Science.gov

Sample records for erythrocytes abnormal

  1. Abnormalities of the erythrocyte membrane.

    PubMed

    Gallagher, Patrick G

    2013-12-01

    Primary abnormalities of the erythrocyte membrane are characterized by clinical, laboratory, and genetic heterogeneity. Among this group, hereditary spherocytosis patients are more likely to experience symptomatic anemia. Treatment of hereditary spherocytosis with splenectomy is curative in most patients. Growing recognition of the long-term risks of splenectomy has led to re-evaluation of the role of splenectomy. Management guidelines acknowledge these considerations and recommend discussion between health care providers, patient, and family. The hereditary elliptocytosis syndromes are the most common primary disorders of erythrocyte membrane proteins. However, most elliptocytosis patients are asymptomatic and do not require therapy.

  2. Abnormal erythrocyte metabolism in hepatic disease.

    PubMed

    Smith, J R; Kay, N E; Gottlieb, A J; Oski, F A

    1975-12-01

    Erythrocyte (RBC) metabolic studies were done on 114 patients with severe hepatic disease. Heinz body formation after incubation of RBCs with acetyl phenylhydrazine was found to be significantly higher in patients than in controls. RBC-reduced glutathione levels were lower than those of controls both before and after incubation with acetyl phenylhydrazine, and patients with the highest Heinz body counts had the lowest reduced glutathione levels. RBC methylene blue-stimulated hexose monophosphate (HMP) shunt metabolism and glucose recycling through the shunt were significantly lower in patients with active hepatic disease than in controls. There was no difference in resting HMP shunt activity or in resting recycling of glucose. Despite impairment of shunt metabolism, total glucose consumption was greater in patients than in controls. The patients with the lowest stimulated HMP shunt metabolism and glucose recycling had the highest Heinz body counts, lowest reduced glutathione, and highest total glucose consumption. A continuum of abnormal shunt metabolism was seen, from a mild reduction of stimulated HMP shunt activity to a severe combined decrease in both the HMP shunt and glucose recycling. When measured, glutathione reductase, glutathione peroxidase, glucose-6-phosphate dehydrogenase, and transketolase were normal or increased. Sequential studies were done on 11 patients who had abnormal metabolic studies. Coincident with improvement of HMP shunt metabolism, the Heinz body counts became lower, reduced glutathione higher, hematocrit higher, and liver function improved. Impaired HMP shunt metabolism appears to be a common, acquired RBC abnormality in patients with severe, active liver disease.

  3. Abnormal erythrocyte membrane protein pattern in severe megaloblastic anemia.

    PubMed Central

    Ballas, S K

    1978-01-01

    The erythrocyte membrane protein pattern of patients with megaloblastic anemia was determined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. In severe megaloblastic anemia, secondary either to folic acid or vitamin B12 deficiency, the erythrocyte membrane protein pattern was grossly abnormal, lacking bands 1, 2 (spectrin), and 3 and having several diffuse, faster migrating bands. After adequate vitamin replacement therapy, the erythrocyte membrane protein pattern returned to normal. In mild megaloblastic anemia, secondary either to folic acid of vitamin B12 deficiency, and in severe iron deficiency anemia, the erythrocyte membrane protein pattern was normal. Erythrocyte membrane protein pattern of normal membranes did not change after mixing with abnormal membranes before polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Protease activity extracted from membranes of megalocytes was not different from normal. These findings indicate that the erythrocyte membrane protein pattern is abnormal in severe megaloblastic anemia and that this abnormality is not secondary to increased activity of the endogenous erythrocyte membrane proteinase. Images PMID:659579

  4. Abnormal erythrocyte metabolism in hepatic disease: effect of NADP repletion.

    PubMed

    Smith, J R; Kay, N E; Gottlieb, A J; Oski, F A

    1979-01-01

    Erythrocytes from ten patients with severe liver disease displayed low methylene blue-stimulated hexose monophosphate (HMP) shunt activity and glucose recycling despite elevated total glucose consumption when compared to controls. Heinz body formation was increased and reduced glutathione concentration significantly decreased. After hemolysis, no differences in methylene-blue estimulated HMP shunt activity or glucose recycling could be demonstrated between patients and controls. The addition of 2- and 4-mM NADP to the hemolysates produced significantly greater HMP shunt activity and glucose recycling in the patients' hemolysates. The addition of NADPH to the incubation mixture produced no significant stimulation of either HMP shunt activity or glucose recycling, unless methylene blue was also added. Omission of NAD or phosphate from the incubation mixture produced no change in shunt metabolism. The absence of supplemental ATP resulted in extremely low shunt metabolism and refractoriness to NADP stimulation in both patients and controls. In the absence of additional magnesium, a reduction of shunt metabolism was noted. These data suggest that the defect in stimulated shunt metabolism in the intact erythrocytes of patients with hepatic disease does not result from an absolute enzyme deficiency, but rather from an unavailability of NADP or other cofactor.

  5. The haematology of hyperthyroidism: abnormalities of erythrocytes, leucocytes, thrombocytes and haemostasis.

    PubMed Central

    Ford, H. C.; Carter, J. M.

    1988-01-01

    The abnormalities of erythrocytes, leucocytes, thrombocytes and coagulation that have been reported, particularly in more recent years, to be associated with hyperthyroidism are surveyed. Several areas are highlighted where further investigations could lead to clinically useful insights, improved information about the haematological processes involved or to a better understanding of thyroid hormone action. PMID:3076660

  6. Micronuclei and other erythrocyte nuclear abnormalities in fishes from the Great Lakes Basin, USA.

    PubMed

    Braham, Ryan P; Blazer, Vicki S; Shaw, Cassidy H; Mazik, Patricia M

    2017-09-04

    Biological markers (biomarkers) sensitive to genotoxic and mutagenic contamination in fishes are widely used to identify exposure effects in aquatic environments. The micronucleus assay was incorporated into a suite of indicators to assess exposure to genotoxic and mutagenic contamination at five Great Lakes Areas of Concern (AOCs), as well as one non-AOC (reference) site. The assay allowed enumeration of micronuclei as well as other nuclear abnormalities for both site and species comparisons. Erythrocyte abnormality data was also compared to skin and liver tumor prevalence and hepatic transcript abundance. Erythrocyte abnormalities were observed at all sites with variable occurrence and severity among sites and species. Benthic-oriented brown bullhead (Ameiurus nebulosus) and white sucker (Catostomus commersonii) expressed lower rates of erythrocyte abnormalities, but higher rates of skin and liver neoplasms, when compared to pelagic-oriented largemouth bass (Micropterus salmoides) or smallmouth bass (Micropterus dolomieu) at the same site. The reduced erythrocyte abnormalities, increased transcript abundance associated with Phase I and II toxicant responsive pathways, and increased neoplastic lesions among benthic-oriented taxa may indicate the development of contaminant resistance of these species to more acute effects. Environ. Mol. Mutagen., 2017. © 2017 This article is a U.S. Government work and is in the public domain in the USA. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society. © 2017 This article is a U.S. Government work and is in the public domain in the USA. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.

  7. Abnormal membrane protein methylation and merocyanine 540 fluorescence in sickle erythrocyte membranes.

    PubMed

    Manna, C; Hermanowicz, N; Ro, J Y; Neilan, B; Glushko, V; Kim, S

    1984-06-01

    Sickle cell erythrocytes exhibit reduced carboxyl methylation of membrane proteins compared to normal erythrocytes. This altered methylation in sickle membrane proteins is also observable when extracted membranes, both intact and alkali treated, were used as substrates for the homologous protein methylase II (S-adenosylmethionine:protein-carboxyl O-methyltransferase, EC. 2.1.1.24). However, when glycophorin A, one of the major methyl acceptors in both membranes, was extracted by lithium diiodosalicylate and used as the methyl acceptor, the proteins from both membranes were methylated equally, suggesting an involvement of membrane structure in membrane-bound protein methylation. Merocyanine 540 (MC-540), a fluorescent probe, was used to determine if the membranes differed in organization. Incubation of both normal and sickle erythrocytes membranes with MC-540 produced a marked increase in extrinsic fluorescence, reflecting a relatively nonpolar environment for the dye bound to the membranes. The fluorescence from sickle cell ghosts was only 87% as intense as that from normal ghosts, while the actual amount of MC-540 associated with sickle cell membranes was only 62% of normal. These data suggest that differences exist in the distribution of surface charges on these plasma membranes. These results are consistent with the hypothesis that abnormal levels of membrane protein methylation observed in sickle erythrocytes may be a result of abnormal membrane organization characteristic to sickle cell anemia.

  8. Erythrocyte and Biochemical Abnormalities as Diagnostic Markers in Dogs With Hemangiosarcoma Related Hemoabdomen.

    PubMed

    Wong, Richard W; Gonsalves, Mishka N; Huber, Michael L; Rich, Lon; Strom, Adam

    2015-10-01

    To investigate: 1) acanthocytosis and presence of acanthocytes in peritoneal fluid as a diagnostic marker for hemangiosarcoma (HSA) in dogs with non-traumatic hemoabdomen; and 2) the association between other erythrocyte, biochemical, and hematologic abnormalities as a mean of differentiating HSA from other disease. Prospective double-blinded cohort study. Dogs (n = 40) with non-traumatic hemoabdomen. Dogs diagnosed with hemoabdomen (January 2012 to May 2013) had cytologic evaluation of abdominal effusion and peripheral blood smears. Peripheral blood CBC, PT, and aPTT, as well as blood and effusion acanthocytes, keratocytes, schistocytes, lactate, glucose, PCV, and TP results were compared using the paired t-test or Fisher's exact test. Based on histologic confirmation of HSA, dogs were divided into 2 groups (HSA, non-HSA) and variables compared. There was no significant difference in erythrocyte morphology in abdominal effusion or peripheral blood between dogs with HSA or non-HSA related hemoabdomen. Platelet concentration and peripheral blood PCV were significantly lower in the HSA group. A reliable preoperative biochemical or cytologic test to differentiate between HSA and non-HSA related hemoabdomen was not identified. © Copyright 2015 by The American College of Veterinary Surgeons.

  9. Erythrocytic nuclear abnormalities in wild and caged fish (Liza aurata) along an environmental mercury contamination gradient.

    PubMed

    Guilherme, S; Válega, M; Pereira, M E; Santos, M A; Pacheco, M

    2008-07-01

    Laranjo basin (Aveiro, Portugal) has been subjected to mercury contamination from a chlor-alkali plant, presenting a well-described mercury gradient. This study aims the assessment of mercury genotoxicity in this area by measuring erythrocytic nuclear abnormalities (ENA) frequency in the mullet Liza aurata, and its relation with total mercury concentration (Hg(t)) in blood. Wild fish were seasonally analysed, and, complementarily, fish were caged for 3 days at three locations differing on their distances to the mercury source. The results from Laranjo were compared with those from a reference area (S. Jacinto). Wild fish from Laranjo showed elevated ENA frequency in summer and autumn in concomitance with increased blood Hg(t). Surprisingly, no ENA induction was found in winter, despite the highest blood Hg(t), which may be explained by haematological dynamics alterations, as supported by a decreased immature erythrocytes frequency. Caged fish displayed ENA induction only at the closest site to the contamination source, also showing a correlation with blood Hg(t).

  10. Growth of plasmodium falciparum in human erythrocytes containing abnormal membrane proteins

    SciTech Connect

    Schulman, S. City Univ. of New York, NY ); Roth, E.F. Jr.; Cheng, B.; Rybicki, A.C.; Sussman, I.I.; Wong, M.; Nagel, R.L.; Schwartz, R.S. ); Wang, W. ); Ranney, H.M. )

    1990-09-01

    To evaluate the role of erythrocyte (RBC) membrane proteins in the invasion and maturation of Plasmodium falciparum, the authors have studied, in culture, abnormal RBCs containing quantitative or qualitative membrane protein defects. These defects included hereditary spherocytosis (HS) due to decreases in the content of spectrin (HS(Sp{sup +})), hereditary elliptocytosis (HE) due to protein 4.1 deficiency (HE(4.1{sup 0})), HE due to a spectrin {alpha}I domain structural variant that results in increased content of spectrin dimers (HE(Sp{alpha}{sup I/65})), and band 3 structural variants. Parasite invasion, measured by the initial uptake of ({sup 3}H)hypoxanthine 18 hr after inoculation with merozoites, was normal in all of the pathologic RBCs. In contrast, RBCs from six HS(Sp{sup +}) subjects showed marked growth inhibition that became apparent after the first or second growth cycle. The extent of decreased parasite growth in HS(Sp{sup +}) RBCs closely correlated with the extent of RBC spectrin deficiency. Homogeneous subpopulations of dense HS RBCs exhibited decreased parasite growth to the same extent as did HS whole blood. RBCs from four HE subjects showed marked parasite growth and development.

  11. Erythrocyte Shape Abnormalities, Membrane Oxidative Damage, and β-Actin Alterations: An Unrecognized Triad in Classical Autism

    PubMed Central

    Ciccoli, Lucia; De Felice, Claudio; Pecorelli, Alessandra; Belmonte, Giuseppe; Guerranti, Roberto; Cortelazzo, Alessio; Durand, Thierry; Valacchi, Giuseppe; Rossi, Marcello; Hayek, Joussef

    2013-01-01

    Autism spectrum disorders (ASDs) are a complex group of neurodevelopment disorders steadily rising in frequency and treatment refractory, where the search for biological markers is of paramount importance. Although red blood cells (RBCs) membrane lipidomics and rheological variables have been reported to be altered, with some suggestions indicating an increased lipid peroxidation in the erythrocyte membrane, to date no information exists on how the oxidative membrane damage may affect cytoskeletal membrane proteins and, ultimately, RBCs shape in autism. Here, we investigated RBC morphology by scanning electron microscopy in patients with classical autism, that is, the predominant ASDs phenotype (age range: 6–26 years), nonautistic neurodevelopmental disorders (i.e., “positive controls”), and healthy controls (i.e., “negative controls”). A high percentage of altered RBCs shapes, predominantly elliptocytes, was observed in autistic patients, but not in both control groups. The RBCs altered morphology in autistic subjects was related to increased erythrocyte membrane F2-isoprostanes and 4-hydroxynonenal protein adducts. In addition, an oxidative damage of the erythrocyte membrane β-actin protein was evidenced. Therefore, the combination of erythrocyte shape abnormalities, erythrocyte membrane oxidative damage, and β-actin alterations constitutes a previously unrecognized triad in classical autism and provides new biological markers in the diagnostic workup of ASDs. PMID:24453417

  12. Erythrocyte shape abnormalities, membrane oxidative damage, and β-actin alterations: an unrecognized triad in classical autism.

    PubMed

    Ciccoli, Lucia; De Felice, Claudio; Paccagnini, Eugenio; Leoncini, Silvia; Pecorelli, Alessandra; Signorini, Cinzia; Belmonte, Giuseppe; Guerranti, Roberto; Cortelazzo, Alessio; Gentile, Mariangela; Zollo, Gloria; Durand, Thierry; Valacchi, Giuseppe; Rossi, Marcello; Hayek, Joussef

    2013-01-01

    Autism spectrum disorders (ASDs) are a complex group of neurodevelopment disorders steadily rising in frequency and treatment refractory, where the search for biological markers is of paramount importance. Although red blood cells (RBCs) membrane lipidomics and rheological variables have been reported to be altered, with some suggestions indicating an increased lipid peroxidation in the erythrocyte membrane, to date no information exists on how the oxidative membrane damage may affect cytoskeletal membrane proteins and, ultimately, RBCs shape in autism. Here, we investigated RBC morphology by scanning electron microscopy in patients with classical autism, that is, the predominant ASDs phenotype (age range: 6-26 years), nonautistic neurodevelopmental disorders (i.e., "positive controls"), and healthy controls (i.e., "negative controls"). A high percentage of altered RBCs shapes, predominantly elliptocytes, was observed in autistic patients, but not in both control groups. The RBCs altered morphology in autistic subjects was related to increased erythrocyte membrane F2-isoprostanes and 4-hydroxynonenal protein adducts. In addition, an oxidative damage of the erythrocyte membrane β-actin protein was evidenced. Therefore, the combination of erythrocyte shape abnormalities, erythrocyte membrane oxidative damage, and β-actin alterations constitutes a previously unrecognized triad in classical autism and provides new biological markers in the diagnostic workup of ASDs.

  13. Canine malignant hyperthermia susceptibility: erythrocytic defects--osmotic fragility, glucose-6-phosphate dehydrogenase deficiency and abnormal Ca2+ homeostasis.

    PubMed Central

    O'Brien, P J; Forsyth, G W; Olexson, D W; Thatte, H S; Addis, P B

    1984-01-01

    Two dogs were diagnosed as malignant hyperthermia susceptible based on increased susceptibility (P less than 0.001) of biopsied muscle to caffeine-induced contracture. Erythrocytes from malignant hyperthermia and normal dogs were then examined for an antioxidant system deficiency. Values for serum muscle enzymes, reticulocytes and corpuscular hemoglobin were mildly elevated. Osmotic fragility was increased: hemolysis occurred at a NaCl concentration 10 mM higher than for normal dogs (P less than 0.001). A 35% glucose-6-phosphate dehydrogenase deficiency (P less than 0.001) with a 40% compensatory increase (P less than 0.01) in 6-phosphogluconate dehydrogenase activity was found. The membrane Ca2+-activated ATPase activity was abnormal: 100% increased with a 40% decreased Arrhenius activation energy (P less than 0.005) and increased thermostability. A 40% increased intracellular accumulation of total Ca2+ occurred in response to in vitro energy depletion in erythrocytes from one malignant hyperthermia dog (P less than 0.01). The multifactorial pattern of inheritance and the broad spectrum of malignant hyperthermia susceptibility are proposed to result from an antioxidant system deficit unmasking or aggravating an intrinsic muscle membrane anomaly. An individual from a family with a history of malignant hyperthermia or unexplained anesthetic death should be considered malignant hyperthermia susceptible if erythrocyte osmotic fragility is abnormal and there is a mild, unexplained elevation in serum creatine kinase. PMID:6150753

  14. Abnormal octadeca-carbon fatty acids distribution in erythrocyte membrane phospholipids of patients with gastrointestinal tumor.

    PubMed

    Lin, Shaohui; Li, Tianyu; Liu, Xifang; Wei, Shihu; Liu, Zequn; Hu, Shimin; Liu, Yali; Tan, Hongzhuan

    2017-06-01

    Fatty acid (FA) composition is closely associated with tumorigenesis and neoplasm metastasis. This study was designed to investigate the differences of phospholipid FA (PLFA) composition in erythrocyte and platelet cell membranes in both gastrointestinal (GI) tumor patients and healthy controls.In this prospective study, 50 GI tumor patients and 33 healthy volunteers were recruited between the years 2013 and 2015. Blood samples were collected from healthy volunteers and patients, and FA composition was assessed using gas chromatography-mass spectrometer (GC-MS), and data were analyzed by multifactor regression analysis.Compared with healthy controls, the percentages of C18:0 (stearic acid, SA), C22:6 (docosahexaenoic acid, DHA), and n-3 polyunsaturated FAs (n-3 PUFA) were significantly increased, while C18:1 (oleic acid, OA), C18:2 (linoleic acid, LA), and monounsaturated FAs (MUFA) decreased in erythrocyte membranes of GI tumor patients. Also, patient's platelets revealed higher levels of C20:4 (arachidonic acid, AA) and DHA, and lower levels of OA and MUFA.Our study displayed a remarkable change in the FA composition of erythrocyte and platelet membranes in GI tumor patients as compared with healthy controls. The octadeca-carbon FAs (SA, OA, and LA) in erythrocyte membranes could serve as a potential indicator for GI tumor detection.

  15. Common toad Rhinella arenarum (Hensel, 1867) and its importance in assessing environmental health: test of micronuclei and nuclear abnormalities in erythrocytes.

    PubMed

    Pollo, Favio E; Bionda, Clarisa L; Salinas, Zulma A; Salas, Nancy E; Martino, Adolfo L

    2015-09-01

    Anthropogenic activities may generate significant changes in the integrity of aquatic ecosystems, so long-term monitoring of populations that inhabit them is crucial. Counting micronucleated erythrocytes (MN) and erythrocytic nuclear abnormalities (ENA) in peripheral blood is a widely used method for detecting chromosomal damage due to chemical agents in the water. We analyzed MN and ENA frequency in blood obtained from the common toad Rhinella arenarum populations in sites with different degrees of environmental degradation. The results of this study indicate that there is an association between the frequency of micronuclei and nuclear abnormalities and the degree of environmental alteration recorded for the sites studied.

  16. The energy-less red blood cell is lost: erythrocyte enzyme abnormalities of glycolysis.

    PubMed

    van Wijk, Richard; van Solinge, Wouter W

    2005-12-15

    The red blood cell depends solely on the anaerobic conversion of glucose by the Embden-Meyerhof pathway for the generation and storage of high-energy phosphates, which is necessary for the maintenance of a number of vital functions. Many red blood cell enzymopathies have been described that disturb the erythrocyte's integrity, shorten its cellular survival, and result in hemolytic anemia. By far the majority of these enzymopathies are hereditary in nature. In this review, we summarize the current knowledge regarding the genetic, biochemical, and structural features of clinically relevant red blood cell enzymopathies involved in the Embden-Meyerhof pathway and the Rapoport-Luebering shunt.

  17. Detection of micronucleus and abnormal nucleus in erythrocytes from the gill and kidney of Labeo bata cultivated in sewage-fed fish farms.

    PubMed

    Talapatra, S N; Banerjee, S K

    2007-02-01

    Determination of genotoxic effect in fish, micronucleus test as well as the study of the abnormal shape of nuclei is a suitable measure, in which the presence or absence of genotoxins can be detected in water. In the present study, micronuclei and abnormal nuclei frequencies were scored in the gill and kidney erythrocytes of the fish Labeo bata grown in the sewage-fed fish farms of East Calcutta wetlands. Three experimental sites were chosen, namely, Bantala, Chowbaga and Chingrihata (basically these sites have sewage-fed fishponds), which were compared with fishponds of no sewage influence as the control area. Highly significant differences (P<0.001) were noticed for micronucleus frequencies in the gill and kidney erythrocytes of experimental fishes, where kidney erythrocytes showed an increased value than gill erythrocytes without any statistical differences. The frequencies of nuclear abnormalities such as necrotic cells, apoptotic cells, notch nucleated cells and binucleated cells were also counted separately for gill and kidney erythrocytes, in which significantly (P<0.001, P<0.01, P<0.05) increased values were obtained in comparison to control populations. These genotoxicity results confirmed that the sewage-fed ponds contain genotoxic metals such as Cr, Zn, Cu, Pb, Mn, Fe through wastewater and sludge because of the direct use of sewage water without pretreatment which may lead to health risks among humans through chronic consumption of fish from these experimental fish ponds. Other vertebrates grown in sewage-fed ponds may also suffer a certain amount of genotoxic substances.

  18. Longxuetongluo Capsule Improves Erythrocyte Function against Lipid Peroxidation and Abnormal Hemorheological Parameters in High Fat Diet-Induced ApoE-/- Mice.

    PubMed

    Zheng, Jiao; Liu, Binglin; Lun, Qixing; Yao, Weijuan; Zhao, Yunfang; Xiao, Wei; Huang, Wenzhe; Wang, Yonghua; Li, Jun; Tu, Pengfei

    2016-01-01

    Chinese dragon's blood, the red resin of Dracaena cochinchinensis, one of the renowned traditional medicines, has been used to facilitate blood circulation and disperse blood stasis for thousands of years. Phenolic compounds are considered to be responsible for its main biological activities. In this study, total phenolic compounds of Chinese dragon's blood were made into capsule (Longxuetongluo Capsule, LTC) and their effects on the abnormal hemorheological properties were examined by high fat diet (HFD) induced ApoE-/- mice. Compared to the model group, LTC recovered the abnormal hemorheological parameters in HFD-induced ApoE-/- mice by reducing whole blood viscosity (WBV) at high rate and improving erythrocyte function. In conclusion, LTC could ameliorate erythrocyte deformability and osmotic fragility through the reduction of lipid peroxidation on plasma and erythrocyte membranes in HFD-induced ApoE-/- mice, which supported the traditional uses of Chinese dragon's blood as an effective agent for improving blood microcirculation in hypercholesterolemia.

  19. [Automated measurement of reticulocyte count by flow cytometry. II: Analysis of the blood containing abnormal erythrocytes or giant platelets].

    PubMed

    Oyamatsu, T; Shimizu, N; Takeuchi, K; Yamamoto, M; Kawai, Y; Watanabe, K; Iri, H

    1989-07-01

    We have examined the influence of erythrocytes containing inclusion bodies, nucleated red cells or giant platelets on the measurement of reticulocyte count by automated machine, R-1000. Correlation of the reticulocyte count between automated and conventional method was extremely good in the blood containing red cells with Jolly bodies, Pappenheimer bodies or basophilic stippling . However, correlation was poor when the sample contained the nucleated red cells. Reticulocyte count was decreased in the blood with significant amounts of nucleated red cells. Since nucleated red cells themselves are not counted as reticulocytes in the machine, this was considered to be due to increased young reticulocytes which frequently appeared with nucleated red cells. Both cold agglutinated red cells and giant platelets apparently influenced the reticulocyte count by the R-1000. These results suggest that red cells with Jolly bodies, Pappenheimer bodies or basophilic stippling do not influence the automatic counting of reticulocytes. Although nucleated red cells, cold agglutinated red cells and giant platelets affected the reticulocyte count, the machine shows abnormal flags in most of above cases (except highly agglutinated red cells), so that one can recount reticulocytes by conventional method. We conclude the machine can safely count the reticulocytes even in the blood containing abnormal red cells or platelets.

  20. Environmentally Relevant Concentrations of Atrazine and Ametrine Induce Micronuclei Formation and Nuclear Abnormalities in Erythrocytes of Fish.

    PubMed

    Botelho, R G; Monteiro, S H; Christofoletti, C A; Moura-Andrade, G C R; Tornisielo, V L

    2015-11-01

    A rapid and sensitive method using liquid chromatography coupled with mass spectrometry triple quadrupole direct aqueous injection for analysis of atrazine and ametrine herbicides in surface waters was developed. According to the validation method, water samples from six different locations in the Piracicaba River were collected monthly from February 2011 to January 2012 and injected into a liquid chromatographer/dual mass spectrometer without the need for sample extraction. The method was validated and shown to be precise and accurate; limits of detection and quantification were 0.07 and 0.10 µg L(-1) for atrazine and 0.09 and 0.14 µg L(-1) for ametrine. During the sampling period, concentrations of atrazine ranged from 0.11 to 1.92 µg L(-1) and ametrine from 0.25 to 1.44 µg L(-1). After analysis of the herbicides, Danio rerio were exposed a range of concentrations found in the river water to check the induction of micronuclei and nuclear abnormalities (NAs) in erythrocytes. Concentrations of atrazine and ametrine >1.0 and 1.5 µg L(-1), respectively, induced MN formation in D. rerio. Ametrine was shown to be more genotoxic to D. rerio because a greater incidence of NAs was observed compared with atrazine. Therefore, environmentally relevant concentrations of atrazine and ametrine found in the Piracicaba River are dangerous to the aquatic biota.

  1. Longxuetongluo Capsule Improves Erythrocyte Function against Lipid Peroxidation and Abnormal Hemorheological Parameters in High Fat Diet-Induced ApoE−/− Mice

    PubMed Central

    Zheng, Jiao; Liu, Binglin; Lun, Qixing; Yao, Weijuan; Zhao, Yunfang; Xiao, Wei; Huang, Wenzhe; Wang, Yonghua; Li, Jun; Tu, Pengfei

    2016-01-01

    Chinese dragon's blood, the red resin of Dracaena cochinchinensis, one of the renowned traditional medicines, has been used to facilitate blood circulation and disperse blood stasis for thousands of years. Phenolic compounds are considered to be responsible for its main biological activities. In this study, total phenolic compounds of Chinese dragon's blood were made into capsule (Longxuetongluo Capsule, LTC) and their effects on the abnormal hemorheological properties were examined by high fat diet (HFD) induced ApoE−/− mice. Compared to the model group, LTC recovered the abnormal hemorheological parameters in HFD-induced ApoE−/− mice by reducing whole blood viscosity (WBV) at high rate and improving erythrocyte function. In conclusion, LTC could ameliorate erythrocyte deformability and osmotic fragility through the reduction of lipid peroxidation on plasma and erythrocyte membranes in HFD-induced ApoE−/− mice, which supported the traditional uses of Chinese dragon's blood as an effective agent for improving blood microcirculation in hypercholesterolemia. PMID:26649134

  2. Frequency of micronuclei and of other nuclear abnormalities in erythrocytes of the grey mullet from the Mondego, Douro and Ave estuaries--Portugal.

    PubMed

    Carrola, João; Santos, Nádia; Rocha, Maria J; Fontainhas-Fernandes, António; Pardal, Miguel A; Monteiro, Rogério A F; Rocha, Eduardo

    2014-05-01

    Fish are bioindicators of water pollution, and an increased rate of their erythrocyte nuclear morphological abnormalities (ENMAs)-and particularly of erythrocyte micronuclei (EMN)-is used as a genotoxicity biomarker. Despite the potential value of ENMAs and MN, there is scarce information about fish captured in Iberian estuaries. This is the case of the Portuguese estuaries of the Mondego, Douro and Ave, suffering from different levels of environmental stress and where chemical surveys have been disclosing significant amounts of certain pollutants. So, the aim of this study was to evaluate genotoxicants impacts and infer about the exposure at those ecosystems, using the grey mullet (Mugil cephalus) as bioindicator and considering the type and frequency of nuclear abnormalities of erythrocytes as proxies of genotoxicity. Sampling of mullets was done throughout the year in the important Mondego, Douro and Ave River estuaries (centre and north-western Portugal). The fish (total n = 242) were caught in campaigns made in spring-summer and autumn-winter, using nets or fishing rods. The sampled mullets were comparable between locations in terms of the basic biometric parameters. Blood smears were stained with Diff-Quik to assess the frequencies of six types of ENMAs and MN (given per 1,000 erythrocytes). Some basic water physicochemical parameters were recorded to search for fluctuations matching the ENMAs. Overall, the most frequent nucleus abnormality was the polymorphic type, sequentially followed by the blebbed/lobed/notched, segmented, kidney shaped, vacuolated, MN and binucleated. The total average frequency of the ENMAs ranged from 73 ‰ in the Mondego to 108 ‰ in the Ave. The polymorphic type was typically ≥50 % of the total ENMAs, averaging about 51 ‰, when considering all three estuaries. The most serious lesion-the MN-in fish from Mondego and Douro had a similar frequency (≈0.38 ‰), which was significantly lower than that in the Ave (0

  3. Intercellular adhesion molecule-4 and CD36 are implicated in the abnormal adhesiveness of sickle cell SAD mouse erythrocytes to endothelium

    PubMed Central

    Trinh-Trang-Tan, Marie-Marcelle; Vilela-Lamego, Camilo; Picot, Julien; Wautier, Marie-Paule; Cartron, Jean-Pierre

    2010-01-01

    Background Abnormal adhesiveness of red blood cells to endothelium has been implicated in vaso-occlusive crisis of sickle cell disease. The present study examined whether the SAD mouse model exhibits the same abnormalities of red blood cell adhesion as those found in human sickle cell disease. Design and Methods The repertoire of adhesive molecules on murine erythrocytes and bEnd.3 microvascular endothelial cells was determined by flow cytometry using monoclonal antibodies or by western blotting. Adhesion was investigated in dynamic conditions and measured at different shear stresses. Results CD36, CD47 and intercellular adhesion molecular-4, but not Lutheran blood group antigen/basal cell adhesion molecule, are present on mouse mature erythrocytes. α4β1 are not expressed on SAD and wild type reticulocytes. Endothelial bEnd.3 cells express αVβ3, α4β1, CD47, vascular cell adhesion molecule-1, and Lutheran blood group antigen/basal cell adhesion molecule, but not CD36. Adhesion of SAD red cells is: (i) 2- to 3-fold higher than that of wild type red cells; (ii) further increased on platelet activating factor-activated endothelium; (iii) not stimulated by epinephrine; (iv) inhibited after treating the endothelium with a peptide reproducing one of the binding sequences of mouse intercellular adhesion molecular-4, or with mon-oclonal antibody against murine αv integrin; and (v) inhibited after pretreatment of red blood cells with anti-mouse CD36 monoclonal antibodies. The combination of treatments with intercellular adhesion molecular-4 peptide and anti-CD36 monoclonal antibodies eliminates excess adhesion of SAD red cells. The phosphorylation state of intercellular adhesion molecular-4 and CD36 is probably not involved in the over-adhesiveness of SAD erythrocytes. Conclusions Intercellular adhesion molecular-4/αvβ3 and CD36/thrombospondin interactions might contribute to the abnormally high adhesiveness of SAD red cells. The SAD mouse is a valuable animal model

  4. Erythrocyte mechanics and blood flow

    SciTech Connect

    Cokelet, G.R.; Meiselman, H.J.; Brooks, D.E.

    1980-01-01

    This monograph includes the proceedings of a conference on erythrocyte mechanics and blood flow. The topics discussed include: the bilayer and shell model of the erythrocyte membrane; protein-protein interactions in red cell membranes; mechano-chemical study of red cell membrane structure in situ; viscoelastic solid behavior of red cell membrane; measures of blood rheology and erythrocyte mechanics; mechanisms of erythrocyte aggregation; dynamics of red blood cell deformation and aggregation, and in vivo flow; physical and mathematical models of blood flow - theoretical analysis; physical and mathematical models of blood flow - experimental studies; behavior or abnormal erythrocytes in capillaries; reduced erythrocyte deformability and vascular pathology; and microvascular transit of normal, immature, and altered red blood cells in spleen versus skeletal muscle. Summary remarks on in vitro erythrocyte characteristics and in vivo erythrocyte behavior are also indcluded. (RJC)

  5. Abnormal PfEMP1/knob display on Plasmodium falciparum-infected erythrocytes containing hemoglobin variants: fresh insights into malaria pathogenesis and protection

    PubMed Central

    Fairhurst, Rick M.; Bess, Cameron D.; Krause, Michael A.

    2012-01-01

    Hemoglobin (Hb) variants are associated with reduced risk of life-threatening Plasmodium falciparum malaria syndromes, including cerebral malaria and severe malarial anemia. Despite decades of research, the mechanisms by which common Hb variants – sickle HbS, HbC, α-thalassemia, fetal HbF – protect African children against severe and fatal malaria have not been fully elucidated. In vitro experimental and epidemiological data have long suggested that Hb variants do not confer malaria protection by restricting the growth of parasites in red blood cells (RBCs). Recently, four Hb variants were found to impair cytoadherence, the binding of P. falciparum-infected RBCs (PfRBCs) to microvascular endothelial cells (MVECs), a centrally important event in both parasite survival and malaria pathogenesis in humans. Impaired cytoadherence is associated with abnormal display of P. falciparum erythrocyte membrane protein 1 (PfEMP1), the parasite’s major cytoadherence ligand and virulence factor, on the surface of host RBCs. We propose a model in which Hb variants allow parasites to display relatively low levels of PfEMP1, sufficient for sequestering PfRBCs in microvessels and avoiding their clearance from the bloodstream by the spleen. By preventing the display of high levels of PfEMP1, Hb variants may weaken the binding of PfRBCs to MVECs, compromising their ability to activate endothelium and initiate the downstream microvascular events that drive the pathogenesis of malaria. PMID:22634344

  6. Evaluation of oxidative DNA lesions in plasma and nuclear abnormalities in erythrocytes of wild fish (Liza aurata) as an integrated approach to genotoxicity assessment.

    PubMed

    Oliveira, M; Ahmad, I; Maria, V L; Ferreira, C S S; Serafim, A; Bebianno, M J; Pacheco, M; Santos, M A

    2010-12-21

    Genetic lesions (8-hydroxy-2'-deoxyguanosine (8-OHdG) and erythrocytic nuclear abnormalities (ENA) were seasonally quantified in the blood of Liza aurata caught at Ria de Aveiro (Portugal), a multi-contaminated aquatic system. Thus, five critical sites were assessed and compared with a reference site (Torreira). Oxidative DNA damage was found in Gafanha (harbour-water area), Laranjo (metal-contaminated) and Vagos (contaminated with PAHs) in the spring; Rio Novo do Principe (near a former paper-mill effluent) in the autumn; Rio Novo do Principe and Vagos in the winter. ENA were higher than Torreira at VAG (spring and winter). Torreira did not display seasonal variation neither in terms of 8-OHdG or total ENA. A positive correlation between 8-OHdG and ENA was found, suggesting oxidative stress as a mechanism involved in the formation of ENA. This study clearly demonstrates the presence of DNA-damaging substances in Ria de Aveiro and recommends the use of 8-OHdG and ENA as biomarkers of environmental contamination.

  7. Erythrocyte rheology.

    PubMed

    Stuart, J

    1985-09-01

    Erythrocyte deformability was formerly measured by its contribution to whole blood viscosity. It is now more commonly measured by filtration of erythrocytes through, or aspiration into, pores of 3-5 microns diameter and by the measurement of shear induced erythrocyte elongation using laser diffractometry. Recent improvements in the technology for erythrocyte filtration have included the removal of acute phase reactants from test erythrocyte suspensions, ultrasonic cleaning and reuse of filter membranes, awareness of the importance of mean cell volume as a determinant of flow through 3 microns diameter pores, and the ability to detect subpopulations of less deformable erythrocytes. Measurements of erythrocyte elongation by laser diffractometry, using the Ektacytometer, are also influenced by cell size and need to be corrected for mean cell volume. These advances have greatly improved the sensitivity and specificity of rheological methods for measuring the deformability of erythrocytes and for investigating the mode of action of rheologically active drugs.

  8. Analysis of nuclear abnormalities in erythrocytes of rainbow trout (Oncorhynchus mykiss) treated with Cu and Zn and after 4-, 8-, and 12-day depuration (post-treatment recovery).

    PubMed

    Stankevičiūtė, Milda; Butrimavičienė, Laura; Valskienė, Roberta; Greiciūnaitė, Janina; Baršienė, Janina; Vosylienė, Milda Zita; Svecevičius, Gintaras

    2016-02-01

    The induction of micronuclei (MN), nuclear buds (NB), bi-nucleated erythrocytes with nucleoplasmic bridge (BNb), vacuolated (VacNuc), blebbed (BL), 8-shaped nuclei, bi-nucleated (BN) and fragmented-apoptotic (FA) erythrocytes was analysed in the peripheral blood, cephalic kidney and liver of rainbow trout Oncorhynchus mykiss after 4-day treatment with copper (Cu) and zinc (Zn) mixture solutions and in 4-, 8- and 12-day depuration process. Fish (three treatment and one control group, N=40) were exposed to 0.0625, 0.125 and 0.25 fractions of 96-h LC50, respectively under semi-static conditions. Exposure of O. mykiss to Cu and Zn induced significant increase of MN (in blood in all test groups; in liver 0.125, 0.25 and in kidney 0.25 groups, respectively), NB and BL (in blood and kidney 0.25 group), 8-shaped (in blood 0.25; in liver 0.125, 0.25 and in kidney all test groups, respectively) and VacNuc (in liver and kidney 0.0625 and 0.125 groups). After 4-day recovery, significantly elevated levels of MN (in blood 0.0625, 0.125; in liver and kidney 0.125 group, respectively) and 8-shaped (in kidney-0.0625 group) were observed in fish. Significant recovery was observed in 0.0625 group after 12-day depuration, estimating the formation of MN in erythrocytes of blood, of 8-shaped nuclei erythrocytes in liver and kidney (after 8-, 12-day and 8-day recovery, respectively). Significant decrease of MN in blood (after 8- and 12-day recovery), in liver (after 8-day recovery), of NB in blood and kidney (after 8-day recovery) and of 8-shaped nuclei erythrocytes in blood (after 8 and 12-day recovery), kidney and liver (after 8-day recovery) was determined in 0.25 group. Changes in gross morphometric indices and biological parameters were observed. The binary metal mixture did not induce FA erythrocytes in any tissue at any test concentration.

  9. Combination of physico-chemical analysis, Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay/nuclear abnormalities tests for cyto-genotoxicity assessments of treated effluents discharged from textile industries.

    PubMed

    Hemachandra, Chamini K; Pathiratne, Asoka

    2016-09-01

    Bioassays for cyto-genotoxicity assessments are generally not required in current textile industry effluent discharge management regulations. The present study applied in vivo plant and fish based toxicity tests viz. Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay and nuclear abnormalities tests in combination with physico-chemical analysis for assessing potential cytotoxic/genotoxic impacts of treated textile industry effluents reaching a major river (Kelani River) in Sri Lanka. Of the treated effluents tested from two textile industries, color in the Textile industry 1 effluents occasionally and color, biochemical oxygen demand and chemical oxygen demand in the Textile industry 2 effluents frequently exceeded the specified Sri Lankan tolerance limits for discharge of industrial effluents into inland surface waters. Exposure of A. cepa bulbs to 100% and 12.5% treated effluents from both industries resulted in statistically significant root growth retardation, mito-depression, and induction of chromosomal abnormalities in root meristematic cells in comparison to the dilution water in all cases demonstrating cyto-genotoxicity associated with the treated effluents. Exposure of O. niloticus to the 100% and 12.5% effluents, resulted in erythrocytic genetic damage as shown by elevated total comet scores and induction of nuclear abnormalities confirming the genotoxicity of the treated effluents even with 1:8 dilution. The results provide strong scientific evidence for the crucial necessity of incorporating cyto-genotoxicity impact assessment tools in textile industry effluent management regulations considering human health and ecological health of the receiving water course under chronic exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Uranium ((238)U)-induced ROS and cell cycle perturbations, antioxidant responses and erythrocyte nuclear abnormalities in the freshwater iridescent shark fish Pangasius sutchi.

    PubMed

    Annamalai, Sathesh Kumar; Arunachalam, Kantha Deivi

    2017-03-02

    The strategic plan of this study is to analyze any possible radiological impact on aquatic organisms from forthcoming uranium mining facilities around the Nagarjuna Sagar Dam in the future. The predominantly consumed and dominant fish species Pangasius sutchi, which is available year-round at Nagarjuna Sagar Dam, was selected for the study. To comprehend the outcome and to understand the mode of action of (238)U, the fish species Pangasius sutchi was exposed to ¼ and ½ of the LC50 doses of waterborne (238)U in a static system in duplicate for 21 days. Blood and organs, including the gills, liver, brain and muscles, were collected at different time periods-0h, 24h, 48h, 72h, 96h, 7, days 14days and 21 days-using ICP-MS to determine the toxic effects of uranium and the accumulation of (238)U concentrations. The bioaccumulation of (238)U in P. sutchi tissues was dependent on exposure time and concentration. The accumulation of uranium was, in order of magnitude, measured as gills>liver>brain>tissue, with the highest accumulation in the gills. It was observed that exposure to (238)U significantly reduced antioxidant enzymes such as superoxide dismutase, catalase, and lipid peroxidase. The analysis of DNA fragmentation by comet assay and cell viability by flow cytometry was performed at different time intervals. DNA histograms by flow cytometry analysis revealed an increase in the G2/M phase and the S phase. The long-term (238)U exposure studies in fish showed increasing micronucleus frequencies in erythrocytes with greater exposure time. The higher the concentration of (238)U is, the greater is the effect observed, suggesting a close relationship between accumulation and toxicity. A possible ROS-mediated (238)U toxicity mechanism and antioxidant responses have been proposed.

  11. Frequencies of erythrocyte nuclear abnormalities and of leucocytes in the fish Barbus peloponnesius correlate with a pollution gradient in the River Bregalnica (Macedonia).

    PubMed

    Rebok, Katerina; Jordanova, Maja; Slavevska-Stamenković, Valentina; Ivanova, Lozenka; Kostov, Vasil; Stafilov, Trajče; Rocha, Eduardo

    2017-03-10

    Integrated chemical and biomarker approaches were performed to estimate if there is ongoing toxicity in the River Bregalnica, namely connected with the presence of metals. The study was performed in water, sediment, and barbel (Barbus peloponnesius), collected in two seasons, from two suspected polluted and one reference zones. The water analyses revealed higher mean values in polluted sites for most of the examined physicochemical parameters. Metal concentrations (Zn, Cu, Cd, Mn, Pb, and Fe) in water were more or less constant, whereas in sediment, they were higher at the two polluted locations. Condition factor (CF), as a general health indicator, revealed better overall condition in barbel from the reference site. In general, blood parameters revealed higher values in the polluted localities. Irrespective of sex and/or season, the frequency of micronuclei (MN) and vacuolated nuclei (VN) were with higher rates in polluted sites. Similarly, the frequencies of the leucocytes (Le), binuclei (BN), and irregularly shaped nuclei (ISN) were also significantly increased in the polluted localities, but they seemed prone to be influenced by sex and/or season. However, strong positive correlations between blood biomarkers and most water physicochemical parameters and metal in sediment were estimated. Our data support that the River Bregalnica's lower course receives significant genotoxic pollution, likely via metal industry effluents, agricultural runoff, and domestic sewage, and reinforced the utility of MN and other nuclear abnormalities as sensitive and suitable biomarkers for genotoxicity when used in monitoring studies.

  12. Mice deficient in the putative phospholipid flippase ATP11C exhibit altered erythrocyte shape, anemia, and reduced erythrocyte life span.

    PubMed

    Yabas, Mehmet; Coupland, Lucy A; Cromer, Deborah; Winterberg, Markus; Teoh, Narci C; D'Rozario, James; Kirk, Kiaran; Bröer, Stefan; Parish, Christopher R; Enders, Anselm

    2014-07-11

    Transmembrane lipid transporters are believed to establish and maintain phospholipid asymmetry in biological membranes; however, little is known about the in vivo function of the specific transporters involved. Here, we report that developing erythrocytes from mice lacking the putative phosphatidylserine flippase ATP11C showed a lower rate of PS translocation in vitro compared with erythrocytes from wild-type littermates. Furthermore, the mutant mice had an elevated percentage of phosphatidylserine-exposing mature erythrocytes in the periphery. Although erythrocyte development in ATP11C-deficient mice was normal, the mature erythrocytes had an abnormal shape (stomatocytosis), and the life span of mature erythrocytes was shortened relative to that in control littermates, resulting in anemia in the mutant mice. Thus, our findings uncover an essential role for ATP11C in erythrocyte morphology and survival and provide a new candidate for the rare inherited blood disorder stomatocytosis with uncompensated anemia. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Detergent induced lysis of erythrocytes in kwashiorkor.

    PubMed

    Rao, A; Onuora, C U; Cherian, A

    1987-09-15

    The effect of the non-ionic detergent Nonidet P40 on lysis of erythrocytes in children suffering from kwashiorkor was studied. The concentration of the detergent causing 50% haemolysis was significantly reduced in these patients. Detergent haemolysis was more sensitive than osmotic fragility (which was reduced). The abnormality was only slight in marasmic children.

  14. Antithrombin Activity of Erythrocyte Microvesicles.

    PubMed

    Levin, G Ya; Sukhareva, E G

    2017-04-01

    Coagulation and optical (based on chromogenic substrate) methods were employed to examine antithrombin activity of erythrocytes and erythrocyte-derived microvesicles isolated days 7, 14, 21, and 28 on erythrocyte storage. The erythrocyte-derived microvesicles decelerated fibrin clot formation from fibrinogen in the presence of exogenous thrombin both with and without heparin. Microvesicles reduced optical density of chromogenic substrate. These data suggest that erythrocyte-derived microvesicles display a prominent antithrombin activity, which significantly increases during erythrocyte storage.

  15. Antioxidant effect of lutein towards phospholipid hydroperoxidation in human erythrocytes.

    PubMed

    Nakagawa, Kiyotaka; Kiko, Takehiro; Hatade, Keijiro; Sookwong, Phumon; Arai, Hiroyuki; Miyazawa, Teruo

    2009-11-01

    Peroxidised phospholipid-mediated cytotoxity is involved in the pathophysiology of many diseases; for example, phospholipid hydroperoxides (PLOOH) are abnormally increased in erythrocytes of dementia patients. Dietary carotenoids (especially xanthophylls, polar carotenoids such as lutein) have gained attention as potent inhibitors against erythrocyte phospholipid hydroperoxidation, thereby making them plausible candidates for preventing diseases (i.e. dementia). To evaluate these points, we investigated whether orally administered lutein is distributed to human erythrocytes, and inhibits erythrocyte PLOOH formation. Six healthy subjects took one capsule of food-grade lutein (9.67 mg lutein per capsule) once per d for 4 weeks. Before and during the supplementation period, carotenoids and PLOOH in erythrocytes and plasma were determined by our developed HPLC technique. The administered lutein was incorporated into human erythrocytes, and erythrocyte PLOOH level decreased after the ingestion for 2 and 4 weeks. The antioxidative effect of lutein was confirmed on erythrocyte membranes, but not in plasma. These results suggest that lutein has the potential to act as an important antioxidant molecule in erythrocytes, and it thereby may contribute to the prevention of dementia. Therefore future biological and clinical studies will be required to evaluate the efficacy as well as safety of lutein in models of dementia with a realistic prospect of its use in human therapy.

  16. Antioxidant effect of astaxanthin on phospholipid peroxidation in human erythrocytes.

    PubMed

    Nakagawa, Kiyotaka; Kiko, Takehiro; Miyazawa, Taiki; Carpentero Burdeos, Gregor; Kimura, Fumiko; Satoh, Akira; Miyazawa, Teruo

    2011-06-01

    Phospholipid hydroperoxides (PLOOH) accumulate abnormally in the erythrocytes of dementia patients, and dietary xanthophylls (polar carotenoids such as astaxanthin) are hypothesised to prevent the accumulation. In the present study, we conducted a randomised, double-blind, placebo-controlled human trial to assess the efficacy of 12-week astaxanthin supplementation (6 or 12 mg/d) on both astaxanthin and PLOOH levels in the erythrocytes of thirty middle-aged and senior subjects. After 12 weeks of treatment, erythrocyte astaxanthin concentrations were higher in both the 6 and 12 mg astaxanthin groups than in the placebo group. In contrast, erythrocyte PLOOH concentrations were lower in the astaxanthin groups than in the placebo group. In the plasma, somewhat lower PLOOH levels were found after astaxanthin treatment. These results suggest that astaxanthin supplementation results in improved erythrocyte antioxidant status and decreased PLOOH levels, which may contribute to the prevention of dementia.

  17. Mice Deficient in the Putative Phospholipid Flippase ATP11C Exhibit Altered Erythrocyte Shape, Anemia, and Reduced Erythrocyte Life Span*♦

    PubMed Central

    Yabas, Mehmet; Coupland, Lucy A.; Cromer, Deborah; Winterberg, Markus; Teoh, Narci C.; D'Rozario, James; Kirk, Kiaran; Bröer, Stefan; Parish, Christopher R.; Enders, Anselm

    2014-01-01

    Transmembrane lipid transporters are believed to establish and maintain phospholipid asymmetry in biological membranes; however, little is known about the in vivo function of the specific transporters involved. Here, we report that developing erythrocytes from mice lacking the putative phosphatidylserine flippase ATP11C showed a lower rate of PS translocation in vitro compared with erythrocytes from wild-type littermates. Furthermore, the mutant mice had an elevated percentage of phosphatidylserine-exposing mature erythrocytes in the periphery. Although erythrocyte development in ATP11C-deficient mice was normal, the mature erythrocytes had an abnormal shape (stomatocytosis), and the life span of mature erythrocytes was shortened relative to that in control littermates, resulting in anemia in the mutant mice. Thus, our findings uncover an essential role for ATP11C in erythrocyte morphology and survival and provide a new candidate for the rare inherited blood disorder stomatocytosis with uncompensated anemia. PMID:24898253

  18. Storage of Erythrocytes Induces Suicidal Erythrocyte Death.

    PubMed

    Lang, Elisabeth; Pozdeev, Vitaly I; Xu, Haifeng C; Shinde, Prashant V; Behnke, Kristina; Hamdam, Junnat M; Lehnert, Erik; Scharf, Rüdiger E; Lang, Florian; Häussinger, Dieter; Lang, Karl S; Lang, Philipp A

    2016-01-01

    Similar to apoptosis of nucleated cells, red blood cells (RBC) can undergo suicidal cell death - called eryptosis. It is characterized by cell shrinkage and phosphatidylserine translocation. Eryptosis is triggered by an increase of intracellular calcium concentration due to activation of nonselective cation channels. The cation channels and consequently eryptosis are inhibited by erythropoietin. Eryptotic RBC are engulfed by macrophages and thus rapidly cleared from circulating blood. In this study, we explored whether storage of RBC influences the rate of eryptosis. Flow cytometry was employed to quantify phosphatidylserine exposing erythrocytes from annexin V binding and cytosolic Ca2+ activity from Fluo-3 fluorescence. Clearance of stored murine RBC was tested by injection of carboxyfluorescein succinimidyl ester (CFSE)-labelled erythrocytes. Storage for 42 days significantly increased the percentage of phosphatidylserine exposing and haemolytic erythrocytes, an effect blunted by removal of extracellular calcium. Phosphatidylserine exposure could be inhibited by addition of erythropoietin. Upon transfusion, the clearance of murine CFSE-labelled RBC from circulating blood was significantly higher following storage for 10 days when compared to 2 days of storage. Storage of RBC triggers eryptosis by Ca2+ and erythropoietin sensitive mechanisms. © 2016 The Author(s) Published by S. Karger AG, Basel.

  19. Focusing and alignment of erythrocytes in a viscoelastic medium

    NASA Astrophysics Data System (ADS)

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2017-01-01

    Viscoelastic fluid flow-induced cross-streamline migration has recently received considerable attention because this process provides simple focusing and alignment over a wide range of flow rates. The lateral migration of particles depends on the channel geometry and physicochemical properties of particles. In this study, digital in-line holographic microscopy (DIHM) is employed to investigate the lateral migration of human erythrocytes induced by viscoelastic fluid flow in a rectangular microchannel. DIHM provides 3D spatial distributions of particles and information on particle orientation in the microchannel. The elastic forces generated in the pressure-driven flows of a viscoelastic fluid push suspended particles away from the walls and enforce erythrocytes to have a fixed orientation. Blood cell deformability influences the lateral focusing and fixed orientation in the microchannel. Different from rigid spheres and hardened erythrocytes, deformable normal erythrocytes disperse from the channel center plane, as the flow rate increases. Furthermore, normal erythrocytes have a higher angle of inclination than hardened erythrocytes in the region near the side-walls of the channel. These results may guide the label-free diagnosis of hematological diseases caused by abnormal erythrocyte deformability.

  20. Focusing and alignment of erythrocytes in a viscoelastic medium

    PubMed Central

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2017-01-01

    Viscoelastic fluid flow-induced cross-streamline migration has recently received considerable attention because this process provides simple focusing and alignment over a wide range of flow rates. The lateral migration of particles depends on the channel geometry and physicochemical properties of particles. In this study, digital in-line holographic microscopy (DIHM) is employed to investigate the lateral migration of human erythrocytes induced by viscoelastic fluid flow in a rectangular microchannel. DIHM provides 3D spatial distributions of particles and information on particle orientation in the microchannel. The elastic forces generated in the pressure-driven flows of a viscoelastic fluid push suspended particles away from the walls and enforce erythrocytes to have a fixed orientation. Blood cell deformability influences the lateral focusing and fixed orientation in the microchannel. Different from rigid spheres and hardened erythrocytes, deformable normal erythrocytes disperse from the channel center plane, as the flow rate increases. Furthermore, normal erythrocytes have a higher angle of inclination than hardened erythrocytes in the region near the side-walls of the channel. These results may guide the label-free diagnosis of hematological diseases caused by abnormal erythrocyte deformability. PMID:28117428

  1. Hemoglobin C trait accentuates erythrocyte dehydration in hereditary xerocytosis.

    PubMed

    Yang, Elizabeth; Voelkel, Erin B; Lezon-Geyda, Kimberly; Schulz, Vincent P; Gallagher, Patrick G

    2017-08-01

    A 17-year-old male presented with acute hemolysis with stomatocytosis, elevated mean corpuscular hemoglobin concentration (MCHC), and osmotic gradient ektacytometry consistent with marked erythrocyte dehydration. Erythrocytes from both parents also demonstrated evidence of dehydration with elevated MCHC and abnormal ektacytometry, but neither to the degree of the patient. Genetic studies revealed the patient had hereditary xerocytosis (HX) due to a novel PIEZO1 mutation inherited from his mother and hemoglobin C (HbC) trait inherited from his father. HbC trait accentuated the erythrocyte dehydration of HX. Coinheritance of interrelated disorders and/or modifier alleles should be considered whenever severe erythrocyte dehydration is observed. © 2017 Wiley Periodicals, Inc.

  2. The size of erythrocyte ghosts.

    PubMed

    Tatsumi, N

    1981-02-20

    The volume of resealed erythrocyte ghosts formed during hypotonic hemolysis of normal human erythrocytes was measured by means of a continuous mean corpuscular volume analyzer. The final volume of resealed ghosts was 140.6 +/- 15.2 fl. Strong correlations exist between the volume of ghosts and the initial mean corpuscular volume and mean corpuscular hemoglobin of the erythrocyte, and between the enlargement ratio and the mean corpuscular volume or mean corpuscular hemoglobin of the erythrocyte.

  3. Oxidative Hemolysis of Erythrocytes

    ERIC Educational Resources Information Center

    Wlodek, Lidia; Kusior, Dorota

    2006-01-01

    This exercise for students will allow them to simultaneously observe lipid peroxidation and consequent hemolysis of rat erythrocytes and the effect of sodium azide, a catalase inhibitor, on these processes. It will also demonstrate a protective action of antioxidants, the therapeutically used N-acetylcysteine and albumins present in plasma.

  4. Oxidative Hemolysis of Erythrocytes

    ERIC Educational Resources Information Center

    Wlodek, Lidia; Kusior, Dorota

    2006-01-01

    This exercise for students will allow them to simultaneously observe lipid peroxidation and consequent hemolysis of rat erythrocytes and the effect of sodium azide, a catalase inhibitor, on these processes. It will also demonstrate a protective action of antioxidants, the therapeutically used N-acetylcysteine and albumins present in plasma.

  5. Phosphorylation of intact erythrocytes in human muscular dystrophy

    SciTech Connect

    Johnson, R.M.; Nigro, M.

    1986-04-01

    The uptake of exogenous /sup 32/Pi into the membrane proteins of intact erythrocytes was measured in 8 patients with Duchenne muscular dystrophy. No abnormalities were noted after autoradiographic analysis. This contrasts with earlier results obtained when isolated membranes were phosphorylated with gamma-(/sup 32/P)ATP, and suggests a possible reinterpretation of those experiments.

  6. Flow behavior of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformation and erythrocyte aggregation.

    PubMed

    Suzuki, Y; Tateishi, N; Soutani, M; Maeda, N

    1996-01-01

    Flow behavior of erythrocytes in microvessels and glass capillaries with an inner diameter of 10-50 microns was compared in relation to erythrocyte deformation and erythrocyte aggregation. This study was focused on the formation of a marginal cell-free layer, and the thickness was determined using an image processor. Human erythrocytes were perfused through a part of microvascular networks isolated from rabbit mesentery and through glass capillaries. Erythrocyte deformability was modified by treating erythrocytes with diamide, diazene-dicarboxylic acid bis[N,N-dimethylamide], and erythrocyte aggregation was accelerated by adding dextran (with a molecular weight of 70,400) to the perfusion medium. The thickness of the cell-free layer increased with an increase of the inner diameter of flow channel, with lowering the hematocrit, and with increasing the flow velocity of erythrocytes, in both microvessels and glass capillaries. Furthermore, the thickness of cell-free layer decreased with decreasing erythrocyte deformability, while it increased with accelerating erythrocyte aggregation. However, the alteration of the cell-free layer in response to the changes of these hemorheological conditions was more sensitive in microvessels than in glass capillaries. The present study concludes that flow behavior of erythrocytes in microvessels is qualitatively similar to, but quantitatively different from those in glass capillaries, as far as evaluated by the change of the thickness of the marginal cell-free layer.

  7. Erythrocyte membrane stability to hydrogen peroxide is decreased in Alzheimer disease.

    PubMed

    Gilca, Marilena; Lixandru, Daniela; Gaman, Laura; Vîrgolici, Bogdana; Atanasiu, Valeriu; Stoian, Irina

    2014-01-01

    The brain and erythrocytes have similar susceptibility toward free radicals. Therefore, erythrocyte abnormalities might indicate the progression of the oxidative damage in Alzheimer disease (AD). The aim of this study was to investigate erythrocyte membrane stability and plasma antioxidant status in AD. Fasting blood samples (from 17 patients with AD and 14 healthy controls) were obtained and erythrocyte membrane stability against hydrogen peroxide and 2,2'-azobis-(2-amidinopropane) dihydrochloride (AAPH), serum Trolox equivalent antioxidant capacity (TEAC), residual antioxidant activity or gap (GAP), erythrocyte catalase activity (CAT), erythrocyte superoxide dismutase (SOD) activity, erythrocyte nonproteic thiols, and total plasma thiols were determined. A significant decrease in erythrocyte membrane stability to hydrogen peroxide was found in AD patients when compared with controls (P<0.05). On the contrary, CAT activity (P<0.0001) and total plasma thiols (P<0.05) were increased in patients with AD compared with controls. Our results indicate that the most satisfactory measurement of the oxidative stress level in the blood of patients with AD is the erythrocyte membrane stability to hydrogen peroxide. Reduced erythrocyte membrane stability may be further evaluated as a potential peripheral marker for oxidative damage in AD.

  8. Hemorheological abnormalities in human arterial hypertension

    NASA Astrophysics Data System (ADS)

    Lo Presti, Rosalia; Hopps, Eugenia; Caimi, Gregorio

    2014-05-01

    Blood rheology is impaired in hypertensive patients. The alteration involves blood and plasma viscosity, and the erythrocyte behaviour is often abnormal. The hemorheological pattern appears to be related to some pathophysiological mechanisms of hypertension and to organ damage, in particular left ventricular hypertrophy and myocardial ischemia. Abnormalities have been observed in erythrocyte membrane fluidity, explored by fluorescence spectroscopy and electron spin resonance. This may be relevant for red cell flow in microvessels and oxygen delivery to tissues. Although blood viscosity is not a direct target of antihypertensive therapy, the rheological properties of blood play a role in the pathophysiology of arterial hypertension and its vascular complications.

  9. An Ensemble Rule Learning Approach for Automated Morphological Classification of Erythrocytes.

    PubMed

    Maity, Maitreya; Mungle, Tushar; Dhane, Dhiraj; Maiti, A K; Chakraborty, Chandan

    2017-04-01

    The analysis of pathophysiological change to erythrocytes is important for early diagnosis of anaemia. The manual assessment of pathology slides is time-consuming and complicated regarding various types of cell identification. This paper proposes an ensemble rule-based decision-making approach for morphological classification of erythrocytes. Firstly, the digital microscopic blood smear images are pre-processed for removal of spurious regions followed by colour normalisation and thresholding. The erythrocytes are segmented from background image using the watershed algorithm. The shape features are then extracted from the segmented image to detect shape abnormality present in microscopic blood smear images. The decision about the abnormality is taken using proposed multiple rule-based expert systems. The deciding factor is majority ensemble voting for abnormally shaped erythrocytes. Here, shape-based features are considered for nine different types of abnormal erythrocytes including normal erythrocytes. Further, the adaptive boosting algorithm is used to generate multiple decision tree models where each model tree generates an individual rule set. The supervised classification method is followed to generate rules using a C4.5 decision tree. The proposed ensemble approach is precise in detecting eight types of abnormal erythrocytes with an overall accuracy of 97.81% and weighted sensitivity of 97.33%, weighted specificity of 99.7%, and weighted precision of 98%. This approach shows the robustness of proposed strategy for erythrocytes classification into abnormal and normal class. The article also clarifies its latent quality to be incorporated in point of care technology solution targeting a rapid clinical assistance.

  10. Frequency of enzyme deficiency variants in erythrocytes of newborn infants

    SciTech Connect

    Mohrenweiser, H.W.

    1981-08-01

    The frequency of enzyme deficiency variants, defined as alleles whose products are either absent or almost devoid of normal activity in erythrocytes, was determined for nine erythrocyte enzymes in some 675 newborn infants and in approximately 200 adults. Examples of this type of genetic abnormality, which in the homozygous condition are often associated with significant health consequences, were detected for seven of the nine enzymes studied. Fifteen inherited enzyme deficiency variants in 1809 determinations from adults were identified. Seven of the deficiency variants involved triosephosphate isomerase, a frequency of 0.01 in the newborn population. The average frequency of 2.4/1000 is 2 to 3 times the frequency observed for rare electrophoretic variants of erythrocyte enzymes in this same population.

  11. Dielectric inspection of erythrocyte morphology

    NASA Astrophysics Data System (ADS)

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio; Asami, Koji

    2008-05-01

    We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes.

  12. Disorders of erythrocyte volume homeostasis.

    PubMed

    Glogowska, E; Gallagher, P G

    2015-05-01

    Inherited disorders of erythrocyte volume homeostasis are a heterogeneous group of rare disorders with phenotypes ranging from dehydrated to overhydrated erythrocytes. Clinical, laboratory, physiologic, and genetic heterogeneities characterize this group of disorders. A series of recent reports have provided novel insights into our understanding of the genetic bases underlying some of these disorders of red cell volume regulation. This report reviews this progress in understanding determinants that influence erythrocyte hydration and how they have yielded a better understanding of the pathways that influence cellular water and solute homeostasis. © 2015 John Wiley & Sons Ltd.

  13. Disorders of Erythrocyte Volume Homeostasis

    PubMed Central

    Glogowska, Edyta; Gallagher, Patrick G.

    2015-01-01

    Inherited disorders of erythrocyte volume homeostasis are a heterogeneous group of rare disorders with phenotypes ranging from dehydrated to overhydrated erythrocytes. Clinical, laboratory, physiologic, and genetic heterogeneity characterize this group of disorders. A series of recent reports have provided novel insights into our understanding of the genetic bases underlying some of these disorders of red cell volume regulation. This report reviews this progress in understanding determinants that influence erythrocyte hydration and how they have yielded a better understanding of the pathways that influence cellular water and solute homeostasis. PMID:25976965

  14. Alterations in rheological properties and erythrocyte membrane proteins in cats with diabetes mellitus.

    PubMed

    Kaymaz, Alev Akdogan; Tamer, Sule; Albeniz, Isil; Cefle, Kivanc; Palanduz, Sukru; Ozturk, Sukru; Salmayenli, Nihal

    2005-01-01

    Many studies have shown that diabetes mellitus is associated with increased whole and blood viscosity and decreased erythrocyte deformability. It has been suggested that these abnormalities in blood rheology may play a causative role in the pathogenesis of diabetic vascular complications. However, less is known about the content and quality of membrane proteins which may contribute to abnormalities in membrane dynamic and decreased erythrocyte deformability. In the present study we analysed various rheological parameters (blood and plasma viscosity, erythrocyte deformability, haemotological parameters), in cats with non-insulin dependent diabetes mellitus (NIDDM). We also investigated alterations in erythrocyte membrane protein content by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). We found that erythrocyte rigidity and plasma and whole blood viscosities were significantly higher in cats with NIDDM compared to controls. SDS-PAGE revealed that the band 5 corresponding to actin was weaker while band 4.5 corresponding to integral membrane proteins (glycophorin A, B and C) had disappeared. Also, band 4.9, which is composed of dematin (a protein with actin-bundling capacity) was lost. We suggest that the observed abnormalities in membrane proteins may play a role in reduced erythrocyte deformability associated with diabetes mellitus.

  15. ESR (Erythrocyte Sedimentation Rate) Test

    MedlinePlus

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Erythrocyte Sedimentation Rate (ESR) Share this page: Was this ... with conditions that inhibit the normal sedimentation of red blood cells, such as a high red blood cell count ( ...

  16. Erythrocyte and platelet proteomics in hematological disorders.

    PubMed

    Chakrabarti, Abhijit; Halder, Suchismita; Karmakar, Shilpita

    2016-04-01

    Erythrocytes undergo ineffective erythropoesis, hemolysis, and premature eryptosis in sickle cell disease and thalassemia. Abnormal hemoglobin variants associated with hemoglobinopathy lead to vesiculation, membrane instability, and loss of membrane asymmetry with exposal of phosphatidylserine. This potentiates thrombin generation resulting in activation of the coagulation cascade responsible for subclinical phenotypes. Platelet activation also results in the release of microparticles, which express and transfer functional receptors from platelet membrane, playing key roles in vascular reactivity and activation of intracellular signaling pathways. Over the last decade, proteomics had proven to be an important field of research in studies of blood and blood diseases. Blood cells and its fluidic components have been proven to be easy systems for studying differential expressions of proteins in hematological diseases encompassing hemoglobinopathies, different types of anemias, myeloproliferative disorders, and coagulopathies. Proteomic studies of erythrocytes and platelets reported from several groups have highlighted various factors that intersect the signaling networks in these anucleate systems. In this review, we have elaborated on the current scenario of anucleate blood cell proteomes in normal and diseased individuals and the cross-talk between the two major constituent cell types of circulating blood.

  17. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  18. Congenital Abnormalities

    MedlinePlus

    ... while you are pregnant. Combination of Genetic and Environmental Problems Some congenital abnormalities may occur if there is a genetic tendency for the condition combined with exposure to certain environmental influences within the womb during critical stages of ...

  19. Fetal-maternal erythrocyte distribution blood test

    MedlinePlus

    Kleihauer-Betke stain; Flow cytometry - fetal-maternal erythrocyte distribution; Rh incompatibility - erythrocyte distribution ... slightly among different laboratories. Some labs use different measurements or test different samples. Talk to your doctor ...

  20. [Study of erythrocyte dehydration using spin labels].

    PubMed

    Moiseev, V A; Mezhidov, S Kh; Nardid, O A

    1989-01-01

    Possibility of studying erythrocyte dehydration by ESR-spin probe is substantiated. Dehydration of erythrocytes in relation to osmolarity of sodium chloride solutions is investigated. The results are shown to agree with the data obtained by radioisotope method.

  1. Magnetic measurements on human erythrocytes: Normal, beta thalassemia major, and sickle

    NASA Astrophysics Data System (ADS)

    Sakhnini, Lama

    2003-05-01

    In this article magnetic measurements were made on human erythrocytes at different hemoglobin states (normal and reduced hemoglobin). Different blood samples: normal, beta thalassemia major, and sickle were studied. Beta thalassemia major and sickle samples were taken from patients receiving lifelong blood transfusion treatment. All samples examined exhibited diamagnetic behavior. Beta thalassemia major and sickle samples showed higher diamagnetic susceptibilities than that for the normal, which was attributed to the increase of membrane to hemoglobin volume ratio of the abnormal cells. Magnetic measurements showed that the erythrocytes in the reduced state showed less diamagnetic response in comparison with erythrocytes in the normal state. Analysis of the paramagnetic component of magnetization curves gave an effective magnetic moment of μeff=7.6 μB per reduced hemoglobin molecule. The same procedure was applied to sickle and beta thalassemia major samples and values for μeff were found to be comparable to that of the normal erythrocytes.

  2. Agglutination of Mouse Erythrocytes by Eperythrozoon coccoides

    PubMed Central

    Iralu, Vichazelhu; Ganong, Kevin D.

    1983-01-01

    Erythrocytes from blood of mice infected with Eperythrozoon coccoides for 3 or 4 days agglutinated spontaneously. Washed E. coccoides particles agglutinated washed erythrocytes of uninfected mice. E. coccoides-mediated agglutination of normal mouse erythrocytes would be an excellent system for studies of bacterial adhesion. Images PMID:6832825

  3. A Demonstration of Erythrocyte Membrane Asymmetry.

    ERIC Educational Resources Information Center

    Pederson, Philip; And Others

    1985-01-01

    A three-period experiment was developed to help students visualize asymmetric distribution of proteins within membranes. It includes: (1) isolating erythrocyte membranes; (2) differential labeling of intact erythrocytes and isolated erythrocyte membranes with an impermeable fluorescent dye; and (3) separating proteins by polyacrylamide gel…

  4. [Ratio of erythrocyte and plasma in massive blood transfusion].

    PubMed

    Wen, Xian-Hui; Liu, Feng-Xia; Zhang, Jun-Hua; Gui, Rong

    2014-06-01

    This study was purposed to explore the suitable ratio between fresh frozen plasma and erythrocyte by retrospective analysis of coagulation in patients with massive blood transfusion. The clinical data of 151 cases with massive blood transfusion from January 2011 to January 2013 were analyzed retrospectively. According to coagulation, patients were divided into coagulation normal group (138 cases) and coagulation dysfunction group (13 cases). Based on the ratio of 1:1 of fresh frozen plasma and erythrocyte, the patients were divided into high plasma group(2:1), medium plasma group (1:1) and low plasma (<1:1) subgroups. Coagulation was detected before and after 24 h of massive blood transfusion. The results showed that prothrombin time (PT), activated partial thromboplastin time (APTT) and thrombin time (TT) were prolonged, fibrinogen (FIB) level decreased significantly (all P < 0.05) in the low plasma subgroup of coagulation normal group after massive blood transfusion 24 h; the high plasma and the medium plasma group of coagulation normal group had no significant changes in coagulation (P > 0.05); prothrombin time, activated partial thromboplastin time, thrombin time and fibrinogen level in the medium plasma and low plasma subgroup of coagulation dysfunction group after massive transfusion was still in abnormal levels (P > 0.05), coagulation function in high plasma subgroup was improved significantly (P < 0.05). It is concluded that the ratio of plasma to erythrocyte should be adjusted according to the patient's coagulation function during massive blood transfusion, the ratio between fresh frozen plasma and erythrocyte is recommended to be 2:1 in patients of coagulation dysfunction in order to improve the patient's coagulation function and to reduce the incidence of adverse event, the ratio of fresh frozen plasma to erythrocyte is recommended to be 1:1 in patients with normal coagulation so as to reduce the dilutional coagulopathy and hypervolemia of blood.

  5. Studies on metabolically depleted erythrocytes.

    PubMed

    Reinhart, S A; Schulzki, T; Bonetti, P O; Reinhart, W H

    2014-01-01

    Erythrocytes kept outside the blood circulation undergo progressive changes in metabolism, shape and function, which was the topic of this study. For that purpose, blood anticoagulated with either heparin, citrate or EDTA was incubated at temperatures of 5°C, 22°C or 37°C for 0 h, 24 h and 48 h, respectively. A temperature- and time-dependent decrease of glucose and ATP and increase of lactate and LDH were observed. An erythrocyte swelling and echinocytic shape transformation, which was also time- and temperature-dependent, was seen. Density-separated young and old erythrocytes behaved similarly. The degree of echinocytic shape transformation correlated with the increase in blood viscosity at high shear rate. Echinocytosis was partially reversible when erythrocytes were suspended in buffer containing 0.2% albumin. This phenomenon is specific for albumin, since molecules with a similar molecular weight (dextran 70, heat shock protein, protein C) had no effect. These finding may have an impact on blood banking and transfusion medicine.

  6. Leukocyte abnormalities.

    PubMed

    Gabig, T G

    1980-07-01

    Certain qualitative abnormalities in neutrophils and blood monocytes are associated with frequent, severe, and recurrent bacterial infections leading to fatal sepsis, while other qualitative defects demonstrated in vitro may have few or no clinical sequelae. These qualitative defects are discussed in terms of the specific functions of locomotion, phagocytosis, degranulation, and bacterial killing.

