphal, Douglas L.; Russell, Philip (Technical Monitor)
1994-01-01
A set of 2,600 6-second, National Weather Service soundings from NASA's FIRE-II Cirrus field experiment are used to illustrate previously known errors and new potential errors in the VIZ and SDD brand relative humidity (RH) sensors and the MicroART processing software. The entire spectrum of RH is potentially affected by at least one of these errors. (These errors occur before being converted to dew point temperature.) Corrections to the errors are discussed. Examples are given of the effect that these errors and biases may have on numerical weather prediction and radiative transfer. The figure shows the OLR calculated for the corrected and uncorrected soundings using an 18-band radiative transfer code. The OLR differences are sufficiently large to warrant consideration when validating line-by-line radiation calculations that use radiosonde data to specify the atmospheric state, or when validating satellite retrievals. In addition, a comparison of observations of RE during FIRE-II derived from GOES satellite, raman lidar, MAPS analyses, NCAR CLASS sondes, and the NWS sondes reveals disagreement in the RH distribution and underlines our lack of an understanding of the climatology of water vapor.
NASA Technical Reports Server (NTRS)
Westphal, Douglas L.; Russell, Philip B. (Technical Monitor)
1994-01-01
A set of 2,600 6-second, National Weather Service soundings from NASA's FIRE-II Cirrus field experiment are used to illustrate previously known errors and new potential errors in the VIZ and SDD ) brand relative humidity (RH) sensors and the MicroART processing software. The entire spectrum of RH is potentially affected by at least one of these errors. (These errors occur before being converted to dew point temperature.) Corrections to the errors are discussed. Examples are given of the effect that these errors and biases may have on numerical weather prediction and radiative transfer. The figure shows the OLR calculated for the corrected and uncorrected soundings using an 18-band radiative transfer code. The OLR differences are sufficiently large to warrant consideration when validating line-by-line radiation calculations that use radiosonde data to specify the atmospheric state, or when validating satellite retrievals. in addition, a comparison of observations of RH during FIRE-II derived from GOES satellite, raman lidar, MAPS analyses, NCAR CLASS sondes, and the NWS sondes reveals disagreement in the RH distribution and underlines our lack of an understanding of the climatology of water vapor.
Acetaminophen attenuates error evaluation in cortex
Kam, Julia W.Y.; Heine, Steven J.; Inzlicht, Michael; Handy, Todd C.
2016-01-01
Acetaminophen has recently been recognized as having impacts that extend into the affective domain. In particular, double blind placebo controlled trials have revealed that acetaminophen reduces the magnitude of reactivity to social rejection, frustration, dissonance and to both negatively and positively valenced attitude objects. Given this diversity of consequences, it has been proposed that the psychological effects of acetaminophen may reflect a widespread blunting of evaluative processing. We tested this hypothesis using event-related potentials (ERPs). Sixty-two participants received acetaminophen or a placebo in a double-blind protocol and completed the Go/NoGo task. Participants’ ERPs were observed following errors on the Go/NoGo task, in particular the error-related negativity (ERN; measured at FCz) and error-related positivity (Pe; measured at Pz and CPz). Results show that acetaminophen inhibits the Pe, but not the ERN, and the magnitude of an individual’s Pe correlates positively with omission errors, partially mediating the effects of acetaminophen on the error rate. These results suggest that recently documented affective blunting caused by acetaminophen may best be described as an inhibition of evaluative processing. They also contribute to the growing work suggesting that the Pe is more strongly associated with conscious awareness of errors relative to the ERN. PMID:26892161
Sheehan, B; Lee, Y; Rodriguez, M; Tiase, V; Schnall, R
2012-01-01
Mobile health (mHealth) is a growing field aimed at developing mobile information and communication technologies for healthcare. Adolescents are known for their ubiquitous use of mobile technologies in everyday life. However, the use of mHealth tools among adolescents is not well described. We examined the usability of four commonly used mobile devices (an iPhone, an Android with touchscreen keyboard, an Android with built-in keyboard, and an iPad) for accessing healthcare information among a group of urban-dwelling adolescents. Guided by the FITT (Fit between Individuals, Task, and Technology) framework, a thinkaloud protocol was combined with a questionnaire to describe usability on three dimensions: 1) task-technology fit; 2) individual-technology fit; and 3) individual-task fit. For task-technology fit, we compared the efficiency, and effectiveness of each of the devices tested and found that the iPhone was the most usable had the fewest errors and prompts and had the lowest mean overall task time For individual-task fit, we compared efficiency and learnability measures by website tasks and found no statistically significant effect on tasks steps, task time and number of errors. Following our comparison of success rates by website tasks, we compared the difference between two mobile applications which were used for diet tracking and found statistically significant effect on tasks steps, task time and number of errors. For individual-technology fit, interface quality was significantly different across devices indicating that this is an important factor to be considered in developing future mobile devices. All of our users were able to complete all of the tasks, however the time needed to complete the tasks was significantly different by mobile device and mHealth application. Future design of mobile technology and mHealth applications should place particular importance on interface quality.
Acceptance sampling for attributes via hypothesis testing and the hypergeometric distribution
NASA Astrophysics Data System (ADS)
Samohyl, Robert Wayne
2017-10-01
This paper questions some aspects of attribute acceptance sampling in light of the original concepts of hypothesis testing from Neyman and Pearson (NP). Attribute acceptance sampling in industry, as developed by Dodge and Romig (DR), generally follows the international standards of ISO 2859, and similarly the Brazilian standards NBR 5425 to NBR 5427 and the United States Standards ANSI/ASQC Z1.4. The paper evaluates and extends the area of acceptance sampling in two directions. First, by suggesting the use of the hypergeometric distribution to calculate the parameters of sampling plans avoiding the unnecessary use of approximations such as the binomial or Poisson distributions. We show that, under usual conditions, discrepancies can be large. The conclusion is that the hypergeometric distribution, ubiquitously available in commonly used software, is more appropriate than other distributions for acceptance sampling. Second, and more importantly, we elaborate the theory of acceptance sampling in terms of hypothesis testing rigorously following the original concepts of NP. By offering a common theoretical structure, hypothesis testing from NP can produce a better understanding of applications even beyond the usual areas of industry and commerce such as public health and political polling. With the new procedures, both sample size and sample error can be reduced. What is unclear in traditional acceptance sampling is the necessity of linking the acceptable quality limit (AQL) exclusively to the producer and the lot quality percent defective (LTPD) exclusively to the consumer. In reality, the consumer should also be preoccupied with a value of AQL, as should the producer with LTPD. Furthermore, we can also question why type I error is always uniquely associated with the producer as producer risk, and likewise, the same question arises with consumer risk which is necessarily associated with type II error. The resolution of these questions is new to the literature. The article presents R code throughout.
Forecasting the brittle failure of heterogeneous, porous geomaterials
NASA Astrophysics Data System (ADS)
Vasseur, Jérémie; Wadsworth, Fabian; Heap, Michael; Main, Ian; Lavallée, Yan; Dingwell, Donald
2017-04-01
Heterogeneity develops in magmas during ascent and is dominated by the development of crystal and importantly, bubble populations or pore-network clusters which grow, interact, localize, coalesce, outgas and resorb. Pore-scale heterogeneity is also ubiquitous in sedimentary basin fill during diagenesis. As a first step, we construct numerical simulations in 3D in which randomly generated heterogeneous and polydisperse spheres are placed in volumes and which are permitted to overlap with one another, designed to represent the random growth and interaction of bubbles in a liquid volume. We use these simulated geometries to show that statistical predictions of the inter-bubble lengthscales and evolving bubble surface area or cluster densities can be made based on fundamental percolation theory. As a second step, we take a range of well constrained random heterogeneous rock samples including sandstones, andesites, synthetic partially sintered glass bead samples, and intact glass samples and subject them to a variety of stress loading conditions at a range of temperatures until failure. We record in real time the evolution of the number of acoustic events that precede failure and show that in all scenarios, the acoustic event rate accelerates toward failure, consistent with previous findings. Applying tools designed to forecast the failure time based on these precursory signals, we constrain the absolute error on the forecast time. We find that for all sample types, the error associated with an accurate forecast of failure scales non-linearly with the lengthscale between the pore clusters in the material. Moreover, using a simple micromechanical model for the deformation of porous elastic bodies, we show that the ratio between the equilibrium sub-critical crack length emanating from the pore clusters relative to the inter-pore lengthscale, provides a scaling for the error on forecast accuracy. Thus for the first time we provide a potential quantitative correction for forecasting the failure of porous brittle solids that build the Earth's crust.
Integrated Environment for Ubiquitous Healthcare and Mobile IPv6 Networks
NASA Astrophysics Data System (ADS)
Cagalaban, Giovanni; Kim, Seoksoo
The development of Internet technologies based on the IPv6 protocol will allow real-time monitoring of people with health deficiencies and improve the independence of elderly people. This paper proposed a ubiquitous healthcare system for the personalized healthcare services with the support of mobile IPv6 networks. Specifically, this paper discusses the integration of ubiquitous healthcare and wireless networks and its functional requirements. This allow an integrated environment where heterogeneous devices such a mobile devices and body sensors can continuously monitor patient status and communicate remotely with healthcare servers, physicians, and family members to effectively deliver healthcare services.
Development of HIHM (Home Integrated Health Monitor) for ubiquitous home healthcare.
Kim, Jung Soo; Kim, Beom Oh; Park, Kwang Suk
2007-01-01
Home Integrated Health Monitor (HIHM) was developed for ubiquitous home healthcare. From quantitative analysis, we have elicited modal of chair. The HIHM could detect Electrocardiogram (ECG) and Photoplethysmography (PPG) non-intrusively. Also, it could estimate blood pressure (BP) non-intrusively, measure blood glucose and ear temperature. Detected signals and information were transmitted to home gateway and home server through Zigbee communication technology. Home server carried them to Healthcare Center, and specialists such as medical doctors could monitor by Internet. There was also feedback system. This device has a potential to study about ubiquitous home healthcare.
NASA Technical Reports Server (NTRS)
Jekeli, C.
1980-01-01
Errors in the outer zone contribution to oceanic undulation differences computed from a finite set of potential coefficients based on satellite measurements of gravity anomalies and gravity disturbances are analyzed. Equations are derived for the truncation errors resulting from the lack of high-degree coefficients and the commission errors arising from errors in the available lower-degree coefficients, and it is assumed that the inner zone (spherical cap) is sufficiently covered by surface gravity measurements in conjunction with altimetry or by gravity anomaly data. Numerical computations of error for various observational conditions reveal undulation difference errors ranging from 13 to 15 cm and from 6 to 36 cm in the cases of gravity anomaly and gravity disturbance data, respectively for a cap radius of 10 deg and mean anomalies accurate to 10 mgal, with a reduction of errors in both cases to less than 10 cm as mean anomaly accuracy is increased to 1 mgal. In the absence of a spherical cap, both cases yield error estimates of 68 cm for an accuracy of 1 mgal and between 93 and 160 cm for the lesser accuracy, which can be reduced to about 110 cm by the introduction of a perfect 30-deg reference field.
The Relationship Between Work Commitment, Dynamic, and Medication Error.
Rezaiamin, Abdoolkarim; Pazokian, Marzieh; Zagheri Tafreshi, Mansoureh; Nasiri, Malihe
2017-05-01
Incidence of medication errors in intensive care unit (ICU) can cause irreparable damage for ICU patients. Therefore, it seems necessary to find the causes of medication errors in this section. Work commitment and dynamic might affect the incidence of medication errors in ICU. To assess the mentioned hypothesis, we performed a descriptive-analytical study which was carried out on 117 nurses working in ICU of educational hospitals in Tehran. Minick et al., Salyer et al., and Wakefield et al. scales were used for data gathering on work commitment, dynamic, and medication errors, respectively. Findings of the current study revealed that high work commitment in ICU nurses caused low number of medication errors, including intravenous and nonintravenous. We controlled the effects of confounding variables in detection of this relationship. In contrast, no significant association was found between work dynamic and different types of medication errors. Although the study did not observe any relationship between the dynamics and rate of medication errors, the training of nurses or nursing students to create a dynamic environment in hospitals can increase their interest in the profession and increase job satisfaction in them. Also they must have enough ability in work dynamic so that they don't confused and distracted result in frequent changes of orders, care plans, and procedures.
Leitner, Jordan B.; Duran-Jordan, Kelly; Magerman, Adam B.; Schmader, Toni; Allen, John J. B.
2015-01-01
This study assessed whether individual differences in self-oriented neural processing were associated with performance perceptions of minority students under stereotype threat. Resting electroencephalographic activity recorded in white and minority participants was used to predict later estimates of task errors and self-doubt on a presumed measure of intelligence. We assessed spontaneous phase-locking between dipole sources in left lateral parietal cortex (LPC), precuneus/posterior cingulate cortex (P/PCC), and medial prefrontal cortex (MPFC); three regions of the default mode network (DMN) that are integral for self-oriented processing. Results revealed that minorities with greater LPC-P/PCC phase-locking in the theta band reported more accurate error estimations. All individuals experienced less self-doubt to the extent they exhibited greater LPC-MPFC phase-locking in the alpha band but this effect was driven by minorities. Minorities also reported more self-doubt to the extent they overestimated errors. Findings reveal novel neural moderators of stereotype threat effects on subjective experience. Spontaneous synchronization between DMN regions may play a role in anticipatory coping mechanisms that buffer individuals from stereotype threat. PMID:25398433
Shen, Chung-Wei; Chen, Yi-Hau
2015-10-01
Missing observations and covariate measurement error commonly arise in longitudinal data. However, existing methods for model selection in marginal regression analysis of longitudinal data fail to address the potential bias resulting from these issues. To tackle this problem, we propose a new model selection criterion, the Generalized Longitudinal Information Criterion, which is based on an approximately unbiased estimator for the expected quadratic error of a considered marginal model accounting for both data missingness and covariate measurement error. The simulation results reveal that the proposed method performs quite well in the presence of missing data and covariate measurement error. On the contrary, the naive procedures without taking care of such complexity in data may perform quite poorly. The proposed method is applied to data from the Taiwan Longitudinal Study on Aging to assess the relationship of depression with health and social status in the elderly, accommodating measurement error in the covariate as well as missing observations. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Dell, Gary S.; Martin, Nadine; Schwartz, Myrna F.
2010-01-01
Lexical access in language production, and particularly pathologies of lexical access, are often investigated by examining errors in picture naming and word repetition. In this article, we test a computational approach to lexical access, the two-step interactive model, by examining whether the model can quantitatively predict the repetition-error patterns of 65 aphasic subjects from their naming errors. The model’s characterizations of the subjects’ naming errors were taken from the companion paper to this one (Schwartz, Dell, N. Martin, Gahl & Sobel, 2006), and their repetition was predicted from the model on the assumption that naming involves two error prone steps, word and phonological retrieval, whereas repetition only creates errors in the second of these steps. A version of the model in which lexical-semantic and lexical-phonological connections could be independently lesioned was generally successful in predicting repetition for the aphasics. An analysis of the few cases in which model predictions were inaccurate revealed the role of input phonology in the repetition task. PMID:21085621
The Error in Total Error Reduction
Witnauer, James E.; Urcelay, Gonzalo P.; Miller, Ralph R.
2013-01-01
Most models of human and animal learning assume that learning is proportional to the discrepancy between a delivered outcome and the outcome predicted by all cues present during that trial (i.e., total error across a stimulus compound). This total error reduction (TER) view has been implemented in connectionist and artificial neural network models to describe the conditions under which weights between units change. Electrophysiological work has revealed that the activity of dopamine neurons is correlated with the total error signal in models of reward learning. Similar neural mechanisms presumably support fear conditioning, human contingency learning, and other types of learning. Using a computational modelling approach, we compared several TER models of associative learning to an alternative model that rejects the TER assumption in favor of local error reduction (LER), which assumes that learning about each cue is proportional to the discrepancy between the delivered outcome and the outcome predicted by that specific cue on that trial. The LER model provided a better fit to the reviewed data than the TER models. Given the superiority of the LER model with the present data sets, acceptance of TER should be tempered. PMID:23891930
Kasprzyk-Hordern, Barbara; Dinsdale, Richard M; Guwy, Alan J
2009-06-01
This manuscript is part two of a two-part study aiming to provide a better understanding and application of environmental data not only for environmental aims but also to meet forensic objectives. In this paper pharmaceuticals were investigated as potential chemical indicators of water contamination with sewage. The monitoring program carried out in Wales revealed that some pharmaceuticals are particularly persistent and/or ubiquitous in contaminated river water and therefore might be considered as potential conservative or labile wastewater indicators. In particular, these include some anti-inflammatory/analgesics, antiepileptics, beta-blockers, some H2-receptor antagonists and antibacterial drugs.
Neural basis of social status hierarchy across species.
