Human embryonic stem cells and therapeutic cloning.
Hwang, Woo Suk; Lee, Byeong Chun; Lee, Chang Kyu; Kang, Sung Keun
2005-06-01
The remarkable potential of embryonic stem (ES) cells is their ability to develop into many different cell types. ES cells make it possible to treat patients by transplanting specialized healthy cells derived from them to repair damaged and diseased cells or tissues, known as "stem cell therapy". However, the issue of immunocompatibility is one of considerable significance in ES cell transplantation. One approach to overcome transplant rejection of human ES (hES) cells is to derive hES cells from nuclear transfer of the patient's own cells. This concept is known as "therapeutic cloning". In this review, we describe the derivations of ES cells and cloned ES cells by somatic cell nuclear transfer, and their potential applications in transplantation medicine.
Human ES cells – haematopoiesis and transplantation strategies*
Kaufman, DS; Thomson, JA
2002-01-01
Human embryonic stem (ES) cells provide a novel opportunity to study early developmental events in a human system. We have used human ES cell lines, including clonally derived lines, to evaluate haematopoiesis. Co-culture of the human ES cells with irradiated bone marrow stromal cell lines in the presence of fetal bovine serum (FBS), but without other exogenous cytokines, leads to differentiation of the human ES cells within a matter of days. A portion of these differentiated cells express CD34, the best-defined marker for early haematopoietic cells. Haematopoietic colony-forming cells (CFCs) are demonstrated by methylcellulose assay. Myeloid, erythroid, megakaryocyte and multipotential CFCs can all be derived under these conditions. Enrichment of CD34+ cells derived from the human ES cells markedly increases the yield of CFCs, as would be expected for cells derived from adult bone marrow or umbilical cord blood. Transcription factors are also expressed in a manner consistent with haematopoietic differentiation. This system now presents the potential to evaluate specific conditions needed to induce or support events in early human blood development. Human ES cells are also a novel source of cells for transplantation therapies. The immunogenicity of ES cell-derived cells is unknown. The unique properties of ES cells afford the opportunity to explore novel mechanisms to prevent immune-mediated rejection. Potential strategies to overcome rejection will be presented, including creation of haematopoietic chimerism as a means to successfully transplant cells and tissues derived from human ES cells. PMID:12033728
Fujita, Atsushi; Uchida, Naoya; Haro-Mora, Juan J; Winkler, Thomas; Tisdale, John
2016-06-01
Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells represent a potential alternative source for red blood cell transfusion. However, when using traditional methods with embryoid bodies, ES cell-derived erythroid cells predominantly express embryonic type ɛ-globin, with lesser fetal type γ-globin and very little adult type β-globin. Furthermore, no β-globin expression is detected in iPS cell-derived erythroid cells. ES cell-derived sacs (ES sacs) have been recently used to generate functional platelets. Due to its unique structure, we hypothesized that ES sacs serve as hemangioblast-like progenitors capable to generate definitive erythroid cells that express β-globin. With our ES sac-derived erythroid differentiation protocol, we obtained ∼120 erythroid cells per single ES cell. Both primitive (ɛ-globin expressing) and definitive (γ- and β-globin expressing) erythroid cells were generated from not only ES cells but also iPS cells. Primitive erythropoiesis is gradually switched to definitive erythropoiesis during prolonged ES sac maturation, concurrent with the emergence of hematopoietic progenitor cells. Primitive and definitive erythroid progenitor cells were selected on the basis of glycophorin A or CD34 expression from cells within the ES sacs before erythroid differentiation. This selection and differentiation strategy represents an important step toward the development of in vitro erythroid cell production systems from pluripotent stem cells. Further optimization to improve expansion should be required for clinical application. Stem Cells 2016;34:1541-1552. © 2016 AlphaMed Press.
Zhang, Peng; Wu, Xinglong; Hu, Chunchao; Wang, Pengbo; Li, Xiangyun
2012-01-01
Although it has been 30 yr since the development of derivation methods for mouse embryonic stem (ES) cells, the biology of derivation of ES cells is poorly understood and the efficiency varies dramatically between cell lines. Recently, the Rho kinase inhibitor Y-27632 and the cell dissociation reagent Accutase were reported to significantly inhibit apoptosis of human ES cells during passaging. Therefore, in the current study, C57BL/6×129/Sv mouse blastocysts were used to evaluate the effect of the combination of the two reagents instead of using the conventional 129 line in mouse ES cell derivation. The data presented in this study suggests that the combination of Y-27632 and Accutase significantly increases the efficiency of mouse ES cell derivation; furthermore, no negative side effects were observed with Y-27632 and Accutase treatment. The newly established ES cell lines retain stable karyotype, surface markers expression, formed teratomas, and contributed to viable chimeras and germline transmission by tetraploid complementation assay. In addition, Y-27632 improved embryoid body formation of ES cells. During ES cell microinjection, Y-27632 prevented the formation of dissociation-induced cell blebs and facilitates the selection and the capture of intact cells. The methods presented in this study clearly demonstrate that inhibition of Rho kinase with Y-27632 and Accutase dissociation improve the derivation efficiently and reproducibility of mouse ES cell generation which is essential for reducing variability in the results obtained from different cell lines.
George, Aman; Sharma, Ruchi; Singh, Karn P; Panda, Sudeepta K; Singla, Suresh K; Palta, Prabhat; Manik, Radhaysham; Chauhan, Manmohan S
2011-06-01
Here, we report the isolation and characterization of embryonic stem (ES) cell-like cells from cloned blastocysts, generated using fibroblasts derived from an adult buffalo (BAF). These nuclear transfer embryonic stem cell-like cells (NT-ES) grew in well-defined and dome-shaped colonies. The expression pattern of pluripotency marker genes was similar in both NT-ES and in vitro fertilization (IVF) embryo-derived embryonic stem cell-like cells (F-ES). Upon spontaneous differentiation via embryoid body formation, cells of different morphology were observed, among which predominant were endodermal-like and epithelial-like cell types. The ES cell-like cells could be passaged only mechanically and did not form colonies when plated as single cell suspension at different concentrations. When F-ES cell-like, NT-ES cell-like, and BAF cells of same genotype were used for hand-made cloning (HMC), no significant difference (p > 0.05) was observed in cleavage and blastocyst rate. Following transfer of HMC embryos to synchronized recipients, pregnancies were established only with F-ES cell-like and BAF cell-derived embryos, and one live calf was born from F-ES cell-like cells. Further, when transfected NT-ES cell-like cells and BAF were used for HMC, no significant difference (p > 0.05) was observed between cleavage and blastocyst rate. In conclusion, here we report for the first time the derivation of ES cell-like cells from an adult buffalo, and its genetic modification. We also report the birth of a live cloned calf from buffalo ES cell-like cells.
Li, Ou; Tormin, Ariane; Sundberg, Berit; Hyllner, Johan; Le Blanc, Katarina; Scheding, Stefan
2013-01-01
Mesenchymal stroma cells (MSCs) have a high potential for novel cell therapy approaches in clinical transplantation. Commonly used bone marrow-derived MSCs (BM-MSCs), however, have a restricted proliferative capacity and cultures are difficult to standardize. Recently developed human embryonic stem cell-derived mesenchymal stroma cells (hES-MSCs) might represent an alternative and unlimited source of hMSCs. We therefore compared human ES-cell-derived MSCs (hES-MP002.5 cells) to normal human bone marrow-derived MSCs (BM-MSCs). hES-MP002.5 cells had lower yet reasonable CFU-F capacity compared with BM-MSC (8±3 versus 29±13 CFU-F per 100 cells). Both cell types showed similar immunophenotypic properties, i.e. cells were positive for CD105, CD73, CD166, HLA-ABC, CD44, CD146, CD90, and negative for CD45, CD34, CD14, CD31, CD117, CD19, CD 271, SSEA-4 and HLA-DR. hES-MP002.5 cells, like BM-MSCs, could be differentiated into adipocytes, osteoblasts and chondrocytes in vitro. Neither hES-MP002.5 cells nor BM-MSCs homed to the bone marrow of immune-deficient NSG mice following intravenous transplantation, whereas intra-femoral transplantation into NSG mice resulted in engraftment for both cell types. In vitro long-term culture-initiating cell assays and in vivo co-transplantation experiments with cord blood CD34+ hematopoietic cells demonstrated furthermore that hES-MP002.5 cells, like BM-MSCs, possess potent stroma support function. In contrast to BM-MSCs, however, hES-MP002.5 cells showed no or only little activity in mixed lymphocyte cultures and phytohemagglutinin (PHA) lymphocyte stimulation assays. In summary, ES-cell derived MSCs might be an attractive unlimited source for stroma transplantation approaches without suppressing immune function. PMID:23383153
Wakayama, Sayaka; Wakayama, Teruhiko
2010-01-01
Nuclear transfer-derived ES (ntES) cell lines can be established from somatic cell nuclei with a relatively high success rate. Although ntES cells have been shown to be equivalent to ES cells, there are ethical objections concerning human cells, such as the use of fresh oocyte donation from young healthy woman. In contrast, the use of induced pluripotent stem (iPS) cells for cloning poses few ethical problems and is a relatively easy technique compared with nuclear transfer. Therefore, although there are several reports proposing the use of ntES cells as a model of regenerative medicine, the use of these cells in preliminary medical research is waning. However, in theory, 5 to 10 donor cells can establish one ntES cell line and, once established, these cells will propagate indefinitely. These cells can be used to generate cloned animals from ntES cell lines using a second round of NT. Even in infertile and "unclonable" strains of mice, we can generate offspring from somatic cells by combining cloning with ntES technology. Moreover, cloned offspring can be generated potentially even from the nuclei of dead bodies or freeze-dried cells via ntES cells, such as from an extinct frozen animal. Currently, only the ntES technology is available for this purpose, because all other techniques, including iPS cell derivation, require significant numbers of living donor cells. This review describes how to improve the efficiency of cloning, the establishment of clone-derived embryonic stem cells and further applications.
Féraud, Olivier; Valogne, Yannick; Melkus, Michael W.; Zhang, Yanyan; Oudrhiri, Noufissa; Haddad, Rima; Daury, Aurélie; Rocher, Corinne; Larbi, Aniya; Duquesnoy, Philippe; Divers, Dominique; Gobbo, Emilie; Brunet de la Grange, Philippe; Louache, Fawzia; Bennaceur-Griscelli, Annelise; Mitjavila-Garcia, Maria Teresa
2016-01-01
Hematopoiesis generated from human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) are unprecedented resources for cell therapy. We compared hematopoietic differentiation potentials from ES and iPS cell lines originated from various donors and derived them using integrative and non-integrative vectors. Significant differences in differentiation toward hematopoietic lineage were observed among ES and iPS. The ability of engraftment of iPS or ES-derived cells in NOG mice varied among the lines with low levels of chimerism. iPS generated from ES cell-derived mesenchymal stem cells (MSC) reproduce a similar hematopoietic outcome compared to their parental ES cell line. We were not able to identify any specific hematopoietic transcription factors that allow to distinguish between good versus poor hematopoiesis in undifferentiated ES or iPS cell lines. There is a relatively unpredictable variation in hematopoietic differentiation between ES and iPS cell lines that could not be predicted based on phenotype or gene expression of the undifferentiated cells. These results demonstrate the influence of genetic background in variation of hematopoietic potential rather than the reprogramming process. PMID:26938212
Derivation and characterization of putative embryonic stem cells from cloned rabbit embryos.
Intawicha, Payungsuk; Siriboon, Chawalit; Chen, Chien-Hong; Chiu, Yung-Tsung; Lin, Tzu-An; Kere, Michel; Lo, Neng-Wen; Lee, Kun-Hsiung; Chang, Li-Yung; Chiang, Hsing-I; Ju, Jyh-Cherng
2016-10-15
The present study aimed to establish embryonic stem (ES) cell lines, i.e., ntES cells, using rabbit blastocyst stage embryos cloned by somatic cell nuclear transfer. First, we investigated the development of cloned rabbit embryos reconstructed with normal fibroblasts and fibroblasts transfected with enhanced green fluorescence protein (eGFP). Blastocyst rates were 27.4% and 23.9%, respectively, for the embryos reconstructed with normal fibroblasts and fibroblasts transfected with eGFP compared with that from the parthenogenetic group (43.1%). One ntES cell line was established from embryos reconstructed with eGFP-transfected fibroblasts (1 of 17, 5.9%), and three ntES cell lines were derived from those with normal fibroblasts (3 of 17, 17.6%). All the ntES cell lines retained alkaline phosphatase activity and expressed ES cell-specific markers SSEA-4, Oct-4, TRA-1-60, and TRA-1-81. The pluripotency was further confirmed by reverse transcription-polymerase chain reaction analyses of Oct-4, Nanog, and Sox-2 expressions in ntES cell lines. The differentiation capacity of ntES cells was also examined in vitro and in vivo, by which these ntES cell lines were able to differentiate into all three germ layers through embryoid bodies and teratomas. In conclusion, it is apparent that the efficiency of ntES cells derived using eGFP-transfected donor cells is lower than that with nontransfected, normal fibroblasts donor cells. Similar to those from parthenogenetic embryos, all ntES cell lines derived from cloned rabbit embryos are able to express pluripotency markers and retain their capability to differentiate into various cell lineages both in vitro and in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.
Derivation, propagation and differentiation of human embryonic stem cells.
Conley, Brock J; Young, Julia C; Trounson, Alan O; Mollard, Richard
2004-04-01
Embryonic stem (ES) cells are in vitro cultivated pluripotent cells derived from the inner cell mass (ICM) of the embryonic blastocyst. Attesting to their pluripotency, ES cells can be differentiated into representative derivatives of all three embryonic germ layers (endoderm, ectoderm and mesoderm) both in vitro and in vivo. Although mouse ES cells have been studied for many years, human ES cells have only more recently been derived and successfully propagated. Many biochemical differences and culture requirements between mouse and human ES cells have been described, yet despite these differences the study of murine ES cells has provided important insights into methodologies aimed at generating a greater and more in depth understanding of human ES cell biology. One common feature of both mouse and human ES cells is their capacity to undergo controlled differentiation into spheroid structures termed embryoid bodies (EBs). EBs recapitulate several aspects of early development, displaying regional-specific differentiation programs into derivatives of all three embryonic germ layers. For this reason, EB formation has been utilised as an initial step in a wide range of studies aimed at differentiating both mouse and human ES cells into a specific and desired cell type. Recent reports utilising specific growth factor combinations and cell-cell induction systems have provided alternative strategies for the directed differentiation of cells into a desired lineage. According to each one of these strategies, however, a relatively high cell lineage heterogeneity remains, necessitating subsequent purification steps including mechanical dissection, selective media or fluorescent or magnetic activated cell sorting (FACS and MACS, respectively). In the future, the ability to specifically direct differentiation of human ES cells at 100% efficiency into a desired lineage will allow us to fully explore the potential of these cells in the analysis of early human development, drug discovery, drug testing and repair of damaged or diseased tissues via transplantation.
Hargus, Gunnar; Cui, Yi-Fang; Dihné, Marcel; Bernreuther, Christian; Schachner, Melitta
2012-05-01
In vitro-differentiated embryonic stem (ES) cells comprise a useful source for cell replacement therapy, but the efficiency and safety of a translational approach are highly dependent on optimized protocols for directed differentiation of ES cells into the desired cell types in vitro. Furthermore, the transplantation of three-dimensional ES cell-derived structures instead of a single-cell suspension may improve graft survival and function by providing a beneficial microenvironment for implanted cells. To this end, we have developed a new method to efficiently differentiate mouse ES cells into neural aggregates that consist predominantly (>90%) of postmitotic neurons, neural progenitor cells, and radial glia-like cells. When transplanted into the excitotoxically lesioned striatum of adult mice, these substrate-adherent embryonic stem cell-derived neural aggregates (SENAs) showed significant advantages over transplanted single-cell suspensions of ES cell-derived neural cells, including improved survival of GABAergic neurons, increased cell migration, and significantly decreased risk of teratoma formation. Furthermore, SENAs mediated functional improvement after transplantation into animal models of Parkinson's disease and spinal cord injury. This unit describes in detail how SENAs are efficiently derived from mouse ES cells in vitro and how SENAs are isolated for transplantation. Furthermore, methods are presented for successful implantation of SENAs into animal models of Huntington's disease, Parkinson's disease, and spinal cord injury to study the effects of stem cell-derived neural aggregates in a disease context in vivo.