  7. Preliminary Discussion On The Three Dimensional Space Quantitative Analysis Of Erythrocytes By SEMP And Some Applications On The Clinic And Research Of Blood Disease.

    NASA Astrophysics Data System (ADS)

    Lian-Huang, Lu; Wen-Meng, Tong; Zhi-Jun, Zhang; Gui-Huan, He; Su-Hui, Huan

    1989-04-01

    The abnormity of the quality and quantity for erythrocytes is one of the important changes of blood disease. It shows the abnormal blood-making function of human body. Therefore, the study of the change of shape of erythrocytes is the indispensible and important basis of reference in the clinic, diagnose and research of blood disease. In this paper, a preliminary discussion is made on the acquisition of scanning stereographs for erythrocytes, the application of the theory of photographic measurement on the three dimensional space quantitative analysis of erythrocytes, drawings of isoline map and section map of various erythrocytes for normal persons, paroxysmal nocturanal hemoglobinuria (PNH) patients and aplastic anemia patients, study of the shape characteristics of normal erythrocytes and various abnormal erytnrocytes and the applications in clinic, diagnose and research. This research is a combination of microphotogrammetry and erythrocyte morphology. It is polssible to push fotward the study of erythrocyte morphology from LM, SEM to a higher stage of scanning electron micrographic photogrammetry(SEMP) for stereograpic observationand three diamensional quantitative analysis to explore a new path for the further study of the shape of erthrocytes.

  8. Tropomyosin modulates erythrocyte membrane stability

    PubMed Central

    An, Xiuli; Salomao, Marcela; Guo, Xinhua; Gratzer, Walter; Mohandas, Narla

    2007-01-01

    The ternary complex of spectrin, actin, and 4.1R (human erythrocyte protein 4.1) defines the nodes of the erythrocyte membrane skeletal network and is inseparable from membrane stability under mechanical stress. These junctions also contain tropomyosin (TM) and the other actin-binding proteins, adducin, protein 4.9, tropomodulin, and a small proportion of capZ, the functions of which are poorly defined. Here, we have examined the consequences of selective elimination of TM from the membrane. We have shown that the mechanical stability of the membranes of resealed ghosts devoid of TM is grossly, but reversibly, impaired. That the decreased membrane stability of TM-depleted membranes is the result of destabilization of the ternary complex of the network junctions is demonstrated by the strongly facilitated entry into the junctions in situ of a β-spectrin peptide, containing the actin- and 4.1R-binding sites, after extraction of the TM. The stabilizing effect of TM is highly specific, in that it is only the endogenous isotype, and not the slightly longer muscle TM that can bind to the depleted membranes and restore their mechanical stability. These findings have enabled us identify a function for TM in elevating the mechanical stability of erythrocyte membranes by stabilizing the spectrin-actin-4.1R junctional complex. PMID:17008534

  9. Triton shells of intact erythrocytes.

    PubMed

    Sheetz, M P; Sawyer, D

    1978-01-01

    About 40% of human erythrocyte membrane protein is resistant to solubilization in 0.5% Triton X-114. These components comprise a structure called a Triton shell roughly similar in size and shape to the original erythrocyte and thus constitute a cytoskeleton. With increasing concentrations of Triton the lipid content of the Triton shell decreases dramatically, whereas the majority of the protein components remain constant. Exceptions to this rule include proteins contained in band 3, the presumed anion channel, and in band 4 which decrease with increasing Triton concentration. The Triton-insoluble complex includes spectrin (bands 1 and 2), actin (band 5), and bands 3' and 7. Component 3' has an apparent molecular weight of 88,000 daltons as does 3; but unlike 3, it is insensitive to protease treatment of the intact cell, has a low extinction coefficient at 280 nm, and is solubilized from the shells in alkaline water solutions. Component 7 also has a low extinction coefficient at 280 nm. Spectrin alone is solubilized from the Triton shells in isotonic media. The solubilized spectrin contains no bound Triton and coelectrophoreses with spectrin eluted in hypotonic solutions from ghosts. Electron micrographs of fixed Triton shells stained with uranyl acetate show the presence of numerous filaments which appear beaded and are 80--120 A in diameter. The filaments cannot be composed mainly af actin, but enough spectrin is present to form the filaments. Triton shells may provide an excellent source of material useful in the investigation of the erythrocyte cytoskeleton.

  10. Effect of honokiol on erythrocytes.

    PubMed

    Zbidah, Mohanad; Lupescu, Adrian; Herrmann, Tabea; Yang, Wenting; Foller, Michael; Jilani, Kashif; Lang, Florian

    2013-09-01

    Honokiol ((3,5-di-(2-propenyl)-1,1-biphenyl-2,2-diol), a component of Magnolia officinalis, stimulates apoptosis and is thus considered for the treatment of malignancy. In analogy to apoptosis of nucleated cells, erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and by breakdown of cell membrane phosphatidylserine asymmetry with phosphatidylserine-exposure at the erythrocyte surface. Eryptosis may be triggered following increase of cytosolic Ca(2+)-activity ([Ca(2+)]i). The present study explored, whether honokiol elicits eryptosis. Cell volume has been estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, hemolysis from hemoglobin release, [Ca(2+)]i from Fluo3-fluorescence, and ceramide from fluorescent antibodies. As a result, a 48 h exposure to honokiol was followed by a slight but significant increase of [Ca(2+)]i (15 μM), significant decrease of forward scatter (5 μM), significant increase of annexin-V-binding (5 μM) and significant increase of ceramide formation (15 μM). Honokiol further induced slight, but significant hemolysis. Honokiol (15 μM) induced annexin-V-binding was significantly blunted but not abrogated in the nominal absence of extracellular Ca(2+). In conclusion, honokiol triggers suicidal erythrocyte death or eryptosis, an effect at least in part due to stimulation of Ca(2+) entry and ceramide formation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Ingestion of Chlorella reduced the oxidation of erythrocyte membrane lipids in senior Japanese subjects.

    PubMed

    Miyazawa, Taiki; Nakagawa, Kiyotaka; Takekoshi, Hideo; Higuchi, Ohki; Kato, Shunji; Kondo, Momoko; Kimura, Fumiko; Miyazawa, Teruo

    2013-01-01

    Accumulation of phospholipid hydroperoxide (PLOOH) in erythrocyte membranes is an abnormality found in patients with senile dementia, including those with Alzheimer's disease. In our previous studies, dietary xanthophylls (polar carotenoids such as lutein) were hypothesized to inhibit lipid peroxidation. In the present study, we conducted a randomized, double-blind, placebo-controlled human trial to assess the impact for a total of 2 months Chlorella supplementation (8 g Chlorella/day/person; equivalent to 22.9 mg lutein/day/person) on PLOOH and carotenoid concentrations in erythrocytes as well as plasma of 12 normal senior subjects. After 1 or 2 months of treatment, erythrocytes and plasma lutein concentrations increased in the Chlorella group but not in the placebo group. In the Chlorella-supplemented group, erythrocyte PLOOH concentrations after a total of 2 months of treatment were lower than the concentrations before supplementation. These results suggest that Chlorella ingestion improved erythrocyte antioxidant status and lowered PLOOH concentrations. These reductions might contribute to maintaining the normal function of erythrocytes and prevent the development of senile dementia.

  12. A role for the membrane proteome in human chronic kidney disease erythrocytes.

    PubMed

    Alvarez-Llamas, Gloria; Zubiri, Irene; Maroto, Aroa S; de la Cuesta, Fernando; Posada-Ayala, María; Martin-Lorenzo, Marta; Barderas, María G; Fernandez-Fernandez, Beatriz; Ramos, Ana; Ortiz, Alberto; Vivanco, Fernando

    2012-11-01

    The molecular basis of the reduced half-life of chronic kidney disease (CKD) erythrocytes is unclear. The erythrocyte membrane plays a key role in the erythrocyte mechanical properties and survival. The aim of the present work is to uncover erythrocyte membrane proteins whose expression could be altered in CKD. The erythrocyte membrane subproteome was analyzed by a non-biased approach where the whole set of proteins was simultaneously investigated by 2D fluorescence difference gel electrophoresis without preselection of potential targets. Proteins significantly altered in CKD were identified by mass spectrometry (MS) and results validation was performed by Western blot and confocal microscopy. Nine differentially expressed spots among healthy individuals, non-dialyzed CKD and erythropoietin/dialysis-treated CKD patients were identified by MS/MS corresponding to 5 proteins (beta-adducin, HSP71/72, tropomodulin-1, ezrin, and radixin). Ezrin and radixin were higher in dialyzed CKD patients than in the other 2 groups. Beta-adducin was increased in CKD patients (dialyzed or not). Three spots were normalized in patients on the dialysis/erythropoietin combination compared with non-dialyzed CKD. Among these, a spot corresponding to tropomodulin 1, was found to be of higher abundance in non-dialyzed CKD patients compared with controls or dialyzed CKD. In conclusion, this study identifies changes in erythrocyte membrane proteins in CKD, which may be relevant for the pathogenesis of red cell abnormalities in uremia.

  13. Structural alterations of the erythrocyte membrane proteins in diabetic retinopathy.

    PubMed

    Petropoulos, Ioannis K; Margetis, Panagiotis I; Antonelou, Marianna H; Koliopoulos, John X; Gartaganis, Sotirios P; Margaritis, Lukas H; Papassideri, Issidora S

    2007-08-01

    Several rheological disorders of the erythrocytes, such as increased aggregation and decreased deformability, have been observed in diabetes mellitus and have been implicated in the development of diabetic microangiopathy. Structural alterations of the erythrocyte membrane proteins caused by the diabetic process may be at the origin of those observations. In the present study, we searched for erythrocyte membrane protein alterations in diabetic retinopathy. We examined peripheral blood samples from 40 type-2 diabetic patients with diabetic retinopathy of variable severity (19 males and 21 females, mean age 66.8 years, Group A) and we compared them with samples from 19 type-2 diabetic patients without diabetic retinopathy (13 males and six females, mean age 66.5 years, Group B) and 16 healthy volunteers (eight males and eight females, mean age 65.6 years, Group C). Erythrocyte membrane ghosts from all samples were subjected to SDS-PAGE, and the electrophoretic pattern of transmembrane and cytoskeletal proteins was analysed for each sample. The protein quantification of each electrophoretic band was accomplished through scanning densitometry. No significant deviations from normal electrophoresis were observed in Groups B and C, apart from an increase in band 8 in two samples from Group B (11%). In contrast, in 14 samples from Group A (35%) we detected increases in protein band 8 and/or membrane-bound haemoglobin along with a decrease in spectrin. Moreover, increased mobility of band 3, an aberrant high molecular weight (MW) (> 255 kDa) band and a low MW (42 kDa) band were evident in ten samples from Group A (25%). Glycophorins were altered in 46% of Group-A patients versus 38% of Group-B patients. Females and patients with long duration of diabetes presented more electrophoretic abnormalities. Structural alterations of the erythrocyte membrane proteins are shown for the first time in association with diabetic retinopathy. Their detection may serve as a blood marker

  14. The influence of erythrocyte maturity on ion transport and membrane lipid composition in the rat.

    PubMed

    Vokurková, M; Rauchová, H; Dobešová, Z; Loukotová, J; Nováková, O; Kuneš, J; Zicha, J

    2016-01-01

    Significant relationships between ion transport and membrane lipid composition (cholesterol, total phospholipids and sphingomyelins) were found in erythrocytes of salt hypertensive Dahl rats. In these animals mean cellular hemoglobin content correlated negatively with Na(+)-K(+) pump activity and Na(+) leak but positively with Na(+)-K(+) cotransport activity. Immature erythrocytes exhibit lower mean cellular hemoglobin content (MCHC) than mature ones. The aim of the present study was to find a relationship between erythrocyte maturity, membrane lipid composition and ion transport activity in Wistar rats aged three months which were subjected to repeated hemorrhage (blood loss 2 ml/day for 6 days) to enrich circulating erythrocytes with immature forms. Immature and mature erythrocyte fractions in control and hemorrhaged rats were separated by repeated centrifugation. Hemorrhaged rats had increased number of reticulocytes but reduced hematocrit and MCHC compared to control rats. Immature erythrocytes of hemorrhaged rats differed from mature ones of control animals by elevated Na(+)-K(+) pump activity, reduced Na(+)-K(+) cotransport activity and increased Rb(+) leak. These ion transport changes in immature erythrocytes were accompanied by higher concentration of total phospholipids in their cell membranes. Membrane phospholipid content correlated positively with Na(+)-K(+) pump activity and cation leaks but negatively with Na(+)-K(+) cotransport activity. Moreover, they were also negatively related with MCHC which correlated negatively with Na(+)-K(+) pump activity and Rb(+) leak but positively with Na(+)-K(+) cotransport activity. Thus certain abnormalities of erythrocyte ion transport and membrane lipid composition detected in hypertensive animals might be caused by higher incidence of immature cells.

  15. Hematopoietic protein-1 regulates the actin membrane skeleton and membrane stability in murine erythrocytes.

    PubMed

    Chan, Maia M; Wooden, Jason M; Tsang, Mark; Gilligan, Diana M; Hirenallur-S, Dinesh K; Finney, Greg L; Rynes, Eric; Maccoss, Michael; Ramirez, Julita A; Park, Heon; Iritani, Brian M

    2013-01-01

    Hematopoietic protein-1 (Hem-1) is a hematopoietic cell specific member of the WAVE (Wiskott-Aldrich syndrome verprolin-homologous protein) complex, which regulates filamentous actin (F-actin) polymerization in many cell types including immune cells. However, the roles of Hem-1 and the WAVE complex in erythrocyte biology are not known. In this study, we utilized mice lacking Hem-1 expression due to a non-coding point mutation in the Hem1 gene to show that absence of Hem-1 results in microcytic, hypochromic anemia characterized by abnormally shaped erythrocytes with aberrant F-actin foci and decreased lifespan. We find that Hem-1 and members of the associated WAVE complex are normally expressed in wildtype erythrocyte progenitors and mature erythrocytes. Using mass spectrometry and global proteomics, Coomassie staining, and immunoblotting, we find that the absence of Hem-1 results in decreased representation of essential erythrocyte membrane skeletal proteins including α- and β- spectrin, dematin, p55, adducin, ankyrin, tropomodulin 1, band 3, and band 4.1. Hem1⁻/⁻ erythrocytes exhibit increased protein kinase C-dependent phosphorylation of adducin at Ser724, which targets adducin family members for dissociation from spectrin and actin, and subsequent proteolysis. Increased adducin Ser724 phosphorylation in Hem1⁻/⁻ erythrocytes correlates with decreased protein expression of the regulatory subunit of protein phosphatase 2A (PP2A), which is required for PP2A-dependent dephosphorylation of PKC targets. These results reveal a novel, critical role for Hem-1 in the homeostasis of structural proteins required for formation and stability of the actin membrane skeleton in erythrocytes.

  16. Hematopoietic Protein-1 Regulates the Actin Membrane Skeleton and Membrane Stability in Murine Erythrocytes

    PubMed Central

    Chan, Maia M.; Wooden, Jason M.; Tsang, Mark; Gilligan, Diana M.; Hirenallur-S, Dinesh K.; Finney, Greg L.; Rynes, Eric; MacCoss, Michael; Ramirez, Julita A.; Park, Heon; Iritani, Brian M.

    2013-01-01

    Hematopoietic protein-1 (Hem-1) is a hematopoietic cell specific member of the WAVE (Wiskott-Aldrich syndrome verprolin-homologous protein) complex, which regulates filamentous actin (F-actin) polymerization in many cell types including immune cells. However, the roles of Hem-1 and the WAVE complex in erythrocyte biology are not known. In this study, we utilized mice lacking Hem-1 expression due to a non-coding point mutation in the Hem1 gene to show that absence of Hem-1 results in microcytic, hypochromic anemia characterized by abnormally shaped erythrocytes with aberrant F-actin foci and decreased lifespan. We find that Hem-1 and members of the associated WAVE complex are normally expressed in wildtype erythrocyte progenitors and mature erythrocytes. Using mass spectrometry and global proteomics, Coomassie staining, and immunoblotting, we find that the absence of Hem-1 results in decreased representation of essential erythrocyte membrane skeletal proteins including α- and β- spectrin, dematin, p55, adducin, ankyrin, tropomodulin 1, band 3, and band 4.1. Hem1−/− erythrocytes exhibit increased protein kinase C-dependent phosphorylation of adducin at Ser724, which targets adducin family members for dissociation from spectrin and actin, and subsequent proteolysis. Increased adducin Ser724 phosphorylation in Hem1−/− erythrocytes correlates with decreased protein expression of the regulatory subunit of protein phosphatase 2A (PP2A), which is required for PP2A-dependent dephosphorylation of PKC targets. These results reveal a novel, critical role for Hem-1 in the homeostasis of structural proteins required for formation and stability of the actin membrane skeleton in erythrocytes. PMID:23424621

  17. Diabetic foot disease is associated with reduced erythrocyte deformability.

    PubMed

    Cahn, Avivit; Livshits, Leonid; Srulevich, Ariel; Raz, Itamar; Yedgar, Shaul; Barshtein, Gregory

    2016-08-01

    The pathogenesis of diabetic foot disease is multifactorial and encompasses microvascular and macrovascular pathologies. Abnormal blood rheology may also play a part in its development. Using a cell flow analyser (CFA), we examined the association between erythrocyte deformability and diabetic foot disease. Erythrocytes from diabetic patients with no known microvascular complications (n = 11) and patients suffering from a diabetic foot ulcer (n = 11) were isolated and their average elongation ratio (ER) as well as the ER distribution curve were measured. Average ER was decreased in the diabetic foot patients compared with the patients with diabetes and no complications (1·64 ± 0·07 versus 1·71 ± 0·1; P = 0·036). A significant rise in the percentage of minimally deformable red blood cells RBCs in diabetic foot patients compared with the patients with no complications was observed (37·89% ± 8·12% versus 30·61% ± 10·17%; P = 0·039) accompanied by a significant decrease in the percentage of highly deformable RBCs (12·47% ± 4·43% versus 17·49% ± 8·17% P = 0·046). Reduced erythrocyte deformability may slow capillary flow in the microvasculature and prolong wound healing in diabetic foot patients. Conversely, it may be the low-grade inflammatory state imposed by diabetic foot disease that reduces erythrocyte deformability. Further study of the rheological changes associated with diabetic foot disease may enhance our understanding of its pathogenesis and aid in the study of novel therapeutic approaches.

  18. Cytopathology and coagulopathy associated with viral erythrocytic necrosis in chum salmon

    USGS Publications Warehouse

    MacMillian, John R.; Mulcahy, D.; Landolt, M.L.

    1989-01-01

    The 8-month cytopathologic progression of viral erythrocytic necrosis (VEN) disease in chum salmon Oncorhynchus keta is described. Single to multiple acidophilic, cytoplasmic viral inclusion bodies developed first in mature erythrocytes and then, within 1–2 months, all morphologically identifiable hemopoietic cell types contained VEN inclusions. Cytologic analysis indicated that multinucleate giant erythroblasts, ineffective erythropoiesis, and abnormal erythroid cell maturation occurred. A significant increase in blood coagulation time occurred concomitantly. This severe and chronic blood dyscrasia accounts for some of the pathophysiologic sequelae previously observed.

  19. Effect of complete protein 4.1R deficiency on ion transportproperties of murine erythrocytes

    SciTech Connect

    Rivera, Alicia; De Franceschi, Lucia; Peters, Luanne L.; Gascard,Philippe; Mohandas, Narla; Brugnara, Carlo

    2006-06-02

    Moderate hemolytic anemia, abnormal erythrocyte morphology(spherocytosis), and decreased membrane stability are observed in micewith complete deficiency of all erythroid protein 4.1 protein isoforms(4.1-/-; Shi TS et al., J. Clin. Invest. 103:331,1999). We have examinedthe effects of erythroid protein 4.1 (4.1R) deficiency on erythrocytecation transport and volume regulation. 4.1-/- mice exhibited erythrocytedehydration that was associated with reduced cellular K and increased Nacontent. Increased Na permeability was observed in these mice, mostlymediated by Na/H exchange with normal Na-K pump and Na-K-2Cl cotransportactivities. The Na/H exchange of 4.1-/- erythrocytes was markedlyactivated by exposure to hypertonic conditions (18.2+- 3.2 in 4.1 -/- vs.9.8 +- 1.3 mmol/1013 cell x h in control mice), with an abnormaldependence on osmolarity, (K0.5=417 +- 42 in 4.1 -/- vs. 460 +- 35 mOsmin control mice) suggestive of an up-regulated functional state. Whilethe affinity for internal protons was not altered (K0.5= 489.7 +- 0.7 vs.537.0+- 0.56 nM in control mice), the Vmax of the H-induced Na/H exchangeactivity was markedly elevated in 4.1-/- erythrocytes (Vmax 91.47Moderatehemolytic anemia, abnormal erythrocyte morphology (spherocytosis), anddecreased membrane stability are observed in mice with completedeficiency of all erythroid protein 4.1 protein isoforms (4.1-/-; Shi TSet al., J. Clin. Invest. 103:331,1999). We have examined the effects oferythroid protein 4.1 (4.1R) deficiency on erythrocyte cation transportand volume regulation. 4.1-/- mice exhibited erythrocyte dehydration thatwas associated with reduced cellular K and increased Na content.Increased Na permeability was observed in these mice, mostly mediated byNa/H exchange with normal Na-K pump and Na-K-2Cl cotransport activities.The Na/H exchange of 4.1-/- erythrocytes was markedly activated byexposure to hypertonic conditions (18.2 +- 3.2 in 4.1 -/- vs. 9.8 +- 1.3mmol/1013 cell x h in control mice), with an

  20. [AGGREGATION OF METABOLICALLY DEPLETED HUMAN ERYTHROCYTES].

    PubMed

    Sheremet'ev, Yu A; Popovicheva, A N; Rogozin, M M; Levin, G Ya

    2016-01-01

    An aggregation of erythrocytes in autologous plasma after blood storage for 14 days at 4 °C was studied using photometry and light microscopy. The decrease of ATP content, the formation of echinocytes and spheroechinocytes, the decrease of rouleaux form of erythrocyte aggregation were observed during the storage. On the other hand the aggregates of echinocytes were formed in the stored blood. The addition of plasma from the fresh blood didn't restore the normal discocytic shape and aggregation of erythrocytes in the stored blood. The possible mechanisms of erythrocytes and echinocytes aggregation are discussed.

  1. Relationship between electrophoretic mobility of erythrocytes and blood erythrocyte count in rats.

    PubMed

    Matyushichev, V B; Shamratova, V G

    2005-03-01

    A significant curvilinear relationship was found between erythrocyte count in rat blood and electrokinetic characteristics of these cells. Electrophoretic mobility of erythrocytes remained unchanged, slightly increased, or decreased with increasing cell count in the vascular bed depending on animal state. Excessive increase in the number of erythrocytes was accompanied by accumulation of cells with low electrophoretic mobility in the electric field.

  2. [Regulation of electrokinetic properties of human blood erythrocytes following exposure to emotional stressor].

    PubMed

    Matiushichev, V B; Shamratova, V G

    2003-01-01

    Using the factor analysis, we studied the influence of psychoemotional strain, experienced by students under taking examinations, on the electrophoretic mobility of their erythrocytes. Under stress condition, redistribution of shares of cells with different mobility occurs, directed to the maintenance of the optimal value of the index average level in the total pool of erythrocytes of an individual. Under stress, five factors, taken in different combinations, participate in the control of erythrokinetic properties: those of restriction of cell accumulation with abnormal mobility, and of the population quantity heterogeneity control, in addition to factors of total functional condition, emotional tension, and individual psychological steadiness of students before examination. The expression and character of stress influence on the state of erythrocyte population depend on the intensity of the functional load of the organism.

  3. Effect of thioridazine on erythrocytes.

    PubMed

    Lang, Elisabeth; Modicano, Paola; Arnold, Markus; Bissinger, Rosi; Faggio, Caterina; Abed, Majed; Lang, Florian

    2013-10-23

    Thioridazine, a neuroleptic phenothiazine with antimicrobial efficacy is known to trigger anemia. At least in theory, the anemia could result from stimulation of suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and by phospholipid scrambling of the cell membrane with phosphatidylserine exposure at the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca²⁺-concentration ([Ca²⁺](i)) and activation of p38 kinase. The present study explored, whether thioridazine elicits eryptosis. [Ca²⁺](i) has been estimated from Fluo3-fluorescence, cell volume from forward scatter, phosphatidylserine exposure from annexin-V-binding, and hemolysis from hemoglobin release. A 48 hours exposure to thioridazine was followed by a significant increase of [Ca²⁺](i) (30 µM), decrease of forward scatter (30 µM), and increase of annexin-V-binding (≥12 µM). Nominal absence of extracellular Ca²⁺ and p38 kinase inhibitor SB203580 (2 µM) significantly blunted but did not abolish annexin-V-binding following thioridazine exposure. Thioridazine stimulates eryptosis, an effect in part due to entry of extracellular Ca²⁺ and activation of p38 kinase.

  4. Enzymatic Production of Universal Donor Erythrocytes.

    DTIC Science & Technology

    1981-10-01

    strong activities of extracellular glycosidases that convert blood type A or B erythrocytes to universal donor blood type O erythrocytes; 2) to purify the... blood type B-degrading enzyme produced by a fecal strain of Ruminococcus AB; 3) to determine whether human type B red cells could be safety converted

  5. Induction of Suicidal Erythrocyte Death by Cantharidin.

    PubMed

    Alzoubi, Kousi; Egler, Jasmin; Briglia, Marilena; Fazio, Antonella; Faggio, Caterina; Lang, Florian

    2015-07-28

    The natural phosphoprotein phosphatase inhibitor cantharidin, primarily used for topical treatment of warts, has later been shown to trigger tumor cell apoptosis and is thus considered for the treatment of malignancy. Similar to apoptosis of tumor cells, erythrocytes may undergo eryptosis, a suicidal cell death characterized by cell shrinkage and translocation of cell membrane phosphatidylserine to the erythrocyte surface. Signaling of eryptosis includes increase of cytosolic Ca2+-activity ([Ca2+]i), ceramide, oxidative stress and dysregulation of several kinases. Phosphatidylserine abundance at the erythrocyte surface was quantified utilizing annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ceramide from antibody binding, and reactive oxidant species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence. A 48 h treatment of human erythrocytes with cantharidin significantly increased the percentage of annexin-V-binding cells (≥10 mg/mL), significantly decreased forward scatter (≥25 mg/mL), significantly increased [Ca2+]i (≥25 mg/mL), but did not significantly modify ceramide abundance or ROS. The up-regulation of annexin-V-binding following cantharidin treatment was not significantly blunted by removal of extracellular Ca2+ but was abolished by kinase inhibitor staurosporine (1 mM) and slightly decreased by p38 inhibitor skepinone (2 mM). Exposure of erythrocytes to cantharidin triggers suicidal erythrocyte death with erythrocyte shrinkage and erythrocyte membrane scrambling, an effect sensitive to kinase inhibitors staurosporine and skepinone.

  6. Induction of suicidal erythrocyte death by nelfinavir.

    PubMed

    Bissinger, Rosi; Waibel, Sabrina; Lang, Florian

    2015-05-08

    The HIV protease inhibitor, nelfinavir, primarily used for the treatment of HIV infections, has later been shown to be effective in various infectious diseases including malaria. Nelfinavir may trigger mitochondria-independent cell death. Erythrocytes may undergo eryptosis, a mitochondria-independent suicidal cell death characterized by cell shrinkage and phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress and increase of cytosolic Ca2+-activity ([Ca2+]i). During malaria, accelerated death of infected erythrocytes may decrease parasitemia and thus favorably influence the clinical course of the disease. In the present study, phosphatidylserine abundance at the cell surface was estimated from annexin V binding, cell volume from forward scatter, reactive oxidant species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, and [Ca2+]i from Fluo3-fluorescence. A 48 h treatment of human erythrocytes with nelfinavir significantly increased the percentage of annexin-V-binding cells (≥5µg/mL), significantly decreased forward scatter (≥2.5µg/mL), significantly increased ROS abundance (10 µg/mL), and significantly increased [Ca2+]i (≥5 µg/mL). The up-regulation of annexin-V-binding following nelfinavir treatment was significantly blunted, but not abolished by either addition of the antioxidant N-acetylcysteine (1 mM) or removal of extracellular Ca2+. In conclusion, exposure of erythrocytes to nelfinavir induces oxidative stress and Ca2+ entry, thus leading to suicidal erythrocyte death characterized by erythrocyte shrinkage and erythrocyte membrane scrambling.

  7. Effects of ethanol and acetaldehyde load on erythrocyte deformability in healthy subjects and patients with liver cirrhosis.

    PubMed

    Shiraishi, Koichi; Tsuruya, Kota; Anzai, Kazuya; Arase, Yoshitaka; Hirose, Shunji; Kagawa, Tatehiro; Mine, Tetsuya; Matsuzaki, Shohei

    2015-02-01

    Alcohol intake leads to the distribution of alcohol and its metabolite, acetaldehyde throughout the blood and organs. Hepatic cirrhosis is associated with abnormal red blood cell morphology and function, particularly impaired red blood cell deformability. To investigate the effect of drinking on red blood cells in patients with hepatic cirrhosis, erythrocyte deformability was evaluated in response to alcohol and acetaldehyde tolerance. Erythrocyte deformability in 10 healthy and 15 cirrhotic subjects was examined by filterability of the red blood cells. Erythrocyte deformability decreased markedly in the cirrhosis group compared with the healthy group (p < 0.05). No significant change in erythrocyte deformability was observed in healthy or cirrhotic subjects due to ethanol 100 mM tolerance. Acetaldehyde tolerance elicited a significant decrease in erythrocyte deformability at 2 mM in the cirrhosis group (p < 0.05). Alcohol consumption in cirrhotic patients was suggested to worsen erythrocyte deformability and red blood cell function. Decreased erythrocyte deformability worsens microcirculation in the liver, resulting in more severe hepatic dysfunction.

  8. Erythrocyte zinc level in patients with atopic dermatitis and its relation to SCORAD index

    PubMed Central

    Karabacak, Ercan; Kutlu, Ali; Ozcan, Omer; Muftuoglu, Tuba; Gunes, Ali; Dogan, Bilal; Ozturk, Sami

    2016-01-01

    Introduction Atopic dermatitis (AD) is a chronic, pruritic inflammatory disease, characterized by a relapsing-remitting course. The pathogenesis of atopic dermatitis is not completely understood, although the disorder appears to result from the complex interaction between immune abnormalities, genetic and environmental factors. Trace elements are essential for normal functioning of the immune system. Aim To determine zinc levels in serum and erythrocytes of patients with AD using an atomic absorption spectrometric technique and to investigate the relationship between those levels and disease activity. Material and methods Sixty-seven patients and 49 controls were enrolled into the study. The disease severity of AD patients was determined according to the Scoring Atopic Dermatitis (SCORAD) index. We measured zinc levels in serum and erythrocytes by the atomic absorption spectrophotometric technique. Results Erythrocyte zinc levels were significantly lower in AD patients than in the control group (p < 0.001), whereas serum zinc levels did not differ between the groups (p = 0.148). In the AD patient group there was a negative correlation between the SCORAD score and erythrocyte zinc levels (r = –0.791; p < 0.001). Conclusions The negative relationship between disease severity and erythrocyte zinc levels might suggest an immunopathological link between AD progression and intracellular zinc metabolism. PMID:27881941

  9. Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity

    PubMed Central

    Bester, Janette; Pretorius, Etheresia

    2016-01-01

    Complex interactions exist between cytokines, and the interleukin family plays a fundamental role in inflammation. Particularly circulating IL-1β, IL-6 and IL-8 are unregulated in systemic and chronic inflammatory conditions. Hypercoagulability is an important hallmark of inflammation, and these cytokines are critically involved in abnormal clot formation, erythrocyte pathology and platelet hyper-activation, and these three cytokines have known receptors on platelets. Although these cytokines are always unregulated in inflammation, we do not know how the individual cytokines act upon the structure of erythrocytes and platelets, and which of the viscoelastic clot parameters are changed. Here we study the effects of IL-1β, IL-6 and IL-8 at low physiological levels, representative of chronic inflammation, by using scanning electron microscopy and thromboelastography. All three interleukins caused the viscoelastic properties to display an increased hypercoagulability of whole blood and pathology of both erythrocytes and platelets. The most pronounced changes were noted where all three cytokines caused platelet hyper-activation and spreading. Erythrocyte structure was notably affected in the presence of IL-8, where the morphological changes resembled that typically seen in eryptosis (programmed cell death). We suggest that erythrocytes and platelets are particularly sensitive to cytokine presence, and that they are excellent health indicators. PMID:27561337

  10. Erythrocyte Glutathione Depletion Impairs Resistance to Haemolysis in Women Consuming Alcohol

    PubMed Central

    Padmini, Ekambaram; Sundari, Balasubramaniam Thiripura

    2008-01-01

    Alcohol abuse is known to cause an array of ethanol induced abnormalities in men but very few reports are available on the effect of alcohol in women. None of them discuss the effect of ethanol consumption on erythrocyte membrane. In the present study, erythrocytes in women who consume alcohol showed significant decrease in their ability to resist haemolysis with HPLC studies. Erythrocyte membrane indicates decreased phospholipid (p<0.05) levels, which increased the cholesterol/phospholipid ratio significantly (p<0.01) in women who consume alcohol. This can decrease the fluidity of membrane, which appears to be related to the effect of ethanol on erythrocyte membrane. Also the protection against exogenous and endogenous peroxides in the erythrocytes of alcoholic women is considerably affected due to decreased (p<0.05) activity of catalase, glucose-6-phosphate dehydrogenase, protein–SH group and glutathione (GSH). Enhanced free radical generation induced oxidation of oxyHb to metHb in alcoholics. Increased methemoglobin leads to significant reduction in membrane GSH, which may cause protein thiol oxidation. Thus peroxidative damage to membrane lipids and oxidation of membrane protein thiols potentially harmful to membrane fluidity and flexibility is responsible for decreased resistance to haemolysis as demonstrated in women who consume alcohol. PMID:18231625

  11. Insulin induces opposite changes in plasma and erythrocyte magnesium concentrations in normal man.

    PubMed

    Paolisso, G; Sgambato, S; Passariello, N; Giugliano, D; Scheen, A; D'Onofrio, F; Lefèbvre, P J

    1986-09-01

    Plasma and erythrocyte magnesium levels were measured by atomic absorption spectrophotometry in 10 healthy volunteers during an oral glucose tolerance test and during an euglycaemic hyperinsulinaemic glucose clamp. At min 180 and 210 of the oral glucose tolerance test, a significant decline in plasma magnesium levels (p less than 0.01 and p less than 0.05 respectively) and a significant increase in erythrocyte magnesium levels (p less than 0.01 and p less than 0.05 respectively) were observed. Similar changes were seen during the second hour of the glucose clamp, during which euglycaemia (4.1 +/- 0.4 mmol/l) was maintained despite hyperinsulinaemia (110-130 mU/l). During in vitro incubations, glucose (5 mmol/l) did not modify erythrocyte magnesium levels. In contrast, erythrocyte magnesium levels were significantly increased (p less than 0.01) by insulin (100 mU/l), an effect entirely abolished by ouabain (5 X 10(-4) mol/l). These results suggest that insulin induces a shift of magnesium from the plasma to the erythrocytes both in vivo and in vitro. These data may help to interprete the abnormalities in magnesium circulating levels frequently reported in diabetic patients.

  12. Exercise-induced hemolysis in xerocytosis. Erythrocyte dehydration and shear sensitivity.

    PubMed Central

    Platt, O S; Lux, S E; Nathan, D G

    1981-01-01

    A patient with xerocytosis was found to have swimming-induced intravascular hemolysis and shortening of erythrocyte life-span. In a microviscometer, xerocytes were more susceptible than normal erythrocytes to hemolysis by shear stress. Fractionation of normal and abnormal cells on discontinuous Stractan density gradients revealed that increasingly dehydrated cells were increasingly more shear sensitive. This sensitivity was partially corrected by rehydrating xerocytic erythrocytes by means of the cation-ionophore nystatin in a high potassium buffer. Conversely, normal erythrocytes were rendered shear sensitive by dehydrating them with nystatin in a low potassium buffer. This effect of dehydration was entirely reversible if normal cells were dehydrated for less than 4 h but was only partially reversed after more prolonged dehydration. It is likely that dehydration of erythrocytes results in shear sensitivity primarily because of concentration of cell contents and reduced cellular deformability. With prolonged dehydration, secondary membrane changes may potentiate the primary effect. This increased shear sensitivity of dehydrated cells may explain atraumatic exercise-induced hemolysis in xerocytosis as cardiac output is shifted to vessels of exercising muscles with small diameters and high shear rates. PMID:7276163

  13. [Homologies between membrane proteins result in expected or unexpected relations between neuromuscular and erythrocyte diseases].

    PubMed

    Boivin, P

    1992-01-01

    The advances achieved in biochemistry and molecular genetics have made it possible to demonstrate that the membrane proteins of the erythrocytes belong to protein "families" that are present in most cell membranes and share remarkable structural and functional homologies. Abnormalities of erythrocyte membrane proteins might then totally or partially reflect lesions of other cell membranes that are intrinsically more severe than those of the erythrocytes. Examples of these physiopathogenetic links can be found in congenital diseases where muscular and erythrocytic pathologies coexist. Such are: (1) choreaacanthocytosis supported by molecular abnormalities of the so-called band 3 protein or anion channel; (2) Mac Leod syndrome by deficiency of a membrane protein precursor of Kell antigens; (3) some cases of hereditary spherocytosis associated with qualitative and quantitative ankyrin alterations. Yet, despite the homologies that are known to exist between spectrin and dystrophin, all attempts to use spectrin analysis as marker of Duchenne-Becker muscular dystrophy have met with complete failure, which shows that at this early stage one should refrain from drawing firm physiopathological conclusions from the available data.

  14. Molecular basis for erythrocyte shape

    NASA Astrophysics Data System (ADS)

    Elgsaeter, A.; Mikkelsen, A.

    1991-05-01

    The isolated plasma membrane of the human erythrocytes displays the same shape and shape transformations as the intact cells. It is therefore generally believed that the plasma membrane plays a dominant role in determining erythrocyte shape. The plasma membrane consists of a fluid lipid bilayer to the surface of which is attached a protein skeleton. The two halves of the lipid bilayer and the protein network (gel) are tighly coupled, but at the same time elastically deformable and can slide relative to one another in the plane of the cell membrane. The equilibrium shape of such a structure is determined by the combined mechano-chemical properties of the individual layers and equals the cell shape that for the given cell volume corresponds to the lowest total elastic free energy. The elastic free energy of the lipid bilayer is mainly associated with bending and change in surface area for each of the two lipid monolayer. For the protein membrane skeleton the elastic free energy mainly equals the sum of the local contributions due to shear deformation and surface change. When the mechano-chemical properties of each of the layers are known, calculation of the equilibrium shape is in principle just an exercise in standard continuum mechanics. The elastic properties of pure lipid monolayers have long been qualitatively fairly well known. The changes in lipid bilayer elastic properties resulting from the presence of integral membrane proteins have just recently become better understood. The detailed molecular basis for the elastic properties of the protein membrane skeleton remains unresolved despite many attempts to elucidate the problem. It is widely agreed that the elastic properties are largely accounted for by the highly elongated spectrin molecules, but whether the membrane skelton elasticity is mainly of entropic or entalphic origin is still unsettled.

  15. [Lysophosphatidic acid and human erythrocyte aggregation].

    PubMed

    Sheremet'ev, Iu A; Popovicheva, A N; Levin, G Ia

    2014-01-01

    The effects of lysophosphatidic acid on the morphology and aggregation of human erythrocytes has been studied. Morphology of erythrocytes and their aggregates were studied by light microscopy. It has been shown that lysophosphatidic acid changes the shape of red blood cells: diskocyte become echinocytes. Aggregation of red blood cells (rouleaux) was significantly reduced in autoplasma. At the same time there is a strong aggregation of echinocytes. This was accompanied by the formation of microvesicles. Adding normal plasma to echinocytes restores shape and aggregation of red blood cells consisting of "rouleaux". A possible mechanism of action of lysophosphatidic acid on erythrocytes is discussed.

  16. Effects of glyphosate on hepatic tissue evaluating melanomacrophages and erythrocytes responses in neotropical anuran Leptodactylus latinasus.

    PubMed

    Pérez-Iglesias, Juan Manuel; Franco-Belussi, Lilian; Moreno, Liliana; Tripole, Susana; de Oliveira, Classius; Natale, Guillermo Sebastián

    2016-05-01

    Glyphosate (GLY) is the most used herbicide worldwide and its effects on anurans are well known. Pollutants can cause physiological and morphological effects. Therefore, this study evaluated the effects of GLY on hepatic melanomacrophages as a response to environmental stressors. Three treatments were exposed to different concentrations of pure GLY (100, 1000, and 10,000 μg g(-1), respectively), and there was also a control group. After the experimental time, liver and blood were analyzed. Melanomacrophages (MMCs) were located between the hepatocyte cordons, close to sinusoids. GLY increased the melanin area in MMCs of Leptodactylus latinasus exposed since lowest concentration until highest concentration. GLY also changed the occurrence of hepatic catabolism pigments into melanomacrophages and erythrocyte nuclear abnormalities; therefore, it can interfere with the hepatic metabolism. In conclusion, GLY promotes alterations in the hepatic tissue and erythrocyte nuclear abnormalities. Furthermore, MMCs may be useful as morphological responses of GLY effects.

  17. The erythrocyte ghost is a perfect osmometer.

    PubMed

    Kwant, W O; Seeman, P

    1970-02-01

    The osmotic swelling of intact erythrocytes in hypotonic solutions was measured using microhematocrit tubes, Van Allen tubes, and a calibrated Coulter counter. In agreement with earlier workers the intact cells did not behave as perfect osmometers, the cells swelling less than predicted by the Boyle-van't Hoff law. Erythrocyte ghosts were prepared from fresh intact erythrocytes by one-step hemolysis in 0.25% NaCl at an extremely dilute concentration of cells and the membranes were sealed at 37 degrees . The ghosts were mixed with NaCl solutions of different osmolarities and the MCV (mean cell volume) of the shrunken cells immediately monitored by a calibrated Coulter counter. It was found that the MCV values of the shrunken ghosts were accurately predicted by the Boyle-van't Hoff law. These results indicate that these erythrocyte ghosts behaved as perfect osmometers.

  18. Characterization of lipid domains in erythrocyte membranes.

    PubMed

    Rodgers, W; Glaser, M

    1991-02-15

    Fluorescence digital imaging microscopy was used to study the lateral distribution of the lipid components in erythrocyte membranes. Intact erythrocytes labeled with phospholipids containing a fluorophore attached to one fatty acid chain showed an uneven distribution of the phospholipids in the membrane thereby demonstrating the presence of membrane domains. The enrichment of the lipotropic compound chlor-promazine in domains in intact erythrocytes also suggested that the domains are lipid-enriched regions. Similar membrane domains were present in erythrocyte ghosts. The phospholipid enrichment was increased in the domains by inducing membrane protein aggregation. Double-labeling experiments were done to determine the relative distributions of different phospholipids in the membrane. Vesicles made from extracted lipids did not show the presence of domains consistent with the conclusion that membrane proteins were responsible for creating the domains. Overall, it was found that large domains exist in the red blood cell membrane with unequal enrichment of the different phospholipid species.

  19. Induction of Suicidal Erythrocyte Death by Nelfinavir

    PubMed Central

    Bissinger, Rosi; Waibel, Sabrina; Lang, Florian

    2015-01-01

    The HIV protease inhibitor, nelfinavir, primarily used for the treatment of HIV infections, has later been shown to be effective in various infectious diseases including malaria. Nelfinavir may trigger mitochondria-independent cell death. Erythrocytes may undergo eryptosis, a mitochondria-independent suicidal cell death characterized by cell shrinkage and phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress and increase of cytosolic Ca2+-activity ([Ca2+]i). During malaria, accelerated death of infected erythrocytes may decrease parasitemia and thus favorably influence the clinical course of the disease. In the present study, phosphatidylserine abundance at the cell surface was estimated from annexin V binding, cell volume from forward scatter, reactive oxidant species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, and [Ca2+]i from Fluo3-fluorescence. A 48 h treatment of human erythrocytes with nelfinavir significantly increased the percentage of annexin-V-binding cells (≥5µg/mL), significantly decreased forward scatter (≥2.5µg/mL), significantly increased ROS abundance (10 µg/mL), and significantly increased [Ca2+]i (≥5 µg/mL). The up-regulation of annexin-V-binding following nelfinavir treatment was significantly blunted, but not abolished by either addition of the antioxidant N-acetylcysteine (1 mM) or removal of extracellular Ca2+. In conclusion, exposure of erythrocytes to nelfinavir induces oxidative stress and Ca2+ entry, thus leading to suicidal erythrocyte death characterized by erythrocyte shrinkage and erythrocyte membrane scrambling. PMID:26008229

  20. Alkali ion transport of primycin modified erythrocytes.

    PubMed

    Blaskó, K; Györgyi, S

    1981-01-01

    The effects of the antibiotic primycin on alkali cation transport of human erythrocytes were investigated. Primycin selectively increases the permeability of erythrocytes to alkali-cations according to the sequence: Cs+ greater than Rb+ approximately K+ greater than Na+. The time course of the cation effluxes depends on the antibiotic concentration and can be altered by negatively charged SDS. Some evidence is given for the mechanism of primycin-membrane interaction.

  1. Laser interference microscopy in erythrocyte study

    NASA Astrophysics Data System (ADS)

    Yusipovich, A. I.; Parshina, E. Yu.; Brysgalova, N. Yu.; Brazhe, A. R.; Brazhe, N. A.; Lomakin, A. G.; Levin, G. G.; Maksimov, G. V.

    2009-05-01

    With the laser interference microscopy (LIM) technique, one can measure phase height of cells—a variable proportional to the cell thickness and the difference in the refractive indices of the cell and the surrounding medium. This makes functional optical cell imaging possible, and estimation of shape, thickness, and area of erythrocytes feasible. In this paper, we studied changes in erythrocyte shape and volume with osmolarity and pH. Obtained from the LIM technique, erythrocyte phase heights and area values, as well as the hematocrit-measured erythrocyte volume, were used to estimate changes in the refractive index with osmolarity and pH. A comparison between the estimated refractive index with the refractive index, calculated in the assumption that it can only depend on the hemoglobin concentration in the cell, indicates that these two estimates are identical in the range of osmolarity (250-1000 mOsm) and pH (4.5-10.0) values. Thus, refractive index changes result exclusively from the changes in hemoglobin concentration with the changes in erythrocyte volume. Under these conditions, it is possible to estimate the amount of hemoglobin in an erythrocyte from its phase height and area, obtained from LIM.

  2. The Effect of Sepsis on the Erythrocyte.

    PubMed

    Bateman, Ryon M; Sharpe, Michael D; Singer, Mervyn; Ellis, Christopher G

    2017-09-08

    Sepsis induces a wide range of effects on the red blood cell (RBC). Some of the effects including altered metabolism and decreased 2,3-bisphosphoglycerate are preventable with appropriate treatment, whereas others, including decreased erythrocyte deformability and redistribution of membrane phospholipids, appear to be permanent, and factors in RBC clearance. Here, we review the effects of sepsis on the erythrocyte, including changes in RBC volume, metabolism and hemoglobin's affinity for oxygen, morphology, RBC deformability (an early indicator of sepsis), antioxidant status, intracellular Ca(2+) homeostasis, membrane proteins, membrane phospholipid redistribution, clearance and RBC O₂-dependent adenosine triphosphate efflux (an RBC hypoxia signaling mechanism involved in microvascular autoregulation). We also consider the causes of these effects by host mediated oxidant stress and bacterial virulence factors. Additionally, we consider the altered erythrocyte microenvironment due to sepsis induced microvascular dysregulation and speculate on the possible effects of RBC autoxidation. In future, a better understanding of the mechanisms involved in sepsis induced erythrocyte pathophysiology and clearance may guide improved sepsis treatments. Evidence that small molecule antioxidants protect the erythrocyte from loss of deformability, and more importantly improve septic patient outcome suggest further research in this area is warranted. While not generally considered a critical factor in sepsis, erythrocytes (and especially a smaller subpopulation) appear to be highly susceptible to sepsis induced injury, provide an early warning signal of sepsis and are a factor in the microvascular dysfunction that has been associated with organ dysfunction.

  3. Mechanisms of Human Erythrocytic Bioactivation of Nitrite*

    PubMed Central

    Liu, Chen; Wajih, Nadeem; Liu, Xiaohua; Basu, Swati; Janes, John; Marvel, Madison; Keggi, Christian; Helms, Christine C.; Lee, Amber N.; Belanger, Andrea M.; Diz, Debra I.; Laurienti, Paul J.; Caudell, David L.; Wang, Jun; Gladwin, Mark T.; Kim-Shapiro, Daniel B.

    2015-01-01

    Nitrite signaling likely occurs through its reduction to nitric oxide (NO). Several reports support a role of erythrocytes and hemoglobin in nitrite reduction, but this remains controversial, and alternative reductive pathways have been proposed. In this work we determined whether the primary human erythrocytic nitrite reductase is hemoglobin as opposed to other erythrocytic proteins that have been suggested to be the major source of nitrite reduction. We employed several different assays to determine NO production from nitrite in erythrocytes including electron paramagnetic resonance detection of nitrosyl hemoglobin, chemiluminescent detection of NO, and inhibition of platelet activation and aggregation. Our studies show that NO is formed by red blood cells and inhibits platelet activation. Nitric oxide formation and signaling can be recapitulated with isolated deoxyhemoglobin. Importantly, there is limited NO production from erythrocytic xanthine oxidoreductase and nitric-oxide synthase. Under certain conditions we find dorzolamide (an inhibitor of carbonic anhydrase) results in diminished nitrite bioactivation, but the role of carbonic anhydrase is abrogated when physiological concentrations of CO2 are present. Importantly, carbon monoxide, which inhibits hemoglobin function as a nitrite reductase, abolishes nitrite bioactivation. Overall our data suggest that deoxyhemoglobin is the primary erythrocytic nitrite reductase operating under physiological conditions and accounts for nitrite-mediated NO signaling in blood. PMID:25471374

  4. [Kinetics of Cu crossing human erythrocyte membrane].

    PubMed

    Dun, Zhu Ci Ren

    2014-12-01

    This study was aimed to investigate various factors influencing the proceduction of Cu(II) crossing human erythrocyte membrane, including concentration of Cu²⁺, pH value of the medium, temperature and time of incubation, and to derive kinetic equation of Cu(II) crossing human erythrocyte membrane. Suspension red blood cells were incubated by Cu²⁺, then content of Cu²⁺ crossed human erythrocyte membrane was determined by atomic absorption spectrometry under various conditions after digestion. The results showed that content of Cu²⁺ crossed human erythrocyte membrane increased with the increase of extracellular Cu²⁺ and enhancement of incubation temperature, and the content of Cu²⁺ crossed human erythrocyte membrane showed a increasing tendency when pH reached to 6.2-7.4, and to maximum at pH 7.4, then gradually decreased at range of pH 7.4-9.2. It is concluded that the Cu²⁺ crossing human erythrocyte has been confirmed to be the first order kinetics characteristics within 120 min, and the linear equation is 10³ × Y = 0.0497t +6.5992.

  5. Therapeutic potential of manipulating suicidal erythrocyte death.

    PubMed

    Lang, Florian; Jilani, Kashif; Lang, Elisabeth

    2015-01-01

    Eryptosis, the suicidal erythrocyte death, is characterized by erythrocyte shrinkage and phosphatidylserine translocation to the erythrocyte surface. Eryptosis is triggered by cell stress such as energy depletion and oxidative stress, by Ca(2+)-entry, ceramide, caspases, calpain and/or altered activity of several kinases. Phosphatidylserine-exposing erythrocytes adhere to the vascular wall and may thus impede microcirculation. Eryptotic cells are further engulfed by phagocytes and thus rapidly cleared from circulation. Stimulation of eryptosis contributes to anemia of several clinical conditions such as metabolic syndrome, diabetes, malignancy, hepatic failure, heart failure, uremia, hemolytic uremic syndrome, sepsis, fever, dehydration, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose-6-phosphate dehydrogenase deficiency and Wilson's disease. On the other hand, eryptosis with subsequent clearance of infected erythrocytes in malaria may counteract parasitemia. In theory, anemia due to excessive eryptosis could be alleviated by treatment with small molecules inhibiting eryptosis. In malaria, stimulators of eryptosis may accelerate death of infected erythrocytes and thus favorably influence the clinical course of the disease. Many small molecules inhibit or stimulate eryptosis. Several stimulators favorably influence murine malaria. Further preclinical and subsequent clinical studies are required to elucidate the therapeutic potential of stimulators or inhibitors of eryptosis.

  6. Bile Acid-Induced Suicidal Erythrocyte Death.

    PubMed

    Lang, Elisabeth; Pozdeev, Vitaly I; Gatidis, Sergios; Qadri, Syed M; Häussinger, Dieter; Kubitz, Ralf; Herebian, Diran; Mayatepek, Ertan; Lang, Florian; Lang, Karl S; Lang, Philipp A

    2016-01-01

    In nucleated cells, bile acids may activate cation channels subsequently leading to entry of Ca2+. In erythrocytes, increase of cytosolic Ca2+ activity triggers eryptosis, the suicidal death of erythrocytes characterized by phosphatidylserine exposure at the cell surface and cell shrinkage. Eryptosis is triggered by bile duct ligation, an effect partially attributed to conjugated bilirubin. The present study explored, whether bile acids may stimulate eryptosis. Phosphatidylserine exposing erythrocytes have been identified utilizing annexin V binding, cell volume estimated from forward scatter, cytosolic Ca2+ activity determined using Fluo-3 fluorescence, and ceramide abundance at the erythrocyte surface utilizing specific antibodies. The exposure of human erythrocytes to glycochenodesoxycholic (GCDC) and taurochenodesoxycholic (TCDC) acid was followed by a significant decrease of forward scatter and significant increase of Fluo-3 fluorescence, ceramide abundance as well as annexin V binding. The effect on annexin V binding was significantly blunted, but not abolished by removal of extracellular Ca2+. Bile acids stimulate suicidal cell death, an effect paralleled by and in part due to Ca2+ entry and ceramide. The bile acid induced eryptosis may in turn lead to accelerated clearance of circulating erythrocytes and, thus, may contribute to anemia in cholestatic patients. © 2016 The Author(s) Published by S. Karger AG, Basel.

  7. Hemorheological abnormalities in lipoprotein lipase deficient mice with severe hypertriglyceridemia

    SciTech Connect

    Zhao Tieqiang; Guo Jun; Li Hui; Huang Wei; Xian Xunde; Ross, Colin J.D.; Hayden, Michael R.; Wen Zongyao . E-mail: rheol@bjmu.edu.cn; Liu George . E-mail: vangeorgeliu@gmail.com

    2006-03-24

    Severe hypertriglyceridemia (HTG) is a metabolic disturbance often seen in clinical practice. It is known to induce life-threatening acute pancreatitis, but its role in atherogenesis remains elusive. Hemorheological abnormality was thought to play an important role in pathogenesis of both pancreatitis and atherosclerosis. However, hemorheology in severe HTG was not well investigated. Recently, we established a severe HTG mouse model deficient in lipoprotein lipase (LPL) in which severe HTG was observed to cause a significant increase in plasma viscosity. Disturbances of erythrocytes were also documented, including decreased deformability, electrophoresis rate, and membrane fluidity, and increased osmotic fragility. Scanning electron microscopy demonstrated that most erythrocytes of LPL deficient mice deformed with protrusions, irregular appearances or indistinct concaves. Analysis of erythrocyte membrane lipids showed decreased cholesterol (Ch) and phospholipid (PL) contents but unaltered Ch/PL ratio. The changes of membrane lipids may be partially responsible for the hemorheological and morphologic abnormalities of erythrocytes. This study indicated that severe HTG could lead to significant impairment of hemorheology and this model may be useful in delineating the role of severe HTG in the pathogenesis of hyperlipidemic pancreatitis and atherosclerosis.

  8. Nucleic acid distribution pattern in avian erythrocytes and mammalian lymphocytes: comparative studies by fluorescence microscopy and digital imaging analytical techniques.

    PubMed

    Isitor, G N; Asgarali, Z; Pouching, K

    2008-12-01

    Nucleated erythrocytes of healthy domestic chicken and ducks, and lymphocytes of healthy Sprague Dawley rats were evaluated for nucleic acid distribution pattern, employing light and fluorescence microscopy procedures, as well as digital imaging analytical methods. The results demonstrate a unique organization of nuclear DNA of mature chicken and duck erythrocytes, as well as immature duck erythrocytes, as delineated spherical nuclear bodies that mostly corresponded with euchromatin zones of the cells in routine Wright-stain blood smears. The nuclear DNA of the rat lymphocytes, on the other hand, was observed as a more diffuse green fluorescing nuclear areas, with punctate variably-sized diffuse areas of RNA red fluorescence. RNA red color fluorescence was also evident in the narrow cytoplasm of the lymphocytes, especially in large lymphocytes, in comparison with the cytoplasm of the mature avian erythrocytes that completely lacked any nucleic acid fluorescence. Nuclear RNA fluorescence was lacking in the mature chicken erythrocytes, compared with those of the mature and immature duck erythrocytes as well as lymphocytes of both avian and rats blood. The significance of these findings lies in the establishment of normal benchmarks for the nuclear and cytoplasmic nucleic acid pattern in eukaryotic cells. These normal benchmarks become valuable in rapid diagnostic situations associated with pathologies, such as the presence of viral nuclear and cytoplasmic inclusion bodies that can alter the nucleic acid pattern of the host cells, and in conditions of cellular abnormal protein aggregations. Variability of cellular nucleic acid pattern can also aid in prognostic assessments of neoplastic conditions.

  9. Deficiency of skeletal membrane protein band 4.1 in homozygous hereditary elliptocytosis. Implications for erythrocyte membrane stability.

    PubMed Central

    Tchernia, G; Mohandas, N; Shohet, S B

    1981-01-01

    Erythrocytes from three patients with severe hemolytic anemia, marked erythrocyte fragmentation, and elliptocytic poikilocytosis, were studied in terms of both their membrane protein composition and their mechanical characteristics. Erythrocytes from the patients' parents and one minimally affected and one normal sibling were also studied. Morphologic observations implied that the severely affected patients suffered from homozygous hereditary elliptocytosis because erythrocytes of both parents and the one minimally affected sibling showed moderate elliptocytosis on smear, whereas those of an unaffected sibling had normal morphology. The parallel findings of markedly reduced levels of band 4.1 in the erythrocyte membrane proteins of the patients and an intermediate reduction in the cells of the parents and the putative heterozygous sibling, suggest that the elliptocytic shape of the cells was related to the reduced levels of band 4.1. Additional studies showed marked abnormalities in cellular deformability and membrane fragility in the erythrocytes from the homozygous patients. Importantly, these changes were also closely proportional to the reduced levels of band 4.1, suggesting a central role for this protein in the maintenance of normal membrane stability and normal cell shape. It seems likely that this role for band 4.1 is intimately related to its known biochemical connection to the "membrane skeleton" through its linkage with spectrin and actin. Images PMID:6894932

  10. Two distinct variants of erythrocyte spectrin beta IV domain.

    PubMed

    Pothier, B; Alloisio, N; Morlé, L; Maréchal, J; Barthélemy, H; Ducluzeau, M T; Dorier, A; Delaunay, J

    1989-11-01

    We report two distinct variants affecting the beta IV domain of erythrocyte spectrin, designated spectrin Saint-Chamond and spectrin Tlemcen. They were discovered in a French family and an Algerian individual, respectively. They appeared clinically and morphologically asymptomatic in the heterozygous state. In two-dimensional maps of spectrin partial digests, both mutants were manifested by cathodic shifts (with no change of the molecular weights) of the peptides that cover the N-terminal region of spectrin beta IV domain. The relevance of the abnormal peptides to the beta IV domain was established by quantitative analysis and by Western blotting using anti-beta IV domain-specific antibodies. These two variants are thus far the most distal variants of spectrin to be defined on an unequivocal structural basis.

  11. Platelet and erythrocyte Mg2+, Ca2+, Na+, K+ and cell membrane adenosine triphosphatase activity in essential hypertension in blacks.

    PubMed

    Touyz, R M; Milne, F J; Reinach, S G

    1992-06-01

    To assess the relationship between intracellular Mg2+, Ca2+, Na+ and K+ and cell membrane adenosine triphosphatase (ATPase) activity in normotensive and hypertensive blacks. Intracellular cations and cell membrane ATPase activity were studied in black patients with untreated essential hypertension and age-, weight- and height-matched normotensive controls. Platelet, erythrocyte and serum Mg2+, Ca2+, Na+ and K+ levels as well as platelet and erythrocyte membrane Na+,K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase activities were measured in all subjects. Intracellular Na+ and K+ were measured by flame photometry and Mg+ and Ca+ by atomic absorption spectrophotometry. Cell membrane ATPase activity was determined by a colorimetric method. The hypertensive group consistently demonstrated depressed activity of each ATPase studied, with significantly lower serum Mg2+, serum K+, erythrocyte Mg2+ and platelet Mg2+ levels compared with the normotensive group. Platelet Na+ and Ca2+ and erythrocyte Ca2+ were significantly elevated in the hypertensive group. In the hypertensive group, mean arterial pressure (MAP) was inversely correlated with platelet and erythrocyte membrane Na+,K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase. Serum Mg2+, serum Ca2+ and platelet Mg2+ were negatively correlated with MAP in the hypertensive group whilst erythrocyte and platelet Ca2+ were positively correlated. In the normotensive group, platelet Mg2+ and MAP were negatively, and erythrocyte Ca2+ and MAP, positively correlated. Black patients with essential hypertension have widespread depression of cell membrane Na+,K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase activities with serum and intracellular Mg2+ depletion and cytosolic Na+ and Ca2+ overload, which may reflect an underlying membrane abnormality in essential hypertension. These cellular abnormalities may be related to the defective transport mechanisms that in turn may be aggravated by Mg2+ depletion.

  12. Abnormal thiol reactivity of tropomyosin in essential hypertension and its association with abnormal sodium-lithium countertransport kinetics.

    PubMed

    Watkins, S L; West, I C; Wilkinson, R; Thomas, T H

    2001-03-01

    To identify a thiol protein that is abnormal in a subgroup of essential hypertensive (EHT) patients who have a strong family history of hypertension and cardiovascular disease and have a low Km of erythrocyte Na/Li countertransport (CT). To detect biotin maleimide labelling of a key thiol protein to investigate its reaction with N-ethylmaleimide (NEM) in normal and EHT erythrocytes. The thiol protein of 33 kDa apparent molecular weight (p33) identified by the loss of labelling with biotin maleimide was identified as tropomyosin due to its retarded running in 6 mol/l urea gels and immunoblotting. The NEM reaction with p33 detected by loss of subsequent biotin maleimide labelling is biphasic in normal control erythrocytes with the rate in the first 30 s double that after 30 s. In EHT erythrocytes NEM reaction (1) after 30 s is faster than normal and (2) in the first 30 s causes a paradoxical increase in apparent biotin maleimide labelling. In normal control erythrocytes, the loss of biotin maleimide labelling with NEM reaction or the faster phenylmaleimide reaction follows the same time course as the decrease in Km of Na/Li CT. NEM reaction with p33 requires two thiols. Only the cytoskeletal form of tropomyosin from the TM3 gene has more than one thiol group and agrees with SDS-PAGE mobility. Tropomyosin is a strong candidate to explain the familial abnormality in EHT with abnormal Na/ Li CT and it could explain many of the characteristics of this disease.

  13. Inhibition of erythrocyte phosphoribosyltransferases (APRT and HPRT) by Pb2+: a potential mechanism of lead toxicity.

    PubMed

    Baranowska-Bosiacka, I; Dziedziejko, V; Safranow, K; Gutowska, I; Marchlewicz, M; Dołegowska, B; Rać, M E; Wiszniewska, B; Chlubek, D

    2009-05-02

    Many reports show that red blood cells of people exposed to lead have a decreased ATP concentration, decreased adenylate energy charge value and many metabolic and morphological abnormalities. Since the synthesis of nucleotides in erythrocytes occurs only through salvage pathways, we hypothesized that a decrease in nucleotide concentrations may be caused by lead-induced inhibition of erythrocyte phosphoribosyltransferases: adenine APRT (EC 2.4.2.7) and hypoxanthine-guanine HPRT (EC 2.4.2.8). These enzymes enable the reutilization of purine bases (adenine, guanine, hypoxanthine) converting them to mononucleotides (AMP, GMP, IMP), substrates for the synthesis of high-energy nucleotides. To confirm the hypothesis two experiments were performed: (i) in vitro, using a lysate of human erythrocytes incubated (5, 10, 30min) with lead ions (100microM, 10microM, 1microM, 500nM, 100nM lead acetate) and 100microM sodium acetate for the control, (ii) in vivo, using a lysate of rat erythrocytes taken from rats chronically exposed to lead (0.1% lead acetate in drinking water for 9 months, resulting in whole blood lead concentration 7microg/dL). The activities of APRT and HPRT were determined using HPLC method, which allowed concurrent determination of the activity of both enzymes in erythrocyte lysates. We have shown that, lead ions: (i) moderately inhibit both phosphoribosyltransferases in erythrocytes, this influence being detectable even at very low concentrations (ii) participate in hemolysis, the intensity of which negatively correlates with the activity of phosphoribosyltransferases. Our results indicate the necessity of further research on the role of lead-induced APRT and HPRT inhibition as one of the mechanisms of lead toxicity.

  14. Erythrocytic Iron Deficiency Enhances Susceptibility to Plasmodium chabaudi Infection in Mice Carrying a Missense Mutation in Transferrin Receptor 1.

    PubMed

    Lelliott, Patrick M; McMorran, Brendan J; Foote, Simon J; Burgio, Gaetan

    2015-11-01

    The treatment of iron deficiency in areas of high malaria transmission is complicated by evidence which suggests that iron deficiency anemia protects against malaria, while iron supplementation increases malaria risk. Iron deficiency anemia results in an array of pathologies, including reduced systemic iron bioavailability and abnormal erythrocyte physiology; however, the mechanisms by which these pathologies influence malaria infection are not well defined. In the present study, the response to malaria infection was examined in a mutant mouse line, Tfrc(MRI24910), identified during an N-ethyl-N-nitrosourea (ENU) screen. This line carries a missense mutation in the gene for transferrin receptor 1 (TFR1). Heterozygous mice exhibited reduced erythrocyte volume and density, a phenotype consistent with dietary iron deficiency anemia. However, unlike the case in dietary deficiency, the erythrocyte half-life, mean corpuscular hemoglobin concentration, and intraerythrocytic ferritin content were unchanged. Systemic iron bioavailability was also unchanged, indicating that this mutation results in erythrocytic iron deficiency without significantly altering overall iron homeostasis. When infected with the rodent malaria parasite Plasmodium chabaudi adami, mice displayed increased parasitemia and succumbed to infection more quickly than their wild-type littermates. Transfusion of fluorescently labeled erythrocytes into malaria parasite-infected mice demonstrated an erythrocyte-autonomous enhanced survival of parasites within mutant erythrocytes. Together, these results indicate that TFR1 deficiency alters erythrocyte physiology in a way that is similar to dietary iron deficiency anemia, albeit to a lesser degree, and that this promotes intraerythrocytic parasite survival and an increased susceptibility to malaria in mice. These findings may have implications for the management of iron deficiency in the context of malaria. Copyright © 2015, American Society for Microbiology

  15. Erythrocytic Iron Deficiency Enhances Susceptibility to Plasmodium chabaudi Infection in Mice Carrying a Missense Mutation in Transferrin Receptor 1

    PubMed Central

    Lelliott, Patrick M.; McMorran, Brendan J.; Foote, Simon J.

    2015-01-01

    The treatment of iron deficiency in areas of high malaria transmission is complicated by evidence which suggests that iron deficiency anemia protects against malaria, while iron supplementation increases malaria risk. Iron deficiency anemia results in an array of pathologies, including reduced systemic iron bioavailability and abnormal erythrocyte physiology; however, the mechanisms by which these pathologies influence malaria infection are not well defined. In the present study, the response to malaria infection was examined in a mutant mouse line, TfrcMRI24910, identified during an N-ethyl-N-nitrosourea (ENU) screen. This line carries a missense mutation in the gene for transferrin receptor 1 (TFR1). Heterozygous mice exhibited reduced erythrocyte volume and density, a phenotype consistent with dietary iron deficiency anemia. However, unlike the case in dietary deficiency, the erythrocyte half-life, mean corpuscular hemoglobin concentration, and intraerythrocytic ferritin content were unchanged. Systemic iron bioavailability was also unchanged, indicating that this mutation results in erythrocytic iron deficiency without significantly altering overall iron homeostasis. When infected with the rodent malaria parasite Plasmodium chabaudi adami, mice displayed increased parasitemia and succumbed to infection more quickly than their wild-type littermates. Transfusion of fluorescently labeled erythrocytes into malaria parasite-infected mice demonstrated an erythrocyte-autonomous enhanced survival of parasites within mutant erythrocytes. Together, these results indicate that TFR1 deficiency alters erythrocyte physiology in a way that is similar to dietary iron deficiency anemia, albeit to a lesser degree, and that this promotes intraerythrocytic parasite survival and an increased susceptibility to malaria in mice. These findings may have implications for the management of iron deficiency in the context of malaria. PMID:26303393

  16. Characterization of carrier erythrocytes for biosensing applications.

    PubMed

    Bustamante López, Sandra C; Meissner, Kenith E

    2017-09-01

    Erythrocyte abundance, mobility, and carrying capacity make them attractive as a platform for blood analyte sensing as well as for drug delivery. Sensor-loaded erythrocytes, dubbed erythrosensors, could be reinfused into the bloodstream, excited noninvasively through the skin, and used to provide measurement of analyte levels in the bloodstream. Several techniques to load erythrocytes, thus creating carrier erythrocytes, exist. However, their cellular characteristics remain largely unstudied. Changes in cellular characteristics lead to removal from the bloodstream. We hypothesize that erythrosensors need to maintain native erythrocytes’ (NEs) characteristics to serve as a long-term sensing platform. Here, we investigate two loading techniques and the properties of the resulting erythrosensors. For loading, hypotonic dilution requires a hypotonic solution while electroporation relies on electrical pulses to perforate the erythrocyte membrane. We analyze the resulting erythrosensor signal, size, morphology, and hemoglobin content. Although the resulting erythrosensors exhibit morphological changes, their size was comparable with NEs. The hypotonic dilution technique was found to load erythrosensors much more efficiently than electroporation, and the sensors were loaded throughout the volume of the erythrosensors. Finally, both techniques resulted in significant loss of hemoglobin. This study points to the need for continued development of loading techniques that better preserve NE characteristics.

  17. Drug-induced erythrocyte membrane internalization.

    PubMed

    Ben-Bassat, I; Bensch, K G; Schrier, S L

    1972-07-01

    In vitro erythrocyte membrane internalization, resulting in the formation of membrane-lined vacuoles, can be quantified by a radioisotopic method. A complex of (37)Co-labeled vitamin B(12) and its plasma protein binders is first adsorbed to the cell surface, and after vacuoles are formed, the noninternalized label is removed by washing and trypsin treatment. The residual radioactivity represents trapped label and can be used to measure the extent of membrane internalization. Using this method, it was found that in addition to primaquine, a group of membrane-active drugs, specifically hydrocortisone, vinblastine, and chlorpromazine can induce membrane internalization in erythrocytes. This is a metabolic process dependent on drug concentration, temperature, and pH. Vacuole formation by all agents tested can be blocked by prior depletion of endogenous substrates or by poisoning the erythrocytes with sodium fluoride and sulfhydryl blocking agents. This phenomenon resembles in some respects the previously reported membrane internalization of energized erythrocyte ghosts. It is suggested that membrane internalization is dependent on an ATP-energized state and is influenced by the balance between the concentrations of magnesium and calcium in the membrane. This study provides a basis for proposing a unifying concept of the action of some membrane-active drugs, and for considering the role of erythrocyte membrane internalization in pathophysiologic events.

  18. Diffusion of glycophorin A in human erythrocytes.

    PubMed

    Giger, Katie; Habib, Ibrahim; Ritchie, Ken; Low, Philip S

    2016-11-01

    Several lines of evidence suggest that glycophorin A (GPA) interacts with band 3 in human erythrocyte membranes including: i) the existence of an epitope shared between band 3 and GPA in the Wright b blood group antigen, ii) the fact that antibodies to GPA inhibit the diffusion of band 3, iii) the observation that expression of GPA facilitates trafficking of band 3 from the endoplasmic reticulum to the plasma membrane, and iv) the observation that GPA is diminished in band 3 null erythrocytes. Surprisingly, there is also evidence that GPA does not interact with band 3, including data showing that: i) band 3 diffusion increases upon erythrocyte deoxygenation whereas GPA diffusion does not, ii) band 3 diffusion is greatly restricted in erythrocytes containing the Southeast Asian Ovalocytosis mutation whereas GPA diffusion is not, and iii) most anti-GPA or anti-band 3 antibodies do not co-immunoprecipitate both proteins. To try to resolve these apparently conflicting observations, we have selectively labeled band 3 and GPA with fluorescent quantum dots in intact erythrocytes and followed their diffusion by single particle tracking. We report here that band 3 and GPA display somewhat similar macroscopic and microscopic diffusion coefficients in unmodified cells, however perturbations of band 3 diffusion do not cause perturbations of GPA diffusion. Taken together the collective data to date suggest that while weak interactions between GPA and band 3 undoubtedly exist, GPA and band 3 must have separate interactions in the membrane that control their lateral mobility.

  19. Complexation of arsenic species in rabbit erythrocytes.

    PubMed

    Delnomdedieu, M; Basti, M M; Styblo, M; Otvos, J D; Thomas, D J

    1994-01-01

    The binding of arsenite, As(III), and arsenate, As(V), by molecules in the intracellular compartment of rabbit erythrocytes has been studied by 1H- and 31P-NMR spectroscopy, uptake of 73As, and ultrafiltration experiments. For intact erythrocytes to which 0.1-0.4 mM arsenite was added, direct evidence was obtained for entry of 76% within 1/2 h and subsequent binding of As(III) by intracellular glutathione and induced changes in the hemoglobin structure (NMR), likely due to binding of As(III). These results were compared with the effect of addition of As(V) on intact erythrocytes and revealed that a smaller amount of As(V) (approximately 25%) enters the cells; the main fraction of As(V) enters the phosphate pathway, depletes ATP, and increases Pi. In contrast, As(III) did not affect the ATP level. Both 1H- and 31P-NMR data indicated striking differences between As(III) and As(V) behavior when incubated with rabbit erythrocytes. These differences were confirmed by 73As uptake and binding experiments. meso-2,3-Dimercaptosuccinic acid (DMSA), a dithiol ligand, released glutathione from its arsenite complexes in erythrocytes.

  20. [Erythrocytes - the new application in medicine].