Chiao, Joan Y
2010-12-01
Social status hierarchy is a ubiquitous principle of social organization across the animal kingdom. Recent findings in social neuroscience reveal distinct neural networks associated with the recognition and experience of social hierarchy in humans, as well as modulation of these networks by personality and culture. Additionally, allelic variation in the serotonin transporter gene is associated with prevalence of social hierarchy across species and cultures, suggesting the importance of the study of genetic factors underlying social hierarchy. Future studies are needed to determine how genetic and environmental factors shape neural systems involved in the production and maintenance of social hierarchy across ontogeny and phylogeny. Copyright © 2010 Elsevier Ltd. All rights reserved.
Recurrent lactic acidosis secondary to hand sanitizer ingestion.
Wilson, M E; Guru, P K; Park, J G
2015-01-01
Due to their ability to decrease the spread of infection, hand sanitizers are now ubiquitous in health care settings. We present the case of a 50-year-old woman who was admitted with acute alcohol intoxication and had near complete recovery in 12 hrs. Subsequently, she was found unresponsive on the floor of her hospital room on two separate occasions. Evaluations revealed repeatedly elevated levels of ethanol, acetone, and lactate as well as increased anion gap and hypotension, requiring intensive care unit evaluation and intubation for airway protection. During the second episode, she was found next to an empty bottle of ethanol-based hospital hand sanitizer. She confirmed ingesting hand sanitizer in order to become intoxicated.
Recurrent lactic acidosis secondary to hand sanitizer ingestion
Wilson, M. E.; Guru, P. K.; Park, J. G.
2015-01-01
Due to their ability to decrease the spread of infection, hand sanitizers are now ubiquitous in health care settings. We present the case of a 50-year-old woman who was admitted with acute alcohol intoxication and had near complete recovery in 12 hrs. Subsequently, she was found unresponsive on the floor of her hospital room on two separate occasions. Evaluations revealed repeatedly elevated levels of ethanol, acetone, and lactate as well as increased anion gap and hypotension, requiring intensive care unit evaluation and intubation for airway protection. During the second episode, she was found next to an empty bottle of ethanol-based hospital hand sanitizer. She confirmed ingesting hand sanitizer in order to become intoxicated. PMID:25684875
Sequential establishment of stripe patterns in an expanding cell population.
Liu, Chenli; Fu, Xiongfei; Liu, Lizhong; Ren, Xiaojing; Chau, Carlos K L; Li, Sihong; Xiang, Lu; Zeng, Hualing; Chen, Guanhua; Tang, Lei-Han; Lenz, Peter; Cui, Xiaodong; Huang, Wei; Hwa, Terence; Huang, Jian-Dong
2011-10-14
Periodic stripe patterns are ubiquitous in living organisms, yet the underlying developmental processes are complex and difficult to disentangle. We describe a synthetic genetic circuit that couples cell density and motility. This system enabled programmed Escherichia coli cells to form periodic stripes of high and low cell densities sequentially and autonomously. Theoretical and experimental analyses reveal that the spatial structure arises from a recurrent aggregation process at the front of the continuously expanding cell population. The number of stripes formed could be tuned by modulating the basal expression of a single gene. The results establish motility control as a simple route to establishing recurrent structures without requiring an extrinsic pacemaker.
Sources of error in the retracted scientific literature.
Casadevall, Arturo; Steen, R Grant; Fang, Ferric C
2014-09-01
Retraction of flawed articles is an important mechanism for correction of the scientific literature. We recently reported that the majority of retractions are associated with scientific misconduct. In the current study, we focused on the subset of retractions for which no misconduct was identified, in order to identify the major causes of error. Analysis of the retraction notices for 423 articles indexed in PubMed revealed that the most common causes of error-related retraction are laboratory errors, analytical errors, and irreproducible results. The most common laboratory errors are contamination and problems relating to molecular biology procedures (e.g., sequencing, cloning). Retractions due to contamination were more common in the past, whereas analytical errors are now increasing in frequency. A number of publications that have not been retracted despite being shown to contain significant errors suggest that barriers to retraction may impede correction of the literature. In particular, few cases of retraction due to cell line contamination were found despite recognition that this problem has affected numerous publications. An understanding of the errors leading to retraction can guide practices to improve laboratory research and the integrity of the scientific literature. Perhaps most important, our analysis has identified major problems in the mechanisms used to rectify the scientific literature and suggests a need for action by the scientific community to adopt protocols that ensure the integrity of the publication process. © FASEB.
Popa, Laurentiu S.; Streng, Martha L.
2017-01-01
Abstract Most hypotheses of cerebellar function emphasize a role in real-time control of movements. However, the cerebellum’s use of current information to adjust future movements and its involvement in sequencing, working memory, and attention argues for predicting and maintaining information over extended time windows. The present study examines the time course of Purkinje cell discharge modulation in the monkey (Macaca mulatta) during manual, pseudo-random tracking. Analysis of the simple spike firing from 183 Purkinje cells during tracking reveals modulation up to 2 s before and after kinematics and position error. Modulation significance was assessed against trial shuffled firing, which decoupled simple spike activity from behavior and abolished long-range encoding while preserving data statistics. Position, velocity, and position errors have the most frequent and strongest long-range feedforward and feedback modulations, with less common, weaker long-term correlations for speed and radial error. Position, velocity, and position errors can be decoded from the population simple spike firing with considerable accuracy for even the longest predictive (-2000 to -1500 ms) and feedback (1500 to 2000 ms) epochs. Separate analysis of the simple spike firing in the initial hold period preceding tracking shows similar long-range feedforward encoding of the upcoming movement and in the final hold period feedback encoding of the just completed movement, respectively. Complex spike analysis reveals little long-term modulation with behavior. We conclude that Purkinje cell simple spike discharge includes short- and long-range representations of both upcoming and preceding behavior that could underlie cerebellar involvement in error correction, working memory, and sequencing. PMID:28413823
Graf, Heiko; Metzger, Coraline D; Walter, Martin; Abler, Birgit
2016-01-06
Investigating the effects of serotonergic antidepressants on neural correlates of visual erotic stimulation revealed decreased reactivity within the dopaminergic reward network along with decreased subjective sexual functioning compared with placebo. However, a global dampening of the reward system under serotonergic drugs is not intuitive considering clinical observations of their beneficial effects in the treatment of depression. Particularly, learning signals as coded in prediction error processing within the dopaminergic reward system can be assumed to be rather enhanced as antidepressant drugs have been demonstrated to facilitate the efficacy of psychotherapeutic interventions relying on learning processes. Within the same study sample, we now explored the effects of serotonergic and dopaminergic/noradrenergic antidepressants on prediction error signals compared with placebo by functional MRI. A total of 17 healthy male participants (mean age: 25.4 years) were investigated under the administration of paroxetine, bupropion and placebo for 7 days each within a randomized, double-blind, within-subject cross-over design. During functional MRI, we used an established monetary incentive task to explore neural prediction error signals within the bilateral nucleus accumbens as region of interest within the dopaminergic reward system. In contrast to diminished neural activations and subjective sexual functioning under the serotonergic agent paroxetine under visual erotic stimulation, we revealed unaffected or even enhanced neural prediction error processing within the nucleus accumbens under this antidepressant along with unaffected behavioural processing. Our study provides evidence that serotonergic antidepressants facilitate prediction error signalling and may support suggestions of beneficial effects of these agents on reinforced learning as an essential element in behavioural psychotherapy.
Ancient DNA sequence revealed by error-correcting codes.
Brandão, Marcelo M; Spoladore, Larissa; Faria, Luzinete C B; Rocha, Andréa S L; Silva-Filho, Marcio C; Palazzo, Reginaldo
2015-07-10
A previously described DNA sequence generator algorithm (DNA-SGA) using error-correcting codes has been employed as a computational tool to address the evolutionary pathway of the genetic code. The code-generated sequence alignment demonstrated that a residue mutation revealed by the code can be found in the same position in sequences of distantly related taxa. Furthermore, the code-generated sequences do not promote amino acid changes in the deviant genomes through codon reassignment. A Bayesian evolutionary analysis of both code-generated and homologous sequences of the Arabidopsis thaliana malate dehydrogenase gene indicates an approximately 1 MYA divergence time from the MDH code-generated sequence node to its paralogous sequences. The DNA-SGA helps to determine the plesiomorphic state of DNA sequences because a single nucleotide alteration often occurs in distantly related taxa and can be found in the alternative codon patterns of noncanonical genetic codes. As a consequence, the algorithm may reveal an earlier stage of the evolution of the standard code.
Ancient DNA sequence revealed by error-correcting codes
Brandão, Marcelo M.; Spoladore, Larissa; Faria, Luzinete C. B.; Rocha, Andréa S. L.; Silva-Filho, Marcio C.; Palazzo, Reginaldo
2015-01-01
A previously described DNA sequence generator algorithm (DNA-SGA) using error-correcting codes has been employed as a computational tool to address the evolutionary pathway of the genetic code. The code-generated sequence alignment demonstrated that a residue mutation revealed by the code can be found in the same position in sequences of distantly related taxa. Furthermore, the code-generated sequences do not promote amino acid changes in the deviant genomes through codon reassignment. A Bayesian evolutionary analysis of both code-generated and homologous sequences of the Arabidopsis thaliana malate dehydrogenase gene indicates an approximately 1 MYA divergence time from the MDH code-generated sequence node to its paralogous sequences. The DNA-SGA helps to determine the plesiomorphic state of DNA sequences because a single nucleotide alteration often occurs in distantly related taxa and can be found in the alternative codon patterns of noncanonical genetic codes. As a consequence, the algorithm may reveal an earlier stage of the evolution of the standard code. PMID:26159228
Examining the accuracy of foodservice in a hospital setting.
Glover, N S; Keane, T M
1984-09-01
Although a great deal of research has been conducted to determine the appropriate diets for the prevention and treatment of various illnesses, there is very little in the literature about research that directly assesses the accuracy of the prescribed diets served to patients in a hospital setting. The present study was designed to evaluate the accuracy of meals served to patients by identifying critical errors and more general errors on trays about to be served. The results indicated that the error rate was greater on weekends and holidays than during the week. Significantly, a correlational analysis revealed that error rate was inversely related to the total number of foodservice supervisors and more specifically to the number of food production supervisors and registered dietitians present. The implications of the results for possible interventions and training are discussed.
Kim, Matthew H; Marulis, Loren M; Grammer, Jennie K; Morrison, Frederick J; Gehring, William J
2017-03-01
Motivational beliefs and values influence how children approach challenging activities. The current study explored motivational processes from an expectancy-value theory framework by studying children's mistakes and their responses to them by focusing on two event-related potential (ERP) components: the error-related negativity (ERN) and the error positivity (Pe). Motivation was assessed using a child-friendly challenge puzzle task and a brief interview measure prior to ERP testing. Data from 50 4- to 6-year-old children revealed that greater perceived competence beliefs were related to a larger Pe, whereas stronger intrinsic task value beliefs were associated with a smaller Pe. Motivation was unrelated to the ERN. Individual differences in early motivational processes may reflect electrophysiological activity related to conscious error awareness. Copyright © 2016 Elsevier Inc. All rights reserved.
The Status of Ubiquitous Computing.
ERIC Educational Resources Information Center
Brown, David G.; Petitto, Karen R.
2003-01-01
Explains the prevalence and rationale of ubiquitous computing on college campuses--teaching with the assumption or expectation that all faculty and students have access to the Internet--and offers lessons learned by pioneering institutions. Lessons learned involve planning, technology, implementation and management, adoption of computer-enhanced…
Advancing the research agenda for diagnostic error reduction.
Zwaan, Laura; Schiff, Gordon D; Singh, Hardeep
2013-10-01
Diagnostic errors remain an underemphasised and understudied area of patient safety research. We briefly summarise the methods that have been used to conduct research on epidemiology, contributing factors and interventions related to diagnostic error and outline directions for future research. Research methods that have studied epidemiology of diagnostic error provide some estimate on diagnostic error rates. However, there appears to be a large variability in the reported rates due to the heterogeneity of definitions and study methods used. Thus, future methods should focus on obtaining more precise estimates in different settings of care. This would lay the foundation for measuring error rates over time to evaluate improvements. Research methods have studied contributing factors for diagnostic error in both naturalistic and experimental settings. Both approaches have revealed important and complementary information. Newer conceptual models from outside healthcare are needed to advance the depth and rigour of analysis of systems and cognitive insights of causes of error. While the literature has suggested many potentially fruitful interventions for reducing diagnostic errors, most have not been systematically evaluated and/or widely implemented in practice. Research is needed to study promising intervention areas such as enhanced patient involvement in diagnosis, improving diagnosis through the use of electronic tools and identification and reduction of specific diagnostic process 'pitfalls' (eg, failure to conduct appropriate diagnostic evaluation of a breast lump after a 'normal' mammogram). The last decade of research on diagnostic error has made promising steps and laid a foundation for more rigorous methods to advance the field.
2013-01-01
Armillaria mellea is a major plant pathogen. Yet, no large-scale “-omics” data are available to enable new studies, and limited experimental models are available to investigate basidiomycete pathogenicity. Here we reveal that the A. mellea genome comprises 58.35 Mb, contains 14473 gene models, of average length 1575 bp (4.72 introns/gene). Tandem mass spectrometry identified 921 mycelial (n = 629 unique) and secreted (n = 183 unique) proteins. Almost 100 mycelial proteins were either species-specific or previously unidentified at the protein level. A number of proteins (n = 111) was detected in both mycelia and culture supernatant extracts. Signal sequence occurrence was 4-fold greater for secreted (50.2%) compared to mycelial (12%) proteins. Analyses revealed a rich reservoir of carbohydrate degrading enzymes, laccases, and lignin peroxidases in the A. mellea proteome, reminiscent of both basidiomycete and ascomycete glycodegradative arsenals. We discovered that A. mellea exhibits a specific killing effect against Candida albicans during coculture. Proteomic investigation of this interaction revealed the unique expression of defensive and potentially offensive A. mellea proteins (n = 30). Overall, our data reveal new insights into the origin of basidiomycete virulence and we present a new model system for further studies aimed at deciphering fungal pathogenic mechanisms. PMID:23656496
Bähr, Andrea; Käser, Tobias; Kemter, Elisabeth; Gerner, Wilhelm; Kurome, Mayuko; Baars, Wiebke; Herbach, Nadja; Witter, Kirsti; Wünsch, Annegret; Talker, Stephanie C; Kessler, Barbara; Nagashima, Hiroshi; Saalmüller, Armin; Schwinzer, Reinhard; Wolf, Eckhard; Klymiuk, Nikolai
2016-01-01
We have successfully established and characterized a genetically modified pig line with ubiquitous expression of LEA29Y, a human CTLA4-Ig derivate. LEA29Y binds human B7.1/CD80 and B7.2/CD86 with high affinity and is thus a potent inhibitor of T cell co-stimulation via this pathway. We have characterized the expression pattern and the biological function of the transgene as well as its impact on the porcine immune system and have evaluated the potential of these transgenic pigs to propagate via assisted breeding methods. The analysis of LEA29Y expression in serum and multiple organs of CAG-LEA transgenic pigs revealed that these animals produce a biologically active transgenic product at a considerable level. They present with an immune system affected by transgene expression, but can be maintained until sexual maturity and propagated by assisted reproduction techniques. Based on previous experience with pancreatic islets expressing LEA29Y, tissues from CAG-LEA29Y transgenic pigs should be protected against rejection by human T cells. Furthermore, their immune-compromised phenotype makes CAG-LEA29Y transgenic pigs an interesting large animal model for testing human cell therapies and will provide an important tool for further clarifying the LEA29Y mode of action.
Lysosomal multienzyme complex: pros and cons of working together.
Bonten, Erik J; Annunziata, Ida; d'Azzo, Alessandra
2014-06-01
The ubiquitous distribution of lysosomes and their heterogeneous protein composition reflects the versatility of these organelles in maintaining cell homeostasis and their importance in tissue differentiation and remodeling. In lysosomes, the degradation of complex, macromolecular substrates requires the synergistic action of multiple hydrolases that usually work in a stepwise fashion. This catalytic machinery explains the existence of lysosomal enzyme complexes that can be dynamically assembled and disassembled to efficiently and quickly adapt to the pool of substrates to be processed or degraded, adding extra tiers to the regulation of the individual protein components. An example of such a complex is the one composed of three hydrolases that are ubiquitously but differentially expressed: the serine carboxypeptidase, protective protein/cathepsin A (PPCA), the sialidase, neuraminidase-1 (NEU1), and the glycosidase β-galactosidase (β-GAL). Next to this 'core' complex, the existence of sub-complexes, which may contain additional components, and function at the cell surface or extracellularly, suggests as yet unexplored functions of these enzymes. Here we review how studies of basic biological processes in the mouse models of three lysosomal storage disorders, galactosialidosis, sialidosis, and GM1-gangliosidosis, revealed new and unexpected roles for the three respective affected enzymes, Ppca, Neu1, and β-Gal, that go beyond their canonical degradative activities. These findings have broadened our perspective on their functions and may pave the way for the development of new therapies for these lysosomal storage disorders.