Tang, Meilin; Yin, Mengmeng; Tang, Ming; Liang, Huamin; Yu, Chong; Hu, Xinwu; Luo, Hongyan; Baudis, Birte; Haustein, Moritz; Khalil, Markus; Sarić, Tomo; Hescheler, Jürgen; Xi, Jiaoya
2013-01-01
Low efficiency of cardiomyocyte (CM) differentiation from embryonic stem (ES) cells limits their therapeutic use. The objective of this study was to investigate the effect of baicalin, a natural flavonoid compound, on the in vitro cardiac differentiation of murine ES cells. The induction of ES cells into cardiac-like cells was performed by embryoid body (EB)-based differentiation method. The electrophysiological properties of the ES cell-derived CMs (ES-CMs) were measured by patch-clamp. The biomarkers of ES-CMs were determined by quantitative RT-PCR and immunofluorescence. Continuous baicalin treatment decreased the size of EBs, and increased the proportion of α-actinin-positive CMs and transcript level of cardiac specific markers in beating EBs by inducing cell death of non-CMs. Baicalin increased the percentage of working ES-CMs which had typical responses to β-adrenergic and muscarinic stimulations. Baicalin maintains the late-stage functional CMs in EBs derived from murine ES cells. This study describes a new insight into the various biological effects of baicalin on cardiac differentiation of pluripotent stem cells. Copyright © 2013 S. Karger AG, Basel.
Rungsiwiwut, Ruttachuk; Numchaisrika, Pranee; Ahnonkitpanit, Vichuda; Isarasena, Nipan; Virutamasen, Pramuan
2012-01-01
Abstract Human embryonic stem (hES) cells are considered to be a potential source for the therapy of human diseases, drug screening, and the study of developmental biology. In the present study, we successfully derived hES cell lines from blastocysts developed from frozen and fresh embryos. Seventeen- to eighteen-year-old frozen embryos were thawed, cultured to the blastocyst stage, and induced to form hES cells using human foreskin fibroblasts. The Chula2.hES cell line and the Chula4.hES and Chula5.hES cell lines were derived from blastocysts developed from frozen and fresh embryos, respectively. The cell lines expressed pluripotent markers, including alkaline phosphatase (AP), Oct3/4, stage-specific embryonic antigen (SSEA)-4, and tumor recognition antigen (TRA)-1-60 and TRA-1-81 as detected with immunocytochemistry. The real-time polymerase chain reaction (RT-PCR) results showed that the cell lines expressed pluripotent genes, including OCT3/4, SOX2, NANOG, UTF, LIN28, REX1, NODAL, and E-Cadherin. In addition, the telomerase activities of the cell lines were higher than in the fibroblast cells. Moreover, the cell lines differentiated into all three germ layers both in vitro and in vivo. The cell lines had distinct identities, as revealed with DNA fingerprinting, and maintained their normal karyotype after a long-term culture. This study is the first to report the successful derivation of hES cell lines in Thailand and that frozen embryos maintained their pluripotency similar to fresh embryos, as shown by the success of hES cell derivation, even after years of cryopreservation. Therefore, embryos from prolonged cryopreservation could be an alternative source for embryonic stem cell research. PMID:23514952
Ma, Jie; Wang, Yu; Yang, Jianhua; Yang, Min; Chang, Keun-A; Zhang, Linhua; Jiang, Feng; Li, Yi; Zhang, Zhonggong; Heo, Chaejeong; Suh, Yoo-Hun
2007-07-01
A 7-day-old hypoxic-ischemic encephalopathy (HIE) mouse model was used to study the effect of transplantation of embryonic stem (ES) cell-derived cells on the HIE. After the inducement in vitro, the ES cell-derived cells expressed Nestin and MAP-2, rather than GFAP mRNA. After transplantation, ES cell-derived cells can survive, migrate into the injury site, and specifically differentiate into neurons, showing improvement of the learning ability and memory of the HIE mouse at 8 months post-transplantation. The non-grafted HIE mouse brain showed typical pathological changes in the hippocampus and cerebral cortex, where the number of neurons was reduced, while in the cell graft group, number of the neurons increased in the same regions. Although further study is necessary to elucidate the precise mechanisms responsible for this functional recovery, we believe that ES cells have advantages for use as a donor source in HIE.
Hepatic differentiation of pluripotent stem cells.
Loya, Komal; Eggenschwiler, Reto; Ko, Kinarm; Sgodda, Malte; André, Francoise; Bleidissel, Martina; Schöler, Hans R; Cantz, Tobias
2009-10-01
In regenerative medicine pluripotent stem cells are considered to be a valuable self-renewing source for therapeutic cell transplantations, given that a functional organ-specific phenotype can be acquired by in vitro differentiation protocols. Furthermore, derivatives of pluripotent stem cells that mimic fetal progenitor stages could serve as an important tool to analyze organ development with in vitro approaches. Because of ethical issues regarding the generation of human embryonic stem (ES) cells, other sources for pluripotent stem cells are intensively studied. Like in less developed vertebrates, pluripotent stem cells can be generated from the female germline even in mammals, via parthenogenetic activation of oocytes. Recently, testis-derived pluripotent stem cells were derived from the male germline. Therefore, we compared two different hepatic differentiation approaches and analyzed the generation of definitive endoderm progenitor cells and their further maturation into a hepatic phenotype using murine parthenogenetic ES cells, germline-derived pluripotent stem cells, and ES cells. Applying quantitative RT-PCR, both germline-derived pluripotent cell lines show similar differentiation capabilities as normal murine ES cells and can be considered an alternative source for pluripotent stem cells in regenerative medicine.
Abnormalities in human pluripotent cells due to reprogramming mechanisms
Ma, Hong; Morey, Robert; O’Neil, Ryan C.; He, Yupeng; Daughtry, Brittany; Schultz, Matthew D.; Hariharan, Manoj; Nery, Joseph R.; Castanon, Rosa; Sabatini, Karen; Thiagarajan, Rathi D.; Tachibana, Masahito; Kang, Eunju; Tippner-Hedges, Rebecca; Ahmed, Riffat; Gutierrez, Nuria Marti; Van Dyken, Crystal; Polat, Alim; Sugawara, Atsushi; Sparman, Michelle; Gokhale, Sumita; Amato, Paula; Wolf, Don P.; Ecker, Joseph R.; Laurent, Louise C.; Mitalipov, Shoukhrat
2016-01-01
Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although embryonic stem cells (ES cells) from in vitro fertilized embryos (IVF ES cells) represent the ‘gold standard’, they are allogeneic to patients. Autologous induced pluripotent stem cells (iPS cells) are prone to epigenetic and transcriptional aberrations. To determine whether such abnormalities are intrinsic to somatic cell reprogramming or secondary to the reprogramming method, genetically matched sets of human IVF ES cells, iPS cells and nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT) were subjected to genome-wide analyses. Both NT ES cells and iPS cells derived from the same somatic cells contained comparable numbers of de novo copy number variations. In contrast, DNA methylation and transcriptome profiles of NT ES cells corresponded closely to those of IVF ES cells, whereas iPS cells differed and retained residual DNA methylation patterns typical of parental somatic cells. Thus, human somatic cells can be faithfully reprogrammed to pluripotency by SCNT and are therefore ideal for cell replacement therapies. PMID:25008523
Uchida, Naoya; Haro-Mora, Juan J; Fujita, Atsushi; Lee, Duck-Yeon; Winkler, Thomas; Hsieh, Matthew M; Tisdale, John F
2017-03-01
Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells represent an ideal source for in vitro modeling of erythropoiesis and a potential alternative source for red blood cell transfusions. However, iPS cell-derived erythroid cells predominantly produce ε- and γ-globin without β-globin production. We recently demonstrated that ES cell-derived sacs (ES sacs), known to express hemangioblast markers, allow for efficient erythroid cell generation with β-globin production. In this study, we generated several iPS cell lines derived from bone marrow stromal cells (MSCs) and peripheral blood erythroid progenitors (EPs) from sickle cell disease patients, and evaluated hematopoietic stem/progenitor cell (HSPC) generation after iPS sac induction as well as subsequent erythroid differentiation. MSC-derived iPS sacs yielded greater amounts of immature hematopoietic progenitors (VEGFR2 + GPA-), definitive HSPCs (CD34 + CD45+), and megakaryoerythroid progenitors (GPA + CD41a+), as compared to EP-derived iPS sacs. Erythroid differentiation from MSC-derived iPS sacs resulted in greater amounts of erythroid cells (GPA+) and higher β-globin (and βS-globin) expression, comparable to ES sac-derived cells. These data demonstrate that human MSC-derived iPS sacs allow for more efficient erythroid cell generation with higher β-globin production, likely due to heightened emergence of immature progenitors. Our findings should be important for iPS cell-derived erythroid cell generation. Stem Cells 2017;35:586-596. © 2016 AlphaMed Press.
Kim, Gi Dae; Oh, Jedo; Park, Hyen-Joo; Bae, Kihwan; Lee, Sang Kook
2013-08-01
Magnolol, a neolignan from the traditional medicinal plant Magnolia obovata, has been shown to possess neuroprotective, anti-inflammatory, anticancer and anti-angiogenic activities. However, the precise mechanism of the anti-angiogenic activity of magnolol remains to be elucidated. In the present study, the anti-angiogenic effect of magnolol was evaluated in mouse embryonic stem (mES)/embryoid body (EB)-derived endothelial-like cells. The endothelial-like cells were obtained by differentiation from mES/EB cells. Magnolol (20 µM) significantly suppressed the transcriptional and translational expression of platelet endothelial cell adhesion molecule (PECAM), an endothelial biomarker, in mES/EB-derived endothelial-like cells. To further understand the molecular mechanism of the suppression of PECAM expression, signaling pathways were analyzed in the mES/EB-derived endothelial-like cells. Magnolol induced the generation of reactive oxygen species (ROS) by mitochondria, a process that was associated with the induction of apoptosis as determined by positive Annexin V staining and the activation of cleaved caspase-3. The involvement of ROS generation by magnolol was confirmed by treatment with an antioxidant, N-acetyl-cysteine (NAC). NAC inhibited the magnolol-mediated induction of ROS generation and suppression of PECAM expression. In addition, magnolol suppressed the activation of MAPKs (ERK, JNK and p38) and the PI3K/AKT/mTOR signaling pathway in mES/EB-derived endothelial-like cells. Taken together, these findings demonstrate for the first time that the anti-angiogenic activity of magnolol may be associated with ROS-mediated apoptosis and the suppression of the PI3K/AKT/mTOR signaling pathway in mES/EB-derived endothelial-like cells.
Siriboon, Chawalit; Lin, Yu-Hsuan; Kere, Michel; Chen, Chun-Da; Chen, Lih-Ren; Chen, Chien-Hong; Tu, Ching-Fu; Lo, Neng-Wen; Ju, Jyh-Cherng
2015-01-01
We attempted to isolate ES cell lines using inner cell masses from high-quality cloned porcine blastocysts. After being seeded onto feeders, embryos had better (P < 0.05) attachment, outgrowth formation and primary colonization in both 2× and 3× aggregated cloned embryos (62.8, 42.6 and 12.8% vs. 76.2, 55.2 and 26.2%, respectively) compared to the non-aggregated group (41.6, 23.4 and 3.9%). Effects of feeder types (STO vs. MEF) and serum sources (FBS vs. KSR) on extraction of cloned embryo-derived porcine ES cells were examined. More (17.1%) ntES cell lines over Passage 3 were generated in the MEF/KSR group. However, ntES cells cultured in KSR-supplemented medium had a low proliferation rate with defective morphology, and eventually underwent differentiation or apoptosis subsequently. Approximately 26.1, 22.7 and 35.7% of primary colonies were formed after plating embryos in DMEM, DMEM/F12 and α-MEM media, respectively. Survival rates of ntES cells cultured in α-MEM, DMEM and DMEM/F12 were 16.7, 4.3 and 6.8%, respectively (P > 0.05). We further examined the beneficial effect of TSA treatment of 3× aggregated cloned embryos on establishment of ntES cell lines. Primary colony numbers and survival rates of ntES cells beyond passage 3 were higher (P < 0.05) in those derived from TSA-treated 3× blastocysts (36.7 and 26.7%) than from the non-treated aggregated group (23.1 and 11.5%). These cells, remaining undifferentiated over 25 passages, had alkaline phosphatase activity and expressed ES specific markers Oct4, Nanog, Sox2, and Rex01. Moreover, these ntES cells successfully differentiated into embryoid bodies (EBs) that expressed specific genes of all three germ layers after being cultured in LIF-free medium. In conclusion, we have successfully derived putative porcine ntES cells with high efficiency from quality cloned embryos produced by embryo aggregation, and optimized the ES cell culture system suitable for establishing and maintaining ntES cell lines in undifferentiated state.
Siriboon, Chawalit; Lin, Yu-Hsuan; Kere, Michel; Chen, Chun-Da; Chen, Lih-Ren; Chen, Chien-Hong; Tu, Ching-Fu; Lo, Neng-Wen; Ju, Jyh-Cherng
2015-01-01
We attempted to isolate ES cell lines using inner cell masses from high-quality cloned porcine blastocysts. After being seeded onto feeders, embryos had better (P < 0.05) attachment, outgrowth formation and primary colonization in both 2× and 3× aggregated cloned embryos (62.8, 42.6 and12.8% vs. 76.2, 55.2 and 26.2%, respectively) compared to the non-aggregated group (41.6, 23.4 and 3.9%). Effects of feeder types (STO vs. MEF) and serum sources (FBS vs. KSR) on extraction of cloned embryo-derived porcine ES cells were examined. More (17.1%) ntES cell lines over Passage 3 were generated in the MEF/KSR group. However, ntES cells cultured in KSR-supplemented medium had a low proliferation rate with defective morphology, and eventually underwent differentiation or apoptosis subsequently. Approximately 26.1, 22.7 and 35.7% of primary colonies were formed after plating embryos in DMEM, DMEM/F12 and α-MEM media, respectively. Survival rates of ntES cells cultured in α-MEM, DMEM and DMEM/F12 were 16.7, 4.3 and 6.8%, respectively (P > 0.05). We further examined the beneficial effect of TSA treatment of 3× aggregated cloned embryos on establishment of ntES cell lines. Primary colony numbers and survival rates of ntES cells beyond passage 3 were higher (P < 0.05) in those derived from TSA-treated 3× blastocysts (36.7 and 26.7%) than from the non-treated aggregated group (23.1 and 11.5%). These cells, remaining undifferentiated over 25 passages, had alkaline phosphatase activity and expressed ES specific markers Oct4, Nanog, Sox2, and Rex01. Moreover, these ntES cells successfully differentiated into embryoid bodies (EBs) that expressed specific genes of all three germ layers after being cultured in LIF-free medium. In conclusion, we have successfully derived putative porcine ntES cells with high efficiency from quality cloned embryos produced by embryo aggregation, and optimized the ES cell culture system suitable for establishing and maintaining ntES cell lines in undifferentiated state. PMID:25680105
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Zhen F.; Gai, Hui; Huang, You Z.
2006-11-01
Embryonic stem cells were isolated from rabbit blastocysts derived from fertilization (conventional rbES cells), parthenogenesis (pES cells) and nuclear transfer (ntES cells), and propagated in a serum-free culture system. Rabbit ES (rbES) cells proliferated for a prolonged time in an undifferentiated state and maintained a normal karyotype. These cells grew in a monolayer with a high nuclear/cytoplasm ratio and contained a high level of alkaline phosphate activity. In addition, rbES cells expressed the pluripotent marker Oct-4, as well as EBAF2, FGF4, TDGF1, but not antigens recognized by antibodies against SSEA-1, SSEA-3, SSEA-4, TRA-1-10 and TRA-1-81. All 3 types of ESmore » cells formed embryoid bodies and generated teratoma that contained tissue types of all three germ layers. rbES cells exhibited a high cloning efficiency, were genetically modified readily and were used as nuclear donors to generate a viable rabbit through somatic cell nuclear transfer. In combination with genetic engineering, the ES cell technology should facilitate the creation of new rabbit lines.« less
Chen, Ying-Jiun J.; Vogt, Daniel; Wang, Yanling; Visel, Axel; Silberberg, Shanni N.; Nicholas, Cory R.; Danjo, Teruko; Pollack, Joshua L.; Pennacchio, Len A.; Anderson, Stewart; Sasai, Yoshiki; Baraban, Scott C.; Kriegstein, Arnold R.; Alvarez-Buylla, Arturo; Rubenstein, John L. R.