    PubMed

    Szumiło, Michał

    2013-01-01

    The new forms of drugs with better proprieties from traditional ones were sought for a long time. Erythrocytes applied as carriers of therapeutic substances are among promising. They are characterized by slower release of active substances, less toxicity, as well as better biocompatibility and biodegradation in the organism. It is especially important in administration of drugs with numerous side effects in therapy of chronic diseases e.g. malignancies. Investigations conducted from over twenty years showed, that erythrocytes are universal carriers in which different therapeutic substances were successfully closed, e.g. cytostatics, antibiotics, hormones and vitamins, as well as enzymes and vaccines. Some of the erythrocyte drug delivery systems are now studied at the clinical level, e.g. dexamthasone 21-phosphate in treatment of inflammatory bowel disease and chronic obstructive pulmonary disease. This substance encapsulated in human erythrocytes was also officially registered by European Medicines Agency, as the orphan drug in treatment of cystic fibrosis: Reports on application of carrier erythrocytes in patients with rare genetic diseases have also appeared.

  1. The influence of host genetics on erythrocytes and malaria infection: is there therapeutic potential?

    PubMed

    Lelliott, Patrick M; McMorran, Brendan J; Foote, Simon J; Burgio, Gaetan

    2015-07-29

    As parasites, Plasmodium species depend upon their host for survival. During the blood stage of their life-cycle parasites invade and reside within erythrocytes, commandeering host proteins and resources towards their own ends, and dramatically transforming the host cell. Parasites aptly avoid immune detection by minimizing the exposure of parasite proteins and removing themselves from circulation through cytoadherence. Erythrocytic disorders brought on by host genetic mutations can interfere with one or more of these processes, thereby providing a measure of protection against malaria to the host. This review summarizes recent findings regarding the mechanistic aspects of this protection, as mediated through the parasites interaction with abnormal erythrocytes. These novel findings include the reliance of the parasite on the host enzyme ferrochelatase, and the discovery of basigin and CD55 as obligate erythrocyte receptors for parasite invasion. The elucidation of these naturally occurring malaria resistance mechanisms is increasing the understanding of the host-parasite interaction, and as discussed below, is providing new insights into the development of therapies to prevent this disease.

  2. Detection of erythrocytes influenced by aging and type 2 diabetes using atomic force microscope

    SciTech Connect

    Jin, Hua; Xing, Xiaobo; Zhao, Hongxia; Chen, Yong; Huang, Xun; Ma, Shuyuan; Ye, Hongyan; Cai, Jiye

    2010-01-22

    The pathophysiological changes of erythrocytes are detected at the molecular scale, which is important to reveal the onset of diseases. Type 2 diabetes is an age-related metabolic disorder with high prevalence in elderly (or old) people. Up to now, there are no treatments to cure diabetes. Therefore, early detection and the ability to monitor the progression of type 2 diabetes are very important for developing effective therapies. Type 2 diabetes is associated with high blood glucose in the context of insulin resistance and relative insulin deficiency. These abnormalities may disturb the architecture and functions of erythrocytes at molecular scale. In this study, the aging- and diabetes-induced changes in morphological and biomechanical properties of erythrocytes are clearly characterized at nanometer scale using atomic force microscope (AFM). The structural information and mechanical properties of the cell surface membranes of erythrocytes are very important indicators for determining the healthy, diseased or aging status. So, AFM may potentially be developed into a powerful tool in diagnosing diseases.

  3. Effects of nickel chloride on the erythrocytes and erythrocyte immune adherence function in broilers.

    PubMed

    Li, Jian; Wu, Bangyuan; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Tang, Kun; Yin, Shuang

    2014-11-01

    This study was conducted to investigate the immune adherence function of erythrocytes and erythrocyte induced by dietary nickel chloride (NiCl2) in broilers fed on a control diet and three experimental diets supplemented with 300, 600, and 900 mg/kg NiCl2 for 42 days. Blood samples were collected from five broilers in each group at 14, 28, and 42 days of age. Changes of erythrocyte parameters showed that total erythrocyte count (TEC), hemoglobin (Hb) contents, and packed cell volume (PCV) were significantly lower (p < 0.05 or p < 0.01) and erythrocyte osmotic fragility (EOF) was higher (p < 0.05 or p < 0.01) in the 600 and 900 mg/kg groups at 28 and 42 days of age than those in the control group, and the sodium-potassium adenosine triphosphatase (Na(+)/K(+)-ATPase) and calcium adenosine triphosphatase (Ca(2+)-ATPase) activities were significantly decreased (p < 0.05 or p < 0.01) in the NiCl2-treated groups. The results of erythrocyte immune adherence function indicated that erythrocyte C3b receptor rosette rate (E-C3bRR) was significantly decreased (p < 0.05 or p < 0.01) in the 600 and 900 mg/kg groups and in the 300 mg/kg group at 42 days of age, whereas the erythrocyte immune complex rosette rate (E-ICRR) was markedly increased (p < 0.05 or p < 0.01) in the 300, 600, and 900 mg/kg groups at 28 and 42 days of age. It was concluded that dietary NiCl2 in excess of 300 mg/kg caused anemia and impaired the erythrocytic integrity, erythrocytic ability to transport oxygen, and erythrocyte immune adherence function in broilers. Impairment of the erythrocytes and erythrocyte immune adherence function was one of main effect mechanisms of NiCl2 on the blood function.

  4. Vitamin E supplement improves erythrocyte membrane fluidity of thalassemia: an ESR spin labeling study.

    PubMed

    Sutipornpalangkul, Werasak; Morales, Noppawan Phumala; Unchern, Supeenun; Sanvarinda, Yupin; Chantharaksri, Udom; Fucharoen, Suthat

    2012-01-01

    erythrocyte membrane fluidity was decreased in almost all patients. In contrast to the vitamin E supplementation group, increased erythrocyte membrane fluidity was demonstrated in the placebo group. Vitamin E supplementation also had effect on other clinical parameters such as increased plasma vitamin E, decreased serum TBARs and no change in hemoglobin. The present results suggested the abnormal motion of lipid in the deeper phospholipids region of membrane. In addition, vitamin E supplementation may have a role in the prevention of erythrocyte membrane damage of these patients.

  5. D-amino acids in aging erythrocytes.

    PubMed

    Ingrosso, D; Perna, A F

    1998-01-01

    Mature human erythrocytes are highly differentiated cells which have lost the ability to biosynthesize proteins de novo. During cell aging in circulation, erythrocyte proteins undergo spontaneous postbiosynthetic modifications, regarded as "protein fatigue" damage, which include formation of isomerized and/or racemized aspartyl residues. These damaged proteins cannot be replaced by new molecules; nevertheless, data support the notion that they can be repaired to a significant extent, through an enzymatic transmethylation reaction. This repair reaction has therefore been used as a means to monitor the increase of altered aspartyl residues in erythrocyte membrane proteins during cell aging. The relationship between protein repair and aspartyl racemization in red blood cell stress and disease is discussed.

  6. Effect of lead on erythrocyte membranes.

    PubMed Central

    Fukumoto, K; Karai, I; Horiguchi, S

    1983-01-01

    The effect of blood lead on erythrocyte membrane proteins was studied in 28 workers from a scrap lead refining factory and in 18 controls working in railway construction. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) of the polypeptides in the erythrocyte membrane showed that bands 3 and 4.1 had significantly decreased while bands 2.3, 6, and 7 had significantly increased in the lead workers compared with the controls. For the lead workers, the correlation coefficients between blood lead and bands 2.3 and 3 were r = 0.545 (p less than 0.01) and r = -0.51 (p less than 0.01) respectively. These results suggest that the decrease in erythrocyte membrane permeability results from a decrease in the membrane transfer protein responsible for band 3. Images PMID:6830722

  7. Mapping of hemoglobin in erythrocytes and erythrocyte ghosts using two photon excitation fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Bukara, Katarina; Jovanić, Svetlana; Drvenica, Ivana T.; Stančić, Ana; Ilić, Vesna; Rabasović, Mihailo D.; Pantelić, Dejan; Jelenković, Branislav; Bugarski, Branko; Krmpot, Aleksandar J.

    2017-02-01

    The present study describes utilization of two photon excitation fluorescence (2PE) microscopy for visualization of the hemoglobin in human and porcine erythrocytes and their empty membranes (i.e., ghosts). High-quality, label- and fixation-free visualization of hemoglobin was achieved at excitation wavelength 730 nm by detecting visible autofluorescence. Localization in the suspension and spatial distribution (i.e., mapping) of residual hemoglobin in erythrocyte ghosts has been resolved by 2PE. Prior to the 2PE mapping, the presence of residual hemoglobin in the bulk suspension of erythrocyte ghosts was confirmed by cyanmethemoglobin assay. 2PE analysis revealed that the distribution of hemoglobin in intact erythrocytes follows the cells' shape. Two types of erythrocytes, human and porcine, characterized with discocyte and echinocyte morphology, respectively, showed significant differences in hemoglobin distribution. The 2PE images have revealed that despite an extensive washing out procedure after gradual hypotonic hemolysis, a certain amount of hemoglobin localized on the intracellular side always remains bound to the membrane and cannot be eliminated. The obtained results open the possibility to use 2PE microscopy to examine hemoglobin distribution in erythrocytes and estimate the purity level of erythrocyte ghosts in biotechnological processes.

  8. Erythrocyte membrane sulfatide plays a crucial role in the adhesion of sickle erythrocytes to endothelium.

    PubMed

    Zhou, Z; Thiagarajan, P; Udden, M; Lòpez, J A; Guchhait, P

    2011-06-01

    Enhanced adhesion of sickle erythrocytes to the vascular endothelium and subendothelial matrix is fundamental to the development of vascular occlusion in sickle cell disease. Erythrocyte membrane sulfatide is implicated in the pathogenesis of vasoocclusive crises in sickle cell disease (SCD) patients. Because previous evidence linking sulfatide to cell adhesion has largely been circumstantial due to a lack of reagents that specifically target sulfatide, we used two sulfatide-specific strategies to address the role of erythrocyte membrane sulfatide in sickle cell adhesion to the vascular endothelium: a single-chain fragment variable chain (scFv) antibody against sulfatide as well as cerebroside sulfotransferase-deficient mice incapable of synthesising sulfatide. The sickle erythrocytes from mice and humans adhered at a greater extent and at higher shear stresses to activated endothelium than normal erythrocytes, and approximately 60% of the adhesion was prevented by the anti-sulfatide scFv. Similarly, the extent of adhesion of sulfatide-deficient erythrocytes was lower than normal erythrocytes. These findings suggest an important role for membrane sulfatide in sickle cell disease pathophysiology.

  9. Exercise-induced hemolysis in sickle cell anemia: shear sensitivity and erythrocyte dehydration.

    PubMed

    Platt, O S

    1982-05-01

    We describe a steady-state patient with sickle cell anemia (SS disease) who developed sporadic hemoglobinuria, historically related to vigorous exercise. We studied him and four other patients with SS disease and demonstrated exercise-induced hemoglobinemia. To see if SS erythrocytes were abnormally fragile when exposed to shear forces that could be generated in small vessels of exercising muscles, we exposed them to physiologic shear rates in a cone-plate viscometer. We show that SS erythrocytes are more shear sensitive than normal erythrocytes. This phenomenon is directly related to the presence of dehydrated cells as demonstrated by the increasing shear sensitivity of increasingly dehydrated cells separated on Stractan density gradients. Normal shear sensitivity could be restored to dehydrated layers by restoring normal hydration. Restoration of shear stability was complete in all layers except for the most dense ISC layer. A control group of patients with SC disease exhibited no exercise-induced hemoglobinemia, no abnormal shear sensitivity of whole blood, and only rare dehydrated ISCs. These studies suggest that the exercise-induced hemolysis in SS patients is related to the lysis of dehydrated, shear-sensitive cells. This same process may also contribute to the chronic hemolysis of SS disease--a phenomenon known to correlate with the numbers of dehydrated ISCs.

  10. Metabolism of acetylcholine in human erythrocytes

    SciTech Connect

    Chapman, E.S.

    1990-01-01

    In order to examine the possible role of erythrocyte acetylcholinesterase in the maintenance of membrane phospholipid content and membrane fluidity, experiments were performed to monitor the activity of the enzyme and follow the fate of one of its hydrolytic products, choline. Intact human erythrocytes were incubated with acetylcholine (choline methyl-{sup 14}C). The incubation resulted in the hydrolysis of acetylcholine to acetate and choline; the reaction was catalyzed by membrane acetylcholinesterase. The studies demonstrate the further metabolism of choline. Experiments were carried out to determine rate of hydrolysis of acetylcholine, uptake of choline, identification of intracellular metabolites of choline, and identification of radiolabeled membrane components. Erythrocytes at a 25% hematocrit were incubated in an isoosmotic bicarbonate buffer pH 7.4, containing glucose, adenosine, streptomycin and penicillin with 0.3 {mu}Ci of acetylcholine (choline methyl-{sup 14}C), for 24 hours. Aliquots of the erythrocyte suspension were taken throughout for analysis. Erythrocytes were washed free of excess substrate, lysed, and the hemolysate was extracted for choline and its metabolites. Blank samples containing incubation buffer and radiolabeled acetylcholine only, and erythrocyte hemolysate extracts were analyzed for choline content, the difference between blank samples and hemolysate extracts was the amount of choline originating from acetylcholine and attributable to acetylcholinesterase activity. The conversion of choline to {sup 14}C-betaine is noted after several minutes of incubation; at 30 minutes, more than 80% of {sup 14}C-choline is taken up and after several hours, detectable levels of radiolabeled S-adenosylmethionine were present in the hemolysate extract.

  11. Transformation of human erythrocyte shape by endotoxic lipopolysaccharide.

    PubMed

    Warren, J R; Harris, A S; Wallas, C H

    1983-01-01

    Human erythrocytes were observed to undergo a discocyte to echinocyte to spheroechinocyte shape transformation during brief incubation with endotoxic lipopolysaccharide. It was concluded that lipopolysaccharide-membrane interactions alter the curvature of erythrocyte membranes.

  12. Transformation of Human Erythrocyte Shape by Endotoxic Lipopolysaccharide

    PubMed Central

    Warren, John R.; Harris, Alan S.; Wallas, Charles H.

    1983-01-01

    Human erythrocytes were observed to undergo a discocyte to echinocyte to spheroechinocyte shape transformation during brief incubation with endotoxic lipopolysaccharide. It was concluded that lipopolysaccharide-membrane interactions alter the curvature of erythrocyte membranes. Images PMID:6822423

  13. Distribution of diuretics and hypoglycemic sulfonylureas in rabbit erythrocytes.

    PubMed

    Yoshitomi, H; Kiko, S; Ikeda, K; Goto, S

    1983-03-01

    The distribution of three sulfonylureas and six diuretics in rabbit erythrocytes was studied in vitro at 37 degrees C. The drugs were taken up by the erythrocyte compartment, and distribution equilibrium was reached within 60 min of incubation. A distribution percentage in erythrocyte compartment was maintained at roughly constant value over the whole concentration range of drugs. Therefore, a linear relationship was established between total concentrations of drug in whole blood or erythrocyte suspension and in the erythrocyte compartment. Bovine serum albumin combined with the erythrocyte suspension appeared to reduce drug distribution in the erythrocyte compartment. Whole blood obtained from renal failure rabbits showed greater distribution of drug in the erythrocyte compartment compared with the whole blood of a normal rabbit. This might be due to a change in plasma protein binding ability related to the progress of renal failure.

  14. [Normobaric intermittent hypoxia and functional state of the erythrocyte pool].

    PubMed

    Dlusskaia, I G; Stepanov, V K; Radchenko, S N; Dvornikov, M V

    2004-01-01

    Functional state of the pool of erythrocytes was evaluated in ten essentially healthy male subjects before, during and in 2 months after a series of 15 exposures to normobaric intermittent hypoxia (NIH). The erythrocyte pool dynamics, hemoglobin content, low and highly resistive fractions of erythrocytes were analyzed using a modified acidic histogram technique. It was demonstrated that the erythrocyte pool was either in the state of destruction (concurrent to the NIH exposure) or ensuing persistent improvement of the functional characteristics under study.

  15. Increased caspase-3 immunoreactivity of erythrocytes in STZ diabetic rats.

    PubMed

    Fırat, Uğur; Kaya, Savaş; Cim, Abdullah; Büyükbayram, Hüseyin; Gökalp, Osman; Dal, Mehmet Sinan; Tamer, Mehmet Numan

    2012-01-01

    Eryptosis is a term to define apoptosis of erythrocytes. Oxidative stress and hyperglycemia, both of which exist in the diabetic intravascular environment, can trigger eryptosis of erythrocytes. In this experimental study, it is presented that the majority of erythrocytes shows caspase-3 immunoreactivity in streptozocin- (STZ)-induced diabetic rats. Besides that, caspase-3 positive erythrocytes are aggregated and attached to vascular endothelium. In conclusion, these results may start a debate that eryptosis could have a role in the diabetic complications.

  16. Erythrocyte sedimentation rate and C-reactive protein.

    PubMed

    Harrison, Michael

    2015-06-01

    C-reactive protein is a better indicator of inflammation than the erythrocyte sedimentation rate. It is more sensitive and responds more quickly to changes in the clinical situation. False negative and false positive results are more common when measuring the erythrocyte sedimentation rate. Renal disease, female sex and older age increase the erythrocyte sedimentation rate. The erythrocyte sedimentation rate has value in detecting low-grade bone infection, and in monitoring some patients with systemic lupus erythematosus.

  17. Abnormal Head Position

    MedlinePlus

    ... an ocular cause. Can a longstanding head turn lead to any permanent problems? Yes, a significant abnormal ... cause permanent tightening of neck muscles that can lead to chronic neck ache or headache. An abnormal ...

  18. Skeletal limb abnormalities

    MedlinePlus

    ... medlineplus.gov/ency/article/003170.htm Skeletal limb abnormalities To use the sharing features on this page, please enable JavaScript. Skeletal limb abnormalities refers to a variety of bone structure problems ...

  19. Tooth - abnormal colors

    MedlinePlus

    ... medlineplus.gov/ency/article/003065.htm Tooth - abnormal colors To use the sharing features on this page, please enable JavaScript. Abnormal tooth color is any color other than white to yellowish- ...

  20. Urine - abnormal color

    MedlinePlus

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  1. Studies of the pathogenesis of anemia of inflammation: erythrocyte survival

    SciTech Connect

    Weiss, D.J.; Krehbiel, J.D.

    1983-10-01

    Erythrocyte survival was investigated in healthy cats and in cats with sterile abscesses. Erythrocyte survival time in cats with sterile abscesses was found to be significantly reduced. The erythrocyte destruction appeared to be the major factor in the early stages of anemia of inflammation.

  2. [Application of 2 electrophoresis techniques to the analysis of erythrocyte membrane proteins in hereditary spherocytosis].

    PubMed

    Ferrándiz, F; Ródenas, S; Villegas, A

    1993-10-01

    Seven patients with hereditary spherocytosis have been studied using polyacrylamide gel electrophoresis with sodium dodecylsulfate (PAGE-SDS) and cytopherometry, in order to obtain information about possible alterations in the erythrocyte membrane proteins and in the electrophoretic mobility of whole erythrocytes. In four patients, a decrease in Band 4.2 protein was found. Histogram plotters proved of interest in showing two subpopulations in two patients. In all the cases, the electrophoretic mobility was normal. In two patients a spectrin deficiency was found. The study of histograms showed the presence of two subpopulations in this group of patients, in which the electrophoretic mobility was normal. Finally, one patient showed no deficiencies in membrane proteins. This fact can be due to an abnormality of spectrin that we could not detect with our techniques.

  3. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... PROBLEMS Abnormal Uterine Bleeding • What is a normal menstrual cycle? • When is bleeding abnormal? • At what ages is ... treat abnormal bleeding? •Glossary What is a normal menstrual cycle? The normal length of the menstrual cycle is ...

  4. Effects of lornoxicam and intravenous ibuprofen on erythrocyte deformability and hepatic and renal blood flow in rats.

    PubMed

    Arpacı, Hande; Çomu, Faruk Metin; Küçük, Ayşegül; Kösem, Bahadır; Kartal, Seyfi; Şıvgın, Volkan; Turgut, Hüseyin Cihad; Aydın, Muhammed Enes; Koç, Derya Sebile; Arslan, Mustafa

    2016-01-01

    Change in blood supply is held responsible for anesthesia-related abnormal tissue and organ perfusion. Decreased erythrocyte deformability and increased aggregation may be detected after surgery performed under general anesthesia. It was shown that nonsteroidal anti-inflammatory drugs decrease erythrocyte deformability. Lornoxicam and/or intravenous (iv) ibuprofen are commonly preferred analgesic agents for postoperative pain management. In this study, we aimed to investigate the effects of lornoxicam (2 mg/kg, iv) and ibuprofen (30 mg/kg, iv) on erythrocyte deformability, as well as hepatic and renal blood flows, in male rats. Eighteen male Wistar albino rats were randomly divided into three groups as follows: iv lornoxicam-treated group (Group L), iv ibuprofen-treated group (Group İ), and control group (Group C). Drug administration was carried out by the iv route in all groups except Group C. Hepatic and renal blood flows were studied by laser Doppler, and euthanasia was performed via intra-abdominal blood uptake. Erythrocyte deformability was measured using a constant-flow filtrometry system. Lornoxicam and ibuprofen increased the relative resistance, which is an indicator of erythrocyte deformability, of rats (P=0.016). Comparison of the results from Group L and Group I revealed no statistically significant differences (P=0.694), although the erythrocyte deformability levels in Group L and Group I were statistically higher than the results observed in Group C (P=0.018 and P=0.008, respectively). Hepatic and renal blood flows were significantly lower than the same in Group C. We believe that lornoxicam and ibuprofen may lead to functional disorders related to renal and liver tissue perfusion secondary to both decreased blood flow and erythrocyte deformability. Further studies regarding these issues are thought to be essential.

  5. Effects of lornoxicam and intravenous ibuprofen on erythrocyte deformability and hepatic and renal blood flow in rats

    PubMed Central

    Arpacı, Hande; Çomu, Faruk Metin; Küçük, Ayşegül; Kösem, Bahadır; Kartal, Seyfi; Şıvgın, Volkan; Turgut, Hüseyin Cihad; Aydın, Muhammed Enes; Koç, Derya Sebile; Arslan, Mustafa

    2016-01-01

    Background Change in blood supply is held responsible for anesthesia-related abnormal tissue and organ perfusion. Decreased erythrocyte deformability and increased aggregation may be detected after surgery performed under general anesthesia. It was shown that nonsteroidal anti-inflammatory drugs decrease erythrocyte deformability. Lornoxicam and/or intravenous (iv) ibuprofen are commonly preferred analgesic agents for postoperative pain management. In this study, we aimed to investigate the effects of lornoxicam (2 mg/kg, iv) and ibuprofen (30 mg/kg, iv) on erythrocyte deformability, as well as hepatic and renal blood flows, in male rats. Methods Eighteen male Wistar albino rats were randomly divided into three groups as follows: iv lornoxicam-treated group (Group L), iv ibuprofen-treated group (Group İ), and control group (Group C). Drug administration was carried out by the iv route in all groups except Group C. Hepatic and renal blood flows were studied by laser Doppler, and euthanasia was performed via intra-abdominal blood uptake. Erythrocyte deformability was measured using a constant-flow filtrometry system. Results Lornoxicam and ibuprofen increased the relative resistance, which is an indicator of erythrocyte deformability, of rats (P=0.016). Comparison of the results from Group L and Group I revealed no statistically significant differences (P=0.694), although the erythrocyte deformability levels in Group L and Group I were statistically higher than the results observed in Group C (P=0.018 and P=0.008, respectively). Hepatic and renal blood flows were significantly lower than the same in Group C. Conclusion We believe that lornoxicam and ibuprofen may lead to functional disorders related to renal and liver tissue perfusion secondary to both decreased blood flow and erythrocyte deformability. Further studies regarding these issues are thought to be essential. PMID:27536068

  6. Elliptical erythrocyte membrane skeletons and heat-sensitive spectrin in hereditary elliptocytosis.

    PubMed

    Tomaselli, M B; John, K M; Lux, S E

    1981-03-01

    Erythrocyte membranes (ghosts) and membrane skeletons (submembranous reticula of spectrin, actin, and protein 4.1 prepared by extracting ghosts with Triton X-100) from 15 patients with hereditary elliptocytosis (HE) were elliptical, which indicates that the primary defect responsible for the abnormal shape of these cells resides in the skeleton. The protein composition of HE skeletons was normal, but in three kindreds purified spectrin heterodimer from 7/7 HE patients was heat sensitive and denatured at 48.0 +/- 0.1 degrees C instead of 49.0 +/- 0.3 degrees C (P less than 0.0005). Heat sensitivity was detected by precipitation and, in the spectrin from one patient, by changes in circular dichroism. In one other kindred spectrin dimer from 3/3 patients denatured at the normal temperature. In two of the three kindreds with heat-sensitive spectrin, intact erythrocytes exhibited budding and fragmentation at the temperature at which spectrin denatured. In the third kindred spectrin was heat sensitive, but erythrocytes were not. The symptoms in the latter kindred were clinically more severe (hemolytic HE with spherocytosis) than in the other three (mild HE). We conclude that defects in the erythrocyte membrane skeleton may be a common feature of HE. As judged by heat denaturation of erythrocytes and purified spectrin dimer, three phenotypically distinct forms of HE exist, two of which are characterized by defective, heat-sensitive spectrin. It remains to be determined whether the molecular defect in spectrin responsible for heat sensitivity is the primary genetic defect responsible for HE.

  7. Erythrocyte survival in sheep exposed to ozone

    SciTech Connect

    Moore, G.S.; Calabrese, E.J.; Labato, F.J.

    1981-07-01

    Erythrocyte survival studies in the Dorset ewe using chromium 51 were performed. The purpose of the study was to determine if ozone exposure produces decreased cell survival which may be the result of premature erythrocyte aging. This strain of sheep has an erythrocyte glucose-6-phosphate dehydrogenase (G6PD) activity that is very low, being comparable to human A-variants with G6PD deficiency. Ozone exposure may produce hemolytic effects in G6PD deficients more readily than in erythrocytes with normal activity. A decrease in hematocrit was observed in the ozone exposed groups. With respect to red cell destruction, ozone does not appear to act immediately, but rather there appears to be a delayed effect. At 0.25 ppM ozone, the group reached the 50% remaining level an average of 1 day sooner than the control group. There was no significant difference between control and exposed groups at the 0.50 ppM and 0.70 ppM levels. Also, the results demonstrate a net decrease in hematocrit which is greater for 0.25 ppM ozone than any other exposure level. (RJC)

  8. Brucella melitensis invades murine erythrocytes during infection.

    PubMed

    Vitry, Marie-Alice; Hanot Mambres, Delphine; Deghelt, Michaël; Hack, Katrin; Machelart, Arnaud; Lhomme, Frédéric; Vanderwinden, Jean-Marie; Vermeersch, Marjorie; De Trez, Carl; Pérez-Morga, David; Letesson, Jean-Jacques; Muraille, Eric

    2014-09-01

    Brucella spp. are facultative intracellular Gram-negative coccobacilli responsible for brucellosis, a worldwide zoonosis. We observed that Brucella melitensis is able to persist for several weeks in the blood of intraperitoneally infected mice and that transferred blood at any time point tested is able to induce infection in naive recipient mice. Bacterial persistence in the blood is dramatically impaired by specific antibodies induced following Brucella vaccination. In contrast to Bartonella, the type IV secretion system and flagellar expression are not critically required for the persistence of Brucella in blood. ImageStream analysis of blood cells showed that following a brief extracellular phase, Brucella is associated mainly with the erythrocytes. Examination by confocal microscopy and transmission electron microscopy formally demonstrated that B. melitensis is able to invade erythrocytes in vivo. The bacteria do not seem to multiply in erythrocytes and are found free in the cytoplasm. Our results open up new areas for investigation and should serve in the development of novel strategies for the treatment or prophylaxis of brucellosis. Invasion of erythrocytes could potentially protect the bacterial cells from the host's immune response and hamper antibiotic treatment and suggests possible Brucella transmission by bloodsucking insects in nature.

  9. Electrophoretic mobilities of erythrocytes in various buffers

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    The calibration of space flight equipment depends on a source of standard test particles, this test particle of choice is the fixed erythrocyte. Erythrocytes from different species have different electrophoretic mobilities. Electrophoretic mobility depends upon zeta potential, which, in turn depends upon ionic strength. Zeta potential decreases with increasing ionic strength, so cells have high electrophoretic mobility in space electrophoresis buffers than in typical physiological buffers. The electrophoretic mobilities of fixed human, rat, and rabbit erythrocytes in 0.145 M salt and buffers of varying ionic strength, temperature, and composition, to assess the effects of some of the unique combinations used in space buffers were characterized. Several effects were assessed: glycerol or DMSO (dimethylsulfoxide) were considered for use as cryoprotectants. The effect of these substances on erythrocyte electrophoretic mobility was examined. The choice of buffer depended upon cell mobility. Primary experiments with kidney cells established the choice of buffer and cryoprotectant. A nonstandard temperature of EPM in the suitable buffer was determined. A loss of ionic strength control occurs in the course of preparing columns for flight, the effects of small increases in ionic strength over the expected low values need to be evaluated.

  10. Stimulation of suicidal erythrocyte death by sulforaphane.

    PubMed

    Alzoubi, Kousi; Calabrò, Salvatrice; Faggio, Caterina; Lang, Florian

    2015-03-01

    Sulforaphane, an isothiocyanate from cruciferous vegetable, counteracts malignancy. The effect is at least in part due to the stimulation of suicidal death or apoptosis of tumour cells. Mechanisms invoked in sulforaphane-induced apoptosis include mitochondrial depolarization and altered gene expression. Despite the lack of mitochondria and nuclei, erythrocytes may, similar to apoptosis of nucleated cells, enter eryptosis, a suicidal cell death characterized by cell shrinkage and phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca(2+)-activity ([Ca(2+)]i). This study explored whether sulforaphane stimulates eryptosis. Cell volume was estimated from forward scatter, phosphatidylserine exposure at the cell surface from annexin V binding and [Ca(2+)]i from Fluo-3 fluorescence. A 48-hr treatment of human erythrocytes with sulforaphane (50-100 μM) significantly decreased forward scatter, significantly increased the percentage of annexin V binding cells and significantly increased [Ca(2+)]i. The effect of sulforaphane (100 μM) on annexin V binding was significantly blunted but not abrogated by the removal of extracellular Ca(2+). Sulforaphane (100 μM) significantly increased ceramide formation. In conclusion, sulforaphane stimulates suicidal erythrocyte death or eryptosis, an effect at least partially, but not exclusively, due to the stimulation of Ca(2+) entry and ceramide formation. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  11. OXALATE FORMATION FROM GLYOXAL IN ERYTHROCYTES

    PubMed Central

    Knight, John; Wood, Kyle D.; Lange, Jessica N.; Assimos, Dean G.; Holmes, Ross P.

    2015-01-01

    OBJECTIVES To determine whether glyoxal can be converted to oxalate in human erythrocytes. Glyoxal synthesis is elevated in diabetes, cardiovascular disease and other diseases with significant oxidative stress. Erythrocytes are a good model system for such studies as they lack intracellular organelles and have a simplified metabolism. METHODS Erythrocytes were isolated from healthy volunteers and incubated with varying concentrations of glyoxal for different amounts of time. Metabolic inhibitors were used to help characterize metabolic steps. The conversion of glyoxal to glycolate and oxalate in the incubation medium was determined by chromatographic techniques. RESULTS The bulk of the glyoxal was converted to glycolate but ~1% was converted to oxalate. Inclusion of the pro-oxidant, menadione, in the medium increased oxalate synthesis, and the inclusion of disulfiram, an inhibitor of aldehyde dehydrogenase activity, decreased oxalate synthesis. CONCLUSIONS The glyoxalase system, which utilizes glutathione as a cofactor, converts the majority of the glyoxal taken up by erythrocytes to glycolate but a small portion is converted to oxalate. A reduction in intracellular glutathione increases oxalate synthesis and a decrease in aldehyde dehydrogenase activity lowers oxalate synthesis and suggests that glyoxylate is an intermediate. Thus, oxidative stress in tissues could potentially increase oxalate synthesis. PMID:26546809

  12. Inhibition of suicidal erythrocyte death by xanthohumol.

    PubMed

    Qadri, Syed M; Mahmud, Hasan; Föller, Michael; Lang, Florian

    2009-08-26

    Xanthohumol is a proapoptotic hop-derived beer component with anticancer and antimicrobial activities. Similar to nucleated cells, erythrocytes may undergo suicidal cell death or eryptosis, which is triggered by oxidative stress (tert-butylhydroperoxide, TBOOH) or energy depletion (removal of glucose). The triggers increase cytosolic Ca(2+) concentration, leading to activation of Ca(2+)-sensitive K(+) channels with subsequent cell shrinkage and to cell membrane scrambling with subsequent phosphatidylserine exposure at the erythrocyte surface. Eryptotic cells are cleared from the circulating blood, leading to anemia, and may adhere to the vascular wall, thus impeding microcirculation. The present experiments explored whether xanthohumol influences eryptosis using flow cytometry. Exposure of human erythrocytes to 0.3 mM TBOOH or incubation in glucose-free solution significantly increased Fluo3 fluorescence (Ca(2+) concentration) as well as annexin V-binding (cell membrane scrambling) and decreased forward scatter (cell volume), effects significantly blunted by xanthohumol. In conclusion, xanthohumol is a potent inhibitor of suicidal erythrocyte death in vitro.

  13. Electrophoretic mobilities of erythrocytes in various buffers

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    The calibration of space flight equipment depends on a source of standard test particles, this test particle of choice is the fixed erythrocyte. Erythrocytes from different species have different electrophoretic mobilities. Electrophoretic mobility depends upon zeta potential, which, in turn depends upon ionic strength. Zeta potential decreases with increasing ionic strength, so cells have high electrophoretic mobility in space electrophoresis buffers than in typical physiological buffers. The electrophoretic mobilities of fixed human, rat, and rabbit erythrocytes in 0.145 M salt and buffers of varying ionic strength, temperature, and composition, to assess the effects of some of the unique combinations used in space buffers were characterized. Several effects were assessed: glycerol or DMSO (dimethylsulfoxide) were considered for use as cryoprotectants. The effect of these substances on erythrocyte electrophoretic mobility was examined. The choice of buffer depended upon cell mobility. Primary experiments with kidney cells established the choice of buffer and cryoprotectant. A nonstandard temperature of EPM in the suitable buffer was determined. A loss of ionic strength control occurs in the course of preparing columns for flight, the effects of small increases in ionic strength over the expected low values need to be evaluated.

  14. Brucella melitensis Invades Murine Erythrocytes during Infection

    PubMed Central

    Vitry, Marie-Alice; Hanot Mambres, Delphine; Deghelt, Michaël; Hack, Katrin; Machelart, Arnaud; Lhomme, Frédéric; Vanderwinden, Jean-Marie; Vermeersch, Marjorie; De Trez, Carl; Pérez-Morga, David; Letesson, Jean-Jacques

    2014-01-01

    Brucella spp. are facultative intracellular Gram-negative coccobacilli responsible for brucellosis, a worldwide zoonosis. We observed that Brucella melitensis is able to persist for several weeks in the blood of intraperitoneally infected mice and that transferred blood at any time point tested is able to induce infection in naive recipient mice. Bacterial persistence in the blood is dramatically impaired by specific antibodies induced following Brucella vaccination. In contrast to Bartonella, the type IV secretion system and flagellar expression are not critically required for the persistence of Brucella in blood. ImageStream analysis of blood cells showed that following a brief extracellular phase, Brucella is associated mainly with the erythrocytes. Examination by confocal microscopy and transmission electron microscopy formally demonstrated that B. melitensis is able to invade erythrocytes in vivo. The bacteria do not seem to multiply in erythrocytes and are found free in the cytoplasm. Our results open up new areas for investigation and should serve in the development of novel strategies for the treatment or prophylaxis of brucellosis. Invasion of erythrocytes could potentially protect the bacterial cells from the host's immune response and hamper antibiotic treatment and suggests possible Brucella transmission by bloodsucking insects in nature. PMID:25001604

  15. Erythrocyte membrane protein analysis by sodium dodecyl sulphate-capillary gel electrophoresis in the diagnosis of hereditary spherocytosis.

    PubMed

    Debaugnies, France; Cotton, Frédéric; Boutique, Charles; Gulbis, Béatrice

    2011-03-01

    Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) is currently the reference method for detecting protein deficiencies related to hereditary spherocytosis. The aim of the study was to evaluate an automated capillary gel electrophoresis system, the Experion instrument from BioRad, for its ability to separate and quantify the erythrocyte membrane proteins. The major erythrocyte membrane proteins (actin, protein 4.2, protein 4.1, band 3, ankyrin, α- and β-spectrin) were extracted and purified from membrane ghosts by centrifugation, immunoprecipitation and electroelution. Analyses were performed using SDS-PAGE and sodium dodecyl sulphate capillary gel electrophoresis (SDS-CGE) to establish a separation profile of the total ghosts. Then, the samples from patients received for investigations of erythrocyte membrane defects were analysed. Five of the seven expected erythrocyte membrane proteins were finally separated and identified. In the 20 studied cases, taking into account the screening test results and the clinical and family histories, the SDS-CGE method allowed us to achieve the same conclusion as with SDS-PAGE, except for the patient with elliptocytosis. The new SDS-CGE method presents interesting features that could make this instrument a powerful diagnostic tool for detection of erythrocyte membrane protein abnormalities, and can be proposed as an automated alternative method to the labour intensive SDS-PAGE analysis.

  16. A perforin-like protein mediates disruption of the erythrocyte membrane during egress of Plasmodium berghei male gametocytes.

    PubMed

    Deligianni, Elena; Morgan, Rhiannon N; Bertuccini, Lucia; Wirth, Christine C; Silmon de Monerri, Natalie C; Spanos, Lefteris; Blackman, Michael J; Louis, Christos; Pradel, Gabriele; Siden-Kiamos, Inga

    2013-08-01

    Successful gametogenesis of the malaria parasite depends on egress of the gametocytes from the erythrocytes within which they developed. Egress entails rupture of both the parasitophorous vacuole membrane and the erythrocyte plasma membrane, and precedes the formation of the motile flagellated male gametes in a process called exflagellation. We show here that egress of the male gametocyte depends on the function of a perforin-like protein, PPLP2. A mutant of Plasmodium berghei lacking PPLP2 displayed abnormal exflagellation; instead of each male gametocyte forming eight flagellated gametes, it produced gametocytes with only one, shared thicker flagellum. Using immunofluorescence and transmission electron microscopy analysis, and phenotype rescue with saponin or a pore-forming toxin, we conclude that rupture of the erythrocyte membrane is blocked in the mutant. The parasitophorous vacuole membrane, on the other hand, is ruptured normally. Some mutant parasites are still able to develop in the mosquito, possibly because the vigorous motility of the flagellated gametes eventually leads to escape from the persisting erythrocyte membrane. This is the first example of a perforin-like protein in Plasmodium parasites having a role in egress from the host cell and the first parasite protein shown to be specifically required for erythrocyte membrane disruption during egress.

  17. Three Case Reports to Illustrate Clinical Applications in the Use of Erythrocyte Transketolase

    PubMed Central

    2007-01-01

    Non-caloric nutrients (NCN) are extremely numerous and it is more than obvious that they work in a team relationship. These vitally important interactions are, for the most part, poorly understood. These brief case reports illustrate this in the therapeutic use of thiamin in a clinical setting. The initially abnormal erythrocyte transketolase activity (TKA) and/or the thiamin pyrophosphate effect (TPPE), indicating intracellular cofactor deficiency, usually improves with thiamin administration. Biochemical correction of the abnormality is, however, invariably dependent on the provision of other NCN, especially magnesium. In two patients reported here, this correction required several infusions containing magnesium and other NCN administered intravenously. In a third patient, hemoconcentration associated with an abnormal TPPE was normalized after administration of nutrients that included thiamin and magnesium. PMID:17549243

  18. Effects of high dietary fluorine on erythrocytes and erythrocyte immune adherence function in broiler chickens.

    PubMed

    Deng, Yubing; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Luo, Qin

    2013-11-01

    Fluoride can exert toxic effects on soft tissues, giving rise to a broad array of symptoms and pathological changes. The aim of this study was to investigate on erythrocytes and erythrocyte immune adherence function in broiler chickens fed with high fluorine (F) diets by measuring the total erythrocyte count (TEC), the contents of hemoglobin (Hb), packed cell volumn (PCV), erythrocyte osmotic fragility (EOF), erythrocyte C3b receptor rosette rate (E-C3bRR), and erythrocyte immune complex rosette rate (E-ICRR). A total of 280 1-day-old healthy avian broiler chickens were randomly allotted into four equal groups of 70 birds each and fed with a corn-soybean basal diet containing 22.6 mg F/kg (control group) or same basal diets supplemented with 400, 800, and 1,200 mg F/kg (high F groups I, II, and III) in the form of sodium fluoride for 42 days. Blood samples were collected for the abovementioned parameters analysis at 14, 28, and 42 days of age during the experiment. The experimental results indicated that TEC, Hb, and PCV were significantly lower (p < 0.05 or p < 0.01), and EOF was higher (p < 0.05 or p < 0.01) in the high F groups II and III than that in the control group from 14 to 42 days of age. The E-C3bRR was significantly decreased (p < 0.01) in the three high F groups, whereas the E-ICRR was markedly increased (p < 0.01) in the high F groups II and III from 14 to 42 days of age. It was concluded that dietary F in the range of 800 to 1, 200 mg/kg could significantly cause anemia and impair the integrity of erythrocyte membrane, the transport capacity of oxygen and carbon dioxide, and erythrocyte immune adherence function in broiler chickens.

  19. Glycophorin B is the erythrocyte receptor of Plasmodium falciparum erythrocyte-binding ligand, EBL-1

    PubMed Central

    Mayer, D. C. Ghislaine; Cofie, Joann; Jiang, Lubin; Hartl, Daniel L.; Tracy, Erin; Kabat, Juraj; Mendoza, Laurence H.; Miller, Louis H.

    2009-01-01

    In the war against Plasmodium, humans have evolved to eliminate or modify proteins on the erythrocyte surface that serve as receptors for parasite invasion, such as the Duffy blood group, a receptor for Plasmodium vivax, and the Gerbich-negative modification of glycophorin C for Plasmodium falciparum. In turn, the parasite counters with expansion and diversification of ligand families. The high degree of polymorphism in glycophorin B found in malaria-endemic regions suggests that it also may be a receptor for Plasmodium, but, to date, none has been identified. We provide evidence from erythrocyte-binding that glycophorin B is a receptor for the P. falciparum protein EBL-1, a member of the Duffy-binding-like erythrocyte-binding protein (DBL-EBP) receptor family. The erythrocyte-binding domain, region 2 of EBL-1, expressed on CHO-K1 cells, bound glycophorin B+ but not glycophorin B-null erythrocytes. In addition, glycophorin B+ but not glycophorin B-null erythrocytes adsorbed native EBL-1 from the P. falciparum culture supernatants. Interestingly, the Efe pygmies of the Ituri forest in the Democratic Republic of the Congo have the highest gene frequency of glycophorin B-null in the world, raising the possibility that the DBL-EBP family may have expanded in response to the high frequency of glycophorin B-null in the population. PMID:19279206

  20. Glycophorin B is the erythrocyte receptor of Plasmodium falciparum erythrocyte-binding ligand, EBL-1.

    PubMed

    Mayer, D C Ghislaine; Cofie, Joann; Jiang, Lubin; Hartl, Daniel L; Tracy, Erin; Kabat, Juraj; Mendoza, Laurence H; Miller, Louis H

    2009-03-31

    In the war against Plasmodium, humans have evolved to eliminate or modify proteins on the erythrocyte surface that serve as receptors for parasite invasion, such as the Duffy blood group, a receptor for Plasmodium vivax, and the Gerbich-negative modification of glycophorin C for Plasmodium falciparum. In turn, the parasite counters with expansion and diversification of ligand families. The high degree of polymorphism in glycophorin B found in malaria-endemic regions suggests that it also may be a receptor for Plasmodium, but, to date, none has been identified. We provide evidence from erythrocyte-binding that glycophorin B is a receptor for the P. falciparum protein EBL-1, a member of the Duffy-binding-like erythrocyte-binding protein (DBL-EBP) receptor family. The erythrocyte-binding domain, region 2 of EBL-1, expressed on CHO-K1 cells, bound glycophorin B(+) but not glycophorin B-null erythrocytes. In addition, glycophorin B(+) but not glycophorin B-null erythrocytes adsorbed native EBL-1 from the P. falciparum culture supernatants. Interestingly, the Efe pygmies of the Ituri forest in the Democratic Republic of the Congo have the highest gene frequency of glycophorin B-null in the world, raising the possibility that the DBL-EBP family may have expanded in response to the high frequency of glycophorin B-null in the population.

  1. Interactions of quantum dots with donor blood erythrocytes in vitro.

    PubMed

    Pleskova, S N; Pudovkina, E E; Mikheeva, E R; Gorshkova, E N

    2014-01-01

    The effects of quantum dots CdSe/ZnS-mercaptopropionic acid, (CdSe/CdZnS)ZnS-polyT, and CdSeCdSZnS/polyT/SiO2-NH2 on human erythrocytes were studied. The nanomaterials reduced signifi cantly the erythrocyte sedimentation rate and modified the erythrocyte membrane resistance to induced (acid and hypo-osmotic) hemolysis. Evaluation of the erythrocyte morphology by atomic force microscopy in the control and after exposure to quantum dots showed significant differences in erythrocyte size and changes in their morphology as a result of exposure to the nanomaterials.

  2. In-Depth, Label-Free Analysis of the Erythrocyte Cytoplasmic Proteome in Diamond Blackfan Anemia Identifies a Unique Inflammatory Signature.

    PubMed

    Pesciotta, Esther N; Lam, Ho-Sun; Kossenkov, Andrew; Ge, Jingping; Showe, Louise C; Mason, Philip J; Bessler, Monica; Speicher, David W

    2015-01-01

    Diamond Blackfan Anemia (DBA) is a rare, congenital erythrocyte aplasia that is usually caused by haploinsufficiency of ribosomal proteins due to diverse mutations in one of several ribosomal genes. A striking feature of this disease is that a range of different mutations in ribosomal proteins results in similar disease phenotypes primarily characterized by erythrocyte abnormalities and macrocytic anemia, while most other cell types in the body are minimally affected. Previously, we analyzed the erythrocyte membrane proteomes of several DBA patients and identified several proteins that are not typically associated with this cell type and that suggested inflammatory mechanisms contribute to the pathogenesis of DBA. In this study, we evaluated the erythrocyte cytosolic proteome of DBA patients through in-depth analysis of hemoglobin-depleted erythrocyte cytosols. Simple, reproducible, hemoglobin depletion using nickel columns enabled in-depth analysis of over 1000 cytosolic erythrocyte proteins with only moderate total analysis time per proteome. Label-free quantitation and statistical analysis identified 29 proteins with significantly altered abundance levels in DBA patients compared to matched healthy control donors. Proteins that were significantly increased in DBA erythrocyte cytoplasms included three proteasome subunit beta proteins that make up the immunoproteasome and proteins induced by interferon-γ such as n-myc interactor and interferon-induced 35 kDa protein [NMI and IFI35 respectively]. Pathway analysis confirmed the presence of an inflammatory signature in erythrocytes of DBA patients and predicted key upstream regulators including mitogen activated kinase 1, interferon-γ, tumor suppressor p53, and tumor necrosis factor. These results show that erythrocytes in DBA patients are intrinsically different from those in healthy controls which may be due to an inflammatory response resulting from the inherent molecular defect of ribosomal protein

  3. Auto-oxidation and a membrane-associated 'Fenton reagent': a possible explanation for development of membrane lesions in sickle erythrocytes.

    PubMed

    Hebbel, R P

    1985-02-01

    Sickle erythrocytes spontaneously generate approximately twice-normal amounts of activated oxygen species (superoxide, peroxide and the highly reactive hydroxyl radical). In addition, they contain excessive amounts of membrane-bound haemichromes, which presumably accumulate because of some degree of sickle haemoglobin instability, perhaps involving interactions between haemoglobin and the lipid bilayer. Since most erythrocyte antioxidant mechanisms are located in the cytoplasm, it is hypothesized that a physiologically significant hydroxyl radical generator would be located within or directly adjacent to the membrane. Indeed, sickle erythrocyte membranes appear to contain a biological 'Fenton reagent', the iron of which is able to cycle between ferrous and ferric states and thereby facilitate superoxide/peroxide-driven hydroxyl radical generation. Data suggest that at least some haemichromes could fulfil this function, although many other potential hydroxyl radical generators exist in sickle erythrocytes. A particularly interesting - but unproven - possibility is membrane-associated haem (without globin). It is further hypothesized that the various membrane abnormalities of sickle erythrocytes might be caused by excessive auto-oxidation. Although proof of this hypothesis does not yet exist, a number of observations are consistent with it. Certainly, evidence indicates that some oxidative modification of sickle erythrocyte membrane proteins and lipids has taken place. Few data exist regarding the state of the erythrocyte membrane in the unstable haemoglobinopathies, but evidence of oxidative perturbation of the HbKöln erythrocyte membrane has been reported. Of great interest is that the membranes of thalassaemic and sickle erythrocytes appear to be remarkably similar in terms of possible oxidative phenomena, suggesting that the membranes of these two cell types may be subjected to similar oxidative stresses.

  4. Uric acid increases erythrocyte aggregation: Implications for cardiovascular disease.

    PubMed

    Sloop, Gregory D; Bialczak, Jessica K; Weidman, Joseph J; St Cyr, J A

    2016-10-05

    Uric acid may be a risk factor for atherosclerotic cardiovascular disease, although the data conflict and the mechanism by which it may cause cardiovascular disease is uncertain. This study was performed to test the hypothesis that uric acid, an anion at physiologic pH, can cause erythrocyte aggregation, which itself is associated with cardiovascular disease. Normal erythrocytes and erythrocytes with a positive direct antiglobulin test for surface IgG were incubated for 15 minutes in 14.8 mg/dL uric acid. Erythrocytes without added uric acid were used as controls. Erythrocytes were then examined microscopically for aggregation. Aggregates of up to 30 erythrocytes were noted when normal erythrocytes were incubated in uric acid. Larger aggregates were noted when erythrocytes with surface IgG were incubated in uric acid. Aggregation was negligible in controls. These data show that uric acid causes erythrocyte aggregation. The most likely mechanism is decreased erythrocyte zeta potential. Erythrocyte aggregates will increase blood viscosity at low shear rates and increase the risk of atherothrombosis. In this manner, hyperuricemia and decreased zeta potential may be risk factors for atherosclerotic cardiovascular disease.

  5. Conjugated Bilirubin Triggers Anemia by Inducing Erythrocyte Death

    PubMed Central

    Lang, Elisabeth; Gatidis, Sergios; Freise, Noemi F; Bock, Hans; Kubitz, Ralf; Lauermann, Christian; Orth, Hans Martin; Klindt, Caroline; Schuier, Maximilian; Keitel, Verena; Reich, Maria; Liu, Guilai; Schmidt, Sebastian; Xu, Haifeng C; Qadri, Syed M; Herebian, Diran; Pandyra, Aleksandra A; Mayatepek, Ertan; Gulbins, Erich; Lang, Florian; Häussinger, Dieter; Lang, Karl S; Föller, Michael; Lang, Philipp A

    2015-01-01

    Hepatic failure is commonly associated with anemia, which may result from gastrointestinal bleeding, vitamin deficiency, or liver-damaging diseases, such as infection and alcohol intoxication. At least in theory, anemia during hepatic failure may result from accelerated clearance of circulating erythrocytes. Here we show that bile duct ligation (BDL) in mice leads to severe anemia despite increased reticulocyte numbers. Bilirubin stimulated suicidal death of human erythrocytes. Mechanistically, bilirubin triggered rapid Ca2+ influx, sphingomyelinase activation, formation of ceramide, and subsequent translocation of phosphatidylserine to the erythrocyte surface. Consistent with our in vitro and in vivo findings, incubation of erythrocytes in serum from patients with liver disease induced suicidal death of erythrocytes in relation to their plasma bilirubin concentration. Consistently, patients with hyperbilirubinemia had significantly lower erythrocyte and significantly higher reticulocyte counts compared to patients with low bilirubin levels. Conclusion: Bilirubin triggers suicidal erythrocyte death, thus contributing to anemia during liver disease. (Hepatology 2015;61:275–284) PMID:25065608

  6. Lead transport and binding by human erythrocytes in vitro.

    PubMed

    Simons, T J

    1993-05-01

    Transport and binding of Pb2+ by human erythrocytes were examined for cell Pb contents in the 1-10 microM range, using the 203Pb isotope. Pb2+ crosses the erythrocyte membrane by the anion exchanger, and can also leave erythrocytes by a vanadate-sensitive pathway, identified with the Ca2+ pump. However, Pb2+ exit is very much less than expected from earlier experiments with resealed erythrocyte ghosts [Simons TJB (1988) J Physiol (Lond) 405:105-113] and the distribution of Pb2+ across the erythrocyte membrane is close to equilibrium. The high ratio of erythrocyte to plasma Pb seen in vivo appears to be due to the presence of a labile Pb(2+)-binding component present in erythrocyte cytoplasm.

  7. The Impact of Biophysical Properties of Erythrocytes on their Aggregation.

    PubMed

    Elblbesy, Mohamed A; Moustafa, Maisa E

    2017-06-01

    Erythrocytes aggregation takes places under low shear conditions or at stasis. All suggested mechanisms of erythrocytes aggregation indicated the importance role of fibrinogen and other blood proteins in enhanced erythrocyte aggregation. Recently a special attention is given to the cellular factors that may effect on erythrocytes aggregation. The present study inferred the effect of the cellular properties of erythrocytes on their aggregation. In the present study, aggregation index was calculated by a simple microscopic method. Correlations between erythrocytes aggregation index and mean cell volume, osmotic fragility, electrophoretic mobility, and magnetophoretic mobility were studied. The findings of this study indicated that the aggregation index is significatly correlated to mean cell volume, magnetophoretic mobility, osmotic fragility and electrophoretic mobility. Thus, It is concluded that cellular factors should be taken into consideration when studying the mechanism of erythrocytes aggregation.

  8. Study of erythrocyte membrane fluctuation using light scattering analysis

    NASA Astrophysics Data System (ADS)

    Lee, Hoyoon; Lee, Sangyun; Park, YongKeun; Shin, Sehyun

    2016-03-01

    It is commonly known that alteration of erythrocyte deformability lead to serious microcirculatory diseases such as retinopathy, nephropathy, etc. Various methods and technologies have been developed to diagnose such membrane properties of erythrocytes. In this study, we developed an innovative method to measure hemorheological characteristics of the erythrocyte membrane using a light scattering analysis with simplified optic setting and multi-cell analysis as well. Light scattering intensity through multiple erythrocytes and its power density spectrum were obtained. The results of light scattering analyses were compared in healthy control and artificially hardened sample which was treated with glutaraldehyde. These results were further compared with conventional assays to measure deformable property in hemorheology. We found that light scattering information would reflect the disturbance of membrane fluctuation in artificially damaged erythrocytes. Therefore, measuring fluctuation of erythrocyte membrane using light scattering signal could facilitate simple and precise diagnose of pathological state on erythrocyte as well as related complications.

  9. The utility of erythrocyte sedimentation rate values and white blood cell counts after spinal deformity surgery in the early (≤3 months) post-operative period.

    PubMed

    Kuhn, Margaret G; Lenke, Lawrence G; Bridwell, Keith H; O'Donnell, June C; Luhmann, Scott J

    2012-03-01

    The erythrocyte sedimentation rate (ESR) and white blood cell (WBC) count are frequently obtained in the work-up of post-operative fever. However, their diagnostic utility depends upon comparison with normative peri-operative trends which have not yet been described. The purpose of this study is to define a range of erythrocyte sedimentation rates and white blood cell counts following spinal instrumentation and fusion in non-infected patients. Seventy-five patients underwent spinal instrumentation and fusion. The erythrocyte sedimentation rate and white blood cell count were recorded pre-operatively, at 3 and 7 days post-operatively, and at 1 and 3 months post-operatively. Both erythrocyte sedimentation rate and white blood cell count trends demonstrated an early peak, followed by a gradual return to normal. Peak erythrocyte sedimentation rates occurred within the first week post-operatively in 98% of patients. Peak white blood cell counts occurred with the first week in 85% of patients. In the absence of infection, the erythrocyte sedimentation rate was abnormally elevated in 78% of patients at 1 month and in 53% of patients at 3 months post-operatively. The white blood cell count was abnormally elevated in only 6% of patients at 1 month post-operatively. Longer surgical time was associated with elevated white cell count at 1 week post-operatively. The fusion of more vertebral levels had a negative relationship with elevated erythrocyte sedimentation rate at 1 week post-operatively. The anterior surgical approach was associated with significantly lower erythrocyte sedimentation rate at 1 month post-operatively and with lower white cell count at 1 week post-operatively. In non-infected spinal fusion surgeries, erythrocyte sedimentation rates are in the abnormal range in 78% of patients at 1 month and in 53% of patients at 3 months post-operatively, suggesting that the erythrocyte sedimentation rate is of limited diagnostic value in the early post

  10. Hereditary sideroblastic anaemia and autosomal inheritance of erythrocyte dimorphism in a Dutch family.

    PubMed

    van Waveren Hogervorst, G D; van Roermund, H P; Snijders, P J

    1987-05-01

    Size distribution curves of red blood cells were used to detect the presence of microcytes in peripheral blood of members of a Dutch family with hereditary sideroblastic anaemia. 22 of 49 members of this family have a bimodal erythrocyte volume distribution curve and a dimorphic blood picture. The pattern of inheritance of this morphological abnormality is clearly autosomal. It is suggested that the study of red blood cell size distribution curves may add valuable information on the pattern of inheritance in other families with hereditary sideroblastic anaemia.

  11. Increased sodium plus potassium adenosine triphosphatase activity in erythrocyte membranes in Huntington's disease.

    PubMed

    Butterfield, D A; Oeswein, J Q; Prunty, M E; Hisle, K C; Markesbery, W R

    1978-07-01

    Dopa-decarboxylase, acetylcholinesterase, sodium plus potassium stimulated adenosine triphosphatase (Na+ + K+-ATPase), and membrane-bound protein kinase were compared in the erythrocytes of patients with Huntington's disease and normal controls. All these enzymes also exist in the basal ganglia. The Na+ +K+-ATPase level was elevated (p less than 0.05) in Huntington's disease, while no significant changes were observed in the other enzymes. This finding is consistent with the concept that Huntington's disease is associated with a general membrane abnormality.

  12. Erythrocyte choline concentrations and cluster headache.

    PubMed Central

    de Belleroche, J; Cook, G E; Das, I; Joseph, R; Tresidder, I; Rouse, S; Petty, R; Clifford Rose, F C

    1984-01-01

    Erythrocyte choline concentrations were measured in patients with cluster headache and age related control subjects. Concentrations were significantly reduced in the patients with headache both during a cluster period and between clusters, being 58% and 55% of the control value, respectively. After two weeks' treatment with lithium, choline concentrations in the patients with cluster headache increased to 78 times the control value (mean 369.2 mumol/l (3840 micrograms/100 ml) compared with 4.7 mumol/l (49 micrograms/100 ml]. The presence of depressed erythrocyte choline concentrations during and between cluster attacks indicates that this may be a predisposing condition which results in a cluster attack only when associated with a trigger factor. PMID:6419890

  13. Green Hemoprotein of Erythrocytes: Methemoglobin Superoxide Transferase

    DTIC Science & Technology

    1988-01-01

    oxyhemoglobin containing GHP moglobin spectrum in Figure lB. However, appeared to convert to methemoglobin much bubbling air through the sample with GHP slower...hemo- + H20 + H + globin under most adverse conditions and preserves its dominant function as methemo- (3) GHP + R. + 02 - GHP(.O’) + R+ globin...in part by the United States 2953;1978. 7. Chee, P. P.; Lardy, H . A. Isolation from erythrocytesAir Force Office of Scientific Research. o re eorti

  14. Recovery of autologous erythrocytes in transfused patients.

    PubMed

    Wallas, C H; Tanley, P C; Gorrell, L P

    1980-01-01

    A microcapillary method utilizing phthalate esters or an ultracentrifuge method are both capable of separating autologous from homologous erythrocytes in polytransfused patients. The microcapillary technique which is readily adaptable to blood bank laboratories provides a previously unavailable method for defining blood group antigen typings in transfused patients. Such typings are of vital importance in the laboratory evaluation of transfused patients with multiple or weak blood group antibodies.

  15. Stimulation of Suicidal Erythrocyte Death by Tafenoquine.

    PubMed

    Al Mamun Bhuyan, Abdulla; Bissinger, Rosi; Stockinger, Katja; Lang, Florian

    2016-01-01

    The 8-aminoquinoline tafenoquine has been shown to be effective against Plasmodia, Leishmania and Trypanosoma. The substance is at least in part effective by triggering apoptosis of the parasites. Similar to apoptosis, erythrocytes may enter suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling involved in the regulation of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, zVAD sensitive caspases, SB203580 sensitive p38 kinase, staurosporine sensitive protein kinase C as well as D4476 sensitive casein kinase. The present study explored, whether tafenoquine induces eryptosis and aimed to possibly identify cellular mechanisms involved. Flow cytometry was employed to estimate phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) dependent fluorescence, and ceramide abundance utilizing specific antibodies. A 48 hours exposure of human erythrocytes to tafenoquine (500 ng/ml) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter, significantly increased Fluo3-fluorescence, and significantly increased DCFDA fluorescence. Tafenoquine did not significantly modify ceramide abundance. The effect of tafenoquine on annexin-V-binding was significantly blunted but not abolished by removal of extracellular Ca2+. The effect of tafenoquine on annexin-V-binding was not significantly blunted by zVAD (10 µM), SB203580 (2 µM) or staurosporine (1 µM). The effect of tafenoquine on annexin-V-binding was significantly blunted but not abolished by D4476 (10 µM). Tafenoquine triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to stimulation of Ca2+ entry

  16. Determinants of Erythrocyte Hydration In Current Opinion in Hematology

    PubMed Central

    Rinehart, Jesse; Gulcicek, Erol E.; Joiner, Clinton H.; Lifton, Richard P.; Gallagher, Patrick G.

    2012-01-01

    Purpose of Review Maintenance of cellular water and solute homeostasis is critical for survival of the erythrocyte. Inherited or acquired disorders that perturb this homeostasis jeopardize the erythrocyte, leading to its premature destruction. This report reviews recent progress in our understanding the determinants of erythrocyte hydration and its related disorders. Recent Findings The molecular and genetic bases of primary disorders of erythrocyte hydration are poorly understood. Recent studies have implicated roles for the anion transporter, SLC4A1, and the Rh-associated glycoprotein, RhAG. The most common secondary disorder associated with perturbed hydration of the erythrocyte is sickle cell disease, where dehydration contributes to disease pathology and clinical complications. Advances in understanding the mechanisms regulating erythrocyte solute and water content, particularly associated with KCl cotransport and Gardos channel activation, have revealed novel signaling mechanisms controlling erythrocyte hydration. These signaling pathways may provide innovative strategies to prevent erythrocyte dehydration in sickle cell disease. Summary Clinical, translational and biologic studies all contribute to our knowledge of erythrocyte hydration. Understanding the mechanisms controlling erythrocyte water and solute homeostasis will serve as a paradigm for other cells and may reveal new therapeutic targets for disease prevention and treatment. PMID:20182354

  17. New insights on hereditary erythrocyte membrane defects

    PubMed Central

    Andolfo, Immacolata; Russo, Roberta; Gambale, Antonella; Iolascon, Achille

    2016-01-01

    After the first proposed model of the red blood cell membrane skeleton 36 years ago, several additional proteins have been discovered during the intervening years, and their relationship with the pathogenesis of the related disorders have been somewhat defined. The knowledge of erythrocyte membrane structure is important because it represents the model for spectrin-based membrane skeletons in all cells and because defects in its structure underlie multiple hemolytic anemias. This review summarizes the main features of erythrocyte membrane disorders, dividing them into structural and altered permeability defects, focusing particularly on the most recent advances. New proteins involved in alterations of the red blood cell membrane permeability were recently described. The mechanoreceptor PIEZO1 is the largest ion channel identified to date, the fundamental regulator of erythrocyte volume homeostasis. Missense, gain-of-function mutations in the PIEZO1 gene have been identified in several families as causative of dehydrated hereditary stomatocytosis or xerocytosis. Similarly, the KCNN4 gene, codifying the so called Gardos channel, has been recently identified as a second causative gene of hereditary xerocytosis. Finally, ABCB6 missense mutations were identified in different pedigrees of familial pseudohyperkalemia. New genomic technologies have improved the quality and reduced the time of diagnosis of these diseases. Moreover, they are essential for the identification of the new causative genes. However, many questions remain to solve, and are currently objects of intensive studies. PMID:27756835

  18. Erythrocyte phosphatidylserine exposure in β-thalassemia.

    PubMed

    Ibrahim, Hamdy A; Fouda, Manal I; Yahya, Raida S; Abousamra, Nashwa K; Abd Elazim, Rania A

    2014-06-01

    [ABS]Phospholipid asymmetry is well maintained in erythrocyte (RBC) membranes with phosphatidylserine (PS) exclusively present in the inner leaflet. Eryptosis, the suicidal death of RBCs, is characterized by cell shrinkage, membrane blebbing, and cell membrane phospholipids scrambling with PS exposure at the cell surface. Erythrocytes exposing PS are recognized, bound, engulfed, and degraded by macrophages. Eryptosis thus fosters clearance of affected RBCs from circulating blood, which may aggravate anemia in pathological conditions. Thalassemia patients are more sensitive to the eryptotic depletion and osmotic shock which may affect RBC membrane phospholipid asymmetry. We aimed in this work to determine the RBC PS exposure in splenectomized and nonsplenectomized β-thalassemia major (β-TM) patients and correlate it with the clinical presentation and laboratory data. RBCs were stained for annexin V to detect phosphatidylserine (PS) exposure in 46 β-TM patients (27 splenectomized and 19 nonsplenectomized) compared to 17 healthy subjects as a control group. We observed a significant increase in RBC PS exposure in β-TM patients compared to control group (P = .0001). Erythrocyte PS exposure was significantly higher in splenectomized β-TM patients compared with nonsplenectomized β-TM patients (P = .001). No correlation was found between RBC PS exposure and clinical or hematological data of β-TM patients, but there was a positive correlation between RBC PS exposure and ferritin level in β-TM patients have higher levels of RBC PS exposure, and splenectomy was shown to aggravate RBC PS exposure without aggravation of anemia.

  19. Stabilization of Erythrocyte Membranes by Polyamines

    NASA Astrophysics Data System (ADS)

    Ballas, Samir K.; Mohandas, Narla; Marton, Laurence J.; Shohet, Stephen B.

    1983-04-01

    Using a laser diffraction technique, we have studied the effects of putrescine, spermidine, and spermine, the three physiologic polyamines, on the deformability and mechanical stability of human erythrocyte membranes. Ghosts resealed with polyamines were subjected to high fluid shear stress in an ektacytometer. All polyamines increased the membrane shear modulus (decreased deformability) in a concentration- and time-dependent manner. The order of effectiveness was spermine > spermidine > putrescine. At 10 μ M, spermine appreciably decreased membrane deformability. For the measurement of membrane mechanical stability, resealed ghosts were subjected to constant high shear stress in the ektacytometer and deformability was continuously recorded as the deformable ghosts fragmented into rigid spherical vesicles. Polyamines, especially spermine, caused a noticeable increase in the t1/2 for fragmentation. These effects could not be ascribed to proteolysis or Ca2+-induced transglutamination. That the effects of polyamines were specific and not simply due to their positive charge was demonstrated by the finding that Ca2+ and Mg2+ destabilized the erythrocyte membrane as evidenced by decreasing the t1/2 for fragmentation. Extracellular polyamines were not effective except under conditions that caused significant accumulation inside the cell. The data indicate that intracellular physiologic polyamines, especially spermine, decrease erythrocyte membrane deformability and stabilize the membrane skeleton, making it more resistant to fragmentation.

  20. New insights on hereditary erythrocyte membrane defects.

    PubMed

    Andolfo, Immacolata; Russo, Roberta; Gambale, Antonella; Iolascon, Achille

    2016-11-01

    After the first proposed model of the red blood cell membrane skeleton 36 years ago, several additional proteins have been discovered during the intervening years, and their relationship with the pathogenesis of the related disorders have been somewhat defined. The knowledge of erythrocyte membrane structure is important because it represents the model for spectrin-based membrane skeletons in all cells and because defects in its structure underlie multiple hemolytic anemias. This review summarizes the main features of erythrocyte membrane disorders, dividing them into structural and altered permeability defects, focusing particularly on the most recent advances. New proteins involved in alterations of the red blood cell membrane permeability were recently described. The mechanoreceptor PIEZO1 is the largest ion channel identified to date, the fundamental regulator of erythrocyte volume homeostasis. Missense, gain-of-function mutations in the PIEZO1 gene have been identified in several families as causative of dehydrated hereditary stomatocytosis or xerocytosis. Similarly, the KCNN4 gene, codifying the so called Gardos channel, has been recently identified as a second causative gene of hereditary xerocytosis. Finally, ABCB6 missense mutations were identified in different pedigrees of familial pseudohyperkalemia. New genomic technologies have improved the quality and reduced the time of diagnosis of these diseases. Moreover, they are essential for the identification of the new causative genes. However, many questions remain to solve, and are currently objects of intensive studies. Copyright© Ferrata Storti Foundation.

  1. Erythrocyte autoantibodies, autoimmune haemolysis, and carcinoma.

    PubMed Central

    Sokol, R J; Booker, D J; Stamps, R

    1994-01-01

    AIMS--To examine a large series of patients in whom both red cell autoantibodies and carcinoma are present; and to determine whether this rare occurrence is a true association or a chance event. METHODS--The laboratory records of 160 patients (76 men, 84 women; mean age 68 years) with erythrocyte autoantibodies and confirmed carcinoma were examined for site of tumour origin and clinical and immunohematological findings. To test whether the concomitant occurrence of autoantibodies and carcinoma was fortuitous, data on total population and carcinoma incidence were included in a chi 2 analysis. RESULTS--The association was significant (chi 2 = 97.5, p < 0.0005); erythrocyte autoantibodies and carcinoma were found together 12-13 times more often than expected from their relative frequencies. Autoantibodies occurred with a variety of carcinomas, particularly those of breast, lung, colon, rectum, and prostate; this largely reflected tumour incidence. Adenocarcinoma, squamous, anaplastic, and transitional cell types were all represented. Warm, cold, and mixed autoantibodies were not associated with particular tumour sites or histology. Eighty six patients had haemolysis of varying severity, 37 had metastatic disease, and 28 died within a few months of presentation. CONCLUSIONS--The presence of erythrocyte autoantibodies and carcinoma in the same patient is a true association and probably reflects a fundamental disturbance in immune homeostasis. It tends to occur with a large tumour mass and metastatic disease, and generally indicates a poor prognosis. PMID:8027372

  2. The toxic function of cesium 5-sulfosalicylate based on the investigation of its trans-erythrocytes membrane behaviors and morphological properties.

    PubMed

    Jiang, Yucheng; Feng, Yunxiao; Wang, Yingsong; Lu, Jing; Hu, Mancheng; Li, Shuni

    2008-02-15

    In order to evaluate the cesium-induced toxic functional changes in organisms, transmembrane activities of cesium 5-sulfosalicylate (Cs(H(2)Ssal)) into human erythrocyte in vitro is presented in this paper, including kinetic characteristic of transport process and pathways involved in it. The uptake amount of Cs(H(2)Ssal) by erythrocyte was determined both by Graphite Furnace Atomic Absorption Spectrometry (GFAAS) and spectrofluorimetry. The pathways of Cs(H(2)Ssal) transporting into erythrocyte are proposed according to inhibition investigation. The influence of Cs(H(2)Ssal) on morphological properties of erythrocytes was examined using Scanning Electron Microscopy (SEM) to determined the endurable concentration extent of erythrocytes to Cs(H(2)Ssal). Results show that transmembrane of Cs(H(2)Ssal) has characteristic of first-order kinetic process during the first 2h, and four pathways were involved in its transporting activities: Ca(2+) channel, Na(+)-K(+) pump, Na(+)-Cs(+) countertransport, and anion Cl(-)/CsCO(3)(-) exchange. The transmembrane process of Cs(H(2)Ssal) can both prevent the uptake of K(+) and induces abnormal accumulation of extracellular K(+) as well as occupy some K(+)-binding sites in protein, causing some tissues losing their activities and functions. Only high concentrations of Cs(H(2)Ssal) could change morphological properties of erythrocytes greatly and cause hemolysis eventually.

  3. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  4. Spectral Markers of Erythrocytes on Solid Substrate

    NASA Astrophysics Data System (ADS)

    Paiziev, Adkhamjon A.; Krakhmalev, V. A.

    Proposed in previous paper [1,2] the new nondestructive method of optical microscopy allows to examine the structures of living cells (human erythrocytes) in their natural colors without its staining by using a specially designed substrate for deposition of biological sample and observing a native blood smears in reflected light. Color interference contrast image is achieved due to special condition of experiment is connected with chose of angle of incidental light, wave length of light of reflected ray, chemical composition of sample, thickness of sample, refractive index of sample, refractive index of substrate, chemical composition of substrate [1,2]. We can identify chemical compounds of erythrocytes after calibration color scale by alternative methods. For comparison we used Synchrotron Radiation based Fourier Transformed Infrared (SR-FTIR) microspectroscopy. By focusing of infrared beam of FTIR microscope on cell surface we can screen and distinguish difference erythrocytes by its color. For example on Fig. 49.1 we can see two neighbored erythrocytes where one of them have red color (point 1) and other-green (point 5). To identify their spectral markers we measured IR absorption spectra of cells at different points (1,2,3,4 and 5). Intermediated area (points 3 and 4) correspond to substrate spectra (silicon substrate) and their spectra are same. The peaks at 2,850 and 2,920 cm-1 correspond mainly to the CH2 stretching modes of the methylene chains in membrane lipids. At 1,650 cm-1 the amide I band is observed, which results, principally, from the n(CO) stretching vibrations of the protein amide bonds; the amide II band, near 1,550 cm-1, is a combination of the d(N-H) bending and n(C-N) stretching vibrations of the amide bonds. The peaks at 2,850 and 2,920 cm-1 correspond mainly to the CH2 stretching modes of the methylene chains in membrane lipids [3. The intensities of the absorption bands at 2,920 and 2,850 cm-1 in green erythrocyte (point 5) were also

  5. Morphological abnormalities among lampreys

    USGS Publications Warehouse

    Manion, Patrick J.

    1967-01-01

    The experimental control of the sea lamprey (Petromyzon marinus) in the Great Lakes has required the collection of thousands of lampreys. Representatives of each life stage of the four species of the Lake Superior basin were examined for structural abnormalities. The most common aberration was the presence of additional tails. The accessory tails were always postanal and smaller than the normal tail. The point of origin varied; the extra tails occurred on dorsal, ventral, or lateral surfaces. Some of the extra tails were misshaped and curled, but others were normal in shape and pigment pattern. Other abnormalities in larval sea lampreys were malformed or twisted tails and bodies. The cause of the structural abnormalities is unknown. The presence of extra caudal fins could be genetically controlled, or be due to partial amputation or injury followed by abnormal regeneration. Few if any lampreys with structural abnormalities live to sexual maturity.