Da-Rè, Caterina; von Stockum, Sophia; Biscontin, Alberto; Millino, Caterina; Cisotto, Paola; Zordan, Mauro A; Zeviani, Massimo; Bernardi, Paolo; De Pittà, Cristiano; Costa, Rodolfo
2014-10-17
Leigh Syndrome (LS) is the most common early-onset, progressive mitochondrial encephalopathy usually leading to early death. The single most prevalent cause of LS is occurrence of mutations in the SURF1 gene, and LS(Surf1) patients show a ubiquitous and specific decrease in the activity of mitochondrial respiratory chain complex IV (cytochrome c oxidase, COX). SURF1 encodes an inner membrane mitochondrial protein involved in COX assembly. We established a Drosophila melanogaster model of LS based on the post-transcriptional silencing of CG9943, the Drosophila homolog of SURF1. Knockdown of Surf1 was induced ubiquitously in larvae and adults, which led to lethality; in the mesodermal derivatives, which led to pupal lethality; or in the central nervous system, which allowed survival. A biochemical characterization was carried out in knockdown individuals, which revealed that larvae unexpectedly displayed defects in all complexes of the mitochondrial respiratory chain and in the F-ATP synthase, while adults had a COX-selective impairment. Silencing of Surf1 expression in Drosophila S2R(+) cells led to selective loss of COX activity associated with decreased oxygen consumption and respiratory reserve. We conclude that Surf1 is essential for COX activity and mitochondrial function in D. melanogaster, thus providing a new tool that may help clarify the pathogenic mechanisms of LS. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Bultema, Jarred J.; Di Pietro, Santiago M.
2013-01-01
Lysosome-related organelles (LROs) exist in specialized cells to serve specific functions and typically co-exist with conventional lysosomes. The biogenesis of LROs is known to utilize much of the common protein machinery used in the transport of integral membrane proteins to lysosomes. Consequently, an outstanding question in the field has been how specific cargoes are trafficked to LROs instead of lysosomes, particularly in cells that simultaneously produce both organelles. One LRO, the melanosome, is responsible for the production of the pigment melanin and has long been used as a model system to study the formation of specialized LROs. Importantly, melanocytes, where melanosomes are synthesized, are a cell type that also produces lysosomes and must therefore segregate traffic to each organelle. Two small GTPases, Rab32 and Rab38, are key proteins in the biogenesis of melanosomes and were recently shown to redirect the ubiquitous machinery—BLOC-2, AP-1 and AP-3—to traffic specialized cargoes to melanosomes in melanocytes. In addition, the study revealed Rab32 and Rab38 have both redundant and unique roles in the trafficking of melanin-producing enzymes and overall melanosome biogenesis. Here we review these findings, integrate them with previous knowledge on melanosome biogenesis and discuss their implications for biogenesis of other LROs. PMID:23247405
Occurrence of organic UV filters and metabolites in lebranche mullet (Mugil liza) from Brazil.
Molins-Delgado, Daniel; Muñoz, Ramón; Nogueira, Sylvia; Alonso, Mariana B; Torres, João Paulo; Malm, Olaf; Ziolli, Roberta Lourenço; Hauser-Davis, Rachel Ann; Eljarrat, Ethel; Barceló, Damià; Díaz-Cruz, M Silvia
2018-03-15
UV filters (UV-Fs) constitute a heterogeneous group of chemicals used as protection against the effects of UV radiation, widely used in all sort of goods and ubiquitous in the environment. The presence of these chemicals in fish is a matter of concern, because many UV-Fs display hormonal activity. In this study, muscle, gills, and liver from 11 Mugil liza individuals from the highly urbanized Guanabara Bay (Rio de Janeiro, Brazil) were analysed in order to detect eight UV-Fs and metabolites (4-dihydroxybenzophenone [BP1] (2-hydroxy-4-methoxybenzophenone [BP3], 4-methylbenzylidiene camphor [4MBC], ethylhexyl methoxycinnamate [EHMC], ethylhexyl dimethyl p-aminobenzoic acid [ODPABA], octocrylene [OC], 4-hydroxybenzophenone [4HB], and 4,4'-dihydroxybenzophenone [4DHB]) using liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Results showed that both target UV-Fs and metabolites were ubiquitous in the analysed tissues. Lower concentrations were observed in muscle and gills (3.07-31.6ngg -1 dry weight (dw)), whereas in liver significant amounts of metabolites (5.47-451ngg -1 dw) were present. With the concentrations determined in the fish, an estimation of the daily intake revealed that consumption of muscle in the diet represent from 0.3 to 15.2ng UV-Fs (kg body weight -1 ) d -1 , higher than those reported in fish for selected persistent organic pollutants (POPs). Copyright © 2017 Elsevier B.V. All rights reserved.
Soond, Surinder M.; Terry, Jennifer L.; Colbert, Jeff D.; Riches, David W. H.
2003-01-01
We describe the cloning and characterization of tumor necrosis factor receptor (TNF-R)-associated ubiquitous scaffolding and signaling protein (TRUSS), a novel TNF-R1-interacting protein of 90.7 kDa. TRUSS mRNA was ubiquitously expressed in mouse tissues but was enriched in heart, liver, and testis. Coimmunoprecipitation experiments showed that TRUSS was constitutively associated with unligated TNF-R1 and that the complex was relatively insensitive to stimulation with TNF-α. Deletion mutagenesis of TNF-R1 indicated that TRUSS interacts with both the membrane-proximal region and the death domain of TNF-R1. In addition, the N-terminal region of TRUSS (residues 1 to 440) contains sequences that permit association with the cytoplasmic domain of TNF-R1. Transient overexpression of TRUSS activated NF-κB and increased NF-κB activation in response to ligation of TNF-R1. In contrast, a COOH-terminal-deletion mutant of TRUSS (TRUSS1-723) was found to inhibit NF-κB activation by TNF-α. Coprecipitation and coimmunoprecipitation assays revealed that TRUSS can interact with TRADD, TRAF2, and components of the IKK complex. These findings suggest that TRUSS may serve as a scaffolding protein that interacts with TNF-R1 signaling proteins and may link TNF-R1 to the activation of IKK. PMID:14585990
Regulation of error-prone translesion synthesis by Spartan/C1orf124
Kim, Myoung Shin; Machida, Yuka; Vashisht, Ajay A.; Wohlschlegel, James A.; Pang, Yuan-Ping; Machida, Yuichi J.
2013-01-01
Translesion synthesis (TLS) employs low fidelity polymerases to replicate past damaged DNA in a potentially error-prone process. Regulatory mechanisms that prevent TLS-associated mutagenesis are unknown; however, our recent studies suggest that the PCNA-binding protein Spartan plays a role in suppression of damage-induced mutagenesis. Here, we show that Spartan negatively regulates error-prone TLS that is dependent on POLD3, the accessory subunit of the replicative DNA polymerase Pol δ. We demonstrate that the putative zinc metalloprotease domain SprT in Spartan directly interacts with POLD3 and contributes to suppression of damage-induced mutagenesis. Depletion of Spartan induces complex formation of POLD3 with Rev1 and the error-prone TLS polymerase Pol ζ, and elevates mutagenesis that relies on POLD3, Rev1 and Pol ζ. These results suggest that Spartan negatively regulates POLD3 function in Rev1/Pol ζ-dependent TLS, revealing a previously unrecognized regulatory step in error-prone TLS. PMID:23254330
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calabrese, Edward J., E-mail: edwardc@schoolph.uma
This paper reveals that nearly 25 years after the used Russell's dose-rate data to support the adoption of the linear-no-threshold (LNT) dose response model for genetic and cancer risk assessment, Russell acknowledged a significant under-reporting of the mutation rate of the historical control group. This error, which was unknown to BEIR I, had profound implications, leading it to incorrectly adopt the LNT model, which was a decision that profoundly changed the course of risk assessment for radiation and chemicals to the present. -- Highlights: • The BEAR I Genetics Panel made an error in denying dose rate for mutation. •more » The BEIR I Genetics Subcommittee attempted to correct this dose rate error. • The control group used for risk assessment by BEIR I is now known to be in error. • Correcting this error contradicts the LNT, supporting a threshold model.« less
Michael, Claire W; Naik, Kalyani; McVicker, Michael
2013-05-01
We developed a value stream map (VSM) of the Papanicolaou test procedure to identify opportunities to reduce waste and errors, created a new VSM, and implemented a new process emphasizing Lean tools. Preimplementation data revealed the following: (1) processing time (PT) for 1,140 samples averaged 54 hours; (2) 27 accessioning errors were detected on review of 357 random requisitions (7.6%); (3) 5 of the 20,060 tests had labeling errors that had gone undetected in the processing stage. Four were detected later during specimen processing but 1 reached the reporting stage. Postimplementation data were as follows: (1) PT for 1,355 samples averaged 31 hours; (2) 17 accessioning errors were detected on review of 385 random requisitions (4.4%); and (3) no labeling errors were undetected. Our results demonstrate that implementation of Lean methods, such as first-in first-out processes and minimizing batch size by staff actively participating in the improvement process, allows for higher quality, greater patient safety, and improved efficiency.
Following the crowd: Brain Substrates of Long-Term Memory Conformity
Edelson, Micah; Sharot, Tali; Dolan, Raymond J; Dudai, Yadin
2012-01-01
Human memory is strikingly susceptible to social influences, yet we know little about the underlying mechanisms. We examined how socially induced memory errors are generated in the brain by studying the memory of individuals exposed to recollections of others. Participants exhibited a strong tendency to conform to erroneous recollections of the group, producing both long-lasting and temporary errors, even when their initial memory was strong and accurate. Functional brain imaging revealed that social influence modified the neuronal representation of memory. Specifically, a particular brain signature of enhanced amygdala activity and enhanced amygdala-hippocampus connectivity predicted long-lasting, but not temporary memory alterations. Our findings reveal how social manipulation can alter memory and extend the known functions of the amygdala to encompass socially-mediated memory distortions. PMID:21719681
A survey of community members' perceptions of medical errors in Oman
Al-Mandhari, Ahmed S; Al-Shafaee, Mohammed A; Al-Azri, Mohammed H; Al-Zakwani, Ibrahim S; Khan, Mushtaq; Al-Waily, Ahmed M; Rizvi, Syed
2008-01-01
Background Errors have been the concern of providers and consumers of health care services. However, consumers' perception of medical errors in developing countries is rarely explored. The aim of this study is to assess community members' perceptions about medical errors and to analyse the factors affecting this perception in one Middle East country, Oman. Methods Face to face interviews were conducted with heads of 212 households in two villages in North Al-Batinah region of Oman selected because of close proximity to the Sultan Qaboos University (SQU), Muscat, Oman. Participants' perceived knowledge about medical errors was assessed. Responses were coded and categorised. Analyses were performed using Pearson's χ2, Fisher's exact tests, and multivariate logistic regression model wherever appropriate. Results Seventy-eight percent (n = 165) of participants believed they knew what was meant by medical errors. Of these, 34% and 26.5% related medical errors to wrong medications or diagnoses, respectively. Understanding of medical errors was correlated inversely with age and positively with family income. Multivariate logistic regression revealed that a one-year increase in age was associated with a 4% reduction in perceived knowledge of medical errors (CI: 1% to 7%; p = 0.045). The study found that 49% of those who believed they knew the meaning of medical errors had experienced such errors. The most common consequence of the errors was severe pain (45%). Of the 165 informed participants, 49% felt that an uncaring health care professional was the main cause of medical errors. Younger participants were able to list more possible causes of medical errors than were older subjects (Incident Rate Ratio of 0.98; p < 0.001). Conclusion The majority of participants believed they knew the meaning of medical errors. Younger participants were more likely to be aware of such errors and could list one or more causes. PMID:18664245
Brorfelde Schmidt CCD Catalog (BSCC)
2010-06-23
reference stars. Errors of individual positions are about 20 to 200 mas for stars in the R = 10 to 18 mag range. External comparisons with 2MASS and SDSS...reveal possible small systematic errors in the BSCC of up to about 30 mas. The catalog is supplemented with J, H, and Ks magnitudes from the 2MASS ...Survey ( 2MASS ) near-infrared photometry added to the catalog (2). The fil- ters used at the Brorfelde Schmidt for this project are approximating the
ERIC Educational Resources Information Center
Click, J. W.; And Others
Two studies were conducted, the first to determine reader response to newspaper front pages with modular format and color, and the second to examine source perception and reporter response to errors in news stories. Results of the first study revealed that respondents in three cities preferred modular front pages to other modern format pages and…
NASA Astrophysics Data System (ADS)
Weichert, Christoph; Köchert, Paul; Schötka, Eugen; Flügge, Jens; Manske, Eberhard
2018-06-01
The uncertainty of a straightness interferometer is independent of the component used to introduce the divergence angle between the two probing beams, and is limited by three main error sources, which are linked to each other: their resolution, the influence of refractive index gradients and the topography of the straightness reflector. To identify the configuration with minimal uncertainties under laboratory conditions, a fully fibre-coupled heterodyne interferometer was successively equipped with three different wedge prisms, resulting in three different divergence angles (4°, 8° and 20°). To separate the error sources an independent reference with a smaller reproducibility is needed. Therefore, the straightness measurement capability of the Nanometer Comparator, based on a multisensor error separation method, was improved to provide measurements with a reproducibility of 0.2 nm. The comparison results revealed that the influence of the refractive index gradients of air did not increase with interspaces between the probing beams of more than 11.3 mm. Therefore, over a movement range of 220 mm, the lowest uncertainty was achieved with the largest divergence angle. The dominant uncertainty contribution arose from the mirror topography, which was additionally determined with a Fizeau interferometer. The measured topography agreed within ±1.3 nm with the systematic deviations revealed in the straightness comparison, resulting in an uncertainty contribution of 2.6 nm for the straightness interferometer.
Moeller, Scott J.; Froböse, Monja I.; Konova, Anna B.; Misyrlis, Michail; Parvaz, Muhammad A.; Goldstein, Rita Z.; Alia-Klein, Nelly
2014-01-01
Despite the high prevalence and consequences associated with externalizing psychopathologies, little is known about their underlying neurobiological mechanisms. Studying multiple externalizing disorders, each characterized by compromised inhibition, could reveal both common and distinct mechanisms of impairment. The present study therefore compared individuals with intermittent explosive disorder (IED) (N=11), individuals with cocaine use disorder (CUD) (N=21), and healthy controls (N=17) on task performance and functional magnetic resonance imaging (fMRI) activity during an event-related color-word Stroop task; self-reported trait anger expression was also collected in all participants. Results revealed higher error-related activity in the two externalizing psychopathologies as compared with controls in two subregions of the dorsolateral prefrontal cortex (DLPFC) (a region known to be involved in exerting cognitive control during this task), suggesting a neural signature of inhibitory-related error processing common to these psychopathologies. Interestingly, in one DLPFC subregion, error-related activity was especially high in IED, possibly indicating a specific neural correlate of clinically high anger expression. Supporting this interpretation, error-related DLPFC activity in this same subregion positively correlated with trait anger expression across all participants. These collective results help to illuminate common and distinct neural signatures of impaired self-control, and could suggest novel therapeutic targets for increasing self-control in clinical aggression specifically and/or in various externalizing psychopathologies more generally. PMID:25106072
Trust models in ubiquitous computing.
Krukow, Karl; Nielsen, Mogens; Sassone, Vladimiro
2008-10-28
We recapture some of the arguments for trust-based technologies in ubiquitous computing, followed by a brief survey of some of the models of trust that have been introduced in this respect. Based on this, we argue for the need of more formal and foundational trust models.
Mobile Computing and Ubiquitous Networking: Concepts, Technologies and Challenges.
ERIC Educational Resources Information Center
Pierre, Samuel
2001-01-01
Analyzes concepts, technologies and challenges related to mobile computing and networking. Defines basic concepts of cellular systems. Describes the evolution of wireless technologies that constitute the foundations of mobile computing and ubiquitous networking. Presents characterization and issues of mobile computing. Analyzes economical and…
Rodríguez-Domínguez, Carlos; Benghazi, Kawtar; Noguera, Manuel; Garrido, José Luis; Rodríguez, María Luisa; Ruiz-López, Tomás
2012-01-01
The Request-Response (RR) paradigm is widely used in ubiquitous systems to exchange information in a secure, reliable and timely manner. Nonetheless, there is also an emerging need for adopting the Publish-Subscribe (PubSub) paradigm in this kind of systems, due to the advantages that this paradigm offers in supporting mobility by means of asynchronous, non-blocking and one-to-many message distribution semantics for event notification. This paper analyzes the strengths and weaknesses of both the RR and PubSub paradigms to support communications in ubiquitous systems and proposes an abstract communication model in order to enable their seamless integration. Thus, developers will be focused on communication semantics and the required quality properties, rather than be concerned about specific communication mechanisms. The aim is to provide developers with abstractions intended to decrease the complexity of integrating different communication paradigms commonly needed in ubiquitous systems. The proposal has been applied to implement a middleware and a real home automation system to show its applicability and benefits.