2013-01-01
The medial ganglionic eminence (MGE) is an embryonic forebrain structure that generates the majority of cortical interneurons. MGE transplantation into specific regions of the postnatal central nervous system modifies circuit function and improves deficits in mouse models of epilepsy, Parkinson's disease, pain, and phencyclidine-induced cognitive deficits. Herein, we describe approaches to generate MGE-like progenitor cells from mouse embryonic stem (ES) cells. Using a modified embryoid body method, we provided gene expression evidence that mouse ES-derived Lhx6+ cells closely resemble immature interneurons generated from authentic MGE-derived Lhx6+ cells. We hypothesized that enhancers that are active in the mouse MGE would be useful tools in detecting when ES cells differentiate into MGE cells. Here we demonstrate the utility of enhancer elements [422 (DlxI12b), Lhx6, 692, 1056, and 1538] as tools to mark MGE-like cells in ES cell differentiation experiments. We found that enhancers DlxI12b, 692, and 1538 are active in Lhx6-GFP+ cells, while enhancer 1056 is active in Olig2+ cells. These data demonstrate unique techniques to follow and purify MGE-like derivatives from ES cells, including GABAergic cortical interneurons and oligodendrocytes, for use in stem cell-based therapeutic assays and treatments. PMID:23658702
Challenges of primate embryonic stem cell research.
Bavister, Barry D; Wolf, Don P; Brenner, Carol A
2005-01-01
Embryonic stem (ES) cells hold great promise for treating degenerative diseases, including diabetes, Parkinson's, Alzheimer's, neural degeneration, and cardiomyopathies. This research is controversial to some because producing ES cells requires destroying embryos, which generally means human embryos. However, some of the surplus human embryos available from in vitro fertilization (IVF) clinics may have a high rate of genetic errors and therefore would be unsuitable for ES cell research. Although gross chromosome errors can readily be detected in ES cells, other anomalies such as mitochondrial DNA defects may have gone unrecognized. An insurmountable problem is that there are no human ES cells derived from in vivo-produced embryos to provide normal comparative data. In contrast, some monkey ES cell lines have been produced using in vivo-generated, normal embryos obtained from fertile animals; these can represent a "gold standard" for primate ES cells. In this review, we argue a need for strong research programs using rhesus monkey ES cells, conducted in parallel with studies on human ES and adult stem cells, to derive the maximum information about the biology of normal stem cells and to produce technical protocols for their directed differentiation into safe and functional replacement cells, tissues, and organs. In contrast, ES cell research using only human cell lines is likely to be incomplete, which could hinder research progress, and delay or diminish the effective application of ES cell technology to the treatment of human diseases.
Electromechanical integration of cardiomyocytes derived from human embryonic stem cells.
Kehat, Izhak; Khimovich, Leonid; Caspi, Oren; Gepstein, Amira; Shofti, Rona; Arbel, Gil; Huber, Irit; Satin, Jonathan; Itskovitz-Eldor, Joseph; Gepstein, Lior
2004-10-01
Cell therapy is emerging as a promising strategy for myocardial repair. This approach is hampered, however, by the lack of sources for human cardiac tissue and by the absence of direct evidence for functional integration of donor cells into host tissues. Here we investigate whether cells derived from human embryonic stem (hES) cells can restore myocardial electromechanical properties. Cardiomyocyte cell grafts were generated from hES cells in vitro using the embryoid body differentiating system. This tissue formed structural and electromechanical connections with cultured rat cardiomyocytes. In vivo integration was shown in a large-animal model of slow heart rate. The transplanted hES cell-derived cardiomyocytes paced the hearts of swine with complete atrioventricular block, as assessed by detailed three-dimensional electrophysiological mapping and histopathological examination. These results demonstrate the potential of hES-cell cardiomyocytes to act as a rate-responsive biological pacemaker and for future myocardial regeneration strategies.
Matsunaga, Yusuke; Fukuma, Daiki; Hirata, Shinya; Fukushima, Satoshi; Haruta, Miwa; Ikeda, Tokunori; Negishi, Izumi; Nishimura, Yasuharu; Senju, Satoru
2008-11-01
A method for the genetic modification of dendritic cells (DC) was previously established based on the in vitro differentiation of embryonic stem (ES) cells to DC (ES-DC). The unavailability of human ES cells genetically identical to the patients will be a problem in the future clinical application of this technology. This study attempted to establish a strategy to overcome this issue. The TAP1 or beta(2)-microglobulin (beta(2)m) gene was disrupted in 129 (H-2(b))-derived ES cells and then expression vectors for the H-2K(d) or beta(2)m-linked form of K(d) (beta2m-K(d)) were introduced, thus resulting in two types of genetically engineered ES-DC, TAP1(-/-)/K(d) ES-DC and beta(2)m(-/-)/beta(2)m-K(d) ES-DC. As intended, both of the transfectant ES-DC expressed K(d) but not the intrinsic H-2(b) haplotype-derived MHC class I. Beta(2)m(-/-)/beta(2)m-K(d) and TAP1(-/-)/K(d) ES-DC were not recognized by pre-activated H-2(b)-reactive CTL and did not prime H-2(b) reactive CTL in vitro or in vivo. Beta(2)m(-/-)/beta(2)m-K(d) ES-DC and TAP1(-/-)/K(d) ES-DC had a survival advantage in comparison to beta(2)m(+/-)/beta(2)m-K(d) ES-DC and TAP1(+/+)/K(d) ES-DC, when transferred into BALB/c mice. K(d)-restricted RSV-M2-derived peptide-loaded ES-DC could prime the epitope-specific CTL upon injection into the BALB/c mice, irrespective of the cell surface expression of intrinsic H-2(b) haplotype-encoded MHC class I. Beta(2)m(-/-)/beta(2)m-K(d) ES-DC were significantly more efficient in eliciting immunity against RSV M2 protein-expressing tumor cells than beta(2)m(+/-)/beta(2)m-K(d) ES-DC. The modification of the beta(2)m or TAP gene may therefore be an effective strategy to resolve the problem of HLA class I allele mismatch between human ES or induced pluripotent stem cells and the recipients to be treated.
Khan, Mohsin; Nickoloff, Emily; Abramova, Tatiana; Johnson, Jennifer; Verma, Suresh Kumar; Krishnamurthy, Prasanna; Mackie, Alexander Roy; Vaughan, Erin; Garikipati, Venkata Naga Srikanth; Benedict, Cynthia; Ramirez, Veronica; Lambers, Erin; Ito, Aiko; Gao, Erhe; Misener, Sol; Luongo, Timothy; Elrod, John; Qin, Gangjian; Houser, Steven R; Koch, Walter J; Kishore, Raj
2015-01-01
Rationale Embryonic stem cells (ESCs) hold great promise for cardiac regeneration but are susceptible to various concerns. Recently, salutary effects of stem cells have been connected to exosome secretion. ESCs have the ability to produce exosomes however their effect in the context of the heart is unknown. Objective Determine the effect of ESC-derived exosome for the repair of ischemic myocardium and whether c-kit+ CPCs function can be enhanced with ESC exosomes Methods and Results This study demonstrates that mouse ESC derived exosomes (mES Ex) possess ability to augment function in infarcted hearts. mES Ex enhanced neovascularization, cardiomyocyte survival and reduced fibrosis post infarction consistent with resurgence of cardiac proliferative response. Importantly, mES Ex augmented cardiac progenitor cell (CPC) survival, proliferation and cardiac commitment concurrent with increased c-kit+ CPCs in vivo 8 weeks after in vivo transfer along with formation of bonafide new cardiomyocytes in the ischemic heart. miRNA array revealed significant enrichment of miR290–295 cluster and particularly miR-294 in ESC exosomes. The underlying basis for the beneficial effect of mES Ex was tied to delivery of ESC specific miR-294 to CPCs promoting increased survival, cell cycle progression and proliferation. Conclusions mES Ex provide a novel cell free system that utilizes the immense regenerative power of ES cells while avoiding the risks associated with direct ES or ES derived cell transplantation and risk of teratomas. ESC exosomes possess cardiac regeneration ability and modulate both cardiomyocyte and CPC based repair programs in the heart. PMID:25904597
Generating gene knockout rats by homologous recombination in embryonic stem cells
Tong, Chang; Huang, Guanyi; Ashton, Charles; Li, Ping; Ying, Qi-Long
2013-01-01
We describe here a detailed protocol for generating gene knockout rats by homologous recombination in embryonic stem (ES) cells. This protocol comprises the following procedures: derivation and expansion of rat ES cells, construction of gene-targeting vectors, generation of gene-targeted rat ES cells and, finally, production of gene-targeted rats. The major differences between this protocol and the classical mouse gene-targeting protocol include ES cell culture methods, drug selection scheme, colony picking and screening strategies. This ES cell–based gene-targeting technique allows sophisticated genetic modifications to be performed in the rat, as many laboratories have been doing in the mouse for the past two decades. Recently we used this protocol to generate Tp53 (also known as p53) gene knockout rats. The entire process requires ~1 year to complete, from derivation of ES cells to generation of knockout rats. PMID:21637202
Mouse A6-positive hepatic oval cells derived from embryonic stem cells.
Yin, Dong-zhi; Cai, Ji-ye; Zheng, Qi-chang; Chen, Zheng-wei; Zhao, Jing-xian; Yuan, You-neng
2014-02-01
Oval cells have a potential to differentiate into a variety of cell lineages including hepatocytes and biliary epithelia. Several models have been established to activate the oval cells by incorporating a variety of toxins and carcinogens, alone or combined with surgical treatment. Those models are obviously not suitable for the study on human hepatic oval cells. It is necessary to establish a new and efficient model to study the human hepatic oval cells. In this study, the hepatocyte growth factor (HGF) and epidermal growth factor (EGF) were used to induce differentiation of mouse embryonic stem (ES) cells into hepatic oval cells. We first confirmed that hepatic oval cells derived from ES cells, which are bipotential, do exist during the course of mouse ES cells' differentiation into hepatic parenchymal cells. RT-PCR and transmission electron microscopy were applied in this study. The ratio of Sca-1+/CD34+ cells sorted by FACS in the induction group was increased from day 4 and reached the maximum on the day 8, whereas that in the control group remained at a low level. The differentiation ratio of Sca-1+/CD34+ cells in the induction group was significantly higher than that in the control group. About 92.48% of the sorted Sca-1+/CD34+ cells on the day 8 were A6 positive. Highly purified A6+/Sca-1+/CD34+ hepatic oval cells derived from ES cells could be obtained by FACS. The differentiation ratio of hepatic oval cells in the induction group (up to 4.46%) was significantly higher than that in the control group. The number of hepatic oval cells could be increased significantly by HGF and EGF. The study also examined the ultrastructures of ES-derived hepatic oval cells' membrane surface by atomic force microscopy. The ES-derived hepatic oval cells cultured and sorted by our protocols may be available for the future clinical application.
Establishment of rat embryonic stem-like cells from the morula using a combination of feeder layers.
Sano, Chiaki; Matsumoto, Asako; Sato, Eimei; Fukui, Emiko; Yoshizawa, Midori; Matsumoto, Hiromichi
2009-08-01
Embryonic stem (ES) cells are characterized by pluripotency, in particular the ability to form a germline on injection into blastocysts. Despite numerous attempts, ES cell lines derived from rat embryos have not yet been established. The reason for this is unclear, although certain intrinsic biological differences among species and/or strains have been reported. Herein, using Wistar-Imamichi rats, specific characteristics of preimplantation embryos are described. At the blastocyst stage, Oct4 (also called Pou5f1) was expressed in both the inner cell mass (ICM) and the trophectoderm (TE), whereas expression of Cdx2 was localized to the TE. In contrast, at an earlier stage, expression of Oct4 was detected in all the nuclei in the morula. These stages were examined using a combination of feeder layers (rat embryonic fibroblast [REF] for primary outgrowth and SIM mouse embryo-derived thioguanine- and ouabain-resistant [STO] cells for passaging) to establish rat ES-like cell lines. The rat ES-like cell lines obtained from the morula maintained expression of Oct4 over long-term culture, whereas cell lines derived from blastocysts lost pluripotency during early passage. The morula-derived ES-like cell lines showed Oct4 expression in a long-term culture, even after cryogenic preservation, thawing and EGFP transfection. These results indicate that rat ES-like cell lines with long-term Oct4 expression can be established from the morula of Wistar-Imamichi rats using a combination of feeder layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krassowska, Anna; Gordon-Keylock, Sabrina; Samuel, Kay
We investigated whether the in vitro differentiation of ES cells into haematopoietic progenitors could be enhanced by exposure to the aorta-gonadal-mesonephros (AGM) microenvironment that is involved in the generation of haematopoietic stem cells (HSC) during embryonic development. We established a co-culture system that combines the requirements for primary organ culture and differentiating ES cells and showed that exposure of differentiating ES cells to the primary AGM region results in a significant increase in the number of ES-derived haematopoietic progenitors. Co-culture of ES cells on the AM20-1B4 stromal cell line derived from the AGM region also increases haematopoietic activity. We concludemore » that factors promoting the haematopoietic activity of differentiating ES cells present in primary AGM explants are partially retained in the AM20.1B4 stromal cell line and that these factors are likely to be different to those required for adult HSC maintenance.« less
Establishment of goat embryonic stem cells from in vivo produced blastocyst-stage embryos.
Behboodi, E; Bondareva, A; Begin, I; Rao, K; Neveu, N; Pierson, J T; Wylie, C; Piero, F D; Huang, Y J; Zeng, W; Tanco, V; Baldassarre, H; Karatzas, C N; Dobrinski, I
2011-03-01
Embryonic stem (ES) cells with the capacity for germ line transmission have only been verified in mouse and rat. Methods for derivation, propagation, and differentiation of ES cells from domestic animals have not been fully established. Here, we describe derivation of ES cells from goat embryos. In vivo-derived embryos were cultured on goat fetal fibroblast feeders. Embryos either attached to the feeder layer or remained floating and expanded in culture. Embryos that attached showed a prominent inner cell mass (ICM) and those that remained floating formed structures resembling ICM disks surrounded by trophectodermal cells. ICM cells and embryonic disks were isolated mechanically, cultured on feeder cells in the presence of hLIF, and outgrown into ES-like colonies. Two cell lines were cultured for 25 passages and stained positive for alkaline phosphatase, POU5F1, NANOG, SOX2, SSEA-1, and SSEA-4. Embryoid bodies formed in suspension culture without hLIF. One cell line was cultured for 2 years (over 120 passages). This cell line differentiated in vitro into epithelia and neuronal cells, and could be stably transfected and selected for expression of a fluorescent marker. When cells were injected into SCID mice, teratomas were identified 5-6 weeks after transplantation. Expression of known ES cell markers, maintenance in vitro for 2 years in an undifferentiated state, differentiation in vitro, and formation of teratomas in immunodeficient mice provide evidence that the established cell line represents goat ES cells. This also is the first report of teratoma formation from large animal ES cells. Copyright © 2011 Wiley-Liss, Inc.
A method for deriving homogenous population of oligodendrocytes from mouse embryonic stem cells.
Neman, J; de Vellis, J
2012-06-01
There is a pressing need for new therapeutics for the generation and transplantation of oligodendrocyte to the white matter to help replace and render injured cells that are lost in demyelinating disease. There are a few protocols describing a homogenous derivation of non-manipulated mouse embryonic stem cells to oligodendrocytes (ES-OL). Moreover, protocols that are successful in producing ES-OL do so with low efficiency. Therefore, we describe clear methodology for differentiation of mouse ES cells to oligodendrocyte to a high degree of homogenity and reproducibility in vitro. In addition, taking advantage of three defined media, we can generate a defined ES to oligodendrocyte lineage while selecting against neurons and astrocytes. More specifically, (1) Glial stem cell defining media (GSCDM), supplemented with appropriate combination of SHH and RA support pro-oligodendrocyte developing neural spheres from ES cells, (2) Oligodendrocyte differentiating media, induces lineage selection of oligodendrocytes progenitors from neural stem cells, and (3) Oligodendrocyte maturation media, supports oligodendrocytes progenitor maturation. Moreover, the ES cell derived oligodendrocytes display mature properites in the prescence of rat dorsal root gangila in vitro. Thus confirming thier potential for use to invesitgate developmental pathways and future potential use of cells in transplantation towards myelin repair. Copyright © 2012 Wiley Periodicals, Inc.