  6. Erythrocyte disorders leading to potassium loss and cellular dehydration.

    PubMed

    Glader, B E; Sullivan, D W

    1979-01-01

    RBC K loss and cellular dehydration are associated with a variety of normal and abnormal erythrocyte conditions. In some cases (normal RBC aging, pyruvate-kinase-deficient RBCs and irreversibly sickled cells) cation and water changes are related to adenosine triphosphate (ATP) depletion and to increased RBC calcium content. In other disorders, such as hereditary xerocytosis, cation depletion and cellular hydration are not related to altered energy or calcium metabolism. Rather, this condition is thought to be due to a structural membrane defect which is manifested by imbalanced cation leaks (K less greater than Na gain) for which the active cation transport is unable to compensate. None of the disorders described here are associated with known structural membrane alterations. The fact that K loss and cellular dehydration are common to several RBC disorders suggests that this phenomenon may have a direct role in membrane injury. This hypothesis is supported by two separate observations: 1)Formation of irreversible sickled cells in vitro is prevented if K and water loss are inhibited, and these effects are independent of ATP depletion and calcium accumulation; 2) the mean critical hemolytic volume is markedly reduced in K- and water-depleted normal RBCs. RBC dehydration without intracellular cation depletion, however, is not associated with changes in mean critical hemolytic volume. These data thus indicate that K loss may have a direct role in RBC membrane injury. The mechanism by which this occurs and the associated alterations in membrane structure, however, remain to be identified.

  7. Further studies on osmotic resistance of nucleated erythrocytes: observations with pigeon, peafowl, lizard and toad erythrocytes during changes in temperature and pH.

    PubMed

    Oyewale, J O

    1994-02-01

    The osmotic resistance of pigeon, peafowl, lizard and toad erythrocytes at different temperatures and pH was studied. Erythrocytes from female pigeons showed greater osmotic resistance than those from males, but no sex difference appeared with erythrocytes from peafowls. Pigeon erythrocytes were more resistant and the red blood cell, packed cell volume and haemoglobin values were higher than those in peafowls. Although no significant differences appeared in their haematological values, erythrocytes from the lizard were more resistant than erythrocytes from the toad. At higher temperature, the osmotic resistance of pigeon, lizard and toad erythrocytes increased, while that of peafowl erythrocytes decreased. The resistance of toad erythrocytes decreased in acidic and alkaline solutions, but that of peafowl erythrocytes increased in both solutions. However, with pigeon and lizard erythrocytes, the resistance was unaltered in alkaline solution and decreased in acidic solution.

  8. Abnormal rubbing and keratectasia.

    PubMed

    McMonnies, Charles W

    2007-11-01

    Hypotheses for the varied pathogenesis of the different forms of keratoconus have been outlined. Against this background, the possibility that abnormal rubbing causes or contributes to the development or progression of some forms of keratoconus has been examined. Circumstantial evidence that shows an association between abnormal rubbing and keratoconus is reviewed, and a wide range of different forms of abnormal rubbing is described. Also examined is evidence of several processes whereby the cornea appears to be, or could be, adversely affected by mechanical trauma caused by rubbing. Conditions that may increase susceptibility to mechanical rubbing trauma have been discussed. Evidence of a role for inflammatory mediators in the pathogenesis of keratoconus appears to void the description of keratoconus as a noninflammatory condition. When vigorous knuckle-rubbing forces are located on the normal peripheral cornea, the thinner or weakened cone apex may be exposed to high intraocular pressure distending forces that may tend to promote ectasia. It appears reasonable to conclude that abnormal rubbing is a cause of some types of keratoconus, not because all abnormal rubbing, or only abnormal rubbing, leads to the development of some types of keratoconus, but because abnormal rubbing may increase the likelihood of the development of some forms of keratoconus. Abnormal rubbing habits may commence or continue after routine contact lens wear is established. Any associated rubbing or contact lens trauma may contribute to the progression of keratoconus. The abnormal rubbing-ectasia association in keratoconus may extend to other forms of keratectasia, including that seen after laser in situ keratomileusis, for which a contributory abnormal rubbing hypothesis may be appropriate.

  9. Metabolomic analysis of normal and sickle cell erythrocytes.

    PubMed

    Darghouth, D; Koehl, B; Junot, C; Roméo, P-H

    2010-09-01

    Metabolic signatures of specialized circulating hematopoietic cells in physiological or human hematological diseases start to be described. We use a simple and highly reproductive extraction method of erythrocytes metabolites coupled with a liquid chromatography-mass spectrometry based metabolites profiling method to determine metabolomes of normal and sickle cell erythrocytes. Sickle cell erythrocytes and normal erythrocytes metabolomes display major differences in glycolysis, in glutathione, in ascorbate metabolisms and in metabolites associated to membranes turnover. In addition, the amounts of metabolites derived from urea cycle and NO metabolism that partly take place within erythrocyte were different between normal and sickle cell erythrocytes. These results show that metabolic profiling of red blood cell diseases can now be determined and might indicate new biomarkers that can be used for the follow-up of sickle cell patients.

  10. Uric acid protects erythrocytes from ozone-induced changes.

    PubMed

    Meadows, J; Smith, R C

    1987-08-01

    Uric acid effectively reduced hemolysis and methemoglobin formation in bovine and swine erythrocytes bubbled with ozone in vitro. In bovine erythrocytes, formation of thiobarbituric acid-reactive material was inhibited by uric acid, but there was little immediate protection for the swine cells. Antioxidant protection was due to preferential degradation of the uric acid by ozone. These results provide evidence to support the hypothesis that in plasma, uric acid can provide antioxidant protection for erythrocytes.

  11. Effect of thiol drugs on tert-butyl hydroperoxide induced luminol chemiluminescence in human erythrocytes, erythrocyte lysate, and erythrocyte membranes.

    PubMed

    Sajewicz, Waldemar

    2010-07-30

    The paper investigates the effect of thiol drugs (RSH) under oxidative stress condition using luminol-enhanced chemiluminescence technique. The examinations included N-acetylcysteine (NAC), N-acetylpenicillamine (NAP), penicillamine (PEN), mesna (MES), and tiopronin (TPR). The model systems contained isolated human erythrocytes (RBC), erythrocyte lysates (LYS) or erythrocyte membranes (MEM) exposed to tert-butyl hydroperoxide (t-BuOOH). Under the influence of RSH, a bimodal character of some experimental chemiluminescence curves was observed and the kinetic solution was considered as the sum of two logistic-exponential processes. These chemiluminescence changes probably reflected two connected processes--scavenging by RSH of the t-BuOOH-induced free radicals and simultaneous generation of thiol-derived secondary free radicals. Individual differences in thiols interaction showed a multivariate set of the kinetic curve descriptors. The Principal Component Analysis (PCA) well distinguished subsets of RSH influence in systems with RBC or LYS. Generally, the action of NAC was exclusively pro-oxidant in both systems, with RBC and LYS. The behaviour of MES or NAP in these systems was also pro-oxidant but many times less prominent than NAC. Under the influence of TPR a dramatic switch in the anti-oxidant effect was observed in system with RBC to very pro-oxidant effect in LYS. The influence of PEN was analogical to TPR but very weak. This experimental model together with kinetic solution of the unique bimodal chemiluminescence curves, and PCA, supply new insights to the dual (anti- and pro-oxidant) effects of thiol drugs under oxidative stress condition. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Hemorrhagic shock and nitric oxide release from erythrocytic nitric oxide synthase: A quantitative analysis

    PubMed Central

    Chen, Kejing; Pittman, Roland N.; Popel, Aleksander S.

    2009-01-01

    A large loss of blood during hemorrhage can result in profound shock, a state of hypotension associated with hemodynamic abnormalities. One of the hypotheses to account for this collapse of homeostasis is that the production of nitric oxide (NO), a gas molecule that dilates blood vessels, is significantly impaired during hemorrhage, resulting in a mismatch between O2 delivery and the metabolic activity in the tissues. NO can be released from multiple sources in the vasculature. Recent studies have shown that erythrocytes express functional endothelial nitric oxide synthase (NOS3), which potentially serves as an intraluminal NO source. NO delivery from this source is complex: Erythrocytes are not only NO producers but also act as potent sinks because of the high affinity of NO for hemoglobin. To test our hypothesis that the loss of erythrocytic NOS3 during hemorrhage contributes to NO deficiency-related shock, we have constructed a multicellular computational model that simulates NO production and transport to allow us to quantify the loss of NO under different hemorrhagic conditions. Our model shows that: (1) during mild hemorrhage and subsequent hemodilution (hematocrit >30%), NO from this intraluminal source is only slightly decreased in the vascular smooth muscle, but the NO level is significantly reduced under severe hemorrhagic conditions (hematocrit <30%); (2) whether a significant amount of NO from this source can be delivered to vascular smooth muscle is strongly dependent on the existence of a protective mechanism for NO delivery; (3) if the expression level of NOS3 on erythrocytes is similar to that on endothelial cells, we estimate ~13 pM NO at the vascular smooth muscle from this source when such a protective mechanism is involved. This study provides a basis for detailed studies to characterize the impairment of NO release pathways during hemorrhage and yield important insights for the development of resuscitation methods. PMID:19285090

  13. Hemorrhagic shock and nitric oxide release from erythrocytic nitric oxide synthase: a quantitative analysis.

    PubMed

    Chen, Kejing; Pittman, Roland N; Popel, Aleksander S

    2009-06-01

    A large loss of blood during hemorrhage can result in profound shock, a state of hypotension associated with hemodynamic abnormalities. One of the hypotheses to account for this collapse of homeostasis is that the production of nitric oxide (NO), a gas molecule that dilates blood vessels, is significantly impaired during hemorrhage, resulting in a mismatch between O(2) delivery and the metabolic activity in the tissues. NO can be released from multiple sources in the vasculature. Recent studies have shown that erythrocytes express functional endothelial nitric oxide synthase (NOS3), which potentially serves as an intraluminal NO source. NO delivery from this source is complex: erythrocytes are not only NO producers but also act as potent sinks because of the high affinity of NO for hemoglobin. To test our hypothesis that the loss of erythrocytic NOS3 during hemorrhage contributes to NO deficiency-related shock, we have constructed a multicellular computational model that simulates NO production and transport to allow us to quantify the loss of NO under different hemorrhagic conditions. Our model shows that: (1) during mild hemorrhage and subsequent hemodilution (hematocrit >30%), NO from this intraluminal source is only slightly decreased in the vascular smooth muscle, but the NO level is significantly reduced under severe hemorrhagic conditions (hematocrit <30%); (2) whether a significant amount of NO from this source can be delivered to vascular smooth muscle is strongly dependent on the existence of a protective mechanism for NO delivery; (3) if the expression level of NOS3 on erythrocytes is similar to that on endothelial cells, we estimate approximately 13 pM NO at the vascular smooth muscle from this source when such a protective mechanism is involved. This study provides a basis for detailed studies to characterize the impairment of NO release pathways during hemorrhage and yield important insights for the development of resuscitation methods.

  14. Accumulation of Paprika Carotenoids in Human Plasma and Erythrocytes.

    PubMed

    Nishino, Azusa; Ichihara, Takashi; Takaha, Takeshi; Kuriki, Takashi; Nihei, Hideko; Kawamoto, Kazuhisa; Yasui, Hiroyuki; Maoka, Takashi

    2015-01-01

    The accumulation (incorporation) of paprika carotenoid in human plasma and erythrocytes was investigated. A paprika carotenoid supplement (14 mg/day) was ingested for 4 weeks by 5 young healthy volunteers (3 men and 2 women). After 2 weeks of carotenoid ingestion, the carotenoid levels in plasma and erythrocytes increased by 1.2-fold and 2.2-fold, respectively. Characteristic carotenoids found in paprika (capsanthin, cucurbitaxanthin A, and cryptocapsin) were detected in both plasma and erythrocytes. An oxidative metabolite of capsanthin (capsanthone) was also found in both plasma and erythrocytes.

  15. [Functional state feature of erythrocytes in healthy term newborn infants].

    PubMed

    Evsiukova, I I; Iakushenko, N S; Andreeva, A A; Shevel'kova, A A; Kolesova, T A; Katiukhin, L N; Dobrylko, I A; Mandukshev, I V

    2014-01-01

    Hematological parameters and functional status of erythrocytes were studied by the osmotic and ammonium loads in healthy newborns and in adults. Mean erythrocyte volume of newborns more than in adults. Significant difference index of osmotic fragility of neonates were observed in the transition from swelling to hemolysis. Kinetic of erythrocyte's hemolysis in the ammonium load was studied by low-angle light scattering (LaSca-analyzer). The percentage of erythrocyte hemolysis is lower and the velocity of hemolysis is 2.5 times slower in newborns than in adults.

  16. Preparation of Stable Sensitized Erythrocytes for Detection of Chlamydial Antibodies

    PubMed Central

    Lewis, Vester J.; Engelman, Helen M.; Thacker, W. Lanier

    1975-01-01

    Sheep erythrocytes were treated with glutaraldehyde before sensitization for the indirect hemagglutination test to assay chlamydial antibodies. This treatment markedly increased stability during storage. PMID:809464

  17. Effect of glutaraldehyde treatment on enzyme-loaded erythrocytes.

    PubMed

    Deloach, J; Peters, S; Pinkard, O; Glew, R; Ihler, G

    1977-02-28

    In principle, enzyme-loaded erythrocytes can be used as a vehicle for enzyme replacement therapy in lysosomal storage diseases. Glutaraldehyde treatment renders these erythrocytes more resistant to lysis without inactivating the enzymes that have been entrapped inside them. Glutaraldehyde treatment does not prevent ingestion of enzyme-loaded erythrocytes by macrophages in vitro so that these cells can be used to deliver enzymes to lysosomes. In vivo, the glutaraldehyde-treated cells are quickly removed from the circulation by the spleen or liver. The degree of glutaraldehyde treatment allows the erythrocytes to be targeted either to the spleen (low glutaraldehyde concentrations) or to the liver (higher glutaraldehyde concentrations).

  18. Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion

    PubMed Central

    1994-01-01

    Plasmodium vivax and the related monkey malaria, P. knowlesi, require interaction with the Duffy blood group antigen, a receptor for a family of chemokines that includes interleukin 8, to invade human erythrocytes. One P. vivax and three P. knowlesi proteins that serve as erythrocyte binding ligands in such interactions share sequence homology. Expression of different regions of the P. vivax protein in COS7 cells identified a cysteine-rich domain that bound Duffy blood group-positive but not Duffy blood group-negative human erythrocytes. The homologous domain of the P. knowlesi proteins also bound erythrocytes, but had different specificities. The P. vivax and P. knowlesi binding domains lie in one of two regions of homology with the P. falciparum sialic acid binding protein, another erythrocyte binding ligand, indicating conservation of the domain for erythrocyte binding in evolutionarily distant malaria species. The binding domains of these malaria ligands represent potential vaccine candidates and targets for receptor-blockade therapy. PMID:8046329

  19. Investigation of High-Speed Erythrocyte Flow and Erythrocyte-Wall Impact in a Lab-on-a-Chip.

    PubMed

    Li, Ping; Zheng, Lu; Zhang, Di; Xie, Yonghui; Feng, Yi; Xie, Gongnan

    2016-05-26

    To better understand erythrocyte high-speed motion, collision characteristics, and collision-induced hemolysis probability in rotary blood pumps, a visual experimental investigation of high-speed erythrocyte flow and erythrocyte-wall collision in a lab-on-a-chip was performed. The erythrocyte suspension was driven by a microsyringe pump connected to the microchip, and the erythrocyte flow and erythrocyte-wall impact process were observed and imaged by an optical microscope and a high-speed camera. Two types of microchips with different impact surfaces (flat and curved) were employed. The motion and deformation features before and after collision were studied in detail. The results show that erythrocytes not only move along the flow direction in the flow plane but also rotate and roll in three-dimensional space. Erythrocytes keep discoid shape during the movement in the straight channel, but their deformations during collision are mainly classified into two types: erythrocyte structure is still stable and the erythrocyte performance can be ensured to a certain extent in the TypeA deformation, while the TypeB deformation makes the membrane more likely to fracture on the stretched side, increasing the probability of hemolysis. Furthermore, the movements and deformations of the erythrocytes after collision are analyzed and classified into two types: bouncing and slipping. Moreover, a simulation method for the flow in microchip was performed and validated through a comparison of the streamlines and experimental erythrocytes tracks, which can be further employed to predict the high-speed blood flow, associated with collision process in mechanical blood pump.

  20. Diminished spectrin extraction from ATP-depleted human erythrocytes. Evidence relating spectrin to changes in erythrocyte shape and deformability.

    PubMed

    Lux, S E; John, K M; Ukena, T E

    1978-03-01

    We measured spectrin "extractability" in erythrocytes which were metabolically depleted by incubation at 37 degrees C in plasma or glucose-free buffers. Membranes were extracted with 1 mM EDTA (pH 8, 40 h, 4 degrees C) and analyzed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. This procedure solubilized 85--90% of the spectrin, actin, and residual hemoglobin from ghosts of fresh erythrocytes. In incubated erythrocytes, inextractable spectrin rapidly accumulated when ATP concentrations fell below 0--15% of normal. In severely depleted cells, 60--90% of the total ghost spectrin became inextractable. Inextractability was not abolished by physically disrupting the ghost before extraction, but was reversed when erythrocyte ATP was replenished with adenosine. The accumulation of inextractable spectrin correlated temporally with the increase in apparent membrane deformability and the increases in erythrocyte vicosity, calcium content, sodium gain, and potassium loss characteristic of ATP-depleted erythrocytes. No change in integral membrane protein topography (assessed by the distribution of intramembranous particles and concanavalin A surface-binding sites) was detected in depleted cells. Analogous changes were observed in erythrocytes exposed to extremes of pH and temperature. When the pH in the erythrocyte interior fell below 5.5, a pH where spectrin was aggregated and isoelectrically precipitated, erythrocyte and ghost viscosity increased coincident with a marked decrease in spectrin extractability. Similarly above 49 degrees C, a temperature where spectrin was denatured and precipitated, erythrocyte viscosity rose as inextractable spectrin accumulated. These observations provide direct evidence of a change in the physical state of spectrin associated with a change in erythrocyte shape and deformability. They support the concept that erythrocyte shape and deformability are largely determined by the shape and deformability of the spectrin

  1. Diminished spectrin extraction from ATP-depleted human erythrocytes. Evidence relating spectrin to changes in erythrocyte shape and deformability.

    PubMed Central

    Lux, S E; John, K M; Ukena, T E

    1978-01-01

    We measured spectrin "extractability" in erythrocytes which were metabolically depleted by incubation at 37 degrees C in plasma or glucose-free buffers. Membranes were extracted with 1 mM EDTA (pH 8, 40 h, 4 degrees C) and analyzed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. This procedure solubilized 85--90% of the spectrin, actin, and residual hemoglobin from ghosts of fresh erythrocytes. In incubated erythrocytes, inextractable spectrin rapidly accumulated when ATP concentrations fell below 0--15% of normal. In severely depleted cells, 60--90% of the total ghost spectrin became inextractable. Inextractability was not abolished by physically disrupting the ghost before extraction, but was reversed when erythrocyte ATP was replenished with adenosine. The accumulation of inextractable spectrin correlated temporally with the increase in apparent membrane deformability and the increases in erythrocyte vicosity, calcium content, sodium gain, and potassium loss characteristic of ATP-depleted erythrocytes. No change in integral membrane protein topography (assessed by the distribution of intramembranous particles and concanavalin A surface-binding sites) was detected in depleted cells. Analogous changes were observed in erythrocytes exposed to extremes of pH and temperature. When the pH in the erythrocyte interior fell below 5.5, a pH where spectrin was aggregated and isoelectrically precipitated, erythrocyte and ghost viscosity increased coincident with a marked decrease in spectrin extractability. Similarly above 49 degrees C, a temperature where spectrin was denatured and precipitated, erythrocyte viscosity rose as inextractable spectrin accumulated. These observations provide direct evidence of a change in the physical state of spectrin associated with a change in erythrocyte shape and deformability. They support the concept that erythrocyte shape and deformability are largely determined by the shape and deformability of the spectrin

  2. Erythrocyte membrane tropomyosin. Purification and properties.

    PubMed

    Fowler, V M; Bennett, V

    1984-05-10

    Two polypeptides of Mr approximately 29,000 and 27,000 have been identified in human erythrocyte membranes that cross-react specifically with affinity purified antibodies to chicken gizzard tropomyosin. The cross-reacting polypeptides are quantitatively retained on the membrane after cell lysis if millimolar concentrations of magnesium are included in the lysis and wash buffers, indicating that they are membrane-bound proteins under physiological conditions. Milligram quantities of these immunoreactive polypeptides have been purified to greater than 95% purity from a low salt extract of membranes by DEAE-chromatography, precipitation at pH 4.4, and heating to 85 degrees C to denature contaminants. Physical similarities of the erythrocyte protein to other tropomyosins include (a) amino acid composition (b) anomalous migration of the Mr approximately 29,000 and 27,000 polypeptides on sodium dodecyl sulfate-gels in the presence of 6 M urea to apparent Mr approximately 43,000 and 38,000, respectively (c) arrangement of chains as dimers of Mr approximately 60,000 based on cross-linking studies and calculation of molecular weight from hydrodynamic values (Rs = 5.9 nm, sedimentation coefficient = 2.5 S; partial specific volume = 0.72 cm3/g) and (d) highly asymmetric shape, based on a frictional ratio of 2.07. Binding of erythrocyte tropomyosin to muscle F-actin saturates at one tropomyosin molecule (Mr approximately 60,000) to 6-7 actin monomers and is highly cooperative with a Hill coefficient of about 2.8, similar to muscle tropomyosins. Binding also exhibits a high degree of cooperativity as a function of the magnesium concentration with a transition between no binding and complete binding between 1 and 2 mM MgCl2. Increasing the magnesium concentration from 2 to 10 mM increases the apparent affinity of tropomyosin for actin from approximately 2.6 X 10(6) M-1 to approximately 2.7 X 10(7) M-1 without effect on the Hill coefficient. The tropomyosin polypeptides comprise

  3. The AMPKγ1 subunit plays an essential role in erythrocyte membrane elasticity, and its genetic inactivation induces splenomegaly and anemia.

    PubMed

    Foretz, Marc; Hébrard, Sophie; Guihard, Soizic; Leclerc, Jocelyne; Do Cruzeiro, Marcio; Hamard, Ghislaine; Niedergang, Florence; Gaudry, Muriel; Viollet, Benoit

    2011-01-01

    AMP-activated protein kinase (AMPK) is an αβγ heterotrimer conserved throughout evolution and important for energy sensing in all eukaryote cells. AMPK controls metabolism and various cellular events in response to both hormones and changes in cellular energy status. The γ subunit senses intracellular energy status through the competitive binding of AMP and ATP. We show here that targeted disruption of the mouse AMPKγ1 gene (Prkag1) causes regenerative hemolytic anemia by increasing the sequestration of abnormal erythrocytes. Prkag1(-/-) mice displayed splenomegaly and iron accumulation due to compensatory splenic erythropoiesis and erythrophagocytosis. Moreover, AMPKγ1-deficient erythrocytes were highly resistant to osmotic hemolysis and poorly deformable in response to increasing shear stress, consistent with greater membrane rigidity. No change in cytoskeletal protein composition was observed; however, the phosphorylation level of adducin, a protein promoting the binding of spectrin to actin, was higher in AMPKγ1-deficient erythrocytes. Together, these results demonstrate that AMPKγ1 subunit is required for the maintenance of erythrocyte membrane elasticity.

  4. Plasmodium falciparum AMA-1 erythrocyte binding peptides implicate AMA-1 as erythrocyte binding protein.

    PubMed

    Urquiza, M; Suarez, J E; Cardenas, C; Lopez, R; Puentes, A; Chavez, F; Calvo, J C; Patarroyo, M E

    2000-10-15

    The role of AMA-1 during merozoite invasion has not yet been determined. However, reported experimental evidence suggests that this protein can be used, in particular as erythrocyte-binding protein, since, Fab fragments against this protein are able to block merozoite invasion. Using a previously described methodology, eight peptides with high binding activity to human erythrocyte, scattered along the different domains and having around 130 nM affinity constants, were identified in the Plasmodium falciparum AMA-1 protein. Their binding activity was sialic acid independent. Some of these peptides showed homology with the erythrocyte binding domains of one of the apical organelle protein family, MAEBL, identified in rodent malarial parasites. One of these peptides shares amino acid sequence with a previously reported B-cell epitope which induces antibodies to block parasite growth. The critical residues were identified for erythrocyte binding conserved peptides 4313 (DAEVAGTQYRLPSGKCPVFG), 4321 (VVDNWEKVCPRKNLQNAKFG), 4325 (MIKSAFLPTGAFKADRYKSH) and 4337 (WGEEKRASHTTPVLMEKPYY). All conserved peptides were able to block merozoite invasion of new RBC and development, suggesting that these peptides are involved in P. falciparum invasion.

  5. Erythrocyte micronucleus cytome assay of 17 wild bird species from the central Monte desert, Argentina.

    PubMed

    Quero, Arnoldo A M; Ferré, Daniela M; Zarco, Agustín; Cuervo, Pablo F; Gorla, Nora B M

    2016-12-01

    Birds have the potential to be considered valuable bioindicators of the quality of ecosystems and the environmental impact of pollutants. The aims of this study were to determine the micronuclei frequency and other nuclear abnormalities in erythrocytes by analyzing a wild bird community from central Monte desert (Argentina) and to clarify if there were any differences among certain species. Frequencies of nuclear abnormalities were determined in 73 wild birds belonging to 17 species and two orders (Passeriformes and Columbiformes). A high proportion of individuals, 90.4 and 80.9 %, had erythrocytes with micronuclei and nuclear buds, respectively. Notched nuclei, binucleated cells, nuclear tails, and nucleoplasmic bridges were also recorded. Certain species appeared to be more informative than others with regard to the possibility of being used as bioindicators of genetic damage. Saltator aurantiirostris and Columbina picui were the only species that showed significantly different frequencies of nuclear alterations, in comparison with the other species. The frequencies here presented are the first reported for these bird species from the orders Passeriformes and Columbiformes. This research supports the notion that the use of these biomarkers could be effectively applied to evaluate spontaneous or induced genetic instability in wild birds.

  6. Abnormal menstrual periods (image)

    MedlinePlus

    ... have a variety of causes, such as endometrial hyperplasia, endometrial polyps, uterine fibroids, and abnormal thyroid or ... endometrium becomes unusually thick it is called endometrial hyperplasia. Hyperplasia may cause profuse or extended menstrual bleeding.

  7. Abnormal haemoglobins: detection & characterization

    PubMed Central

    Wajcman, Henri; Moradkhani, Kamran

    2011-01-01

    Haemoglobin (Hb) abnormalities though quite frequent, are generally detected in populations during surveys and programmes run for prevention of Hb disorders. Several methods are now available for detection of Hb abnormalities. In this review, the following are discussed: (i) the methods used for characterization of haemoglobin disorders; (ii) the problems linked to diagnosis of thalassaemic trait; (iii) the strategy for detection of common Hb variants; and (iv) the difficulties in identification of rare variants. The differences between developing and industrialized countries for the strategies employed in the diagnosis of abnormal haemoglobins are considered. We mention the limits and pitfalls for each approach and the necessity to characterize the abnormalities using at least two different methods. The recommended strategy is to use a combination of cation-exchange high performance chromatography (CE-HPLC), capillary electrophoresis (CE) and when possible isoelectric focusing (IEF). Difficult cases may demand further investigations requiring specialized protein and/or molecular biology techniques. PMID:22089618

  8. "Jeopardy" in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Keutzer, Carolin S.

    1993-01-01

    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  9. "Jeopardy" in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Keutzer, Carolin S.

    1993-01-01

    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  10. Erythrocytic vacuolar rafts induced by malaria parasites.

    PubMed

    Haldar, K; Samuel, B U; Mohandas, N; Harrison, T; Hiller, N L

    2001-03-01

    Studies in the past year displaced long-standing dogmas and provided many new molecular insights into how proteins and solutes move between the erythrocyte plasma membrane and the malarial vacuole. Highlights include a demonstration that (1) detergent-resistant membrane (DRM) rafts exist in the red cell membrane and their resident proteins are detected as rafts in the plasmodial vacuole, (2) a voltage-gated channel in the infected red cell membrane mediates uptake of extracellular nutrient solutes, and (3) intraerythrocytic membranes transport a parasite-encoded adherence antigen to the red cell surface.

  11. Alterations of erythrocyte membrane organization in alcoholics.

    PubMed

    Beaugé, F; Stibler, H; Borg, S

    1987-01-01

    Studies of fluorescence polarization of DPH have shown that erythrocyte membrane "fluidity" and fluidization by ethanol are significantly reduced in alcoholics. By using probes of the polar part of the membrane, ANS and TMA-DPH, in addition to DPH, it was shown in the present study that disturbances also exist in the polar region of the membrane which probably are related to changes in surface glycoconjugates. Furthermore, the acute fluidizing effect of ethanol was correlated with the capacity of the membrane to bind ethanol, which in turn appeared to be linked to the glycans. Chronic ethanol abuse thus causes complex disturbances of membrane organization at different levels of the membrane.

  12. Muscle tone abnormalities.

    PubMed

    Habel, M

    1997-01-01

    Rehabilitation nurses frequently encounter clients with neurological disorders that adversely affect muscle tone. By understanding the physiological etiology of abnormal muscle tone, individual practitioners can design nursing interventions for various care settings that appropriately protect clients from injury and that can help clients and caregivers learn effective techniques for managing muscle tone problems. This article explains muscle tone abnormalities in detail and offers insight into how rehabilitation nurses can play a key role in managing clients' alterations in muscle tone.

  13. Involvement of erythrocyte aggregation and erythrocyte resistance to flow in acute coronary syndromes.

    PubMed

    Pfafferott, C; Moessmer, G; Ehrly, A M; Bauersachs, R M

    1999-01-01

    The objective of the study was to identify the relative importance of erythrocyte flow resistance and aggregation in acute and chronic coronary syndromes. 117 subjects in five groups were studied: (1) 34 patients shortly after acute myocardial infarction (AMI) before reperfusion therapy; (2) 27 patients with unstable and (3) 21 with stable angina pectoris (AP); (4) 14 age-matched control patients and (5) 21 healthy volunteers. Single erythrocyte transit times were measured using the Cell Transit Analyser. Shear dependent elongation and aggregation was measured by a modified computerized Myrenne aggregometer. Leukocyte count was increased in coronary artery disease (CAD), especially in acute syndromes (mean +/- SD for groups 1-5): 12.2 +/- 4.5; 10.0 +/- 5.4; 8.0 +/- 2.0; 8.0 +/- 3.7; 7.0 +/- 2.0 (pl(-1))). Platelets, hematocrit, fibrinogen, alpha2-macroglobulin did not differ between the groups. Plasma viscosity (mPas) was elevated in AMI and stable AP: 1.34 +/- 0.10; 1.30 +/- 0.09; 1.32 +/- 0.08; 1.27 +/- 0.07; 1.27 +/- 0.05. Erythrocyte filtrability was not different as was the shear dependent deformation. Aggregation parameters such as gammaTmin were elevated in CAD: 180 +/- 70; 159 +/- 60; 166 +/- 59; 115 +/- 43; 113 +/- 51 (s(-1)). Erythrocyte deformability, measured with two independent methods, does not appear to contribute to the pathophysiology of acute coronary syndromes. Erythrocyte aggregation and plasma viscosity were again found increased both in unstable and stable coronary disease. It is unlikely that increased red cell aggregation contributes to emergence of AMI.

  14. Erythrocyte membrane skeleton inhibits nanoparticle endocytosis

    NASA Astrophysics Data System (ADS)

    Gao, Xinli; Yue, Tongtao; Tian, Falin; Liu, Zhiping; Zhang, Xianren

    2017-06-01

    Red blood cells (RBCs), also called erythrocytes, have been experimentally proposed in recent decades as the biological drug delivery systems through entrapping certain drugs by endocytosis. However, the internalization pathway of endocytosis seems to conflict with the robust mechanical properties of RBCs that is induced by the spectrin-actin network of erythrocyte membrane skeleton. In this work, we employed a minimum realistic model and the dissipative particle dynamics method to investigate the influence of the spectrin-actin membrane skeleton on the internalization of nanoparticles (NPs). Our simulations show that the existence of skeleton meshwork indeed induces an inhibiting effect that effectively prevents NPs from internalization. The inhibiting effect is found to depend on the membrane-NP attraction, skeleton tension and relative size of the NP to the membrane skeleton mesh. However, our simulations also demonstrate that there are two possibilities for successful internalization of NPs in the presence of the membrane skeleton. The first case is for NPs that has a much smaller size than the dimension of skeleton meshes, and the other is that the skeleton tension is rather weak so that the formed vesicle can still move inward for NP internalization.

  15. Binding characteristics of swine erythrocyte insulin receptors

    SciTech Connect

    Dieberg, G.; Bryan, G.S.; Sartin, J.L.; Williams, J.C.; Prince, T.J.; Kemppainen, R.J.

    1985-09-01

    Crossbred gilts had 8.8 +/- 1.1% maximum binding of ( SVI)insulin to insulin receptors on erythrocytes. The number of insulin-binding sites per cell was 137 +/- 19, with a binding affinity ranging from 7.4 X 10(7)M-1 to 11.2 X 10(7)M-1 and mean of 8.8 X 10(7)M-1. Pregnant sows had a significant increase in maximum binding due to an increase in number of receptor sites per cell. Lactating sows fed a high-fiber diet and a low-fiber diet did not develop a significant difference in maximum binding of insulin. Sows fed the low-fiber diet had a significantly higher number of binding sites and a significantly lower binding affinity than did sows fed a high-fiber diet. Receptor-binding affinity was lower in the low-fiber diet group than in cycling gilts, whereas data from sows fed the high-fiber diet did not differ from data for cycling gilts. Data from this study indicated that insulin receptors of swine erythrocytes have binding characteristics similar to those in other species. Pregnancy and diet will alter insulin receptor binding in swine.

  16. Mycoplasma gallisepticum invades chicken erythrocytes during infection.

    PubMed

    Vogl, Gunther; Plaickner, Astrid; Szathmary, Susan; Stipkovits, László; Rosengarten, Renate; Szostak, Michael P

    2008-01-01

    Recently, it was demonstrated using in vitro assays that the avian pathogen Mycoplasma gallisepticum is able to invade nonphagocytic cells. It was also shown that this mycoplasma can survive and multiply intracellularly for at least 48 h and that this cell invasion capacity contributes to the systemic spread of M. gallisepticum from the respiratory tract to the inner organs. Using the gentamicin invasion assay and a differential immunofluorescence technique combined with confocal laser scanning microscopy, we were able to demonstrate in in vitro experiments that M. gallisepticum is also capable of invading sheep and chicken erythrocytes. The frequencies of invasion of three well-defined M. gallisepticum strains were examined over a period of 24 h, and a significant increase in invasiveness occurred after 8 h of infection. In addition, blood samples derived from chickens experimentally infected via the aerosol route with the virulent strain M. gallisepticum R(low) were analyzed. Surprisingly, M. gallisepticum R(low) was detected in the bloodstream of infected chickens by nested PCR, as well as by differential immunofluorescence and interference contrast microscopy that showed that mycoplasmas were not only on the surface but also inside chicken erythrocytes. This finding provides novel insight into the pathomechanism of M. gallisepticum and may have implications for the development of preventive strategies.

  17. Efflux and influx of erythrocyte water.

    PubMed

    OLMSTEAD, E G

    1960-11-01

    Rabbit erythrocytes were washed in buffered NaCl solutions isotonic with rabbit serum (Delta(t) -0.558 degrees C.) and suspended in buffered NaCl solutions of tonicity equidistant from intracellular tonicity (Delta(t) = -0.558 degrees C. +/- 0.112 degrees C.) of varying pH and incubated at varying temperatures. After incubation, the freezing point depression (Delta(t)) was measured on the supernatant. Change in the Delta(t) measured change in the water content of the extracellular solutions-water being withdrawn by erythrocytes (W(I)) from the hypotonic solutions and added (W(E)) to the hypertonic solutions. W(E) was always less than W(I) and was inversely proportional to the pH in the range 6.5-8.0. W(E) was significantly increased by lowering the temperature of the cell suspension to 4 degrees C. W(I) was increased by raising or lowering the pH or raising the temperature of the cell suspension. W(E) x W(I) not equal k. W(E) and W(I) were affected differently by changes in pH and temperature. It was concluded that W(E) and W(E) were probably under different physicochemical control.

  18. Comparative erythrocyte metabolism in marsupials and monotremes.

    PubMed

    Parkinson, A L; Whittington, A T; Spencer, P B; Grigg, G; Hinds, L; Gallagher, C; Kuchel, P; Agar, N S

    1995-03-01

    Concentrations of ATP and DPG, activities of 10 enzymes and the glycolytic rates were measured in the erythrocytes of 11 species of marsupials and two species of monotremes. Mean DPG concentrations were greater in the erythrocytes of marsupials than those of eutherian mammals. The opposite is true of ATP. Significant findings from the results of enzyme activities were: high activity of hexokinase (7.39 +/- 0.82 EU/g Hb) in the short-beaked echidna, pyruvate kinase (37.49 +/- 1.0 EU/g) Hb in bridled nailtail wallaby and glucose-6-phosphate dehydrogenase (G6PD; 41.66 +/- 1.24 EU/g Hb) in black-striped wallaby. About 6- to 7-fold difference in the activity of G6PD levels between the two species of wombats was confirmed. Glucose phosphate isomerase activity was also shown to be twice as high in the red cells of the common wombat compared with those of the southern hairy nosed wombat. There were wide variations in the glycolytic rate among the species examined.

  19. Migraine and erythrocyte biology: a review.

    PubMed

    Lippi, G; Cervellin, G; Mattiuzzi, C

    2014-12-01

    Migraine is a common disabling headache disorder that is conventionally classified according to the presence or absence of aura. The pathogenesis of this disorder entails a complex interplay of neurovascular factors, that trigger reduction of cerebral blood flow followed by reactive vasodilatation. Despite major emphasis has been placed on the investigation of putative biomarkers that could predict response to specific treatments and prophylaxis, less focus has been directed at the association between migraine and erythrocytosis. Erythrocytosis is typically accompanied by hyperviscosity, that is now considered a crucial determinant in the pathogenesis of migraine. The results of some epidemiological investigations are in substantial agreement to confirm the existence of a significant relationship between increased haemoglobin levels and migraine, whereas some case reports have also reported an effective improvement of symptoms after reduction of erythrocyte count by therapeutic venesection. Interesting evidence has recently emerged from the assessment of red blood cell distribution width (RDW), a simple and inexpensive measure of anysocytosis that has been also associated with a variety of ischaemic and thrombotic disorders other than migraine. The aim of this review was to provide an overview of the current clinical and epidemiological evidence linking migraine and erythrocyte biology.

  20. Phlorhizin protects against erythrocyte cell membrane scrambling.

    PubMed

    Gatidis, Sergios; Meier, Anja; Jilani, Kashif; Lang, Elisabeth; Zelenak, Christine; Qadri, Syed M; Lang, Florian

    2011-08-10

    Phlorhizin interferes with glucose transport. Glucose depletion triggers suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling. Eryptosis is further triggered by oxidative stress. The present study explored whether phlorhizin influences eryptosis following glucose depletion or oxidative stress. Cell membrane scrambling was estimated from annexin binding, cell volume from forward scatter (FSC), and cytosolic Ca(2+) concentration from Fluo-3 fluorescence. Phlorhizin (10-100 μM) added alone did not modify scrambling, FSC, or Fluo-3 fluorescence. Glucose depletion (48 h) significantly increased Fluo-3 fluorescence, decreased FSC, and increased annexin binding, effects in part significantly blunted by phlorhizin (annexin binding ≥ 10 μM, FSC ≥ 50 μM). Oxidative stress (30 min 0.3 mM tert-butylhydroperoxide) again significantly increased Fluo-3 fluorescence and triggered annexin binding, effects again in part significantly blunted by phlorhizin (Fluo-3 fluorescence ≥ 50 μM, annexin-binding ≥ 10 μM). Phlorhizin did not blunt the cell shrinkage induced by oxidative stress. The present observations disclose a novel effect of phlorhizin, that is, an influence on suicidal erythrocyte death following energy depletion and oxidative stress.

  1. Inhibition of suicidal erythrocyte death by probucol.

    PubMed

    Shaik, Nazneen; Lupescu, Adrian; Lang, Florian

    2013-02-01

    Probucol, an antioxidant and anti-inflammatory agent counteracting atherosclerosis and restenosis, is partially effective by influencing suicidal cell death or apoptosis. In analogy to apoptosis of nucleated cells, suicidal death of erythrocytes or eryptosis is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Eryptosis is stimulated by increase in cytosolic Ca(2+) activity, for example, after energy depletion or oxidative stress. The present study explored whether probucol influences eryptosis. Phosphatidylserine exposure was estimated from annexin-V-binding, cell volume from forward scatter (FSC), and cytosolic Ca(2+) concentration from fluo-3 fluorescence in flow cytometry. As a result, energy depletion (48-hour glucose removal) increased annexin-V-binding, decreased FSC, and increased fluo-3 fluorescence. Probucol (≤30 μM) did not significantly modify annexin-V-binding, FSC, or fluo-3 fluorescence in the presence of glucose but (at ≥5 μM) blunted the effect of glucose depletion on annexin-V-binding. Probucol (≥20 μM) only slightly blunted the effects of glucose depletion on FSC and fluo-3 fluorescence. Ca(2+) ionophore ionomycin (1 μM) and oxidative stress (30-minute exposure to 0.3 mM of tert-butylhydroperoxide) increased annexin-V-binding, effects again blunted by 30 μM of probucol. In conclusion, probucol blunts cell membrane scrambling after energy depletion and oxidative stress, effects primarily because of interference with the scrambling effects of increased cytosolic Ca(2+) concentration.

  2. Dielectric properties and ion mobility in erythrocytes.

    PubMed

    Pauly, H; Schwan, H P

    1966-09-01

    The impedance of erythrocytes of man, cattle, sheep, dog, cat, rabbit, and chicken was measured in the range from 0.5 to 250 Mc. The dielectric constant of the red cell interior is 50 at 250 Mc, varies but little with species, and can readily be accounted for by the cells' hemoglobin content. The electrical conductivity of the red cell interior was determined between 70 and 100 Mc. The values differ from species to species within the rather limited range from 4.4 to 5.3 mmho/cm. Removal of the cell membranes does not affect the conductivity. Hence, the cell interior behaves, from an electrical point of view, like a highly concentrated hemoglobin solution. A theoretical value for the electrical conductivity of erythrocyte interiors, which is calculated on the basis of the salt content of the cell, ion mobility, and the volume concentration of the hemoglobin, is roughly twice as large as the measured value. This discrepancy is typical not only of the red blood cell. Pertinent measurements show that it is probably caused by hydrodynamic and possibly by electrostatic effects also, which lower the mobility of the ions. From the lower electrical mobility it appears that a lowered diffusion constant of the electrolytes and nonelectrolytes within the cell is indicated.

  3. 21 CFR 864.6700 - Erythrocyte sedimentation rate test.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Erythrocyte sedimentation rate test. 864.6700 Section 864.6700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6700 Erythrocyte...

  4. 21 CFR 864.6700 - Erythrocyte sedimentation rate test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Erythrocyte sedimentation rate test. 864.6700 Section 864.6700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6700 Erythrocyte...

  5. 21 CFR 864.6700 - Erythrocyte sedimentation rate test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Erythrocyte sedimentation rate test. 864.6700 Section 864.6700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6700 Erythrocyte...

  6. 21 CFR 864.6700 - Erythrocyte sedimentation rate test.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Erythrocyte sedimentation rate test. 864.6700 Section 864.6700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6700 Erythrocyte...

  7. Effect of laser irradiation of donor blood on erythrocyte shape.

    PubMed

    Baibekov, I M; Ibragimov, A F; Baibekov, A I

    2012-04-01

    Changes in erythrocyte shape in donor blood during storage and after irradiation with He-Ne laser and infrared laser were studied by scanning electron microscopy, thick drop express-method, and morphometry. It was found that laser irradiation delayed the appearance of erythrocytes of pathological shapes (echinocytes, stomatocytes, etc.) in the blood; He-Ne laser produced a more pronounced effect.

  8. A role of phosphatidylserine externalization in clearance of erythrocytes exposed to stress but not in eliminating aging populations of erythrocyte in mice.

    PubMed

    Khandelwal, Sanjay; Saxena, Rajiv K

    2008-08-01

    Age dependent changes in phosphatidylserine (PS) externalization were studied in mouse erythrocytes of different age groups (range 1-55 days) by using a newly developed double in vivo biotinylation (DIB) technique. Around 3-4% of the erythrocytes freshly released in the circulation were PS(+) but this proportion fell rapidly to 1% or less and did not increase at later time points. Blocking erythrocyte clearance from the circulation by in vivo depletion of macrophages (by treatment with clodronate loaded liposomes) for up to 7 days did not result in accumulation of PS(+) erythrocytes in the circulation indicating that the low percentage of PS(+) cells within old erythrocytes (age >40 days) was not related to the clearance of PS(+) erythrocytes by macrophages. In vitro treatment with stress inducing agents like deoxyglucose or Ca(++)/calcium ionophore resulted in a marked induction of PS externalization in mouse erythrocytes and this effect was most prominent in the youngest erythrocyte population (age <10 days). Kinetics of clearance of different age groups of stress exposed erythrocytes after intravenous infusion into recipient mice indicated that the young erythrocytes were cleared at fastest rate from the circulation as compared to erythrocytes of older age groups. Within young erythrocytes exposed to stress, PS(+) erythrocytes were preferentially cleared. Taken together our results suggest that PS externalization is unlikely to have a role in the removal of old erythrocytes from blood circulation but may have a role in the clearance of stressed and damaged young erythrocytes in blood circulation.

  9. Effect of phytic acid on suicidal erythrocyte death.

    PubMed

    Eberhard, Matthias; Föller, Michael; Lang, Florian

    2010-02-10

    Phytic acid, an anticarcinogenic food component, stimulates apoptosis of tumor cells. Similar to apoptosis, human erythrocytes may undergo suicidal death or eryptosis, characterized by cell membrane scrambling and cell shrinkage. Triggers of eryptosis include energy depletion. Phytate intake could cause anemia, an effect attributed to iron complexation. The present experiments explored whether phytic acid influences eryptosis. Supernatant hemoglobin concentration was determined to reveal hemolysis, annexin V-binding in FACS analysis was utilized to identify erythrocytes with scrambled cell membrane, forward scatter in FACS analysis was taken as a measure of cell volume, and a luciferin-luciferase assay was employed to determine erythrocyte ATP content. As a result, phytic acid (>or=1 mM) did not lead to significant hemolysis, but significantly increased the percentage of annexin V-binding erythrocytes, significantly decreased forward scatter, and significantly decreased cellular ATP content. In conclusion, phytic acid stimulates suicidal human erythrocyte death, an effect paralleling its proapoptotic effect on nucleated cells.

  10. Encapsulation of thiosulfate: cyanide sulfurtransferase by mouse erythrocytes

    SciTech Connect

    Leung, P.; Ray, L.E.; Sander, C.; Way, J.L.; Sylvester, D.M.; Way, J.L.

    1986-03-30

    Murine carrier erythrocytes, prepared by hypotonic dialysis, were employed in the encapsulation of several compounds including (14C)sucrose, (3H)inulin, and bovine thiosulfate:cyanide sulfurtransferase (rhodanese), a mitochondrial enzyme which converts cyanide to thiocyanate. Approximately 30% of the added (14C)sucrose, (3H)inulin, and rhodanese was encapsulated by predialyzed erythrocytes, and a decrease in the mean corpuscular volume and mean corpuscular hemoglobin was observed. In the encapsulation of rhodanese a recovery of 95% of the erythrocytes was achieved and an 85% equilibrium was established. The addition of potassium cyanide (50 mM) to intact, rhodanese-loaded erythrocytes containing sodium thiosulfate resulted in its metabolism to thiocyanate. These results establish the potential use of erythrocytes as biodegradable drug carrier in drug antagonism.

  11. Response of the rat erythrocyte to ozone exposure

    NASA Technical Reports Server (NTRS)

    Larkin, E. C.; Kimzey, S. L.; Siler, K.

    1978-01-01

    Sprague-Dawley rats were exposed to high (6-8 ppm) and moderate (1.5 ppm) amounts of ozone (O3) for various time periods. Response of the rat erythrocyte to ozone was monitored with red blood cell potassium (rubidium) influx studies, with storage stress combined with ultrastructural studies and with levels of erythrocyte glutathione peroxidase and superoxide dismutase. Erythrocytes of rats exposed to O3 showed no significant changes either in their potassium influx or in their glutathione peroxidase and superoxide dismutase activities compared to controls. Erythrocyte differential counts on O3-exposed animals showed significant changes initially as well as following storage stress compared to controls. Rats exposed to 8 ppm O3 for 4 h showed a marked increase in echinocytes. These consistent transformations from discocytes to echinocytes following O3 exposure suggest latent erythrocyte damage has occurred.

  12. Atomic force microscopic observation of surface-supported human erythrocytes

    NASA Astrophysics Data System (ADS)

    Ho, Mon-Shu; Kuo, Feng-Jia; Lee, Yu-Siang; Cheng, Chao-Min

    2007-07-01

    The nanomechanical characteristics of the membrane cytoskeleton of human erythrocytes were studied using atomic force microscopy (AFM). The self-assembly, fine structure, cell diameter, thickness, and reticulate cytoskeleton of erythrocytes on the mica surface were investigated. The adhesive forces that correspond to the membrane elasticity of various parts of the erythrocyte membrane surface were measured directly by AFM to be 0.64±0.14nN for cell indentation, 4.2±0.7nN for cell hump, and 11.5nN for side waist, respectively. The deformation of erythrocytes was discussed. Standing waves on the membrane that were set up by increased AFM amplitude were observed. The propagating velocity on the erythrocyte membrane was estimated to be ˜2.02×10-2m/s. Liquid physiological conditions were considered throughout.

  13. Light-induced protoporphyrin release from erythrocytes in erythropoietic protoporphyria

    SciTech Connect

    Sandberg, S.; Brun, A.

    1982-09-01

    The photohemolysis of normal erythrocytes incubated with protoporphyrin is reduced in the presence of albumin. When globin is added to normal erythrocytes loaded with protoporphyrin, protoporphyrin is bound to globin. During irradiation protoporphyrin moves from globin to the erythrocyte membrane and photohemolysis is initiated. Erythrocytes in patients with erythropoietic protoporphyria contain large amounts of protoporphyrin bound to hemoglobin. Upon irradiation of these cells in the absence of albumin, 40% of protoporphyrin and 80% of hemoglobin is released after 240 kJ/m2. The released protoporphyrin is hemoglobin bound. In contrast, when albumin is present only 8% of hemoglobin is released whereas protoporphyrin is released to 76%. The released protoporphyrin is albumin bound. A hypothesis for the release of erythrocyte protoporphyrin in erythropoietic protoporphyria without simultaneous hemolysis is proposed. Upon irradiation protoporphyrin photodamages its binding sites on hemoglobin, moves through the plasma membrane, and is bound to albumin in plasma.

  14. Ferrokinetic and erythrocyte survival studies in healthy and anemic cats

    SciTech Connect

    Madewell, B.R.; Holmes, P.H.; Onions, D.E.

    1983-03-01

    Erythrocyte survival and ferrokinetic studies were adapted to the cat. For 5 clinically healthy 4- to 9-month-old cats, mean /sup 51/Cr-labeled erythrocyte survival was 144 hours, and mean plasma /sup 59/Fe-labeled transferrin disappearance halftime was 51 minutes. Erythrocyte use of radioiron was rapid and efficient, with 50% to 80% of labeled iron incorporated into the erythron by 100 hours after injection into the cat. Six cats with feline leukemia virus infection were studied. For 2 cats with erythroid aplasia associated with C subgroup of feline leukemia virus, erythrocyte survival times were similar to those determined for the healthy cats, but plasma radioiron disappearance half time and erythrocyte use of radioiron were markedly diminished.

  15. Sickle erythrocytes inhibit human endothelial cell DNA synthesis

    SciTech Connect

    Weinstein, R.; Zhou, M.A.; Bartlett-Pandite, A.; Wenc, K. )

    1990-11-15

    Patients with sickle cell anemia experience severe vascular occlusive phenomena including acute pain crisis and cerebral infarction. Obstruction occurs at both the microvascular and the arterial level, and the clinical presentation of vascular events is heterogeneous, suggesting a complex etiology. Interaction between sickle erythrocytes and the endothelium may contribute to vascular occlusion due to alteration of endothelial function. To investigate this hypothesis, human vascular endothelial cells were overlaid with sickle or normal erythrocytes and stimulated to synthesize DNA. The erythrocytes were sedimented onto replicate monolayers by centrifugation for 10 minutes at 17 g to insure contact with the endothelial cells. Incorporation of 3H-thymidine into endothelial cell DNA was markedly inhibited during contact with sickle erythrocytes. This inhibitory effect was enhanced more than twofold when autologous sickle plasma was present during endothelial cell labeling. Normal erythrocytes, with or without autologous plasma, had a modest effect on endothelial cell DNA synthesis. When sickle erythrocytes in autologous sickle plasma were applied to endothelial monolayers for 1 minute, 10 minutes, or 1 hour and then removed, subsequent DNA synthesis by the endothelial cells was inhibited by 30% to 40%. Although adherence of sickle erythrocytes to the endothelial monolayers was observed under these experimental conditions, the effect of sickle erythrocytes on endothelial DNA synthesis occurred in the absence of significant adherence. Hence, human endothelial cell DNA synthesis is partially inhibited by contact with sickle erythrocytes. The inhibitory effect of sickle erythrocytes occurs during a brief (1 minute) contact with the endothelial monolayers, and persists for at least 6 hours of 3H-thymidine labeling.

  16. Human Erythrocytes Selectively Bind and Enrich Infectious HIV-1 Virions

    PubMed Central

    Beck, Zoltan; Brown, Bruce K.; Wieczorek, Lindsay; Peachman, Kristina K.; Matyas, Gary R.; Polonis, Victoria R.; Rao, Mangala; Alving, Carl R.

    2009-01-01

    Although CD4(+) cells represent the major target for HIV infection in blood, claims of complement-independent binding of HIV-1 to erythrocytes and the possible role of Duffy blood group antigen, have generated controversy. To examine the question of binding to erythrocytes, HIV-1 was incubated in vitro with erythrocytes from 30 healthy leukapheresis donors, and binding was determined by p24 analysis and adsorption of HIV-1 with reduction of infectivity for CD4(+) target cells. All of the cells, regardless of blood group type, bound HIV-1 p24. A typical preparation of erythrocytes bound <2.4% of the added p24, but erythrocytes selectively removed essentially all of the viral infectivity as determined by decreased infection of CD4(+) target cells; however, cell-associated HIV-1 was approximately 100-fold more efficient, via trans infection, than unadsorbed virus for infection of CD4(+) cells. All of the bound HIV-1 p24 was released by treatment of the cells with EDTA, and binding was optimized by adding Ca2+ and Mg2+ during the washing of erythrocytes containing bound HIV-1. Although the small number of contaminating leukocytes in the erythrocyte preparation also bound HIV-1 p24, there was no significant binding to CD4, and it thus appears that the binding occurred on leukocytes at non-CD4 sites. Furthermore, binding occurred to erythrocyte ghosts from which contaminating leukocytes had been previously removed. The results demonstrate that erythrocytes incubated in vitro with HIV-1 differentially adsorb all of the infectious HIV-1 virions (as opposed to non-infectious or degraded virions) in the absence of complement and independent of blood group, and binding is dependent on divalent cations. By analogy with HIV-1 bound to DC-SIGN on dendritic cells, erythrocyte-bound HIV-1 might comprise an important surface reservoir for trans infection of permissive cells. PMID:20011536

  17. Carbonic Anhydrase I, II, and VI, Blood Plasma, Erythrocyte and Saliva Zinc and Copper Increase After Repetitive Transcranial Magnetic Stimulation

    PubMed Central

    Henkin, Robert I.; Potolicchio, Samuel J.; Levy, Lucien M.; Moharram, Ramy; Velicu, Irina; Martin, Brian M.

    2010-01-01

    Introduction Repetitive transcranial magnetic stimulation (rTMS) has been used to treat symptoms from many disorders; biochemical changes occurred with this treatment. Preliminary studies with rTMS in patients with taste and smell dysfunction improved sensory function and increased salivary carbonic anhydrase (CA) VI and erythrocyte CA I, II. To obtain more information about these changes after rTMS, we measured changes in several CA enzymes, proteins, and trace metals in their blood plasma, erythrocytes, and saliva. Methods Ninety-three patients with taste and smell dysfunction were studied before and after rTMS in an open clinical trial. Before and after rTMS, we measured erythrocyte CA I, II and salivary CA VI, zinc and copper in parotid saliva, blood plasma, and erythrocytes, and appearance of novel salivary proteins by using mass spectrometry. Results After rTMS, CA I, II and CA VI activity and zinc and copper in saliva, plasma, and erythrocytes increased with significant sensory benefit. Novel salivary proteins were induced at an m/z value of 21.5K with a repetitive pattern at intervals of 5K m/z. Conclusions rTMS induced biochemical changes in specific enzymatic activities, trace metal concentrations, and induction of novel salivary proteins, with sensory improvement in patients with taste and smell dysfunction. Because patients with several neurologic disorders exhibit taste and smell dysfunction, including Parkinson disease, Alzheimer disease, and multiple sclerosis, and because rTMS improved their clinical symptoms, the biochemical changes we observed may be relevant not only in our patients with taste and smell dysfunction but also in patients with neurologic disorders with these sensory abnormalities. PMID:20090508

  18. A comprehensive analysis of membrane and morphology of erythrocytes from patients with glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Fang, Zishui; Jiang, Chengrui; Tang, Jia; He, Ming; Lin, Xiaoying; Chen, Xiaodan; Han, Luhao; Zhang, Zhiqiang; Feng, Yi; Guo, Yibin; Li, Hongyi; Jiang, Weiying

    2016-06-01

    Acute hemolytic anemia could be triggered by oxidative stress in the patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. However, the underlying hemolytic mechanism is unknown. To make clear the hemolytic mechanisms, a systematic study on membrane ultrastructure had been undertaken. A comprehensive method was used including atomic force microscopy, scanning electron microscopy, flow cytometer and fluorescence microscopy to analyze the membrane ultrastructure, externalized phosphatidylserine (PS), intracellular Ca(2+) concentration, morphology and the distributions of band 3 protein in G6PD deficient red blood cells (RBCs) after tert-butyl-hydroperoxide (t-BHP) oxidation. The results showed that erythrocyte shrinkage, annexin-V binding to externalized PS on the membrane of early-stage apoptotic cells, the increased membrane roughness and intracellular Ca(2+) concentration, as well as the change of distributions of band 3 protein in RBCs. Compared with the control RBCs, as the concentration of t-BHP up to 0.1mM, the membrane roughness of G6PD deficient RBCs showed significant difference (p<0.05) and as the concentration of t-BHP up to 0.3mM, externalized PS showed significant difference (p<0.05). Furthermore, the population types of RBCs showed dramatic difference between control groups and G6PD deficient groups. Oxidative stress induced more serious erythrocyte apoptosis and resulted in increased roughness of erythrocyte membrane and abnormal distributed band 3 protein in G6PD deficient RBCs. Echinocytes are the predominant abnormal erythrocyte shape occurring in the peripheral blood from patients with G6PD deficiency, which may shorten the RBCs lifespan. The results in the present study will give an increased understanding for the hemolytic mechanism of G6PD deficiency.

  19. Acute exposure to a quinalphos containing insecticide (convoy) causes genetic damage and nuclear changes in peripheral erythrocytes of silver barb, Barbonymus gonionotus.

    PubMed

    Sadiqul, Islam M; Ferdous, Zannatul; Nannu, Md Tanvir Ahmed; Mostakim, Golam Mohammod; Rahman, Md Khalilur

    2016-12-01

    The present study was aimed to assess the genotoxic effect in fish caused by convoy, an insecticide commercial formulation containing quinalphos, present in the aquatic waterbody. For this purpose a freshwater teleost, silver barb was exposed to sublethal concentrations (25% and 50% of LC50) of convoy and erythrocytic cellular abnormalities (ECA) and erythrocytic nuclear abnormalities (ENA) tests were performed in addition to the commonly used micronucleus (MN) assay using peripheral erythrocytes and DNA contents in the different tissues after 1, 24, 36, 48, and 72 h of exposures. The obtained results indicated that acute exposure of different sub lethal concentrations of convoy to the fish resulted in significant alterations of erythrocytes as well as significant reduction of DNA contents in blood and vital organs and tissues, such as the brain, liver, kidney and muscle. Compared to each treatment excluding control group, frequencies of ECA, ENA, and MN were found to be elevated with exposure time of the doses. From this study, we conclude that convoy is a hazardous chemical to silver barb. Bioassays can be used as a tool for screening aquatic pollution, especially for insecticides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Erythrocyte 22Na+ influx in hypertension

    SciTech Connect

    Shalev, O.; Eaton, J.W.; Ben-Ishay, D.

    1984-01-01

    We assessed 22Na+ uptake by erythrocytes (RBC) from 38 individuals with essential hypertension and 37 healthy controls. All subjects were male, white, non-obese and with normal renal function, obviating sex, race, hormonal, ponderal and renal factors known to influence RBC Na+ handling. The mean +/- sem 22Na+ uptake of the patients was 284 +/- 16 mumole/liter RBC/hour while that of normal controls was 249 +/- 11 mumole/liter RBC/hour; although the difference reached borderline significance, individual values showed considerable overlap. Consequently, in our population, RBC 22Na+ uptake is not a reliable marker for essential hypertension. We believe that previous studies should be reassessed with regard to patients' characteristics and future studies employ rigorous criteria in selection of subjects.

  1. Homeostasis of Extracellular ATP in Human Erythrocytes*

    PubMed Central

    Montalbetti, Nicolas; Leal Denis, Maria F.; Pignataro, Omar P.; Kobatake, Eiry; Lazarowski, Eduardo R.; Schwarzbaum, Pablo J.

    2011-01-01

    We explored the intra- and extracellular processes governing the kinetics of extracellular ATP (ATPe) in human erythrocytes stimulated with agents that increase cAMP. Using the luciferin-luciferase reaction in off-line luminometry we found both direct adenylyl cyclase activation by forskolin and indirect activation through β-adrenergic stimulation with isoproterenol-enhanced [ATP]e in a concentration-dependent manner. A mixture (3V) containing a combination of these agents and the phosphodiesterase inhibitor papaverine activated ATP release, leading to a 3-fold increase in [ATP]e, and caused increases in cAMP concentration (3-fold for forskolin + papaverine, and 10-fold for 3V). The pannexin 1 inhibitor carbenoxolone and a pannexin 1 blocking peptide (10Panx1) decreased [ATP]e by 75–84%. The residual efflux of ATP resulted from unavoidable mechanical perturbations stimulating a novel, carbenoxolone-insensitive pathway. In real-time luminometry experiments using soluble luciferase, addition of 3V led to an acute increase in [ATP]e to a constant value of ∼1 pmol × (106 cells)−1. A similar treatment using a surface attached luciferase (proA-luc) triggered a rapid accumulation of surface ATP levels to a peak concentration of 2.4 pmol × (106 cells)−1, followed by a slower exponential decay (t½ = 3.7 min) to a constant value of 1.3 pmol × (106 cells)−1. Both for soluble luciferase and proA-luc, ATP efflux was fully blocked by carbenoxolone, pointing to a 3V-induced mechanism of ATP release mediated by pannexin 1. Ecto-ATPase activity was extremely low (∼28 fmol × (106 cells min)−1), but nevertheless physiologically relevant considering the high density of erythrocytes in human blood. PMID:21921036

  2. Abnormalities of gonadal differentiation.

    PubMed

    Berkovitz, G D; Seeherunvong, T

    1998-04-01

    Gonadal differentiation involves a complex interplay of developmental pathways. The sex determining region Y (SRY) gene plays a key role in testis determination, but its interaction with other genes is less well understood. Abnormalities of gonadal differentiation result in a range of clinical problems. 46,XY complete gonadal dysgenesis is defined by an absence of testis determination. Subjects have female external genitalia and come to clinical attention because of delayed puberty. Individuals with 46,XY partial gonadal dysgenesis usually present in the newborn period for the valuation of ambiguous genitalia. Gonadal histology always shows an abnormality of seminiferous tubule formation. A diagnosis of 46,XY true hermaphroditism is made if the gonads contain well-formed testicular and ovarian elements. Despite the pivotal role of the SRY gene in testis development, mutations of SRY are unusual in subjects with a 46,XY karyotype and abnormal gonadal development. 46,XX maleness is defined by testis determination in an individual with a 46,XX karyotype. Most affected individuals have a phenotype similar to that of Klinefelter syndrome. In contrast, subjects with 46,XX true hermaphroditism usually present with ambiguous genitalia. The majority of subjects with 46,XX maleness have Y sequences including SRY in genomic DNA. However, only rare subjects with 46,XX true hermaphroditism have translocated sequences encoding SRY. Mosaicism and chimaerism involving the Y chromosome can also be associated with abnormal gonadal development. However, the vast majority of subjects with 45,X/46,XY mosaicism have normal testes and normal male external genitalia.

  3. [The relativity of abnormity].

    PubMed

    Nilson, Annika

    2006-01-01

    In the late 19th century and in the beginning of the 20th century, mental diseases and abnormal behavior was considered to be a great danger to culture and society. "Degeneration" was the buzzword of the time, used and misused by artists and scientists alike. At the same time, some scientists saw abnormity as the key to unlock the mysteries of the ordinary mind. Naturalistic curiosity left Pandoras box open when religion declined in Darwins wake. Two swedish scientists, the physician Bror Gadelius (1862-1938) and his friend the philosopher Axel Herrlin (1870-1937), inspired by the French psychologist Theodule Ribots (1839-1916) "psychology without a soul", denied all fixed demarcation lines between abnormity and normality. All humans are natures creatures ruled by physiological laws, not ruled by God or convention. Even ordinary morality was considered to be an utterly backward explanation and guideline for complex human behavior. Different forms of therapy, not various kinds of penalties for wicked and disturbing behavior, are the now the solution for lots of people, "normal" as well as "abnormal". Psychiatry is expanding.

  4. The erythrocyte sodium and potassium in patients treated with digoxin.

    PubMed Central

    Morgan, D B; Cumberbatch, M; Cohn, S; Scott, D; Gunasuntharam, T; Davidson, C; Chapman, C

    1980-01-01

    1 Four healthy persons and ten patients with heart failure were studied for 5 to 20 days after they started taking digoxin. The sodium content of their erythrocytes increased and there was an equimolar decrease in potassium content. 2 The increase in erythrocyte sodium for a given increase in plasma digoxin during this acute digitalization was less on average and varied more in the patients than in the healthy persons, that is the patients' erythrocytes were less responsive to digoxin. 3 The average erythrocyte sodium was greater in 183 patients who had been taking digoxin for at least 2 months than in 100 healthy persons not taking digoxin but there was no significant correlation between the plasma digoxin concentrations and erythrocyte sodium concentration in the patients. Indeed, there was no apparent change in the erythrocyte sodium in many of the patients taking digoxin. 4 If the erythrocyte sodium concentration is a reliable guide to the tissue effects of digoxin then the results suggest that there is a wide variation in the response to digoxin between patients both during acute digitalization and during chronic treatment with digoxin. PMID:7426274

  5. Simulation of the osmosis-based drug encapsulation in erythrocytes.

    PubMed

    Ge, Duobiao; Zou, Lili; Li, Chengpan; Liu, Sen; Li, Shibo; Sun, Sijie; Ding, Weiping

    2017-09-20

    Drug-loaded erythrocytes have been proposed for the treatment of disease. A common way to load drugs into erythrocytes is to apply osmotic shock. Currently, osmosis-based drug encapsulation is studied mainly experimentally, whereas a related theoretical model is still incomplete. In this study, a set of equations is developed to simulate the osmosis-based drug-encapsulation process. First, the modeling is validated with hemolysis rates and the drug-loaded quantities to be found in the literature. Then, the variation of the erythrocyte volume, formation of the pore on the erythrocyte membrane, and quantities of drug loaded into and hemoglobin released from erythrocytes are studied. Finally, an optimized operating condition for encapsulating drugs is proposed. The results show that the volume of erythrocytes exposed to hypotonic NaCl solution increases first and then abruptly decreases because of the pore formation; afterwards, it again increases and then decreases slowly. In the presence of the pore, the drug is loaded by diffusion, whereas the leak-induced convection goes against the loading. For an allowed 45% hemolysis rate, with a 10% hematocrit, the optimized NaCl concentration is 0.44%, the optimized time for sealing the loaded erythrocytes with hypertonic NaCl solution is at 6.5 s, and the quantity of albumin (drug) loaded is 4.5 mg/ml cells.

  6. Erythrocyte hemodynamics in stenotic microvessels: A numerical investigation

    NASA Astrophysics Data System (ADS)

    Wang, T.; Xing, Z. W.

    2013-10-01

    This paper presents a two-dimensional numerical investigation of deformation and motion of erythrocytes in stenotic microvessels using the immersed boundary-fictitious domain method. The erythrocytes were modeled as biconcave-shaped closed membranes filled with cytoplasm. We studied the biophysical characteristics of human erythrocytes traversing constricted microchannels with the narrowest cross-sectional diameter as small as 3 μm. The effects of essential parameters, namely, stenosis severity, shape of the erythrocytes, and erythrocyte membrane stiffness, were simulated and analyzed in this study. Moreover, simulations were performed to discuss conditions associated with the shape transitions of the cells along with the relative effects of radial position and initial orientation of erythrocytes, membrane stiffness, and plasma environments. The simulation results were compared with existing experiment findings whenever possible, and the physical insights obtained were discussed. The proposed model successfully simulated rheological behaviors of erythrocytes in microscale flow and thus is applicable to a large class of problems involving fluid flow with complex geometry and fluid-cell interactions. Our study would be helpful for further understanding of pathology of malaria and some other blood disorders.

  7. Erythrocyte hemodynamics in stenotic microvessels: A numerical investigation

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Xing, Zhongwen

    2014-03-01

    This paper presents a two-dimensional numerical investigation of deformation and motion of erythrocytes in stenotic microvessels using the immersed boundary-fictitious domain method. The erythrocytes were modeled as biconcave-shaped closed membranes filled with cytoplasm. We studied the biophysical characteristics of human erythrocytes traversing constricted microchannels with the narrowest cross-sectional diameter as small as 3 μm. The effects of essential parameters, namely, stenosis severity, shape of the erythrocytes, and erythrocyte membrane stiffness, were simulated and analyzed in this study. Moreover, simulations were performed to discuss conditions associated with the shape transitions of the cells along with the relative effects of radial position and initial orientation of erythrocytes, membrane stiffness, and plasma environments. The simulation results were compared with existing experiment findings whenever possible, and the physical insights obtained were discussed. The proposed model successfully simulated rheological behaviors of erythrocytes in microscale flow and thus is applicable to a large class of problems involving fluid flow with complex geometry and fluid-cell interactions. Our study would be helpful for further understanding of pathology of malaria and some other blood disorders.

  8. Erythrocyte hemodynamics in stenotic microvessels: a numerical investigation.

    PubMed

    Wang, T; Xing, Z W

    2013-10-01

    This paper presents a two-dimensional numerical investigation of deformation and motion of erythrocytes in stenotic microvessels using the immersed boundary-fictitious domain method. The erythrocytes were modeled as biconcave-shaped closed membranes filled with cytoplasm. We studied the biophysical characteristics of human erythrocytes traversing constricted microchannels with the narrowest cross-sectional diameter as small as 3 μm. The effects of essential parameters, namely, stenosis severity, shape of the erythrocytes, and erythrocyte membrane stiffness, were simulated and analyzed in this study. Moreover, simulations were performed to discuss conditions associated with the shape transitions of the cells along with the relative effects of radial position and initial orientation of erythrocytes, membrane stiffness, and plasma environments. The simulation results were compared with existing experiment findings whenever possible, and the physical insights obtained were discussed. The proposed model successfully simulated rheological behaviors of erythrocytes in microscale flow and thus is applicable to a large class of problems involving fluid flow with complex geometry and fluid-cell interactions. Our study would be helpful for further understanding of pathology of malaria and some other blood disorders.

  9. In Vitro Protective Effect of Phikud Navakot Extraction on Erythrocyte

    PubMed Central

    2016-01-01

    Phikud Navakot (PN), Thai herbal remedy in National List of Essential Medicines, has been claimed to reduce many cardiovascular symptoms especially dizziness and fainting. Apart from blood supply, erythrocyte morphology, in both shape and size, is one of the main consideration factors in cardiovascular diseases and may be affected by vascular oxidative stress. However, little is known about antioxidative property of PN on erythrocyte to preserve red blood cell integrity. In this study, 1,000 μM hydrogen peroxide-induced oxidative stress was conducted on sheep erythrocyte. Three doses of PN (1, 0.5, and 0.25 mg/mL) and 10 μM of ascorbic acid were compared. The released hemoglobin absorbance was measured to demonstrate hemolysis. Electron microscopic and immunohistochemical studies were also performed to characterize dysmorphic erythrocyte and osmotic ability in relation to aquaporin- (AQP-) 1 expression, respectively. The results revealed that all doses of PN and ascorbic acid decreased the severity of dysmorphic erythrocyte, particularly echinocyte, acanthocyte, knizocyte, codocyte, clumping, and other malformations. However, the most effective was 0.5 mg/mL PN dosage. In addition, hydrostatic pressure may be increased in dysmorphic erythrocyte in association with AQP-1 upregulation. Our results demonstrated that PN composes antioxidative effect to maintain the integrity and osmotic ability on sheep erythrocyte. PMID:28003847

  10. Conjugated bilirubin triggers anemia by inducing erythrocyte death.

    PubMed

    Lang, Elisabeth; Gatidis, Sergios; Freise, Noemi F; Bock, Hans; Kubitz, Ralf; Lauermann, Christian; Orth, Hans Martin; Klindt, Caroline; Schuier, Maximilian; Keitel, Verena; Reich, Maria; Liu, Guilai; Schmidt, Sebastian; Xu, Haifeng C; Qadri, Syed M; Herebian, Diran; Pandyra, Aleksandra A; Mayatepek, Ertan; Gulbins, Erich; Lang, Florian; Häussinger, Dieter; Lang, Karl S; Föller, Michael; Lang, Philipp A

    2015-01-01

    Hepatic failure is commonly associated with anemia, which may result from gastrointestinal bleeding, vitamin deficiency, or liver-damaging diseases, such as infection and alcohol intoxication. At least in theory, anemia during hepatic failure may result from accelerated clearance of circulating erythrocytes. Here we show that bile duct ligation (BDL) in mice leads to severe anemia despite increased reticulocyte numbers. Bilirubin stimulated suicidal death of human erythrocytes. Mechanistically, bilirubin triggered rapid Ca(2+) influx, sphingomyelinase activation, formation of ceramide, and subsequent translocation of phosphatidylserine to the erythrocyte surface. Consistent with our in vitro and in vivo findings, incubation of erythrocytes in serum from patients with liver disease induced suicidal death of erythrocytes in relation to their plasma bilirubin concentration. Consistently, patients with hyperbilirubinemia had significantly lower erythrocyte and significantly higher reticulocyte counts compared to patients with low bilirubin levels. Bilirubin triggers suicidal erythrocyte death, thus contributing to anemia during liver disease. © 2014 The Authors. Hepatology published by Wiley Periodicals, Inc., on behalf of the American Association for the Study of Liver Diseases.