Saldaña Barrios, Juan Jose; Mendoza, Luis; Pitti, Edgardo; Vargas, Miguel
2016-10-21
In this work, the authors present two eHealth platforms that are examples of how health systems are migrating from client-server architecture to the web-based and ubiquitous paradigm. These two platforms were modeled, designed, developed and implemented with positive results. First, using ambient-assisted living and ubiquitous computing, the authors enhance how palliative care is being provided to the elderly patients and patients with terminal illness, making the work of doctors, nurses and other health actors easier. Second, applying machine learning methods and a data-centered, ubiquitous, patient's results' repository, the authors intent to improve the Down's syndrome risk estimation process with more accurate predictions based on local woman patients' parameters. These two eHealth platforms can improve the quality of life, not only physically but also psychologically, of the patients and their families in the country of Panama. © The Author(s) 2016.
Song, Min Su; Lee, Jae Dong; Jeong, Young-Sik; Jeong, Hwa-Young; Park, Jong Hyuk
2014-01-01
Despite the convenience, ubiquitous computing suffers from many threats and security risks. Security considerations in the ubiquitous network are required to create enriched and more secure ubiquitous environments. The address resolution protocol (ARP) is a protocol used to identify the IP address and the physical address of the associated network card. ARP is designed to work without problems in general environments. However, since it does not include security measures against malicious attacks, in its design, an attacker can impersonate another host using ARP spoofing or access important information. In this paper, we propose a new detection scheme for ARP spoofing attacks using a routing trace, which can be used to protect the internal network. Tracing routing can find the change of network movement path. The proposed scheme provides high constancy and compatibility because it does not alter the ARP protocol. In addition, it is simple and stable, as it does not use a complex algorithm or impose extra load on the computer system.
Song, Min Su; Lee, Jae Dong; Jeong, Hwa-Young; Park, Jong Hyuk
2014-01-01
Despite the convenience, ubiquitous computing suffers from many threats and security risks. Security considerations in the ubiquitous network are required to create enriched and more secure ubiquitous environments. The address resolution protocol (ARP) is a protocol used to identify the IP address and the physical address of the associated network card. ARP is designed to work without problems in general environments. However, since it does not include security measures against malicious attacks, in its design, an attacker can impersonate another host using ARP spoofing or access important information. In this paper, we propose a new detection scheme for ARP spoofing attacks using a routing trace, which can be used to protect the internal network. Tracing routing can find the change of network movement path. The proposed scheme provides high constancy and compatibility because it does not alter the ARP protocol. In addition, it is simple and stable, as it does not use a complex algorithm or impose extra load on the computer system. PMID:25243205
Ubiquitous geospatial concept in evolution of the macro and micro spatial planning
NASA Astrophysics Data System (ADS)
Sabri, S.; Ludin, A. N. M.; Majid, M. R.
2014-02-01
There are many examples of GIS application in planning such as urban land-use planning, cultural heritage conservation, coastal zone management, and the design of structure plans for sustainable economic development. All these applications are dealing with systems in which natural and human factors are interconnected. But an issue that should be addressed is to what extent the current information technology is able to connect all these parts together? Contemporary improvement in information technology made the computer so imbedded in our everyday practices that we use it without having to think about it. Thus, computing is becoming truly ubiquitous and is available anywhere anytime. Advances in the internet facilities and devices, such as high speed wireless networks, mobile middleware, and smart technologies, has pushed the concept of ubiquitous computing to the forefront of GIS research and development. There are developments in this regards, these are such as GeoWeb 2.0, voluntarily geographic Information (VGI), and Mashups, whereby the application of cloud computing was possible in visualizing urban air pollution and emergency responses to ensure the safety and security. These advancements therefore, have changed the conventional facet of macro and micro spatial planning. Every possible information system such as residential, medical, business, environmental, governmental, and the like can be linked through ubiquitous computing technologies and acts as a virtually one system which works for society. However, the journey to achieve a true ubiquitous GIS is not without challenges. Despite the current potentials there are many issues and obstacles need to be addressed before GIS can to be truly ubiquitous in planning context. Perhaps four criteria as explained by Goodchild et al (1997) can be applied to ubiquitous GIS in planning very well: the system must be distributed (data storage, processing and user interaction can occur at locations that are potentially widely scattered), disaggregated (the monolithic systems are replaced by 'plug and play' components designed to interoperate through conformance with industry-wide standards), decoupled (system must be able to access a number of components over many networks required to complete a specific task) and, interoperable (system is based on an "open" system).
Botulinum neurotoxin type C protease induces apoptosis in differentiated human neuroblastoma cells.
Rust, Aleksander; Leese, Charlotte; Binz, Thomas; Davletov, Bazbek
2016-05-31
Neuroblastomas constitute a major cause of cancer-related deaths in young children. In recent years, a number of translation-inhibiting enzymes have been evaluated for killing neuroblastoma cells. Here we investigated the potential vulnerability of human neuroblastoma cells to protease activity derived from botulinum neurotoxin type C. We show that following retinoic acid treatment, human neuroblastoma cells, SiMa and SH-SY5Y, acquire a neuronal phenotype evidenced by axonal growth and expression of neuronal markers. Botulinum neurotoxin type C which cleaves neuron-specific SNAP25 and syntaxin1 caused apoptotic death only in differentiated neuroblastoma cells. Direct comparison of translation-inhibiting enzymes and the type C botulinum protease revealed one order higher cytotoxic potency of the latter suggesting a novel neuroblastoma-targeting pathway. Our mechanistic insights revealed that loss of ubiquitous SNAP23 due to differentiation coupled to SNAP25 cleavage due to botulinum activity may underlie the apoptotic death of human neuroblastoma cells.
Crystallographic and spectroscopic snapshots reveal a dehydrogenase in action
Huo, Lu; Davis, Ian; Liu, Fange; ...
2015-01-07
Aldehydes are ubiquitous intermediates in metabolic pathways and their innate reactivity can often make them quite unstable. There are several aldehydic intermediates in the metabolic pathway for tryptophan degradation that can decay into neuroactive compounds that have been associated with numerous neurological diseases. An enzyme of this pathway, 2-aminomuconate-6-semialdehyde dehydrogenase, is responsible for ‘disarming’ the final aldehydic intermediate. Here we show the crystal structures of a bacterial analogue enzyme in five catalytically relevant forms: resting state, one binary and two ternary complexes, and a covalent, thioacyl intermediate. We also report the crystal structures of a tetrahedral, thiohemiacetal intermediate, a thioacylmore » intermediate and an NAD +-bound complex from an active site mutant. These covalent intermediates are characterized by single-crystal and solution-state electronic absorption spectroscopy. The crystal structures reveal that the substrate undergoes an E/Z isomerization at the enzyme active site before an sp 3-to-sp 2 transition during enzyme-mediated oxidation.« less
Global Analysis of Palmitoylated Proteins in Toxoplasma gondii.
Foe, Ian T; Child, Matthew A; Majmudar, Jaimeen D; Krishnamurthy, Shruthi; van der Linden, Wouter A; Ward, Gary E; Martin, Brent R; Bogyo, Matthew
2015-10-14
Post-translational modifications (PTMs) such as palmitoylation are critical for the lytic cycle of the protozoan parasite Toxoplasma gondii. While palmitoylation is involved in invasion, motility, and cell morphology, the proteins that utilize this PTM remain largely unknown. Using a chemical proteomic approach, we report a comprehensive analysis of palmitoylated proteins in T. gondii, identifying a total of 282 proteins, including cytosolic, membrane-associated, and transmembrane proteins. From this large set of palmitoylated targets, we validate palmitoylation of proteins involved in motility (myosin light chain 1, myosin A), cell morphology (PhIL1), and host cell invasion (apical membrane antigen 1, AMA1). Further studies reveal that blocking AMA1 palmitoylation enhances the release of AMA1 and other invasion-related proteins from apical secretory organelles, suggesting a previously unrecognized role for AMA1. These findings suggest that palmitoylation is ubiquitous throughout the T. gondii proteome and reveal insights into the biology of this important human pathogen. Copyright © 2015 Elsevier Inc. All rights reserved.
Mukherjee, Sumitava; Manjaly, Jaison A.; Nargundkar, Maithilee
2013-01-01
With continuous growth in information aggregation and dissemination, studies on privacy preferences are important to understand what makes people reveal information about them. Previous studies have demonstrated that short-term gains and possible monetary rewards make people risk disclosing information. Given the malleability of privacy preferences and the ubiquitous monetary cues in daily lives, we measured the contextual effect of reminding people about money on their privacy disclosure preferences. In experiment 1, we found that priming money increased willingness to disclose their personal information that could be shared with an online shopping website. Beyond stated willingness, experiment 2 tested whether priming money increases propensity for actually giving out personal information. Across both experiments, we found that priming money increases both the reported willingness and the actual disclosure of personal information. Our results imply that not only do short-term rewards make people trade-off personal security and privacy, but also mere exposure to money increases self-disclosure. PMID:24273524
Mukherjee, Sumitava; Manjaly, Jaison A; Nargundkar, Maithilee
2013-01-01
With continuous growth in information aggregation and dissemination, studies on privacy preferences are important to understand what makes people reveal information about them. Previous studies have demonstrated that short-term gains and possible monetary rewards make people risk disclosing information. Given the malleability of privacy preferences and the ubiquitous monetary cues in daily lives, we measured the contextual effect of reminding people about money on their privacy disclosure preferences. In experiment 1, we found that priming money increased willingness to disclose their personal information that could be shared with an online shopping website. Beyond stated willingness, experiment 2 tested whether priming money increases propensity for actually giving out personal information. Across both experiments, we found that priming money increases both the reported willingness and the actual disclosure of personal information. Our results imply that not only do short-term rewards make people trade-off personal security and privacy, but also mere exposure to money increases self-disclosure.
Escherichia coli Biofilms Have an Organized and Complex Extracellular Matrix Structure
Hung, Chia; Zhou, Yizhou; Pinkner, Jerome S.; Dodson, Karen W.; Crowley, Jan R.; Heuser, John; Chapman, Matthew R.; Hadjifrangiskou, Maria; Henderson, Jeffrey P.; Hultgren, Scott J.
2013-01-01
ABSTRACT Bacterial biofilms are ubiquitous in nature, and their resilience is derived in part from a complex extracellular matrix that can be tailored to meet environmental demands. Although common developmental stages leading to biofilm formation have been described, how the extracellular components are organized to allow three-dimensional biofilm development is not well understood. Here we show that uropathogenic Escherichia coli (UPEC) strains produce a biofilm with a highly ordered and complex extracellular matrix (ECM). We used electron microscopy (EM) techniques to image floating biofilms (pellicles) formed by UPEC. EM revealed intricately constructed substructures within the ECM that encase individual, spatially segregated bacteria with a distinctive morphology. Mutational and biochemical analyses of these biofilms confirmed curli as a major matrix component and revealed important roles for cellulose, flagella, and type 1 pili in pellicle integrity and ECM infrastructure. Collectively, the findings of this study elucidated that UPEC pellicles have a highly organized ultrastructure that varies spatially across the multicellular community. PMID:24023384
Error Argumentation Enhance Adaptability in Adults With Low Motor Ability.
Lee, Chi-Mei; Bo, Jin
2016-01-01
The authors focused on young adults with varying degrees of motor difficulties and examined their adaptability in a visuomotor adaptation task where the visual feedback of participants' movement error was presented with either 1:1 ratio (i.e., regular feedback schedule) or 1:2 ratio (i.e., enhanced feedback schedule). Within-subject design was used with two feedback schedules counter-balanced and separated for 10 days. Results revealed that participants with greater motor difficulties showed less adaptability than those with normal motor abilities in the regular feedback schedule; however, all participants demonstrated similar level of adaptability in the enhanced feedback schedule. The results suggest that error argumentation enhances adaptability in adults with low motor ability.
[Facing the challenges of ubiquitous computing in the health care sector].
Georgieff, Peter; Friedewald, Michael
2010-01-01
The steady progress of microelectronics, communications and information technology will enable the realisation of the vision for "ubiquitous computing" where the Internet extends into the real world embracing everyday objects. The necessary technical basis is already in place. Due to their diminishing size, constantly falling price and declining energy consumption, processors, communications modules and sensors are being increasingly integrated into everyday objects today. This development is opening up huge opportunities for both the economy and individuals. In the present paper we discuss possible applications, but also technical, social and economic barriers to a wide-spread use of ubiquitous computing in the health care sector. .
Völker, Martin; Fiederer, Lukas D J; Berberich, Sofie; Hammer, Jiří; Behncke, Joos; Kršek, Pavel; Tomášek, Martin; Marusič, Petr; Reinacher, Peter C; Coenen, Volker A; Helias, Moritz; Schulze-Bonhage, Andreas; Burgard, Wolfram; Ball, Tonio
2018-06-01
Error detection in motor behavior is a fundamental cognitive function heavily relying on local cortical information processing. Neural activity in the high-gamma frequency band (HGB) closely reflects such local cortical processing, but little is known about its role in error processing, particularly in the healthy human brain. Here we characterize the error-related response of the human brain based on data obtained with noninvasive EEG optimized for HGB mapping in 31 healthy subjects (15 females, 16 males), and additional intracranial EEG data from 9 epilepsy patients (4 females, 5 males). Our findings reveal a multiscale picture of the global and local dynamics of error-related HGB activity in the human brain. On the global level as reflected in the noninvasive EEG, the error-related response started with an early component dominated by anterior brain regions, followed by a shift to parietal regions, and a subsequent phase characterized by sustained parietal HGB activity. This phase lasted for more than 1 s after the error onset. On the local level reflected in the intracranial EEG, a cascade of both transient and sustained error-related responses involved an even more extended network, spanning beyond frontal and parietal regions to the insula and the hippocampus. HGB mapping appeared especially well suited to investigate late, sustained components of the error response, possibly linked to downstream functional stages such as error-related learning and behavioral adaptation. Our findings establish the basic spatio-temporal properties of HGB activity as a neural correlate of error processing, complementing traditional error-related potential studies. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Efficient Solar Scene Wavefront Estimation with Reduced Systematic and RMS Errors: Summary
NASA Astrophysics Data System (ADS)
Anugu, N.; Garcia, P.
2016-04-01
Wave front sensing for solar telescopes is commonly implemented with the Shack-Hartmann sensors. Correlation algorithms are usually used to estimate the extended scene Shack-Hartmann sub-aperture image shifts or slopes. The image shift is computed by correlating a reference sub-aperture image with the target distorted sub-aperture image. The pixel position where the maximum correlation is located gives the image shift in integer pixel coordinates. Sub-pixel precision image shifts are computed by applying a peak-finding algorithm to the correlation peak Poyneer (2003); Löfdahl (2010). However, the peak-finding algorithm results are usually biased towards the integer pixels, these errors are called as systematic bias errors Sjödahl (1994). These errors are caused due to the low pixel sampling of the images. The amplitude of these errors depends on the type of correlation algorithm and the type of peak-finding algorithm being used. To study the systematic errors in detail, solar sub-aperture synthetic images are constructed by using a Swedish Solar Telescope solar granulation image1. The performance of cross-correlation algorithm in combination with different peak-finding algorithms is investigated. The studied peak-finding algorithms are: parabola Poyneer (2003); quadratic polynomial Löfdahl (2010); threshold center of gravity Bailey (2003); Gaussian Nobach & Honkanen (2005) and Pyramid Bailey (2003). The systematic error study reveals that that the pyramid fit is the most robust to pixel locking effects. The RMS error analysis study reveals that the threshold centre of gravity behaves better in low SNR, although the systematic errors in the measurement are large. It is found that no algorithm is best for both the systematic and the RMS error reduction. To overcome the above problem, a new solution is proposed. In this solution, the image sampling is increased prior to the actual correlation matching. The method is realized in two steps to improve its computational efficiency. In the first step, the cross-correlation is implemented at the original image spatial resolution grid (1 pixel). In the second step, the cross-correlation is performed using a sub-pixel level grid by limiting the field of search to 4 × 4 pixels centered at the first step delivered initial position. The generation of these sub-pixel grid based region of interest images is achieved with the bi-cubic interpolation. The correlation matching with sub-pixel grid technique was previously reported in electronic speckle photography Sjö'dahl (1994). This technique is applied here for the solar wavefront sensing. A large dynamic range and a better accuracy in the measurements are achieved with the combination of the original pixel grid based correlation matching in a large field of view and a sub-pixel interpolated image grid based correlation matching within a small field of view. The results revealed that the proposed method outperforms all the different peak-finding algorithms studied in the first approach. It reduces both the systematic error and the RMS error by a factor of 5 (i.e., 75% systematic error reduction), when 5 times improved image sampling was used. This measurement is achieved at the expense of twice the computational cost. With the 5 times improved image sampling, the wave front accuracy is increased by a factor of 5. The proposed solution is strongly recommended for wave front sensing in the solar telescopes, particularly, for measuring large dynamic image shifts involved open loop adaptive optics. Also, by choosing an appropriate increment of image sampling in trade-off between the computational speed limitation and the aimed sub-pixel image shift accuracy, it can be employed in closed loop adaptive optics. The study is extended to three other class of sub-aperture images (a point source; a laser guide star; a Galactic Center extended scene). The results are planned to submit for the Optical Express journal.