Metastable Pluripotent States in NOD Mouse Derived ES Cells
Hanna, Jacob; Markoulaki, Styliani; Mitalipova, Maisam; Cheng, Albert W.; Cassady, John P.; Staerk, Judith; Carey, Bryce W.; Lengner, Christopher J.; Foreman, Ruth; Love, Jennifer; Gao, Qing; Kim, Jongpil; Jaenisch, Rudolf
2009-01-01
Embryonic stem (ES) cells are isolated from the inner cell mass (ICM) of blastocysts, whereas epiblast stem cells (EpiSCs) are derived from the post-implantation epiblast and display a restricted developmental potential. Here we characterize pluripotent states in the non-obese diabetic (NOD) mouse strain, which prior to this study was considered “non-permissive” for ES cell derivation. We find that NOD stem cells can be stabilized by providing constitutive expression of Klf4 or c-Myc or small molecules that can replace these factors during in vitro reprogramming. The NOD ES and iPS cells appear “metastable”, as they acquire an alternative EpiSC-like identity after removal of the exogenous factors, while their reintroduction converts the cells back to ICM-like pluripotency. Our findings suggest that stem cells from different genetic backgrounds can assume distinct states of pluripotency in vitro, the stability of which is regulated by endogenous genetic determinants and can be modified by exogenous factors. PMID:19427283
Therapeutic Angiogenesis via Solar Cell-Facilitated Electrical Stimulation.
Jeong, Gun-Jae; Oh, Jin Young; Kim, Yeon-Ju; Bhang, Suk Ho; Jang, Hyeon-Ki; Han, Jin; Yoon, Jeong-Kee; Kwon, Sang-Mo; Lee, Tae Il; Kim, Byung-Soo
2017-11-08
Cell therapy has been suggested as a treatment modality for ischemic diseases, but the poor survival and engraftment of implanted cells limit its therapeutic efficacy. To overcome such limitation, we used electrical stimulation (ES) derived from a wearable solar cell for inducing angiogenesis in ischemic tissue. ES enhanced the secretion of angiogenic growth factors and the migration of mesenchymal stem cells (MSCs), myoblasts, endothelial progenitor cells, and endothelial cells in vitro. In a mouse ischemic hindlimb model, ES generated by a solar cell and applied to the ischemic region promoted migration of MSCs toward the ischemic site and upregulated expression of angiogenic paracrine factors (vascular endothelial, basic fibroblast, and hepatocyte growth factors; and stromal cell-derived factor-1α). Importantly, solar cell-generated ES promoted the formation of capillaries and arterioles at the ischemic region, attenuated muscle necrosis and fibrosis, and eventually prevented loss of the ischemic limb. Solar cell ES therapy showed higher angiogenic efficacy than conventional MSC therapy. This study shows the feasibility of using solar cell ES as a novel treatment for therapeutic angiogenesis.
Kress, C; Vandormael-Pournin, S; Baldacci, P; Cohen-Tannoudji, M; Babinet, C
1998-12-01
The inbred mouse strain DDK carries a conditional early embryonic lethal mutation that is manifested when DDK females are crossed to males of other inbred strains but not in the corresponding reciprocal crosses. It has been shown that embryonic lethality could be assigned to a single genetic locus called Ovum mutant (Om), on Chromosome (Chr) 11 near Syca 1. In the course of our study of the molecular mechanisms underlying the embryonic lethality, we were interested in deriving an embryonic stem cell bearing the Om mutation in the homozygous state (Omd/Omd). However, it turned out that DDK is nonpermissive for ES cell establishment, with a standard protocol. Here we show that permissiveness could be obtained using Omd/Omd blastocysts with a 75% 129/Sv and 25% DDK genetic background. Several germline-competent Omd/Omd ES cell lines have been derived from blastocysts of this genotype. Such a scenario could be extended to the generation of ES cell lines bearing any mutation present in an otherwise nonpermissive mouse strain.
Aoki, Hitomi; Hara, Akira; Niwa, Masayuki; Motohashi, Tsutomu; Suzuki, Takashi; Kunisada, Takahiro
2008-02-01
An embryonic stem (ES) cell-derived eye-like structure, made up of neural retinal lineage cells, retinal pigment epithelial (RPE) cells, and lens cells was constructed in our laboratory. We have shown that cells from these eye-like structures can be integrated into the developing optic vesicle of chicks. The purpose of this study was to determine whether the cells from these eye-like structures can differentiate into retinal ganglion cells (RGCs) when transplanted into the vitreous of an injured adult mouse retina. ES cells were induced to differentiate into eye-like structures in vitro for 6 or 11 days. Recipient mouse eyes were injected with NMDA to injure the RGCs prior to the transplantation. Sham-treated eyes received the same amount of carrier vehicle. Cells were extracted from the eye-like structures and transplanted into the vitreous of damaged and control eyes. The host eyes were analyzed both qualitatively and quantitatively by immunohistochemistry 10 days or 8 weeks after transplantation. Cells from the ES cell-derived eye-like structures were integrated into the RGC layer, and differentiated into neurons when transplanted into control (non-NMDA-treated) adult eyes. However, they rarely expressed RGC markers. When they were transplanted into NMDA-treated eyes, the cells spread on the surface of the retina and covered a relatively large area of the host RGC layer that had been injured by the NMDA. The cells from the ES cell-derived eye cells frequently differentiated into cells expressing RGC-specific markers, and formed a new RGC layer. In addition, a small number of these ES cell-derived cells were observed to extend axon-like processes toward the optic disc of the host. However, visually evoked responses could not be recorded from the visual cortex. These findings suggest that ES cell-derived eye-like structures contain cells that can differentiate into RG-like cells and regenerate a new RGC layer. These cells also appeared to be integrated into the retina and extend axon-like processes toward the optic nerve head.
Derivation and characterization of hepatic progenitor cells from human embryonic stem cells.
Zhao, Dongxin; Chen, Song; Cai, Jun; Guo, Yushan; Song, Zhihua; Che, Jie; Liu, Chun; Wu, Chen; Ding, Mingxiao; Deng, Hongkui
2009-07-31
The derivation of hepatic progenitor cells from human embryonic stem (hES) cells is of value both in the study of early human liver organogenesis and in the creation of an unlimited source of donor cells for hepatocyte transplantation therapy. Here, we report for the first time the generation of hepatic progenitor cells derived from hES cells. Hepatic endoderm cells were generated by activating FGF and BMP pathways and were then purified by fluorescence activated cell sorting using a newly identified surface marker, N-cadherin. After co-culture with STO feeder cells, these purified hepatic endoderm cells yielded hepatic progenitor colonies, which possessed the proliferation potential to be cultured for an extended period of more than 100 days. With extensive expansion, they co-expressed the hepatic marker AFP and the biliary lineage marker KRT7 and maintained bipotential differentiation capacity. They were able to differentiate into hepatocyte-like cells, which expressed ALB and AAT, and into cholangiocyte-like cells, which formed duct-like cyst structures, expressed KRT19 and KRT7, and acquired epithelial polarity. In conclusion, this is the first report of the generation of proliferative and bipotential hepatic progenitor cells from hES cells. These hES cell-derived hepatic progenitor cells could be effectively used as an in vitro model for studying the mechanisms of hepatic stem/progenitor cell origin, self-renewal and differentiation.
Tsung, H C; Yao, Z
1996-09-01
When ES-5 cells were transfected with an exogenous porcine TGF-beta 1 gene, one can obtain clones of genetically modified ES cells with over-expression of the transfected gene. We called the genetically modified ES-5 cells as ES-T cells. When ES-T cells were used to study their differentiation in vitro by all trans-retinoic acid (RA), it was soon noticed that embryoid bodies of ES-T cells can exclusively differentiate into endothelial cells and vessel-like structures, but not in their parent ES-5 cells. The above result is the first indication that the differentiation of tubular structures in embryoid bodies of ES-T cells may somehow be related to TGF-beta 1. To demonstrate further the role of TGF-beta 1 in the formation of vessel-like structures, the cultured ES-5 cells in the presence of added rhTGF-beta 1 were closely followed in the course of their differentiation. We have, thus, demonstrated the promoting effects of exogenous rhTGF-beta 1 in the formation of vessel-like structures, morphologically similar to those structures derived from ES-T6 cells, during the differentiation of ES-5 cells, both in monolayer culture, in three dimensional collagen gel and in embryoid bodies cultured on gelatin-coated tissue culture wells. Addition of suitable amount of anti-TGF-beta 1 monoclonal antibody IgG (TB21) to the culture medium of embryoid bodies of ES-T6 cells could effectively abolish the formation of vessel-like structures induced by retinoic acid. The percentage of the inhibition was very high, giving a figure comparable to that of atypical vessel-like structures formed in the control embryoid bodies from their parent ES-5 cells. The flat epithelial-like cells and round cells differentiated from embryoid bodies of ES-T6 cells were stained rather strongly for laminin and type IV collagen by immunofluorescent procedure. The above results indicate clearly that TGF-beta 1 is a crucial factor in organizing the differentiated derivatives (endothelial-like cells and their immediate progenitor cells) from ES-T6 cells to form vessel-like structures, and that the role of TGF-beta 1 in vasculogenesis might be performed, in part, through the modulation of the composition and organization of the extracellular matrix. In addition, the enhanced expression of bFGF mRNA in derivatives differentiated from both ES-5 cells treated with rhTGF-beta 1 and ES-T6 cells were detected by Northern blot analysis. Thus, aside from its effects on extracellular matrix, TGF-beta 1 might also modulate the bioactivity of bFGF in relation to the growth of vascular endothelial cells in the present system.
Dutta, Rahul; Malakar, Dhruba; Khate, Keviletsu; Sahu, Shailendra; Akshey, Yogesh; Mukesh, Manishi
2011-09-15
The main purpose of the experiment was to compare the efficiency of three cell types, namely adult fibroblast, putative embryonic stem (ES) cell, and lymphocyte, as donor cells for somatic cell nuclear transfer by handmade cloning in goats. The outcome clearly shows that putative embryonic stem cells, with a cleavage and blastocyst production rate of 74.69% ± 3.92 and 39.75% ± 3.86, respectively, performs better in comparison to adult fibroblast cell and lymphocyte. Between adult fibroblast cell and lymphocyte no statistically significant difference exists at P < 0.05. An overall cleavage and blastocyst formation rate of 67.41% ± 3.92 and 26.96% ± 3.86 was obtained using adult fibroblast donor cells. The study establishes beyond doubt the reprogrammability of lymphocyte by handmade cloning (HMC) protocol with a cleavage and blastocyst production rate of 56.47% ± 3.92 and 24.70% ± 3.86, respectively. PCR analysis of highly polymorphic 286 bp fragment of MHC II DRB genes of cloned embryos and three donor cells were performed to verify the cloned embryos. The amplified PCR products were subjected to SSCP to confirm their genetic identity. The karyotyping of the cloned embryos showed normal chromosomal status as expected in goat. Significantly, in the second stage of the experiment, the produced cloned embryos were successfully used to derive ntES-like cells. The rate of primary colony formation rate was 62.50% ± 4.62 for fibroblast donor cell derived embryos. The same was 60.60% ± 4.62 for putative ES donor cell derived embryos and 66.66% ± 4.62 for lymphocyte donor cell derived embryos, respectively. The putative ntES colonies were positively characterized for alkaline phosphatase, Oct-4, TRA-1-60, TRA-1-81, Sox-2, and Nanog by Immunocytochemistry and Reverse Transcription PCR. To further validate the stem ness, the produced putative ntES colonies were differentiated to embryoid bodies. Immunocytochemistry revealed that embryoid bodies expressed NESTIN specific for ectodermal lineage; GATA-4 for endodermal lineage and smooth muscle actin-I, and troponin-I specific for mesodermal lineage. The study has established an efficient protocol for putative ntES cell derivation from HMC embryos. It could be of substantial significance as patient specific ntES cells have proven therapeutic significance. Copyright © 2011 Elsevier Inc. All rights reserved.
Fraga, Ana M; Sukoyan, Marina; Rajan, Prithi; Braga, Daniela Paes de Almeida Ferreira; Iaconelli, Assumpto; Franco, José Gonçalves; Borges, Edson; Pereira, Lygia V
2011-01-01
Pluripotent human embryonic stem (hES) cells are an important experimental tool for basic and applied research, and a potential source of different tissues for transplantation. However, one important challenge for the clinical use of these cells is the issue of immunocompatibility, which may be dealt with by the establishment of hES cell banks to attend different populations. Here we describe the derivation and characterization of a line of hES cells from the Brazilian population, named BR-1, in commercial defined medium. In contrast to the other hES cell lines established in defined medium, BR-1 maintained a stable normal karyotype as determined by genomic array analysis after 6 months in continuous culture (passage 29). To our knowledge, this is the first reported line of hES cells derived in South America. We have determined its genomic ancestry and compared the HLA-profile of BR-1 and another 22 hES cell lines established elsewhere with those of the Brazilian population, finding they would match only 0.011% of those individuals. Our results highlight the challenges involved in hES cell banking for populations with a high degree of ethnic admixture.
Review article: stem cells in human reproduction.
Gargett, Caroline E
2007-07-01
The derivation of human embryonic stem (hES) cells heralds a new era in stem cell research, generating excitement for their therapeutic potential in regenerative medicine. Pioneering work of embryologists, developmental biologists, and reproductive medicine practitioners in in vitro fertilization clinics has facilitated hES cell research. This review summarizes current research focused on optimizing hES cell culture conditions for good manufacturing practice, directing hES cell differentiation toward trophectoderm and germ cells, and approaches used to reprogram cells for pluripotent cell derivation. The identification of germ stem cells in the testis and the recent controversy over their existence in the ovary raise the possibility of harnessing them for treating young cancer survivors. There is also the potential to harvest fetal stem cells with pluripotent cell-like properties from discarded placental tissues. The recent identification of adult stem/progenitor cell activity in the human endometrium offers a new understanding of common gynecological diseases. Discoveries resulting from research into embryonic, germ, fetal, and adult stem cells are highly relevant to human reproduction.
Three-dimensional epithelial tissues generated from human embryonic stem cells.
Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A
2009-11-01
The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.
Meng, Qingyuan; Haque, Amranul; Hexig, Bayar; Akaike, Toshihiro
2012-02-01
A simple culture system to achieve the differentiation of embryonic stem (ES) cells toward hepatocytes with high efficiency is crucial in providing a cell source for the medical application. In this study, we report the effect of a matrix-dependent enrichment of ES cell-derived hepatocytes using immobilized poly(N-p-vinylbenzyl-4-O-β-D-galactopyranosyl-D-gluconamide) (PVLA) with E-cadherin-IgG Fc (E-cad-Fc) as a galactose-carrying substratum. PVLA and E-cad-Fc were confirmed to be stably co-adsorbed onto polystyrene surface by quartz crystal microbalance (QCM). We showed that the E-cad-Fc/PVLA hybrid substratum was efficient in culturing primary hepatocytes and maintaining liver functions, on which the undifferentiated ES cells also maintained high proliferative capability. Furthermore, ES cell-derived hepatocytes on this hybrid matrix expressed elevated level of liver specific genes and functions together with early expression of definitive hepatocyte marker, asialoglycoprotein receptor (ASGPR). Finally, we isolated a high percentage of cells (about 60%) with ASGPR expression after re-seeding onto PVLA-coated surface, and observed the elimination of the poorly differentiated cells (Gata6(+) and Sox17(+)) and the ones toward another cell lineage (brachyury(+) and Pdx1(+)). The system uses a glycopolymer as an extracellular substratum for isolation and enrichment of ES cell-derived hepatocytes with adequate homogeneity and functionality. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ma, Ming-San; Kannan, Vishnu; de Vries, Anneriek E; Czepiel, Marcin; Wesseling, Evelyn M; Balasubramaniyan, Veerakumar; Kuijer, Roel; Vissink, Arjan; Copray, Sjef C V M; Raghoebar, Gerry M
2017-01-01
New developments in stem cell biology offer alternatives for the reconstruction of critical-sized bone defects. One of these developments is the use of induced pluripotent stem (iPS) cells. These stem cells are similar to embryonic stem (ES) cells, but can be generated from adult somatic cells and therefore do not raise ethical concerns. Proper characterization of iPS-derived osteoblasts is important for future development of safe clinical applications of these cells. For this reason, we differentiated mouse ES and iPS cells toward osteoblasts using osteogenic medium and compared their functionality. Immunocytochemical analysis showed significant expression of bone markers (osteocalcin and collagen type I) in osteoblasts differentiated from ES and iPS cells on days 7 and 30. An in vitro mineralization assay confirmed the functionality of osteogenically differentiated ES and iPS cells. Gene expression arrays focusing on osteogenic differentiation were performed in order to compare the gene expression pattern in both differentiated and undifferentiated ES cells and iPS cells. We observed a significant upregulation of osteogenesis-related genes such as Runx2, osteopontin, collagen type I, Tnfsf11, Csf1, and alkaline phosphatase upon osteogenic differentiation of the ES and iPS cells. We further validated the expression of key osteogenic genes Runx2, osteopontin, osteocalcin, collagen type I, and osterix in both differentiated and undifferentiated ES and iPS cells by means of quantified real-time polymerase chain reaction. We conclude that ES and iPS cells are similar in their osteogenic differentiation capacities, as well as in their gene expression patterns.