  11. Interaction between plant polyphenols and the erythrocyte membrane.

    PubMed

    Cyboran, Sylwia; Oszmiański, Jan; Kleszczyńska, Halina

    2012-03-01

    The purpose of these studies was to determine the effect of polyphenols contained in extracts from apple, strawberry and blackcurrant on the properties of the erythrocyte membrane, treated as a model of the biological membrane. To this end, the effect of the substances used on hemolysis, osmotic resistance and shape of erythrocytes, and on packing order in the hydrophilic region of the erythrocyte membrane was studied. The investigation was performed with spectrophotometric and fluorimetric methods, and using the optical microscope. The hemolytic studies have shown that the extracts do not induce hemolysis at the concentrations used. The results obtained from the spectrophotometric measurements of osmotic resistance of erythrocytes showed that the polyphenols contained in the extracts cause an increase in the resistance, rendering them less prone to hemolysis in hypotonic solutions of sodium chloride. The fluorimetric studies indicate that the used substances cause a decrease of packing order in the hydrophilic area of membrane lipids. The observations of erythrocyte shapes in a biological optical microscope have shown that, as a result of the substances' action, the erythrocytes become mostly echinocytes, which means that the polyphenols of the extracts localize in the outer lipid monolayer of the erythrocyte membrane. The results obtained indicate that, in the concentration range used, the plant extracts are incorporated into the hydrophilic area of the membrane, modifying its properties.

  12. Erythrocyte survival studies in a rat myelogenous leukemia

    SciTech Connect

    Derelanko, M.J.; Meagher, R.C.; Lobue, J.; Khouri, J.A.; Gordon, A.S.

    1982-11-01

    To determine the extent intrinsic erythrocyte defects and/or extrinsic factors were involved in anemia of rats bearing Shay chloroleukemia (SCL), survival of /sup 3/H-DFP labeled erythrocytes was studied in leukemic and nonleukemic hosts. Red blood cells labeled before induction of leukemia, were rapidly lost from the peripheral circulation of SCL rats in terminal stages of disease. However, labeled erythrocytes from terminal SCL animals displayed normal lifespans when transfused into nonleukemic controls. Thus the anemia of this leukemia probably resulted from extrinsic factors associated with the leukemic process. Hemorrhage appeared to be primarily responsible for the anemia of this disease.

  13. Mature Erythrocytes of Iguana iguana (Squamata, Iguanidae) Possess Functional Mitochondria.

    PubMed

    Di Giacomo, Giuseppina; Campello, Silvia; Corrado, Mauro; Di Giambattista, Livia; Cirotti, Claudia; Filomeni, Giuseppe; Gentile, Gabriele

    2015-01-01

    Electron microscopy analyses of Iguana iguana blood preparations revealed the presence of mitochondria within erythrocytes with well-structured cristae. Fluorescence microscopy analyses upon incubation with phalloidin-FITC, Hoechst 33342 and mitochondrial transmembrane potential (Δψm)-sensitive probe MitoTracker Red indicated that mitochondria i) widely occur in erythrocytes, ii) are polarized, and iii) seem to be preferentially confined at a "perinuclear" region, as confirmed by electron microscopy. The analysis of NADH-dependent oxygen consumption showed that red blood cells retain the capability to consume oxygen, thereby providing compelling evidence that mitochondria of Iguana erythrocytes are functional and capable to perform oxidative phosphorylation.

  14. Mature Erythrocytes of Iguana iguana (Squamata, Iguanidae) Possess Functional Mitochondria

    PubMed Central

    Di Giacomo, Giuseppina; Campello, Silvia; Corrado, Mauro; Di Giambattista, Livia; Cirotti, Claudia; Filomeni, Giuseppe; Gentile, Gabriele

    2015-01-01

    Electron microscopy analyses of Iguana iguana blood preparations revealed the presence of mitochondria within erythrocytes with well-structured cristae. Fluorescence microscopy analyses upon incubation with phalloidin-FITC, Hoechst 33342 and mitochondrial transmembrane potential (Δψm)-sensitive probe MitoTracker Red indicated that mitochondria i) widely occur in erythrocytes, ii) are polarized, and iii) seem to be preferentially confined at a "perinuclear" region, as confirmed by electron microscopy. The analysis of NADH-dependent oxygen consumption showed that red blood cells retain the capability to consume oxygen, thereby providing compelling evidence that mitochondria of Iguana erythrocytes are functional and capable to perform oxidative phosphorylation. PMID:26367118

  15. Attachment of killed Mycoplasma gallisepticum cells and membranes to erythrocytes

    SciTech Connect

    Banai, M.; Kahane, I.; Feldner, J.; Razin, S.

    1981-11-01

    To correlate viability with attachment capacity, Mycoplasma gallisepticum cells harvested at different growth phases and treated by various agents were tested for their capacity to attach to human erythrocytes. The results show that viability per se is not essential for M. gallisepticum attachment to erythrocytes, as cells killed by ultraviolet irradiation and membranes isolated by lysing M. gallisepticum cells by various means retained attachment capacity. However, treatment of the mycoplasmas by protein-denaturing agents, such as heart, glutaraldehyde, or prolonged exposure to low pH, drastically affected or even abolished attachment, supporting the protein nature of the mycoplasma membrane components responsible for specific binding to the sialoglycoprotein receptors on the erythrocytes.

  16. [Erythrocyte alloimmunization in pregnant women, clinical importance and laboratory diagnostics].

    PubMed

    Holusková, I; Lubušký, M; Studničková, M; Procházka, M

    2013-01-01

    The aim of this review is to give comprehensive summary of erythrocyte alloimunization of pregnant women, laboratory dignostics and clinical importance. Review. University Hospital Olomouc, Transfusion Department, Department of Obstetrics and Gynecology. Based on literature analysis using database search engines PubMed, Google Scholar, Ovid in field of erythrocyte antibodies, laboratory diagnostics and clinical importance up-to-date knowledge. Erythrocyte alloimunization anti-D antibodies decreases in connection with the introduction of immunoprofylaxis. Immunization of non RhD antibodies with impossibility using of immunoprofylaxis remains still clinical problem.

  17. Forssman-like activity of different teleost and anuran erythrocytes

    PubMed Central

    Chuba, J. V.; Kuhns, W. J.; Nigrelli, R. F.

    1971-01-01

    The comparative agglutination of sheep, teleost and anuran erythrocytes with selected human sera was studied before and after absorption with boiled guinea-pig kidney antigen. Among frogs of the Rana genus, only bullfrog (R. catesbiana) erythrocytes displayed Forssman-like activity. The previously unstudied erythrocytes of several species of teleosts also displayed Forssman-like activity. The concept is advanced that haptenic heteroraccharides with varying degrees of structural similarity and `blood group' activity are ubiquitously distributed among the cell-membrane receptors of phylogenetically diverse species of animals. PMID:5553070

  18. Human erythrocyte antigens. Regulation of expression of a novel erythrocyte surface antigen by the inhibitor Lutheran In(Lu) gene.

    PubMed Central

    Telen, M J; Eisenbarth, G S; Haynes, B F

    1983-01-01

    Our study describes a novel human erythrocyte protein antigen, the expression of which is regulated by the rare Lutheran inhibitor In(Lu) gene. We have produced a monoclonal antibody (A3D8) that bound strongly to erythrocytes from subjects with Lutheran phenotypes Lu(a+b+), Lu(a+b-), and Lu(a-b+) but bound negligibly to erythrocytes from subjects with the dominant form of Lu(a-b-) phenotype, reflecting inheritance of the In(Lu) gene. Importantly, erythrocytes from an individual with the recessive form of Lu(a-b-) phenotype (i.e., absence of the In(Lu) gene and absence of genes encoding for Lutheran antigens) showed reactivity with A3D8 antibody comparable to that seen with Lu(a+) or Lu(b+) erythrocytes. A3D8 antigen activity was also found on all leukocytes and in serum and plasma; this activity also appeared to be regulated by the In(Lu) gene in serum, plasma, and on a subset of leukocytes. Thus, we have identified a human erythrocyte protein whose expression is modified by the In(Lu) gene. This knowledge that such an antigen exists on erythrocytes and in normal plasma should allow further studies into the molecular genetics of the In(Lu) gene and into the functional and structural significance of the A3D8 antigen. PMID:6863545

  19. Effect of donor age on the susceptibility of erythrocytes and erythrocyte membranes to cumene hydroperoxide-induced oxidative stress.

    PubMed

    Onaran, I; Yalçin, A S; Sultuybek, G

    1997-11-01

    A comparative study on erythrocytes and erythrocyte membranes of healthy elderly and young adults was carried out to understand how the antioxidant defense capacity is effected by aging. The levels of endogenous malondialdehyde and Ca(2+)-ATPase activity were taken as indices of oxidative damage. In addition, chemiluminescence measurements were performed on intact erythrocytes. The susceptibility of these parameters to in vitro cumene hydroperoxide, under low oxidant level that does not induce hemolysis, was also taken as an age-related indicator of the endogenous peroxidative potential of the erythrocytes. Our data showed that the content of malondialdehyde and Ca(2+)-ATPase activity did not change with age. Furthermore, the susceptibility of intact erythrocytes to oxidative stress did not change in the elderly group. However, under the same conditions erythrocyte membranes were more susceptible to oxidative damage in the elderly than young adults. Our results also showed that antioxidant defenses were overwhelmed in intact erythrocytes of the elderly at high concentrations of cumene hydroperoxide.

  20. Plasma and erythrocyte membrane phospholipids and fatty acids in Italian general population and hemodialysis patients.

    PubMed

    Dessì, Mariarita; Noce, Annalisa; Bertucci, Pierfrancesco; Noce, Gianluca; Rizza, Stefano; De Stefano, Alessandro; Manca di Villahermosa, Simone; Bernardini, Sergio; De Lorenzo, Antonino; Di Daniele, Nicola

    2014-03-21

    Dyslipidemia and abnormal phospholipid metabolism are frequent in uremic patients and increase their risk of cardiovascular disease (CVD): ω-3 polyunsaturated fatty acids (PUFAs) may reduce this risk in the general population. In this study we compared the plasma and erythrocyte cell membrane composition of PUFAs in a group of Caucasian hemodialysis (HD) patients and in a control group of healthy subjects and evaluated the erythrocyte/cell membrane fatty acid ratio as a marker of the dietary intake of phospholipids. The relationship between ω-3 and ω-6 fatty acids and the possible differences in PUFAs concentrations were also investigated. After obtaining a fully informed consent, a total of ninety-nine HD patients and 160 non uremic control subjects from "Tor Vergata" University Hospital were enrolled into the study. None of them took antioxidant drugs or dietary supplements for at least 90 days prior to the observation. Blood samples were analysed by gas-chromatographic coupled to a mass spectrometric detector.The daily intake of total calories, proteins, lipids and carbohydrates is significantly lower in HD patients than in controls (p < 0.001). Most plasma and erythrocyte PUFA were also reduced significantly in HD patients (p < 0.001). Our results suggest that many classes of PUFAs are lacking in HD patients, due to the removal of nutrients during the dialysis and to persistent malnutrition. A dietary treatment addressed to increase plasma ω-3 PUFAs and to optimize ω-6/ω-3 ratio may exert a protective action and reduce the risk of CVD in HD patient.

  1. Liver abnormalities in pregnancy.

    PubMed

    Than, Nwe Ni; Neuberger, James

    2013-08-01

    Abnormalities of liver function (notably rise in alkaline phosphatase and fall in serum albumin) are common in normal pregnancy, whereas rise in serum bilirubin and aminotransferase suggest either exacerbation of underlying pre-existing liver disease, liver disease related to pregnancy or liver disease unrelated to pregnancy. Pregnant women appear to have a worse outcome when infected with Hepatitis E virus. Liver diseases associated with pregnancy include abnormalities associated hyperemesis gravidarum, acute fatty liver disease, pre-eclampsia, cholestasis of pregnancy and HELLP syndrome. Prompt investigation and diagnosis is important in ensuring a successful maternal and foetal outcome. In general, prompt delivery is the treatment of choice for acute fatty liver, pre-eclampsia and HELLP syndrome and ursodeoxycholic acid is used for cholestasis of pregnancy although it is not licenced for this indication.

  2. Heritable bovine fetal abnormalities.

    PubMed

    Whitlock, B K; Kaiser, L; Maxwell, H S

    2008-08-01

    The etiologies for congenital bovine fetal anomalies can be divided into heritable, toxic, nutritional, and infectious categories. Although uncommon in most herds, inherited congenital anomalies are probably present in all breeds of cattle and propagated as a result of specific trait selection that inadvertently results in propagation of the defect. In some herds, the occurrence of inherited anomalies has become frequent, and economically important. Anomalous traits can affect animals in a range of ways, some being lethal or requiring euthanasia on humane grounds, others altering structure, function, or performance of affected animals. Veterinary practitioners should be aware of the potential for inherited defects, and be prepared to investigate and report animals exhibiting abnormal characteristics. This review will discuss the morphologic characteristics, mode of inheritance, breeding lines affected, and the availability of genetic testing for selected heritable bovine fetal abnormalities.

  3. Morphological abnormalities in elasmobranchs.

    PubMed

    Moore, A B M

    2015-08-01

    A total of 10 abnormal free-swimming (i.e., post-birth) elasmobranchs are reported from The (Persian-Arabian) Gulf, encompassing five species and including deformed heads, snouts, caudal fins and claspers. The complete absence of pelvic fins in a milk shark Rhizoprionodon acutus may be the first record in any elasmobranch. Possible causes, including the extreme environmental conditions and the high level of anthropogenic pollution particular to The Gulf, are briefly discussed.

  4. Abnormality, rationality, and sanity.

    PubMed

    Hertwig, Ralph; Volz, Kirsten G

    2013-11-01

    A growing body of studies suggests that neurological and mental abnormalities foster conformity to norms of rationality that are widely endorsed in economics and psychology, whereas normality stands in the way of rationality thus defined. Here, we outline the main findings of these studies, discuss their implications for experimental design, and consider how 'sane' some benchmarks of rationality really are. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Anatomical Abnormalities in Autism?

    PubMed

    Haar, Shlomi; Berman, Sigal; Behrmann, Marlene; Dinstein, Ilan

    2016-04-01

    Substantial controversy exists regarding the presence and significance of anatomical abnormalities in autism spectrum disorders (ASD). The release of the Autism Brain Imaging Data Exchange (∼1000 participants, age 6-65 years) offers an unprecedented opportunity to conduct large-scale comparisons of anatomical MRI scans across groups and to resolve many of the outstanding questions. Comprehensive univariate analyses using volumetric, thickness, and surface area measures of over 180 anatomically defined brain areas, revealed significantly larger ventricular volumes, smaller corpus callosum volume (central segment only), and several cortical areas with increased thickness in the ASD group. Previously reported anatomical abnormalities in ASD including larger intracranial volumes, smaller cerebellar volumes, and larger amygdala volumes were not substantiated by the current study. In addition, multivariate classification analyses yielded modest decoding accuracies of individuals' group identity (<60%), suggesting that the examined anatomical measures are of limited diagnostic utility for ASD. While anatomical abnormalities may be present in distinct subgroups of ASD individuals, the current findings show that many previously reported anatomical measures are likely to be of low clinical and scientific significance for understanding ASD neuropathology as a whole in individuals 6-35 years old.

  6. Subcutaneous administration of carrier erythrocytes: slow release of entrapped agent

    SciTech Connect

    DeLoach, J.R.; Corrier, D.E.

    1988-08-01

    Carrier erythrocytes administered subcutaneously in mice release encapsulated molecules at the injection site and through cells that escape the injection site. One day postinjection, the efflux of encapsulated (/sup 14/C)sucrose, (/sup 3/H)inulin, and /sup 51/Cr-hemoglobin from the injection site was 45, 55, and 65%, respectively. Intact carrier erythrocytes escaped the injection site and entered the blood circulation carrying with them the encapsulated molecules. Most of the encapsulated (/sup 3/H)inulin that reached whole blood circulated within erythrocytes. Small but measurable numbers of encapsulated molecules were trapped within lymph nodes. Subcutaneous injection of carrier erythrocytes may allow for limited extravascular tissue targeting of drugs.

  7. Immune Evasion Strategies of Pre-Erythrocytic Malaria Parasites

    PubMed Central

    Zheng, Hong; Tan, Zhangping

    2014-01-01

    Malaria is a mosquito-borne infectious disease of humans. It begins with a bite from an infected female Anopheles mosquito and leads to the development of the pre-erythrocytic and blood stages. Blood-stage infection is the exclusive cause of clinical symptoms of malaria. In contrast, the pre-erythrocytic stage is clinically asymptomatic and could be an excellent target for preventive therapies. Although the robust host immune responses limit the development of the liver stage, malaria parasites have also evolved strategies to suppress host defenses at the pre-erythrocytic stage. This paper reviews the immune evasion strategies of malaria parasites at the pre-erythrocytic stage, which could provide us with potential targets to design prophylactic strategies against malaria. PMID:24891764

  8. Cryo scanning electron microscopy of Plasmodium falciparum-infected erythrocytes.

    PubMed

    Hempel, Casper

    2017-07-01

    Plasmodium falciparum invades erythrocytes as an essential part of their life cycle. While living inside erythrocytes, the parasite remodels the cell's intracellular organization as well as its outer surface. Late trophozoite-stage parasites and schizonts introduce numerous small protrusions on the erythrocyte surface, called knobs. Current methods for studying these knobs include atomic force microscopy and electron microscopy. Standard electron microscopy methods rely on chemical fixation and dehydration modifying cell size. Here, a novel method is presented using rapid freezing and scanning electron microscopy under cryogenic conditions allowing for high resolution and magnification of erythrocytes. This novel technique can be used for precise estimates of knob density and for studies on cytoadhesion. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  9. Preclinical trials of human erythrocyte superoxide dismutase injection.

    PubMed

    Zhou, C; Fang, Y; Jiang, D; Yang, S; Lu, X; Sui, J; Li, P; Ren, J

    2000-07-01

    To assess the quality of human erythrocyte superoxide dismutase (SOD) injection reaching the official standard for its clinical uses. Human erythrocyte SOD injection prepared by McCord-Fridovich's method without column chromatography but with some modifications was used in preclinical trials, to observe the general pharmacology and pharmacodynamics of the product. The quality of human erythrocyte SOD injection conformed to the official standard of a biological product, which was found to be non-toxic and did not have any effects on the central and autonomic nervous systems as well as cardiovascular and respiratory systems. The efficacy of anti-inflammation and promotion of immuno-regulation especially on carrageenan and adjuvant-induced polyarthritis were shown in animals. Human erythrocyte SOD injection is appropriate for prophylactic and therapeutic uses in clinical trials.

  10. Erythrocyte and leukocyte: two partners in bacteria killing.

    PubMed

    Minasyan, Hayk A

    2014-01-01

    Leukocytes can't perform phagocytosis in blood stream. Blood velocity prevents phagocytosis because there is no time for leukocyte to recognize and catch bacteria. Bloodstream clearance from pathogens is performed by erythrocytes. During motion in bloodstream erythrocytes become charged by triboelectric effect. This charge attracts bacteria and fixes them on the surface of erythrocyte, then bacteria are engulfed and killed by hemoglobin oxygen. In bloodstream, leukocyte thin-wrinkled elastic membrane can't be charged by triboelectric effect and so leukocyte can't catch bacteria by means of electrostatic attraction force. Leukocytes engulf and kill bacteria out of blood circulatory system: in tissues, lymph nodes, slow velocity lymph, etc. Erythrocyte and leukocyte are bactericidal partners: the first kills bacteria in bloodstream, the second kills them locally, out of blood circulation.

  11. Purification and characterization of acylphosphatase erythrocyte isoenzyme from turkey muscle.

    PubMed

    Stefani, M; Degl'Innocenti, D; Berti, A; Cappugi, G; Manao, G; Camici, G; Ramponi, G

    1990-10-01

    An acylphosphatase has been purified from turkey muscle in a rapid and high-yield way. The enzyme has been characterized for structural, kinetic, and immunological parameters, as well as with regard to its stability to thermal, urea, and phenylglyoxal inactivation. The enzyme is quite different from the turkey muscular isoenzyme, and shows structural and kinetic properties that are very similar to those previously reported for the erythrocyte isoenzyme from human erythrocytes and from chicken muscle. From the data reported it appears that this enzyme corresponds to the acylphosphatase erythrocyte isoenzyme. Unlike the erythrocyte isoenzymes studied so far, this enzyme is able to cross-react with antibodies that are raised against the muscular isoenzyme.

  12. Exposure to ozone and erythrocyte osmotic resistance in the rat

    SciTech Connect

    Ikemi, Y.; Ohmori, K.; Ito, T.; Osaka, F.; Matuura, Y. )

    1992-10-01

    In order to learn the biological effect of photochemical oxidants on living bodies, we exposed newborn and adult rats, of both sexes, to ozone at a concentration of 0.25 ppm, which can be encountered in an urban environment, and then measured the osmotic resistance of their erythrocytes. The results of experiments using newborn rats indicated a positive increase in the osmotic resistance of erythrocytes in whole blood following ozone exposure for 4 weeks. An increase in the osmotic resistance of erythrocytes in the top part obtained by centrifugation was observed following ozone exposure for 12 weeks. This tendency was especially evident among male rats. On the other hand, no increase in the osmotic resistance of erythrocytes was recognized in the adult animals which had been exposed to the same concentration of ozone for 18 months.

  13. Permeability of human erythrocyte membrane vesicles to alkali cations.

    PubMed

    Sze, H; Solomon, A K

    1979-02-02

    The permeability of inside-out and right-side-out vesicles from erythrocyte membranes to inorganic cations was determined quantitatively. Using 86Rb as a K analog, we have measured the rate constant of 86Rb efflux from vesicles under equilibrium exchange conditions, using a dialysis procedure. The permeability coefficients of the vesicles to Rb are only about an order of magnitude greater than that of whole erythrocytes. Furthermore, we have measured many of the specialized transport systems known to exist in erythrocytes and have shown that glucose, sulfate, ATP-dependent Ca and ATP-dependent Na transport activities are retained by the vesicle membranes. These results suggest that inside-out and right-side-out vesicles can be used effectively to study transport properties of erythrocyte membranes.

  14. Falciparum Malaria-Infected Erythrocytes Specifically Bind to Cultured Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Udeinya, Iroka J.; Schmidt, John A.; Aikawa, Masamichi; Miller, Louis H.; Green, Ira

    1981-07-01

    Erythrocytes infected with the late stages of the human malarial parasite Plasmodium falciparum became attached to a subpopulation of cultured human endothelial cells by knoblike protrusions on the surface of the infected erythrocytes. Infected erythrocytes did not bind to cultured fibroblasts; uninfected erythrocytes did not bind to either endothelial cells or fibroblasts. The results suggest a specific receptor-ligand interaction between endothelial cells and a component, or components, in the knobs of the infected erythrocytes.

  15. Effects of aluminum chloride on some trace elements and erythrocyte osmotic fragility in rats.

    PubMed

    Oztürk, Bahar; Ozdemir, Semra

    2015-12-01

    Aluminum (Al) is a nonessential, toxic element to which humans are constantly exposed as a result of an increase in industrialization and improving technology practices. The aim of the study was to investigate the effects of different durations and doses of Al exposure on serum and tissue element levels and erythrocyte osmotic fragility in rats. A total of 40 male Wistar Albino rats were divided into five groups: control, group I (3 weeks, 8 mg/kg), group II (6 weeks, 8 mg/kg), group III (3 weeks, 16 mg/kg), and group IV (6 weeks, 16 mg/kg). Al chloride (AlCl3) was injected intraperitoneally (i.p.) five times a week. At the end of the experimental period, levels of Al, iron (Fe), copper (Cu), and zinc (Zn) in serum, liver, and kidney tissues were measured using inductively coupled plasma optical emission spectrometry. Osmotic fragility was determined using a spectrophotometer. The results of the experiment indicate that Al induced a statistically significant increase in Al and Fe concentrations in liver and serum as well as in Cu in the kidney. The Fe concentration in serum and kidney tissues was significantly lower in all the groups. As a result of our study, it may be concluded that tissue Al accumulation may lead to an increase in osmotic fragility of erythrocytes and abnormal trace element levels. © The Author(s) 2013.

  16. Sympathetic nervous function and erythrocyte cation transport systems in normotensive individuals with family history of hypertension.

    PubMed

    Saito, T; Koshibu, Y; Kai, N; Yamamoto, K; Iwata, J; Sakaguchi, A; Tonooka, M; Inagaki, Y

    1989-01-01

    To investigate the influence of heredity to the sympathetic nervous function and the cell membrane cation transport systems, we studied the blood pressure and plasma catecholamine response to supine exercise testings by bicycle ergometer, the pressure response to noradrenaline infusion tests and the heart rate response to isoproterenol infusion tests in 88 healthy Japanese sedentary normotensive men with and without a family history of essential hypertension [FHH(+) and FHH(-)]. Several erythrocyte monovalent cation transport parameters were also measured in 74 of these individuals. In the results, (1) the systolic blood pressure response to exercise testings and noradrenaline infusion tests were larger in FHH(+) than FHH(-): (2) there was no difference between FHH(+) and FHH(-) in the heart rate response to isoproterenol infusion tests: (3) there was no significant difference between FHH(+) and FHH(-) in the increased plasma catecholamine levels to exercise testings: (4) the intraerythrocytic sodium content was significantly higher in FHH(+) than in FHH(-): and (5) several erythrocyte monovalent cation transport systems (Li-Na countertransport, Na-K cotransport and Na-K pump activity) were clearly accelerated in FHH(+). We concluded that in spite of normotension there were abnormalities of sympathetic nervous function, intracellular sodium content and several cell membrane cation transport systems in individuals with a family history of essential hypertension.

  17. Proteome analysis of the triton-insoluble erythrocyte membrane skeleton.

    PubMed

    Basu, Avik; Harper, Sandra; Pesciotta, Esther N; Speicher, Kaye D; Chakrabarti, Abhijit; Speicher, David W

    2015-10-14

    Erythrocyte shape and membrane integrity is imparted by the membrane skeleton, which can be isolated as a Triton X-100 insoluble structure that retains the biconcave shape of intact erythrocytes, indicating isolation of essentially intact membrane skeletons. These erythrocyte "Triton Skeletons" have been studied morphologically and biochemically, but unbiased proteome analysis of this substructure of the membrane has not been reported. In this study, different extraction buffers and in-depth proteome analyses were used to more fully define the protein composition of this functionally critical macromolecular complex. As expected, the major, well-characterized membrane skeleton proteins and their associated membrane anchors were recovered in good yield. But surprisingly, a substantial number of additional proteins that are not considered in erythrocyte membrane skeleton models were recovered in high yields, including myosin-9, lipid raft proteins (stomatin, flotillin1 and 2), multiple chaperone proteins (HSPs, protein disulfide isomerase and calnexin), and several other proteins. These results show that the membrane skeleton is substantially more complex than previous biochemical studies indicated, and it apparently has localized regions with unique protein compositions and functions. This comprehensive catalog of the membrane skeleton should lead to new insights into erythrocyte membrane biology and pathogenic mutations that perturb membrane stability. Biological significance Current models of erythrocyte membranes describe fairly simple homogenous structures that are incomplete. Proteome analysis of the erythrocyte membrane skeleton shows that it is quite complex and includes a substantial number of proteins whose roles and locations in the membrane are not well defined. Further elucidation of interactions involving these proteins and definition of microdomains in the membrane that contain these proteins should yield novel insights into how the membrane skeleton

  18. Low toxicity method of inhibiting sickling of sickle erythrocytes

    DOEpatents

    Packer, Lester; Bymun, Edwin N.

    1977-01-01

    A low toxicity method of inhibiting sickling of sickle erythrocytes which comprises intermixing the erythrocytes with an effective anti-sickling amount of a water-soluble imidoester of the formula RC(=NH)OR' wherein R is an alkyl group of 1 - 8 carbon atoms, particularly 1 - 4 carbon atoms, and R' is an alkyl group of 1 - 4 carbon atoms, specifically methyl or ethyl acetimidate.

  19. Kinetics of extracellular ATP in mastoparan 7-activated human erythrocytes

    PubMed Central

    Denis, María Florencia Leal; Incicco, J. Jeremías; Espelt, María Victoria; Verstraeten, Sandra V.; Pignataro, Omar P.; Lazarowski, Eduardo R.; Schwarzbaum, Pablo J.

    2014-01-01

    SUMMARY Background The peptide mastoparan 7 (MST7) stimulated ATP release in human erythrocytes. We explored intra- and extracellular processes governing the time-dependent accumulation of extracellular ATP (i.e., ATPe kinetics). Methods Human erythrocytes were treated with MST7 in the presence or absence of two blockers of pannexin 1. ATPe concentration was monitored by luciferin-luciferase based real-time luminometry. Results Exposure of human erythrocytes to MST7 led to an acute increase in [ATPe], followed by a slower increase phase. ATPe kinetics reflected a strong activation of ATP efflux and a low rate of ATPe hydrolysis by ectoATPase activity. Enhancement of [ATPe] by MST7 required adhesion of erythrocytes to poly-D-lysin-coated coverslips, and correlated with a 31% increase of cAMP and 10% cell swelling. However, when MST7 was dissolved in a hyperosmotic medium to block cell swelling, ATPe accumulation was inhibited by 49%. Erythrocytes pre-exposure to 10 μM of either carbenoxolone or probenecid, two blockers of pannexin 1, exhibited a partial reduction of ATP efflux. Erythrocytes from pannexin 1 knockout mice exhibited similar ATPe kinetics as those of wild type mice erythrocytes exposed to pannexin 1 blockers. Conclusions MST7 induced release of ATP required either cell adhesion or strong activation of cAMP synthesis. Part of this release required cell swelling. Kinetic analysis and a data driven model suggested that ATP efflux is mediated by two ATP conduits displaying different kinetics, with one conduit being fully blocked by pannexin 1 blockers. General Significance Kinetic analysis of extracellular ATP accumulation from human erythrocytes and potential effects on microcirculation. PMID:23742824

  20. [Comparative estimation of morphofunction characteristics alive and fixed erythrocytes].

    PubMed

    Skorkina, M Iu; Fedorova, M Z; Cherniavskikh, S D; Zabiniakov, N A; Sladkova, E A

    2011-01-01

    The method of power spectroscopy carries out the quantitative analysis of elastic properties of alive cells. It has been established that the highest indicators of elasticity nuclear (amphibious) and denuclearized (mammals) alive erythrocytes are registered in epi- and perinuclear space. When fixing with methanol and drying of cells the greatest values of the elastic modulus are displaced to the periphery of the cells. The revealed inversion of elasticity properties of erythrocytes must be considered when assessing the morphofunction characteristics of the fixed cells.

  1. Amodiaquine failure associated with erythrocytic glutathione in Plasmodium falciparum malaria

    PubMed Central

    Zuluaga, Lina; Pabón, Adriana; López, Carlos; Ochoa, Aleida; Blair, Silvia

    2007-01-01

    Objective To establish the relationship between production of glutathione and the therapeutic response to amodiaquine (AQ) monotherapy in Plasmodium falciparum non-complicated malaria patients. Methodology Therapeutic response to AQ was evaluated in 32 patients with falciparum malaria in two townships of Antioquia, Colombia, and followed-up for 28 days. For every patient, total glutathione and enzymatic activity (glutathione reductase, GR, and γ-glutamylcysteine synthetase, γ-GCS) were determined in parasitized erythrocytes, non-infected erythrocytes and free parasites, on the starting day (day zero, before ingestion of AQ) and on the day of failure (in case of occurrence). Results There was found an AQ failure of 31.25%. Independent of the therapeutic response, on the starting day and on the day of failure, lower total glutathione concentration and higher GR activities in parasitized erythrocytes were found, compared with non-infected erythrocytes (p < 0.003). In addition, only on the day of failure, γ-GCS activity of parasitized erythrocytes was higher, compared with that of healthy erythrocytes (p = 0.01). Parasitized and non-parasitized erythrocytes in therapeutic failure patients (TF) had higher total glutathione on the starting day compared with those of adequate clinical response (ACR) (p < 0.02). Parasitized erythrocytes of TF patients showed lower total glutathione on the failure day, compared with starting day (p = 0.017). No differences was seen in the GR and γ-GCS activities by compartment, neither between the two therapeutic response groups nor between the two treatment days. Conclusion This study is a first approach to explaining P. falciparum therapeutic failure in humans through differences in glutathione metabolism in TF and ACR patients. These results suggest a role for glutathione in the therapeutic failure to antimalarials. PMID:17451604

  2. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  3. [Molecular abnormalities in lymphomas].

    PubMed

    Delsol, G

    2010-11-01

    Numerous molecular abnormalities have been described in lymphomas. They are of diagnostic and prognostic value and are taken into account for the WHO classification of these tumors. They also shed some light on the underlying molecular mechanisms involved in lymphomas. Overall, four types of molecular abnormalities are involved: mutations, translocations, amplifications and deletions of tumor suppressor genes. Several techniques are available to detect these molecular anomalies: conventional cytogenetic analysis, multicolor FISH, CGH array or gene expression profiling using DNA microarrays. In some lymphomas, genetic abnormalities are responsible for the expression of an abnormal protein (e.g. tyrosine-kinase, transcription factor) detectable by immunohistochemistry. In the present review, molecular abnormalities observed in the most frequent B, T or NK cell lymphomas are discussed. In the broad spectrum of diffuse large B-cell lymphomas microarray analysis shows mostly two subgroups of tumors, one with gene expression signature corresponding to germinal center B-cell-like (GCB: CD10+, BCL6 [B-Cell Lymphoma 6]+, centerine+, MUM1-) and a subgroup expressing an activated B-cell-like signature (ABC: CD10-, BCL6-, centerine-, MUM1+). Among other B-cell lymphomas with well characterized molecular abnormalies are follicular lymphoma (BCL2 deregulation), MALT lymphoma (Mucosa Associated Lymphoid Tissue) [API2-MALT1 (mucosa-associated-lymphoid-tissue-lymphoma-translocation-gene1) fusion protein or deregulation BCL10, MALT1, FOXP1. MALT1 transcription factors], mantle cell lymphoma (cycline D1 [CCND1] overexpression) and Burkitt lymphoma (c-Myc expression). Except for ALK (anaplastic lymphoma kinase)-positive anaplastic large cell lymphoma, well characterized molecular anomalies are rare in lymphomas developed from T or NK cells. Peripheral T cell lymphomas not otherwise specified are a heterogeneous group of tumors with frequent but not recurrent molecular abnormalities

  4. Streptococcus pneumoniae Invades Erythrocytes and Utilizes Them to Evade Human Innate Immunity

    PubMed Central

    Yamaguchi, Masaya; Terao, Yutaka; Mori-Yamaguchi, Yuka; Domon, Hisanori; Sakaue, Yuuki; Yagi, Tetsuya; Nishino, Kunihiko; Yamaguchi, Akihito; Nizet, Victor; Kawabata, Shigetada

    2013-01-01

    Streptococcus pneumoniae, a Gram-positive bacterium, is a major cause of invasive infection-related diseases such as pneumonia and sepsis. In blood, erythrocytes are considered to be an important factor for bacterial growth, as they contain abundant nutrients. However, the relationship between S. pneumoniae and erythrocytes remains unclear. We analyzed interactions between S. pneumoniae and erythrocytes, and found that iron ion present in human erythrocytes supported the growth of Staphylococcus aureus, another major Gram-positive sepsis pathogen, while it partially inhibited pneumococcal growth by generating free radicals. S. pneumoniae cells incubated with human erythrocytes or blood were subjected to scanning electron and confocal fluorescence microscopic analyses, which showed that the bacterial cells adhered to and invaded human erythrocytes. In addition, S. pneumoniae cells were found associated with human erythrocytes in cultures of blood from patients with an invasive pneumococcal infection. Erythrocyte invasion assays indicated that LPXTG motif-containing pneumococcal proteins, erythrocyte lipid rafts, and erythrocyte actin remodeling are all involved in the invasion mechanism. In a neutrophil killing assay, the viability of S. pneumoniae co-incubated with erythrocytes was higher than that without erythrocytes. Also, H2O2 killing of S. pneumoniae was nearly completely ineffective in the presence of erythrocytes. These results indicate that even when S. pneumoniae organisms are partially killed by iron ion-induced free radicals, they can still invade erythrocytes. Furthermore, in the presence of erythrocytes, S. pneumoniae can more effectively evade antibiotics, neutrophil phagocytosis, and H2O2 killing. PMID:24194877

  5. 3D visualization and quantitative analysis of human erythrocyte phagocytosis.

    PubMed

    Stachurska, Anna; Król, Teodora; Trybus, Wojciech; Szary, Karol; Fabijańska-Mitek, Jadwiga

    2016-11-01

    Since the erythrophagocytosis of opsonized erythrocytes is investigated mainly by calculating the phagocytic index using subjective light microscopy evaluation, we present methods for the quantitative and qualitative analysis of human cell erythrophagocytosis. Erythrocytes from two storage periods were used. Using Imaris software, we were able to create a three-dimensional model of erythrophagocytosis. The use of microscopy instead of cytometry revealed a significantly higher number of monocytes and erythrocytes that appeared active in phagocytosis. Spatial reconstruction allowed for detailed analysis of the process by precisely locating erythrocytes in phagocytes. Additionally, a technique of sequential image registration using Nis Elements software allowed for observation of the course of phagocytosis over a range of time intervals. This in vitro research may be helpful for understanding the cellular interactions between monocytes and erythrocytes. The cytometric method-being relatively rapid, sensitive, and specific-can serve as an alternative technique to microscopy in the quantitative analysis of erythrophagocytosis. This allows us to avoid counting the erythrocytes nonspecifically attached to monocytes and gives objective results. © 2016 International Federation for Cell Biology.

  6. The Mechanism of 5-Methyltetrahydrofolate Transport by Human Erythrocytes

    PubMed Central

    Branda, Richard F.; Anthony, Bruce K.; Jacob, Harry S.

    1978-01-01

    The mechanism involved in 5-methyltetrahydrofolate uptake by human cells is poorly understood. To more clearly elucidate this physiologically important process, transport of the vitamin was studied in human erythrocytes. 5-methyltetrahydrofolate uptake was found to increase with reticulocytosis, but measurable incorporation occurred in erythrocyte suspensions depleted of reticulocytes, leukocytes, and platelets, indicating uptake by mature erythrocytes. Incubation of erythrocytes with increasing concentrations of [14C]5-methyltetrahydrofolate resulted in increasing uptake but decreasing percentage incorporation, consistent with saturation of a carrier system. Both influx and efflux phases of uptake were temperature dependent, with almost no transport at 4°C. Uptake of [14C]5-methytetrahydrofolate was effectively inhibited by unlabeled 5-methyltetrahydrofolate, 5-formyltetrahydrofolate, and methotrexate, but not by pteroylglutamic acid. Prior incubation with 5-formyltetrahydrofolate increased uptake of [14C]5-methyltetrahydrofolate, and extracellular 5-formyltetrahydrofolate enhanced efflux of [14C]5-methyltetrahydrofolate. Nearly total depletion of ATP increased uptake of [14C]5-methyltetrahydrofolate, but efflux was unchanged. Column chromatography of membrane-free hemolysate after incubation with [14C]5-methyltetrahydrofolate showed 95% of radioactivity corresponded to marker radioisotope, and no other peak was noted. Thus peripheral erythrocytes incorporate 5-methyltetrahydrofolate by a saturable, temperature-dependent, substrate-specific process which is influenced by counter-transport. This mechanism is qualitatively similar to the carrier-mediated transport of folate compounds previously described in other cell types. Therefore, human erythrocytes should be useful for detailed characterization of this membrane carrier system. PMID:659590

  7. In vivo genotoxicity and cytotoxicity assessment of cadmium chloride in peripheral erythrocytes of Labeo rohita (Hamilton).

    PubMed

    Jindal, Rajinder; Verma, Sakshi

    2015-08-01

    Cadmium chloride (CdCl2) induced genotoxicity and cytotoxicity has been assessed in the peripheral blood erythrocytes of freshwater fish Labeo rohita exposed to 0.37 and 0.62mg/L of CdCl2 in water for 100 days. The blood samples of the fish were collected at different intervals (days 1, 3, 5, 10, 15, 30, 60 and 100) of exposure period to analyze DNA damage using comet assay and the occurrence of micronuclei and other cellular anomalies. The results of comet assay showed a significant increase in the mean percentage of tail DNA at both the concentrations. Exposure to CdCl2 also induced micronuclei in addition to many nuclear abnormalities such as nuclear bud, binucleates, lobed, notched and vacuolated nuclei. Cytoplasmic abnormalities like echinocytes, acanthocytes, notched, microcytes and cells with vacuolated cytoplasm were also observed. The metal exposed groups showed significant variation in the frequency of cellular abnormalities as well as the extent of DNA damage in comparison to controls. These frequencies increased significantly (p<0.05) in concentration dependent manner, peaking on 10th day while a decreasing trend was observed after 15 days of the exposure period.

  8. Neonatal hemolytic jaundice: morphologic features of erythrocytes that will help you diagnose the underlying condition.

    PubMed

    Christensen, Robert D; Yaish, Hassan M; Lemons, Richard S

    2014-01-01

    Many cases of severe neonatal hyperbilirubinemia never have the underlying cause of the jaundice clearly identified. Thus they are said to have 'idiopathic' severe neonatal jaundice. However, finding the exact cause, if it is a genetic condition, can enable informed anticipatory guidance regarding future episodes of hemolysis, anemia, or bilirubin cholelithiasis. 'Next generation' gene sequencing can often reveal the mutations responsible for severe neonatal hyperbilirubinemia, but wisely using this new technology involves selective application, employing this testing only if inexpensive technology fails to reveal the diagnosis. In this review, we display and discuss five types of red blood cell morphological abnormalities that have helped us categorize cases of neonatal hemolytic jaundice. As an aid to applying inexpensive technology, we review morphological abnormalities of erythrocytes that are easily identified on a blood film. When found, these abnormalities can be important clues to the underlying hemolytic condition giving rise to neonatal jaundice. Applying these simple and inexpensive methods can assist neonatologists in caring for neonates who have hemolytic jaundice. We predict that by using these principals the term 'idiopathic' neonatal jaundice will become less common as the underlying causes are identified.

  9. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  10. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  11. Specific erythrocyte binding capacity and biological activity of Plasmodium falciparum erythrocyte binding ligand 1 (EBL-1)-derived peptides

    PubMed Central

    Curtidor, Hernando; Rodríguez, Luis E.; Ocampo, Marisol; López, Ramses; García, Javier E.; Valbuena, John; Vera, Ricardo; Puentes, Álvaro; Vanegas, Magnolia; Patarroyo, Manuel E.

    2005-01-01

    Erythrocyte binding ligand 1 (EBL-1) is a member of the ebl multigene family involved in Plasmodium falciparum invasion of erythrocytes. We found that five EBL-1 high-activity binding peptides (HABPs) bound specifically to erythrocytes: 29895 (41HKKKSGELNNNKSGILRSTY60), 29903 (201LYECGK-KIKEMKWICTDNQF220), 29923 (601CNAILGSYADIGDIVRGLDV620), 29924(621WRDINTNKLSEK-FQKIFMGGY640), and 30018 (2481LEDIINLSKKKKKSINDTSFY2500). We also show that binding was saturable, not sialic acid-dependent, and that all peptides specifically bound to a 36-kDa protein on the erythrocyte membrane. The five HABPs inhibited in vitro merozoite invasion depending on the peptide concentration used, suggesting their possible role in the invasion process. PMID:15659376

  12. Specific erythrocyte binding capacity and biological activity of Plasmodium falciparum erythrocyte binding ligand 1 (EBL-1)-derived peptides.

    PubMed

    Curtidor, Hernando; Rodríguez, Luis E; Ocampo, Marisol; López, Ramses; García, Javier E; Valbuena, John; Vera, Ricardo; Puentes, Alvaro; Vanegas, Magnolia; Patarroyo, Manuel E

    2005-02-01

    Erythrocyte binding ligand 1 (EBL-1) is a member of the ebl multigene family involved in Plasmodium falciparum invasion of erythrocytes. We found that five EBL-1 high-activity binding peptides (HABPs) bound specifically to erythrocytes: 29895 ((41)HKKKSGELNNNKSGILRSTY(60)), 29903 ((201)LYECGK-KIKEMKWICTDNQF(220)), 29923 ((601)CNAILGSYADIGDIVRGLDV(620)), 29924((621)WRDINTNKLSEK-FQKIFMGGY(640)), and 30018 ((2481)LEDIINLSKKKKKSINDTSFY(2500)). We also show that binding was saturable, not sialic acid-dependent, and that all peptides specifically bound to a 36-kDa protein on the erythrocyte membrane. The five HABPs inhibited in vitro merozoite invasion depending on the peptide concentration used, suggesting their possible role in the invasion process.

  13. [Effects of Chinese herbs xianzhen tablet on the deformability of erythrocyte in non-insulin-dependent diabetes mellitus patients with deficiency of both qi and yin and deficiency of kidney with blood stasis].

    PubMed

    Shen, T; Guo, S; Liang, X

    1998-07-01

    To explore the effects of Xianzhen Tablet (XZT) on the hemorheology of type 2 diabetes (NIDDM) on the basis of previous studies in XZT, that have indicated its ability to deplete fasting blood glucose, to reduce the injury of free radical to the body, to improve the Na(+)-K(+)-ATPase in the erythrocyte membrane of NIDDM. Erythrocyte deformability and aggregation were studied with Ektacytometer in a total of 60 type 2 diabetes who were randomly divided into two groups. One was ZXT treated group, another was placebo group. (1) The erythrocyte deformability of type 2 diabetes was lower than that in normal subjects (P < 0.001), but the erythrocyte aggregation increased abnormally than that of health people (P < 0.001). The correlation test indicated there were negative correlation with plasma fibronogen and positive correlation with blood cholesterol (P < 0.05). (2) The erythrocyte deformability in the ZXT treated group with 30 patients improved after 8 weeks treatment (P < 0.01), with the decreased fasting blood glucose and plasma fibrinogen (P < 0.05). Compared with placebo group, there was significant statistical difference (P < 0.01). XZT could improve the erythrocyte deformability in the type 2 diabetes.

  14. Mutagenicity and genotoxicity in gill erythrocyte cells of Poecilia reticulata exposed to a glyphosate formulation.

    PubMed

    De Souza Filho, José; Sousa, Caio César Neves; Da Silva, Cláudio Carlos; De Sabóia-Morais, Simone Maria Teixeira; Grisolia, Cesar Koppe

    2013-11-01

    Poecilia reticulata were exposed to herbicide Roundup Transorb(®) for micronucleus test, nuclear abnormalities and comet assay. The exposure-concentrations were based on CL50-96 h following 0, 1.41, 2.83, 4.24 and 5.65 μL L(-1) for 24 h. Micronucleus and comets were significantly increased in the gill erythrocyte cells after herbicide exposure compared with the non-exposed group. Results showed a gradual increase in the number of damaged cells, indicating a concentration-dependent effect and that this herbicide was mutagenic and genotoxic to P. reticulata and this effect could be attributed to a combination of compounds contained in the formulation with the active ingredient glyphosate.

  15. Microwave dielectric measurements of erythrocyte suspensions.

    PubMed Central

    Bao, J Z; Davis, C C; Swicord, M L

    1994-01-01

    Complex dielectric constants of human erythrocyte suspensions over a frequency range from 45 MHz to 26.5 GHz and a temperature range from 5 to 40 degrees C have been determined with the open-ended coaxial probe technique using an automated vector network analyzer (HP 8510). The spectra show two separate major dispersions (beta and gamma) and a much smaller dispersion between them. The two major dispersions are analyzed with a dispersion equation containing two Cole-Cole functions by means of a complex nonlinear least squares technique. The parameters of the equation at different temperatures have been determined. The low frequency behavior of the spectra suggests that the dielectric constant of the cell membrane increases when the temperature is above 35 degrees C. The real part of the dielectric constant at approximately 3.4 GHz remains almost constant when the temperature changes. The dispersion shifts with temperature in the manner of a thermally activated process, and the thermal activation enthalpies for the beta- and gamma-dispersions are 9.87 +/- 0.42 kcal/mol and 4.80 +/- 0.06 kcal/mol, respectively. PMID:8075351

  16. Microwave dielectric measurements of erythrocyte suspensions.

    PubMed

    Bao, J Z; Davis, C C; Swicord, M L

    1994-06-01

    Complex dielectric constants of human erythrocyte suspensions over a frequency range from 45 MHz to 26.5 GHz and a temperature range from 5 to 40 degrees C have been determined with the open-ended coaxial probe technique using an automated vector network analyzer (HP 8510). The spectra show two separate major dispersions (beta and gamma) and a much smaller dispersion between them. The two major dispersions are analyzed with a dispersion equation containing two Cole-Cole functions by means of a complex nonlinear least squares technique. The parameters of the equation at different temperatures have been determined. The low frequency behavior of the spectra suggests that the dielectric constant of the cell membrane increases when the temperature is above 35 degrees C. The real part of the dielectric constant at approximately 3.4 GHz remains almost constant when the temperature changes. The dispersion shifts with temperature in the manner of a thermally activated process, and the thermal activation enthalpies for the beta- and gamma-dispersions are 9.87 +/- 0.42 kcal/mol and 4.80 +/- 0.06 kcal/mol, respectively.

  17. Diabetic Erythrocytes Test by Correlation Coefficient

    PubMed Central

    Korol, A.M; Foresto, P; Darrigo, M; Rosso, O.A

    2008-01-01

    Even when a healthy individual is studied, his/her erythrocytes in capillaries continually change their shape in a synchronized erratic fashion. In this work, the problem of characterizing the cell behavior is studied from the perspective of bounded correlated random walk, based on the assumption that diffractometric data involves both deterministic and stochastic components. The photometric readings are obtained by ektacytometry over several millions of shear elongated cells, using a home-made device called Erythrodeformeter. We have only a scalar signal and no governing equations; therefore the complete behavior has to be reconstructed in an artificial phase space. To analyze dynamics we used the technique of time delay coordinates suggested by Takens, May algorithm, and Fourier transform. The results suggest that on random-walk approach the samples from healthy controls exhibit significant differences from those from diabetic patients and these could allow us to claim that we have linked mathematical nonlinear tools with clinical aspects of diabetic erythrocytes’ rheological properties. PMID:19415139

  18. Free erythrocyte porphyrins in cord blood.

    PubMed

    Gottuso, M A; Oski, B F; Oski, F A

    1978-05-01

    Red cell free erythrocyte porphyrin determinations were performed on cord blood specimens from 236 term infants and on capillary blood specimens from 63 preterm infants weighing less than 1,500 gm, during the first week of life. These results were contrasted with those obtained from 398 normal infants and children ages 1 to 6 years. The mean FEP value for the infants was significantly higher than that observed in the normal control subjects. In 10.5% of the term infants and 15.9% of the preterm infants, values in excess of 120 microgram/dl RBCs, the highest value recorded in the normal subjects, were observed. Elevations in FEP values were not related to either blood lead concentration or hematocrit levels in the infants. Infants with elevated FEP values were found to have lower serum iron and transferrin saturation values than did infants with low FEP values. These findings suggest that elevations in cord blood FEP values may indicate a state of relative iron deficiency present at birth.

  19. Phosphorylation of erythrocyte membrane liberates calcium

    SciTech Connect

    Chauhan, V.P.S.; Brockerhoff, H.

    1986-05-01

    Phosphorylation of permeabilized erythrocyte ghost membranes with ATP results in an increase free calcium level as measured with the help of Ca/sup 2 +/ electrode and /sup 45/Ca. This effect could not be observed in the presence of p/sup -/ chloromercuric benzoate, an inhibitor of kinases. The rise in the free calcium due to phosphorylation of the membrane was accompanied by a decrease in the level of phosphatidylinositol (PI) and an increase in phosphatidylinositolmonophosphate (PIP) and phosphatidylinositolbisphosphate (PIP/sub 2/). These results support the proposal that an inositol shuttle, PI in equilibrium PIP in equilibrium PIP/sub 2/, operates to maintain the intracellular calcium concentration. The cation is believed to be sequestered in a cage formed by the head groups of two acidic phospholipid molecules, e.g., phosphatidylserine and phosphatidylinositol, with the participation of both PO and fatty acid ester CO groups. When the inositol group of such a cage is phosphorylated, inter-headgroup hydrogen bonding between the lipids is broken. As a result the cage opens and calcium is released.

  20. Green hemoprotein of erythrocytes: methemoglobin superoxide transferase

    SciTech Connect

    Kiel, J.L.; McQueen, C.; Erwin, D.N.

    1988-01-01

    Influences of base (pH 10), heat (50 degrees C), microwave radiation (2450 MHz, 103 +/- 4 W/kg), and hydrogen peroxide (5.6 mM) generated by glucose oxidase on oxidation of human oxyhemoglobin to methemoglobin were examined. Conversion of oxyhemoglobin to methemoglobin was followed by the difference in absorbancy of 540 or 542 nm and 576 nm wavelength light versus time. Fresh basic hemolysates auto-oxidized on heating with a zero order rate constant, implying that hemoglobin or another protein saturated with oxyhemoglobin catalyzed the oxidation. Simultaneous microwave irradiation inhibited thermally induced auto-oxidation on the average by 28.6%. However, there was great variability among samples and a decrease in auto-oxidation with aging of individual samples. The auto-oxidation rate was independent of initial oxyhemoglobin concentration. Oxidation of partially purified oxyhemoglobin by hydrogen peroxide was not influenced by microwave irradiation. Adding green hemoprotein isolated from human erythrocytes to the oxyhemoglobin/glucose oxidase reaction mixture yielded absorption spectra (500-600 nm) that were a combination of oxyhemoglobin, deoxyhemoglobin, and methemoglobin spectra. Green hemoprotein was labile in hemolysates but stable in a partially purified ferric form. These results imply that thermally unstable reduced green hemoprotein can reverse oxidation of oxyhemoglobin by hydrogen peroxide and could mediate the thermally induced and microwave inhibited auto-oxidation of oxyhemoglobin.

  1. Comparison between the effects of copper and iron deficiency on erythrocyte membrane protein composition and platelet secretory response

    SciTech Connect

    Johnson, W.T.; Dufault, S.N. )

    1991-03-11

    Because severe Cu deficiency causes anemia in rats, it is possible that reported effects of Cu deficiency on erythrocyte membrane protein composition and platelet secretion result from impaired Fe utilization by the hemopoietic system. In the present study, weanling rats were fed diets that were either Cu deficient, Fe deficient or adequate in both Cu and Fe. After 5 weeks of dietary treatment, rats fed CuD and FeD were anemic. Although the amount of a 170 kDa protein associated with erythrocyte membranes doubled in rats fed CuD compared to rats fed CuAFeA, the amount remained unchanged in rats feed FeD. The rate of platelet dense granule secretion, as assessed by ATP release following thrombin activation, was 2-fold higher in rats fed CuD and FeD than in rats fed CuAFeA. However, the rates of secretion were not significantly different in platelets from rats fed CuD compared to those fed FeD. These findings suggest that changes induced by Cu deficiency in the protein composition of erythrocyte membranes result directly from Cu deprivation. The similarity between the effects of Cu and Fe deficiency on platelet secretion indicate that impairment of Fe-dependent cellular processes during Cu deficiency may contribute to the abnormal rate of dense granule secretion.

  2. Abnormal human sex chromosome constitutions

    SciTech Connect

    1993-12-31

    Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.

  3. Exercises to Improve Gait Abnormalities

    MedlinePlus

    ... Home About iChip Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner ...

  4. Abnormal Uterine Bleeding.

    PubMed

    Benetti-Pinto, Cristina Laguna; Rosa-E-Silva, Ana Carolina Japur de Sá; Yela, Daniela Angerame; Soares Júnior, José Maria

    2017-07-01

    Abnormal uterine bleeding is a frequent condition in Gynecology. It may impact physical, emotional sexual and professional aspects of the lives of women, impairing their quality of life. In cases of acute and severe bleeding, women may need urgent treatment with volumetric replacement and prescription of hemostatic substances. In some specific cases with more intense and prolonged bleeding, surgical treatment may be necessary. The objective of this chapter is to describe the main evidence on the treatment of women with abnormal uterine bleeding, both acute and chronic. Didactically, the treatment options were based on the current International Federation of Gynecology and Obstetrics (FIGO) classification system (PALM-COEIN). The etiologies of PALM-COEIN are: uterine Polyp (P), Adenomyosis (A), Leiomyoma (L), precursor and Malignant lesions of the uterine body (M), Coagulopathies (C), Ovulatory dysfunction (O), Endometrial dysfunction (E), Iatrogenic (I), and Not yet classified (N). The articles were selected according to the recommendation grades of the PubMed, Cochrane and Embase databases, and those in which the main objective was the reduction of uterine menstrual bleeding were included. Only studies written in English were included. All editorial or complete papers that were not consistent with abnormal uterine bleeding, or studies in animal models, were excluded. The main objective of the treatment is the reduction of menstrual flow and morbidity and the improvement of quality of life. It is important to emphasize that the treatment in the acute phase aims to hemodynamically stabilize the patient and stop excessive bleeding, while the treatment in the chronic phase is based on correcting menstrual dysfunction according to its etiology and clinical manifestations. The treatment may be surgical or pharmacological, and the latter is based mainly on hormonal therapy, anti-inflammatory drugs and antifibrinolytics. Thieme Revinter Publicações Ltda Rio de Janeiro

  5. Effect of sulphated polysaccharides on erythrocyte changes due to oxidative and nitrosative stress in experimental hyperoxaluria.

    PubMed

    Veena, C K; Josephine, A; Preetha, S P; Varalakshmi, P

    2007-12-01

    Kidney stones are known to haunt humanity for centuries and increase in oxalate is a predominant risk factor for stone formation. The present study was initiated with a notion to study the oxidative and nitrosative stress on erythrocytes under oxalate stress and the putative role of sulphated polysaccharides. Hyperoxaluria was induced in two groups by the administration of 0.75% ethylene glycol in drinking water for 28 days and one of them was treated with sulphated polysaccharides from Fucus vesiculosus from the 8th day to the end of the experimental period of 28 days at a dose of 5 mg/kg body weight subcutaneously. Control and drug control (sulphated polysaccharides alone) were also included in the study. Glycolic and glyoxylic acid levels of urine were analyzed as an index of hyperoxaluria. The plasma enzymic markers of cellular integrity, redox status of red blood cells, osmotic fragility, and (14)C-oxalate binding were investigated. Urine and plasma nitric oxide metabolites, expression of inducible nitric oxide synthase protein, and mRNA were assessed in kidney to evaluate the nitrosative stress. Increased levels of glycolic and glyoxylic acid in urine indicated the prevalence of hyperoxaluria in ethylene glycol-administered groups. Plasma aspartate and alanine transaminase were not altered, but alkaline phosphatase and lactate dehydrogenase of hyperoxaluric group were increased indicating tissue damage. Activities of antioxidant enzymes were decreased, whereas erythrocyte membrane lipid peroxidation was increased in hyperoxaluric rats. Moreover, an altered fragility with an increase in oxalate binding activity was observed in hyperoxaluric group. Increase in nitric oxide metabolites levels in urine and plasma along with an increase in expression of inducible nitric oxide synthase protein and mRNA in kidney were observed in hyperoxaluric rats. Administration of sulphated polysaccharides to hyperoxaluric rats averted the abnormal increase in urinary glycolic

  6. Mechanisms altered beta-adrenergic responsiveness in the hyperthyroid and hypothyroid turkey erythrocyte.

    PubMed

    Bilezikian, J P; Loeb, J N

    Studies on the relationship between thyroid hormone and the beta-adrenergic catecholamines have been carried out in the turkey erythrocyte. Conditions of thyroid hormone excess and deficiency were examined with respect to their effects on the beta receptor itself, as well as to their effects on associated biochemical and physiological indices of beta receptor function, including agonist stimulated adenylate cyclase activity, cellular cyclic AMP generation, and catecholamine-induced stimulation of potassium ion influx. Erythrocytes obtained from hypothyroid turkeys showed a marked (approximately 50%) reduction in beta receptor number without any change in receptor affinity for agonists or antagonists. Catecholamine-sensitive adenylate cyclase activity and cellular cyclic AMP levels were similarly reduced. The sensitivity of these cells to agonist-stimulated potassium influx was significantly decreased, but maximal agonist-stimulated transport rate was unchanged. Analysis of the quantitative relationship between beta receptor number, agonist concentration, and level of catecholamine-stimulated potassium influx indicates that, at any given absolute level of receptor occupancy, the level of agonist-stimulated potassium influx is identical in hypothyroid and normal erythrocytes, and that the diminished physiological sensitivity of the hypothyroid cell is attributable in its entirety to a reduction in beta receptor number per se. The results obtained in the hyperthyroid turkey erythrocyte were strikingly different. Here, beta receptor number, binding affinity for agonists and antagonists, catecholamine-sensitive adenylate cyclase activity, and maximal cyclic AMP levels were all unchanged. In contrast, maximal agonist-stimulated potassium ion transport was markedly reduced, while the concentration of isoproterenol required for half-maximal stimulation was only slightly increased. Analysis of the relationship between beta receptor number, agonist concentration, and

  7. Non-adsorbing macromolecules promote endothelial adhesion of erythrocytes with reduced sialic acids.

    PubMed

    Yang, Yang; Koo, Stephanie; Heng, Li Tze; Meiselman, Herbert J; Neu, Björn

    2014-01-01

    Abnormal adhesion of red blood cells (RBCs) to vascular endothelium is often associated with reduced levels of sialic acids on RBC membranes and with elevated levels of pro-adhesive plasma proteins. However, the synergistic effects of these two factors on the adhesion are not clear. In this work, we tested the hypothesis that macromolecular depletion interaction originating from non-adsorbing macromolecules can promote the adhesion of RBCs with reduced sialic acid content to the endothelium. RBCs are treated with neuraminidase to specifically remove sialic acids from their surface followed by the evaluation of their deformability, zeta potential and membrane proteins. The adhesion of these enzyme-treated RBCs to cultured human umbilical vein endothelial cells (ECs) is studied in the presence of 70 or 500kDa dextran with a flow chamber assay. Our results demonstrate that removal of sialic acids from RBC surface can induce erythrocyte adhesion to endothelial cells and that such adhesion is significantly enhanced in the presence of high-molecular weight dextran. The adhesion-promoting effect of dextran exhibits a strong dependence on dextran concentration and molecular mass, and it is concluded to originate from macromolecular depletion interaction. These results suggest that elevated levels of non-adsorbing macromolecules in plasma might play a significant role in promoting endothelial adhesion of erythrocytes with reduced sialic acids. Our findings should therefore be of great value in understanding abnormal RBC-EC interactions in pathophysiological conditions (e.g., sickle cell disease and diabetes) and after blood transfusions. © 2013.

  8. O(2) release from erythrocytes flowing in a narrow O(2)-permeable tube: effects of erythrocyte aggregation.

    PubMed

    Tateishi, N; Suzuki, Y; Cicha, I; Maeda, N

    2001-07-01

    The effects of erythrocyte aggregation on O(2) release were examined using O(2)-permeable fluorinated ethylenepropylene copolymer tubes (inner diameter, 25 microm; outer diameter, 100 microm). Measurements were performed using an apparatus built on an inverted microscope that contained a scanning-grating spectrophotometer with a photon count detector connected to two photomultipliers and an image processor through a video camera. The rate of O(2) release from the cells flowing in the narrow tube was determined based on the visible absorption spectrum and the flow velocity of the cells as well as the tube size. When the tube was exposed to nitrogen-saturated deoxygenated saline containing 10 mM sodium dithionite, the flowing erythrocytes were deoxygenated in proportion to the traveling distance, and the deoxygenation at a given distance increased with decreasing flow velocity and cell concentration (hematocrit). Adding Dextran T-70 to the cell suspension increased erythrocyte aggregation in the tube, which resulted in suppressed cell deoxygenation and increased marginal cell-free-layer thickness. The deoxygenation was inversely proportional to the cell-free-layer thickness. The relation was not essentially altered even when the medium viscosity was adjusted with Dextran T-40 to remain constant. The rate of O(2) release from erythrocytes in the tube was discussed in relation to the O(2) diffusion process. We conclude that the diffusion of O(2) from erythrocytes flowing in narrow tubes is inhibited primarily by erythrocyte aggregation itself and partly by thickening of the cell-free layer.

  9. [Penile congenital abnormalities].

    PubMed

    Boillot, B; Teklali, Y; Moog, R; Droupy, S

    2013-07-01

    Congenital abnormalities of the penis are usually diagnosed at birth and pose aesthetic and functional problems sometimes requiring surgical management. A literature review was conducted on Medline considering the articles listed until January 2012. Hypospadias is the most common malformation (1 in 250 boys. Familial forms: 7%). The causes remain hypothetical but the doubling of the incidence in 30 years could be linked to fetal exposure to endocrine disruptors "estrogen-like" used in the food industry in particular. Surgical treatment is usually intended to improve the aesthetic appearance but sometimes, in case of significant curvature or posterior meatus, necessary for normal sexual life and fertility. Other malformations (epispades, buried penis, transpositions, twists and preputial abnormalities) as well as management for functional or aesthetic consequences of these malformations in adulthood require complex surgical care in a specialized environment. The improvement of surgical techniques and pediatric anesthesia allows an early and effective specialized surgical approach of penile malformations. Management of sequelae in adulthood must be discussed and requires experience of surgical techniques on pediatric and adult penis. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Epilepsy and chromosomal abnormalities

    PubMed Central

    2010-01-01

    Background Many chromosomal abnormalities are associated with Central Nervous System (CNS) malformations and other neurological alterations, among which seizures and epilepsy. Some of these show a peculiar epileptic and EEG pattern. We describe some epileptic syndromes frequently reported in chromosomal disorders. Methods Detailed clinical assessment, electrophysiological studies, survey of the literature. Results In some of these congenital syndromes the clinical presentation and EEG anomalies seems to be quite typical, in others the manifestations appear aspecific and no strictly linked with the chromosomal imbalance. The onset of seizures is often during the neonatal period of the infancy. Conclusions A better characterization of the electro clinical patterns associated with specific chromosomal aberrations could give us a valuable key in the identification of epilepsy susceptibility of some chromosomal loci, using the new advances in molecular cytogenetics techniques - such as fluorescent in situ hybridization (FISH), subtelomeric analysis and CGH (comparative genomic hybridization) microarray. However further studies are needed to understand the mechanism of epilepsy associated with chromosomal abnormalities. PMID:20438626

  11. Increased calcium deposits and decreased Ca2+ -ATPase in erythrocytes of ascitic broiler chickens.

    PubMed

    Li, Kai; Zhao, Lihong; Geng, Guangrui; Ma, Liqin; Dong, Shishan; Xu, Tong; Wang, Jianlin; Wang, Huiyu; Tian, Yong; Qiao, Jian

    2011-06-01

    The decrease of erythrocyte deformability may be one of the predisposing factors for pulmonary hypertension and ascites in broiler chickens. In mammals, the cytoplasmic calcium is a major regulator of erythrocyte deformability. In this study, the erythrocyte deformability was measured, and the precise locations of Ca2+ and Ca2+ -ATPase in the erythrocytes were investigated in chickens with ascites syndrome induced by low ambient temperature. The results showed that ascitic broilers had higher filtration index of erythrocyte compared with control groups, indicating a decrease in erythrocyte deformability in ascitic broilers. The more calcium deposits were observed in the erythrocytes of ascitic broilers compared with those of the age-matched control birds. The Ca2+ -ATPase reactive grains were significantly decreased on the erythrocyte membranes of ascitic broilers. Our data suggest that accumulation of intracellular calcium and inhibition of Ca2+ -ATPase might be important factors for the reduced deformability of the erythrocytes of ascitic broilers.

  12. Erythrocyte G Protein as a Novel Target for Malarial Chemotherapy

    PubMed Central

    Murphy, Sean C; Harrison, Travis; Hamm, Heidi E; Lomasney, Jon W; Mohandas, Narla; Haldar, Kasturi

    2006-01-01

    Background Malaria remains a serious health problem because resistance develops to all currently used drugs when their parasite targets mutate. Novel antimalarial drug targets are urgently needed to reduce global morbidity and mortality. Our prior results suggested that inhibiting erythrocyte Gs signaling blocked invasion by the human malaria parasite Plasmodium falciparum. Methods and Findings We investigated the erythrocyte guanine nucleotide regulatory protein Gs as a novel antimalarial target. Erythrocyte “ghosts” loaded with a Gs peptide designed to block Gs interaction with its receptors, were blocked in β-adrenergic agonist-induced signaling. This finding directly demonstrates that erythrocyte Gs is functional and that propranolol, an antagonist of G protein–coupled β-adrenergic receptors, dampens Gs activity in erythrocytes. We subsequently used the ghost system to directly link inhibition of host Gs to parasite entry. In addition, we discovered that ghosts loaded with the peptide were inhibited in intracellular parasite maturation. Propranolol also inhibited blood-stage parasite growth, as did other β2-antagonists. β-blocker growth inhibition appeared to be due to delay in the terminal schizont stage. When used in combination with existing antimalarials in cell culture, propranolol reduced the 50% and 90% inhibitory concentrations for existing drugs against P. falciparum by 5- to 10-fold and was also effective in reducing drug dose in animal models of infection. Conclusions Together these data establish that, in addition to invasion, erythrocyte G protein signaling is needed for intracellular parasite proliferation and thus may present a novel antimalarial target. The results provide proof of the concept that erythrocyte Gs antagonism offers a novel strategy to fight infection and that it has potential to be used to develop combination therapies with existing antimalarials. PMID:17194200

  13. An iron stable isotope comparison between human erythrocytes and plasma.

    PubMed

    von Blanckenburg, Friedhelm; Oelze, Marcus; Schmid, Dietmar G; van Zuilen, Kirsten; Gschwind, Hans-Peter; Slade, Alan J; Stitah, Sylvie; Kaufmann, Daniel; Swart, Piet

    2014-11-01

    We present precise iron stable isotope ratios measured by multicollector-ICP mass spectrometry (MC-ICP-MS) of human red blood cells (erythrocytes) and blood plasma from 12 healthy male adults taken during a clinical study. The accurate determination of stable isotope ratios in plasma first required substantial method development work, as minor iron amounts in plasma had to be separated from a large organic matrix prior to mass-spectrometric analysis to avoid spectroscopic interferences and shifts in the mass spectrometer's mass-bias. The (56)Fe/(54)Fe ratio in erythrocytes, expressed as permil difference from the "IRMM-014" iron reference standard (δ(56/54)Fe), ranges from -3.1‰ to -2.2‰, a range typical for male Caucasian adults. The individual subject erythrocyte iron isotope composition can be regarded as uniform over the 21 days investigated, as variations (±0.059 to ±0.15‰) are mostly within the analytical precision of reference materials. In plasma, δ(56/54)Fe values measured in two different laboratories range from -3.0‰ to -2.0‰, and are on average 0.24‰ higher than those in erythrocytes. However, this difference is barely resolvable within one standard deviation of the differences (0.22‰). Taking into account the possible contamination due to hemolysis (iron concentrations are only 0.4 to 2 ppm in plasma compared to approx. 480 ppm in erythrocytes), we model the pure plasma δ(56/54)Fe to be on average 0.4‰ higher than that in erythrocytes. Hence, the plasma iron isotope signature lies between that of the liver and that of erythrocytes. This difference can be explained by redox processes involved during cycling of iron between transferrin and ferritin.

  14. Adenosine signaling in normal and sickle erythrocytes and beyond

    PubMed Central

    Zhang, Yujin; Xia, Yang

    2012-01-01

    Sickle cell disease (SCD) is a debilitating hemolytic genetic disorder with high morbidity and mortality affecting millions of individuals worldwide. Although SCD was discovered more than a century ago, no effective mechanism-based prevention and treatment are available due to poorly understood molecular basis of sickling, the fundamental pathogenic process of the disease. SCD patients constantly face hypoxia. One of the best-known signaling molecules to be induced under hypoxic conditions is adenosine. Recent studies demonstrate that hypoxia-mediated elevated adenosine signaling plays an important role in normal erythrocyte physiology. In contrast, elevated adenosine signaling contributes to sickling and multiple life threatening complications including tissue damage, pulmonary dysfunction and priapism. Here, we summarize recent research on the role of adenosine signaling in normal and sickle erythrocytes, progression of the disease and therapeutic implications. In normal erythrocytes, both genetic and pharmacological studies demonstrate that adenosine can enhance 2,3-bisphosphoglycerate (2,3-BPG) production via A2B receptor (ADORA2B) activation, suggesting that elevated adenosine has an unrecognized role in normal erythrocytes to promote O2 release and prevent acute ischemic tissue injury. However, in sickle erythrocytes, the beneficial role of excessive adenosine-mediated 2,3-BPG induction becomes detrimental by promoting deoxygenation, polymerization of sickle hemoglobin and subsequent sickling. Additionally, adenosine signaling via the A2A receptor (ADORA2A) on invariant natural killer T (iNKT) cells inhibits iNKT cell activation and attenuates pulmonary dysfunction in SCD mice. Finally, elevated adenosine coupled with ADORA2BR activation is responsible for priapism, a dangerous complication seen in SCD. Overall, the research reviewed here reveals a differential role of elevated adenosine in normal erythrocytes, sickle erythrocytes, iNK cells and progression

  15. Cation channels, cell volume and the death of an erythrocyte.

    PubMed

    Lang, Florian; Lang, Karl S; Wieder, Thomas; Myssina, Svetlana; Birka, Christina; Lang, Philipp A; Kaiser, Stephanie; Kempe, Daniela; Duranton, Christophe; Huber, Stephan M

    2003-11-01

    Similar to a variety of nucleated cells, human erythrocytes activate a non-selective cation channel upon osmotic cell shrinkage. Further stimuli of channel activation include oxidative stress, energy depletion and extracellular removal of Cl-. The channel is permeable to Ca2+ and opening of the channel increases cytosolic [Ca2+]. Intriguing evidence points to a role of this channel in the elimination of erythrocytes by apoptosis. Ca2+ entering through the cation channel stimulates a scramblase, leading to breakdown of cell membrane phosphatidylserine asymmetry, and stimulates Ca(2+)-sensitive K+ channels, thus leading to KCl loss and (further) cell shrinkage. The breakdown of phosphatidylserine asymmetry is evidenced by annexin binding, a typical feature of apoptotic cells. The effects of osmotic shock, oxidative stress and energy depletion on annexin binding are mimicked by the Ca2+ ionophore ionomycin (1 microM) and blunted in the nominal absence of extracellular Ca2+. Nevertheless, the residual annexin binding points to additional mechanisms involved in the triggering of the scramblase. The exposure of phosphatidylserine at the extracellular face of the cell membrane stimulates phagocytes to engulf the apoptotic erythrocytes. Thus, sustained activation of the cation channels eventually leads to clearance of affected erythrocytes from peripheral blood. Susceptibility to annexin binding is enhanced in several genetic disorders affecting erythrocyte function, such as thalassaemia, sickle-cell disease and glucose-6-phosphate dehydrogenase deficiency. The enhanced vulnerability presumably contributes to the shortened life span of the affected erythrocytes. Beyond their role in the limitation of erythrocyte survival, cation channels may contribute to the triggering of apoptosis in nucleated cells exposed to osmotic shock and/or oxidative stress.

  16. Effect of vitamin C, deferoxamine, quercetin and rutin against tert-butyl hydroperoxide oxidative damage in human erythrocytes.