Impacts of Bt crops on non-target organisms and insecticide use patterns
USDA-ARS?s Scientific Manuscript database
Bacillus thuringiensis (Bt), a bacterium capable of producing insecticidal proteins is ubiquitous in the environment, and the genes coding for these proteins are now becoming ubiquitous in major crop plants via recombinant DNA technology where they provide host plant resistance to major lepidopteran...
New Theoretical Approach Integrated Education and Technology
ERIC Educational Resources Information Center
Ding, Gang
2010-01-01
The paper focuses on exploring new theoretical approach in education with development of online learning technology, from e-learning to u-learning and virtual reality technology, and points out possibilities such as constructing a new teaching ecological system, ubiquitous educational awareness with ubiquitous technology, and changing the…
Commentary: Ubiquitous Computing Revisited--A New Perspective
ERIC Educational Resources Information Center
Bull, Glen; Garofalo, Joe
2006-01-01
In 2002, representatives from the teacher educator associations representing the core content areas (science, mathematics, language arts, and social studies) and educational technology met at the National Technology Leadership Retreat (NTLR) to discuss potential implications of ubiquitous computing for K-12 schools. This paper re-examines some of…
Enterococcus faecalis Prophage Dynamics and Contributions to Pathogenic Traits
Matos, Renata C.; Lapaque, Nicolas; Rigottier-Gois, Lionel; Debarbieux, Laurent; Meylheuc, Thierry; Gonzalez-Zorn, Bruno; Repoila, Francis; Lopes, Maria de Fatima; Serror, Pascale
2013-01-01
Polylysogeny is frequently considered to be the result of an adaptive evolutionary process in which prophages confer fitness and/or virulence factors, thus making them important for evolution of both bacterial populations and infectious diseases. The Enterococcus faecalis V583 isolate belongs to the high-risk clonal complex 2 that is particularly well adapted to the hospital environment. Its genome carries 7 prophage-like elements (V583-pp1 to -pp7), one of which is ubiquitous in the species. In this study, we investigated the activity of the V583 prophages and their contribution to E. faecalis biological traits. We systematically analyzed the ability of each prophage to excise from the bacterial chromosome, to replicate and to package its DNA. We also created a set of E. faecalis isogenic strains that lack from one to all six non-ubiquitous prophages by mimicking natural excision. Our work reveals that prophages of E. faecalis V583 excise from the bacterial chromosome in the presence of a fluoroquinolone, and are able to produce active phage progeny. Intricate interactions between V583 prophages were also unveiled: i) pp7, coined EfCIV583 for E. faecalis chromosomal island of V583, hijacks capsids from helper phage 1, leading to the formation of distinct virions, and ii) pp1, pp3 and pp5 inhibit excision of pp4 and pp6. The hijacking exerted by EfCIV583 on helper phage 1 capsids is the first example of molecular piracy in Gram positive bacteria other than staphylococci. Furthermore, prophages encoding platelet-binding-like proteins were found to be involved in adhesion to human platelets, considered as a first step towards the development of infective endocarditis. Our findings reveal not only a role of E. faecalis V583 prophages in pathogenicity, but also provide an explanation for the correlation between antibiotic usage and E. faecalis success as a nosocomial pathogen, as fluoriquinolone may provoke release of prophages and promote gene dissemination among isolates. PMID:23754962
NASA Astrophysics Data System (ADS)
Cusick, K. D.; Dale, J.; Little, B.; Cockrell, A.; Biffinger, J.
2016-02-01
Alteromonas macleodii is a ubiquitous marine bacterium that clusters by molecular analyses into two ecotypes: surface and deep-water. Our group isolated a marine bacterium from copper coupons that generates nanoparticles (NPs) at elevated copper concentrations. Sequencing of the 16S rRNA gene identified it as an A. macleodii strain. In phylogenetic analyses based on the gyrB gene, it clustered with other surface isolates; however, it formed a unique cluster separate from that of other surface isolates based on rpoB gene sequences. Copper is commonly employed as an antifouling agent on the hulls of ships, and so copper tolerance and NP generation is under investigation in this strain. The overall goals of this study were: (1) to determine if copper tolerance is the result of changes at the genetic or transcriptional level and (2) to identify the genes involved in NP formation. Sub-cultures were established from the initial isolate in which copper concentrations were increased in .25 mM increments through multiple generations. These sub-cultures were assayed for NP formation in seawater medium supplemented with 3-4 mM copper. Scanning electron microscopy revealed large aggregates of NPs on the exterior surface of all sub-cultures. Additionally, a portion of the cells in all sub-cultures displayed an elongated morphology in comparison to the wild-type. No NPs were observed in wild-type controls grown without the addition of increased copper. Metagenomic sequencing of natural populations of A. macleodii revealed extreme divergence in several large genomic regions whose content includes genes coding for exopolysaccharide production and metal resistance. High-throughput sequencing is being used to determine whether copper tolerance and NP generation is the result of genetic or transcriptional changes. These results will be extended to natural communities to gain insights into the role of bacterial NPs during conditions of elevated metal concentrations in coastal systems.
Wang, Li Ke; Niu, Xiao Wei; Lv, Yan Hui; Zhang, Tian Zhen; Guo, Wang Zhen
2010-10-01
Annexins constitute a family of multifunction and structurally related proteins. These proteins are ubiquitous in the plant kingdom, and are important calcium-dependent membrane-binding proteins that participate in the polar development of different plant regions such as rhizoids, root caps, and pollen tube tips. In this study, a novel cotton annexin gene (designated as GhFAnnx) was isolated from a fiber cDNA library of cotton (Gossypium hirsutum). The full-length cDNA of GhFAnnx comprises an open reading frame of 945 bp that encodes a 314-amino acid protein with a calculated molecular mass of 35.7 kDa and an isoelectric point of 6.49. Genomic GhFAnnx sequences from different cotton species, TM-1, Hai7124 and two diploid progenitor cottons, G. herbaceum (A-genome) and G. raimondii (D-genome) showed that at least two copies of the GhFAnnx gene, each with six exons and five introns in the coding region, were identified in the allotetraploid cotton genome. The GhFAnnx gene cloned from the cDNA library in this study was mapped to the chromosome 10 of the A-subgenome of the tetraploid cotton. Sequence alignment revealed that GhFAnnx contained four repeats of 70 amino acids. Semi-quantitative reverse transcriptase-polymerase chain reaction revealed that GhFAnnx is preferentially expressed in different developmental fibers but its expression is low in roots, stems, and leaves. Subcellular localization of GhFAnnx in onion epidermal cells and cotton fibers suggests that this protein is ubiquitous in the epidermal cells of onion, but assembles at the edge and the inner side of the apex of the cotton fiber tips with brilliant spots. In summary, GhFAnnx influences fiber development and is associated with the polar expansion of the cotton fiber during elongation stages.
Tissue-Specific Gain of RTK Signalling Uncovers Selective Cell Vulnerability during Embryogenesis
Audebert, Stéphane; Helmbacher, Françoise; Dono, Rosanna; Maina, Flavio
2015-01-01
The successive events that cells experience throughout development shape their intrinsic capacity to respond and integrate RTK inputs. Cellular responses to RTKs rely on different mechanisms of regulation that establish proper levels of RTK activation, define duration of RTK action, and exert quantitative/qualitative signalling outcomes. The extent to which cells are competent to deal with fluctuations in RTK signalling is incompletely understood. Here, we employ a genetic system to enhance RTK signalling in a tissue-specific manner. The chosen RTK is the hepatocyte growth factor (HGF) receptor Met, an appropriate model due to its pleiotropic requirement in distinct developmental events. Ubiquitously enhanced Met in Cre/loxP-based Rosa26 stopMet knock-in context (Del-R26 Met) reveals that most tissues are capable of buffering enhanced Met-RTK signalling thus avoiding perturbation of developmental programs. Nevertheless, this ubiquitous increase of Met does compromise selected programs such as myoblast migration. Using cell-type specific Cre drivers, we genetically showed that altered myoblast migration results from ectopic Met expression in limb mesenchyme rather than in migrating myoblasts themselves. qRT-PCR analyses show that ectopic Met in limbs causes molecular changes such as downregulation in the expression levels of Notum and Syndecan4, two known regulators of morphogen gradients. Molecular and functional studies revealed that ectopic Met expression in limb mesenchyme does not alter HGF expression patterns and levels, but impairs HGF bioavailability. Together, our findings show that myoblasts, in which Met is endogenously expressed, are capable of buffering increased RTK levels, and identify mesenchymal cells as a cell type vulnerable to ectopic Met-RTK signalling. These results illustrate that embryonic cells are sensitive to alterations in the spatial distribution of RTK action, yet resilient to fluctuations in signalling levels of an RTK when occurring in its endogenous domain of activity. PMID:26393505
Trojan, Daniela; Roux, Simon; Herbold, Craig; Rattei, Thomas; Woebken, Dagmar
2018-01-01
Summary Members of the phylum Acidobacteria are abundant and ubiquitous across soils. We performed a large‐scale comparative genome analysis spanning subdivisions 1, 3, 4, 6, 8 and 23 (n = 24) with the goal to identify features to help explain their prevalence in soils and understand their ecophysiology. Our analysis revealed that bacteriophage integration events along with transposable and mobile elements influenced the structure and plasticity of these genomes. Low‐ and high‐affinity respiratory oxygen reductases were detected in multiple genomes, suggesting the capacity for growing across different oxygen gradients. Among many genomes, the capacity to use a diverse collection of carbohydrates, as well as inorganic and organic nitrogen sources (such as via extracellular peptidases), was detected – both advantageous traits in environments with fluctuating nutrient environments. We also identified multiple soil acidobacteria with the potential to scavenge atmospheric concentrations of H2, now encompassing mesophilic soil strains within the subdivision 1 and 3, in addition to a previously identified thermophilic strain in subdivision 4. This large‐scale acidobacteria genome analysis reveal traits that provide genomic, physiological and metabolic versatility, presumably allowing flexibility and versatility in the challenging and fluctuating soil environment. PMID:29327410
Saturn's depths in a new light: Novel views of meteorology, circulation and dynamics by Cassini/VIMS
NASA Astrophysics Data System (ADS)
Baines, Kevin; Momary, Thomas; Roos-Serote, Maarten; Showman, Adam; Atreya, Sushil K.; Brown, Robert H.; Buratti, Bonnie; Clark, Roger; Nicholson, Phillip
The depths of Saturn below the ubiquitous covering of ammonia hazes have been revealed in detail by the Visual Infrared Mapping Spectrometer (VIMS) onboard the Cassini orbiter. Using Saturn's own indigenous glow produced by warm air at depth to back-light deep clouds, a diverse array of cloud features have been discovered near the 3-bar level, some 75 km underneath the ammonia clouds. Likely comprised of ammonia hydrosulfide, perhaps with a complement of water, the menagerie of deep cloud structures - including dozens of surprisingly narrow axisymmetric "zones", "smoke rings", a long-lived "string of pearls" spanning 1/4 of the planet, large plume-like and cyclonic features, and a deep-seated hexagonal feature circumscribing the north pole - reveal Saturn at depth to be a dynamic, meteorologically active planet much more like frenetic Jupiter than the classically serene face Saturn shows in sunlight. Additional information on Saturn's dynamically active nature is provided by daytime imagery of discrete clouds observed at the southpole - revealing two compositional types of clouds, suggesting a variety of upwelling phenomena - and the latitudinal variability of the trace disequilibrium gases arsine and phosphine observed in VIMS spectra.
Neuromotor Noise Is Malleable by Amplifying Perceived Errors
Zhang, Zhaoran; Abe, Masaki O.; Sternad, Dagmar
2016-01-01
Variability in motor performance results from the interplay of error correction and neuromotor noise. This study examined whether visual amplification of error, previously shown to improve performance, affects not only error correction, but also neuromotor noise, typically regarded as inaccessible to intervention. Seven groups of healthy individuals, with six participants in each group, practiced a virtual throwing task for three days until reaching a performance plateau. Over three more days of practice, six of the groups received different magnitudes of visual error amplification; three of these groups also had noise added. An additional control group was not subjected to any manipulations for all six practice days. The results showed that the control group did not improve further after the first three practice days, but the error amplification groups continued to decrease their error under the manipulations. Analysis of the temporal structure of participants’ corrective actions based on stochastic learning models revealed that these performance gains were attained by reducing neuromotor noise and, to a considerably lesser degree, by increasing the size of corrective actions. Based on these results, error amplification presents a promising intervention to improve motor function by decreasing neuromotor noise after performance has reached an asymptote. These results are relevant for patients with neurological disorders and the elderly. More fundamentally, these results suggest that neuromotor noise may be accessible to practice interventions. PMID:27490197
Yingyong, Penpimol
2010-11-01
Refractive error is one of the leading causes of visual impairment in children. An analysis of risk factors for refractive error is required to reduce and prevent this common eye disease. To identify the risk factors associated with refractive errors in primary school children (6-12 year old) in Nakhon Pathom province. A population-based cross-sectional analytic study was conducted between October 2008 and September 2009 in Nakhon Pathom. Refractive error, parental refractive status, and hours per week of near activities (studying, reading books, watching television, playing with video games, or working on the computer) were assessed in 377 children who participated in this study. The most common type of refractive error in primary school children was myopia. Myopic children were more likely to have parents with myopia. Children with myopia spend more time at near activities. The multivariate odds ratio (95% confidence interval)for two myopic parents was 6.37 (2.26-17.78) and for each diopter-hour per week of near work was 1.019 (1.005-1.033). Multivariate logistic regression models show no confounding effects between parental myopia and near work suggesting that each factor has an independent association with myopia. Statistical analysis by logistic regression revealed that family history of refractive error and hours of near-work were significantly associated with refractive error in primary school children.
Crosslinking EEG time-frequency decomposition and fMRI in error monitoring.
Hoffmann, Sven; Labrenz, Franziska; Themann, Maria; Wascher, Edmund; Beste, Christian
2014-03-01
Recent studies implicate a common response monitoring system, being active during erroneous and correct responses. Converging evidence from time-frequency decompositions of the response-related ERP revealed that evoked theta activity at fronto-central electrode positions differentiates correct from erroneous responses in simple tasks, but also in more complex tasks. However, up to now it is unclear how different electrophysiological parameters of error processing, especially at the level of neural oscillations are related, or predictive for BOLD signal changes reflecting error processing at a functional-neuroanatomical level. The present study aims to provide crosslinks between time domain information, time-frequency information, MRI BOLD signal and behavioral parameters in a task examining error monitoring due to mistakes in a mental rotation task. The results show that BOLD signal changes reflecting error processing on a functional-neuroanatomical level are best predicted by evoked oscillations in the theta frequency band. Although the fMRI results in this study account for an involvement of the anterior cingulate cortex, middle frontal gyrus, and the Insula in error processing, the correlation of evoked oscillations and BOLD signal was restricted to a coupling of evoked theta and anterior cingulate cortex BOLD activity. The current results indicate that although there is a distributed functional-neuroanatomical network mediating error processing, only distinct parts of this network seem to modulate electrophysiological properties of error monitoring.
Entropy of Movement Outcome in Space-Time.
Lai, Shih-Chiung; Hsieh, Tsung-Yu; Newell, Karl M
2015-07-01
Information entropy of the joint spatial and temporal (space-time) probability of discrete movement outcome was investigated in two experiments as a function of different movement strategies (space-time, space, and time instructional emphases), task goals (point-aiming and target-aiming) and movement speed-accuracy constraints. The variance of the movement spatial and temporal errors was reduced by instructional emphasis on the respective spatial or temporal dimension, but increased on the other dimension. The space-time entropy was lower in targetaiming task than the point aiming task but did not differ between instructional emphases. However, the joint probabilistic measure of spatial and temporal entropy showed that spatial error is traded for timing error in tasks with space-time criteria and that the pattern of movement error depends on the dimension of the measurement process. The unified entropy measure of movement outcome in space-time reveals a new relation for the speed-accuracy.
Ferrer-Mileo, V; Guede-Fernandez, F; Fernandez-Chimeno, M; Ramos-Castro, J; Garcia-Gonzalez, M A
2015-08-01
This work compares several fiducial points to detect the arrival of a new pulse in a photoplethysmographic signal using the built-in camera of smartphones or a photoplethysmograph. Also, an optimization process for the signal preprocessing stage has been done. Finally we characterize the error produced when we use the best cutoff frequencies and fiducial point for smartphones and photopletysmograph and compare if the error of smartphones can be reasonably be explained by variations in pulse transit time. The results have revealed that the peak of the first derivative and the minimum of the second derivative of the pulse wave have the lowest error. Moreover, for these points, high pass filtering the signal between 0.1 to 0.8 Hz and low pass around 2.7 Hz or 3.5 Hz are the best cutoff frequencies. Finally, the error in smartphones is slightly higher than in a photoplethysmograph.
Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.
Limongi, Roberto; Silva, Angélica M
2016-11-01
The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.
NASA Astrophysics Data System (ADS)
Inoue, S.; Shiraishi, J.; Takechi, M.; Matsunaga, G.; Isayama, A.; Hayashi, N.; Ide, S.
2017-11-01
An active stabilization effect of a rotating control field against an error field penetration is numerically studied. We have developed a resistive magnetohydrodynamic code ‘AEOLUS-IT’, which can simulate plasma responses to rotating/static external magnetic field. Adopting non-uniform flux coordinates system, the AEOLUS-IT simulation can employ high magnetic Reynolds number condition relevant to present tokamaks. By AEOLUS-IT, we successfully clarified the stabilization mechanism of the control field against the error field penetration. Physical processes of a plasma rotation drive via the control field are demonstrated by the nonlinear simulation, which reveals that the rotation amplitude at a resonant surface is not a monotonic function of the control field frequency, but has an extremum. Consequently, two ‘bifurcated’ frequency ranges of the control field are found for the stabilization of the error field penetration.
Calibration of a stack of NaI scintillators at the Berkeley Bevalac
NASA Technical Reports Server (NTRS)
Schindler, S. M.; Buffington, A.; Lau, K.; Rasmussen, I. L.
1983-01-01
An analysis of the carbon and argon data reveals that essentially all of the charge-changing fragmentation reactions within the stack can be identified and removed by imposing the simple criteria relating the observed energy deposition profiles to the expected Bragg curve depositions. It is noted that these criteria are even capable of identifying approximately one-third of the expected neutron-stripping interactions, which in these cases have anomalous deposition profiles. The contribution of mass error from uncertainty in delta E has an upper limit of 0.25 percent for Mn; this produces an associated mass error for the experiment of about 0.14 amu. It is believed that this uncertainty will change little with changing gamma. Residual errors in the mapping produce even smaller mass errors for lighter isotopes, whereas photoelectron fluctuations and delta-ray effects are approximately the same independent of the charge and energy deposition.
On the interaction of deaffrication and consonant harmony*
Dinnsen, Daniel A.; Gierut, Judith A.; Morrisette, Michele L.; Green, Christopher R.; Farris-Trimble, Ashley W.
2010-01-01
Error patterns in children’s phonological development are often described as simplifying processes that can interact with one another with different consequences. Some interactions limit the applicability of an error pattern, and others extend it to more words. Theories predict that error patterns interact to their full potential. While specific interactions have been documented for certain pairs of processes, no developmental study has shown that the range of typologically predicted interactions occurs for those processes. To determine whether this anomaly is an accidental gap or a systematic peculiarity of particular error patterns, two commonly occurring processes were considered, namely Deaffrication and Consonant Harmony. Results are reported from a cross-sectional and longitudinal study of 12 children (age 3;0 – 5;0) with functional phonological delays. Three interaction types were attested to varying degrees. The longitudinal results further instantiated the typology and revealed a characteristic trajectory of change. Implications of these findings are explored. PMID:20513256
Defining health information technology-related errors: new developments since to err is human.
Sittig, Dean F; Singh, Hardeep
2011-07-25
Despite the promise of health information technology (HIT), recent literature has revealed possible safety hazards associated with its use. The Office of the National Coordinator for HIT recently sponsored an Institute of Medicine committee to synthesize evidence and experience from the field on how HIT affects patient safety. To lay the groundwork for defining, measuring, and analyzing HIT-related safety hazards, we propose that HIT-related error occurs anytime HIT is unavailable for use, malfunctions during use, is used incorrectly by someone, or when HIT interacts with another system component incorrectly, resulting in data being lost or incorrectly entered, displayed, or transmitted. These errors, or the decisions that result from them, significantly increase the risk of adverse events and patient harm. We describe how a sociotechnical approach can be used to understand the complex origins of HIT errors, which may have roots in rapidly evolving technological, professional, organizational, and policy initiatives.
Hypercorrection of high-confidence errors in the classroom.
Carpenter, Shana K; Haynes, Cynthia L; Corral, Daniel; Yeung, Kam Leung
2018-05-19
People often have erroneous knowledge about the world that is firmly entrenched in memory and endorsed with high confidence. Although strong errors in memory would seem difficult to "un-learn," evidence suggests that errors are more likely to be corrected through feedback when they are originally endorsed with high confidence compared to low confidence. This hypercorrection effect has been predominantly studied in laboratory settings with general knowledge (i.e., trivia) questions, however, and has not been systematically explored in authentic classroom contexts. In the current study, college students in an introductory horticulture class answered questions about the course content, rated their confidence in their answers, received feedback of the correct answers, and then later completed a posttest. Results revealed a significant hypercorrection effect, along with a tendency for students with higher prior knowledge of the material to express higher confidence in, and in turn more effective correction of, their error responses.
Zolgharni, M; Griffiths, H; Ledger, P D
2010-08-01
The feasibility of detecting a cerebral haemorrhage with a hemispherical MIT coil array consisting of 56 exciter/sensor coils of 10 mm radius and operating at 1 and 10 MHz was investigated. A finite difference method combined with an anatomically realistic head model comprising 12 tissue types was used to simulate the strokes. Frequency-difference images were reconstructed from the modelled data with different levels of the added phase noise and two types of a priori boundary errors: a displacement of the head and a size scaling error. The results revealed that a noise level of 3 m degrees (standard deviation) was adequate for obtaining good visualization of a peripheral stroke (volume approximately 49 ml). The simulations further showed that the displacement error had to be within 3-4 mm and the scaling error within 3-4% so as not to cause unacceptably large artefacts on the images.
Optimum employment of satellite indirect soundings as numerical model input
NASA Technical Reports Server (NTRS)
Horn, L. H.; Derber, J. C.; Koehler, T. L.; Schmidt, B. D.
1981-01-01
The characteristics of satellite-derived temperature soundings that would significantly affect their use as input for numerical weather prediction models were examined. Independent evaluations of satellite soundings were emphasized to better define error characteristics. Results of a Nimbus-6 sounding study reveal an underestimation of the strength of synoptic scale troughs and ridges, and associated gradients in isobaric height and temperature fields. The most significant errors occurred near the Earth's surface and the tropopause. Soundings from the TIROS-N and NOAA-6 satellites were also evaluated. Results again showed an underestimation of upper level trough amplitudes leading to weaker thermal gradient depictions in satellite-only fields. These errors show a definite correlation to the synoptic flow patterns. In a satellite-only analysis used to initialize a numerical model forecast, it was found that these synoptically correlated errors were retained in the forecast sequence.
Empowering Pre-Service Teachers to Produce Ubiquitous Flipped Classes
ERIC Educational Resources Information Center
García-Sánchez, Soraya; Santos-Espino, Jose Miguel
2017-01-01
This work focuses on technological and educational outcomes that resulted from the production of foreign language educational videos by 90 pre-service instructors enrolled in an official Master's Degree in Secondary Education programme. This teaching practice, conducted during two consecutive years, was set in a ubiquitous learning environment…
Ubiquitous Learning Ecologies for a Critical Cyber-Citizenship
ERIC Educational Resources Information Center
Díez-Gutiérrez, Enrique; Díaz-Nafría, José-María
2018-01-01
The aim of this research is to identify and analyse the ubiquitous learning acquired through blending education settings devoted to the "lifelong training of trainers" and how these contribute to the development of a conscious, critic and engaged citizenship. Through active exploration of the learning process, the study analyses the…
A Knowledge-Based Approach to Retrieving Teaching Materials for Context-Aware Learning
ERIC Educational Resources Information Center
Shih, Wen-Chung; Tseng, Shian-Shyong
2009-01-01
With the rapid development of wireless communication and sensor technologies, ubiquitous learning has become a promising solution to educational problems. In context-aware ubiquitous learning environments, it is required that learning content is retrieved according to environmental contexts, such as learners' location. Also, a learning content…
A Context-Aware Ubiquitous Learning Environment for Language Listening and Speaking
ERIC Educational Resources Information Center
Liu, T.-Y.
2009-01-01
This paper reported the results of a study that aimed to construct a sensor and handheld augmented reality (AR)-supported ubiquitous learning (u-learning) environment called the Handheld English Language Learning Organization (HELLO), which is geared towards enhancing students' language learning. The HELLO integrates sensors, AR, ubiquitous…
Social Knowledge Awareness Map for Computer Supported Ubiquitous Learning Environment
ERIC Educational Resources Information Center
El-Bishouty, Moushir M.; Ogata, Hiroaki; Rahman, Samia; Yano, Yoneo
2010-01-01
Social networks are helpful for people to solve problems by providing useful information. Therefore, the importance of mobile social software for learning has been supported by many researches. In this research, a model of personalized collaborative ubiquitous learning environment is designed and implemented in order to support learners doing…
PERKAM: Personalized Knowledge Awareness Map for Computer Supported Ubiquitous Learning
ERIC Educational Resources Information Center
El-Bishouty, Moushir M.; Ogata, Hiroaki; Yano, Yoneo
2007-01-01
This paper introduces a ubiquitous computing environment in order to support the learners while doing tasks; this environment is called PERKAM (PERsonalized Knowledge Awareness Map). PERKAM allows the learners to share knowledge, interact, collaborate, and exchange individual experiences. It utilizes the RFID ubiquities technology to detect the…
Criteria, Strategies and Research Issues of Context-Aware Ubiquitous Learning
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Tsai, Chin-Chung; Yang, Stephen J. H.
2008-01-01
Recent progress in wireless and sensor technologies has lead to a new development of learning environments, called context-aware ubiquitous learning environment, which is able to sense the situation of learners and provide adaptive supports. Many researchers have been investigating the development of such new learning environments; nevertheless,…
Student Laptop Use and Scores on Standardized Tests
ERIC Educational Resources Information Center
Kposowa, Augustine J.; Valdez, Amanda D.
2013-01-01
Objectives: The primary objective of the study was to investigate the relationship between ubiquitous laptop use and academic achievement. It was hypothesized that students with ubiquitous laptops would score on average higher on standardized tests than those without such computers. Methods: Data were obtained from two sources. First, demographic…
ERIC Educational Resources Information Center
Chen, Chia-Chen; Lin, Pei-Hsuan
2016-01-01
In recent years information technology has been integrated into education to produce a series of trends, beginning with "electronic learning" (e-learning), through "mobile learning" (m-learning) and finally to "ubiquitous learning" (u-learning), which aims to improve learner motivation through overcoming the…
Supporting Teacher Orchestration in Ubiquitous Learning Environments: A Study in Primary Education
ERIC Educational Resources Information Center
Muñoz-Cristóbal, Juan A.; Jorrín-Abellán, Iván M.; Asensio-Pérez, Juan I.; Martínez-Monés, Alejandra; Prieto, Luis P.; Dimitriadis, Yannis
2015-01-01
During the last decades, educational contexts have transformed into complex technological and social ecologies, with mobile devices expanding the scope of education beyond the traditional classroom, creating so-called Ubiquitous Learning Environments (ULEs). However, these new technological opportunities entail an additional burden for teachers,…
BPM CALIBRATION INDEPENDENT LHC OPTICS CORRECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
CALAGA,R.; TOMAS, R.; GIOVANNOZZI, M.
2007-06-25
The tight mechanical aperture for the LHC imposes severe constraints on both the beta and dispersion beating. Robust techniques to compensate these errors are critical for operation of high intensity beams in the LHC. We present simulations using realistic errors from magnet measurements and alignment tolerances in the presence of BPM noise. Correction reveals that the use of BPM calibration and model independent observables are key ingredients to accomplish optics correction. Experiments at RHIC to verify the algorithms for optics correction are also presented.
How Alterations in the Cdt1 Expression Lead to Gene Amplification in Breast Cancer
2011-07-01
absence of extrinsic DNA damage. We measured the TLS activity by measuring the mutation frequency in a supF gene (in a shuttle vector) subjected to UV...induced DNA damage before its introduction into the cells. Error-prone TLS activity will mutate the supF gene , which is scored by a blue-white colony...Figure 4A). Sequencing of the mutant supF genes , revealed a mutation spectrum consistent with error prone TLS (Supplemental Table 1). Significantly
2013-01-01
are calculated from coherently -detected fields, e.g., coherent Doppler lidar . Our CRB results reveal that the best-case mean-square error scales as 1...1088 (2001). 7. K. Asaka, Y. Hirano, K. Tatsumi, K. Kasahara, and T. Tajime, “A pseudo-random frequency modulation continuous wave coherent lidar using...multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29, 2170–2180 (2007). 11. T. J. Karr, “Atmospheric phase error in coherent laser radar
Bijsterbosch, Janine D; Lee, Kwang-Hyuk; Hunter, Michael D; Tsoi, Daniel T; Lankappa, Sudheer; Wilkinson, Iain D; Barker, Anthony T; Woodruff, Peter W R
2011-05-01
Our ability to interact physically with objects in the external world critically depends on temporal coupling between perception and movement (sensorimotor timing) and swift behavioral adjustment to changes in the environment (error correction). In this study, we investigated the neural correlates of the correction of subliminal and supraliminal phase shifts during a sensorimotor synchronization task. In particular, we focused on the role of the cerebellum because this structure has been shown to play a role in both motor timing and error correction. Experiment 1 used fMRI to show that the right cerebellar dentate nucleus and primary motor and sensory cortices were activated during regular timing and during the correction of subliminal errors. The correction of supraliminal phase shifts led to additional activations in the left cerebellum and right inferior parietal and frontal areas. Furthermore, a psychophysiological interaction analysis revealed that supraliminal error correction was associated with enhanced connectivity of the left cerebellum with frontal, auditory, and sensory cortices and with the right cerebellum. Experiment 2 showed that suppression of the left but not the right cerebellum with theta burst TMS significantly affected supraliminal error correction. These findings provide evidence that the left lateral cerebellum is essential for supraliminal error correction during sensorimotor synchronization.
Double ErrP Detection for Automatic Error Correction in an ERP-Based BCI Speller.
Cruz, Aniana; Pires, Gabriel; Nunes, Urbano J
2018-01-01
Brain-computer interface (BCI) is a useful device for people with severe motor disabilities. However, due to its low speed and low reliability, BCI still has a very limited application in daily real-world tasks. This paper proposes a P300-based BCI speller combined with a double error-related potential (ErrP) detection to automatically correct erroneous decisions. This novel approach introduces a second error detection to infer whether wrong automatic correction also elicits a second ErrP. Thus, two single-trial responses, instead of one, contribute to the final selection, improving the reliability of error detection. Moreover, to increase error detection, the evoked potential detected as target by the P300 classifier is combined with the evoked error potential at a feature-level. Discriminable error and positive potentials (response to correct feedback) were clearly identified. The proposed approach was tested on nine healthy participants and one tetraplegic participant. The online average accuracy for the first and second ErrPs were 88.4% and 84.8%, respectively. With automatic correction, we achieved an improvement around 5% achieving 89.9% in spelling accuracy for an effective 2.92 symbols/min. The proposed approach revealed that double ErrP detection can improve the reliability and speed of BCI systems.
Acetaminophen attenuates error evaluation in cortex.
Randles, Daniel; Kam, Julia W Y; Heine, Steven J; Inzlicht, Michael; Handy, Todd C
2016-06-01
Acetaminophen has recently been recognized as having impacts that extend into the affective domain. In particular, double blind placebo controlled trials have revealed that acetaminophen reduces the magnitude of reactivity to social rejection, frustration, dissonance and to both negatively and positively valenced attitude objects. Given this diversity of consequences, it has been proposed that the psychological effects of acetaminophen may reflect a widespread blunting of evaluative processing. We tested this hypothesis using event-related potentials (ERPs). Sixty-two participants received acetaminophen or a placebo in a double-blind protocol and completed the Go/NoGo task. Participants' ERPs were observed following errors on the Go/NoGo task, in particular the error-related negativity (ERN; measured at FCz) and error-related positivity (Pe; measured at Pz and CPz). Results show that acetaminophen inhibits the Pe, but not the ERN, and the magnitude of an individual's Pe correlates positively with omission errors, partially mediating the effects of acetaminophen on the error rate. These results suggest that recently documented affective blunting caused by acetaminophen may best be described as an inhibition of evaluative processing. They also contribute to the growing work suggesting that the Pe is more strongly associated with conscious awareness of errors relative to the ERN. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Matsubara, Kazuo; Toyama, Akira; Satoh, Hiroshi; Suzuki, Hiroshi; Awaya, Toshio; Tasaki, Yoshikazu; Yasuoka, Toshiaki; Horiuchi, Ryuya
2011-04-01
It is obvious that pharmacists play a critical role as risk managers in the healthcare system, especially in medication treatment. Hitherto, there is not a single multicenter-survey report describing the effectiveness of clinical pharmacists in preventing medical errors from occurring in the wards in Japan. Thus, we conducted a 1-month survey to elucidate the relationship between the number of errors and working hours of pharmacists in the ward, and verified whether the assignment of clinical pharmacists to the ward would prevent medical errors between October 1-31, 2009. Questionnaire items for the pharmacists at 42 national university hospitals and a medical institute included the total and the respective numbers of medication-related errors, beds and working hours of pharmacist in 2 internal medicine and 2 surgical departments in each hospital. Regardless of severity, errors were consecutively reported to the Medical Security and Safety Management Section in each hospital. The analysis of errors revealed that longer working hours of pharmacists in the ward resulted in less medication-related errors; this was especially significant in the internal medicine ward (where a variety of drugs were used) compared with the surgical ward. However, the nurse assignment mode (nurse/inpatients ratio: 1 : 7-10) did not influence the error frequency. The results of this survey strongly indicate that assignment of clinical pharmacists to the ward is critically essential in promoting medication safety and efficacy.