Characterization and differentiation of human embryonic stem cells.
Carpenter, M K; Rosler, E; Rao, M S
2003-01-01
Cell replacement therapies have been limited by the availability of sufficient quantities of cells for transplantation. Human ES (hES) cell lines have recently been generated by several laboratories. When maintained for over 1 year in vitro, they remain karyotypically and phenotypically stable and may therefore provide an excellent source material for cell therapies. Currently, data is available for 26 hES cell lines. Although limited characterization has been performed on most of these lines, there are remarkable similarities in expression of markers. hES cell lines derived in different laboratories show similar expression profiles of surface markers, including SSEA-4, Tra-1-60, and Tra-1-81. In addition, markers associated with pluripotent cells such as OCT-4 are expressed at in all cell lines tested. These cells express high levels of telomerase and appear to have indefinite growth potential. The generation of the large quantities of cells necessary for cell replacement therapies will require a cell population which is stable over long term culture. We have characterized the properties of multiple hES cell lines that have been maintained in culture for extended periods. Quantitative analyses demonstrate that all of the cell lines examined show consistent marker expression and retain a normal karyotype after long-term culture. hES cells have been differentiated into the derivatives of all three germ layers. Specifically this includes cardiomyocytes, neural cells, hepatocyte-like cells, endothelial cells and hematopoietic progenitor cells. These data demonstrating the karyotypic and phenotypic stability of hES cells and their extensive differentiative capacity indicate that they may be an appropriate source of cells for multiple regenerative medicine applications.
Tokumoto, Yasuhito; Ogawa, Shinichiro; Nagamune, Teruyuki; Miyake, Jun
2010-06-01
Oligodendrocytes are the myelinating cells of the central nervous system (CNS), and defects in these cells can result in the loss of CNS functions. Although oligodendrocyte progenitor cells transplantation therapy is an effective cure for such symptoms, there is no readily available source of these cells. Recent studies have described the generation of induced pluripotent stem cells (iPS cells) from somatic cells, leading to anticipation of this technique as a novel therapeutic tool in regenerative medicine. In this study, we evaluated the ability of iPS cells derived from mouse embryonic fibroblasts to differentiate into oligodendrocytes and compared this with the differential ability of mouse embryonic stem cells (ES cells). Experiments using an in vitro oligodendrocyte differentiation protocol that was optimized to ES cells demonstrated that 2.3% of iPS cells differentiated into O4(+) oligodendrocytes compared with 24.0% of ES cells. However, the rate of induction of A2B5(+) oligodendrocyte precursor cell (OPC) was similar for both iPS-derived cells and ES-derived cells (14.1% and 12.6%, respectively). These findings suggest that some intracellular factors in iPS cells inhibit the terminal differentiation of oligodendrocytes from the OPC stage. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Ye, Shoudong; Tan, Li; Yang, Rongqing; Fang, Bo; Qu, Su; Schulze, Eric N.; Song, Houyan; Ying, Qilong; Li, Ping
2012-01-01
Background Inhibition of glycogen synthase kinase-3 (GSK-3) improves the efficiency of embryonic stem (ES) cell derivation from various strains of mice and rats, as well as dramatically promotes ES cell self-renewal potential. β-catenin has been reported to be involved in the maintenance of self-renewal of ES cells through TCF dependent and independent pathway. But the intrinsic difference between ES cell lines from different species and strains has not been characterized. Here, we dissect the mechanism of GSK-3 inhibition by CHIR99021 in mouse ES cells from refractory mouse strains. Methodology/Principal Findings We found that CHIR99021, a GSK-3 specific inhibitor, promotes self-renewal of ES cells from recalcitrant C57BL/6 (B6) and BALB/c mouse strains through stabilization of β-catenin and c-Myc protein levels. Stabilized β-catenin promoted ES self-renewal through two mechanisms. First, β-catenin translocated into the nucleus to maintain stem cell pluripotency in a lymphoid-enhancing factor/T-cell factor–independent manner. Second, β-catenin binds plasma membrane-localized E-cadherin, which ensures a compact, spherical morphology, a hallmark of ES cells. Further, elevated c-Myc protein levels did not contribute significantly to CH-mediated ES cell self-renewal. Instead, the role of c-Myc is dependent on its transformation activity and can be replaced by N-Myc but not L-Myc. β-catenin and c-Myc have similar effects on ES cells derived from both B6 and BALB/c mice. Conclusions/Significance Our data demonstrated that GSK-3 inhibition by CH promotes self-renewal of mouse ES cells with non-permissive genetic backgrounds by regulation of multiple signaling pathways. These findings would be useful to improve the availability of normally non-permissive mouse strains as research tools. PMID:22540008
Wang, Nan-Kai; Tosi, Joaquin; Kasanuki, Jennifer Mie; Chou, Chai Lin; Kong, Jian; Parmalee, Nancy; Wert, Katherine J; Allikmets, Rando; Lai, Chi-Chun; Chien, Chung-Liang; Nagasaki, Takayuki; Lin, Chyuan-Sheng; Tsang, Stephen H
2010-04-27
To study whether C57BL/6J-Tyr/J (C2J) mouse embryonic stem (ES) cells can differentiate into retinal pigment epithelial (RPE) cells in vitro and then restore retinal function in a model for retinitis pigmentosa: Rpe65/Rpe65 C57BL6 mice. Yellow fluorescent protein (YFP)-labeled C2J ES cells were induced to differentiate into RPE-like structures on PA6 feeders. RPE-specific markers are expressed from differentiated cells in vitro. After differentiation, ES cell-derived RPE-like cells were transplanted into the subretinal space of postnatal day 5 Rpe65/Rpe65 mice. Live imaging of YFP-labeled C2J ES cells demonstrated survival of the graft. Electroretinograms (ERGs) were performed on transplanted mice to evaluate the functional outcome of transplantation. RPE-like cells derived from ES cells sequentially express multiple RPE-specific markers. After transplantation, YFP-labeled cells can be tracked with live imaging for as long as 7 months. Although more than half of the mice were complicated with retinal detachments or tumor development, one fourth of the mice showed increased electroretinogram responses in the transplanted eyes. Rpe65/Rpe65 mice transplanted with RPE-like cells showed significant visual recovery during a 7-month period, whereas those injected with saline, PA6 feeders, or undifferentiated ES cells showed no rescue. ES cells can differentiate, morphologically, and functionally, into RPE-like cells. Based on these findings, differentiated ES cells have the potential for the development of new therapeutic approaches for RPE-specific diseases such as certain forms of retinitis pigmentosa and macular degeneration. Nevertheless, stringent control of retinal detachment and teratoma development will be necessary before initiation of treatment trials.
Hong, Ni; Li, Zhendong; Hong, Yunhan
2011-01-01
Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on “Fish Stem Cells and Nuclear Transfer”, we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer. PMID:21547056
Hong, Ni; Li, Zhendong; Hong, Yunhan
2011-04-13
Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on "Fish Stem Cells and Nuclear Transfer", we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.
Hematopoietic stem cells: can old cells learn new tricks?
Ho, Anthony D; Punzel, Michael
2003-05-01
Since the establishment of cell lines derived from human embryonic stem (ES) cells, it has been speculated that out of such "raw material," we could some day produce all sorts of replacement parts for the human body. Human pluripotent stem cells can be isolated from embryonic, fetal, or adult tissues. Enormous self-renewal capacity and developmental potential are the characteristics of ES cells. Somatic stem cells, especially those derived from hematopoietic tissues, have also been reported to exhibit developmental potential heretofore not considered possible. The initial evidences for the plasticity potential of somatic stem cells were so encouraging that the opponents of ES cell research used them as arguments for restricting ES cell research. In the past months, however, critical issues have been raised challenging the validity and the interpretation of the initial data. Whereas hematopoietic stem-cell therapy has been a clinical reality for almost 40 years, there is still a long way to go in basic research before novel therapy strategies with stem cells as replacement for other organ systems can be established. Given the present status, we should keep all options open for research in ES cells and adult stem cells to appreciate the complexity of their differentiation pathways and the relative merits of various types of stem cells for regenerative medicine.
Mok, Hoyan
1995-01-01
Mouse embryonic stem (ES) cells in culture can differentiate into late stages of many lineage-committed precursor cells. Under appropriate organ-culture conditions, ES cels differentiate into lymphoidlike cells at a stage equivalent to lymphoid cells found in fetal liver. These hematopoietic precursors are located in cup-shaped structures found in some embryoid bodies; we called such embryoid bodies “ES fetuses.” In this study, we have followed the maturation of hematopoietic cells after implantation of ES fetuses into nude mice for 3 weeks. ES-cell-derived lymphoid cells-pre-B cells, mature B cells, and mature T cells were found in all lymphoid organs. Interestingly, there was also an increase of T cells of host origin. Because native nude mouse lack thymus, these T cells might be educated by thymuslike epithelium generated from ES fetuses. Practical applications of this combined in vitro and in vivo system are discussed. PMID:9700357
Laundos, Tiago L; Silva, Joana; Assunção, Marisa; Quelhas, Pedro; Monteiro, Cátia; Oliveira, Carla; Oliveira, Maria J; Pêgo, Ana P; Amaral, Isabel F
2017-08-01
Embryonic stem (ES)-derived neural stem/progenitor cells (ES-NSPCs) constitute a promising cell source for application in cell therapies for the treatment of central nervous system disorders. In this study, a rotary orbital hydrodynamic culture system was applied to single-cell suspensions of ES-NSPCs, to obtain homogeneously-sized ES-NSPC cellular aggregates (neurospheres). Hydrodynamic culture allowed the formation of ES-NSPC neurospheres with a narrower size distribution than statically cultured neurospheres, increasing orbital speeds leading to smaller-sized neurospheres and higher neurosphere yield. Neurospheres formed under hydrodynamic conditions (72 h at 55 rpm) showed higher cell compaction and comparable percentages of viable, dead, apoptotic and proliferative cells. Further characterization of cellular aggregates provided new insights into the effect of hydrodynamic shear on ES-NSPC behaviour. Rotary neurospheres exhibited reduced protein levels of N-cadherin and β-catenin, and higher deposition of laminin (without impacting fibronectin deposition), matrix metalloproteinase-2 (MMP-2) activity and percentage of neuronal cells. In line with the increased MMP-2 activity levels found, hydrodynamically-cultured neurospheres showed higher outward migration on laminin. Moreover, when cultured in a 3D fibrin hydrogel, rotary neurospheres generated an increased percentage of neuronal cells. In conclusion, the application of a constant orbital speed to single-cell suspensions of ES-NSPCs, besides allowing the formation of homogeneously-sized neurospheres, promoted ES-NSPC differentiation and outward migration, possibly by influencing the expression of cell-cell adhesion molecules and the secretion of proteases/extracellular matrix proteins. These findings are important when establishing the culture conditions needed to obtain uniformly-sized ES-NSPC aggregates, either for use in regenerative therapies or in in vitro platforms for biomaterial development or pharmacological screening. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Human embryonic stem cell therapies for neurodegenerative diseases.
Tomaskovic-Crook, Eva; Crook, Jeremy M
2011-06-01
There is a renewed enthusiasm for the clinical translation of human embryonic stem (hES) cells. This is abetted by putative clinically-compliant strategies for hES cell maintenance and directed differentiation, greater understanding of and accessibility to cells through formal cell registries and centralized cell banking for distribution, the revised US government policy on funding hES cell research, and paradoxically the discovery of induced pluripotent stem (iPS) cells. Additionally, as we consider the constraints (practical and fiscal) of delivering cell therapies for global healthcare, the more efficient and economical application of allogeneic vs autologous treatments will bolster the clinical entry of hES cell derivatives. Neurodegenerative disorders such as Parkinson's disease are primary candidates for hES cell therapy, although there are significant hurdles to be overcome. The present review considers key advances and challenges to translating hES cells into novel therapies for neurodegenerative diseases, with special consideration given to Parkinson's disease and Alzheimer's disease. Importantly, despite the focus on degenerative brain disorders and hES cells, many of the issues canvassed by this review are relevant to systemic application of hES cells and other pluripotent stem cells such as iPS cells.
Therapeutic cloning in individual parkinsonian mice
Tabar, Viviane; Tomishima, Mark; Panagiotakos, Georgia; Wakayama, Sayaka; Menon, Jayanthi; Chan, Bill; Mizutani, Eiji; Al-Shamy, George; Ohta, Hiroshi; Wakayama, Teruhiko; Studer, Lorenz
2009-01-01
Cell transplantation with embryonic stem (ES) cell progeny requires immunological compatibility with host tissue. ‘Therapeutic cloning’ is a strategy to overcome this limitation by generating nuclear transfer (nt)ES cells that are genetically matched to an individual. Here we establish the feasibility of treating individual mice via therapeutic cloning. Derivation of 187 ntES cell lines from 24 parkinsonian mice, dopaminergic differentiation, and transplantation into individually matched host mice showed therapeutic efficacy and lack of immunological response. PMID:18376409
Wei, Ruxue; Zhao, Xueming; Hao, Haisheng; Du, Weihua; Zhu, Huabin
2016-11-01
The rabbit is considered an important model animal from which to obtain embryonic stem cells because of the utility of this animal in physiology and reproductive research. Here, we derived rabbit ES-like (rES-like) cells from blastocysts of superovulated Japanese white rabbits using culture medium containing 10 -7 M melatonin, 10 ng/mL basic fibroblast growth factor, and 1,000 IU/mL human leukemia inhibitory factor. This concentration of melatonin had the most significant positive effects on the proliferation inner cell mass-derived cells (improving rates from 19.97% to 34.57%) and the longevity of passaging rES-like cells. Melatonin also enhanced the expression of pluripotent genes-including alkaline phosphatase, Pou5f1, Sox2, Klf4, c-Myc, Nanog, Line28a, and surface marker proteins-in fifth-passage rES-like cells. In vitro, these rES-like cells could spontaneously differentiate into some somatic cells, such as beating cardiomyocytes; formed embryoid bodies; expressed markers of the three germ layers after differentiation; and formed teratomas after injection into non-obese diabetic-severe combined immune deficient (NOD-SCID) mice. Thus, melatonin helped coax ES-like cells from rabbit blastocysts, which raises intriguing questions about the relationship between pluripotency and proliferation in rabbit embryonic stem cells. Mol. Reprod. Dev. 83: 1003-1014, 2016 © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Hawkins, Kate E; Corcelli, Michelangelo; Dowding, Kate; Ranzoni, Anna M; Vlahova, Filipa; Hau, Kwan-Leong; Hunjan, Avina; Peebles, Donald; Gressens, Pierre; Hagberg, Henrik; de Coppi, Paolo; Hristova, Mariya; Guillot, Pascale V
2018-05-01
Human mesenchymal stem cells (MSCs) have huge potential for regenerative medicine. In particular, the use of pluripotent stem cell-derived mesenchymal stem cells (PSC-MSCs) overcomes the hurdle of replicative senescence associated with the in vitro expansion of primary cells and has increased therapeutic benefits in comparison to the use of various adult sources of MSCs in a wide range of animal disease models. On the other hand, fetal MSCs exhibit faster growth kinetics and possess longer telomeres and a wider differentiation potential than adult MSCs. Here, for the first time, we compare the therapeutic potential of PSC-MSCs (ES-MSCs from embryonic stem cells) to fetal MSCs (AF-MSCs from the amniotic fluid), demonstrating that ES-MSCs have a superior neuroprotective potential over AF-MSCs in the mouse brain following hypoxia-ischemia. Further, we demonstrate that nuclear factor (NF)-κB-stimulated interleukin (IL)-13 production contributes to an increased in vitro anti-inflammatory potential of ES-MSC-conditioned medium (CM) over AF-MSC-CM, thus suggesting a potential mechanism for this observation. Moreover, we show that induced pluripotent stem cell-derived MSCs (iMSCs) exhibit many similarities to ES-MSCs, including enhanced NF-κB signaling and IL-13 production in comparison to AF-MSCs. Future studies should assess whether iMSCs also exhibit similar neuroprotective potential to ES-MSCs, thus presenting a potential strategy to overcome the ethical issues associated with the use of embryonic stem cells and providing a potential source of cells for autologous use against neonatal hypoxic-ischemic encephalopathy in humans. Stem Cells Translational Medicine 2018;7:439-449. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Nembo, Erastus Nembu; Atsamo, Albert Donatien; Nguelefack, Télesphore Benoît; Kamanyi, Albert; Hescheler, Jürgen; Nguemo, Filomain
2015-05-13
Erythrina senegalensis DC (Fabaceae) bark is commonly used in sub-Saharan traditional medicine for the treatment of many diseases including gastrointestinal disorders and cardiovascular diseases. In this study, we investigated the effect of the aqueous extract of the stem bark of Erythrina senegalensis on the contractile properties of mouse ventricular slices and human induced pluripotent stem (hiPS) cell-derived cardiomyocytes. We also investigated the cytotoxic effect of the extract on mouse embryonic stem (ES) cells differentiating into cardiomyocytes (CMs). We used well-established electrophysiological technologies to assess the effect of Erythrina senegalensis aqueous extract (ESAE) on the beating activity of mouse ventricular slices, mouse ES and hiPS cell-derived CMs. To study the cytotoxic effect of our extract, differentiating mouse ES cells were exposed to different concentrations of ESAE. EB morphology was assessed by microscopy at different stages of differentiation whereas cell viability was measured by flow cytometry, fluorometry and immunocytochemistry. The electrical activity of CMs and heart slices were respectively captured by the patch clamp technique and microelectrode array (MEA) method following ESAE acute exposure. Our findings revealed that ESAE exhibits a biphasic chronotropic activity on mouse ventricular slices with an initial low dose (0.001 and 0.01 µg/mL) decrease in beating activity followed by a corresponding significant increase in chronotropic activity at higher doses above 10 µg/mL. The muscarinic receptor blocker, atropine abolished the negative chronotropic activity of ESAE, while propranolol successfully blocked its positive chronotropic activity. ESAE showed a significant dose-dependent positive chronotropic activity on hiPS cell-derived CMs. Also, though not significantly, ESAE decreased cell viability and increased total caspase-3/7 activity of mouse ES cells in a concentration-dependent manner. Erythrina senegalensis aqueous extract exhibits a biphasic chronotropic effect on mouse heart and a positive chronotropic activity on hiPS cell-derived CMs, suggesting a possible mechanism through muscarinic and β-adrenergic receptor pathways. Also, ESAE is not cytotoxic on mouse ES cells at concentrations up to 100 µg/mL. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Medaka embryonic stem cells are capable of generating entire organs and embryo-like miniatures.