    PubMed

    Krukoski, Daniel Witchmichen; Comar, Samuel Ricardo; Claro, Ligia Maria; Leonart, Maria Suely Soares; do Nascimento, Aguinaldo José

    2009-06-01

    The mature human erythrocyte, when submitted to oxidative stress, can demonstrate depletion of reduced glutathione, oxidation of the hemoglobin molecule and aggregation of complexes of iron close to the membrane. These can produce abnormalities in the erythrocyte membrane and hemolysis. The aim of this work was to study the antioxidative action of vitamin C (vit. C), deferroxamine (DFO) and the flavonoids quercetin and rutin in normal human erythrocytes, submitted to in vitro oxidative stress induced by tert-butylhydroperoxide ((t)BHP). Venous blood was collected in citrate-phosphate-dextrose (CPD) solution, as anticoagulant, from healthy adult individuals after informed consent. The erythrocytes were resuspended in PBS to obtain 35% globular volume, and then submitted to the oxidative action of (t)BHP for up to 30 min, with or without previous incubation for 60 min with vit. C, DFO, quercetin and rutin. Decrease in the GSH concentration, G6-PD and GR activities, and increase in the methemoglobin and Heinz bodies (HB) formation, occurred with the increase in (t)BHP concentration. (t)BHP did not effect on the membrane proteins detected by SDS-PAGE. Quercetin, partially prevented the GSH decrease and the formation of HB, but did not prevent MetHb formation from oxidative damage by (t)BHP. Rutin, after (t)BHP induction, prevented the GSH decrease and the formation of HB. Vit. C, had no influence on the depletion of GSH, inhibited partially the metHb formation, and it protected GR, but not G6-PD from oxidative damage by (t)BHP. DFO partially inhibited the metHb formation and GSH decrease, but it did not protect GR and G6-PD from oxidative damage by (t)BHP. The results obtained suggest that vit. C, DFO and the flavonoids quercetin and rutin contribute to the decrease in the oxidative stress caused by (t)BHP.

  17. [Molecular interactions of membrane proteins and erythrocyte deformability].

    PubMed

    Boivin, P

    1984-06-01

    The structural and functional properties of the erythrocytic membrane constitute one of the essential elements of the red cell deformability. They intervene not only in the flexibility of the membrane, but also in the surface/volume relation and, through transmembrane exchanges, in the internal viscosity of the red cells. These properties depend essentially on the molecular composition of the elements which constitute the membrane, and on their interactions. The shape of the red cell and the flexibility of its membrane depend, to a great extent, on the membrane skeleton, whose main components are spectrin, actin, and protein 4.1. The spectrin basic molecule is a heterodimer, but there occur interactions between dimers in vitro as well as in vivo, which lead to the formation of tetrameric and oligomeric structures of higher complexity. Disturbances of these interactions, such as have been observed in pathological cases, lead to an instability of the membrane, a loss of membrane fragments, and a decrease in the surface/volume relation, with, as a consequence, a reduced deformability. The stability of the membrane skeleton also depends on the interactions between spectrin and protein 4.1. These interactions occur through a binding site on the beta chain of spectrin apparently close to actin and calmodulin binding sites. Other interactions occur between the hydrophobic segment of spectrin and membrane lipids. The cytoskeleton is bound to the transmembrane proteins: by ankyrin to the internal segment of protein band 3, and by protein 4.1 to a glycoprotein named glycoconnectin. There seems to exist other, more direct, lower affinity bindings between the cytoskeleton on the one hand, and band 3 and glycophorin transmembrane proteins on the other hand, whose lateral mobilities are modified when the structure of the skeleton is perturbed. The membrane proteins, which are in contact with the cytosol, interact with the cytosolic proteins, in particular with certain enzymes

  18. Genetic control of glycolysis in human erythrocytes

    SciTech Connect

    Gilroy, T.E.; Brewer, G.J.; Sing, C.F.

    1980-03-01

    We have studied heritability of the concentration of each glycolytic intermediate and adenine nucleotide in the cytosol of human erythrocytes obtained from a random sample of apparently healthy young individuals. Preliminary to analysis of heritability, each trait was statistically described and the effects attributable to variation in measured concomitants were removed by regression. Heritability was estimated using the family-set method. This method removes covariances between the index case, sibling and first cousin, due to those environmental determinants of the phenotypic values that are shared with a matched, unrelated control member of the family set. It also removes covariances due to environments that are shared by siblings and first cousins. Heritability was estimated by employing the fact that the variance of differences between first cousins minus the variance of differences between full siblings estimates three-fourths of the additive genetic variance. The heritability estimates for G6P, F6P, ATP and some other metabolite concentrations are high and significantly greater than zero. The heritabilities of G6P and F6P are likely attributable to genetic variation in the in vivo activity of HK and/or PFK, because the concentrations of these metabolites are tightly controlled by the two regulatory enzymes. Statistically significant heritability estimates for HK and PFK mass action ratios stronglysuggest genes are responsible for a portion of the quantitative variation in these enzyme activities. Since HK and PFK regulate glycolysis and the production of ATP, genetic variation in their activities might be causally related to the heritability of ATP concentration.

  19. [Comparison of photodynamic effect with respect to human and rabbit erythrocytes].

    PubMed

    Galebskaia, L V; Solovtsova, I L; Solov'eva, M A; Zammoeva, D B; Kuz'menkov, A N

    2011-01-01

    Parameters of photoinduced lysis are studied for human and rabbit erythrocytes (photosensibilizer--Radachlorin, the light source--Shuttle HeNe lazer, lambda = 633 nm). The higher sensitivity to irradiation is revealed for rabbit erythrocytes. Treatment of erythrocytes with trypsin showed the surface proteins in human cells to produce a protective effect. Trypsynization of rabbit erythrocytes produced the opposite action--the rate of photohemolysis increased. Results of the study indicate the differences in sensitivity to the photoinduced lysis of erythrocytes of different species and participation of erythrocytes proteins in the effect of photohemolysis.

  20. Eye movement abnormalities.

    PubMed

    Moncayo, Jorge; Bogousslavsky, Julien

    2012-01-01

    Generation and control of eye movements requires the participation of the cortex, basal ganglia, cerebellum and brainstem. The signals of this complex neural network finally converge on the ocular motoneurons of the brainstem. Infarct or hemorrhage at any level of the oculomotor system (though more frequent in the brain-stem) may give rise to a broad spectrum of eye movement abnormalities (EMAs). Consequently, neurologists and particularly stroke neurologists are routinely confronted with EMAs, some of which may be overlooked in the acute stroke setting and others that, when recognized, may have a high localizing value. The most complex EMAs are due to midbrain stroke. Horizontal gaze disorders, some of them manifesting unusual patterns, may occur in pontine stroke. Distinct varieties of nystagmus occur in cerebellar and medullary stroke. This review summarizes the most representative EMAs from the supratentorial level to the brainstem.

  1. Skeletal abnormalities in homocystinuria.

    PubMed Central

    Brenton, D. P.

    1977-01-01

    The skeletal changes of thirty-four patients with the biochemical and clinical features of cystathionine synthase deficiency are described. It is emphasized that there is clinical evidence of excessive bone growth and the formation for bone which is structurally weaker than normal. The similarities and differences between this condition and Marfan's syndrome are stressed and the possible nature of the connective tissue defect leading to the skeletal changes discussed. The most characteristic skeletal changes in homocystinuria are the skeletal disproportion (pubis-heel length greater than crown-pubis length), the abnormal vertebrae, sternal deformities, genu valgum and large metaphyses and epiphyses. Images Fig. 2 Fig. 3 Fig. 4 Fig. 8 Fig. 9 Fig. 10 PMID:917963

  2. Oxidative Hemolysis of Erythrocytes Induced by Various Vitamins

    PubMed Central

    Ibrahim, I. H.; Sallam, S. M.; Omar, H.; Rizk, M.

    2006-01-01

    Hemolytic effect of some water-soluble vitamins (niacin B5, pyridoxine B6, thiamine B1 and ascorbic and acid C) on erythrocytes was studied spectrophotometrically at relatively high concentration. The oxidation mechanism of hemoglobin was the same for the used vitamins. Vitamin C was the strongest hemolytic agent in comparison with the other vitamins, while vitamin B1 is the weakest one. The results were confirmed by studying the variation in conductivity of erythrocytes with temperature in the range 20-40°C for the used vitamins at a concentration of 2 mM and after two hours from adding each vitamin to the erythrocytes suspension. The conductivity measurements show that the conductivity for the used vitamins is lower than that for control (without adding vitamin) due to hemoglobin oxidation, also may be due to the electrical reorganization of the erythrocyte membrane after the interaction of the used vitamin with it. The obtained results insure the oxidizing effect of the used vitamins on hemoglobin and consequently their hemolytic effect on erythrocytes. PMID:23674994

  3. Disorders of erythrocyte structure and function in hypertensive patients

    PubMed Central

    Pytel, Edyta; Duchnowicz, Piotr; Jackowska, Paulina; Wojdan, Katarzyna; Koter-Michalak, Maria; Broncel, Marlena

    2012-01-01

    Summary Background The prevalence of hypertension is growing at an alarming rate. Increasing attention is being focussed on the oxidative stress accompanying this disease. In this study we examined the impact of this disease on some parameters of erythrocytes and human blood plasma. Material/Methods We examined the impact of hypertension on some parameters of erythrocytes and human plasma. The study involved 13 patients with hypertension and 19 healthy subjects. We determined lipid peroxidation, SH groups concentration, antioxidants enzymes activity, ATPase activity, total antioxidant capacity, total cholesterol level and erythrocyte membrane fluidity. Results We found an increased level of lipid peroxidation and the concentration of SH groups in membrane proteins in patients with hypertension, and a decrease in the activity of catalase and superoxide dysmutase. No changes were observed in glutathione peroxidase and ATPase activity, level of total antioxidant capacity, total cholesterol level and fluidity of erythrocyte membranes. Conclusions These results suggest the existence of an impaired oxidative balance in hypertensive human erythrocytes. PMID:22847194

  4. Origins and function of 3-ribosylurate in bovid erythrocytes.

    PubMed

    Davids, V; Blackhurst, D M; Katz, A A; Harley, E H

    2012-06-01

    3-Ribosylurate is a dominant feature on high performance liquid chromatography (HPLC) profiles of acid extracts of erythrocytes from cows and buffalo, but is HPLC-undetectable in acid extracts of erythrocytes from all other species examined to date. Various aspects of this unique low molecular weight substance remain unexplored since it was first identified. In this study, the mutation(s) responsible for the appearance of ribosylurate in these cells is shown to be specific to members of both tribes of the Bovinae subfamily (Bovidae family), being detectable in the erythrocytes of both the cow and the buffalo (Bovini tribe) as well as in the kudu (Strepsicerotini tribe), but not in representative species from the other subfamilies of the Bovidae family. More specifically, expression of the mutation(s) seems to be restricted to the erythrocyte lineage of these species, ribosylurate being undetectable in cow white blood cells and primary cultures of fibroblasts. Novel evidence is presented that ribosylurate has antioxidant activity. Accumulation of high levels specifically within the haemoglobin-rich milieu of circulating erythrocytes may serve to protect perfused tissues by removing pathophysiological levels of hydrogen peroxide from plasma. Maintenance of ribosylurate levels may be important in conditions associated with oxidative stress in Bovinae. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Very Deep Convolutional Neural Networks for Morphologic Classification of Erythrocytes.

    PubMed

    Durant, Thomas J S; Olson, Eben M; Schulz, Wade L; Torres, Richard

    2017-09-06

    Morphologic profiling of the erythrocyte population is a widely used and clinically valuable diagnostic modality, but one that relies on a slow manual process associated with significant labor cost and limited reproducibility. Automated profiling of erythrocytes from digital images by capable machine learning approaches would augment the throughput and value of morphologic analysis. To this end, we sought to evaluate the performance of leading implementation strategies for convolutional neural networks (CNNs) when applied to classification of erythrocytes based on morphology. Erythrocytes were manually classified into 1 of 10 classes using a custom-developed Web application. Using recent literature to guide architectural considerations for neural network design, we implemented a "very deep" CNN, consisting of >150 layers, with dense shortcut connections. The final database comprised 3737 labeled cells. Ensemble model predictions on unseen data demonstrated a harmonic mean of recall and precision metrics of 92.70% and 89.39%, respectively. Of the 748 cells in the test set, 23 misclassification errors were made, with a correct classification frequency of 90.60%, represented as a harmonic mean across the 10 morphologic classes. These findings indicate that erythrocyte morphology profiles could be measured with a high degree of accuracy with "very deep" CNNs. Further, these data support future efforts to expand classes and optimize practical performance in a clinical environment as a prelude to full implementation as a clinical tool. © 2017 American Association for Clinical Chemistry.

  6. Effects of gemfibrozil on the oxygen transport properties of erythrocytes.

    PubMed Central

    Scatena, R; Nocca, G; Messana, I; De Sole, P; Baroni, S; Zuppi, C; Castagnola, M; Giardina, B

    1995-01-01

    1. In the present study we have investigated the effects of the relatively low plasma concentrations of gemfibrozil (GFZ) found in clinical practice on the oxygen dissociation curve (ODC) of erythrocytes. 2. ODCs were measured at 30 degrees C and 37 degrees C and at pH 7.4: a) both on HbA solution and erythrocytes incubated in vitro with gemfibrozil and clofibric acid; b) on erythrocytes from healthy volunteers treated with a single oral dose of gemfibrozil. 3. These experiments showed a significant drug-induced shift of the ODC towards lower O2 affinity values without any significant modification of metabolic parameters of erythrocytes such as intracellular pH and intraerythrocytic levels of ATP and DPG. 4. In our experimental conditions gemfibrozil appears to lower both in vitro and in vivo, the partial pressure of oxygen required to give 50% of the haemes saturated with oxygen (P50) of erythrocytes from the control value of 24 +/- 0.5 mm Hg to 29 +/- 0.5 mm Hg (mean +/- s.d.; P < 0.02 by ANOVA). 5. These data clearly indicate that therapeutic doses of gemfibrozil may influence the oxygen transport properties of red cells. This effect could have relevant pharmacological and toxicological implications. PMID:7756095

  7. Atomic force microscopy of asymmetric membranes from turtle erythrocytes.

    PubMed

    Tian, Yongmei; Cai, Mingjun; Xu, Haijiao; Ding, Bohua; Hao, Xian; Jiang, Junguang; Sun, Yingchun; Wang, Hongda

    2014-08-01

    The cell membrane provides critical cellular functions that rely on its elaborate structure and organization. The structure of turtle membranes is an important part of an ongoing study of erythrocyte membranes. Using a combination of atomic force microscopy and single-molecule force spectroscopy, we characterized the turtle erythrocyte membrane structure with molecular resolution in a quasi-native state. High-resolution images both leaflets of turtle erythrocyte membranes revealed a smooth outer membrane leaflet and a protein covered inner membrane leaflet. This asymmetry was verified by single-molecule force spectroscopy, which detects numerous exposed amino groups of membrane proteins in the inner membrane leaflet but much fewer in the outer leaflet. The asymmetric membrane structure of turtle erythrocytes is consistent with the semi-mosaic model of human, chicken and fish erythrocyte membrane structure, making the semi-mosaic model more widely applicable. From the perspective of biological evolution, this result may support the universality of the semi-mosaic model.

  8. Integral membrane protein interaction with Triton cytoskeletons of erythrocytes.

    PubMed

    Sheetz, M P

    1979-10-19

    The organization of erythrocyte membrane lipids and proteins has been studied following the release of cytoplasmic components with the non-ionic detergent Triton X-100. After detergent extraction, a detergent-resistant complex called the erythrocyte cytoskeleton is separated from detergent, solubilized lipid and protein by sucrose buoyant density sedimentation. In cytoskeletons prepared under isotonic conditions all of the major erythrocyte membrane proteins are retained except for the integral protein, glycophorin, which is quantitatively solubilized and another integral glycoprotein, band 3, which is only 60% removed. When cytoskeletons are prepared in hypertonic KCl solutions, band 3 is fully solubilized along with bands 2.1 and 4.2 and several minor components. The resulting cytoskeletons have the same morphology as those prepared in isotonic buffer but they are composed of only three major peripheral proteins, spectrin, actin and band 4.1. We have designated this peripheral protein complex the 'shell' of the erythrocyte membrane, and have shown that the attachment of band 3 to the shell satisfies the criteria for a specific interaction. Although Triton did affect erythrocyte shape, cytoskeleton lipid content and the activity of membrane proteases, there was no indication that Triton altered the attachment of band 3 to the shell. We suggest that band 3 attaches to the shell as part of a ternary complex of bands 2.1, 3 and 4.2.

  9. Retention of radiolead by human erythrocytes in vitro

    SciTech Connect

    Barton, J.C.

    1989-06-15

    An in vitro method was developed to assess human erythrocyte lead uptake and release directly, rapidly, and reproducibly; the technique requires small aliquots of blood and uses silicone fluid to separate erythrocytes from their suspending media. Uptake occurred rapidly and was directly related to temperature. Increasing quantities of available elemental lead were associated with increasing absolute quantities but decreasing percentages of uptake. Low values of pH diminished the uptake and enhanced the release of radiolead by erythrocytes, and could be correlated with diminished lead-hemoglobin binding para-Chloromecuribenzoate increased and dithiothreitol inhibited radiolead uptake but neither compound affected lead release, suggesting that sulfhydryl groups are important for lead binding to the erythrocyte. Cyanamide and N-ethylmaleimide did not significantly affect the net uptake or release of radiolead. Calcium disodium EDTA, penicillamine, and dimercaprol significantly reduced lead uptake, although only incubation with dimercaprol resulted in a net removal of lead from erythrocytes. Iron and ceruloplasmin significantly decreased radiolead uptake, but inorganic metal cations other than iron, hyperosmolarity, human serum albumin, cholesterol, and transferrin had no significant effect on uptake or release.

  10. Dielectrophoretic characterization of erythrocytes: positive ABO blood types.

    PubMed

    Srivastava, Soumya K; Daggolu, Prashant R; Burgess, Shane C; Minerick, Adrienne R

    2008-12-01

    Dielectrophoretic manipulation of erythrocytes/red blood cells is investigated as a tool to identify blood type for medical diagnostic applications. Positive blood types of the ABO typing system (A+, B+, AB+ and O+) were tested and cell responses quantified. The dielectrophoretic response of each blood type was observed in a platinum electrode microdevice, delivering a field of 0.025V(pp)/microm at 1 MHz. Responses were recorded via video microscopy for 120 s and erythrocyte positions were tabulated at 20-30 s intervals. Both vertical and horizontal motions of erythrocytes were quantified via image object recognition, object tracking in MATLAB, binning into appropriate electric field contoured regions (wedges) and statistical analysis. Cells of O+ type showed relatively attenuated response to the dielectrophoretic field and were distinguished with greater than 95% confidence from all the other three blood types. AB+ cell responses differed from A+ and B+ blood types likely because AB+ erythrocytes express both the A and B glycoforms on their membrane. This research suggests that dielectrophoresis of untreated erythrocytes beyond simple dilution depends on blood type and could be used in portable blood typing devices.

  11. Calcium imaging of individual erythrocytes: problems and approaches.

    PubMed

    Kaestner, Lars; Tabellion, Wiebke; Weiss, Erwin; Bernhardt, Ingolf; Lipp, Peter

    2006-01-01

    Although in erythrocytes calcium is thought to be important in homeostasis, measurements of this ion concentration are generally seen as rather problematic because of the auto-fluorescence or absorption properties of the intracellular milieu. Here, we describe experiments to assess the usability of popular calcium indicators such as Fura-2, Indo-1 and Fluo-4. In our experiments, Fluo-4 turned out to be the preferable indicator because (i) its excitation and emission properties were least influenced by haemoglobin and (ii) it was the only dye for which excitation light did not lead to significant auto-fluorescence of the erythrocytes. From these results, we conclude that the use of indicators such as Fura-2 together with red blood cells has to be revisited critically. We thus utilized Fluo-4 in erythrocytes to demonstrate a robust but heterogeneous calcium increase in these cells upon stimulation by prostaglandin E(2) and lysophosphatidic acid. For the latter stimulus, we recorded emission spectra of individual erythrocytes to confirm largely unaltered Fluo-4 emission. Our results emphasize that in erythrocytes measurements of intracellular calcium are reliably possible with Fluo-4 and that other indicators, especially those requiring UV-excitation, appear less favourable.

  12. Thallium and rubidium permeability of human and rat erythrocyte membrane.

    PubMed

    Skulskii, I A; Manninen, V; Glasunov, V V

    1990-02-01

    Transport of Tl+ and Rb+ in human and rat erythrocytes was investigated in the presence of ouabain. The chloride-dependent cotransport of Tl+, Rb+ and Na+ was precluded by replacement of Cl- by NO3-. The inward and outward rate constants for the residual fluxes of the cations were determined by measuring the transport of 204Tl and 86Rb in double label experiments. The rate of passive transport of Tl+ exceeded that of Rb+ by one-two orders of magnitude in human as well as rat erythrocytes. The membrane barrier which contributes to the maintenance of ion gradients was shown not to be a barrier for Tl+ which easily penetrates the membrane by an unknown mechanism. In rat erythrocytes the barrier for Rb+ was 10-15 times weaker than that in human red blood cells, while the corresponding ratio of rat/human Tl+ permeabilities was about 1.8-2.0. It follows that Tl+ permeability is only slightly affected by factors modifying the permeability to alkali cations. The increase of temperature from 20 degrees to 37 degrees C resulted in a three-fourfold stimulation of the passive transport of Tl+ both in human and rat erythrocytes. The movement of Tl+ and Rb+ through the erythrocyte membrane differed substantially from their diffusion along the excitable membrane channels characterized both by poor Tl+/K+ selectivity and weak temperature dependence.

  13. Chloramines and hypochlorous acid oxidize erythrocyte peroxiredoxin 2.

    PubMed

    Stacey, Melissa M; Peskin, Alexander V; Vissers, Margreet C; Winterbourn, Christine C

    2009-11-15

    Peroxiredoxin 2 (Prx2) is an abundant thiol protein that is readily oxidized in erythrocytes exposed to hydrogen peroxide. We investigated its reactivity in human erythrocytes with hypochlorous acid (HOCl) and chloramines, relevant oxidants in inflammation. Prx2 was oxidized to a disulfide-linked dimer by HOCl, glycine chloramine (GlyCl), and monochloramine (NH(2)Cl) in a dose-dependent manner. In the absence of added glucose, Prx2 and GSH showed similar sensitivities. Second-order rate constants for the reactions of Prx2 with NH(2)Cl and GlyCl were 1.5 x 10(4) and 8 M(-1) s(-1), respectively. The NH(2)Cl value is approximately 10 times higher than that for GSH, whereas Prx2 is approximately 30 times less sensitive than GSH to GlyCl. Thus, the relative sensitivity of Prx2 to GlyCl is greater in the erythrocyte. Oxidation of erythrocyte Prx2 and GSH was less in the presence of glucose, probably because of recycling. High doses of NH(2)Cl resulted in incomplete regeneration of reduced Prx2, suggesting impairment of the recycling mechanism. Our results show that, although HOCl and chloramines are less selective than H(2)O(2), they nevertheless oxidize Prx2. Exposure to these inflammatory oxidants will result in Prx2 oxidation and could compromise the erythrocyte's ability to resist damaging oxidative insult.

  14. Elongation index of erythrocytes, study of activity of chosen erythrocyte enzymes, and the levels of glutathione, malonyldialdehyde in polycythemia vera (PV).

    PubMed

    Dąbrowski, Z; Dybowicz, A J; Marchewka, A; Teległów, A; Skotnicki, A; Zduńczyk, A; Aleksander, P; Filar-Mierzwa, K

    2011-01-01

    The principal aim of the study was to investigate rheological properties of erythrocytes obtained from patients admitted to the clinic, and diagnosed with polycythemia vera. The polycythemia vera diagnosis was based on the WHO criteria for polycythemia vera. Using a laser rheometer SSD Rheometer-Rheodyn, the elongation index of erythrocytes was determined, indicating an increased rigidity of the erythrocytes in this disease compared with the erythrocytes in healthy people. In order to explain (albeit partially) the reason for reduced elasticity, the erythrocytes of patients with polycythemia were studied for the activity of enzymes - glucose-6-phosphate dehydrogenase and acetylcholinesterase membrane enzyme, as well as the levels of glutathione and malonyldialdehyde. The elevated activities of these enzymes, the glutathione level, and elevated ‰ of reticulocytes, indicated an increased pool of juvenile erythrocyte forms; furthermore, the elevated value of malonyldialdehyde may suggest a lipid peroxidative damage in certain pool of the erythrocyte membrane in blood circulation.

  15. Increased erythrocyte lipid peroxidation in hereditary xerocytosis.

    PubMed

    Harm, W; Fortier, N L; Lutz, H U; Fairbanks, G; Snyder, L M

    1979-12-03

    Xerocytosis is a chronic hemolytic anemia with abnormal membrane function manifested by an increase in passive potassium permeability. Xerocytes demonstrate a greater susceptibility to hydrogen peroxide manifested by the production of malondialdehyde (MDA). Xerocyte membrane phospholipid and fatty acid analysis is normal except for a slight increase in phosphatidyl choline, a commensurate decrease in sphingomyelin, as well as a decrease in linoleic acid. Metabolism and glutathione stability are normal as well as plasma vitamin E levels in patients with xerocytosis. The increased susceptibility to oxidant stress is exaggerated in the "older aged" xerocyte population and correlated well with decreased intracellular potassium concentration.

  16. Storage-Induced Changes in Erythrocyte Membrane Proteins Promote Recognition by Autoantibodies

    PubMed Central

    Dinkla, Sip; Novotný, Věra M. J.; Joosten, Irma; Bosman, Giel J. C. G. M.

    2012-01-01

    Physiological erythrocyte removal is associated with a selective increase in expression of neoantigens on erythrocytes and their vesicles, and subsequent autologous antibody binding and phagocytosis. Chronic erythrocyte transfusion often leads to immunization and the formation of alloantibodies and autoantibodies. We investigated whether erythrocyte storage leads to the increased expression of non-physiological antigens. Immunoprecipitations were performed with erythrocytes and vesicles from blood bank erythrocyte concentrates of increasing storage periods, using patient plasma containing erythrocyte autoantibodies. Immunoprecipitate composition was identified using proteomics. Patient plasma antibody binding increased with erythrocyte storage time, while the opposite was observed for healthy volunteer plasma, showing that pathology-associated antigenicity changes during erythrocyte storage. Several membrane proteins were identified as candidate antigens. The protein complexes that were precipitated by the patient antibodies in erythrocytes were different from the ones in the vesicles formed during erythrocyte storage, indicating that the storage-associated vesicles have a different immunization potential. Soluble immune mediators including complement factors were present in the patient plasma immunoprecipitates, but not in the allogeneic control immunoprecipitates. The results support the theory that disturbed erythrocyte aging during storage of erythrocyte concentrates contributes to transfusion-induced alloantibody and autoantibody formation. PMID:22879923

  17. Platelet-independent adhesion of calcium-loaded erythrocytes to von Willebrand factor

    PubMed Central

    Bierings, Ruben; Meems, Henriet; Mul, Frederik P. J.; Geerts, Dirk; Vlaar, Alexander P. J.; Voorberg, Jan; Hordijk, Peter L.

    2017-01-01

    Adhesion of erythrocytes to endothelial cells lining the vascular wall can cause vaso-occlusive events that impair blood flow which in turn may result in ischemia and tissue damage. Adhesion of erythrocytes to vascular endothelial cells has been described in multiple hemolytic disorders, especially in sickle cell disease, but the adhesion of normal erythrocytes to endothelial cells has hardly been described. It was shown that calcium-loaded erythrocytes can adhere to endothelial cells. Because sickle erythrocyte adhesion to ECs can be enhanced by ultra-large von Willebrand factor multimers, we investigated whether calcium loading of erythrocytes could promote binding to endothelial cells via ultra-large von Willebrand factor multimers. We used (immunofluorescent) live-cell imaging of washed erythrocytes perfused over primary endothelial cells at venular flow rate. Using this approach, we show that calcium-loaded erythrocytes strongly adhere to histamine-stimulated primary human endothelial cells. This adhesion is mediated by ultra-large von Willebrand factor multimers. Von Willebrand factor knockdown or ADAMTS13 cleavage abolished the binding of erythrocytes to activated endothelial cells under flow. Platelet depletion did not interfere with erythrocyte binding to von Willebrand factor. Our results reveal platelet-independent adhesion of calcium-loaded erythrocytes to endothelium-derived von Willebrand factor. Erythrocyte adhesion to von Willebrand factor may be particularly relevant for venous thrombosis, which is characterized by the formation of erythrocyte-rich thrombi. PMID:28249049

  18. Altered Membrane Structure and Surface Potential in Homozygous Hemoglobin C Erythrocytes

    PubMed Central

    Tokumasu, Fuyuki; Nardone, Glenn A.; Ostera, Graciela R.; Fairhurst, Rick M.; Beaudry, Steven D.; Hayakawa, Eri; Dvorak, James A.

    2009-01-01

    Background Hemoglobin C differs from normal hemoglobin A by a glutamate-to-lysine substitution at position 6 of beta globin and is oxidatively unstable. Compared to homozygous AA erythrocytes, homozygous CC erythrocytes contain higher levels of membrane-associated hemichromes and more extensively clustered band 3 proteins. These findings suggest that CC erythrocytes have a different membrane matrix than AA erythrocytes. Methodology and Findings We found that AA and CC erythrocytes differ in their membrane lipid composition, and that a subset of CC erythrocytes expresses increased levels of externalized phosphatidylserine. Detergent membrane analyses for raft marker proteins indicated that CC erythrocyte membranes are more resistant to detergent solubilization. These data suggest that membrane raft organization is modified in CC erythrocytes. In addition, the average zeta potential (a measure of surface electrochemical potential) of CC erythrocytes was ≈2 mV lower than that of AA erythrocytes, indicating that substantial rearrangements occur in the membrane matrix of CC erythrocytes. We were able to recapitulate this low zeta potential phenotype in AA erythrocytes by treating them with NaNO2 to oxidize hemoglobin A molecules and increase levels of membrane-associated hemichromes. Conclusion Our data support the possibility that increased hemichrome deposition and altered lipid composition induce molecular rearrangements in CC erythrocyte membranes, resulting in a unique membrane structure. PMID:19503809

  19. Membrane glycophorins in Sta blood group erythrocytes.

    PubMed

    Blumenfeld, O O; Adamany, A M; Kikuchi, M; Sabo, B; McCreary, J

    1986-04-25

    Structural and immunochemical studies of glycophorins isolated from erythrocytes of an individual homozygous for the M Sta blood group phenotype are described. Reactivities with specific monoclonal antibodies indicated that two major M and N glycophorins were present. The M and N Sta glycophorins were resolved by Lens culinaris lectin affinity chromatography. The N species was not held on the lectin but the M species, like control alpha glycophorins, was retained and could be eluted with alpha-methylmannoside. The two proteins were present in almost equimolar amounts. Studies of the CNBr fragments provided evidence that the structure of M Sta glycophorin is the same as that of the usual M alpha glycophorin but that the N Sta glycophorin is a variant. The amino-terminal octapeptides of the M and N species were similar in amino acid and carbohydrate composition to those isolated, respectively, from M and N alpha glycophorins. The studies focused on CNBr glycopeptide B that, in control alpha glycophorins, extends from amino acid residues 9 to 81. The fragment from the M species exhibited properties identical to those of the corresponding fragment of control alpha glycophorins in terms of size, chromatographic behavior, amino acid and carbohydrate contents and compositions, the presence of O-glycosidically linked saccharides and a single Asn-linked carbohydrate unit. The structures of the O-linked units were inferred experimentally to be NeuAc(alpha 2,3)Gal-(beta 1,3)GalNAc and NeuAc(alpha 2,3)Gal(beta 1,3) [NeuAc(alpha 2,6)]GalNAc, present in a ratio similar to that found in controls; and the Asn-linked unit also appeared to be as in the control. The tryptic glycopeptide pattern of the M Sta glycophorin CNBr fragment B was identical to the pattern of the corresponding control fragment, and the composition of the tryptic peptides suggested sequence identity with the control fragment. In contrast, the N Sta glycophorin yielded two CNBr glycopeptides B; both contained

  20. Determination of somatic mutations in human erythrocytes by cytometry

    SciTech Connect

    Jensen, R.H.; Langlois, R.G.; Bigbee, W.L.

    1985-06-21

    Flow cytometric assays of human erythrocytes labeled with monoclonal antibodies specific for glycophorin A were used to enumerate variant cells that appear in peripheral blood as a result of somatic gene-loss mutations in erythrocyte precursor cells. The assay was performed on erythrocytes from 10 oncology patients who had received at least one treatment from radiation or mutagenic chemotherapy at least 3 weeks before being assayed. The patients were suffering from many different malignancies (e.g., breast, renal, bone, colon and lung), and were treated with several different mutagenic therapeutics (e.g., cisplatinum, adriamycin, daunomycin, or cyclophosphamide). The frequency of these variant cells is an indication of the amount of mutagenic damage accumulated in the individual's erythropoietic cell population. Comparing these results to HPRT clonogenic assays, we find similar baseline frequencies of somatic mutation as well as similar correlation with mutagenic exposures. 9 refs., 3 figs., 1 tab.

  1. The interactions of fibrinogen and dextrans with erythrocytes

    PubMed Central

    Rampling, M.; Sirs, John A.

    1972-01-01

    1. The rate of packing of erythrocytes in whole blood, under a centrifugal field of 200 g, has been studied using an automatic recording centrifuge. 2. Reduction of the supernatant fibrinogen concentration, by repeatedly washing the cells, lowers the rate of packing and reduces the cell flexibility. 3. Resuspending the cells in their own plasma or in isotonic solutions containing fibrinogen restores their flexibility. 4. Rouleaux formation has been shown to have no effect on the rate of packing by comparison of blood diluted with plasma, isotonic NaCl or Ringer—Locke solutions. While the degree of rouleaux formation varied with the diluent used, the rate of packing and packed cell haematocrit were the same, for the same dilution. 5. Both formalin and dextran altered the degree of rouleaux formation and reduced erythrocyte flexibility. Dextran was found to act indirectly on the erythrocyte flexibility by reducing the plasma fibrinogen concentration. PMID:5046146

  2. Optical Assay of Erythrocyte Function in Banked Blood

    NASA Astrophysics Data System (ADS)

    Bhaduri, Basanta; Kandel, Mikhail; Brugnara, Carlo; Tangella, Krishna; Popescu, Gabriel

    2014-09-01

    Stored red blood cells undergo numerous biochemical, structural, and functional changes, commonly referred to as storage lesion. How much these changes impede the ability of erythrocytes to perform their function and, as result, impact clinical outcomes in transfusion patients is unknown. In this study we investigate the effect of the storage on the erythrocyte membrane deformability and morphology. Using optical interferometry we imaged red blood cell (RBC) topography with nanometer sensitivity. Our time-lapse imaging quantifies membrane fluctuations at the nanometer scale, which in turn report on cell stiffness. This property directly impacts the cell's ability to transport oxygen in microvasculature. Interestingly, we found that cells which apparently maintain their normal shape (discocyte) throughout the storage period, stiffen progressively with storage time. By contrast, static parameters, such as mean cell hemoglobin content and morphology do not change during the same period. We propose that our method can be used as an effective assay for monitoring erythrocyte functionality during storage time.

  3. Formulation and Drug Loading Features of Nano-Erythrocytes

    NASA Astrophysics Data System (ADS)

    Dong, Xiaoting; Niu, Yawei; Ding, Yi; Wang, Yuemin; Zhao, Jialan; Leng, Wei; Qin, Linghao

    2017-03-01

    Nano erythrocyte ghosts have recently been used as drug carriers of water-soluble APIs due to inherit biological characteristics of good compatibility, low toxicity, and small side-effect. In this study, we developed a novel drug delivery system based on nano erythrocyte ghosts (STS-Nano-RBCs) to transport Sodium Tanshinone IIA sulfonate (STS) for intravenous use in rat. STS-Nano-RBCs were prepared by hypotonic lysis and by extrusion methods, and its biological properties were investigated compared with STS injection. The results revealed that STS-Nano-RBCs have narrow particle size distribution, good drug loading efficiency, and good stability within 21 days. Compared with STS injection, STS-Nano-RBCs extended the drug release time in vitro and in vivo with better repairing effect on oxidative stress-impaired endothelial cells. These results suggest that the nano erythrocyte ghosts system could be used to deliver STS.

  4. Aggregation of intramembrane particles in erythrocyte membranes treated with diamide.

    PubMed

    Kurantsin-Mills, J; Lessin, L S

    1981-02-20

    Treatment of erythrocytes with diamide (diazene dicarboxylic acid bis-(N,N-dimethylamide)) results in oxidation of sulfhydryl groups of the membrane, and cross-linking of membrane proteins into high molecular weight complexes. Concomitant freeze-etching studies show aggregation of intramembrane particles on the protoplasmic fracture face of erythrocyte ghost membranes treated with the oxidant. Furthermore, after a 3 h incubation of erythrocytes with 10 mM diamide at 37 degrees C, cellular energy levels declined to about 70% of control values. The data suggest that disulfide cross-linking of the major membrane proteins releases the apparent physical occlusion of the band 3 proteins within the interstices of the cytoskeletal shell. This results in the translational mobility of band 3 proteins which is reflected ultra-structurally in the freeze-etch images.

  5. Constitutive equations of erythrocyte membrane incorporating evolving preferred configuration.

    PubMed Central

    Tözeren, A; Skalak, R; Fedorciw, B; Sung, K L; Chien, S

    1984-01-01

    The erythrocyte membrane is modeled as a two-dimensional viscoelastic continuum that evolves under the application of stress. The present analysis of the erythrocyte membrane is motivated by the recent development of knowledge about its molecular structure. The constitutive equations proposed in the present analysis explain in a consistent manner the data on both the deformation and recovery phases of the micropipette experiment. The rheological equations of the present study are applied in a later section to the analysis of a plane membrane deformation that is quantitatively similar to the tank-treading motion of the erythrocytes in a shear field. The computations yield useful information on how the membrane viscosity becomes a more dominant feature in tank-treading motion. The material constants appearing in the proposed constitutive equations may be useful indications of the biochemical state of the membrane in health and disease. PMID:6713066

  6. Specific binding of beta-endorphin to normal human erythrocytes

    SciTech Connect

    Chenet, B.; Hollis, V. Jr.; Kang, Y.; Simpkins, C.

    1986-03-05

    Beta-endorphin (BE) exhibits peripheral functions which may not be mediated by interactions with receptors in the brain. Recent studies have demonstrated binding of BE to both opioid and non-opioid receptors on lymphocytes and monocytes. Abood has reported specific binding of /sup 3/H-dihydromorphine in erythrocytes. Using 5 x 10/sup -11/M /sup 125/I-beta-endorphin and 10/sup -5/M unlabeled BE, they have detected 50% specific binding to human erythrocytes. This finding is supported by results from immunoelectron microscopy using rabbit anti-BE antibody and biotinylated secondary antibody with avidin-biotin complexes horseradish peroxidase. Binding is clearly observed and is confined to only one side of the cells. Conclusions: (1) BE binding to human erythrocytes was demonstrated by radioreceptor assay and immunoelectron microscopy, and (2) BE binding sites exist on only one side of the cells.

  7. Influence of glucose solution on the erythrocyte scattering properties

    NASA Astrophysics Data System (ADS)

    Naumenko, Elena K.

    2007-02-01

    The scattering characteristics of erythrocytes (the coefficients of extinction, scattering, absorption and indicatrixes) were calculated with using the theory Mie for spherical homogeneous spherical particles and the theory for two-layered spherical concentric particles. Transmission spectrums were measured with the spectrophotometer Cary500 in the wavelength range 460-860 n m. Specimens of liquid for imbedding of erythrocytes were preparing by mixing blood plasma a nd 50-% glucose solution with the different concentrations. The volume concentrations (hematocrit) of red blood cells (RBC) were maintained to have the same values in all specimens by adding equal volume of whole blood to immersion liquid of equal volumes. It has been shown that, contrary to theretical prediction, transmission is decreasing for all wavelengths with the addition of glucose solution in interval glucose volume concentrations 0.05 - 0.35-0.4. The subsequent increase of the glucose concentration leads to increasing of spectral transmission as a result of erythrocyte hemolysis.

  8. Effect of osmotic pressure to bioimpedance indexes of erythrocyte suspensions

    NASA Astrophysics Data System (ADS)

    Melnikov, A. A.; Nikolaev, D. V.; Malahov, M. V.; Smirnov, A. V.

    2012-12-01

    In the paper we studied effects of osmotic modification of red blood cells on bioimpedance parameters of erythrocyte suspension. The Cole parameters: the extracellular (Re) and intracellular (Ri) fluid resistance, the Alpha parameter, the characteristic frequency (Fchar) and the cell membranes capacitance (Cm) of concentrated erythrocyte suspensions were measured by bioimpedance analyser in the frequency range 5 - 500 kHz. Erythrocytes were incubated in hypo-, hyper- and isoosmotic solutions to achieve changes in cell volume. It was found that Re and Alpha increased in the suspensions with low osmolarity and decreased in the hypertonic suspensions. Ri, Fchar and Cm were higher in the hyperosmotic and were lower in the hypoosmotic suspensions. Correlations of all BIS parameters with MCV were obtained, but multiple regression analysis showed that only Alpha parameter was independently related to MCV (β=0.77, p=0.01). Thus Alpha parameter may be related the mean corpuscular volume of cells.

  9. Updated role of nitric oxide in disorders of erythrocyte function.

    PubMed

    Kahn, Marc J; Maley, Jason H; Lasker, George F; Kadowitz, Philip J

    2013-03-01

    Nitric oxide is a potent vasodilator that plays a critical role in disorders of erythrocyte function. Sickle cell disease, paroxysmal nocturnal hemoglobinuria and banked blood preservation are three conditions where nitric oxide is intimately related to dysfunctional erythrocytes. These conditions are accompanied by hemolysis, thrombosis and vasoocclusion. Our understanding of the interaction between nitric oxide, hemoglobin, and the vasculature is constantly evolving, and by defining this role we can better direct trials aimed at improving the treatments of disorders of erythrocyte function. Here we briefly discuss nitric oxide's interaction with hemoglobin through the hypothesis regarding Snitrosohemoglobin, deoxyhemoglobin, and myoglobin as nitrite reductases. We then review the current understanding of the role of nitric oxide in sickle cell disease, paroxysmal nocturnal hemoglobinuria, and banked blood, and discuss therapeutics in development to target nitric oxide in the treatment of some of these disorders.

  10. Segmentation of leukocytes and erythrocytes in blood smear images.

    PubMed

    Bergen, Tobias; Steckhan, Dirk; Wittenberg, Thomas; Zerfass, Thorsten

    2008-01-01

    Differential blood count is a standard method in hematological laboratory diagnosis. In the course of developing a computer-assisted microscopy system for the generation of differential blood counts, the detection and segmentation of white and red blood cells forms an essential step and its exactness is a fundamental prerequisite for the effectiveness of the subsequent classification step. We propose a method for the exact segmentation of leukocytes and erythrocytes in a simultaneous and cooperative way. We combine pixel-wise classification with template matching to locate erythrocytes and use a level-set approach in order to get the exact cell contours of leukocyte nucleus and plasma regions as well as erythrocyte regions. An evaluation comparing the performance of the algorithm to the manual segmentation performed by several persons yielded good results.

  11. New insights into erythrocyte membrane organization and microelasticity.

    PubMed

    Discher, D E

    2000-03-01

    The erythrocyte membrane's ability to withstand the stresses of circulation has its origins in various levels of structural organization. Central to this membrane's structure-function relationships is a quasi-two-dimensional meshwork of spectrin-actin-protein 4.1 that imparts a resilence to the overlying plasma membrane. New insights into the nonlinear microelasticity of this substructure are being provided by experiments that range from elegant atomic force microscopy tests of single spectrin chains to patterned photobleaching of the micropipette-deformed network. Breakthroughs in atomic level structure determinations are further complemented by emerging biophysical studies of transgenically engineered mice lacking specific erythrocyte membrane proteins. Recent theoretical efforts (computational approaches most notably) also have begun to correlate molecular scale aspects of structure with mechanical measures. All of this recent activity in the biophysics of erythrocyte structure-function is certain to challenge and refine some of the most basic tenets in cell membrane structure-function.

  12. Identification of novel membrane structures in Plasmodium falciparum infected erythrocytes.

    PubMed

    Clavijo, C A; Mora, C A; Winograd, E

    1998-01-01

    Little is known about the molecular mechanisms underlying the release of merozoites from malaria infected erythrocytes. In this study membranous structures present in the culture medium at the time of merozoite release have been characterized. Biochemical and ultrastructural evidence indicate that membranous structures consist of the infected erythrocyte membrane, the parasitophorous vacuolar membrane and a residual body containing electron dense material. These are subcellular compartments expected in a structure that arises as a consequence of merozoite release from the infected cell. Ultrastructural studies show that a novel structure extends from the former parasite compartment to the surface membrane. Since these membrane modifications are detected only after merozoites have been released from the infected erythrocyte, it is proposed that they might play a role in the release of merozoites from the host cell.

  13. Simulation of dielectric spectra of erythrocytes with various shapes

    NASA Astrophysics Data System (ADS)

    Asami, Koji

    2009-07-01

    Dielectric spectra of erythrocyte suspensions were numerically simulated over a frequency range from 1 kHz to 100 MHz to study the effects of erythrocyte shape on the dielectric spectra. First, a biconcave-discoid model for normal erythrocytes or discocytes was compared with an equivalent oblate spheroid model. The two models showed similar dielectric spectra to each other, suggesting that the oblate spheroid model can be approximately used for discocytes. Second, dielectric spectra were simulated for discocytes deformed by osmotic cell swelling. The deformation resulted in the increase in relaxation intensity and the sharpening of spectrum shape. Finally, dielectric spectra were simulated for echinocytes, stomatocytes and sickle cells that are induced by chemical agents and diseases. The dielectric spectra of echinocytes and stomatocytes were similar to each other, being distinguishable from that of discocytes and quite different from that of sickle cells.

  14. Comparison of three optical methods to study erythrocyte aggregation.

    PubMed

    Zhao, H; Wang, X; Stoltz, J F

    1999-01-01

    The aim of this work was to evaluate three optical methods designed to determine erythrocyte aggregation: Erythroaggregometer (EA; Regulest, France), Laser-assisted Optical Rotational Cell Analyzer (LORCA; Mechatronics, Netherlands) and Fully Automatic Erythrocyte Aggregometer (FAEA; Myrenne, GmbH, Germany). Blood samples were taken from fifty donors (26 males and 24 females). The aggregation of normal red blood cell (RBC) and RBCs suspended in three normo- and hyperaggregating suspending media was studied. The results revealed some significant correlations between parameters measured by these instruments, in particular, between the indexes of aggregation of EA and LORCA. Further, RBC aggregation of multiple myeloma patients was also studied and a hyper erythrocyte aggregation state was found by EA and LORCA.

  15. Stimulating Effect of Sclareol on Suicidal Death of Human Erythrocytes.

    PubMed

    Signoretto, Elena; Laufer, Stefan A; Lang, Florian

    2016-01-01

    The diterpene alcohol Sclareol has been proposed for the treatment of malignancy. In analogy to apoptosis of nucleated cells, erythrocytes may enter eryptosis, a suicidal cell death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Cellular mechanisms involved in the triggering of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, p38 kinase and casein kinase 1α. The present study explored, whether Sclareol induces eryptosis and, if so, shed light on the mechanisms involved. Phosphatidylserine abundance at the erythrocyte surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, abundance of reactive oxygen species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA)-dependent fluorescence, and ceramide abundance at the erythrocyte surface utilizing specific antibodies. Hemolysis was estimated from haemoglobin concentration in the supernatant. A 48 hours exposure of human erythrocytes to Sclareol (≥ 50 µM) significantly increased the percentage of annexin-V-binding cells without significantly modifying the average forward scatter, DCF-fluorescence or ceramide abundance. Sclareol (≥ 50 µM) further triggered hemolysis. Sclareol (100 µM) significantly increased Fluo3-fluorescence, but the effect of Sclareol on annexin-V-binding was not significantly blunted by removal of extracellular Ca2+. Instead, the effect of Sclareol on annexin-V-binding was significantly blunted in the presence of p38 kinase inhibitor skepinone (2 µM) and in the presence of casein kinase 1α inhibitor D4476 (10 µM). Sclareol triggers phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to activation of p38 kinase and casein kinase 1α. © 2016 The Author(s) Published by S. Karger AG, Basel.

  16. Triggering of Eryptosis, the Suicidal Erythrocyte Death, by Perifosine.

    PubMed

    Egler, Jasmin; Lang, Florian

    2017-01-01

    The alkylphospholipid perifosine is used for the treatment of malignancy. The substance is effective by triggering suicidal tumor cell death or apoptosis. Side effects of perifosine include anemia. At least in theory, perifosine-induced anemia could result from stimulation of suicidal erythrocyte death or eryptosis. Hallmarks of eryptosis are cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Cellular mechanisms participating in the orchestration of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, increase of ceramide abundance, as well as activation of staurosporine sensitive protein kinase C and/or of SB203580 sensitive p38 kinase. The present study explored, whether perifosine induces eryptosis and, if so, whether its effect involves and/or requires Ca2+ entry, oxidative stress, ceramide and kinase activation. Flow cytometry was employed to quantify phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, reactive oxygen species (ROS) abundance from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was estimated from hemoglobin concentration in the supernatant. A 24 hours exposure of human erythrocytes to perifosine (2.5 µg/ml) significantly increased the percentage of annexin-V-binding cells, significantly decreased average forward scatter, significantly increased the percentage of shrunken erythrocytes, and significantly decreased the percentage of swollen erythrocytes. Perifosine significantly increased the percentage of hemolytic erythrocytes. Perifosine significantly increased Fluo3-fluorescence, but decreased DCFDA fluorescence and ceramide abundance. The effect of perifosine on annexin-V-binding was significantly blunted by removal of extracellular Ca2+ and by addition of staurosporine (1 µM), but not by addition of SB203580 (2 µ

  17. Accelerated senescence of human erythrocytes cultured with Plasmodium falciparum.

    PubMed

    Omodeo-Salè, Fausta; Motti, Anna; Basilico, Nicoletta; Parapini, Silvia; Olliaro, Piero; Taramelli, Donatella

    2003-07-15

    Red blood cells infected withPlasmodium falciparum(IRBCs) undergo changes primarily in their membrane composition that contribute to malaria pathogenesis. However, all manifestations (eg, anemia) cannot be accounted for by IRBCs alone. Uninfected erythrocytes (URBCs) may play a role, but they have been under-researched. We wanted to document changes in the erythrocyte membrane that could contribute to URBC reduced life span and malaria-associated anemia. Human erythrocytes were cultured withP falciparumand washed at the trophozoite stage. IRBCs and URBCs were separated on Percoll density gradient, thus obtaining erythrocyte fractions of different densities/ages. IRBC- and URBC-purified membranes were analyzed and compared with control normal erythrocytes (NRBCs) of the same age, from the same donor, kept in the same conditions.P falciparumaccelerated aging of both IRBCs and URBCs, causing a significant shift in the cell population toward the denser (old) fraction. Protein, phospholipid, and cholesterol content were reduced in IRBCs and young URBCs. Young and medium uninfected fractions had higher levels of lipid peroxidation and phospholipid saturation (because of the loss of polyunsaturated fatty acids, PUFAs) and lower phosphatidylserine. In IRBCs, thiobarbituric reactive substances (TBARSs) were higher, and PUFAs and phosphatidylserine lower than in NRBCs and URBCs. In comparison, trophozoite membranes had lower phospholipid (particularly sphingomyelin and phosphatidylserine) and cholesterol content and a higher degree of saturation. Parasite-induced peroxidative damage might account for these modifications. In summary, we demonstrated that membrane damage leading to accelerated senescence of both infected and uninfected erythrocytes will likely contribute to malaria anemia.

  18. Erythrocyte Stiffness during Morphological Remodeling Induced by Carbon Ion Radiation

    PubMed Central

    Zhang, Baoping; Liu, Bin; Zhang, Hong; Wang, Jizeng

    2014-01-01

    The adverse effect induced by carbon ion radiation (CIR) is still an unavoidable hazard to the treatment object. Thus, evaluation of its adverse effects on the body is a critical problem with respect to radiation therapy. We aimed to investigate the change between the configuration and mechanical properties of erythrocytes induced by radiation and found differences in both the configuration and the mechanical properties with involving in morphological remodeling process. Syrian hamsters were subjected to whole-body irradiation with carbon ion beams (1, 2, 4, and 6 Gy) or X-rays (2, 4, 6, and 12 Gy) for 3, 14 and 28 days. Erythrocytes in peripheral blood and bone marrow were collected for cytomorphological analysis. The mechanical properties of the erythrocytes were determined using atomic force microscopy, and the expression of the cytoskeletal protein spectrin-α1 was analyzed via western blotting. The results showed that dynamic changes were evident in erythrocytes exposed to different doses of carbon ion beams compared with X-rays and the control (0 Gy). The magnitude of impairment of the cell number and cellular morphology manifested the subtle variation according to the irradiation dose. In particular, the differences in the size, shape and mechanical properties of the erythrocytes were well exhibited. Furthermore, immunoblot data showed that the expression of the cytoskeletal protein spectrin-α1 was changed after irradiation, and there was a common pattern among its substantive characteristics in the irradiated group. Based on these findings, the present study concluded that CIR could induce a change in mechanical properties during morphological remodeling of erythrocytes. According to the unique characteristics of the biomechanical categories, we deduce that changes in cytomorphology and mechanical properties can be measured to evaluate the adverse effects generated by tumor radiotherapy. Additionally, for the first time, the current study provides a new

  19. The effect of simvastatin on erythrocyte membrane fluidity during oxidative stress induced by cardiopulmonary bypass: a randomized controlled study.

    PubMed

    Coccia, Raffaella; Spadaccio, Cristiano; Foppoli, Cesira; Perluigi, Marzia; Covino, Elvio; Lusini, Mario; Chello, Massimo

    2007-08-01

    Abnormal erythrocyte deformability can cause severe complications during cardiopulmonary bypass (CPB) surgery, including both hemolysis and perfusion abnormalities. The goals of this study were to evaluate changes in erythrocyte membrane fluidity and lipid peroxidation during CPB and to examine the effect of simvastatin treatment on these parameters. Patients undergoing cardiac surgery involving CPB were selected and randomized to receive either simvastatin 40 mg/d or placebo for 3 weeks before surgery. Three blood samples were obtained at different times during surgery for analysis of erythrocyte membrane fluidity, anion permeability, and lipid peroxidation. Erythrocyte ghosts were prepared and incubated with a lipophilic fluorescent probe (diphenyl-hexatriene), and fluorescence anisotropy was evaluated by spectrophotofluorimetric assay as a measure of membrane fluidity. Anion permeability was evaluated by the specific absorption of methemoglobin (CM) at 590 and 635 nm after treatment of heparinized blood with NaNO2. The formation of thiobarbituric acid-reactive substances was evaluated as an index of lipid peroxidation. Aspartate transaminase and lactate dehydrogenase were also measured as indices of hemolysis. Forty patients met the inclusion criteria (20 simvastatin, 20 placebo). Their characteristics differed significantly at baseline only in terms of the lipid profile; the statin group had higher levels of high-density lipoprotein cholesterol (P = 0.01) and lower levels of low-density lipoprotein cholesterol (P = 0.001) than the placebo group. CPB was found to significantly modify characteristics of the erythrocyte membrane. Compared with preoperative values, CPB induced decreases in both mean (SD) erythrocyte membrane fluidity and anion permeability (preoperative CM: 0.69 [0.02]; 24-hour postoperative CM: 0.18 [0.02]; P < 0.001) and an increase in mean (SD) membrane lipid peroxidation (preoperative malonyl dialdehyde [MDA]: 0.21 [0.01] nmol/mL; postoperative

  20. Purification and sensitivity of Clostridium chauvoei hemolysin to various erythrocytes.

    PubMed

    Mudenda Hang'ombe, Bernard; Kohda, Tomoko; Mukamoto, Masafumi; Kozaki, Shunji

    2006-07-01

    Using ammonium sulphate fractionation, the Clostridium chauvoei hemolysin was purified by cation exchange chromatography and sephacryl S-100 gel filtration. The molecular mass of the hemolysin, determined by SDS-PAGE was found to be approximately 27kDa. The activity of the hemolysin was determined in erythrocytes of various animals, with sensitivities observed in the order of cow, sheep, chicken, rabbit, rat, mouse, dog and horse. Temperature affected the sensitivity of erythrocytes to C. chauvoei hemolysin. These results may reflect distinct characteristics of the hemolytic activity of C. chauvoei hemolysin and that the hemolysin may be pore-forming.

  1. Electrophysiological studies of malaria parasite-infected erythrocytes: Current status

    PubMed Central

    Staines, Henry M.; Alkhalil, Abdulnaser; Allen, Richard J.; De Jonge, Hugo R.; Derbyshire, Elvira; Egée, Stéphane; Ginsburg, Hagai; Hill, David A.; Huber, Stephan M.; Kirk, Kiaran; Lang, Florian; Lisk, Godfrey; Oteng, Eugene; Pillai, Ajay D.; Rayavara, Kempaiah; Rouhani, Sherin; Saliba, Kevin J.; Shen, Crystal; Solomon, Tsione; Thomas, Serge L. Y.; Verloo, Patrick; Desai, Sanjay A.

    2009-01-01

    The altered permeability characteristics of erythrocytes infected with malaria parasites have been a source of interest for over 30 years. Recent electrophysiological studies have provided strong evidence that these changes reflect transmembrane transport through ion channels in the host erythrocyte plasma membrane. However, conflicting results and differing interpretations of the data have led to confusion in this field. In an effort to unravel these issues, the groups involved recently came together for a week of discussion and experimentation. In this article, the various models for altered transport are reviewed, together with the areas of consensus in the field and those that require a better understanding. PMID:17292372

  2. Laser diffractometry of erythrocyte deformation under hypo-osmotic hemolysis

    NASA Astrophysics Data System (ADS)

    Bessmeltsev, Stanislav S.; Lendiaev, Alexander V.; Skvortsova, Yulia A.; Tarlykov, Vladimir A.

    2000-11-01

    The experimental research and theoretical modeling of average radius and refractive index change of spherocytes aggregation of ill and well people under the swelling in solutions of various osmolarity and by taking into account the rigidity of the erythrocyte membrane have been carried out. The spasmodic character of decrease of spherocyte radius has been discovered for the first time. It took place under an NaCl concentration on the order 0.50 - 0.35%. The correlation of the erythrocyte membrane rigidity with a 'jump' value and its position has been demonstrated. The experimental researches of the refractive index have confirmed the spasmodic model of change to the spherocyte radius.

  3. Erythrocyte-derived optical nano-vesicles as theranostic agents

    NASA Astrophysics Data System (ADS)

    Mac, Jenny T.; Nunez, Vicente; Bahmani, Baharak; Guerrero, Yadir; Tang, Jack; Vullev, Valentine I.; Anvari, Bahman

    2015-07-01

    We have engineered nano-vesicles, derived from erythrocytes, which can be doped with various near infrared (NIR) organic chromophores, including the FDA-approved indocyanine green (ICG). We refer to these vesicles as NIR erythrocyte-mimicking transducers (NETS) since in response to NIR photo-excitation they can generate heat or emit fluorescent light. Using biochemical methods based on reduction amination, we have functionalized the surface of NET with antibodies to target specific biomolecules. We present results that demonstrate the effectiveness of NETs in targeted imaging of cancer cells that over-express the human epidermal growth factor receptor-2 (HER2).

  4. Erythrocyte membrane fatty acids in multiple myeloma patients.

    PubMed

    Jurczyszyn, Artur; Czepiel, Jacek; Gdula-Argasińska, Joanna; Czapkiewicz, Anna; Biesiada, Grażyna; Dróżdż, Mirosław; Perucki, William; Castillo, Jorge J

    2014-10-01

    Mounting data show that fatty acids (FA) and fatty acid synthase (FAS) function could be potential targets for multiple myeloma (MM) therapy. Our study aimed at comparing the FA composition of erythrocyte membranes of MM patients and healthy controls. MM patients had higher saturated FA and n-6 polyunsaturated FA (PUFA) and lower monounsaturated, n-3 PUFA and trans-FA indices than controls. The n-3/n-6 PUFA ratio was lower in MM patients and there was distinct clustering of variants of individual FA in MM patients. The FA content of erythrocyte membrane could serve as a diagnostic and/or predictive biomarker in MM.

  5. Autoshaping of abnormal children.

    PubMed

    Deckner, C W; Wilcox, L M; Maisto, S A; Blanton, R L

    1980-09-01

    Three experimentally naive abnormal children were exposed to a terminal operant contingency, i.e., reinforcement was delivered only if the children pressed a panel during intervals when it was lighted. Despite the absence of both successive approximation and manual shaping, it was found that each child began to respond discriminatively within a small number of trials. These data replicated previous animal studies concerned with the phenomena of autoshaping and signal-controlled responding. It was also found, however, that one type of autoshaping, the classical conditioning procedure, had a powerful suppressive effect on the discriminative responding. An experimental analysis that consisted procedure, had a powerful suppressive effect on discriminative responding. An experimental analysis that consisted of intrasubject reversal an multiple baseline designs established the internal validity of the findings. The finding of rapid acquisition of signal-controlled responding obtained with the initial procedure is suggessted to have practical significance. The disruptive effects of the classical form of autoshaping are discussed in terms of negative behavioral contrast.

  6. Communication and abnormal behaviour.

    PubMed

    Crown, S

    1979-01-01

    In this paper the similarities between normal and abnormal behaviour are emphasized and selected aspects of communication, normal and aberrant, between persons are explored. Communication in a social system may be verbal or non-verbal: one person's actions cause a response in another person. This response may be cognitive, behavioural or physiological. Communication may be approached through the individual, the social situation or social interaction. Psychoanalysis approaches the individual in terms of the coded communications of psychoneurotic symptoms or psychotic behaviour; the humanist-existential approach is concerned more with emotional expression. Both approaches emphasize the development of individual identity. The interaction between persons and their social background is stressed. Relevant are sociological concepts such as illness behaviour, stigma, labelling, institutionalization and compliance. Two approaches to social interactions are considered: the gamesplaying metaphor, e.g. back pain as a psychosocial manipulation--the 'pain game'; and the 'spiral of reciprocal perspectives' which emphasizes the interactional complexities of social perceptions. Communicatory aspects of psychological treatments are noted: learning a particular metaphor such as 'resolution' of the problem (psychotherapy), learning more 'rewarding' behaviour (learning theory) or learning authenticity or self-actualization (humanist-existential).

  7. [Abnormality of thyroid function].

    PubMed

    Masamune, Taishi; Matsukawa, Takashi

    2010-07-01

    The thyroid hormones are synthesized by iodine. Thyroid dysfunction can develop in patients who have received treatment with iodine-containing contrast media or treatment with amiodarone. Thyrotoxicosis is a symptom due to high levels of thyroid hormone. The entity most threatened is the cardiovascular system. beta-adrenergic receptor blockade can control the heart rate. And a decreasing heart rate may improve heart-pumping function. We should aim to avoid surgery on any patients whose thyroid function is abnormal. The avoidance of a thyroid storm is the goal in managing hyperthyroid patients. Suppression of the sympathetic tone and maintenance of a deep level of surgical anesthesia are prudent. Thyroid storm is rare nowadays but still carries a high mortality. Precipitating factors include infection, surgery, childbirth or trauma, et al. Hypothyroid patients are sensitive to the effects of anesthetic agents and many drugs, including opioids. Mild hypothyroidism may have little perioperative significance. However, overt hypothyroidism can develop in a high percentage of patients with history of subclinical hypothyroidism. An untreated patient with hypothyroidism may present as an emergency with myxedema coma. Myxedema coma is rare but carries a high mortality. Precipitating factors include hypothermia, surgery, trauma, sedative drugs, et al.

  8. Calpain-1 knockout reveals broad effects on erythrocyte deformability and physiology

    PubMed Central

    Wieschhaus, Adam; Khan, Anwar; Zaidi, Asma; Rogalin, Henry; Hanada, Toshihiko; Liu, Fei; De Franceschi, Lucia; Brugnara, Carlo; Rivera, Alicia; Chishti, Athar H.

    2014-01-01

    Pharmacological inhibitors of cysteine proteases have provided useful insights into the regulation of calpain activity in erythrocytes. However, the precise biological function of calpain activity in erythrocytes remains poorly understood. Erythrocytes express calpain-1, an isoform regulated by calpastatin, the endogenous inhibitor of calpains. In the present study, we investigated the function of calpain-1 in mature erythrocytes using our calpain-1-null [KO (knockout)] mouse model. The calpain-1 gene deletion results in improved erythrocyte deformability without any measurable effect on erythrocyte lifespan in vivo. The calcium-induced sphero-echinocyte shape transition is compromised in the KO erythrocytes. Erythrocyte membrane proteins ankyrin, band 3, protein 4.1R, adducin and dematin are degraded in the calcium-loaded normal erythrocytes but not in the KO erythrocytes. In contrast, the integrity of spectrin and its state of phosphorylation are not affected in the calcium-loaded erythrocytes of either genotype. To assess the functional consequences of attenuated cytoskeletal remodelling in the KO erythrocytes, the activity of major membrane transporters was measured. The activity of the K+–Cl− co-transporter and the Gardos channel was significantly reduced in the KO erythrocytes. Similarly, the basal activity of the calcium pump was reduced in the absence of calmodulin in the KO erythrocyte membrane. Interestingly, the calmodulin-stimulated calcium pump activity was significantly elevated in the KO erythrocytes, implying a wider range of pump regulation by calcium and calmodulin. Taken together, and with the atomic force microscopy of the skeletal network, the results of the present study provide the first evidence for the physiological function of calpain-1 in erythrocytes with therapeutic implications for calcium imbalance pathologies such as sickle cell disease. PMID:22870887

  9. Python erythrocytes are resistant to α-hemolysin from Escherichia coli.

    PubMed

    Larsen, Casper K; Skals, Marianne; Wang, Tobias; Cheema, Muhammad U; Leipziger, Jens; Praetorius, Helle A

    2011-12-01

    α-Hemolysin (HlyA) from Escherichia coli lyses mammalian erythrocytes by creating nonselective cation pores in the membrane. Pore insertion triggers ATP release and subsequent P2X receptor and pannexin channel activation. Blockage of either P2X receptors or pannexin channels reduces HlyA-induced hemolysis. We found that erythrocytes from Python regius and Python molurus are remarkably resistant to HlyA-induced hemolysis compared to human and Trachemys scripta erythrocytes. HlyA concentrations that induced maximal hemolysis of human erythrocytes did not affect python erythrocytes, but increasing the HlyA concentration 40-fold did induce hemolysis. Python erythrocytes were more resistant to osmotic stress than human erythrocytes, but osmotic stress tolerance per se did not confer HlyA resistance. Erythrocytes from T. scripta, which showed higher osmotic resistance than python erythrocytes, were as susceptible to HlyA as human erythrocytes. Therefore, we tested whether python erythrocytes lack the purinergic signalling known to amplify HlyA-induced hemolysis in human erythrocytes. P. regius erythrocytes increased intracellular Ca²⁺ concentration and reduced cell volume when exposed to 3 mM ATP, indicating the presence of a P2X₇-like receptor. In addition, scavenging extracellular ATP or blocking P2 receptors or pannexin channels reduced the HlyA-induced hemolysis. We tested whether the low HlyA sensitivity resulted from low affinity of HlyA to the python erythrocyte membrane. We found comparable incorporation of HlyA into human and python erythrocyte membranes. Taken together, the remarkable HlyA resistance of python erythrocytes was not explained by increased osmotic resistance, lack of purinergic hemolysis amplification, or differences in HlyA affinity.

  10. Calpain-1 knockout reveals broad effects on erythrocyte deformability and physiology.

    PubMed

    Wieschhaus, Adam; Khan, Anwar; Zaidi, Asma; Rogalin, Henry; Hanada, Toshihiko; Liu, Fei; De Franceschi, Lucia; Brugnara, Carlo; Rivera, Alicia; Chishti, Athar H

    2012-11-15

    Pharmacological inhibitors of cysteine proteases have provided useful insights into the regulation of calpain activity in erythrocytes. However, the precise biological function of calpain activity in erythrocytes remains poorly understood. Erythrocytes express calpain-1, an isoform regulated by calpastatin, the endogenous inhibitor of calpains. In the present study, we investigated the function of calpain-1 in mature erythrocytes using our calpain-1-null [KO (knockout)] mouse model. The calpain-1 gene deletion results in improved erythrocyte deformability without any measurable effect on erythrocyte lifespan in vivo. The calcium-induced sphero-echinocyte shape transition is compromised in the KO erythrocytes. Erythrocyte membrane proteins ankyrin, band 3, protein 4.1R, adducin and dematin are degraded in the calcium-loaded normal erythrocytes but not in the KO erythrocytes. In contrast, the integrity of spectrin and its state of phosphorylation are not affected in the calcium-loaded erythrocytes of either genotype. To assess the functional consequences of attenuated cytoskeletal remodelling in the KO erythrocytes, the activity of major membrane transporters was measured. The activity of the K+-Cl- co-transporter and the Gardos channel was significantly reduced in the KO erythrocytes. Similarly, the basal activity of the calcium pump was reduced in the absence of calmodulin in the KO erythrocyte membrane. Interestingly, the calmodulin-stimulated calcium pump activity was significantly elevated in the KO erythrocytes, implying a wider range of pump regulation by calcium and calmodulin. Taken together, and with the atomic force microscopy of the skeletal network, the results of the present study provide the first evidence for the physiological function of calpain-1 in erythrocytes with therapeutic implications for calcium imbalance pathologies such as sickle cell disease.

  11. Dynamic adhesion of eryptotic erythrocytes to immobilized platelets via platelet phosphatidylserine receptors.

    PubMed

    Walker, Britta; Towhid, Syeda T; Schmid, Evi; Hoffmann, Sascha M; Abed, Majed; Münzer, Patrick; Vogel, Sebastian; Neis, Felix; Brucker, Sara; Gawaz, Meinrad; Borst, Oliver; Lang, Florian

    2014-02-01

    Glucose depletion of erythrocytes triggers suicidal erythrocyte death or eryptosis, which leads to cell membrane scrambling with phosphatidylserine exposure at the cell surface. Eryptotic erythrocytes adhere to endothelial cells by a mechanism involving phosphatidylserine at the erythrocyte surface and CXCL16 as well as CD36 at the endothelial cell membrane. Nothing has hitherto been known about an interaction between eryptotic erythrocytes and platelets, the decisive cells in primary hemostasis and major players in thrombotic vascular occlusion. The present study thus explored whether and how glucose-depleted erythrocytes adhere to platelets. To this end, adhesion of phosphatidylserine-exposing erythrocytes to platelets under flow conditions was examined in a flow chamber model at arterial shear rates. Platelets were immobilized on collagen and further stimulated with adenosine diphosphate (ADP, 10 μM) or thrombin (0.1 U/ml). As a result, a 48-h glucose depletion triggered phosphatidylserine translocation to the erythrocyte surface and augmented the adhesion of erythrocytes to immobilized platelets, an effect significantly increased upon platelet stimulation. Adherence of erythrocytes to platelets was blunted by coating of erythrocytic phosphatidylserine with annexin V or by neutralization of platelet phosphatidylserine receptors CXCL16 and CD36 with respective antibodies. In conclusion, glucose-depleted erythrocytes adhere to platelets. The adhesive properties of platelets are augmented by platelet activation. Erythrocyte adhesion to immobilized platelets requires phosphatidylserine at the erythrocyte surface and CXCL16 as well as CD36 expression on platelets. Thus platelet-mediated erythrocyte adhesion may foster thromboocclusive complications in diseases with stimulated phosphatidylserine exposure of erythrocytes.

  12. Kinetics of viral load and erythrocytic inclusion body formation in Pacific herring artificially infected with erythrocytic necrosis virus.

    PubMed

    Glenn, Jolene A; Emmenegger, Eveline J; Grady, Courtney A; Roon, Sean R; Gregg, Jacob L; Conway, Carla M; Winton, James R; Hershberger, Paul K

    2012-09-01

    Viral erythrocytic necrosis (VEN) is a condition that affects marine and anadromous fish species, including herrings and salmonids, in the Atlantic and Pacific oceans. Infection is frequently associated with severe anemia and causes episodic mortality among wild and hatchery fish when accompanied by additional stressors; VEN can be presumptively diagnosed by (1) light microscopic identification of a single characteristic-a round, magenta-colored, 0.8-μm-diameter inclusion body (IB) within the cytoplasm of erythrocytes and their precursors on Giemsa-stained blood films; or (2) observation (via transmission electron microscopy [TEM]) of the causative iridovirus, erythrocytic necrosis virus (ENV), within erythrocytes or their precursors. To better understand the kinetics of VEN, specific-pathogen-free Pacific herring Clupea pallasii were infected with ENV by intraperitoneal injection. At 1, 4, 7, 10, 14, 21, and 28 d postexposure, samples of blood, spleen, and kidney were collected and assessed (1) via light microscopy for the number of intracytoplasmic IBs in blood smears and (2) via TEM for the number of virions within erythrocytes. The mean prevalence of intracytoplasmic IBs in the blood cells increased from 0% at 0-4 d postexposure to 94% at 28 d postexposure. Viral load within circulating red blood cells peaked at 7 d postexposure, fell slightly, and then reached a plateau. However, blood cells observed within the kidney and spleen tissues demonstrated high levels of ENV between 14 and 28 d postexposure. The results indicate that the viral load within erythrocytes does not correlate well with IB prevalence and that the virus can persist in infected fish for more than 28 d.

  13. Janus kinase 3 is expressed in erythrocytes, phosphorylated upon energy depletion and involved in the regulation of suicidal erythrocyte death.

    PubMed

    Bhavsar, Shefalee K; Gu, Shuchen; Bobbala, Diwakar; Lang, Florian

    2011-01-01

    Janus kinase 3, a tyrosine kinase expressed in haematopoetic tissues, plays a decisive role in T-lymphocyte survival. JAK3 deficiency leads to (Severe) Combined Immunodeficiency (SCID) resulting from enhanced lymphocyte apoptosis. JAK3 is activated by phosphorylation. Nothing is known about expression of JAK3 in erythrocytes, which may undergo apoptosis-like cell death (eryptosis) characterized by cell membrane scrambling with phosphatidylserine exposure and cell shrinkage. Triggers of eryptosis include energy depletion. The present study utilized immunohistochemistry and confocal microscopy to test for JAK3 expression and phosphorylation, and FACS analysis to determine phosphatidylserine exposure (annexin binding) and cell volume (forward scatter). As a result, JAK3 was expressed in erythrocytes and phosphorylated following 24h and 48h glucose depletion. Forward scatter was slightly but significantly smaller in erythrocytes from JAK3-deficient mice (jak3(-/-)) than in erythrocytes from wild type mice (jak3(+/+)). Annexin V binding was similarly low in both genotypes. The JAK3 inhibitors WHI-P131/JANEX-1 (4-(4'-Hydroxyphenyl)amino-6,7-dimethoxyquinazoline, 156μM) and WHI-P154 (4-[(3'-Bromo-4'-hydroxyphenyl)amino]-6,7-dimethoxyquinazoline, 11.2μM) did not significantly modify annexin V binding or forward scatter. Glucose depletion increased annexin V binding, an effect significantly blunted in jak3(-/-) erythrocytes and in the presence of the JAK3 inhibitors. The observations disclose a completely novel role of Janus kinase 3, i.e. the triggering of cell membrane scrambling in energy depleted erythrocytes.