Learning mechanisms to limit medication administration errors.
Drach-Zahavy, Anat; Pud, Dorit
2010-04-01
This paper is a report of a study conducted to identify and test the effectiveness of learning mechanisms applied by the nursing staff of hospital wards as a means of limiting medication administration errors. Since the influential report ;To Err Is Human', research has emphasized the role of team learning in reducing medication administration errors. Nevertheless, little is known about the mechanisms underlying team learning. Thirty-two hospital wards were randomly recruited. Data were collected during 2006 in Israel by a multi-method (observations, interviews and administrative data), multi-source (head nurses, bedside nurses) approach. Medication administration error was defined as any deviation from procedures, policies and/or best practices for medication administration, and was identified using semi-structured observations of nurses administering medication. Organizational learning was measured using semi-structured interviews with head nurses, and the previous year's reported medication administration errors were assessed using administrative data. The interview data revealed four learning mechanism patterns employed in an attempt to learn from medication administration errors: integrated, non-integrated, supervisory and patchy learning. Regression analysis results demonstrated that whereas the integrated pattern of learning mechanisms was associated with decreased errors, the non-integrated pattern was associated with increased errors. Supervisory and patchy learning mechanisms were not associated with errors. Superior learning mechanisms are those that represent the whole cycle of team learning, are enacted by nurses who administer medications to patients, and emphasize a system approach to data analysis instead of analysis of individual cases.
Evolution of errors in the altimetric bathymetry model used by Google Earth and GEBCO
NASA Astrophysics Data System (ADS)
Marks, K. M.; Smith, W. H. F.; Sandwell, D. T.
2010-09-01
We analyze errors in the global bathymetry models of Smith and Sandwell that combine satellite altimetry with acoustic soundings and shorelines to estimate depths. Versions of these models have been incorporated into Google Earth and the General Bathymetric Chart of the Oceans (GEBCO). We use Japan Agency for Marine-Earth Science and Technology (JAMSTEC) multibeam surveys not previously incorporated into the models as "ground truth" to compare against model versions 7.2 through 12.1, defining vertical differences as "errors." Overall error statistics improve over time: 50th percentile errors declined from 57 to 55 to 49 m, and 90th percentile errors declined from 257 to 235 to 219 m, in versions 8.2, 11.1 and 12.1. This improvement is partly due to an increasing number of soundings incorporated into successive models, and partly to improvements in the satellite gravity model. Inspection of specific sites reveals that changes in the algorithms used to interpolate across survey gaps with altimetry have affected some errors. Versions 9.1 through 11.1 show a bias in the scaling from gravity in milliGals to topography in meters that affected the 15-160 km wavelength band. Regionally averaged (>160 km wavelength) depths have accumulated error over successive versions 9 through 11. These problems have been mitigated in version 12.1, which shows no systematic variation of errors with depth. Even so, version 12.1 is in some respects not as good as version 8.2, which employed a different algorithm.
Northern Florida reef tract benthic metabolism scaled by remote sensing
Brock, J.C.; Yates, K.K.; Halley, R.B.; Kuffner, I.B.; Wright, C.W.; Hatcher, B.G.
2006-01-01
Holistic rates of excess organic carbon production (E) and calcification for a 0.5 km2 segment of the backreef platform of the northern Florida reef tract (NFRT) were estimated by combining biotope mapping using remote sensing with community metabolic rates determined with a benthic incubation system. The use of ASTER multispectral satellite imaging for the spatial scaling of benthic metabolic processes resulted in errors in E and net calcification (G) of 48 and 431% respectively, relative to estimates obtained using AISA hyperspectral airborne scanning. At 19 and 125%, the E and G errors relative to the AISA-based estimates were less pronounced for an analysis that used IKONOS multispectral satellite imagery to spatially extrapolate the chamber process measurements. Our scaling analysis indicates that the holistic calcification rate of the backreef platform of the northern Florida reef tract is negligible at 0.07 g CaCO3 m-2 d-1. All of the mapped biotopes in this reef zone are net heterotrophic, resulting in an estimated holistic excess production rate of -0.56 g C m-2 d-1, and an overall gross primary production to respiration ratio of 0.85. Based on our finding of ubiquitous heterotrophy, we infer that the backreef platform of the NFRT is a sink for external inputs of suspended particulate organic matter. Further, our results suggest that the inward advection of inorganic nutrients is not a dominant forcing mechanism for benthic biogeochemical function in the NFRT. We suggest that the degradation of the northern Florida reef tract may parallel the community phase shifts documented within other reef systems polluted by organic detritus.
Confidence Preserving Machine for Facial Action Unit Detection
Zeng, Jiabei; Chu, Wen-Sheng; De la Torre, Fernando; Cohn, Jeffrey F.; Xiong, Zhang
2016-01-01
Facial action unit (AU) detection from video has been a long-standing problem in automated facial expression analysis. While progress has been made, accurate detection of facial AUs remains challenging due to ubiquitous sources of errors, such as inter-personal variability, pose, and low-intensity AUs. In this paper, we refer to samples causing such errors as hard samples, and the remaining as easy samples. To address learning with the hard samples, we propose the Confidence Preserving Machine (CPM), a novel two-stage learning framework that combines multiple classifiers following an “easy-to-hard” strategy. During the training stage, CPM learns two confident classifiers. Each classifier focuses on separating easy samples of one class from all else, and thus preserves confidence on predicting each class. During the testing stage, the confident classifiers provide “virtual labels” for easy test samples. Given the virtual labels, we propose a quasi-semi-supervised (QSS) learning strategy to learn a person-specific (PS) classifier. The QSS strategy employs a spatio-temporal smoothness that encourages similar predictions for samples within a spatio-temporal neighborhood. In addition, to further improve detection performance, we introduce two CPM extensions: iCPM that iteratively augments training samples to train the confident classifiers, and kCPM that kernelizes the original CPM model to promote nonlinearity. Experiments on four spontaneous datasets GFT [15], BP4D [56], DISFA [42], and RU-FACS [3] illustrate the benefits of the proposed CPM models over baseline methods and state-of-the-art semisupervised learning and transfer learning methods. PMID:27479964
A developmental basis for stochasticity in floral organ numbers
Kitazawa, Miho S.; Fujimoto, Koichi
2014-01-01
Stochasticity ubiquitously inevitably appears at all levels from molecular traits to multicellular, morphological traits. Intrinsic stochasticity in biochemical reactions underlies the typical intercellular distributions of chemical concentrations, e.g., morphogen gradients, which can give rise to stochastic morphogenesis. While the universal statistics and mechanisms underlying the stochasticity at the biochemical level have been widely analyzed, those at the morphological level have not. Such morphological stochasticity is found in foral organ numbers. Although the floral organ number is a hallmark of floral species, it can distribute stochastically even within an individual plant. The probability distribution of the floral organ number within a population is usually asymmetric, i.e., it is more likely to increase rather than decrease from the modal value, or vice versa. We combined field observations, statistical analysis, and mathematical modeling to study the developmental basis of the variation in floral organ numbers among 50 species mainly from Ranunculaceae and several other families from core eudicots. We compared six hypothetical mechanisms and found that a modified error function reproduced much of the asymmetric variation found in eudicot floral organ numbers. The error function is derived from mathematical modeling of floral organ positioning, and its parameters represent measurable distances in the floral bud morphologies. The model predicts two developmental sources of the organ-number distributions: stochastic shifts in the expression boundaries of homeotic genes and a semi-concentric (whorled-type) organ arrangement. Other models species- or organ-specifically reproduced different types of distributions that reflect different developmental processes. The organ-number variation could be an indicator of stochasticity in organ fate determination and organ positioning. PMID:25404932
NASA Astrophysics Data System (ADS)
Jing, Zhifeng; Qi, Rui; Liu, Chengwen; Ren, Pengyu
2017-10-01
The interactions between metal ions and proteins are ubiquitous in biology. The selective binding of metal ions has a variety of regulatory functions. Therefore, there is a need to understand the mechanism of protein-ion binding. The interactions involving metal ions are complicated in nature, where short-range charge-penetration, charge transfer, polarization, and many-body effects all contribute significantly, and a quantitative description of all these interactions is lacking. In addition, it is unclear how well current polarizable force fields can capture these energy terms and whether these polarization models are good enough to describe the many-body effects. In this work, two energy decomposition methods, absolutely localized molecular orbitals and symmetry-adapted perturbation theory, were utilized to study the interactions between Mg2+/Ca2+ and model compounds for amino acids. Comparison of individual interaction components revealed that while there are significant charge-penetration and charge-transfer effects in Ca complexes, these effects can be captured by the van der Waals (vdW) term in the AMOEBA force field. The electrostatic interaction in Mg complexes is well described by AMOEBA since the charge penetration is small, but the distance-dependent polarization energy is problematic. Many-body effects were shown to be important for protein-ion binding. In the absence of many-body effects, highly charged binding pockets will be over-stabilized, and the pockets will always favor Mg and thus lose selectivity. Therefore, many-body effects must be incorporated in the force field in order to predict the structure and energetics of metalloproteins. Also, the many-body effects of charge transfer in Ca complexes were found to be non-negligible. The absorption of charge-transfer energy into the additive vdW term was a main source of error for the AMOEBA many-body interaction energies.
Small-scale open ocean currents have large effects on wind wave heights
NASA Astrophysics Data System (ADS)
Ardhuin, Fabrice; Gille, Sarah T.; Menemenlis, Dimitris; Rocha, Cesar B.; Rascle, Nicolas; Chapron, Bertrand; Gula, Jonathan; Molemaker, Jeroen
2017-06-01
Tidal currents and large-scale oceanic currents are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of open ocean currents have revealed the ubiquitous presence of eddies, fronts, and filaments at scales 10-100 km. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations down to 10 km. Model results are consistent with wave height variations along satellite altimeter tracks, resolved at scales larger than 50 km. The spectrum of significant wave heights is found to be of the order of 70>
Accuracy analysis for triangulation and tracking based on time-multiplexed structured light.
Wagner, Benjamin; Stüber, Patrick; Wissel, Tobias; Bruder, Ralf; Schweikard, Achim; Ernst, Floris
2014-08-01
The authors' research group is currently developing a new optical head tracking system for intracranial radiosurgery. This tracking system utilizes infrared laser light to measure features of the soft tissue on the patient's forehead. These features are intended to offer highly accurate registration with respect to the rigid skull structure by means of compensating for the soft tissue. In this context, the system also has to be able to quickly generate accurate reconstructions of the skin surface. For this purpose, the authors have developed a laser scanning device which uses time-multiplexed structured light to triangulate surface points. The accuracy of the authors' laser scanning device is analyzed and compared for different triangulation methods. These methods are given by the Linear-Eigen method and a nonlinear least squares method. Since Microsoft's Kinect camera represents an alternative for fast surface reconstruction, the authors' results are also compared to the triangulation accuracy of the Kinect device. Moreover, the authors' laser scanning device was used for tracking of a rigid object to determine how this process is influenced by the remaining triangulation errors. For this experiment, the scanning device was mounted to the end-effector of a robot to be able to calculate a ground truth for the tracking. The analysis of the triangulation accuracy of the authors' laser scanning device revealed a root mean square (RMS) error of 0.16 mm. In comparison, the analysis of the triangulation accuracy of the Kinect device revealed a RMS error of 0.89 mm. It turned out that the remaining triangulation errors only cause small inaccuracies for the tracking of a rigid object. Here, the tracking accuracy was given by a RMS translational error of 0.33 mm and a RMS rotational error of 0.12°. This paper shows that time-multiplexed structured light can be used to generate highly accurate reconstructions of surfaces. Furthermore, the reconstructed point sets can be used for high-accuracy tracking of objects, meeting the strict requirements of intracranial radiosurgery.
The impacts of observing flawed and flawless demonstrations on clinical skill learning.
Domuracki, Kurt; Wong, Arthur; Olivieri, Lori; Grierson, Lawrence E M
2015-02-01
Clinical skills expertise can be advanced through accessible and cost-effective video-based observational practice activities. Previous findings suggest that the observation of performances of skills that include flaws can be beneficial to trainees. Observing the scope of variability within a skilled movement allows learners to develop strategies to manage the potential for and consequences associated with errors. This study tests this observational learning approach on the development of the skills of central line insertion (CLI). Medical trainees with no CLI experience (n = 39) were randomised to three observational practice groups: a group which viewed and assessed videos of an expert performing a CLI without any errors (F); a group which viewed and assessed videos that contained a mix of flawless and errorful performances (E), and a group which viewed the same videos as the E group but were also given information concerning the correctness of their assessments (FA). All participants interacted with their observational videos each day for 4 days. Following this period, participants returned to the laboratory and performed a simulation-based insertion, which was assessed using a standard checklist and a global rating scale for the skill. These ratings served as the dependent measures for analysis. The checklist analysis revealed no differences between observational learning groups (grand mean ± standard error: [20.3 ± 0.7]/25). However, the global rating analysis revealed a main effect of group (d.f.2,36 = 4.51, p = 0.018), which describes better CLI performance in the FA group, compared with the F and E groups. Observational practice that includes errors improves the global performance aspects of clinical skill learning as long as learners are given confirmation that what they are observing is errorful. These findings provide a refined perspective on the optimal organisation of skill education programmes that combine physical and observational practice activities. © 2015 John Wiley & Sons Ltd.
Aberg, Kristoffer C; Müller, Julia; Schwartz, Sophie
2017-01-01
Anticipation and delivery of rewards improves memory formation, but little effort has been made to disentangle their respective contributions to memory enhancement. Moreover, it has been suggested that the effects of reward on memory are mediated by dopaminergic influences on hippocampal plasticity. Yet, evidence linking memory improvements to actual reward computations reflected in the activity of the dopaminergic system, i.e., prediction errors and expected values, is scarce and inconclusive. For example, different previous studies reported that the magnitude of prediction errors during a reinforcement learning task was a positive, negative, or non-significant predictor of successfully encoding simultaneously presented images. Individual sensitivities to reward and punishment have been found to influence the activation of the dopaminergic reward system and could therefore help explain these seemingly discrepant results. Here, we used a novel associative memory task combined with computational modeling and showed independent effects of reward-delivery and reward-anticipation on memory. Strikingly, the computational approach revealed positive influences from both reward delivery, as mediated by prediction error magnitude, and reward anticipation, as mediated by magnitude of expected value, even in the absence of behavioral effects when analyzed using standard methods, i.e., by collapsing memory performance across trials within conditions. We additionally measured trait estimates of reward and punishment sensitivity and found that individuals with increased reward (vs. punishment) sensitivity had better memory for associations encoded during positive (vs. negative) prediction errors when tested after 20 min, but a negative trend when tested after 24 h. In conclusion, modeling trial-by-trial fluctuations in the magnitude of reward, as we did here for prediction errors and expected value computations, provides a comprehensive and biologically plausible description of the dynamic interplay between reward, dopamine, and associative memory formation. Our results also underline the importance of considering individual traits when assessing reward-related influences on memory.
Reducing hydrologic model uncertainty in monthly streamflow predictions using multimodel combination
NASA Astrophysics Data System (ADS)
Li, Weihua; Sankarasubramanian, A.
2012-12-01
Model errors are inevitable in any prediction exercise. One approach that is currently gaining attention in reducing model errors is by combining multiple models to develop improved predictions. The rationale behind this approach primarily lies on the premise that optimal weights could be derived for each model so that the developed multimodel predictions will result in improved predictions. A new dynamic approach (MM-1) to combine multiple hydrological models by evaluating their performance/skill contingent on the predictor state is proposed. We combine two hydrological models, "abcd" model and variable infiltration capacity (VIC) model, to develop multimodel streamflow predictions. To quantify precisely under what conditions the multimodel combination results in improved predictions, we compare multimodel scheme MM-1 with optimal model combination scheme (MM-O) by employing them in predicting the streamflow generated from a known hydrologic model (abcd model orVICmodel) with heteroscedastic error variance as well as from a hydrologic model that exhibits different structure than that of the candidate models (i.e., "abcd" model or VIC model). Results from the study show that streamflow estimated from single models performed better than multimodels under almost no measurement error. However, under increased measurement errors and model structural misspecification, both multimodel schemes (MM-1 and MM-O) consistently performed better than the single model prediction. Overall, MM-1 performs better than MM-O in predicting the monthly flow values as well as in predicting extreme monthly flows. Comparison of the weights obtained from each candidate model reveals that as measurement errors increase, MM-1 assigns weights equally for all the models, whereas MM-O assigns higher weights for always the best-performing candidate model under the calibration period. Applying the multimodel algorithms for predicting streamflows over four different sites revealed that MM-1 performs better than all single models and optimal model combination scheme, MM-O, in predicting the monthly flows as well as the flows during wetter months.