Hong, Ni; He, Bei Ping; Schartl, Manfred; Hong, Yunhan
2013-03-01
Embryonic stem (ES) cells have the potency to produce many cell types of the embryo and adult body. Upon transplantation into early host embryos, ES cells are able to differentiate into various specialized cells and contribute to host tissues and organs of all germ layers. Here we present data in the fish medaka (Oryzias latipes) that ES cells have a novel ability to form extra organs and even embryo-like miniatures. Upon transplantation as individual cells according to the standard procedure, ES cells distributed widely to various organ systems of 3 germ layers. Upon transplantation as aggregates, ES cells were able to form extra organs, including the hematopoietic organ and contracting heart. We show that localized ES cell transplantation often led to the formation of extra axes that comprised essentially of either host cells or donor ES cells. These extra axes were associated with the head region of the embryo proper or formed at ectopic sites on the yolk sac. Surprisingly, certain ectopic axes were even capable of forming embryo-like miniatures. We conclude that ES cells have the ability to form entire organs and even embryo-like miniatures under proper environmental conditions. This finding points to a new possibility to generate ES cell-derived axes and organs.
Wei, Wen-Jie; Sun, Hai-Ying; Ting, Kai Yiu; Zhang, Li-He; Lee, Hon-Cheung; Li, Gui-Rong; Yue, Jianbo
2012-01-01
Cyclic adenosine diphosphoribose (cADPR) is an endogenous Ca2+ mobilizing messenger that is formed by ADP-ribosyl cyclases from nicotinamide adenine dinucleotide (NAD). The main ADP-ribosyl cyclase in mammals is CD38, a multi-functional enzyme and a type II membrane protein. Here we explored the role of CD38-cADPR-Ca2+ in the cardiomyogenesis of mouse embryonic stem (ES) cells. We found that the mouse ES cells are responsive to cADPR and possess the key components of the cADPR signaling pathway. In vitro cardiomyocyte (CM) differentiation of mouse ES cells was initiated by embryoid body (EB) formation. Interestingly, beating cells appeared earlier and were more abundant in CD38 knockdown EBs than in control EBs. Real-time RT-PCR and Western blot analyses further showed that the expression of several cardiac markers, including GATA4, MEF2C, NKX2.5, and α-MLC, were increased markedly in CD38 knockdown EBs than those in control EBs. Similarly, FACS analysis showed that more cardiac Troponin T-positive CMs existed in CD38 knockdown or 8-Br-cADPR, a cADPR antagonist, treated EBs compared with that in control EBs. On the other hand, overexpression of CD38 in mouse ES cells significantly inhibited CM differentiation. Moreover, CD38 knockdown ES cell-derived CMs possess the functional properties characteristic of normal ES cell-derived CMs. Last, we showed that the CD38-cADPR pathway negatively modulated the FGF4-Erks1/2 cascade during CM differentiation of ES cells, and transiently inhibition of Erk1/2 blocked the enhanced effects of CD38 knockdown on the differentiation of CM from ES cells. Taken together, our data indicate that the CD38-cADPR-Ca2+ signaling pathway antagonizes the CM differentiation of mouse ES cells. PMID:22908234
Mammary Cancer and Activation of Transposable Elements
2013-09-01
formal monthly electronic lab meeting between Peaston lab and Edwards lab. And regularly hold meetings. • An informal schedule was set up with a plan...cytes and ADS-derived induced pluripotent stem cells (ADS-iPSCs) (19) and primary mouse ES cells to isolated sperm and oocytes (20). We selected an...051 59 5 92% H9-IMR90 5875 7 669 782 605 58 91% oocyte - ES cell (mouse) 4727 1 204 883 334 25 93% sperm - ES cell (mouse) 4580 4 364 748 1027 104 91
Utermöhlen, Olaf; Krönke, Martin
2007-06-15
This review focuses on our current knowledge of the mechanisms employed by embryonic stem (ES) cells to avoid destruction by cell-mediated immune responses. Recently, ES cells have been found to shield themselves against cytotoxic effector cells by expressing CD95L and serine protease inhibitor SPI-6 mediating apoptosis of the cytotoxic cells and inactivation of granzyme B, respectively. These findings are discussed in view of their implications for using ES cell-derived transplants in regenerative medicine as well as for our understanding of early embryonic stages during invasion and implantation.
Mouse mutants from chemically mutagenized embryonic stem cells
Munroe, Robert J.; Bergstrom, Rebecca A.; Zheng, Qing Yin; Libby, Brian; Smith, Richard; John, Simon W.M.; Schimenti, Kerry J.; Browning, Victoria L.; Schimenti, John C.
2010-01-01
The drive to characterize functions of human genes on a global scale has stimulated interest in large-scale generation of mouse mutants. Conventional germ-cell mutagenesis with N-ethyl-N-nitrosourea (ENU) is compromised by an inability to monitor mutation efficiency, strain1 and interlocus2 variation in mutation induction, and extensive husbandry requirements. To overcome these obstacles and develop new methods for generating mouse mutants, we devised protocols to generate germline chi-maeric mice from embryonic stem (ES) cells heavily mutagenized with ethylmethanesulphonate (EMS). Germline chimaeras were derived from cultures that underwent a mutation rate of up to 1 in 1,200 at the Hprt locus (encoding hypoxanthine guanine phosphoribosyl transferase). The spectrum of mutations induced by EMS and the frameshift mutagen ICR191 was consistent with that observed in other mammalian cells. Chimaeras derived from ES cells treated with EMS transmitted mutations affecting several processes, including limb development, hair growth, hearing and gametogenesis. This technology affords several advantages over traditional mutagenesis, including the ability to conduct shortened breeding schemes and to screen for mutant phenotypes directly in ES cells or their differentiated derivatives. PMID:10700192
Cao, Jun; Shang, Chang-zhen; Lü, Li-hong; Qiu, De-chuan; Ren, Meng; Chen, Ya-jin; Min, Jun
2010-11-01
To establish an efficient culture system to support embryonic stem (ES) cell differentiation into hepatocytes that coexpress F-VIII and F-IX. Mouse E14 ES cells were cultured in differentiation medium containing sodium butyrate (SB), basic fibroblast growth factor (bFGF), and/or bone morphogenetic protein 4 (BMP4) to induce the differentiation of endoderm cells and hepatic progenitor cells. Hepatocyte growth factor, oncostatin M, and dexamethasone were then used to induce the maturation of ES cell-derived hepatocytes. The mRNA expression levels of endoderm-specific genes and hepatocyte-specific genes, including the levels of F-VIII and F-IX, were detected by RT-PCR and real-time PCR during various stages of differentiation. Protein expression was examined by immunofluorescence and Western blot. At the final stage of differentiation, flow cytometry was performed to determine the percentage of cells coexpressing F-VIII and F-IX, and ELISA was used to detect the levels of F-VIII and F-IX protein secreted into the culture medium. The expression of endoderm-specific and hepatocyte-specific markers was upregulated to highest level in response to the combination of SB, bFGF, and BMP4. Treatment with the three inducers during hepatic progenitor differentiation significantly enhanced the mRNA and protein levels of F-VIII and F-IX in ES cell-derived hepatocytes. More importantly, F-VIII and F-IX were coexpressed with high efficiency at the final stage of differentiation, and they were also secreted into the culture medium. We have established a novel in vitro differentiation protocol for ES-derived hepatocytes that coexpress F-VIII and F-IX that may provide a foundation for stem cell replacement therapy for hemophilia.
Motté, Evi; Szepessy, Edit; Suenens, Krista; Stangé, Geert; Bomans, Myriam; Jacobs-Tulleneers-Thevissen, Daniel; Ling, Zhidong; Kroon, Evert; Pipeleers, Daniel
2014-11-01
β-Cells generated from large-scale sources can overcome current shortages in clinical islet cell grafts provided that they adequately respond to metabolic variations. Pancreatic (non)endocrine cells can develop from human embryonic stem (huES) cells following in vitro derivation to pancreatic endoderm (PE) that is subsequently implanted in immune-incompetent mice for further differentiation. Encapsulation of PE increases the proportion of endocrine cells in subcutaneous implants, with enrichment in β-cells when they are placed in TheraCyte-macrodevices and predominantly α-cells when they are alginate-microencapsulated. At posttransplant (PT) weeks 20-30, macroencapsulated huES implants presented higher glucose-responsive plasma C-peptide levels and a lower proinsulin-over-C-peptide ratio than human islet cell implants under the kidney capsule. Their ex vivo analysis showed the presence of single-hormone-positive α- and β-cells that exhibited rapid secretory responses to increasing and decreasing glucose concentrations, similar to isolated human islet cells. However, their insulin secretory amplitude was lower, which was attributed in part to a lower cellular hormone content; it was associated with a lower glucose-induced insulin biosynthesis, but not with lower glucagon-induced stimulation, which together is compatible with an immature functional state of the huES-derived β-cells at PT weeks 20-30. These data support the therapeutic potential of macroencapsulated huES implants but indicate the need for further functional analysis. Their comparison with clinical-grade human islet cell grafts sets references for future development and clinical translation. Copyright © 2014 the American Physiological Society.
β-Cell Replacement in Mice Using Human Type 1 Diabetes Nuclear Transfer Embryonic Stem Cells.
Sui, Lina; Danzl, Nichole; Campbell, Sean R; Viola, Ryan; Williams, Damian; Xing, Yuan; Wang, Yong; Phillips, Neil; Poffenberger, Greg; Johannesson, Bjarki; Oberholzer, Jose; Powers, Alvin C; Leibel, Rudolph L; Chen, Xiaojuan; Sykes, Megan; Egli, Dieter
2018-01-01
β-Cells derived from stem cells hold great promise for cell replacement therapy for diabetes. Here we examine the ability of nuclear transfer embryonic stem cells (NT-ESs) derived from a patient with type 1 diabetes to differentiate into β-cells and provide a source of autologous islets for cell replacement. NT-ESs differentiate in vitro with an average efficiency of 55% into C-peptide-positive cells, expressing markers of mature β-cells, including MAFA and NKX6.1. Upon transplantation in immunodeficient mice, grafted cells form vascularized islet-like structures containing MAFA/C-peptide-positive cells. These β-cells adapt insulin secretion to ambient metabolite status and show normal insulin processing. Importantly, NT-ES-β-cells maintain normal blood glucose levels after ablation of the mouse endogenous β-cells. Cystic structures, but no teratomas, were observed in NT-ES-β-cell grafts. Isogenic induced pluripotent stem cell lines showed greater variability in β-cell differentiation. Even though different methods of somatic cell reprogramming result in stem cell lines that are molecularly indistinguishable, full differentiation competence is more common in ES cell lines than in induced pluripotent stem cell lines. These results demonstrate the suitability of NT-ES-β-cells for cell replacement for type 1 diabetes and provide proof of principle for therapeutic cloning combined with cell therapy. © 2017 by the American Diabetes Association.
Producing primate embryonic stem cells by somatic cell nuclear transfer.
Byrne, J A; Pedersen, D A; Clepper, L L; Nelson, M; Sanger, W G; Gokhale, S; Wolf, D P; Mitalipov, S M
2007-11-22
Derivation of embryonic stem (ES) cells genetically identical to a patient by somatic cell nuclear transfer (SCNT) holds the potential to cure or alleviate the symptoms of many degenerative diseases while circumventing concerns regarding rejection by the host immune system. However, the concept has only been achieved in the mouse, whereas inefficient reprogramming and poor embryonic development characterizes the results obtained in primates. Here, we used a modified SCNT approach to produce rhesus macaque blastocysts from adult skin fibroblasts, and successfully isolated two ES cell lines from these embryos. DNA analysis confirmed that nuclear DNA was identical to donor somatic cells and that mitochondrial DNA originated from oocytes. Both cell lines exhibited normal ES cell morphology, expressed key stem-cell markers, were transcriptionally similar to control ES cells and differentiated into multiple cell types in vitro and in vivo. Our results represent successful nuclear reprogramming of adult somatic cells into pluripotent ES cells and demonstrate proof-of-concept for therapeutic cloning in primates.
Derivation of novel human ground state naive pluripotent stem cells.
Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H
2013-12-12
Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation of cross-species chimaeric mouse embryos that underwent organogenesis following microinjection of human naive iPS cells into mouse morulas. Collectively, our findings establish new avenues for regenerative medicine, patient-specific iPS cell disease modelling and the study of early human development in vitro and in vivo.
Nuclear transfer to study the nuclear reprogramming of human stem cells.
Saito, Shigeo; Sawai, Ken; Murayama, Yoshinobu; Fukuda, Keiichi; Yokoyama, Kazunari
2008-01-01
Research of stem cells will enable us to understand the development and function of tissues and organs in mammals. The ability to induce regeneration of new tissues from embryonic stem (ES) cells derived from cloned blastocysts via nuclear transfer can be expected in the not-too-distant future. The fact that there is no way except nuclear cloning for the return of differentiated cells to undifferentiated cells remains an interesting problem to be solved. We describe protocols for the production of cloned calves from bovine ES cells to study nuclear reprogramming ability of stem cells. The frequency of term pregnancies for blastocysts from ES cells is higher than those of early pregnancies and maintained pregnancies after nuclear transfer with bovine somatic cells. We also describe protocols for gene introduction into bovine ES cells in vitro, particularly the human leukocyte antigens (HLA). Bovine ES cells provide a powerful tool for the generation of transgenic clonal offspring. This technique, when perfected for humans, may be critical for neural stem cell transplantation.