  14. Preservation of bilayer structure in human erythrocytes and erythrocyte ghosts after phospholipase treatment. A 31P-NMR study.

    PubMed

    van Meer, G; de Kruijff, B; op den Kamp, J A; van Deenen, L L

    1980-02-15

    1. Fresh human erythrocytes were treated with lytic and non-lytic combinations of phospholipases A2, C and sphingomyelinase. The 31P-NMR spectra of ghosts derived from such erythrocytes show that, in all cases, the residual phospholipids and lysophospholipids remain organized in a bilayer configuration. 2. A bilayer configuration of the (lyso)phospholipids was also observed after treatment of erythrocyte ghosts with various phospholipases even in the case that 98% of the phospholipid was converted into lysophospholipid (72%) and ceramides (26%). 3. A slightly decreased order of the phosphate group of phospholipid molecules, seen as reduced effective chemical shift anisotropy in the 31P-NMR spectra, was found following the formation of diacyglycerols and ceramides in the membrane of intact erythrocytes. Treatment of ghosts always resulted in an extensive decrease in the order of the phosphate groups. 4. The results allow the following conclusions to made: a. Hydrolysis of phospholipids in intact red cells and ghosts does not result in the formation of non-bilayer configuration of residual phospholipids and lysophospholipids. b. Haemolysis, which is obtained by subsequent treatment of intact cells with sphingomyelinase and phospholipase A2, or with phospholipase C, cannot be ascribed to the formation of non-bilayer configuration of phosphate-containing lipids. c. Preservation of bilayer structure, even after hydrolysis of all phospholipid, shows that other membrane constitutents, e.g. cholesterol and/or membrane proteins play an important role in stabilizing the structure of the erythrocyte membrane. d. A major prerequisite for the application of phospholipases in lipid localization studies, the preservation of a bilayer configuration during phospholipid hydrolysis, is met for the erythrocyte membrane.

  15. Kinetics of viral load and erythrocytic inclusion body formation in pacific herring artificially infected with erythrocytic necrosis virus

    USGS Publications Warehouse

    Glenn, Jolene A.; Emmenegger, Eveline J.; Grady, Courtney A.; Roon, Sean R.; Gregg, Jacob L.; Conway, Carla M.; Winton, James R.; Hershberger, Paul K.

    2012-01-01

    Viral erythrocytic necrosis (VEN) is a condition that affects marine and anadromous fish species, including herrings and salmonids, in the Atlantic and Pacific oceans. Infection is frequently associated with severe anemia and causes episodic mortality among wild and hatchery fish when accompanied by additional stressors; VEN can be presumptively diagnosed by (1) light microscopic identification of a single characteristic—a round, magenta-colored, 0.8-μm-diameter inclusion body (IB) within the cytoplasm of erythrocytes and their precursors on Giemsa-stained blood films; or (2) observation (via transmission electron microscopy [TEM]) of the causative iridovirus, erythrocytic necrosis virus (ENV), within erythrocytes or their precursors. To better understand the kinetics of VEN, specific-pathogen-free Pacific herring Clupea pallasii were infected with ENV by intraperitoneal injection. At 1, 4, 7, 10, 14, 21, and 28 d postexposure, samples of blood, spleen, and kidney were collected and assessed (1) via light microscopy for the number of intracytoplasmic IBs in blood smears and (2) via TEM for the number of virions within erythrocytes. The mean prevalence of intracytoplasmic IBs in the blood cells increased from 0% at 0–4 d postexposure to 94% at 28 d postexposure. Viral load within circulating red blood cells peaked at 7 d postexposure, fell slightly, and then reached a plateau. However, blood cells observed within the kidney and spleen tissues demonstrated high levels of ENV between 14 and 28 d postexposure. The results indicate that the viral load within erythrocytes does not correlate well with IB prevalence and that the virus can persist in infected fish for more than 28 d.

  16. Effects of microwave resonance therapy on erythrocyte and plasma proteins and lipids in alcoholics.

    PubMed

    Patisheva, E V; Prokopyeva, V D; Bokhan, N A

    2009-07-01

    The content of lipid peroxides and protein carbonyls in erythrocytes and plasma were elevated in patients with alcoholism during abstinence. A course of microwave resonance therapy reduced the level of lipid peroxide in erythrocytes, but not in the plasma, and significantly decreased the content of protein carbonyls in the plasma and erythrocytes.

  17. ABO Blood Groups Influence Macrophage-mediated Phagocytosis of Plasmodium falciparum-infected Erythrocytes

    PubMed Central

    Branch, Donald R.; Hult, Annika K.; Olsson, Martin L.; Liles, W. Conrad; Cserti-Gazdewich, Christine M.; Kain, Kevin C.

    2012-01-01

    Erythrocyte polymorphisms associated with a survival advantage to Plasmodium falciparum infection have undergone positive selection. There is a predominance of blood group O in malaria-endemic regions, and several lines of evidence suggest that ABO blood groups may influence the outcome of P. falciparum infection. Based on the hypothesis that enhanced innate clearance of infected polymorphic erythrocytes is associated with protection from severe malaria, we investigated whether P. falciparum-infected O erythrocytes are more efficiently cleared by macrophages than infected A and B erythrocytes. We show that human macrophages in vitro and mouse monocytes in vivo phagocytose P. falciparum-infected O erythrocytes more avidly than infected A and B erythrocytes and that uptake is associated with increased hemichrome deposition and high molecular weight band 3 aggregates in infected O erythrocytes. Using infected A1, A2, and O erythrocytes, we demonstrate an inverse association of phagocytic capacity with the amount of A antigen on the surface of infected erythrocytes. Finally, we report that enzymatic conversion of B erythrocytes to type as O before infection significantly enhances their uptake by macrophages to observed level comparable to that with infected O wild-type erythrocytes. These data provide the first evidence that ABO blood group antigens influence macrophage clearance of P. falciparum-infected erythrocytes and suggest an additional mechanism by which blood group O may confer resistance to severe malaria. PMID:23071435

  18. Changes in osmotic fragility of nucleated erythrocytes resulting from blood storage.

    PubMed

    Oyewale, J O

    1994-08-01

    The storage of blood for 24 h at 10 degrees C caused significant changes in osmotic fragility of nucleated erythrocytes of pigeons, peafowls, domestic fowls, lizards and toads. Significant decreases in fragility were seen with pigeon and peafowl erythrocytes. However, the osmotic fragility of domestic fowl, lizard and toad erythrocytes increased significantly.

  19. [Physical essence of erythrocytic sedimentation rate in the gravitation field of the earth].

    PubMed

    Cherniĭ, A N

    2009-01-01

    The erythrocytic sedimentation rate method has been long known in medicine and extensively used in laboratory practice in tuberculosis facilities. However, many authors note that the erythrocytic sedimentation rate phenomenon has not clearly understood. By applying the total theory of relativity and quantum mechanics, the author discloses the physical essence of erythrocytic sedimentation in the gravitation field of the Earth.

  20. Experiment study and FEM simulation on erythrocytes under linear stretching of optical micromanipulation

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Song, Huadong; Zhu, Panpan; Lu, Hao; Tang, Qi

    2017-08-01

    The elasticity of erythrocytes is an important criterion to evaluate the quality of blood. This paper presents a novel research on erythrocytes' elasticity with the application of optical tweezers and the finite element method (FEM) during blood storage. In this work, the erythrocytes with different in vitro times were linearly stretched by trapping force using optical tweezers and the time dependent elasticity of erythrocytes was investigated. The experimental results indicate that the membrane shear moduli of erythrocytes increased with the increasing in vitro time, namely the elasticity was decreasing. Simultaneously, an erythrocyte shell model with two parameters (membrane thickness h and membrane shear modulus H) was built to simulate the linear stretching states of erythrocytes by the FEM, and the simulations conform to the results obtained in the experiment. The evolution process was found that the erythrocytes membrane thicknesses were decreasing. The analysis assumes that the partial proteins and lipid bilayer of erythrocyte membrane were decomposed during the in vitro preservation of blood, which results in thin thickness, weak bending resistance, and losing elasticity of erythrocyte membrane. This study implies that the FEM can be employed to investigate the inward mechanical property changes of erythrocyte in different environments, which also can be a guideline for studying the erythrocyte mechanical state suffered from different diseases.

  1. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme glucose-6...

  2. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme glucose-6...

  3. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme glucose-6...

  4. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme glucose-6...

  5. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme glucose-6...

  6. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  7. Systemic abnormalities in liver disease

    PubMed Central

    Minemura, Masami; Tajiri, Kazuto; Shimizu, Yukihiro

    2009-01-01

    Systemic abnormalities often occur in patients with liver disease. In particular, cardiopulmonary or renal diseases accompanied by advanced liver disease can be serious and may determine the quality of life and prognosis of patients. Therefore, both hepatologists and non-hepatologists should pay attention to such abnormalities in the management of patients with liver diseases. PMID:19554648

  8. Associations of erythrocyte fatty acid patterns with insulin resistance

    USDA-ARS?s Scientific Manuscript database

    Background: Synergistic and/or additive effects on cardiometabolic risk may be missed by examining individual fatty acids (FA). A pattern analysis may be a more useful approach. As well, it remains unclear whether erythrocyte fatty acid composition relates to insulin resistance among Hispanic/Latino...

  9. 21 CFR 864.6700 - Erythrocyte sedimentation rate test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Erythrocyte sedimentation rate test. 864.6700 Section 864.6700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6700...

  10. MODULATION OF HYPOXIC PULMONARY VASOCONSTRICTION BY ERYTHROCYTIC NITRIC OXIDE

    EPA Science Inventory

    Abstract
    American Heart Association 2001

    Modulation of Hypoxic Pulmonary Vasoconstriction by Erythrocytic NO
    McMahon TJ1, Gow AJ1, Huang YCT4, Stamler JS1,2,3
    Departments of Medicine1 and Biochemistry2, and Howard Hughes Medical Institute3,
    Duke University Med...

  11. 2,3-Diphosphoglycerate and ATP dissociate erythrocyte membrane skeletons.

    PubMed

    Sheetz, M P; Casaly, J

    1980-10-25

    Since ATP and 2,3-diphosphoglycerate cause an increase in the lateral mobility of integral membrane proteins in the erythrocyte (Schindler, M., Koppel, D., and Sheetz, M. P. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 1457-1461), we have studied their effects on the membrane skeletal complex or shell (composed of spectrin, actin, and bands 4.1 (78,000 daltons) and 4.9 (50,000 daltons)) and its interaction with the erythrocyte membrane. Both phosphate compounds dissociated the delipidated shell complex, with half-maximal dissociation at 2.5 mM 2,3-diphosphoglycerate and 8 mM ATP, whereas equivalent concentrations of EDTA did not. Concomitant with complex dissociation, spectrin was solubilized but band 4.1 and actin remained in a complexed or polymeric form. When proteins which were involved in linking spectrin to the membrane were present on the shell, higher concentrations of the phosphate compounds still dissociated the complex but less spectrin was solubilized. Treatment of erythrocyte membranes with the same phosphate compounds caused membrane vesiculation but no proteins were solubilized. We suggest that ATP and 2,3-diphosphoglycerate, at concentrations which are normally present in erythrocytes, can weaken associations in the shell but will not dissociate the complex from membrane attachment sites.

  12. MODULATION OF HYPOXIC PULMONARY VASOCONSTRICTION BY ERYTHROCYTIC NITRIC OXIDE

    EPA Science Inventory

    Abstract
    American Heart Association 2001

    Modulation of Hypoxic Pulmonary Vasoconstriction by Erythrocytic NO
    McMahon TJ1, Gow AJ1, Huang YCT4, Stamler JS1,2,3
    Departments of Medicine1 and Biochemistry2, and Howard Hughes Medical Institute3,
    Duke University Med...

  13. Erythrocyte aldose reductase activity and sorbitol levels in diabetic retinopathy

    PubMed Central

    Satyanarayana, A.; Balakrishna, N.; Ayyagari, Radha; Padma, M.; Viswanath, K.; Petrash, J. Mark

    2008-01-01

    Purpose Activation of polyol pathway due to increased aldose reductase (ALR2) activity has been implicated in the development of diabetic complications including diabetic retinopathy (DR), a leading cause of blindness. However, the relationship between hyperglycemia-induced activation of polyol pathway in retina and DR is still uncertain. We investigated the relationship between ALR2 levels and human DR by measuring ALR2 activity and its product, sorbitol, in erythrocytes. Methods We enrolled 362 type 2 diabetic subjects (T2D) with and without DR and 66 normal subjects in this clinical case-control study. Clinical evaluation of DR in T2D patients was done by fundus examination. ALR2 activity and sorbitol levels along with glucose and glycosylated hemoglobin (HbA1C) levels in erythrocytes were determined. Results T2D patients with DR showed significantly higher specific activity of ALR2 as compared to T2D patients without DR. Elevated levels of sorbitol in T2D patients with DR, as compared to T2D patients without DR, corroborated the increased ALR2 activity in erythrocytes of DR patients. However, the increased ALR2 activity was not significantly associated with diabetes duration, age, and HbA1C in both the DR group and total T2D subjects. Conclusions Levels of ALR2 activity as well as sorbitol in erythrocytes may have value as a quantitative trait to be included among other markers to establish a risk profile for development of DR. PMID:18385795

  14. The Heme Connection: Linking Erythrocytes and Macrophage Biology

    PubMed Central

    Alam, Md Zahidul; Devalaraja, Samir; Haldar, Malay

    2017-01-01

    Erythroid function and development is intimately linked to macrophages. The primary function of erythrocytes is oxygen delivery, which is mediated by iron-containing hemoglobin. The major source of this iron is a recycling pathway where macrophages scavenge old and damaged erythrocytes to release iron contained within the heme moiety. Macrophages also promote erythropoiesis by providing a supportive niche in the bone marrow as an integral component of “erythorblastic islands.” Importantly, inflammation leads to alterations in iron handling by macrophages with significant impact on iron homeostasis and erythropoiesis. The importance of macrophages in erythropoiesis and iron homeostasis is well established and has been extensively reviewed. However, this developmental relationship is not one way, and erythrocytes can also regulate macrophage development and function. Erythrocyte-derived heme can induce the development of iron-recycling macrophages from monocytes, engage pattern recognition receptors to activate macrophages, and act as ligand for specific nuclear receptors to modulate macrophage function. Here, we discuss the role of heme as a signaling molecule impacting macrophage homeostasis. We will review these actions of heme within the framework of our current understanding of the role of micro-environmental factors in macrophage development and function. PMID:28167947

  15. Relationship between erythrocyte count and volume in humans and rats.

    PubMed

    Matyushichev, V B; Shamratova, V G; Savrasova, I V

    2000-09-01

    The mean corpuscular volume and concentration of blood erythrocytes in intact male rats are inversely related in the entire fluctuations range. In healthy men and women the correlation between these parameters is described by a parabola with alternating zones of positive and negative relationships. These covariations are unstable; in disease they change and sometimes are transformed into monotonous reciprocal correlations.

  16. Sulphurous mineral water oral therapy: effects on erythrocyte metabolism.

    PubMed

    Albertini, Maria Cristina; Teodori, Laura; Accorsi, Augusto; Soukri, Abdelaziz; Campanella, Luigi; Baldoni, Francesco; Dachà, Marina

    2008-10-01

    The ingestion of water containing hydrogen sulphide (H(2)S) is common in spring sulphurous mineral water (SMW) therapy. We hypothesized that observed detrimental effects are related to the alteration of erythrocytes metabolism caused by H(2)S. To verify our hypothesis, we treated 20 healthy volunteers with SMW and evidenced an increase of methemoglobin concentration, an inhibition of both erythrocyte glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glucose-6-phosphate dehydrogenase (G6PDH) activities. To investigate the mechanism of H(2)S effect on GAPDH activity, an in vitro study was performed by incubating both erythrocytes from 12 healthy volunteers and purified GAPDH with buffered [(35)S]-H(2)S labelled sulphurous water. The interaction between H(2)S and NAD(+)(H), was also investigated. The results indicate that a direct reaction between GAPDH and H(2)S does not occur and the observed decrease of GAPDH activity is to ascribe to the reaction between H(2)S and NAD(+)(H). This may lead to GAPDH inhibition by two ways, namely (i) cellular NAD(+)(H) reduced availability and (ii) catalytic site blockage. In conclusion, our results show that among the detrimental effects of SMW administration are erythrocyte GAPDH and G6PDH activity inhibition and increased methemoglobin concentration. A mechanism to explain the occurrence of these biochemical events is also proposed.

  17. Genotoxic evaluation of pirfenidone using erythrocyte rodent micronucleus assay.

    PubMed

    Alcántar-Díaz, Blanca E; Gómez-Meda, Belinda C; Zúñiga-González, Guillermo M; Zamora-Perez, Ana L; González-Cuevas, Jaime; Alvarez-Rodríguez, Bertha A; Sánchez-Parada, María Guadalupe; García-Bañuelos, Jesús J; Armendáriz-Borunda, Juan

    2012-08-01

    Pirfenidone is a non-steroidal antifibrotic compound that has been proposed in clinical protocols and experimental studies as a pharmacological treatment for fibroproliferative diseases. The objective of this study was to determine the genotoxicity or cytotoxicity of three doses of pirfenidone using the micronuclei test in peripheral blood erythrocytes of rodent models. Pirfenidone was administered orally to Balb-C mice for 3 days, and also was administered topically to hairless Sprague Dawley rats during the final stage of gestation. Mice were sampled every 24 h over the course of 6 days; pregnant rats were sampled every 24 h during the last 6 days of gestation, and pups were sampled at birth. Blood smears were analyzed and the frequencies of micronucleated erythrocytes (MNEs), micronucleated polychromatic erythrocytes (MNPCEs), and the proportion of polychromatic erythrocytes (PCEs), were recorded in samples from mice, pregnant rats and rat neonates. Increases in MN frequencies (p<0.03) were noted only in the positive control groups. No genotoxic effects or decreased PCE values were observed neither in newborn rats transplacentally exposed to pirfenidone, or in two adult rodent models when pirfenidone was administered orally or topically.

  18. Plasma thiamin pyrophosphate and erythrocyte transketolase in chronic alcoholism.

    PubMed

    McLaren, D S; Docherty, M A; Boyd, D H

    1981-06-01

    Thiamin status in patients with an alcohol problem was studied before and after intramuscular thiamin hydrochloride. Results for erythrocyte transketolase activity and plasma thiamin pyrophosphate are compared. Plasma thiamin pyrophosphate values for healthy human subjects are reported for the first time. Advantages of plasma thiamin pyrophosphate in the assessment of thiamin status of patients are discussed.

  19. Changes in erythrocytic deformability and plasma viscosity in neonatal ictericia.

    PubMed

    Bonillo-Perales, A; Muñoz-Hoyos, A; Martínez-Morales, A; Molina-Carballo, A; Uberos-Fernández, J; Puertas-Prieto, A

    1999-01-01

    We studied 45 full-term newborns divided into 3 groups. Group 1: 17 newborns with bilirubin <10 mg/dL; Group 2: 18 newborns with hemolytic ictericia (bilirubin 11-20 mg/dL) and Group 3: 10 newborns with moderate hemolytic ictericia needing exchange transfusion. The following were studied: erythrocytic deformability, plasma viscosity, plasmatic osmolarity, seric bilirubin, bilirubin/albumin ratio, free fatty acids and corpuscular volume of the erythrocytes. In full-term newborns, the following are risk factors for increased erythrocytic rigidity: neonatal hemolytic illness (p = 0.004, odds ratio: 7.02), increases in total bilirubin (p = 0.02, odds ratio: 4.3) and increases in the bilirubin/albumin ratio (p = 0.025, odds ratio: 4.25). Furthermore, the most important risk factor for high plasma viscosity is also neonatal hemolytic illness (p = 0.01, odds ratio: 2.30). The role of total bilirubin is also important (p = 0.09, odds ratio: 2.10), while that of the bilirubin/albumin ratio (p = 0.012, NS) is less so. The greater the hemolysis, the greater the erythrocytic rigidity and plasma viscosity (p < 0.01). In full-term newborns with moderate ictericia, hemolytic illness and increases in the bilirubin/albumin ratio are accompanied by rheological alterations that could affect cerebral microcirculation and cause a neurological deficit not exclusively related to the levels of bilirubin in plasma.

  20. Evaluation of methylglyoxal toxicity in human erythrocytes, leukocytes and platelets.

    PubMed

    Prestes, Alessandro de Souza; Dos Santos, Matheus Mülling; Ecker, Assis; Zanini, Daniela; Schetinger, Maria Rosa Chitolina; Rosemberg, Denis Broock; da Rocha, João Batista Teixeira; Barbosa, Nilda Vargas

    2017-05-01

    Methylglyoxal (MG) is a reactive dicarbonyl metabolite originated mainly from glucose degradation pathway that plays an important role in the pathogenesis of diabetes mellitus (DM). Reactions of MG with biological macromolecules (proteins, DNA and lipids) can induce cytotoxicity and apoptosis. Here, human erythrocytes, leukocytes and platelets were acutely exposed to MG at concentration ranging from 0.025 to 10 mM. Afterwards, hemolysis and osmotic fragility in erythrocytes, DNA damage and cell viability in leukocytes, and the activity of purinergic ecto-nucleotidases in platelets were evaluated. The levels of glycated products from leukocytes and free amino groups from erythrocytes and platelets were also measured. MG caused fragility of membrane, hemolysis and depletion of amino groups in erythrocytes. DNA damage, loss of cell viability and increased levels of glycated products were observed in leukocytes. In platelets, MG inhibited the activity of enzymes NTPDase, 5'-nucleotidase and adenosine deaminase (ADA) without affecting the levels of free amino groups. Our findings provide insights for understanding the mechanisms involved in MG acute toxicity towards distinct blood cells.

  1. Microscopic evaluation of vesicles shed by erythrocytes at elevated temperatures.

    PubMed

    Moore, Timothy; Sorokulova, Iryna; Pustovyy, Oleg; Globa, Ludmila; Pascoe, David; Rudisill, Mary; Vodyanoy, Vitaly

    2013-11-01

    The images of human erythrocytes and vesicles were analyzed by a light microscopy system with spatial resolution of better than 90 nm. The samples were observed in an aqueous environment and required no freezing, dehydration, staining, shadowing, marking, or any other manipulation. Temperature elevation resulted in significant concentration increase of structurally transformed erythrocytes (echinocytes) and vesicles in the blood. The process of vesicle separation from spiculated erythrocytes was video recorded in real time. At a temperature of 37°C, mean vesicle concentrations and diameters were found to be 1.50 ± 0.35 × 10(6) vesicles per microliter and 0.365 ± 0.065 μm, respectively. The vesicle concentration increased approximately threefold as the temperature increased from 37 to 40°C. It was estimated that 80% of all vesicles found in the blood are smaller than 0.4 μm. Accurate account of vesicle numbers and dimensions suggest that 86% of the lost erythrocyte material is lost not by vesiculation but by another, as yet, unknown mechanism. Copyright © 2013 Wiley Periodicals, Inc.

  2. Effect of 8-alkylberberine homologues on erythrocyte membrane.

    PubMed

    Yong, Yang; Ye, Xiao-Li; Zhang, Bao-Shun; Li, Xue-Gang

    2011-05-01

    8-alkylberberine homologues (Ber-C8-n, where n indicates carbon atom number of gaseous normal alkyl at 8 position, n = 0, 2, 4, 6, 8, 10, 12, or 16) were synthesized and their effects on the hemolysis of rabbit erythrocyte, the fluidity of membrane and the fluorescence of membrane protein were investigated by fluorescence analysis technique. Ber-C8-n with mediate length alkyl (4 < n < 10) exhibited obvious hemolysis effect on rabbit erythrocyte when their concentration exceed 1.25 x10(-4) mol/L, and Ber-C8-8 displayed the highest hemolysis effect among all tested homologues. All of Ber-C8-n influenced the fluidity of erythrocyte membrane to different extents, which exhibited an obvious dose-effect relationship. The effect of Ber-C8-n on fluidity increased as the length of alkyl chain was elongated and decreased gradually when the alkyl carbon atoms exceeded 8. The fluorescence of erythrocyte membrane protein was quenched by Ber-C8-n, which showed a similar changing tendency on membrane fluidity. Experiments in vitro suggested that disturbing effects of Ber-C8-n on the conformation and function of membrane protein leaded to the changes of membrane fluidity and stability, and then the membrane was broken down.

  3. Stabilizing factors of phospholipid asymmetry in the erythrocyte membrane.

    PubMed

    Dressler, V; Haest, C W; Plasa, G; Deuticke, B; Erusalimsky, J D

    1984-08-22

    Transbilayer reorientation (flip) of exogenous lysophospholipids and changes of the transbilayer distribution of endogenous phospholipids were studied in human erythrocytes and membrane vesicles. (1) Exogenous lysophosphatidylserine irreversibly accumulates in the inner membrane layer of resealed ghosts of human erythrocytes. (2) This accumulation even occurs after complete loss of asymmetric distribution of endogenous phosphatidylethanolamine and partial loss of phosphatidylserine asymmetry in diamide-treated cells. (3) Formation of inside-out and right-side-out vesicles from erythrocyte membranes results in a loss of endogenous phospholipid asymmetry as well as of the ability to establish asymmetry of exogenous lysophosphatidylserine. Rates of transbilayer reorientation of lysophospholipids for the vesicles, however, are comparable to those for intact cells. (4) Loss of endogenous asymmetry of phosphatidylserine is also observed in vesicles isolated from erythrocytes after heat denaturation of spectrin. The asymmetry in the residual cells is maintained. (5) In contrast to the loss of asymmetry of phosphatidylethanolamine and of phosphatidylserine, the asymmetry of sphingomyelin is completely maintained in the vesicles. (6) The stability of phospholipid asymmetry in the native cell is discussed in terms of a limitation of access of phospholipids to hypothetical reorientation sites. Such a limitation may either be the result of interaction of phospholipids with the membrane skeleton as in case of phosphatidylserine and phosphatidylethanolamine, or the result of lipid-lipid interactions as in case of sphingomyelin.

  4. Erythrocyte antioxidant protection of rose hips (Rosa spp.).

    PubMed

    Widén, C; Ekholm, A; Coleman, M D; Renvert, S; Rumpunen, K

    2012-01-01

    Rose hips are popular in health promoting products as the fruits contain high content of bioactive compounds. The aim of this study was to investigate whether health benefits are attributable to ascorbic acid, phenols, or other rose-hip-derived compounds. Freeze-dried powder of rose hips was preextracted with metaphosphoric acid and the sample was then sequentially eluted on a C(18) column. The degree of amelioration of oxidative damage was determined in an erythrocyte in vitro bioassay by comparing the effects of a reducing agent on erythrocytes alone or on erythrocytes pretreated with berry extracts. The maximum protection against oxidative stress, 59.4 ± 4.0% (mean ± standard deviation), was achieved when incubating the cells with the first eluted meta-phosphoric extract. Removal of ascorbic acid from this extract increased the protection against oxidative stress to 67.9 ± 1.9%. The protection from the 20% and 100% methanol extracts was 20.8 ± 8.2% and 5.0 ± 3.2%, respectively. Antioxidant uptake was confirmed by measurement of catechin by HPLC-ESI-MS in the 20% methanol extract. The fact that all sequentially eluted extracts studied contributed to protective effects on the erythrocytes indicates that rose hips contain a promising level of clinically relevant antioxidant protection.

  5. 40 CFR 799.9539 - TSCA mammalian erythrocyte micronucleus test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as sampled in bone marrow and/or peripheral blood cells of animals, usually rodents. (2) The purpose... immature erythrocytes. (N) Number of cells analyzed per animal. (O) Criteria for considering studies as... micronuclei is facilitated in these cells because they lack a main nucleus. An increase in the frequency of...

  6. 40 CFR 799.9539 - TSCA mammalian erythrocyte micronucleus test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... as sampled in bone marrow and/or peripheral blood cells of animals, usually rodents. (2) The purpose... immature erythrocytes. (N) Number of cells analyzed per animal. (O) Criteria for considering studies as... micronuclei is facilitated in these cells because they lack a main nucleus. An increase in the frequency of...

  7. 40 CFR 799.9539 - TSCA mammalian erythrocyte micronucleus test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as sampled in bone marrow and/or peripheral blood cells of animals, usually rodents. (2) The purpose... immature erythrocytes. (N) Number of cells analyzed per animal. (O) Criteria for considering studies as... micronuclei is facilitated in these cells because they lack a main nucleus. An increase in the frequency of...

  8. 40 CFR 799.9539 - TSCA mammalian erythrocyte micronucleus test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sampled in bone marrow and/or peripheral blood cells of animals, usually rodents. (2) The purpose of the... time, unless acceptable inter-animal variability and frequencies of cells with micronuclei are... for scoring micronucleated immature erythrocytes. (N) Number of cells analyzed per animal. (O...

  9. Erythrocyte catalase and carbonic anhydrase activities in lung cancer.

    PubMed

    Cobanoglu, Ufuk; Demir, Halit; Duran, Memet; Şehitogullari, Abidin; Mergan, Duygu; Demir, Canan

    2010-01-01

    To study the relationship between the pathogenesis of lung cancer and antioxidant status and acidic media by measuring the activities of erythrocyte catalase (CAT) and carbonic anhydrase (CA). A total of 26 patients with lung cancer and 15 healthy individuals were included in the study. The CAT and CA activities of erythrocytes were defined. The catalase (CAT) activity of erythrocytes was measured using Aebi's method. Carbonic anhydrase (CA) activity was analyzed by CO2 hydration. It was found that erythrocyte CA and CAT activities were significantly lower in patients with lung cancer compared to controls (p<0.05). Of the 26 patients with lung cancer, seven (26.9%) had metastasis, and the CA and CAT levels in patients with metastasis were significantly decreased (p=0.0001). Development of oxidative stress due to lung cancer may be related to the balance between prooxidant and antioxidant reactions. Catalase may have a preventive effect for malignant lung cancers and the gene of the antioxidant enzymes may be one of the anti-oncogenes, and inactivation of one of these genes in the process of carcinogenesis may lead to tumor development. This may be an explanation for the very low levels of antioxidant CAT in patients with lung cancer compared to healthy individuals. Carbonic anhydrase (CA) in tumor cells may be an indicator of the acid-base balance in lung cancer. Decreased levels of CA in patients with lung cancer may provide a convenient media for tumor development, growth and metastasis by creating an acidic media.

  10. Ceramide in the regulation of eryptosis, the suicidal erythrocyte death.

    PubMed

    Lang, Elisabeth; Bissinger, Rosi; Gulbins, Erich; Lang, Florian

    2015-05-01

    Similar to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, a suicidal death characterized by cell shrinkage and phospholipid scrambling of the cell membrane leading to phosphatidylserine exposure at the cell surface. As eryptotic erythrocytes are rapidly cleared from circulating blood, excessive eryptosis may lead to anemia. Moreover, eryptotic erythrocytes may adhere to the vascular wall and thus impede microcirculation. Stimulators of eryptosis include osmotic shock, oxidative stress and energy depletion. Mechanisms involved in the stimulation eryptosis include ceramide formation which may result from phospholipase A2 dependent formation of platelet activating factor (PAF) with PAF dependent stimulation of sphingomyelinases. Enhanced erythrocytic ceramide formation is observed in fever, sepsis, HUS, uremia, hepatic failure, and Wilson's disease. Enhanced eryptosis is further observed in iron deficiency, phosphate depletion, dehydration, malignancy, malaria, sickle-cell anemia, beta-thalassemia and glucose-6-phosphate dehydrogenase-deficiency. Moreover, eryptosis is triggered by osmotic shock and a wide variety of xenobiotics, which are again partially effective by enhancing ceramide abundance. Ceramide formation is inhibited by high concentrations of urea. As shown in Wilson's disease, pharmacological interference with ceramide formation may be a therapeutic option in the treatment of eryptosis inducing clinical disorders.

  11. 31P NMR study of erythrocytes from a patient with hereditary pyrimidine-5'-nucleotidase deficiency.

    PubMed Central

    Swanson, M S; Angle, C R; Stohs, S J; Wu, S T; Salhany, J M; Eliot, R S; Markin, R S

    1983-01-01

    The composition of phosphate metabolites and the intracellular pH in erythrocytes from a patient with hereditary pyrimidine-5'-nucleotidase deficiency were examined using 31P NMR spectroscopy. Several resonances were identified in spectra from intact cells and from extracts. The 2,3-bisphosphoglycerate line intensities were normal but the NTP resonances were about twice normal due to the presence of millimolar quantities of pyrimidine phosphates. Several intense resonances were also observed in the diphosphodiester region of the spectrum. One compound contributing to these lines has been identified as cytidine diphosphocholine. The resonances of NTPs were in a position indicating that the additional triphosphates were also bound by Mg2+. Direct measurement shows that there is a nearly proportional increase in total cell Mg2+ in the patient's cells, in agreement with the interpretation of the spectra. The intracellular pH was about 0.2 unit lower in the patient's erythrocytes. This lower pH is due to the elevation in intracellular fixed negative charges and the shift in permeable anions consequent to the Donnan equilibrium. We suggest that the lower intracellular pH may explain the lower oxygen affinity of these cells in the presence of otherwise normal 2,3-bisphosphoglycerate levels and the increased Mg2+ triphosphates level, because the Mg2+ form of NTPs is known not to alter the oxygen affinity of hemoglobin under physiologic conditions. Furthermore, the lower intracellular pH can also explain the abnormalities in glycolytic intermediates observed for these cells. PMID:6296865

  12. Alloimmunization and erythrocyte autoimmunization in transfusion-dependent thalassemia patients of predominantly asian descent.

    PubMed

    Singer, S T; Wu, V; Mignacca, R; Kuypers, F A; Morel, P; Vichinsky, E P

    2000-11-15

    The development of hemolytic alloantibodies and erythrocyte autoantibodies complicates transfusion therapy in thalassemia patients. The frequency, causes, and prevention of this phenomena among 64 transfused thalassemia patients (75% Asian) were evaluated. The effect of red blood cell (RBC) phenotypic differences between donors (mostly white) and Asian recipients on the frequency of alloimmunization was determined. Additional transfusion and patient immune factors were examined. 14 (22%) of 64 patients (75% Asian) became alloimmunized. A mismatched RBC phenotype between the white population, comprising the majority of the donor pool, and that of the Asian recipients, was found for K, c, S, and Fyb antigens, which accounts for 38% of the alloantibodies among Asian patients. Patients who had a splenectomy had a higher rate of alloimmunization than patients who did not have a splenectomy (36% vs 12.8%; P =.06). Erythrocyte autoantibodies, as determined by a positive Coombs test, developed in 25% or 16 of the 64 patients, thereby causing severe hemolytic anemia in 3 of 16 patients. Of these 16, 11 antibodies were typed immunoglobulin G [IgG], and 5 were typed IgM. Autoimmunization was associated with alloimmunization and with the absence of spleen (44% and 56%, respectively). Transfused RBCs had abnormal deformability profiles, more prominent in the patients without a spleen, which possibly stimulated antibody production. Transfusion of phenotypically matched blood for the Rh and Kell (leukodepleted in 92%) systems compared to blood phenotypically matched for the standard ABO-D system (leukodepleted in 60%) proved to be effective in preventing alloimmunization (2.8% vs 33%; P =.0005). Alloimmunization and autoimmunization are common, serious complications in Asian thalassemia patients, who are affected by donor-recipient RBC antigen mismatch and immunological factors.

  13. Relationship between Erythrocyte Fatty Acid Composition and Psychopathology in the Vienna Omega-3 Study.

    PubMed

    Kim, Sung-Wan; Jhon, Min; Kim, Jae-Min; Smesny, Stefan; Rice, Simon; Berk, Michael; Klier, Claudia M; McGorry, Patrick D; Schäfer, Miriam R; Amminger, G Paul

    2016-01-01

    This study investigated the relationship between erythrocyte membrane fatty acid (FA) levels and the severity of symptoms of individuals at ultra-high risk (UHR) for psychosis. Subjects of the present study consisted of 80 neuroleptic-naïve UHR patients. Partial correlation coefficients were calculated between baseline erythrocyte membrane FA levels, measured by gas chromatography, and scores on the Positive and Negative Syndrome Scale (PANSS), Global Assessment of Functioning Scale, and Montgomery-Asberg Depression Rating Scale (MADRS) after controlling for age, sex, smoking and cannabis use. Subjects were divided into three groups according to the predominance of positive or negative symptoms based on PANSS subscale scores; membrane FA levels in the three groups were then compared. More severe negative symptoms measured by PANSS were negatively correlated with two saturated FAs (myristic and margaric acids), one ω-9 monounsaturated FA (MUFA; nervonic acid), and one ω-3 polyunsaturated FA (PUFA; docosapentaenoic acid), and were positively correlated with two ω-9 MUFAs (eicosenoic and erucic acids) and two ω-6 PUFAs (γ-linolenic and docosadienoic acids). More severe positive symptoms measured by PANSS were correlated only with nervonic acid. No associations were observed between FAs and MADRS scores. In subjects with predominant negative symptoms, the sum of the ω-9 MUFAs and the ω-6:ω-3 FA ratio were both significantly higher than in those with predominant positive symptoms, whereas the sum of ω-3 PUFAs was significantly lower. In conclusion, abnormalities in FA metabolism may contribute to the neurobiology of psychopathology in UHR individuals. In particular, membrane FA alterations may play a role in negative symptoms, which are primary psychopathological manifestations of schizophrenia-related disability.

  14. Membrane proteins in human erythrocytes during cell fusion induced by oleoylglycerol

    PubMed Central

    Quirk, Susan J.; Ahkong, Quet Fah; Botham, Gaynor M.; Vos, Jan; Lucy, Jack A.

    1978-01-01

    1. The fusion of human erythrocytes into multicellular bodies that is induced by microdroplets of oleoylglycerol was investigated by optical and electron microscopy, and by gel electrophoresis of membrane proteins. 2. At the highest concentrations of oleoylglycerol and Ca2+ used, at least 80% of the cells fused after 30min at 37°C and only about 5% of the cells had completely lysed; the shapes of fused multicellular bodies were usually retained in `ghosts' prepared by hypo-osmotic lysis. 3. The rate of cell fusion was related to the concentration of Ca2+, although some cells fused when no exogenous Ca2+ was present. 4. Interactions of microdroplets of oleoylglycerol with the cells led to abnormalities in the structural appearance of the erythrocyte membrane; subsequent membrane fusion occurred, at least in some instances, at the sites of the microdroplets. 5. The intramembranous particles on the P-fracture face of the treated cells were more randomly distributed, but not significantly increased in number by comparison with the control cells. 6. Gel electrophoresis of the proteins of `ghosts' prepared from fused human erythrocytes showed a production of material of very high molecular weight, the development of a new component in the band-3 region, an increased staining of bands 4.3 and 4.5, and a new component moving slightly faster than band 6. 7. Bands 2.1–2.3 were altered, band 3 was decreased and band 4.1 was lost. 8. Most, but not all, of the changes in the membrane proteins appeared to result from the entry of Ca2+ into the cell. 9. 1-Chloro-4-phenyl-3-l-toluene-p-sulphonamidobutan-2-one partially inhibited both cell fusion and the associated decrease in band-3 protein. 10. The possibility that proteolytic degradation of membrane proteins may be involved in cell fusion induced by oleoylglycerol is considered, and some implications of this possibility are discussed. ImagesPLATE 4PLATE 1PLATE 2PLATE 3 PMID:728105

  15. Oscillatory tank-treading motion of erythrocytes in shear flows

    PubMed Central

    Dodson, W. R.; Dimitrakopoulos, P.

    2013-01-01

    In this paper, we investigate the oscillatory dynamics of the tank-treading motion of healthy human erythrocytes in shear flows with capillary number Ca = O(1) and small to moderate viscosity ratios 0.01 ≤ λ ≤ 1.5. These conditions correspond to a wide range of surrounding medium viscosities (4 to 600 mPa s) and shear flow rates (2 to 560 s−1), and match those used in ektacytometry systems. For a given viscosity ratio, as the flow rate increases, the steady-state erythrocyte length L (in the shear plane) increases logarithmically while its depth W (normal to the shear plane) decreases logarithmically. In addition, the flow rate increase dampens the oscillatory erythrocyte inclination but not its lengths oscillations (which show relative variations of about 5–8%). For a given flow rate, as the viscosity ratio increases, the erythrocyte length L contracts while its depth W increases (i.e. the cell becomes less deformed) with small decrease in the lengths variations. The average orientation angle of the erythrocyte shows a significant decrease with the viscosity ratio as does the angle oscillation while the oscillation period increases. These trends continue in higher viscosity ratios resulting eventually in the transition from a (weakly oscillatory) tank-treading motion to a tumbling motion. Our computations show that the erythrocyte width S, which exists in the shear plane, is practically invariant in time, capillary number and viscosity ratio, and corresponds to a real cell thickness of about 2.5 μm. Comparison of our computational results with the predictions of (low degree-of-freedom) theoretical models and experimental findings, suggests that the energy dissipation due to the shape-memory effects is more significant than the energy dissipation due to the membrane viscosity. Our work shows that the oscillatory tank-treading motion can account for more than 50% of the variations found in ektacytometry systems; thus, researchers who wish to study inherent

  16. Oscillatory tank-treading motion of erythrocytes in shear flows

    NASA Astrophysics Data System (ADS)

    Dodson, W. R., III; Dimitrakopoulos, P.

    2011-07-01

    In this paper, we investigate the oscillatory dynamics of the tank-treading motion of healthy human erythrocytes in shear flows with capillary number Ca=O(1) and small to moderate viscosity ratios 0.01⩽⩽1.5. These conditions correspond to a wide range of surrounding medium viscosities (4-600 m Pa s) and shear flow rates (2-560s-1), and match those used in ektacytometry systems. For a given viscosity ratio, as the flow rate increases, the steady-state erythrocyte length L (in the shear plane) increases logarithmically while its depth W (normal to the shear plane) decreases logarithmically. In addition, the flow rate increase dampens the oscillatory erythrocyte inclination but not its length oscillations (which show relative variations of about 5-8%). For a given flow rate, as the viscosity ratio increases, the erythrocyte length L contracts while its depth W increases (i.e., the cell becomes less deformed) with a small decrease in the length variations. The average orientation angle of the erythrocyte shows a significant decrease with the viscosity ratio as does the angle oscillation while the oscillation period increases. These trends continue in higher viscosity ratios resulting eventually in the transition from a (weakly oscillatory) tank-treading motion to a tumbling motion. Our computations show that the erythrocyte width S, which exists in the shear plane, is practically invariant in time, capillary number, and viscosity ratio, and corresponds to a real cell thickness of about 2.5μm. Comparison of our computational results with the predictions of (low degree-of-freedom) theoretical models and experimental findings, suggests that the energy dissipation due to the shape-memory effects is more significant than the energy dissipation due to the membrane viscosity. Our work shows that the oscillatory tank-treading motion can account for more than 50% of the variations found in ektacytometry systems; thus, researchers who wish to study inherent differences

  17. Erythrocyte binding preference of human pandemic influenza virus a and its effect on antibody response detection.

    PubMed

    Makkoch, Jarika; Prachayangprecha, Slinporn; Payungporn, Sunchai; Chieochansin, Thaweesak; Songserm, Thaweesak; Amonsin, Alongkorn; Poovorawan, Yong

    2012-07-01

    Validation of hemagglutination inhibition (HI) assays is important for evaluating antibody responses to influenza virus, and selection of erythrocytes for use in these assays is important. This study aimed to determine the correlation between receptor binding specificity and effectiveness of the HI assay for detecting antibody response to pandemic influenza H1N1 (pH1N1) virus. Hemagglutination (HA) tests were performed using erythrocytes from 6 species. Subsequently, 8 hemagglutinating units of pH1N1 from each species were titrated by real-time reverse transcription-PCR. To investigate the effect of erythrocyte binding preference on HI antibody titers, comparisons of HI with microneutralization (MN) assays were performed. Goose erythrocytes showed most specific binding with pH1N1, while HA titers using human erythrocytes were comparable to those using turkey erythrocytes. The erythrocyte binding efficiency was shown to have an impact on antibody detection. Comparing MN titers, HI titers using turkey erythrocytes yielded the most accurate results, while those using goose erythrocytes produced the highest geometric mean titer. Human blood group O erythrocytes lacking a specific antibody yielded results most comparable to those obtained using turkey erythrocytes. Further, pre-existing antibody to pH1N1 and different erythrocyte species can distort HI assay results. HI assay, using turkey and human erythrocytes, yielded the most comparable and applicable results for pH1N1 than those by MN assay, and using goose erythrocytes may lead to overestimated titers. Selection of appropriate erythrocyte species for HI assay allows construction of a more reliable database, which is essential for further investigations and control of virus epidemics.

  18. Stimulation of erythrocyte phosphatidylserine exposure by mercury ions

    SciTech Connect

    Eisele, Kerstin; Lang, Philipp A.; Kempe, Daniela S.; Klarl, Barbara A.; Niemoeller, Olivier; Wieder, Thomas; Huber, Stephan M.; Duranton, Christophe; Lang, Florian . E-mail: florian.lang@uni-tuebingen.de

    2006-01-15

    The sequelae of mercury intoxication include induction of apoptosis. In nucleated cells, Hg{sup 2+}-induced apoptosis involves mitochondrial damage. The present study has been performed to elucidate effects of Hg{sup 2+} in erythrocytes which lack mitochondria but are able to undergo apoptosis-like alterations of the cell membrane. Previous studies have documented that activation of a Ca{sup 2+}-sensitive erythrocyte scramblase leads to exposure of phosphatidylserine at the erythrocyte surface, a typical feature of apoptotic cells. The erythrocyte scramblase is activated by osmotic shock, oxidative stress and/or energy depletion which increase cytosolic Ca{sup 2+} activity and/or activate a sphingomyelinase leading to formation of ceramide. Ceramide sensitizes the scramblase to Ca{sup 2+}. The present experiments explored the effect of Hg{sup 2+} ions on erythrocytes. Phosphatidylserine exposure after mercury treatment was estimated from annexin binding as determined in FACS analysis. Exposure to Hg{sup 2+} (1 {mu}M) indeed significantly increased annexin binding from 2.3 {+-} 0.5% (control condition) to 23 {+-} 6% (n = 6). This effect was paralleled by activation of a clotrimazole-sensitive K{sup +}-selective conductance as measured by patch-clamp recordings and by transient cell shrinkage. Further experiments revealed also an increase of ceramide formation by {approx}66% (n = 7) after challenge with mercury (1 {mu}M). In conclusion, mercury ions activate a clotrimazole-sensitive K{sup +}-selective conductance leading to transient cell shrinkage. Moreover, Hg{sup 2+} increases ceramide formation. The observed mechanisms could similarly participate in the triggering of apoptosis in nucleated cells by Hg{sup 2+}.

  19. Erythrocyte Protein 4.1 Binds and Regulates Myosin

    NASA Astrophysics Data System (ADS)

    Pasternack, Gary R.; Racusen, Richard H.

    1989-12-01

    Myosin was recently identified in erythrocytes and was shown to partition both with membrane and cytosolic fractions, suggesting that it may be loosely bound to membranes [Fowler, V. M., Davis, J. Q. & Bennett, V. (1985) J. Cell Biol. 100, 47-55, and Wong, A. J., Kiehart, D. P. & Pollard, T. D. (1985) J. Biol. Chem. 260, 46-49]; however, the molecular basis for this binding was unclear. The present studies employed immobilized monomeric myosin to examine the interaction of myosin with erythrocyte protein 4.1. In human erythrocytes, protein 4.1 binds to integral membrane proteins and mediates spectrin-actin assembly. Protein 4.1 binds to rabbit skeletal muscle myosin with a Kd = 140 nM and a stoichiometry consistent with 1:1 binding. Heavy meromyosin competes for protein 4.1 binding with Ki = 36-54 nM; however, the S1 fragment (the myosin head) competes less efficiently. Affinity chromatography of partial chymotryptic digests of protein 4.1 on immobilized myosin identified a 10-kDa domain of protein 4.1 as the myosin-binding site. In functional studies, protein 4.1 partially inhibited the actin-activated Mg2+-ATPase activity of rabbit skeletal muscle myosin with Ki = 51 nM. Liver cytosolic and erythrocyte myosins preactivated with myosin light-chain kinase were similarly inhibited by protein 4.1. These studies show that protein 4.1 binds, modulates, and thus may regulate myosin. This interaction might serve to generate the contractile forces involved in Mg2+-ATP-dependent shape changes in erythrocytes and may additionally serve as a model for myosin organization and regulation in non-muscle cells.

  20. Red wine activates plasma membrane redox system in human erythrocytes.

    PubMed

    Tedesco, Idolo; Moccia, Stefania; Volpe, Silvestro; Alfieri, Giovanna; Strollo, Daniela; Bilotto, Stefania; Spagnuolo, Carmela; Di Renzo, Massimo; Aquino, Rita P; Russo, Gian Luigi

    2016-01-01

    In the present study, we report that polyphenols present in red wine obtained by a controlled microvinification process are able to protect human erythrocytes from oxidative stress and to activate Plasma Membrane Redox System (PMRS). Human plasma obtained from healthy subjects was incubated in the presence of whole red wine at a concentration corresponding to 9.13-73 μg/ml gallic acid equivalents to verify the capacity to protect against hypochlorous acid (HOCl)-induced plasma oxidation and to minimize chloramine formation. Red wine reduced hemolysis and chloramine formation induced by HOCl of 40 and 35%, respectively. PMRS present on human erythrocytes transfers electrons from intracellular molecules to extracellular electron acceptors. We demonstrated that whole red wine activated PMRS activity in human erythrocytes isolated from donors in a dose-dependent manner with a maximum at about 70-100 μg/ml gallic acid equivalents. We also showed that red wine increased glutathione (GSH) levels and erythrocytic antioxidant capacity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) quenching assay. Furthermore, we reported that GSH played a crucial role in regulating PMRS activity in erythrocytes. In fact, the effect of iodoacetamide, an alkylating agent that induces depletion of intracellular GSH, was completely counteracted by red wine. Bioactive compounds present in red wine, such as gallic acid, resveratrol, catechin, and quercetin were unable to activate PMRS when tested at the concentrations normally present in aged red wines. On the contrary, the increase of PMRS activity was associated with the anthocyanin fraction, suggesting the capacity of this class of compounds to positively modulate PMRS enzymatic activity.

  1. Indirect vs direct measurement of magnesium and zinc in erythrocytes.

    PubMed

    Deuster, P A; Trostmann, U H; Bernier, L L; Dolev, E

    1987-04-01

    We evaluated three methods (two indirect and one direct) for determining the magnesium (Mg) and zinc (Zn) content of erythrocytes, to compare methodologic differences and to establish a method suitable for use in field studies. For the indirect methods, erythrocytes in whole blood were lysed by adding either de-ionized water (I) or nitric acid, 2 mol/L (II). For the direct method (III), erythrocytes were isolated by density centrifugation, washed, then digested in concentrated HNO3. Mg and Zn concentrations were measured by atomic absorption spectrophotometry in plasma and whole blood for the indirect methods, and in the pellet for the direct method. Hematocrit and hemoglobin were measured, and erythrocytes were sized and counted on all samples. Within-run CVs for the three methods ranged from 2.2% with method III for Mg to 5.4% with method I for Zn. CVs for reproducibility of the analytical procedures ranged from 2.6% with method II for Zn to 4.2% with method I for the two cations. Analytical recoveries of added Mg and Zn ranged from 93.8 to 104.7%. When values for the three methods were compared, those by method I were significantly (p less than 0.05) lower than those by methods II and III. Values obtained by method II were 100.1% for Mg and 102.4% for Zn of those by the direct method. Thus, the indirect method with 2 mol/L HNO3 lysing solution provides a reproducible, reliable, accurate, and simple technique for measuring Mg and Zn in erythrocytes.

  2. Erythrocyte membrane composition in patients with primary hypercholesterolemia.

    PubMed

    Vayá, A; Martínez Triguero, M; Réganon, E; Vila, V; Martínez Sales, V; Solá, E; Hernández Mijares, A; Ricart, A

    2008-01-01

    There are conflicting results regarding the erythrocyte membrane cholesterol and phospholipid content in patients with primary hypercholesterolemia (PHC), due to methodological problems in obtaining haemoglobin-free ghosts. At the same time, the different units used and the fact that the cholesterol and phospholipids are not expressed in relation with integral protein membrane content, produces contradictory results. We have analysed in 33 patients with PHC (12 male, 31 female) aged 43+/-12 years and in 33 healthy normolipaemic volunteers (9 male, 24 female) aged 43+/-13 years plasma lipids, along with, erythrocyte membrane cholesterol, phospholipids and integral proteins. PHC patients showed increased erythrocyte membrane cholesterol: 0.36+/-0.15 mg/mg when compared with controls: 0.29+/-0.75 mg/mg; p=0.018. Phospholipid membrane content, although higher in the cases, did not reach statistical significance (PHC patients: 0.38+/-0.15 mg/mg vs. 0.33+/-0.72 mg/mg; p=0.098). The cholesterol/phospholipids ratio (Chol/Ph) was 0.99+/-0.22 in PHC patients versus 0.92+/-0.28 in controls; p=0.127. Our results suggest that there is a slight increase in erythrocyte membrane cholesterol in patients with PHC. Given the increasing importance of erythrocyte membrane cholesterol in the stability of the atheroma plaque due its possible contribution to the clinical signs of ischaemic heart disease, it seems relevant to determine this parameter in risk populations. Therefore, a simple and reproducible method needs to be standardised which would enable comparisons between laboratories and facilitate further studies aimed to it as a marker of acute coronary syndromes.

  3. Evidence for differences in erythrocyte surface receptors for the malarial parasites, Plasmodium falciparum and Plasmodium knowlesi

    PubMed Central

    1977-01-01

    Human erythrocytes lacking various blood group determinants were susceptible to invasion by Plasmodium falciparum including Duffy- negative erythrocytes that are refractory to invasion by Plasmodium knowlesi. Erythrocytes treated with trypsin or neuraminidase had reduced susceptibility of P. falciparum and normal susceptibility to P. knowlesi. Chymotrypsin treatment (0.1 mg/ml) blocked invasion only by P. knowlesi. The differential effect of enzymatic cleavage of determinats from the erythrocyte surface on invasion by these parasites suggests that P. falciparum and P. knowlesi interact with different determinants on the erythrocyte surface. PMID:327014

  4. Comparison of erythrocyte osmotic fragility among ectotherms and endotherms at three temperatures.

    PubMed

    Aldrich, K; Saunders, D K.

    2001-06-01

    1. Comparison of erythrocyte osmotic fragility (EOF) between various ectotherms and endotherms was investigated at 5, 25, and 38 degrees C. 2. We hypothesized that ectotherms might possess erythrocytes whose osmotic fragility would be less affected by temperature than those of endotherms. 3. Ectotherm erythrocytes were much more osmotically resistant than those of endotherms. 4. The EOF of ectotherms and endotherms showed similar responses to temperature. 5. It does not appear that the osmotic fragility of erythrocytes from ectotherms in this study are adapted to be less affected by temperature than those of endotherms. The highly osmotic resistant erythrocytes of ectotherms may alleviate the need for further adaptation for osmotic resistance.

  5. Chromosomal abnormalities in human sperm

    SciTech Connect

    Martin, R.H.

    1985-01-01

    The ability to analyze human sperm chromosome complements after penetration of zona pellucida-free hamster eggs provides the first opportunity to study the frequency and type of chromosomal abnormalities in human gametes. Two large-scale studies have provided information on normal men. We have studied 1,426 sperm complements from 45 normal men and found an abnormality rate of 8.9%. Brandriff et al. (5) found 8.1% abnormal complements in 909 sperm from 4 men. The distribution of numerical and structural abnormalities was markedly dissimilar in the 2 studies. The frequency of aneuploidy was 5% in our sample and only 1.6% in Brandriff's, perhaps reflecting individual variability among donors. The frequency of 24,YY sperm was low: 0/1,426 and 1/909. This suggests that the estimates of nondisjunction based on fluorescent Y body data (1% to 5%) are not accurate. We have also studied men at increased risk of sperm chromosomal abnormalities. The frequency of chromosomally unbalanced sperm in 6 men heterozygous for structural abnormalities varied dramatically: 77% for t11;22, 32% for t6;14, 19% for t5;18, 13% for t14;21, and 0% for inv 3 and 7. We have also studied 13 cancer patients before and after radiotherapy and demonstrated a significant dose-dependent increase of sperm chromosome abnormalities (numerical and structural) 36 months after radiation treatment.

  6. Chromosomal abnormalities and mental illness.

    PubMed

    MacIntyre, D J; Blackwood, D H R; Porteous, D J; Pickard, B S; Muir, W J

    2003-03-01

    Linkage studies of mental illness have provided suggestive evidence of susceptibility loci over many broad chromosomal regions. Pinpointing causative gene mutations by conventional linkage strategies alone is problematic. The breakpoints of chromosomal abnormalities occurring in patients with mental illness may be more direct pointers to the relevant gene locus. Publications that describe patients where chromosomal abnormalities co-exist with mental illness are reviewed along with supporting evidence that this may amount to an association. Chromosomal abnormalities are considered to be of possible significance if (a) the abnormality is rare and there are independent reports of its coexistence with psychiatric illness, or (b) there is colocalisation of the abnormality with a region of suggestive linkage findings, or (c) there is an apparent cosegregation of the abnormality with psychiatric illness within the individual's family. Breakpoints have been described within many of the loci suggested by linkage studies and these findings support the hypothesis that shared susceptibility factors for schizophrenia and bipolar disorder may exist. If these abnormalities directly disrupt coding regions, then combining molecular genetic breakpoint cloning with bioinformatic sequence analysis may be a method of rapidly identifying candidate genes. Full karyotyping of individuals with psychotic illness especially where this coexists with mild learning disability, dysmorphism or a strong family history of mental disorder is encouraged.

  7. Haematological abnormalities in mitochondrial disorders

    PubMed Central

    Finsterer, Josef; Frank, Marlies

    2015-01-01

    INTRODUCTION This study aimed to assess the kind of haematological abnormalities that are present in patients with mitochondrial disorders (MIDs) and the frequency of their occurrence. METHODS The blood cell counts of a cohort of patients with syndromic and non-syndromic MIDs were retrospectively reviewed. MIDs were classified as ‘definite’, ‘probable’ or ‘possible’ according to clinical presentation, instrumental findings, immunohistological findings on muscle biopsy, biochemical abnormalities of the respiratory chain and/or the results of genetic studies. Patients who had medical conditions other than MID that account for the haematological abnormalities were excluded. RESULTS A total of 46 patients (‘definite’ = 5; ‘probable’ = 9; ‘possible’ = 32) had haematological abnormalities attributable to MIDs. The most frequent haematological abnormality in patients with MIDs was anaemia. 27 patients had anaemia as their sole haematological problem. Anaemia was associated with thrombopenia (n = 4), thrombocytosis (n = 2), leucopenia (n = 2), and eosinophilia (n = 1). Anaemia was hypochromic and normocytic in 27 patients, hypochromic and microcytic in six patients, hyperchromic and macrocytic in two patients, and normochromic and microcytic in one patient. Among the 46 patients with a mitochondrial haematological abnormality, 78.3% had anaemia, 13.0% had thrombopenia, 8.7% had leucopenia and 8.7% had eosinophilia, alone or in combination with other haematological abnormalities. CONCLUSION MID should be considered if a patient’s abnormal blood cell counts (particularly those associated with anaemia, thrombopenia, leucopenia or eosinophilia) cannot be explained by established causes. Abnormal blood cell counts may be the sole manifestation of MID or a collateral feature of a multisystem problem. PMID:26243978

  8. Haematological abnormalities in mitochondrial disorders.

    PubMed

    Finsterer, Josef; Frank, Marlies

    2015-07-01

    This study aimed to assess the kind of haematological abnormalities that are present in patients with mitochondrial disorders (MIDs) and the frequency of their occurrence. The blood cell counts of a cohort of patients with syndromic and non-syndromic MIDs were retrospectively reviewed. MIDs were classified as 'definite', 'probable' or 'possible' according to clinical presentation, instrumental findings, immunohistological findings on muscle biopsy, biochemical abnormalities of the respiratory chain and/or the results of genetic studies. Patients who had medical conditions other than MID that account for the haematological abnormalities were excluded. A total of 46 patients ('definite' = 5; 'probable' = 9; 'possible' = 32) had haematological abnormalities attributable to MIDs. The most frequent haematological abnormality in patients with MIDs was anaemia. 27 patients had anaemia as their sole haematological problem. Anaemia was associated with thrombopenia (n = 4), thrombocytosis (n = 2), leucopenia (n = 2), and eosinophilia (n = 1). Anaemia was hypochromic and normocytic in 27 patients, hypochromic and microcytic in six patients, hyperchromic and macrocytic in two patients, and normochromic and microcytic in one patient. Among the 46 patients with a mitochondrial haematological abnormality, 78.3% had anaemia, 13.0% had thrombopenia, 8.7% had leucopenia and 8.7% had eosinophilia, alone or in combination with other haematological abnormalities. MID should be considered if a patient's abnormal blood cell counts (particularly those associated with anaemia, thrombopenia, leucopenia or eosinophilia) cannot be explained by established causes. Abnormal blood cell counts may be the sole manifestation of MID or a collateral feature of a multisystem problem.

  9. Acute dark chocolate ingestion is beneficial for hemodynamics via enhancement of erythrocyte deformability in healthy humans.

    PubMed

    Radosinska, Jana; Horvathova, Martina; Frimmel, Karel; Muchova, Jana; Vidosovicova, Maria; Vazan, Rastislav; Bernatova, Iveta

    2017-03-01

    Erythrocyte deformability is an important property of erythrocytes that considerably affects blood flow and hemodynamics. The high content of polyphenols present in dark chocolate has been reported to play a protective role in functionality of erythrocytes. We hypothesized that chocolate might influence erythrocytes not only after repeated chronic intake, but also immediately after its ingestion. Thus, we determined the acute effect of dark chocolate and milk (with lower content of biologically active substances) chocolate intake on erythrocyte deformability. We also focused on selected factors that may affect erythrocyte deformability, specifically nitric oxide production in erythrocytes and total antioxidant capacity of plasma. We determined posttreatment changes in the mentioned parameters 2hours after consumption of chocolate compared with their levels before consumption of chocolate. In contrast to milk chocolate intake, the dark chocolate led to a significantly higher increase in erythrocyte deformability. Nitric oxide production in erythrocytes was not changed after dark chocolate intake, but significantly decreased after milk chocolate. The plasma total antioxidant capacity remained unaffected after ingestion of both chocolates. We conclude that our hypothesis was confirmed. Single ingestion of dark chocolate improved erythrocyte deformability despite unchanged nitric oxide production and antioxidant capacity of plasma. Increased deformability of erythrocytes may considerably improve rheological properties of blood and thus hemodynamics in humans, resulting in better tissue oxygenation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Attempts to validate a possible predictive animal model for human erythrocyte G-6-PD deficiency

    SciTech Connect

    Horton, H.M.; Calabrese, E.J.

    1986-01-01

    The use of Dorset sheep erythrocytes as a model for human G-6-PD deficient erythrocytes was investigated. Seven pharmaceuticals were examined for oxidant stressor effects using a liver microsomal enzyme system to generate metabolites of the drugs. The pharmaceuticals examined were salicyclic acid, dapsone, naphthalene, B-naphtol, p-aminobenzoic acid, sulfanilamide and sulfapyridine. The test compounds were incubated with Dorset sheep erythrocytes and oxidant stressor effects were measured through reduced glutathione (GSH) levels and methemaglobin formation. The response of the Dorset sheep erythrocytes to the seven agents was compared to previous studies revealing the response of human G-6-PD deficient erythrocytes to these agents. The results indicated that metabolites of the pharmaceuticals, B-naphthol, dapsone, and sulfanilamide, are oxidant stressor agents towards sheep G-6-PD deficient erythrocytes. These results agreed with studies on the response of human G-6-PD deficient erythrocytes. The metabolized naphthalene and sulfapyridine did not cause oxidant stress in the sheep erythrocytes, despite the fact that these two agents caused oxidizing effects in human G-6-PD deficient erythrocytes in previous studies. None of the non-metabolized parent compounds caused oxidant stress in the sheep erythrocytes, which agreed with the responses of human G-6-PD deficient erythrocytes.

  11. Response of the iron-deficient erythrocyte in the rat to hyperoxia

    NASA Technical Reports Server (NTRS)

    Larkin, E. C.; Kimzey, S. L.; Siler, K.

    1978-01-01

    Normal and iron-deficient rats were exposed to 90% O2 at 760 Torr for 24 or 48 h. Erythrocyte response to hyperoxia was monitored by potassium (rubidium) influx studies, by storage stress, and by ultrastructural studies. Normal rat erythrocytes exhibited morphological changes and decrease of ouabain-sensitive potassium influx compared to unexposed controls. Both components of erythrocyte potassium influx were affected by iron deficiency. Erythrocytes from unexposed iron-deficient rats showed a 50% increase in ouabain-sensitive potassium influx compared to controls. Iron-deficient rats exposed to hyperoxia for 24 or 48 h, had erythrocytes with morphological changes. Erythrocytes of iron-deficient rats exposed for 24 h showned no influx change; those exposed for 48 h showed a decrease of ouabain-sensitive influx compared to erythrocytes of controls.

  12. Response of the iron-deficient erythrocyte in the rat to hyperoxia

    NASA Technical Reports Server (NTRS)

    Larkin, E. C.; Kimzey, S. L.; Siler, K.

    1978-01-01

    Normal and iron-deficient rats were exposed to 90% O2 at 760 Torr for 24 or 48 h. Erythrocyte response to hyperoxia was monitored by potassium (rubidium) influx studies, by storage stress, and by ultrastructural studies. Normal rat erythrocytes exhibited morphological changes and decrease of ouabain-sensitive potassium influx compared to unexposed controls. Both components of erythrocyte potassium influx were affected by iron deficiency. Erythrocytes from unexposed iron-deficient rats showed a 50% increase in ouabain-sensitive potassium influx compared to controls. Iron-deficient rats exposed to hyperoxia for 24 or 48 h, had erythrocytes with morphological changes. Erythrocytes of iron-deficient rats exposed for 24 h showned no influx change; those exposed for 48 h showed a decrease of ouabain-sensitive influx compared to erythrocytes of controls.

  13. Genetic Evidence for Erythrocyte Receptor Glycophorin B Expression Levels Defining a Dominant Plasmodium falciparum Invasion Pathway into Human Erythrocytes

    PubMed Central

    Dankwa, Selasi; Chaand, Mudit; Kanjee, Usheer; Jiang, Rays H. Y.; Nobre, Luis V.; Goldberg, Jonathan M.; Bei, Amy K.; Moechtar, Mischka A.; Grüring, Christof; Ahouidi, Ambroise D.; Ndiaye, Daouda; Dieye, Tandakha N.; Mboup, Souleymane; Weekes, Michael P.

    2017-01-01

    ABSTRACT Plasmodium falciparum, the parasite that causes the deadliest form of malaria, has evolved multiple proteins known as invasion ligands that bind to specific erythrocyte receptors to facilitate invasion of human erythrocytes. The EBA-175/glycophorin A (GPA) and Rh5/basigin ligand-receptor interactions, referred to as invasion pathways, have been the subject of intense study. In this study, we focused on the less-characterized sialic acid-containing receptors glycophorin B (GPB) and glycophorin C (GPC). Through bioinformatic analysis, we identified extensive variation in glycophorin B (GYPB) transcript levels in individuals from Benin, suggesting selection from malaria pressure. To elucidate the importance of the GPB and GPC receptors relative to the well-described EBA-175/GPA invasion pathway, we used an ex vivo erythrocyte culture system to decrease expression of GPA, GPB, or GPC via lentiviral short hairpin RNA transduction of erythroid progenitor cells, with global surface proteomic profiling. We assessed the efficiency of parasite invasion into knockdown cells using a panel of wild-type P. falciparum laboratory strains and invasion ligand knockout lines, as well as P. falciparum Senegalese clinical isolates and a short-term-culture-adapted strain. For this, we optimized an invasion assay suitable for use with small numbers of erythrocytes. We found that all laboratory strains and the majority of field strains tested were dependent on GPB expression level for invasion. The collective data suggest that the GPA and GPB receptors are of greater importance than the GPC receptor, supporting a hierarchy of erythrocyte receptor usage in P. falciparum. PMID:28760933

  14. Spondylodiscitis after Cervical Nucleoplasty without Any Abnormal Laboratory Findings

    PubMed Central

    Lee, Seung Jun; Choi, Eun Joo

    2013-01-01

    Infective spondylodiscitis is a rare complication that can occur after interventional spinal procedures, of which symptoms are usually back pain and fever. Early diagnosis of infective spondylodiscitis is critical to start antibiotics and to improve prognosis. Laboratory examinations including complet blood cell count (CBC), erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) are conventional tools for the early detection of infectious spondylitis. However, we experienced infective spondylodiscitis after cervical nucleoplasty which did not display any laboratory abnormalities, but was diagnosed through an MRI. A patient with cervical disc herniation received nucleoplasty at C5/6 and C6/7. One month later, the patient complained of aggravated pain. There were neither signs of chill nor fever, and the laboratory results appeared normal. However, the MRI findings were compatible with infectious spondylodiscitis at the nucleoplasty site. In conclusion, infectious spondylodiscitis can develop after cervical nucleoplasty without any laboratory abnormalities. Therefore, an MRI should be taken when there is a clinical suspicion for infection in order to not miss complications after interventional procedures, even if the laboratory findings are normal. PMID:23614083

  15. Skin - abnormally dark or light

    MedlinePlus

    ... ency/article/003242.htm Skin - abnormally dark or light To use the sharing features on this page, ... the hands. The bronze color can range from light to dark (in fair-skinned people) with the ...

  16. Fatty acids of erythrocyte membrane in acute pancreatitis patients

    PubMed Central

    Kuliaviene, Irma; Gulbinas, Antanas; Cremers, Johannes; Pundzius, Juozas; Kupcinskas, Limas; Dambrauskas, Zilvinas; Jansen, Eugene

    2013-01-01

    AIM: To evaluate changes in the fatty acid composition of erythrocyte membrane phospholipids during severe and mild acute pancreatitis (AP) of alcoholic and nonalcoholic etiology. METHODS: All consecutive patients with a diagnosis of AP and onset of the disease within the last 72 h admitted to the Hospital of Lithuanian University of Health Sciences between June and December 2007 were included. According to the Acute Physiology and Chronic Health Evaluation (APACHE II) scale, the patients were subdivided into the mild (APACHE II score < 7, n = 22) and severe (APACHE II score ≥ 7, n = 17) AP groups. Healthy individuals (n = 26) were enrolled as controls. Blood samples were collected from patients on admission to the hospital. Fatty acids (FAs) were extracted from erythrocyte phospholipids and expressed as percentages of the total FAs present in the chromatogram. The concentrations of superoxide dismutase and glutathione peroxidase were measured in erythrocytes. RESULTS: We found an increase in the percentages of saturated and monounsaturated FAs, a decrease in the percentages of total polyunsaturated FAs (PUFAs) and n-3 PUFAs in erythrocyte membrane phospholipids of AP patients compared with healthy controls. Palmitic (C16:0), palmitoleic (C16:1n7cis), arachidonic (C20:4n6), docosahexaenoic (DHA, C22:6n3), and docosapentaenoic (DPA, C22:5n3) acids were the major contributing factors. A decrease in the peroxidation and unsaturation indexes in AP patients as well as the severe and mild AP groups as compared with controls was observed. The concentrations of antioxidant enzymes in the mild AP group were lower than in the control group. In severe AP of nonalcoholic etiology, the percentages of arachidic (C20:0) and arachidonic (C20:4n6) acids were decreased as compared with the control group. The patients with mild AP of nonalcoholic etiology had the increased percentages of total saturated FAs and gama linoleic acid (C18:3n6) and the decreased percentages of elaidic

  17. Fatty acids of erythrocyte membrane in acute pancreatitis patients.

    PubMed

    Kuliaviene, Irma; Gulbinas, Antanas; Cremers, Johannes; Pundzius, Juozas; Kupcinskas, Limas; Dambrauskas, Zilvinas; Jansen, Eugene

    2013-09-14

    To evaluate changes in the fatty acid composition of erythrocyte membrane phospholipids during severe and mild acute pancreatitis (AP) of alcoholic and nonalcoholic etiology. All consecutive patients with a diagnosis of AP and onset of the disease within the last 72 h admitted to the Hospital of Lithuanian University of Health Sciences between June and December 2007 were included. According to the Acute Physiology and Chronic Health Evaluation (APACHE II) scale, the patients were subdivided into the mild (APACHE II score < 7, n = 22) and severe (APACHE II score ≥ 7, n = 17) AP groups. Healthy individuals (n = 26) were enrolled as controls. Blood samples were collected from patients on admission to the hospital. Fatty acids (FAs) were extracted from erythrocyte phospholipids and expressed as percentages of the total FAs present in the chromatogram. The concentrations of superoxide dismutase and glutathione peroxidase were measured in erythrocytes. We found an increase in the percentages of saturated and monounsaturated FAs, a decrease in the percentages of total polyunsaturated FAs (PUFAs) and n-3 PUFAs in erythrocyte membrane phospholipids of AP patients compared with healthy controls. Palmitic (C16:0), palmitoleic (C16:1n7cis), arachidonic (C20:4n6), docosahexaenoic (DHA, C22:6n3), and docosapentaenoic (DPA, C22:5n3) acids were the major contributing factors. A decrease in the peroxidation and unsaturation indexes in AP patients as well as the severe and mild AP groups as compared with controls was observed. The concentrations of antioxidant enzymes in the mild AP group were lower than in the control group. In severe AP of nonalcoholic etiology, the percentages of arachidic (C20:0) and arachidonic (C20:4n6) acids were decreased as compared with the control group. The patients with mild AP of nonalcoholic etiology had the increased percentages of total saturated FAs and gama linoleic acid (C18:3n6) and the decreased percentages of elaidic (C18:1n9t

  18. Tank-treading of swollen erythrocytes in shear flows

    NASA Astrophysics Data System (ADS)

    Dodson, W. R., III; Dimitrakopoulos, P.