Medication knowledge, certainty, and risk of errors in health care: a cross-sectional study
2011-01-01
Background Medication errors are often involved in reported adverse events. Drug therapy, prescribed by physicians, is mostly carried out by nurses, who are expected to master all aspects of medication. Research has revealed the need for improved knowledge in drug dose calculation, and medication knowledge as a whole is poorly investigated. The purpose of this survey was to study registered nurses' medication knowledge, certainty and estimated risk of errors, and to explore factors associated with good results. Methods Nurses from hospitals and primary health care establishments were invited to carry out a multiple-choice test in pharmacology, drug management and drug dose calculations (score range 0-14). Self-estimated certainty in each answer was recorded, graded from 0 = very uncertain to 3 = very certain. Background characteristics and sense of coping were recorded. Risk of error was estimated by combining knowledge and certainty scores. The results are presented as mean (±SD). Results Two-hundred and three registered nurses participated (including 16 males), aged 42.0 (9.3) years with a working experience of 12.4 (9.2) years. Knowledge scores in pharmacology, drug management and drug dose calculations were 10.3 (1.6), 7.5 (1.6), and 11.2 (2.0), respectively, and certainty scores were 1.8 (0.4), 1.9 (0.5), and 2.0 (0.6), respectively. Fifteen percent of the total answers showed a high risk of error, with 25% in drug management. Independent factors associated with high medication knowledge were working in hospitals (p < 0.001), postgraduate specialization (p = 0.01) and completion of courses in drug management (p < 0.01). Conclusions Medication knowledge was found to be unsatisfactory among practicing nurses, with a significant risk for medication errors. The study revealed a need to improve the nurses' basic knowledge, especially when referring to drug management. PMID:21791106
An electrophysiological signal that precisely tracks the emergence of error awareness
Murphy, Peter R.; Robertson, Ian H.; Allen, Darren; Hester, Robert; O'Connell, Redmond G.
2012-01-01
Recent electrophysiological research has sought to elucidate the neural mechanisms necessary for the conscious awareness of action errors. Much of this work has focused on the error positivity (Pe), a neural signal that is specifically elicited by errors that have been consciously perceived. While awareness appears to be an essential prerequisite for eliciting the Pe, the precise functional role of this component has not been identified. Twenty-nine participants performed a novel variant of the Go/No-go Error Awareness Task (EAT) in which awareness of commission errors was indicated via a separate speeded manual response. Independent component analysis (ICA) was used to isolate the Pe from other stimulus- and response-evoked signals. Single-trial analysis revealed that Pe peak latency was highly correlated with the latency at which awareness was indicated. Furthermore, the Pe was more closely related to the timing of awareness than it was to the initial erroneous response. This finding was confirmed in a separate study which derived IC weights from a control condition in which no indication of awareness was required, thus ruling out motor confounds. A receiver-operating-characteristic (ROC) curve analysis showed that the Pe could reliably predict whether an error would be consciously perceived up to 400 ms before the average awareness response. Finally, Pe latency and amplitude were found to be significantly correlated with overall error awareness levels between subjects. Our data show for the first time that the temporal dynamics of the Pe trace the emergence of error awareness. These findings have important implications for interpreting the results of clinical EEG studies of error processing. PMID:22470332
2011-01-01
Background The generation and analysis of high-throughput sequencing data are becoming a major component of many studies in molecular biology and medical research. Illumina's Genome Analyzer (GA) and HiSeq instruments are currently the most widely used sequencing devices. Here, we comprehensively evaluate properties of genomic HiSeq and GAIIx data derived from two plant genomes and one virus, with read lengths of 95 to 150 bases. Results We provide quantifications and evidence for GC bias, error rates, error sequence context, effects of quality filtering, and the reliability of quality values. By combining different filtering criteria we reduced error rates 7-fold at the expense of discarding 12.5% of alignable bases. While overall error rates are low in HiSeq data we observed regions of accumulated wrong base calls. Only 3% of all error positions accounted for 24.7% of all substitution errors. Analyzing the forward and reverse strands separately revealed error rates of up to 18.7%. Insertions and deletions occurred at very low rates on average but increased to up to 2% in homopolymers. A positive correlation between read coverage and GC content was found depending on the GC content range. Conclusions The errors and biases we report have implications for the use and the interpretation of Illumina sequencing data. GAIIx and HiSeq data sets show slightly different error profiles. Quality filtering is essential to minimize downstream analysis artifacts. Supporting previous recommendations, the strand-specificity provides a criterion to distinguish sequencing errors from low abundance polymorphisms. PMID:22067484
NASA Astrophysics Data System (ADS)
Hardy, Ryan A.; Nerem, R. Steven; Wiese, David N.
2017-12-01
Systematic errors in Gravity Recovery and Climate Experiment (GRACE) monthly mass estimates over the Greenland and Antarctic ice sheets can originate from low-frequency biases in the European Centre for Medium-Range Weather Forecasts (ECMWF) Operational Analysis model, the atmospheric component of the Atmospheric and Ocean Dealising Level-1B (AOD1B) product used to forward model atmospheric and ocean gravity signals in GRACE processing. These biases are revealed in differences in surface pressure between the ECMWF Operational Analysis model, state-of-the-art reanalyses, and in situ surface pressure measurements. While some of these errors are attributable to well-understood discrete model changes and have published corrections, we examine errors these corrections do not address. We compare multiple models and in situ data in Antarctica and Greenland to determine which models have the most skill relative to monthly averages of the dealiasing model. We also evaluate linear combinations of these models and synthetic pressure fields generated from direct interpolation of pressure observations. These models consistently reveal drifts in the dealiasing model that cause the acceleration of Antarctica's mass loss between April 2002 and August 2016 to be underestimated by approximately 4 Gt yr-2. We find similar results after attempting to solve the inverse problem, recovering pressure biases directly from the GRACE Jet Propulsion Laboratory RL05.1 M mascon solutions. Over Greenland, we find a 2 Gt yr-1 bias in mass trend. While our analysis focuses on errors in Release 05 of AOD1B, we also evaluate the new AOD1B RL06 product. We find that this new product mitigates some of the aforementioned biases.
Breakdowns in communication of radiological findings: an ethical and medico-legal conundrum
Murphy, Daniel R.; Singh, Hardeep
2016-01-01
Communication problems in diagnostic testing have increased in both number and importance in recent years. The medical and legal impact of failure of communication is dramatic. Over the past decades, the courts have expanded and strengthened the duty imposed on radiologists to timely communicate radiologic abnormalities to referring physicians and perhaps the patients themselves in certain situations. The need to communicate these findings goes beyond strict legal requirements: there is a moral imperative as well. The Code of Medical Ethics of the American Medical Association points out that “Ethical values and legal principles are usually closely related, but ethical obligations typically exceed legal duties.” Thus, from the perspective of the law, radiologists are required to communicate important unexpected findings to referring physicians in a timely fashion, or alternatively to the patients themselves. From a moral perspective, radiologists should want to effect such communications. Practice standards, moral values, and ethical statements from professional medical societies call for full disclosure of medical errors to patients affected by them. Surveys of radiologists and non-radiologic physicians reveal that only few would divulge all aspects of the error to the patient. In order to encourage physicians to disclose errors to patients and assist in protecting them in some manner if malpractice litigation follows, more than 35 states have passed laws that do not allow a physician’s admission of an error and apologetic statements to be revealed in the courtroom. Whether such disclosure increases or decreases the likelihood of a medical malpractice lawsuit is unclear, but ethical and moral considerations enjoin physicians to disclose errors and offer apologies. PMID:27006891
Quality and strength of patient safety climate on medical-surgical units.
Hughes, Linda C; Chang, Yunkyung; Mark, Barbara A
2009-01-01
Describing the safety climate in hospitals is an important first step in creating work environments where safety is a priority. Yet, little is known about the patient safety climate on medical-surgical units. Study purposes were to describe quality and strength of the patient safety climate on medical-surgical units and explore hospital and unit characteristics associated with this climate. Data came from a larger organizational study to investigate hospital and unit characteristics associated with organizational, nurse, and patient outcomes. The sample for this study was 3,689 RNs on 286 medical-surgical units in 146 hospitals. Nursing workgroup and managerial commitment to safety were the two most strongly positive attributes of the patient safety climate. However, issues surrounding the balance between job duties and safety compliance and nurses' reluctance to reveal errors continue to be problematic. Nurses in Magnet hospitals were more likely to communicate about errors and participate in error-related problem solving. Nurses on smaller units and units with lower work complexity reported greater safety compliance and were more likely to communicate about and reveal errors. Nurses on smaller units also reported greater commitment to patient safety and participation in error-related problem solving. Nursing workgroup commitment to safety is a valuable resource that can be leveraged to promote a sense of personal responsibility for and shared ownership of patient safety. Managers can capitalize on this commitment by promoting a work environment in which control over nursing practice and active participation in unit decisions are encouraged and by developing channels of communication that increase staff nurse involvement in identifying patient safety issues, prioritizing unit-level safety goals, and resolving day-to-day operational problems the have the potential to jeopardize patient safety.
The contributions of human factors on human error in Malaysia aviation maintenance industries
NASA Astrophysics Data System (ADS)
Padil, H.; Said, M. N.; Azizan, A.
2018-05-01
Aviation maintenance is a multitasking activity in which individuals perform varied tasks under constant pressure to meet deadlines as well as challenging work conditions. These situational characteristics combined with human factors can lead to various types of human related errors. The primary objective of this research is to develop a structural relationship model that incorporates human factors, organizational factors, and their impact on human errors in aviation maintenance. Towards that end, a questionnaire was developed which was administered to Malaysian aviation maintenance professionals. Structural Equation Modelling (SEM) approach was used in this study utilizing AMOS software. Results showed that there were a significant relationship of human factors on human errors and were tested in the model. Human factors had a partial effect on organizational factors while organizational factors had a direct and positive impact on human errors. It was also revealed that organizational factors contributed to human errors when coupled with human factors construct. This study has contributed to the advancement of knowledge on human factors effecting safety and has provided guidelines for improving human factors performance relating to aviation maintenance activities and could be used as a reference for improving safety performance in the Malaysian aviation maintenance companies.
The error in total error reduction.
Witnauer, James E; Urcelay, Gonzalo P; Miller, Ralph R
2014-02-01
Most models of human and animal learning assume that learning is proportional to the discrepancy between a delivered outcome and the outcome predicted by all cues present during that trial (i.e., total error across a stimulus compound). This total error reduction (TER) view has been implemented in connectionist and artificial neural network models to describe the conditions under which weights between units change. Electrophysiological work has revealed that the activity of dopamine neurons is correlated with the total error signal in models of reward learning. Similar neural mechanisms presumably support fear conditioning, human contingency learning, and other types of learning. Using a computational modeling approach, we compared several TER models of associative learning to an alternative model that rejects the TER assumption in favor of local error reduction (LER), which assumes that learning about each cue is proportional to the discrepancy between the delivered outcome and the outcome predicted by that specific cue on that trial. The LER model provided a better fit to the reviewed data than the TER models. Given the superiority of the LER model with the present data sets, acceptance of TER should be tempered. Copyright © 2013 Elsevier Inc. All rights reserved.
Testolin, C G; Gore, R; Rivkin, T; Horlick, M; Arbo, J; Wang, Z; Chiumello, G; Heymsfield, S B
2000-12-01
Dual-energy X-ray absorptiometry (DXA) percent (%) fat estimates may be inaccurate in young children, who typically have high tissue hydration levels. This study was designed to provide a comprehensive analysis of pediatric tissue hydration effects on DXA %fat estimates. Phase 1 was experimental and included three in vitro studies to establish the physical basis of DXA %fat-estimation models. Phase 2 extended phase 1 models and consisted of theoretical calculations to estimate the %fat errors emanating from previously reported pediatric hydration effects. Phase 1 experiments supported the two-compartment DXA soft tissue model and established that pixel ratio of low to high energy (R values) are a predictable function of tissue elemental content. In phase 2, modeling of reference body composition values from birth to age 120 mo revealed that %fat errors will arise if a "constant" adult lean soft tissue R value is applied to the pediatric population; the maximum %fat error, approximately 0.8%, would be present at birth. High tissue hydration, as observed in infants and young children, leads to errors in DXA %fat estimates. The magnitude of these errors based on theoretical calculations is small and may not be of clinical or research significance.
Improving estimates of air pollution exposure through ubiquitous sensing technologies.
de Nazelle, Audrey; Seto, Edmund; Donaire-Gonzalez, David; Mendez, Michelle; Matamala, Jaume; Nieuwenhuijsen, Mark J; Jerrett, Michael
2013-05-01
Traditional methods of exposure assessment in epidemiological studies often fail to integrate important information on activity patterns, which may lead to bias, loss of statistical power, or both in health effects estimates. Novel sensing technologies integrated with mobile phones offer potential to reduce exposure measurement error. We sought to demonstrate the usability and relevance of the CalFit smartphone technology to track person-level time, geographic location, and physical activity patterns for improved air pollution exposure assessment. We deployed CalFit-equipped smartphones in a free-living population of 36 subjects in Barcelona, Spain. Information obtained on physical activity and geographic location was linked to space-time air pollution mapping. We found that information from CalFit could substantially alter exposure estimates. For instance, on average travel activities accounted for 6% of people's time and 24% of their daily inhaled NO2. Due to the large number of mobile phone users, this technology potentially provides an unobtrusive means of enhancing epidemiologic exposure data at low cost. Copyright © 2013 Elsevier Ltd. All rights reserved.
Peart, Daniel J; Balsalobre-Fernández, Carlos; Shaw, Matthew P
2017-11-22
Mobile devices are ubiquitous in the population, and most have the capacity to download applications (apps). Some apps have been developed to collect physiological, kinanthropometric and performance data, however the validity and reliability of such data is often unknown. An appraisal of such apps is warranted as mobile apps may offer an alternative method of data collection for practitioners and athletes with money, time and space constraints. This article identifies and critically reviews the commercially available apps that have been tested in the scientific literature, finding evidence to support the measurement of resting heart through photoplethysmograpy, heart rate variability, range of motion, barbell velocity, vertical jump, mechanical variables during running, and distances covered during walking, jogging and running. The specific apps with evidence, along with reported measurement errors are summarised in the review. Whilst mobile apps may have the potential to collect data in the field, athletes and practitioners should exercise caution when implementing them into practice as not all apps have support from the literature, and the performance of a number of apps have only been tested on one device.
Rooijakkers, Michiel; Rabotti, Chiara; Bennebroek, Martijn; van Meerbergen, Jef; Mischi, Massimo
2011-01-01
Non-invasive fetal health monitoring during pregnancy has become increasingly important. Recent advances in signal processing technology have enabled fetal monitoring during pregnancy, using abdominal ECG recordings. Ubiquitous ambulatory monitoring for continuous fetal health measurement is however still unfeasible due to the computational complexity of noise robust solutions. In this paper an ECG R-peak detection algorithm for ambulatory R-peak detection is proposed, as part of a fetal ECG detection algorithm. The proposed algorithm is optimized to reduce computational complexity, while increasing the R-peak detection quality compared to existing R-peak detection schemes. Validation of the algorithm is performed on two manually annotated datasets, the MIT/BIH Arrhythmia database and an in-house abdominal database. Both R-peak detection quality and computational complexity are compared to state-of-the-art algorithms as described in the literature. With a detection error rate of 0.22% and 0.12% on the MIT/BIH Arrhythmia and in-house databases, respectively, the quality of the proposed algorithm is comparable to the best state-of-the-art algorithms, at a reduced computational complexity.
Evolution of the violin: The law of effect in action.
Wasserman, Edward A; Cullen, Patrick
2016-01-01
As is true for most other human inventions, the origin of the violin is unknown. What is known is that this popular and versatile instrument has notably changed over the course of several hundred years. At issue is whether those evolutionary changes in the construction of the violin are the result of premeditated, intelligent design or whether they arose through a trial-and-error process. Recent scientific evidence favors the latter account. Our perspective piece puts these recent empirical findings into a comprehensive selectionist framework. According to this view, the many things we do and make--like violins--arise from a process of variation and selection which accords with the law of effect. Contrary to popular opinion, there is neither mystique nor romance in this process; it is as fundamental and ubiquitous as the law of natural selection. As with the law of natural selection in the evolution of organisms, there is staunch resistance to the role of the law of effect in the evolution of human inventions. We conclude our piece by considering several objections to our perspective. (c) 2016 APA, all rights reserved).