Klf4 reverts developmentally programmed restriction of ground state pluripotency
Guo, Ge; Yang, Jian; Nichols, Jennifer; Hall, John Simon; Eyres, Isobel; Mansfield, William; Smith, Austin
2009-01-01
Summary Mouse embryonic stem (ES) cells derived from pluripotent early epiblast contribute functionally differentiated progeny to all foetal lineages of chimaeras. By contrast, epistem cell (EpiSC) lines from post-implantation epithelialised epiblast are unable to colonise the embryo even though they express the core pluripotency genes Oct4, Sox2 and Nanog. We examined interconversion between these two cell types. ES cells can readily become EpiSCs in response to growth factor cues. By contrast, EpiSCs do not change into ES cells. We exploited PiggyBac transposition to introduce a single reprogramming factor, Klf4, into EpiSCs. No effect was apparent in EpiSC culture conditions, but in ground state ES cell conditions a fraction of cells formed undifferentiated colonies. These EpiSC-derived induced pluripotent stem (Epi-iPS) cells activated expression of ES cell-specific transcripts including endogenous Klf4, and downregulated markers of lineage specification. X chromosome silencing in female cells, a feature of the EpiSC state, was erased in Epi-iPS cells. They produced high-contribution chimaeras that yielded germline transmission. These properties were maintained after Cre-mediated deletion of the Klf4 transgene, formally demonstrating complete and stable reprogramming of developmental phenotype. Thus, re-expression of Klf4 in an appropriate environment can regenerate the naïve ground state from EpiSCs. Reprogramming is dependent on suppression of extrinsic growth factor stimuli and proceeds to completion in less than 1% of cells. This substantiates the argument that EpiSCs are developmentally, epigenetically and functionally differentiated from ES cells. However, because a single transgene is the minimum requirement to attain the ground state, EpiSCs offer an attractive opportunity for screening for unknown components of the reprogramming process. PMID:19224983
[Embryonic stem cells - a scientific by-product of the assisted reproduction technology?].
Sterthaus, Oliver; Zhang, Hong; De Geyter, Christian
2009-12-01
The differentiation potential of embryonic stem (ES) cells seems to be higher when compared to adult stem cells, which mainly differentiate into certain tissue types only. ES cells have the potential to play an important role in regenerative medicine as demonstrated with murine ES cells. However, with human embryonic stem cells (hESC) several obstacles still have to be overcome, when these are to be used in clinical applications. The expansion of hESC, safety issues as well as the immune-tolerance after transplantation are all problems that still have to be solved. Since 2005 the derivation of hESC lines from super-numerous embryos has become permitted in Switzerland, albeit under strictly restrictive guidelines. In 2008 the Basler hESC laboratory was successful in derivating the first hESC line with a normal chromosome complement in Switzerland (CHES2). Now, new applications allow the personalized establishment of immune-tolerant stem cells, which lead to the replacement of therapeutic cloning by induced pluripotent stem cells (iPS).
Kheolamai, Pakpoom; Dickson, Alan J
2009-04-23
Induction of stem cell differentiation toward functional hepatocytes is hampered by lack of knowledge of the hepatocyte differentiation processes. The overall objective of this project is to characterize key stages in the hepatocyte differentiation process. We established a mouse embryonic stem (mES) cell culture system which exhibited changes in gene expression profiles similar to those observed in the development of endodermal and hepatocyte-lineage cells previously described in the normal mouse embryo. Transgenic mES cells were established that permitted isolation of enriched hepatocyte-lineage populations. This approach has isolated mES-derived hepatocyte-lineage cells that express several markers of mature hepatocytes including albumin, glucose-6-phosphatase, tyrosine aminotransferase, cytochrome P450-3a, phosphoenolpyruvate carboxykinase and tryptophan 2,3-dioxygenase. In addition, our results show that the up-regulation of the expression levels of hepatocyte nuclear factor-3alpha, -4alpha, -6, and CCAAT-enhancer binding protein-beta might be critical for passage into late-stage differentiation towards functional hepatocytes. These data present important steps for definition of regulatory phenomena that direct specific cell fate determination. The mES cell culture system generated in this study provides a model for studying transition between stages of the hepatocyte development and has significant potential value for studying the molecular basis of hepatocyte differentiation in vitro.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Wenjing; Hao, Baixia; Wang, Qian
Extracellular signal-regulated kinases (ERKs) have been implicated to be dispensable for self-renewal of mouse embryonic stem (ES) cells, and simultaneous inhibition of both ERK signaling and glycogen synthase kinase 3 (GSK3) not only allows mouse ES cells to self-renew independent of extracellular stimuli but also enables more efficient derivation of naïve ES cells from mouse and rat strains. Interestingly, some ERKs stay active in mouse ES cells which are maintained in regular medium containing leukemia inhibitory factor (LIF) and bone morphogenetic protein (BMP). Yet, the upstream signaling for ERK activation and their roles in mouse ES cells, other than promotingmore » or priming differentiation, have not been determined. Here we found that mouse ES cells express three forms of Raf kinases, A-Raf, B-Raf, and C-Raf. Knocking-down each single Raf member failed to affect the sustained ERK activity, neither did A-Raf and B-Raf double knockdown or B-Raf and C-Raf double knockdown change it in ES cells. Interestingly, B-Raf and C-Raf double knockdown, not A-Raf and B-Raf knockdown, inhibited the maximal ERK activation induced by LIF, concomitant with the slower growth of ES cells. On the other hand, A-Raf, B-Raf, and C-Raf triple knockdown markedly inhibited both the maximal and sustained ERK activity in ES cells. Moreover, Raf triple knockdown, similar to the treatment of U-0126, an MEK inhibitor, significantly inhibited the survival and proliferation of ES cells, thereby compromising the colony propagation of mouse ES cells. In summary, our data demonstrate that all three Raf members are required for ERK activation in mouse ES cells and are involved in growth and survival of mouse ES cells. - Highlights: ●Mouse ES (mES) cells express all three Raf members, A-Raf, B-Raf, and C-Raf. ●Leukemia inhibitory factor (LIF) temporally activates ERKs in mES cells. ●B-Raf and C-Raf are required for LIF-induced maximal ERKs activity in mES cells. ●All Raf members are required for LIF-induced sustained ERK activity in mES cells. ●All Raf members are required the survival and proliferation of mES cells.« less
Yamamoto, Satoshi; Ooshima, Yuki; Nakata, Mitsugu; Yano, Takashi; Matsuoka, Kunio; Watanabe, Sayuri; Maeda, Ryouta; Takahashi, Hideki; Takeyama, Michiyasu; Matsumoto, Yoshio; Hashimoto, Tadatoshi
2013-06-01
Gene-targeting technology using mouse embryonic stem (ES) cells has become the "gold standard" for analyzing gene functions and producing disease models. Recently, genetically modified mice with multiple mutations have increasingly been produced to study the interaction between proteins and polygenic diseases. However, introduction of an additional mutation into mice already harboring several mutations by conventional natural crossbreeding is an extremely time- and labor-intensive process. Moreover, to do so in mice with a complex genetic background, several years may be required if the genetic background is to be retained. Establishing ES cells from multiple-mutant mice, or disease-model mice with a complex genetic background, would offer a possible solution. Here, we report the establishment and characterization of novel ES cell lines from a mouse model of Alzheimer's disease (3xTg-AD mouse, Oddo et al. in Neuron 39:409-421, 2003) harboring 3 mutated genes (APPswe, TauP301L, and PS1M146V) and a complex genetic background. Thirty blastocysts were cultured and 15 stable ES cell lines (male: 11; female: 4) obtained. By injecting these ES cells into diploid or tetraploid blastocysts, we generated germline-competent chimeras. Subsequently, we confirmed that F1 mice derived from these animals showed similar biochemical and behavioral characteristics to the original 3xTg-AD mice. Furthermore, we introduced a gene-targeting vector into the ES cells and successfully obtained gene-targeted ES cells, which were then used to generate knockout mice for the targeted gene. These results suggest that the present methodology is effective for introducing an additional mutation into mice already harboring multiple mutated genes and/or a complex genetic background.
2008-12-01
for other sources of ECs such as those derived from embryonic and adult progenitor cells ( Rafii ; Lyden 2003). For example, human ES-derived...functional endothelial precursors. Blood, 95, 952-958. Rafii , S., and D. Lyden, 2003: Therapeutic stem and progenitor cell transplantation for
Simple and efficient production of embryonic stem cell-embryo chimeras by coculture.
Wood, S A; Pascoe, W S; Schmidt, C; Kemler, R; Evans, M J; Allen, N D
1993-01-01
A method for the production of embryonic stem (ES) cell-embryo chimeras was developed that involves the simple coculture of eight-cell embryos on a lawn of ES cells. After coculture, the embryos with ES cells attached are transferred to normal embryo culture medium and allowed to develop to the blastocyst stage before reimplantation into foster mothers. Although the ES cells initially attach to the outside of the embryos, they primarily colonize the inner cell mass and its derivatives. This method results in the efficient production of chimeras with high levels of chimerism including the germ line. As embryos are handled en masse and manipulative steps are minimal, this method should greatly reduce the time and effort required to produce chimeric mice. Images Fig. 1 Fig. 2 PMID:8506303
Matveeva, Natalia M; Kizilova, Elena A; Serov, Oleg L
2015-01-01
The in vitro long-term cultivation of embryonic stem (ES) cells derived from pre-implantation embryos offers the unique possibility of combining ES cells with pre-implantation embryos to generate chimeras, thus facilitating the creation of a bridge between in vitro and in vivo investigations. Genomic manipulation using ES cells and homologous recombination is one of the most outstanding scientific achievements, resulting in the generation of animals with desirable genome modifications. As such, the generation of ES cells with different ploidy via cell fusion also deserves much attention because this approach allows for the production of chimeras that contain somatic cells with various ploidy. Therefore, this is a powerful tool that can be used to study the role of polyploidy in the normal development of mammals.
Massumi, Mohammad; Pourasgari, Farzaneh; Nalla, Amarnadh; Batchuluun, Battsetseg; Nagy, Kristina; Neely, Eric; Gull, Rida; Nagy, Andras; Wheeler, Michael B.
2016-01-01
The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem cells in vitro will facilitate the development of the cell replacement therapies for the treatment of Type 1 Diabetes. Here, through the sequential in vitro targeting of selected signaling pathways, we have developed an abbreviated five-stage protocol (25–30 days) to generate human Embryonic Stem Cell-Derived Beta-like Cells (ES-DBCs). We showed that Geltrex, as an extracellular matrix, could support the generation of ES-DBCs more efficiently than that of the previously described culture systems. The activation of FGF and Retinoic Acid along with the inhibition of BMP, SHH and TGF-beta led to the generation of 75% NKX6.1+/NGN3+ Endocrine Progenitors. The inhibition of Notch and tyrosine kinase receptor AXL, and the treatment with Exendin-4 and T3 in the final stage resulted in 35% mono-hormonal insulin positive cells, 1% insulin and glucagon positive cells and 30% insulin and NKX6.1 co-expressing cells. Functionally, ES-DBCs were responsive to high glucose in static incubation and perifusion studies, and could secrete insulin in response to successive glucose stimulations. Mitochondrial metabolic flux analyses using Seahorse demonstrated that the ES-DBCs could efficiently metabolize glucose and generate intracellular signals to trigger insulin secretion. In conclusion, targeting selected signaling pathways for 25–30 days was sufficient to generate ES-DBCs in vitro. The ability of ES-DBCs to secrete insulin in response to glucose renders them a promising model for the in vitro screening of drugs, small molecules or genes that may have potential to influence beta-cell function. PMID:27755557
Stenger, Rachel M.; Meiring, Hugo D.; Kuipers, Betsy; Poelen, Martien; van Gaans-van den Brink, Jacqueline A. M.; Boog, Claire J. P.; de Jong, Ad P. J. M.
2014-01-01
Knowledge of naturally processed Bordetella pertussis-specific T cell epitopes may help to increase our understanding of the basis of cell-mediated immune mechanisms to control this reemerging pathogen. Here, we elucidate for the first time the dominant major histocompatibility complex (MHC) class II-presented B. pertussis CD4+ T cell epitopes, expressed on human monocyte-derived dendritic cells (MDDC) after the processing of whole bacterial cells by use of a platform of immunoproteomics technology. Pertussis epitopes identified in the context of HLA-DR molecules were derived from two envelope proteins, i.e., putative periplasmic protein (PPP) and putative peptidoglycan-associated lipoprotein (PAL), and from two cytosolic proteins, i.e., 10-kDa chaperonin groES protein (groES) and adenylosuccinate synthetase (ASS). No epitopes were detectable from known virulence factors. CD4+ T cell responsiveness in healthy adults against peptide pools representing epitope regions or full proteins confirmed the immunogenicity of PAL, PPP, groES, and ASS. Elevated lymphoproliferative activity to PPP, groES, and ASS in subjects within a year after the diagnosis of symptomatic pertussis suggested immunogenic exposure to these proteins during clinical infection. The PAL-, PPP-, groES-, and ASS-specific responses were associated with secretion of functional Th1 (tumor necrosis factor alpha [TNF-α] and gamma interferon [IFN-γ]) and Th2 (interleukin 5 [IL-5] and IL-13) cytokines. Relative paucity in the natural B. pertussis epitope display of MDDC, not dominated by epitopes from known protective antigens, can interfere with the effectiveness of immune recognition of B. pertussis. A more complete understanding of hallmarks in B. pertussis-specific immunity may advance the design of novel immunological assays and prevention strategies. PMID:24599530
Stenger, Rachel M; Meiring, Hugo D; Kuipers, Betsy; Poelen, Martien; van Gaans-van den Brink, Jacqueline A M; Boog, Claire J P; de Jong, Ad P J M; van Els, Cécile A C M
2014-05-01
Knowledge of naturally processed Bordetella pertussis-specific T cell epitopes may help to increase our understanding of the basis of cell-mediated immune mechanisms to control this reemerging pathogen. Here, we elucidate for the first time the dominant major histocompatibility complex (MHC) class II-presented B. pertussis CD4(+) T cell epitopes, expressed on human monocyte-derived dendritic cells (MDDC) after the processing of whole bacterial cells by use of a platform of immunoproteomics technology. Pertussis epitopes identified in the context of HLA-DR molecules were derived from two envelope proteins, i.e., putative periplasmic protein (PPP) and putative peptidoglycan-associated lipoprotein (PAL), and from two cytosolic proteins, i.e., 10-kDa chaperonin groES protein (groES) and adenylosuccinate synthetase (ASS). No epitopes were detectable from known virulence factors. CD4(+) T cell responsiveness in healthy adults against peptide pools representing epitope regions or full proteins confirmed the immunogenicity of PAL, PPP, groES, and ASS. Elevated lymphoproliferative activity to PPP, groES, and ASS in subjects within a year after the diagnosis of symptomatic pertussis suggested immunogenic exposure to these proteins during clinical infection. The PAL-, PPP-, groES-, and ASS-specific responses were associated with secretion of functional Th1 (tumor necrosis factor alpha [TNF-α] and gamma interferon [IFN-γ]) and Th2 (interleukin 5 [IL-5] and IL-13) cytokines. Relative paucity in the natural B. pertussis epitope display of MDDC, not dominated by epitopes from known protective antigens, can interfere with the effectiveness of immune recognition of B. pertussis. A more complete understanding of hallmarks in B. pertussis-specific immunity may advance the design of novel immunological assays and prevention strategies.