    2012-02-01

    In this paper, we investigate computationally the oscillatory tank-treading motion of healthy swollen human erythrocytes (owing to lower than physiological plasma osmolarity) in shear flows with capillary number Ca=O(1) and small to moderate viscosity ratios 0.01≤λ≤2.75. Swollen cells show similar shear flow dynamics with normal cells but with significantly higher inclination and tank-treading speed owing to the higher cell thickness. For a given viscosity ratio, as the flow rate increases, the steady-state erythrocyte length L (in the shear plane) increases logarithmically while its depth W (normal to the shear plane) decreases logarithmically; increase of the viscosity ratio results in lower cell deformation. The erythrocyte width S, which exists in the shear plane, is practically invariant in time, flow rate, and viscosity ratio and corresponds to a real cell thickness of about 2.5μm at physiological osmolarity (300mO) and 3.4μm at an osmolarity of 217 mO. The erythrocyte inclination decreases as the flow rate increases or as the surrounding fluid viscosity decreases, owing to the increased inner rotational flow which tends to align the cell toward the flow direction. The ektacytometry deformation of swollen cells increases logarithmically with the shear stress but with a slower slope than that for normal cells owing mainly to the higher orientation of the more swollen cells. As the cell swelling increases, the tank-treading period decreases owing to the higher thickness of the actual cell which overcomes the opposite action of the reduced shape-memory effects (i.e., the more spherical-like erythrocyte's reference shape of shearing resistance). The local area incompressibility tensions from the lipid bilayer increase with the cell swelling and cause a higher cytoskeleton prestress; this increased prestress results in smaller, but still measurable, local area changes on the spectrin skeleton of the more swollen erythrocytes. Our work provides insight on

  19. Tank-treading of swollen erythrocytes in shear flows.

    PubMed

    Dodson, W R; Dimitrakopoulos, P

    2012-02-01

    In this paper, we investigate computationally the oscillatory tank-treading motion of healthy swollen human erythrocytes (owing to lower than physiological plasma osmolarity) in shear flows with capillary number Ca=O(1) and small to moderate viscosity ratios 0.01≤λ≤2.75. Swollen cells show similar shear flow dynamics with normal cells but with significantly higher inclination and tank-treading speed owing to the higher cell thickness. For a given viscosity ratio, as the flow rate increases, the steady-state erythrocyte length L (in the shear plane) increases logarithmically while its depth W (normal to the shear plane) decreases logarithmically; increase of the viscosity ratio results in lower cell deformation. The erythrocyte width S, which exists in the shear plane, is practically invariant in time, flow rate, and viscosity ratio and corresponds to a real cell thickness of about 2.5 μm at physiological osmolarity (300 mO) and 3.4 μm at an osmolarity of 217 mO. The erythrocyte inclination decreases as the flow rate increases or as the surrounding fluid viscosity decreases, owing to the increased inner rotational flow which tends to align the cell toward the flow direction. The ektacytometry deformation of swollen cells increases logarithmically with the shear stress but with a slower slope than that for normal cells owing mainly to the higher orientation of the more swollen cells. As the cell swelling increases, the tank-treading period decreases owing to the higher thickness of the actual cell which overcomes the opposite action of the reduced shape-memory effects (i.e., the more spherical-like erythrocyte's reference shape of shearing resistance). The local area incompressibility tensions from the lipid bilayer increase with the cell swelling and cause a higher cytoskeleton prestress; this increased prestress results in smaller, but still measurable, local area changes on the spectrin skeleton of the more swollen erythrocytes. Our work provides insight on

  20. Congenital abnormalities and selective abortion.

    PubMed

    Seller, M J

    1976-09-01

    The technique of amniocentesis, by which an abnormal fetus can be detected in utero, has brought a technological advance in medical science but attendant medical and moral problems. Dr Seller describes those congenital disabilities which can be detected in the fetus before birth, for which the "remedy" is selective abortion. She then discusses the arguments for and against selective abortion, for the issue is not simple, even in the strictly genetic sense of attempting to ensure a population free of congenital abnormality.

  1. Characterization of pig lymphocyte receptors for allogeneic and non-allogeneic erythrocytes. I. Apparent common identity of both receptors.

    PubMed Central

    Salmon, H

    1982-01-01

    In the pig thymus, the proportion of allogeneic (or autologous) erythrocyte rosette forming cells (P-RFC) is always lower than that of sheep erythrocyte (non-allogeneic) rosette forming cells (S-RFC) even under saturated RBC/lymphocyte ratios and optimal dextran concentration. This difference accounted for lymphocytes rosetting with sheep erythrocytes and not with pig erythrocytes (P-S+ cells), as opposed to those lymphocytes which are able to bind both types of erythrocytes (P+S+ cells). Since formation of both sheep and pig erythrocyte rosettes is inhibited similarly by anti-T receptor serum, is inhibited reciprocally by sheep and pig erythrocyte membrane fragment and is similarly trypsin sensitive, it was concluded that the same receptor was responsible for both sheep and pig rosette formation. Furthermore it was found that P+S+ cells had a higher avidity for sheep erythrocytes (and lower for pig erythrocytes) than the other subset which did not bind pig erythrocytes. PMID:6180852

  2. Prenatal diagnosis from maternal blood: simultaneous immunophenotyping and FISH of fetal nucleated erythrocytes isolated by negative magnetic cell sorting.

    PubMed Central

    Zheng, Y L; Carter, N P; Price, C M; Colman, S M; Milton, P J; Hackett, G A; Greaves, M F; Ferguson-Smith, M A

    1993-01-01

    Fetal nucleated cells in the maternal circulation constitute a potential source of cells for the non-invasive prenatal diagnosis of fetal genetic abnormalities. We have investigated the use of the Magnetic Activated Cell Sorter (MACS) for enriching fetal nucleated erythrocytes. Mouse monoclonal antibodies specific for CD45 and CD32 were used to deplete leucocytes from maternal blood using MACS sorting, thus enriching for fetal nucleated erythrocytes which do not express either of these antigens. However, significant maternal contamination was present even after MACS enrichment preventing the accurate analysis of fetal cells by interphase fluorescence in situ hybridisation (FISH). To overcome this problem, we used simultaneous immunophenotyping of cells with the mouse antifetal haemoglobin antibody, UCH gamma, combined with FISH analysis using chromosome X and Y specific DNA probes. This approach enables selective FISH analysis of fetal cells within an excess of maternal cells. Furthermore, we have confirmed the potential of the method for clinical practice by a pilot prospective study of fetal sex in women referred for amniocentesis between 13 and 17 weeks of gestation. Images PMID:8133505

  3. Altered erythrocyte membrane fatty acid profile in typical Rett syndrome: effects of omega-3 polyunsaturated fatty acid supplementation.

    PubMed

    Signorini, Cinzia; De Felice, Claudio; Leoncini, Silvia; Durand, Thierry; Galano, Jean-Marie; Cortelazzo, Alessio; Zollo, Gloria; Guerranti, Roberto; Gonnelli, Stefano; Caffarelli, Carla; Rossi, Marcello; Pecorelli, Alessandra; Valacchi, Giuseppe; Ciccoli, Lucia; Hayek, Joussef

    2014-11-01

    This study mainly aims at examining the erythrocyte membrane fatty acid (FAs) profile in Rett syndrome (RTT), a genetically determined neurodevelopmental disease. Early reports suggest a beneficial effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) on disease severity in RTT. A total of 24 RTT patients were assigned to ω-3 PUFAs-containing fish oil for 12 months in a randomized controlled study (average DHA and EPA doses of 72.9, and 117.1mg/kgb.w./day, respectively). A distinctly altered FAs profile was detectable in RTT, with deficient ω-6 PUFAs, increased saturated FAs and reduced trans 20:4 FAs. FAs changes were found to be related to redox imbalance, subclinical inflammation, and decreased bone density. Supplementation with ω-3 PUFAs led to improved ω-6/ω-3 ratio and serum plasma lipid profile, decreased PUFAs peroxidation end-products, normalization of biochemical markers of inflammation, and reduction of bone hypodensity as compared to the untreated RTT group. Our data indicate that a significant FAs abnormality is detectable in the RTT erythrocyte membranes and is partially rescued by ω-3 PUFAs.

  4. LIN28A expression reduces sickling of cultured human erythrocytes.

    PubMed

    de Vasconcellos, Jaira F; Fasano, Ross M; Lee, Y Terry; Kaushal, Megha; Byrnes, Colleen; Meier, Emily R; Anderson, Molly; Rabel, Antoinette; Braylan, Raul; Stroncek, David F; Miller, Jeffery L

    2014-01-01

    Induction of fetal hemoglobin (HbF) has therapeutic importance for patients with sickle cell disease (SCD) and the beta-thalassemias. It was recently reported that increased expression of LIN28 proteins or decreased expression of its target let-7 miRNAs enhances HbF levels in cultured primary human erythroblasts from adult healthy donors. Here LIN28A effects were studied further using erythrocytes cultured from peripheral blood progenitor cells of pediatric subjects with SCD. Transgenic expression of LIN28A was accomplished by lentiviral transduction in CD34(+) sickle cells cultivated ex vivo in serum-free medium. LIN28A over-expression (LIN28A-OE) increased HbF, reduced beta (sickle)-globin, and strongly suppressed all members of the let-7 family of miRNAs. LIN28A-OE did not affect erythroblast differentiation or prevent enucleation, but it significantly reduced or ameliorated the sickling morphologies of the enucleated erythrocytes.

  5. Recent advancements in erythrocytes, platelets, and albumin as delivery systems

    PubMed Central

    Xu, Peipei; Wang, Ruju; Wang, Xiaohui; Ouyang, Jian

    2016-01-01

    In the past few years, nanomaterial-based drug delivery systems have been applied to enhance the efficacy of therapeutics and to alleviate negative effects through the controlled delivery of targeting and releasing agents. However, few drug carriers can achieve high targeting efficacy, even when targeting modalities and surface markers are introduced. Immunological problems have also limited their wide applications. Biological drug delivery systems, such as erythrocytes, platelets, and albumin, have been extensively investigated because of their unique properties. In this review, erythrocytes, platelets, and albumin are described as efficient drug delivery systems. Their properties, applications, advantages, and limitations in disease treatment are explained. This review confirms that these systems can be used to facilitate a specific, biocompatible, and smart drug delivery. PMID:27274282

  6. [Recent advance on blood group antigen modification of porcine erythrocytes].

    PubMed

    Wang, Jie-Xi; Zhang, Yang-Pei

    2002-06-01

    Advances in the field of xenotransplantation raise the intriguing possibility of using porcine red blood cells (pRBCs) as an alternative source for blood transfusion. Serologically, pRBCs share a number of characteristics with human red blood cells (RBCs), so pRBCs are considered the most likely donor for xenotransfusion. However, xenoantigens on porcine erythrocytes play major roles in antibody-mediated RBC destruction. Although the alphaGal epitope (Galalpha1, 3Galbeta1, 4GalNAc-R) is the major xenoantigen on porcine erythrocytes and is responsible for the binding of the majority of human natural antibodies, other non-alphaGal xenoantigens have been identified. The importance of these non-alphaGal xenoantigens in binding human natural antibodies and subsequently triggering immunological responses cannot be underestimated.

  7. Erythrocyte enzymes catalyze 1-nitropyrene and 3-nitrofluoranthene nitroreduction.

    PubMed

    Belisario, M A; Pecce, R; Garofalo, A; Sannolo, N; Malorni, A

    1996-04-15

    Nitroarenes are environmental contaminants produced during incomplete combustion processes. Nitroreduction, the most important pathway of nitroarene toxification, occurs mainly in the liver and intestine. In the present study, we show that human red cells may also possess the metabolic competence to reduce 1-nitropyrene (NP) and 3-nitrofluoranthene (NF), the nitroarenes chosen as model compounds, to their corresponding amino derivatives, 1-aminopyrene (AP) and 3-aminofluoranthene (AF). The requirement of the cofactor couple NADH/FMN suggests that erythrocyte nitroreductase activity occurs via one electron transfer. The presence of oxygen strongly inhibited the haemolysate-catalyzed nitroarene reduction, whether measured as amine formation or nitroarene disappearance. Intermediate reactive species, that bind covalently to haemoglobin and/or other erythrocyte proteins, are formed during nitroreduction catalyzed by human haemolysate. In fact, the reduced metabolites AP and AF were released after mild acid hydrolysis of red cell proteins exposed to NP and NF, thus suggesting that sulphinamide adducts have been formed.

  8. Why do malaria parasites increase host erythrocyte permeability?

    PubMed Central

    Desai, Sanjay A.

    2014-01-01

    Malaria parasites increase erythrocyte permeability to diverse solutes including anions, some cations, and organic solutes, as characterized with several independent methods. Over the last decade, patch-clamp studies have determined that the permeability results from one or more ion channels on the infected erythrocyte host membrane. However, the biological role(s) served by these channels, if any, remain controversial. Recent studies implicate the plasmodial surface anion channel (PSAC) and a role in parasite nutrient acquisition. A debated alternative role in remodeling host ion composition for the benefit of the parasite appears to be nonessential. Because both channel activity and the associated clag3 genes are strictly conserved in malaria parasites, channel-mediated permeability is an attractive target for development of new therapies. PMID:24507014

  9. Concentration of erythrocyte-based magnetic carriers in the bloodstream

    SciTech Connect

    Danilov, Y.N.; Il'ina, M.B.; Makharudov, S.Y.; Orekhov, A.N.; Rodchenko, S.A.; Samokhin, G.P.

    1986-04-01

    The writers postulated that magnetic erythrocytes (ME), injected into the bloodstream, may be concentrated in an assigned region of the vascular bed with the aid of the field of a permanent magnet. To test this hypothesis, erythrocytes ''loaded'' with colloidal magnetite were used, and concentrated in experiments in vitro and in vivo. For the experiments in vivo ME were labeled with sodium pertechnetate (Na /SUP 99n/ TcO4) was estimated in ME with a Rackgamma 1270 counter by determining radioactivity in the ME suspension and in the supernatant. For the experiment in vivo, a midline laparotomy was performed on a dog weighing 14 kg under intravenous hexobarbital anesthesia. The distribution of ME was recorded by means of a gamma-camera.

  10. Piezo1 plays a role in erythrocyte volume homeostasis

    PubMed Central

    Faucherre, Adèle; Kissa, Karima; Nargeot, Joël; Mangoni, Matteo E.; Jopling, Chris

    2014-01-01

    Mechanosensitivity is an inherent property of virtually all cell types, allowing them to sense and respond to physical environmental stimuli. Stretch-activated ion channels represent a class of mechanosensitive proteins which allow cells to respond rapidly to changes in membrane tension; however their identity has remained elusive. The piezo genes have recently been identified as a family of stretch-activated mechanosensitive ion channels. We set out to determine the role of piezo1 during zebrafish development. Here we report that morpholino-mediated knockdown of piezo1 impairs erythrocyte survival without affecting hematopoiesis or differentiation. Our results demonstrate that piezo1 is involved in erythrocyte volume homeostasis, disruption of which results in swelling/lysis of red blood cells and consequent anemia. PMID:23872304

  11. α- and β-Monosaccharide transport in human erythrocytes

    PubMed Central

    Leitch, Jeffry M.; Carruthers, Anthony

    2009-01-01

    Equilibrative sugar uptake in human erythrocytes is characterized by a rapid phase, which equilibrates 66% of the cell water, and by a slow phase, which equilibrates 33% of the cell water. This behavior has been attributed to the preferential transport of β-sugars by erythrocytes (Leitch JM, Carruthers A. Am J Physiol Cell Physiol 292: C974–C986, 2007). The present study tests this hypothesis. The anomer theory requires that the relative compartment sizes of rapid and slow transport phases are determined by the proportions of β- and α-sugar in aqueous solution. This is observed with d-glucose and 3-O-methylglucose but not with 2-deoxy-d-glucose and d-mannose. The anomer hypothesis predicts that the slow transport phase, which represents α-sugar transport, is eliminated when anomerization is accelerated to generate the more rapidly transported β-sugar. Exogenous, intracellular mutarotase accelerates anomerization but has no effect on transport. The anomer hypothesis requires that transport inhibitors inhibit rapid and slow transport phases equally. This is observed with the endofacial site inhibitor cytochalasin B but not with the exofacial site inhibitors maltose or phloretin, which inhibit only the rapid phase. Direct measurement of α- and β-sugar uptake demonstrates that erythrocytes transport α- and β-sugars with equal avidity. These findings refute the hypothesis that erythrocytes preferentially transport β-sugars. We demonstrate that biphasic 3-O-methylglucose equilibrium exchange kinetics refute the simple carrier hypothesis for protein-mediated sugar transport but are compatible with a fixed-site transport mechanism regulated by intracellular ATP and cell shape. PMID:18987250

  12. Triggering of Suicidal Erythrocyte Death by the Antibiotic Ionophore Nigericin.

    PubMed

    Bissinger, Rosi; Malik, Abaid; Bouguerra, Ghada; Zhou, Yuetao; Singh, Yogesh; Abbès, Salem; Lang, Florian

    2016-05-01

    The K(+),H(+) ionophore and antibiotic nigericin has been shown to trigger apoptosis and is thus considered for the treatment of malignancy. Cellular mechanisms involved include induction of oxidative stress, which is known to activate erythrocytic Ca(2+)-permeable unselective cation channels leading to Ca(2+) entry, increase in cytosolic Ca(2+) activity ([Ca(2+)]i) and subsequent stimulation of eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. This study explored whether and how nigericin induces eryptosis. Phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, [Ca(2+)]i from Fluo3 fluorescence, pHi from BCECF fluorescence, ceramide abundance utilizing antibodies and reactive oxygen species (ROS) formation from DCFDA-dependent fluorescence. A 48-hr exposure of human erythrocytes to nigericin significantly increased the percentage of annexin-V-binding cells (0.1-10 nM), significantly decreased forward scatter (0.1-1 nM), significantly decreased cytosolic pH (0.1-1 nM) and significantly increased Fluo3 fluorescence (0.1-10 nM). Nigericin (1 nM) slightly, but significantly, increased ROS, but did not significantly modify ceramide abundance. The effect of nigericin on annexin V binding was significantly blunted, but not abolished by removal of extracellular Ca(2+). The nigericin-induced increase in [Ca(2+)]i and annexin V binding was again significantly blunted but not abolished by the Na(+)/H(+) exchanger inhibitor cariporide (10 μM). Nigericin triggers eryptosis, an effect paralleled by ROS formation, in part dependent on stimulation of Ca(2+) entry, and involving the cariporide-sensitive Na(+)/H(+) exchanger. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  13. Transport of lithium across the lamprey (Lampetra fluviatilis) erythrocyte membrane.

    PubMed

    Gusev, Gennadii P; Agalakova, Natalia I; Ivanova, Tatiana I

    2008-12-01

    Lithium, capable of replacing Na+ in various membrane transport processes, was used to investigate Na+ transport pathways across the lamprey erythrocytes membrane. The values of Li+ influxes have ranged from 8 to 24 mmol/l cells/h. Intracellular accumulation of Li+ was associated with loss of cellular Na+, the value of which was less than the value of Li+ influx. Both Li+ influx and Na+ efflux were partially inhibited by amiloride. The amiloride-sensitive Li+ influx was considerably stimulated by hyperosmotic cell shrinkage. The treatment of lamprey erythrocytes with blockers of protein phosphatases (fluoride and cantharidin) also resulted in a considerable increase in Li+ accumulation within the cells. No significant difference was observed between the values of Li+ and Na+ (22Na) influxes measured in red cells incubated simultaneously in isotonic LiCl and NaCl media (9.2 +/- 2.1 and 7.8 +/- 1.3 mmol/l cells/h, respectively). In hypo- and hypertonic media, however, the rate of Na+ influx in lamprey erythrocytes was approximately twice higher as compared to the rate of Li+ influx, what was determined by the difference in the amiloride-sensitive components. In acidified lamprey erythrocytes (intracellular pH 6.0) Li+ and Na+ influxes were considerably increased due to activation of amiloride-sensitive Na+/H+ (Li+/H+) exchange mechanism, although the activity of Na+/H+ exchange was much greater than that of Li+/H+ exchange. The data obtained confirm the hypothesis on the presence of two amiloride-sensitive systems of Na+ transport in the lamprey red blood cells.

  14. Repression and reactivation of lithium efflux from erythrocytes.

    PubMed

    Goodnick, P J; Meltzer, H L; Dunner, D L; Fieve, R R

    1979-10-01

    Efflux of lithium from human erythrocytes was studied in patients before, during, and after discontinuation of administration of lithium carbonate. Onset of lithium-induced repression of efflux took approximately 10 days and was significantly shorter in patients who had had lithium therapy previously. Reactivation took a longer period of time--approximately 2 week--and was found to be related to duration of lithium therapy. Theoretical pathways of lithium flow through membranes are discussed.

  15. Influence of calcium blockers on the SPR of erythrocytes

    NASA Astrophysics Data System (ADS)

    Shynkarenko, Olena V.; Tril, Orest; Wojnarowska, Renata; Prohorenko, Sergiy; Shergii, E. M.

    2016-12-01

    One of the promising areas of research is the impact of calcium channel blockers (CB) of biological fluids. This paper shows that the CB impact on a biological fluid can be efficiently combine with the surface plasmon resonance (SPR). It is shown that the addition of CB at the SPR measurements affect the stability of membranes and acts differently on the kinetics of erythrocytes ligament in the different groups of people.

  16. Stability of erythrocyte suspensions layered on stationary and flowing liquids

    NASA Technical Reports Server (NTRS)

    Omenyi, S. N.; Rhodes, P. H.; Snyder, R. S.

    1982-01-01

    The apparent stability of erythrocyte suspensions layered on stationary and flowing Ficoll solutions was studied considering the effects of particle concentration, type and size, and the different flow rates of the particle suspensions and chamber liquid. The data from the flowing system were empirically fitted and, when extrapolated to zero chamber liquid flow rate, gave values comparable to the data from the stationary system, thus confirming the validity of the data and our approach to obtain that data.

  17. Erythrocyte selenium and breast cancer risk: brief reports

    SciTech Connect

    Meyer, F.; Verreault, R.

    1987-05-01

    Animal experiments and ecologic studies suggest that low dietary selenium intake is associated with an increased risk of some types of cancer. However, studies assessing the relation of indicators of selenium intake in subjects to site-specific cancer incidence are few. This paper reports the results of a case-control study of erythrocyte selenium in relation to breast carcinoma in premenopausal women. 1 figure, 1 table.

  18. SWELLING OF ERYTHROCYTES IN SOLUTIONS OF AMMONIUM SALTS

    PubMed Central

    Schiödt, E.

    1933-01-01

    Two rather simple equations have been derived, which make it possible to express in a single number the result of a series of determinations of the volume of erythrocytes swelling in solutions of ammonium salts. In all experiments made with several combinations of different concentrations of permeating and non-permeating salts, the curves calculated from the equations have covered the points found by experiment. PMID:19872754

  19. Cryopreserved erythrocytes in clinical laboratory hemagglutination and hemagglutination inhibition tests.

    PubMed Central

    Maes, R K; Hayes, M M; Newman, J P

    1985-01-01

    Various concentrations of pig, guinea pig, chicken, and turkey erythrocytes (RBCs) were cryopreserved and compared with fresh RBCs in hemagglutination and hemagglutination inhibition tests. Hemagglutination and hemagglutination inhibition titers obtained with cryopreserved or fresh RBCs from the same donor differed by not more than one twofold dilution. RBCs cryopreserved at a concentration of less than or equal to 12.5% gave the highest percent recovery upon thawing. PMID:4077971

  20. Erythrocyte Antioxidant Defenses Against Cigarette Smoking in Ischemic Heart Disease

    PubMed Central

    Basalingappa, Doddamani R; Uppala, Satyanarayana; Mitta, Geeta

    2015-01-01

    Background Cigarette smoke promotes atherogenesis by producing oxygen-derived free radicals. Aim The present study was conducted to determine the effect of cigarette smoking on lipid peroxidation and erythrocyte antioxidant status in ischemic heart disease (IHD). Materials and Methods A total of 327 male subjects were enrolled for this study, divided into two groups consisting of 200 patients, who were consecutively admitted for IHD in the intensive cardiac care unit (ICCU) of a Government Hospital and 127 age matched male healthy subjects. Both the groups were subsequently categorised into smokers and non smokers sub groups depending upon the smoking history {>/= 20 pack years of smoking; (20 cigarettes per day for one year constitutes one pack year)}. All 327 subjects were investigated for lipid profile, malondialdehyde (MDA) levels and the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPX). Statistical Analysis The differences in the parameters between the groups were tested for significance by one way ANOVA using the SPSS software version 19. A p-value of < 0.001 was considered to be significant statistically. Multiple comparisons were made between all the four groups by Post Hoc Tukey test. Results There was highly significant difference (p<0.001) observed in GPX activity, in comparison to CAT and SOD (p=0.032, p=0.009) between smokers vs non smokers in control group as well as patient group. The plasma MDA levels were found to be increased significantly (p<0.001) in IHD patients, who smoked as compared to those who did not. Conclusion Chronic smoking enhances erythrocyte lipid peroxidation in IHD patients with concomitant failure of both plasma and erythrocyte antioxidant defense mechanisms. Along with conventional lipid markers and plasma MDA levels, the erythrocyte GPX activity was observed to be a better marker of oxidative stress, in chronic smokers, who are at risk of developing IHD. PMID:26266112

  1. Acoustic measurement of compressibility and thermal expansion coefficient of erythrocytes

    NASA Astrophysics Data System (ADS)

    Toubal, Malika; Asmani, Mohamed; Radziszewski, Edouard; Nongaillard, Bertrand

    1999-05-01

    Mechanical properties of human erythrocytes, namely adiabatic compressibility and thermal expansion coefficient, have been determined using a classical ultrasound velocity and attenuation burst transmission technique. The theoretical model concerns the corpuscular part of the elastic wave propagating in a suspension of viscous particles of small size compared with the wavelength. The thermal wave contribution was taken into account. Normal and stiffened red blood cells were suspended in saline of different NaCl concentration.

  2. Effect of bacterial peptidoglycan on erythrocyte death and adhesion to endothelial cells.

    PubMed

    Abed, Majed; Towhid, Syeda T; Pakladok, Tatsiana; Alesutan, Ioana; Götz, Friedrich; Gulbins, Erich; Lang, Florian

    2013-05-01

    Peptidoglycans, bacterial wall components, have previously been shown to trigger eryptosis, the suicidal erythrocyte death, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Phosphatidylserine exposing erythrocytes adhere to the vascular wall at least partially by interaction of erythrocytic phosphatidylserine with endothelial CXC chemokine ligand 16 (CXCL16). The present study explored whether peptidoglycan exposure fosters the adhesion of erythrocytes to human umbilical vein endothelial cells (HUVEC). To this end, HUVEC were treated for 48 h with peptidoglycan (10 μg/ml) and CXCL16 abundance determined by confocal microscopy and FACS analysis. Moreover, human erythrocytes were exposed for 48 h to peptidoglycan (10 μg/ml) and phosphatidylserine exposure estimated from binding of fluorescent annexin-V, cell volume from forward scatter in FACS analysis and erythrocyte adhesion to human umbilical vein endothelial cells (HUVEC) from trapping of labeled erythrocytes in a flow chamber. As a result, bacterial peptidoglycan exposure was followed by increased CXCL16 expression in HUVEC as well as erythrocyte shrinkage, phosphatidylserine exposure and adhesion to HUVEC under flow conditions at arterial shear rates. The adhesion was significantly attenuated but not abrogated in the presence of either, erythrocyte phosphatidylserine-coating annexin-V (5 μl/ml) or CXCL16 neutralizing antibody directed against endothelial CXCL16 (4 μg/ml). In conclusion, exposure to peptidoglycan increases endothelial CXCL16 expression and leads to eryptosis followed by phosphatidylserine- and CXCL16-mediated adhesion of eryptotic erythrocytes to vascular endothelial cells.

  3. Human erythrocytes inhibit complement-mediated solubilization of immune complexes by human serum

    SciTech Connect

    Dorval, B.L.

    1987-01-01

    The aim of this study was to develop an autologus human system to evaluate the effects of human erythrocytes on solubilization of immune complex precipitates (IC) by human serum. Incubation of IC with fresh human serum or guinea pig serum resulted in solubilization of IC. When packed erythrocytes were added to human serum or guinea pig serum binding of IC to the erythrocyte occurred and IC solubilization was inhibited significantly (p <.025). Sheep erythrocytes did not bind IC or inhibit IC solubilization. To evaluate the role of human erythrocyte complement receptor (CR1) on these findings, human erythrocytes were treated with trypsin or anti-CR1 antibodies. Both treatments abrogated IC binding to human erythrocytes but did not affect the ability of the human erythrocyte to inhibit IC solubilization. Radioimmunoassay was used to measure C3, C4 and C5 activation in human serum after incubation with IC, human erythrocytes, human erythrocytes plus IC, whole blood or in whole blood plus IC.

  4. Biochemically altered human erythrocytes as a carrier for targeted delivery of primaquine: an in vitro study.

    PubMed

    Alanazi, Fars K; Harisa, Gamal El-Din I; Maqboul, Ahmad; Abdel-Hamid, Magdi; Neau, Steven H; Alsarra, Ibrahim A

    2011-04-01

    The aim of this study was to investigate human erythrocytes as a carrier for targeted drug delivery of primaquine (PQ). The process of PQ loading in human erythrocytes, as well as the effect of PQ loading on the oxidative status of erythrocytes, was also studied. At PQ concentrations of 2, 4, 6, and 8 mg/mL and an incubation time of 2 h, the ratios of the concentrations of PQ entrapped in erythrocytes to that in the incubation medium were 0.515, 0.688, 0.697 and 0.788, respectively. The maximal decline of erythrocyte reduced glutathione content was observed at 8 mg/mL of PQ compared with native erythrocytes p < 0.001. In contrast, malondialdehyde and protein carbonyl were significantly increased in cells loaded with PQ (p < 0.001). Furthermore, osmotic fragility of PQ carrier erythrocytes was increased in comparison with unloaded cells. Electron microscopy revealed spherocyte formation with PQ carrier erythrocytes. PQ-loaded cells showed sustained drug release over a 48 h period. Erythrocytes were loaded with PQ successfully, but there were some biochemical as well as physiological changes that resulted from the effect of PQ on the oxidative status of drug-loaded erythrocytes. These changes may result in favorable targeting of PQ-loaded cells to reticulo-endothelial organs. The relative impact of these changes remains to be explored in ongoing animal studies.

  5. Bilayer/cytoskeleton interactions in lipid-symmetric erythrocytes assessed by a photoactivable phospholipid analogue

    SciTech Connect

    Pradhan, D.; Schlegel, R.A. ); Williamson, P. )

    1991-08-06

    Two mechanisms have been proposed for maintenance of transbilayer phospholipid asymmetry in the erythrocyte plasma membrane, one involving specific interactions between the aminophospholipids of the inner leaflet of the bilayer and the cytoskeleton, particularly spectrin, and the other involving the aminophospholipid translocase. If the former mechanism is correct, then erythrocytes which have lost their asymmetric distribution of phospholipids should display altered bilayer/cytoskeleton interactions. To test this possibility, normal erythrocytes, erythrocytes from patients with chronic myelogenous leukemia or sickle disease, and lipid-symmetric and -asymmetric erythrocyte ghosts were labeled with the radioactive photoactivable analogue of phosphatidylethanolamine, 2-(2-azido-4-nitrobenzoyl)-1-acyl-sn-glycero-3-phospho({sup 14}C) ethanolamine (({sup 14}C)AzPE), previously shown to label cytoskeletal proteins from the bilayer. The labeling pattern of cytoskeletal proteins in pathologic erythrocytes and lipid-asymmetric erythrocyte ghosts was indistinguishable from normal erythrocytes, indicating that the probe detects no differences in bilayer/cytoskeleton interactions in these cells. In contrast, in lipid-symmetric erythrocyte ghosts, labeling of bands 4.1 and 4.2 and actin, and to a lesser extent ankyrin, by ({sup 14}C)AzPE was considerably reduced. Significantly, however, labeling of spectrin was unaltered in the lipid-symmetric cells. These results do not support a model in which spectrin is involved in the maintenance of an asymmetric distribution of phospholipids in erythrocytes.

  6. [Diagnosticum of abnormalities of plant meiotic division].

    PubMed

    Shamina, N V

    2006-01-01

    Abnormalities of plant meiotic division leading to abnormal meiotic products are summarized schematically in the paper. Causes of formation of monads, abnormal diads, triads, pentads, polyads, etc. have been observed in meiosis with both successive and simultaneous cytokinesis.

  7. [Calcium-transporting system of erythrocytes in psoriasis].

    PubMed

    Mavrov, I I; Goncharenko, M S; Petruniaka, V V; Ereshchenko, E A; Kondakova, A K; Stepaniuk, L V

    1990-01-01

    The activity of Ca-ATPase and permeability of erythrocyte membrane for calcium in patients with psoriasis were studied with the aim to reveal disturbances in the calcium membrane transport under psoriasis. In the presence of endogenic activators the mean values of the maximal Ca-ATPase activity of erythrocyte membranes in patients with psoriasis and in healthy people have no essential differences and make up 264 +/- 12 and 244 +/- 10 mumol P/1 cells per 1 min, respectively. The rate of 45Ca accumulation in erythrocytes under inhibition of Ca-ATPase in patients suffering from psoriasis is by 64% higher than in healthy people. The data obtained along with the previously revealed changes in the calcium metabolism in patients with psoriasis make it possible to suppose the presence of the system disturbance of the calcium membrane transport, in particular an increase in the plasma membrane permeability for cells of different types. Such a disturbance may distort a regulatory (messenger) function of calcium ions in the processes of proliferation, differentiation, functional activity and death of different cell types.

  8. Erythrocyte sodium/potassium ATPase activity in severe preeclampsia.

    PubMed

    Adair, C D; Haupert, G T; Koh, H P; Wang, Y; Veille, J-C; Buckalew, V

    2009-04-01

    Elevated blood levels of endogenous digitalis-like factors (EDLF) may decrease erythrocyte sodium pump activity in preeclampsia. As the highest EDLF levels might be expected in severe preeclampsia, we investigated sodium pump activity in that group of patients. Erythrocyte sodium pump activity was determined by (86)Rubidium uptake (in nM per hour per 10(6) cells) in women with severe preeclampsia and those with normal pregnancies, matched for gestational age, and in healthy nonpregnant women (n=12 in each group). Differences between groups were analyzed by a two-sided Student t-test. Sodium pump activity was significantly increased in normotensive pregnancies as compared with normotensive non-pregnant women (81.4+/-8.4 vs 61.1+/-7.4, mean+/-s.d., p<0.05), and was decreased 43% in severe preeclamptic pregnancies as compared with normotensive pregnancies (46.4+/-14.1 vs 81.4+/-8.4, p<0.05). Severe preeclampsia is associated with significantly lower erythrocyte sodium pump activity than normotensive pregnancy. These data suggest that plasma levels of a biologically active EDLF are elevated in patients with severe preeclampsia.

  9. Drug-loaded erythrocytes: on the road toward marketing approval

    PubMed Central

    Bourgeaux, Vanessa; Lanao, José M; Bax, Bridget E; Godfrin, Yann

    2016-01-01

    Erythrocyte drug encapsulation is one of the most promising therapeutic alternative approaches for the administration of toxic or rapidly cleared drugs. Drug-loaded erythrocytes can operate through one of the three main mechanisms of action: extension of circulation half-life (bioreactor), slow drug release, or specific organ targeting. Although the clinical development of erythrocyte carriers is confronted with regulatory and development process challenges, industrial development is expanding. The manufacture of this type of product can be either centralized or bedside based, and different procedures are employed for the encapsulation of therapeutic agents. The major challenges for successful industrialization include production scalability, process validation, and quality control of the released therapeutic agents. Advantages and drawbacks of the different manufacturing processes as well as success key points of clinical development are discussed. Several entrapment technologies based on osmotic methods have been industrialized. Companies have already achieved many of the critical clinical stages, thus providing the opportunity in the future to cover a wide range of diseases for which effective therapies are not currently available. PMID:26929599

  10. Flow cytometric investigation of non-specific erythrocyte antigens.

    PubMed

    Ernst, M; Sonneborn, H H

    1997-01-01

    Thirteen monoclonal antibodies submitted to the Third Workshop on Erythrocyte Antigens from the panel "non-specific erythrocyte antigens" were tested for their reactivity with different types of cells. Most of them were defined as specific for adhesion antigens. The CD 44 antibodies 2D3-1, 2D3-2, 2D3-3 and 2D3-4 reacted as expected for CD 44 except their negative reactivity with the myeloid cell line HL 60 and B-cell line Raji. The CD 47 antibodies 2D3-5 and 2D3-6 reacted specific. Only with Raji and T-cell line MOLT 4 the CD 58 antibodies 2D3-7 and 2D3-8 showed reactivity as expected which indicates that they are "CD 58 related". The CD 99 antibody 2D3-9 shows similar results as expected for a CD 99 specific antibody except its high reactivity against Raji. From the RBC-related antibodies 2D3-11 and 2D3-12 the latter becomes completely negative with trypsin treated erythrocytes. The antibody is negative on normal peripheral blood lymphocytes but reacts with transformed cell lines like Raji and MOLT 4. With a view to their reactivity to the cells tested at least 2D3-13 of the Rh-related antibodies seems to be similar to CD 47 antibodies.

  11. Drug-loaded erythrocytes: on the road toward marketing approval.

    PubMed

    Bourgeaux, Vanessa; Lanao, José M; Bax, Bridget E; Godfrin, Yann

    2016-01-01

    Erythrocyte drug encapsulation is one of the most promising therapeutic alternative approaches for the administration of toxic or rapidly cleared drugs. Drug-loaded erythrocytes can operate through one of the three main mechanisms of action: extension of circulation half-life (bioreactor), slow drug release, or specific organ targeting. Although the clinical development of erythrocyte carriers is confronted with regulatory and development process challenges, industrial development is expanding. The manufacture of this type of product can be either centralized or bedside based, and different procedures are employed for the encapsulation of therapeutic agents. The major challenges for successful industrialization include production scalability, process validation, and quality control of the released therapeutic agents. Advantages and drawbacks of the different manufacturing processes as well as success key points of clinical development are discussed. Several entrapment technologies based on osmotic methods have been industrialized. Companies have already achieved many of the critical clinical stages, thus providing the opportunity in the future to cover a wide range of diseases for which effective therapies are not currently available.

  12. Identification of Functional Domains of Human Erythrocyte Spectrin

    NASA Astrophysics Data System (ADS)

    Morrow, Jon S.; Speicher, David W.; Knowles, William J.; Hsu, C. Jennifer; Marchesi, Vincent T.

    1980-11-01

    Isolated human erythrocyte spectrin is a dimer of two unique polypeptide chains. The dimer (α β) undergoes reversible salt- and temperature-dependent association to form (α β)2 tetramers. Spectrin also binds with high affinity to a protein receptor on the cytoplasmic surface of erythrocyte membrane vesicles. By cleavage of spectrin at its cysteine residues with 2-nitro-5-thiocyanobenzoic acid, a 50,000-dalton peptide fragment has been isolated which inhibits the binding of spectrin to erythrocyte membrane vesicles. This peptide arises from a terminal region of the β chain. An 80,000-dalton peptide generated by restricted trypsin digestion binds preferentially to dimeric spectrin. This peptide arises from a terminal portion of the α chain. Multiple peptides involved in noncovalent associations between the chains have also been identified. These associations indicate that the two subunits of spectrin are aligned parallel to one another and that the tetramer formation site and the high-affinity membrane binding site are in close proximity to one another.

  13. Evidencing the Role of Erythrocytic Apoptosis in Malarial Anemia

    PubMed Central

    Totino, Paulo R. R.; Daniel-Ribeiro, Cláudio T.; Ferreira-da-Cruz, Maria de Fátima

    2016-01-01

    In the last decade it has become clear that, similarly to nucleated cells, enucleated red blood cells (RBCs) are susceptible to programmed apoptotic cell death. Erythrocytic apoptosis seems to play a role in physiological clearance of aged RBCs, but it may also be implicated in anemia of different etiological sources including drug therapy and infectious diseases. In malaria, severe anemia is a common complication leading to death of children and pregnant women living in malaria-endemic regions of Africa. The pathogenesis of malarial anemia is multifactorial and involves both ineffective production of RBCs by the bone marrow and premature elimination of non-parasitized RBCs, phenomena potentially associated with apoptosis. In the present overview, we discuss evidences associating erythrocytic apoptosis with the pathogenesis of severe malarial anemia, as well as with regulation of parasite clearance in malaria. Efforts to understand the role of erythrocytic apoptosis in malarial anemia can help to identify potential targets for therapeutic intervention based on apoptotic pathways and consequently, mitigate the harmful impact of malaria in global public health. PMID:28018860

  14. Regulation of actin filament length in erythrocytes and striated muscle.

    PubMed

    Fowler, V M

    1996-02-01

    Actin filaments polymerize in vitro to lengths which display an exponential distribution, yet in many highly differentiated cells they can be precisely maintained at uniform lengths in elaborate supramolecular structures. Recent results obtained using two classic model systems, the erythrocyte membrane cytoskeleton and the striated muscle sarcomere, reveal surprising similarities and instructive differences in the molecules and mechanisms responsible for determining and maintaining actin filament lengths in these two systems. Tropomodulin caps the slow-growing, pointed filament ends in muscle and in erythrocytes. CapZ caps the fast-growing, barbed filament ends in striated muscle, whereas a newly discovered barbed end capping protein, adducin, may cap the barbed filament ends in erythrocytes. The mechanisms responsible for specifying the characteristic filament lengths in these systems are more elusive and may include strict control of the relative amounts of actin filament capping proteins and side-binding proteins, molecular templates (e.g. tropomyosin and nebulin) and/or verniers (e.g. tropomyosin).

  15. The use of erythrocyte fragility to assess xenobiotic cytotoxicity.

    PubMed

    Pagano, Maria; Faggio, Caterina

    2015-08-01

    The erythrocytes of mammals represent a good model to evaluate the cytotoxicity of molecules, organic and inorganic, natural or synthetic, by cellular damage measure. Indeed, before any investigation on the mechanism of action of different molecules, it is important to perform a cytotoxicity assay. Among the different cytotoxicity assays that assess a possible toxicity in the red blood cells is the rate of haemolysis. This essay is based on the evaluation of the alterations of red cell membranes in the presence of an eventual xenobiotic. Red blood cells are the main cells in circulation, and they are responsible for transporting oxygen; in fact, any alterations of this process could be lethal. The plasma membrane of red blood cells is a multi-component structure such as to confer to these cells their characteristic biconcave shape, high flexibility, elasticity and deformability. However, there are clear signs of cellular suffering if there are any alterations to this structure. One method of toxicity assessment is based on measurement of the efflux of haemoglobin from suspended red blood cells. Haemolysis, and therefore the loss of haemoglobin, is the signal stability of the cell membrane of the erythrocytes. In recent years, the discovery of programmed cell death in mammalian red blood cells presented a diversification of the response to injury by these a-nucleated cells. This review shows that mammals' erythrocytes might serve well as a model cell to study on the cellular and molecular mechanisms of many treatments. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Monensin-induced cation movements in bovine erythrocytes.

    PubMed

    Dixon, E

    1990-01-01

    Monensin is a carboxylic ionophore that has been observed to increase cation permeability across the membrane of several cell types. Additionally, it is used commercially as an anticoccidial agent and has been found to increase feed efficiency in cattle. The objectives of these experiments were to determine the ability of monensin to stimulate cation (Na and K) transport across the bovine erythrocyte membrane and determine the effects of anion substitution on the action of the compound. Erythrocyte cation analyses revealed that all of the animals used in this study were low potassium (LK). Red cells were incubated in an artificial medium in the presence or absence of monensin, and cell sodium, potassium and water were determined at several time periods. It was observed that monensin stimulated the movement of sodium and potassium down their respective concentration gradients. Cell water content ("D") was observed to increase in response to an elevation in cell cation content. In synthetic media containing acetate, sulfate, citrate, thiocynate and gluconate substituted for chloride as the anion specie in the presence of monensin, there were measureable differences in intracellular sodium and water during the incubation period. The addition of DIDS to the control media containing chloride was observed to inhibit from 60 to 80 percent of the monensin-stimulated sodium movements. The results of this study show that monensin stimulates cation movements in bovine erythrocytes and anion substitutes may alter the action of this ionophore. Additionally, it was demonstrated that the action of monensin can be modified by inhibition of Band 3.

  17. Biorheological action of Ascaris lumbricoides larvae on human erythrocytes.

    PubMed

    de León, Patricia Ponce; Del Balzo, Gonzalo; Riquelme, Bibiana

    2013-03-01

    Previous studies have shown that A. lumbricoides extracts capture sialic acid (SA) from human red blood cells (RBC). The aim of this work was to study hemorheological alterations in vitro caused by parasite larvae. The biorheological action of three larva concentrates of first and second larval stage on group O erythrocytes was analyzed by incubating the erythrocyte packed together with an equal volume of larvae (treated RBC) and PBS (control RBC). Distribution and parameters of aggregation (digital image analysis), aggregation kinetics (erythroaggregameter), and viscoelasticity (erythrodeformeter) were measured. The digital image analysis showed that all the larvae diminished the isolated cells percentage and increased the size of the formed aggregates. The aggregate formation velocity was lower in the treated than in the control. The deformability index (ID) values of treated RBC did not present variations with respect to those of the control, but a decrease in the erythrocyte elastic modulus (μ(m)) and membrane surface viscosity (η(m)) values was observed, indicating that the larvae not only induced a diminution in the membrane surface viscosity of RBC but also altered the dynamic viscoelasticity of the membrane. Experiments carried out in vitro support the conclusion that the contact between larvae and RBC produces hemorheological alterations.

  18. Microelectrode-based dielectric spectroscopy of glucose effect on erythrocytes.

    PubMed

    Colella, L; Beyer, C; Fröhlich, J; Talary, M; Renaud, P

    2012-06-01

    The dielectric response of biconcave erythrocytes exposed to D-glucose and L-glucose has been investigated using a double array of planar interdigitated microelectrodes on a glass microchip. Erythrocytes are analyzed under physiological conditions suspended in hypo-osmolar balanced solutions containing different glucose concentrations (0-20 mM). The glucose effect on the cellular dielectric properties is evaluated by analyzing the spectra using two different approaches, the equivalent circuit model and a modified model for ellipsoidal particles. The results show that at elevated glucose concentration (15 mM) the membrane capacitance increases by 36%, whereas the cytosol conductivity slightly decreases with a variation of about 15%. On the contrary, no variation has been registered with L-glucose, a biologically inactive enantiomer of D-glucose. The paper discusses the possible mechanism controlling the membrane dielectric response. As the external D-glucose increases, the number of activated glucose transporter in the erythrocyte membrane raises and the transition from sugar-free state to sugar-bounded state induces a change in the dipole moments and in the membrane capacitance.

  19. Piperlongumine-induced phosphatidylserine translocation in the erythrocyte membrane.

    PubMed

    Bissinger, Rosi; Malik, Abaid; Warsi, Jamshed; Jilani, Kashif; Lang, Florian

    2014-10-14

    Piperlongumine, a component of Piper longum fruit, is considered as a treatment for malignancy. It is effective by inducing apoptosis. Mechanisms involved in the apoptotic action of piperlongumine include oxidative stress and activation of p38 kinase. In analogy to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine-exposure at the erythrocyte surface. Signaling involved in eryptosis include increase of cytosolic Ca²⁺-activity ([Ca²⁺]i), formation of ceramide, oxidative stress and activation of p38 kinase. Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca²⁺]i from Fluo3 fluorescence, reactive oxygen species from 2',7'-dichlorodihydrofluorescein-diacetate fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry. A 48 h exposure to piperlongumine (30 µM) was followed by significant decrease of forward scatter and increase of annexin-V-binding. Piperlongumine did not significantly modify [Ca²⁺]i and the effect was not dependent on presence of extracellular Ca²⁺. Piperlongumine significantly increased ROS formation and ceramide abundance. Piperlongumine triggers cell membrane scrambling, an effect independent from entry of extracellular Ca²⁺ but at least partially due to ROS and ceramide formation.

  20. Pyrithione and 8-hydroxyquinolines transport lead across erythrocyte membranes.

    PubMed

    Lind, Stuart E; Park, Jong Sung; Drexler, John W

    2009-09-01

    Acute and chronic lead poisoning remains a significant health problem. Although chelating agents can bind to plasma lead, they cannot cross cell membranes where the total body lead burden resides, and are thus inefficient at reducing the total body lead burden. Recently, calcium and sodium ionophores have been shown to transport lead across cell membranes providing a novel method for reducing total body lead stores. We recently found that clioquinol, an 8-hydroxyquinoline derivative, can act as a zinc ionophore. We postulated that zinc ionophores might also be able to transport lead across biological membranes. To study this, we loaded lead in vitro into human erythrocytes and then studied the ability of zinc ionophores to transport lead into the extracellular space, where it was trapped with a lead chelator. Using inductively coupled plasma mass spectrometry (ICP-MS), we found that several 8-hydroxyquinoline derivatives, as well as the zinc and sodium salts of pyrithione (N-hydroxypyridine-2-thione), reduced erythrocyte lead content. The water-soluble compound, sodium pyrithione, was able to reduce lead in citrated whole blood, without partitioning into the erythrocytes. These results indicate that two classes of zinc ionophores can transport lead across a biological membrane, and they confirm that these ionophores are not cation-specific. Lead ionophores may prove useful in mobilizing lead into the extracellular space, thereby improving the efficacy of chelation therapy, in vivo or ex vivo.

  1. Micronucleated erythrocytes in newborn rats exposed to raltegravir placental transfer.

    PubMed

    Torres-Mendoza, Blanca Miriam; Coronado-Medina, Damharis Elizabeth; Gómez-Meda, Belinda Claudia; Vázquez-Valls, Eduardo; Zamora-Perez, Ana Lourdes; Lemus-Varela, María de Lourdes; Zúñiga-González, Guillermo Moisés

    2014-01-01

    The use of raltegravir in treating HIV/AIDS has been proposed due to its effectiveness in suppressing high loads of HIV RNA in pregnant women, thus preventing infection of the fetus. However, administration of raltegravir during pregnancy produces a compound which is transferred to high concentrations to the offspring. The objective of this study is to evaluate the transplacental genotoxic effect of raltegravir in newborn rats. We evaluated the number of micronucleated erythrocytes (MNE), micronucleated polychromatic erythrocytes (MNPCE), and polychromatic erythrocytes (PCE) in the peripheral blood samples of the offspring of Wistar rats treated 6 days before birth with oral administration of raltegravir. The animals were randomly assigned to five groups as follows: raltegravir at doses of 15, 30, or 60 mg/day, cyclophosphamide 10 mg/kg (positive control), or 0.5 ml of sterile water (negative control). In addition, the effect of these drugs on the weight and height of newborns was assessed. There were no differences in the number of MNE, MNPCE, and PCE, and a slight decrease in the weight and height was observed in the offspring of the rat mothers treated with raltegravir. Genotoxicity studies are required in pregnant women to determine the risk of using raltegravir to the fetuses.

  2. Stimulation of erythrocyte cell membrane scrambling by mitotane.

    PubMed

    Jacobi, Janin; Lang, Elisabeth; Bissinger, Rosi; Frauenfeld, Leonie; Modicano, Paola; Faggio, Caterina; Abed, Majed; Lang, Florian

    2014-01-01

    background: Mitotane (1,1-dichloro-2-[o-chlorophenyl]-2-[p-chlorophenyl]ethane), a cytostatic drug used for the treatment of adrenocortical carcinomas, is effective by triggering tumor cell apoptosis. In analogy to apoptosis of nucleated cells, eryptosis is the suicidal death of erythrocytes, which is typically paralleled by cell shrinkage and breakdown of cell membrane phosphatidylserine asymmetry with subsequent phosphatidylserine exposure at the erythrocyte surface. Eryptosis may be triggered by increase of cytosolic Ca(2+) concentration ([Ca(2+)]i). The present study tested, whether treatment of human erythrocytes with mitotane is followed by eryptosis. [Ca(2+)]i was estimated from Fluo3 fluorescence, cell volume from forward scatter, phosphatidylserine exposure from annexin V binding, and hemolysis from hemoglobin release. Exposure to mitotane (≥ 5 µg/ml ≈ 16 µM) significantly increased [Ca(2+)]i, increased annexin V binding and triggered hemolysis, but did not significantly modify forward scatter. The effect on annexin V binding was significantly blunted in the absence of extracellular Ca(2+). Within 30 min Ca(2+) ionophore ionomycin (1 µM) decreased forward scatter, an effect virtually abolished in the presence of mitotane (15 µg/ml). Mitotane increases [Ca(2+)]i with subsequent phosphatidylserine translocation. By the same token mitotane inhibits Ca(2+) induced cell shrinkage. © 2014 S. Karger AG, Basel.

  3. Diet of Racing Sled Dogs Affects Erythrocyte Depression by Stress

    PubMed Central

    Adkins, T. O.; Kronfeld, D. S.

    1982-01-01

    Fourteen racing huskies were matched into pairs then assigned to two diets, a commercial stress diet and an experimental diet. Proportions of protein: fat:carbohydrate on an available energy basis were 23:57:20 in a commercial stress diet and 28:69:3 in an experimental diet. The team participated in the 1979 Iditarod Trail race and was overtaken by an episode of diarrhea. Clinical signs were suggestive of parvovirus infection; high serum titers of parvo antibodies were found after the race. Blood examination showed normal levels of metabolites, electrolytes and enzymes after the race. Erythrocyte counts were depressed significantly during the race, by 15% in dogs fed an experimental diet and by 27% in those fed a commercial stress diet. Erythrocyte parameters have also become depressed during the racing season in middle distance sled dogs fed 28% protein (energy basis) but not 32 or 39%. Depressed red blood cell production has been demonstrated previously in dogs subjected to stress induced experimentally in several ways, and its restoration has been affected by dietary protein. Erythrocyte parameters may be useful indicies of the degree of stress in a dog as well as the adequacy of its protein intake during stress. PMID:17422178

  4. Transport of 3-bromopyruvate across the human erythrocyte membrane.

    PubMed

    Sadowska-Bartosz, Izabela; Soszyński, Mirosław; Ułaszewski, Stanisław; Ko, Young; Bartosz, Grzegorz

    2014-06-01

    3-Bromopyruvic acid (3-BP) is a promising anticancer compound because it is a strong inhibitor of glycolytic enzymes, especially glyceraldehyde 3-phosphate dehydrogenase. The Warburg effect means that malignant cells are much more dependent on glycolysis than normal cells. Potential complications of anticancer therapy with 3-BP are side effects due to its interaction with normal cells, especially erythrocytes. Transport into cells is critical for 3-BP to have intracellular effects. The aim of our study was the kinetic characterization of 3-BP transport into human erythrocytes. 3-BP uptake by erythrocytes was linear within the first 3 min and pH-dependent. The transport rate decreased with increasing pH in the range of 6.0-8.0. The Km and Vm values for 3-BP transport were 0.89 mM and 0.94 mmol/(l cells x min), respectively. The transport was inhibited competitively by pyruvate and significantly inhibited by DIDS, SITS, and 1-cyano-4-hydroxycinnamic acid. Flavonoids also inhibited 3-BP transport: the most potent inhibition was found for luteolin and quercetin.

  5. Erythrocyte deformability and aggregation in homozygous sickle cell disease.

    PubMed

    Vayá, Amparo; Collado, Susana; Dasí, Maria Angeles; Pérez, Maria Luz; Hernandez, Jose Luis; Barragán, Eva

    2014-01-01

    Rheological properties of homozygous sickle cell anaemia (SCA) show marked heterogeneity, which may be explained in part by the concomitance of alpha genotypes or beta haplotypes, along with hydroxurea (HU) treatment. To further clarify this issue, in 11 homozygous patients with SCA in the steady state and in 16 healthy controls, we analysed erythrocyte deformability (ED) in a Rheodyn SSD by means of the Elongation Index (EI) at 12, 30 and 60 Pa, and erythrocyte aggregation at stasis (EA0) and at 3 sec-1 (EA1) in a Myrenne aggregometer along with fibrinogen, biochemical and haematological parameters. When compared with controls, homozygous (SS) patients showed a lower EI at all the shear stresses tested (p < 0.01) and higher EA0 (p < 0.014), but not higher EA1 (p = 0.076). Fibrinogen did not show statistical differences (p = 0.642). In the Spearman's correlation IE60 correlated inversely with Hb S (p < 0.05) and directly with MCV, MCH and Hb F levels (p < 0.01). EA0 correlated inversely with MCV, MCH, Hb F (p < 0.01) and directly with Hb S (p < 0.05). HU treatment improved EI and EA0, but not EA1. This paradoxical behaviour of HU on erythrocyte aggregation merits further research to be clarified.

  6. The free heme concentration in healthy human erythrocytes

    PubMed Central

    Aich, Anupam; Freundlich, Melissa; Vekilov, Peter G.

    2016-01-01

    Heme, the prosthetic group of hemoglobin, may be released from its host due to an intrinsic instability of hemoglobin and accumulate in the erythrocytes. Free heme is in the form of hematin (Fe3+ protoporphyrin IX OH) and follows several pathways of biochemical toxicity to tissues, cells, and organelles since it catalyzes the production of reactive oxygen species. To determine concentration of soluble free heme in human erythrocytes, we develop a new method. We lyse the red blood cells and isolate free heme from hemoglobin by dialysis. We use the heme to reconstitute horseradish peroxidase (HRP) from an excess of the apoenzyme and determine the HRP reaction rate from the evolution of the emitted luminescence. We find that in a population of five healthy adults the average free heme concentration in the erythrocytes is 21 ± 2 μM, ca. 100× higher than previously determined. Tests suggest that the lower previous value was due to the use of elevated concentrations of NaCl, which drive hematin precipitation and re-association with apoglobin. We show that the found hematin concentration is significantly higher than estimates based on equilibrium release and the known hematin dimerization. The factors that lead to enhanced heme release remain an open question. PMID:26460266

  7. Synthetic receptors for selectively detecting erythrocyte ABO subgroups.

    PubMed

    Seifner, Alexandra; Lieberzeit, Peter; Jungbauer, Christof; Dickert, Franz L

    2009-10-05

    Surface imprinting techniques with erythrocytes as templates yield polymer coatings with selective recognition sites towards red blood cells. The resulting cavities in the respective surface exhibit selectivity between blood subgroups as shown by Quartz Crystal Microbalance (QCM) measurements. Mass sensitive effects in the kilohertz range could be observed for concentrations down to 0.5 x 10(8) cells/mL. Frequency response as well as recovery of the sensor took place within a few minutes, indicating that no covalent binding is involved. Linear concentration dependence over a defined region provides ideal conditions for cross selectivity measurements. A1 imprinted sensor coatings resulted in an effect of 40 kHz when exposed to the template blood group, while A2 erythrocytes yielded just 11% of that value on the same layer. Furthermore, A2 imprinted coatings incorporated only one third the amount of A1 erythrocytes as compared to A2 ones. Therefore, imprinted materials depict the entire cell surface and utilize it for recognition, whereas natural antibodies bind on the defined antigen position and thus usually cannot distinguish between cells carrying different amounts of them.

  8. Metabolic homeostasis in the human erythrocyte: in silico analysis.

    PubMed

    de Atauri, Pedro; Ramírez, María José; Kuchel, Philip W; Carreras, José; Cascante, Marta

    2006-01-01

    A detailed computer model of human erythrocyte metabolism was shown to predict three steady states, two stable and one unstable. The most extreme steady state is characterized by almost zero concentrations of all the phosphorylated intermediates. The "normal" steady state is remarkably robust in the face of large changes in the activity of most of the enzymes of glycolysis and the pentose phosphate pathway: this steady state can be viewed as an attractor towards which the system returns following a metabolic perturbation. Focus is given to three responses of the system: (1) the 'energy charge' that pertains to the concentration of ATP relative to all purine nucleotides; (2) redox power expressed as the ratio of reduced-to-total glutathione and (3) the concentration of 2,3-bisphosphoglycerate, that directly affects the oxygen affinity of haemoglobin thus affecting the main physiological function of the cell. The collapse of the normal steady state in what can be viewed topologically as a catastrophe is posited as one key element of erythrocyte senescence and it is particularly important for erythrocyte destruction in patients with an inborn enzyme deficiency.

  9. Epigenetic Silencing of Plasmodium falciparum Genes Linked to Erythrocyte Invasion

    PubMed Central

    Cortés, Alfred; Carret, Celine; Kaneko, Osamu; Yim Lim, Brian Y. S.; Ivens, Alasdair; Holder, Anthony A

    2007-01-01

    The process of erythrocyte invasion by merozoites of Plasmodium falciparum involves multiple steps, including the formation of a moving junction between parasite and host cell, and it is characterised by the redundancy of many of the receptor–ligand interactions involved. Several parasite proteins that interact with erythrocyte receptors or participate in other steps of invasion are encoded by small subtelomerically located gene families of four to seven members. We report here that members of the eba, rhoph1/clag, acbp, and pfRh multigene families exist in either an active or a silenced state. In the case of two members of the rhoph1/clag family, clag3.1 and clag3.2, expression was mutually exclusive. Silencing was clonally transmitted and occurred in the absence of detectable DNA alterations, suggesting that it is epigenetic. This was demonstrated for eba-140. Our data demonstrate that variant or mutually exclusive expression and epigenetic silencing in Plasmodium are not unique to genes such as var, which encode proteins that are exported to the surface of the erythrocyte, but also occur for genes involved in host cell invasion. Clonal variant expression of invasion-related ligands increases the flexibility of the parasite to adapt to its human host. PMID:17676953

  10. Acid-sensitive outwardly rectifying anion channels in human erythrocytes.

    PubMed

    Kucherenko, Yuliya V; Mörsdorf, Daniel; Lang, Florian

    2009-07-01

    Acid-sensitive outwardly rectifying anion channels (ASOR) have been described in several mammalian cell types. The present whole-cell patch-clamp study elucidated whether those channels are expressed in erythrocytes. To this end whole-cell recordings were made in human erythrocytes from healthy donors treated with low pH and high osmotic pressure. When the pipette solution had a reduced Cl(-) concentration, treatment of the cells with Cl(-)-containing normal and hyperosmotic (addition of sucrose and polyethelene glycol 1000 [PEG-1000] to the Ringer) media with low pH significantly increased the conductance of the cells at positive voltages. Channel activity was highest in the PEG-1000 media (95 and 300 mM PEG-1000, pH 4.5 and 4.3, respectively) where the current-voltage curves demonstrated strong outward rectification and reversed at -40 mV. Substitution of the Cl(-)-containing medium with Cl(-)-free medium resulted in a decrease of the conductance at hyperpolarizing voltages, a shift in reversal potential (to 0 mV) and loss of outward rectification. The chloride currents were inhibited by chloride channels blockers DIDS and NPPB (IC(50) for both was approximately 1 mM) but not with niflumic acid and amiloride. The observations reveal expression of ASOR in erythrocytes.

  11. Modulation Effects of Curcumin on Erythrocyte Ion-Transporter Activity

    PubMed Central

    Singh, Prabhakar

    2015-01-01

    Curcumin ((1E,6E)-1,7-Bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), the yellow biphenolic pigment isolated from turmeric (Curcuma longa), has various medicinal benefits through antioxidation, anti-inflammation, cardiovascular protection, immunomodulation, enhancing of the apoptotic process, and antiangiogenic property. We explored the effects of curcumin in vitro (10−5 M to 10−8 M) and in vivo (340 and 170 mg/kg b.w., oral) on Na+/K+ ATPase (NKA), Na+/H+ exchanger (NHE) activity, and membrane lipid hydroperoxides (ROOH) in control and experimental oxidative stress erythrocytes of Wistar rats. As a result, we found that curcumin potently modulated the membrane transporters activity with protecting membrane lipids against hydro-peroxidation in control as well as oxidatively challenged erythrocytes evidenced by stimulation of NKA, downregulation of NHE, and reduction of ROOH in the membrane. The observed results corroborate membrane transporters activity with susceptibility of erythrocyte membrane towards oxidative damage. Results explain the protective mechanism of curcumin against oxidative stress mediated impairment in ions-transporters activity and health beneficial effects. PMID:26421014

  12. Erythrocyte shape classification using integral-geometry-based methods.

    PubMed

    Gual-Arnau, X; Herold-García, S; Simó, A

    2015-07-01

    Erythrocyte shape deformations are related to different important illnesses. In this paper, we focus on one of the most important: the Sickle cell disease. This disease causes the hardening or polymerization of the hemoglobin that contains the erythrocytes. The study of this process using digital images of peripheral blood smears can offer useful results in the clinical diagnosis of these illnesses. In particular, it would be very valuable to find a rapid and reproducible automatic classification method to quantify the number of deformed cells and so gauge the severity of the illness. In this paper, we show the good results obtained in the automatic classification of erythrocytes in normal cells, sickle cells, and cells with other deformations, when we use a set of functions based on integral-geometry methods, an active contour-based segmentation method, and a k-NN classification algorithm. Blood specimens were obtained from patients with Sickle cell disease. Seventeen peripheral blood smears were obtained for the study, and 45 images of different fields were obtained. A specialist selected the cells to use, determining those cells which were normal, elongated, and with other deformations present in the images. A process of automatic classification, with cross-validation of errors with the proposed descriptors and with other two functions used in previous studies, was realized.

  13. Micronucleated Erythrocytes in Newborn Rats Exposed to Raltegravir Placental Transfer

    PubMed Central

    Torres-Mendoza, Blanca Miriam; Coronado-Medina, Damharis Elizabeth; Vázquez-Valls, Eduardo; Zamora-Perez, Ana Lourdes; Lemus-Varela, María de Lourdes

    2014-01-01

    The use of raltegravir in treating HIV/AIDS has been proposed due to its effectiveness in suppressing high loads of HIV RNA in pregnant women, thus preventing infection of the fetus. However, administration of raltegravir during pregnancy produces a compound which is transferred to high concentrations to the offspring. The objective of this study is to evaluate the transplacental genotoxic effect of raltegravir in newborn rats. We evaluated the number of micronucleated erythrocytes (MNE), micronucleated polychromatic erythrocytes (MNPCE), and polychromatic erythrocytes (PCE) in the peripheral blood samples of the offspring of Wistar rats treated 6 days before birth with oral administration of raltegravir. The animals were randomly assigned to five groups as follows: raltegravir at doses of 15, 30, or 60 mg/day, cyclophosphamide 10 mg/kg (positive control), or 0.5 ml of sterile water (negative control). In addition, the effect of these drugs on the weight and height of newborns was assessed. There were no differences in the number of MNE, MNPCE, and PCE, and a slight decrease in the weight and height was observed in the offspring of the rat mothers treated with raltegravir. Genotoxicity studies are required in pregnant women to determine the risk of using raltegravir to the fetuses. PMID:24977162

  14. 7Li NMR study of normal human erythrocytes

    NASA Astrophysics Data System (ADS)

    Pettegrew, J. W.; Post, J. F. M.; Panchalingam, K.; Withers, G.; Woessner, D. E.

    The biological action of lithium is of great interest because of the therapeutic efficacy of the cation in manic-depressive illness. To investigate possible molecular interactions of lithium, 7Li NMR studies were conducted on normal human erythrocytes which had been incubated with lithium chloride. The uptake of lithium ions was followed by 7Li NMR, using a dysprosium, tripolyphosphate shift reagent. Lithium uptake followed single-exponential kinetics with a time constant of 14.7 h. The intracellular lithium relaxation times were T 1 ⋍ 5 s and T 2 ⋍ 0.15 s, which implies a lengthening of the lithium correlation time. It was found that lithium does not interact significantly with hemoglobin, the erythrocyte membrane, or artificial phospholipid membranes. Based on measurements of lithium T1 and T2 in concentrated agar gels, the large difference between T1 and T2 for intracellular lithium ions may be due to diffusion of the hydrated lithium ion through heterogeneous electrostatic field gradients created by the erythrocyte membrane-associated cytoskeletal network. Lithium binding to the membrane-associated cytoskeleton, however, cannot be ruled out. Because of the large differences between T1 and T2 of intracellular lithium ions, 1Li NMR may be a sensitive and promising noninvasive method to probe the intracellular environment.

  15. Interactions between peroxiredoxin 2, hemichrome and the erythrocyte membrane.

    PubMed

    Bayer, Simone B; Low, Felicia M; Hampton, Mark B; Winterbourn, Christine C

    2016-12-01

    Peroxiredoxin 2 (Prx2) is an abundant antioxidant protein in erythrocytes that protects against hemolytic anemia resulting from hemoglobin oxidation and Heinz body formation. A small fraction of Prx2 is bound to the cell membrane, but the mechanism and relevance of binding are not clear. We have investigated Prx2 interactions with the erythrocyte membrane and oxidized hemoglobin and whether these interactions are dependent on Prx2 redox state. Membrane binding of Prx2 in erythrocytes decreased when the cells were treated with H2O2, but studies with purified Prx2 and isolated ghosts showed that the interaction was independent of Prx2 redox state. Hemoglobin oxidation leads to the formation of hemichrome, a denatured form of the protein that binds to Band3 protein in the cell membrane as part of the senescence process and is a precursor of Heinz bodies. Hemichrome competed with Prx2 and decreased Prx2 binding to the membrane, potentially explaining the decreased binding in oxidant-exposed cells. The increased membrane binding of Prx2 seen with increasing intracellular calcium was less sensitive to H2O2 or hemichrome, suggesting an alternative mode of binding. Prx2 was also shown to exhibit chaperone-like activity by retarding the precipitation of pre-formed hemichrome. Our results suggest that Prx2, by restricting membrane binding of hemichrome, could impede Band3 clustering and exposure of senescence antigens. This mechanism, plus the observed chaperone activity for oxidized hemoglobin, may help protect against hemolytic anemia.

  16. Dielectric relaxations on erythrocyte membrane as revealed by spectrin denaturation.

    PubMed

    Ivanov, I T; Paarvanova, B

    2016-08-01

    We studied the effect of spectrin denaturation at 49.5°C (TA) on the dielectric relaxations and related changes in the complex impedance, Z*, complex capacitance, C*, and dielectric loss curve of suspensions containing human erythrocytes, erythrocyte ghost membranes (EMs) and Triton-X-100 residues of EMs. The loss curve prior to, minus the loss curve after TA, resulted in a bell-shaped peak at 1.5MHz. The changes in the real and imaginary components of Z* and C* at TA, i.e., ΔZre, ΔZim, ΔCre and ΔCim, calculated in the same way, strongly varied with frequency. Between 1.0 and 12MHz the -ΔZim vs ΔZre, and ΔCim vs ΔCre plots depicted semicircles with critical frequencies, fcr, at 2.5MHz expressing recently reported relaxation of spectrin dipoles. Between 0.02 and 1.0MHz the -ΔZim vs ΔZre plot exhibited another relaxation whose fcr mirrored that of beta relaxation. This relaxation was absent on Triton-X-shells, while on erythrocytes and EMs it was inhibited by selective dissociation of either attachment sites between spectrin and bilayer. Considering above findings and inaccessibility of cytosole to outside field at such frequencies, the latter relaxation was assumed originating from a piezoelectric effect on the highly deformable spectrin filaments.

  17. Disorders in the Morphology and Nanostructure of Erythrocyte Membranes after Long-term Storage of Erythrocyte Suspension: Atomic Force Microscopy Study.

    PubMed

    Moroz, V V; Chernysh, A M; Kozlova, E K; Sergunova, V A; Gudkova, O E; Khoroshilov, S E; Onufrievich, A D; Kostin, A I

    2015-07-01

    Disorders in the erythrocyte morphology and structure of their membranes during long-term storage of erythrocyte suspension (30 days at 4°C) were studied by atomic force microscopy. The morphology and nanostructure of erythrocyte membranes, biochemical parameters, ion exchange parameters, and hemoglobin spectra were recorded. The transformation of erythrocyte morphology and destruction of their membranes were observed throughout the storage period. Irreversible forms of spheroechinocytes and their fragments formed by the end of storage. The concentrations of potassium ions and lactate in solution of the blood preservatiive increased, while pH value decreased. Hemolysis detected by the erythrocyte "leakage" effect was observed starting from days 16-23 of storage.

  18. Erythrocyte-derived photo-theranostic agents: hybrid nano-vesicles containing indocyanine green for near infrared imaging and therapeutic applications

    NASA Astrophysics Data System (ADS)

    Bahmani, Baharak; Bacon, Danielle; Anvari, Bahman

    2013-07-01

    Development of theranostic nano-constructs may enable diagnosis and treatment of diseases at high spatial resolution. Some key requirements for clinical translation of such constructs are that they must be non-toxic, non-immunogenic, biodegradable, with extended circulating lifetime. Cell-based structures, particularly those derived from erythrocytes, are promising candidate carrier systems to satisfy these requirements. One particular type of theranostic materials utilize light-sensitive agents that once photo-activated can provide diagnostic imaging capability, and elicit therapeutic effects. Here we demonstrate the first successful engineering of hybrid nano-scale constructs derived from membranes of hemoglobin-depleted erythrocytes that encapsulate the near infrared chromophore, indocyanine green. We show the utility of the constructs as photo-theranostic agents in fluorescence imaging and photothermal destruction of human cells. These erythrocyte-mimicking nano-structures can be derived autologously, and may have broad applications in personal nanomedicine ranging from imaging and photo-destruction of cancerous tissues to vascular abnormalities, and longitudinal evaluations of therapeutic interventions.

  19. Erythrocyte-derived photo-theranostic agents: hybrid nano-vesicles containing indocyanine green for near infrared imaging and therapeutic applications

    PubMed Central

    Bahmani, Baharak; Bacon, Danielle; Anvari, Bahman

    2013-01-01

    Development of theranostic nano-constructs may enable diagnosis and treatment of diseases at high spatial resolution. Some key requirements for clinical translation of such constructs are that they must be non-toxic, non-immunogenic, biodegradable, with extended circulating lifetime. Cell-based structures, particularly those derived from erythrocytes, are promising candidate carrier systems to satisfy these requirements. One particular type of theranostic materials utilize light-sensitive agents that once photo-activated can provide diagnostic imaging capability, and elicit therapeutic effects. Here we demonstrate the first successful engineering of hybrid nano-scale constructs derived from membranes of hemoglobin-depleted erythrocytes that encapsulate the near infrared chromophore, indocyanine green. We show the utility of the constructs as photo-theranostic agents in fluorescence imaging and photothermal destruction of human cells. These erythrocyte-mimicking nano-structures can be derived autologously, and may have broad applications in personal nanomedicine ranging from imaging and photo-destruction of cancerous tissues to vascular abnormalities, and longitudinal evaluations of therapeutic interventions. PMID:23846447

  20. Erythrocyte caspase-3 activation and oxidative imbalance in erythrocytes and in plasma of type 2 diabetic patients.

    PubMed

    Maellaro, Emilia; Leoncini, Silvia; Moretti, Daniele; Del Bello, Barbara; Tanganelli, Italo; De Felice, Claudio; Ciccoli, Lucia

    2013-08-01

    An increased oxidative stress and a decreased life span of erythrocytes (RBCs) are reported in patients with diabetes. Aim of this study was to assess in RBCs from patients with type 2 diabetes whether downstream effector mechanisms of apoptosis, such as activation of caspase-3, is operative, and whether an iron-related oxidative imbalance, occurring inside RBCs and in plasma, could be involved in caspase-3 activation. In 26 patients with type 2 diabetes and in 12 healthy subjects, oxidative stress was evaluated by means of different markers; non-protein-bound iron, methemoglobin and glutathione were determined in RBCs, and non-protein-bound iron was also determined in plasma. Erythrocyte caspase-3 activation was evaluated by an immunosorbent enzyme assay. Arterial hypertension, demographic and standard biochemical data were also evaluated. The results show, for the first time, that type 2 diabetic RBCs put into motion caspase-3 activation, which is significantly higher than in control RBCs. Such an effector mechanism of "eryptosis" was positively correlated to blood glucose levels and to the increased plasma NPBI level. Caspase-3 activation was also positively correlated to occurrence of arterial hypertension. The results suggest that an extracellular oxidative milieu can be responsible for erythrocyte caspase-3 activation in patients with type 2 diabetes. In turn, caspase-3 activation can be envisaged as a novel mechanism which, by impairing the maintenance of erythrocyte shape and function, might contribute to the shortened life span of RBCs from patients with type 2 diabetes and to hemorheological disorders observed in these patients.