Israely, Edo; Ginsberg, Michael; Nolan, Daniel; Ding, Bi-Sen; James, Daylon; Elemento, Olivier; Rafii, Shahin; Rabbany, Sina Y
2016-01-01
The ability to generate and maintain stable in vitro cultures of mouse endothelial cells (EC) has great potential for genetic dissection of the numerous pathologies involving vascular dysfunction as well as therapeutic applications. However, previous efforts at achieving sustained cultures of primary stable murine vascular cells have fallen short, and the cellular requirements for EC maintenance in vitro remain undefined. In this study, we have generated vascular ECs from mouse embryonic stem (ES) cells, and show that active Akt is essential to their survival and propagation as homogeneous monolayers in vitro. These cells harbor the phenotypical, biochemical, and functional characteristics of ECs, and expand throughout long-term cultures, while maintaining their angiogenic capacity. Moreover, Akt-transduced embryonic ECs form functional perfused vessels in vivo that anastomose with host blood vessels. We provide evidence for a novel function of Akt in stabilizing EC identity, whereby the activated form of the protein protects mouse ES cell-derived ECs from TGFβ-mediated transdifferentiation by downregulating SMAD3. These findings identify a role for Akt in regulating the developmental potential of ES cell-derived ECs, and demonstrate that active Akt maintains endothelial identity in embryonic ECs by interfering with active TGFβ-mediated processes that would ordinarily usher these cells to alternate fates. PMID:23963623
Israely, Edo; Ginsberg, Michael; Nolan, Daniel; Ding, Bi-Sen; James, Daylon; Elemento, Olivier; Rafii, Shahin; Rabbany, Sina Y
2014-01-01
The ability to generate and maintain stable in vitro cultures of mouse endothelial cells (ECs) has great potential for genetic dissection of the numerous pathologies involving vascular dysfunction as well as therapeutic applications. However, previous efforts at achieving sustained cultures of primary stable murine vascular cells have fallen short, and the cellular requirements for EC maintenance in vitro remain undefined. In this study, we have generated vascular ECs from mouse embryonic stem (ES) cells and show that active Akt is essential to their survival and propagation as homogeneous monolayers in vitro. These cells harbor the phenotypical, biochemical, and functional characteristics of ECs and expand throughout long-term cultures, while maintaining their angiogenic capacity. Moreover, Akt-transduced embryonic ECs form functional perfused vessels in vivo that anastomose with host blood vessels. We provide evidence for a novel function of Akt in stabilizing EC identity, whereby the activated form of the protein protects mouse ES cell-derived ECs from TGFβ-mediated transdifferentiation by downregulating SMAD3. These findings identify a role for Akt in regulating the developmental potential of ES cell-derived ECs and demonstrate that active Akt maintains endothelial identity in embryonic ECs by interfering with active TGFβ-mediated processes that would ordinarily usher these cells to alternate fates. © AlphaMed Press.
Zhou, Zuping; French, Deborah L.; Ma, Ge; Eisenstein, Samuel; Chen, Ying; Divino, Celia M.; Keller, Gordon; Chen, Shu-Hsia; Pan, Ping-Ying
2015-01-01
Emerging evidence suggests that myeloid-derived suppressor cells (MDSCs) have great potential as a novel immune intervention modality in the fields of transplantation and autoimmune diseases. Thus far, efforts to develop MDSC-based therapeutic strategies have been hampered by the lack of a reliable source of MDSCs. Here we show that functional MDSCs can be efficiently generated from mouse embryonic stem (ES) cells and bone marrow hematopoietic stem (HS) cells. In vitro-derived MDSCs encompass two homogenous subpopulations: CD115+Ly-6C+ and CD115+Ly-6C− cells. The CD115+Ly-6C+ subset is equivalent to the monocytic Gr-1+CD115+F4/80+ MDSCs found in tumor-bearing mice. In contrast, the CD115+Ly-6C− cells, a previously unreported population of MDSCs, resemble the granulocyte/macrophage progenitors developmentally. In vitro, ES- and HS-MDSCs exhibit robust suppression against T-cell proliferation induced by polyclonal stimuli or alloantigens via multiple mechanisms involving nitric oxide synthase-mediated NO production and interleukin (IL)-10. Impressively, they display even stronger suppressive activity and significantly enhance ability to induce CD4+CD25+Foxp3+ regulatory T-cell development compared with tumor-derived MDSCs. Furthermore, adoptive transfer of ES-MDSCs can effectively prevent alloreactive T-cell-mediated lethal graft-versus-host disease, leading to nearly 82% long-term survival among treated mice. The successful in vitro generation of MDSCs may represent a critical step toward potential clinical application of MDSCs. PMID:20073041
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanai, Dai; Ueda, Atsushi; Akagi, Tadayuki
Embryonic stem (ES) cells, derived from the inner cell mass of blastocysts, have a characteristic cell cycle with truncated G1 and G2 phases. Recent findings that suppression of Oct3/4 expression results in a reduced proliferation rate of ES cells suggest the involvement of Oct3/4 in the regulation of ES cell growth, although the underlying molecular mechanism remains unclear. In the present study, we identified E2F3a as a direct target gene of Oct3/4 in ES cells. Oct3/4 directly bound to the promoter region of the E2F3a gene and positively regulated expression of E2F3a in mouse ES cells. Suppression of E2F3a activitymore » by E2F6 overexpression led to the reduced proliferation in ES cells, which was relieved by co-expression of E2F3a. Furthermore, cell growth retardation caused by loss of Oct3/4 was rescued by E2F3a expression. These results suggest that Oct3/4 upregulates E2F3a expression to promote ES cell growth. - Highlights: • Oct3/4 positively regulates E2F3a expression in ES cells. • Oct3/4 binds to the promoter region of the E2F3a gene. • Overexpression of E2F6, an inhibitor of E2F3a, reduces ES cell growth. • E2F3a recovers growth retardation of ES cells caused by Oct3/4 reduction.« less
Trends in the human embryonic stem cell patent field.
Karlsson, Ulrika; Hyllner, Johan; Runeberg, Kristina
2007-01-01
The successful derivation of human embryonic stem (hES) cell lines in late 1990s marks the birth of a new era in biomedical research. In the USA, this landmark invention is protected by granted composition-of-matter patents. In addition to these patents, several others have been granted on further development of hES cell research, such as on differentiated cell types and in vitro and in vivo use aspects. In Europe, there is presently no consensus pertaining to the patentability of hES cells, and all patent applications pending at the European patent office are therefore awaiting a principal decision by the Enlarged Board of Appeal. The authors argue that it will be of importance to the stem cell industry that patents are granted on inventions downstream in the value chain, e.g on specialised cell types derived from hES cells and different drug discovery applications. Patents and patent applications on such inventions for the three germ layers ectoderm/neuro, endoderm/hepato and mesoderm/cardio have been examined. The number of patents increased in the period 2001 to 2006 for all three lineages with ectoderm/neuro as the most patent intensive field. There where 9-13 times more US patent applications filed related to the three lineages compared to in Europe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taru Sharma, G., E-mail: gts553@gmail.com; Dubey, Pawan K.; Verma, Om Prakash
Graphical abstract: EBs formation, characterization and expression of germinal layers marker genes of in vivo developed teratoma using four different types of extracellular matrices. Highlights: Black-Right-Pointing-Pointer Collagen-IV matrix is found cytocompatible for EBs formation and differentiation. Black-Right-Pointing-Pointer Established 3D microenvironment for ES cells development and differentiation into three germ layers. Black-Right-Pointing-Pointer Collagen-IV may be useful as promising candidate for ES cells based therapeutic applications. -- Abstract: Embryoid bodies (EBs) are used as in vitro model to study early extraembryonic tissue formation and differentiation. In this study, a novel method using three dimensional extracellular matrices for in vitro generation of EBsmore » from buffalo embryonic stem (ES) cells and its differentiation potential by teratoma formation was successfully established. In vitro derived inner cell masses (ICMs) of hatched buffalo blastocyst were cultured on buffalo fetal fibroblast feeder layer for primary cell colony formation. For generation of EBs, pluripotent ES cells were seeded onto four different types of extracellular matrices viz; collagen-IV, laminin, fibronectin and matrigel using undifferentiating ES cell culture medium. After 5 days of culture, ESCs gradually grew into aggregates and formed simple EBs having circular structures. Twenty-six days later, they formed cystic EBs over collagen matrix with higher EBs formation and greater proliferation rate as compared to other extracellular matrices. Studies involving histological observations, fluorescence microscopy and RT-PCR analysis of the in vivo developed teratoma revealed that presence of all the three germ layer derivatives viz. ectoderm (NCAM), mesoderm (Flk-1) and endoderm (AFP). In conclusion, the method described here demonstrates a simple and cost-effective way of generating EBs from buffalo ES cells. Collagen-IV matrix was found cytocompatible as it supported buffalo EBs formation, their subsequent differentiation could prove to be useful as promising candidate for ES cells based therapeutic applications.« less
Gilbert, David M
2004-05-01
Embryonic stem (ES) cells have almost unlimited regenerative capacity and can potentially generate any body tissue. Hence they hold great promise for the cure of degenerative human diseases. But their derivation and the potential for misuse have raised a number of ethical issues. These ethical issues threaten to paralyze pubic funding for ES cell research, leaving experimentation in the hands of the private sector and precluding the public's ability to monitor practices, research alternatives, and effectively address the very ethical issues that are cause for concern in the first place. With new technology being inevitable, and the potential for abuse high, government must stay involved if the public is to play a role in shaping the direction of research. In this essay, I will define levels of ethical conflict that can be delineated by the anticipated advances in technology. From the urgent need to derive new ES cell lines with existing technology, to the most far-reaching goal of deriving genetically identical tissues from an adult patients cells, technology-specific ethical dilemmas can be defined and addressed. This staged approach provides a solid ethical framework for moving forward with ES cell research. Moreover, by anticipating the moral conflicts to come, one can predict the types of scientific advances that could overcome these conflicts, and appropriately direct federal funding toward these goals to offset potentially less responsible research directives that will inevitably go forward via private or foreign funding.
In Vitro Germ Cell Differentiation from Cynomolgus Monkey Embryonic Stem Cells
Yamauchi, Kaori; Hasegawa, Kouichi; Chuma, Shinichiro; Nakatsuji, Norio; Suemori, Hirofumi
2009-01-01
Background Mouse embryonic stem (ES) cells can differentiate into female and male germ cells in vitro. Primate ES cells can also differentiate into immature germ cells in vitro. However, little is known about the differentiation markers and culture conditions for in vitro germ cell differentiation from ES cells in primates. Monkey ES cells are thus considered to be a useful model to study primate gametogenesis in vitro. Therefore, in order to obtain further information on germ cell differentiation from primate ES cells, this study examined the ability of cynomolgus monkey ES cells to differentiate into germ cells in vitro. Methods and Findings To explore the differentiation markers for detecting germ cells differentiated from ES cells, the expression of various germ cell marker genes was examined in tissues and ES cells of the cynomolgus monkey (Macaca fascicularis). VASA is a valuable gene for the detection of germ cells differentiated from ES cells. An increase of VASA expression was observed when differentiation was induced in ES cells via embryoid body (EB) formation. In addition, the expression of other germ cell markers, such as NANOS and PIWIL1 genes, was also up-regulated as the EB differentiation progressed. Immunocytochemistry identified the cells expressing stage-specific embryonic antigen (SSEA) 1, OCT-4, and VASA proteins in the EBs. These cells were detected in the peripheral region of the EBs as specific cell populations, such as SSEA1-positive, OCT-4-positive cells, OCT-4-positive, VASA-positive cells, and OCT-4-negative, VASA-positive cells. Thereafter, the effect of mouse gonadal cell-conditioned medium and growth factors on germ cell differentiation from monkey ES cells was examined, and this revealed that the addition of BMP4 to differentiating ES cells increased the expression of SCP1, a meiotic marker gene. Conclusion VASA is a valuable gene for the detection of germ cells differentiated from ES cells in monkeys, and the identification and characterization of germ cells derived from ES cells are possible by using reported germ cell markers in vivo, including SSEA1, OCT-4, and VASA, in vitro as well as in vivo. These findings are thus considered to help elucidate the germ cell developmental process in primates. PMID:19399191
Soncin, Francesca; Mohamet, Lisa; Ritson, Sarah; Hawkins, Kate; Bobola, Nicoletta; Zeef, Leo; Merry, Catherine L. R.; Ward, Christopher M.
2011-01-01
Background We have recently shown that expression of the cell adhesion molecule E-cadherin is required for LIF-dependent pluripotency of mouse embryonic stem (ES) cells. Methodology In this study, we have assessed global transcript expression in E-cadherin null (Ecad-/-) ES cells cultured in either the presence or absence of LIF and compared these to the parental cell line wtD3. Results We show that LIF has little effect on the transcript profile of Ecad-/- ES cells, with statistically significant transcript alterations observed only for Sp8 and Stat3. Comparison of Ecad-/- and wtD3 ES cells cultured in LIF demonstrated significant alterations in the transcript profile, with effects not only confined to cell adhesion and motility but also affecting, for example, primary metabolic processes, catabolism and genes associated with apoptosis. Ecad-/- ES cells share similar, although not identical, gene expression profiles to epiblast-derived pluripotent stem cells, suggesting that E-cadherin expression may inhibit inner cell mass to epiblast transition. We further show that Ecad-/- ES cells maintain a functional β-catenin pool that is able to induce β-catenin/TCF-mediated transactivation but, contrary to previous findings, do not display endogenous β-catenin/TCF-mediated transactivation. We conclude that loss of E-cadherin in mouse ES cells leads to significant transcript alterations independently of β-catenin/TCF transactivation. PMID:21779327
Soncin, Francesca; Mohamet, Lisa; Ritson, Sarah; Hawkins, Kate; Bobola, Nicoletta; Zeef, Leo; Merry, Catherine L R; Ward, Christopher M
2011-01-01
We have recently shown that expression of the cell adhesion molecule E-cadherin is required for LIF-dependent pluripotency of mouse embryonic stem (ES) cells. In this study, we have assessed global transcript expression in E-cadherin null (Ecad-/-) ES cells cultured in either the presence or absence of LIF and compared these to the parental cell line wtD3. We show that LIF has little effect on the transcript profile of Ecad-/- ES cells, with statistically significant transcript alterations observed only for Sp8 and Stat3. Comparison of Ecad-/- and wtD3 ES cells cultured in LIF demonstrated significant alterations in the transcript profile, with effects not only confined to cell adhesion and motility but also affecting, for example, primary metabolic processes, catabolism and genes associated with apoptosis. Ecad-/- ES cells share similar, although not identical, gene expression profiles to epiblast-derived pluripotent stem cells, suggesting that E-cadherin expression may inhibit inner cell mass to epiblast transition. We further show that Ecad-/- ES cells maintain a functional β-catenin pool that is able to induce β-catenin/TCF-mediated transactivation but, contrary to previous findings, do not display endogenous β-catenin/TCF-mediated transactivation. We conclude that loss of E-cadherin in mouse ES cells leads to significant transcript alterations independently of β-catenin/TCF transactivation.
Mohamet, Lisa; Lea, Michelle L; Ward, Christopher M
2010-09-23
A fundamental requirement for the exploitation of embryonic stem (ES) cells in regenerative medicine is the ability to reproducibly derive sufficient numbers of cells of a consistent quality in a cost-effective manner. However, undifferentiated ES cells are not ideally suited to suspension culture due to the formation of cellular aggregates, ultimately limiting scalability. Significant advances have been made in recent years in the culture of ES cells, including automated adherent culture and suspension microcarrier or embryoid body bioreactor culture. However, each of these methods exhibits specific disadvantages, such as high cost, additional downstream processes or reduced cell doubling times. Here we show that abrogation of the cell surface protein E-cadherin, using either gene knockout (Ecad-/-) or the neutralising antibody DECMA-1 (EcadAb), allows culture of mouse ES cells as a near-single cell suspension in scalable shake flask culture over prolonged periods without additional media supplements. Both Ecad-/- and EcadAb ES cells exhibited adaptation phases in suspension culture, with optimal doubling times of 7.3 h±0.9 and 15.6 h±4.7 respectively and mean-fold increase in viable cell number of 95.1±2.0 and 16±0.9-fold over 48 h. EcadAb ES cells propagated as a dispersed cell suspension for 15 d maintained expression of pluripotent markers, exhibited a normal karyotype and high viability. Subsequent differentiation of EcadAb ES cells resulted in expression of transcripts and proteins associated with the three primary germ layers. This is the first demonstration of the culture of pluripotent ES cells as a near-single cell suspension in a manual fed-batch shake flask bioreactor and represents a significant improvement on current ES cell culture techniques. Whilst this proof-of-principle method would be useful for the culture of human ES and iPS cells, further steps are necessary to increase cell viability of hES cells in suspension.
Reprogramming primordial germ cells (PGC) to embryonic germ (EG) cells.
Durcova-Hills, Gabriela; Surani, Azim
2008-04-01
In this unit we describe the derivation of pluripotent embryonic germ (EG) cells from mouse primordial germ cells (PGCs) isolated from both 8.5- and 11.5-days post-coitum (dpc) embryos. Once EG cells are derived we explain how to propagate and characterize the cell lines. We introduce readers to PGCs and explain differences between PGCs and their in vitro derivatives EG cells. Finally, we also compare mouse EG cells with ES cells. This unit will be of great interest to anyone interested in PGCs or studying the behavior of cultured PGCs or the derivation of new EG cell lines.
Bock, Christoph; Kiskinis, Evangelos; Verstappen, Griet; Gu, Hongcang; Boulting, Gabriella; Smith, Zachary D.; Ziller, Michael; Croft, Gist F.; Amoroso, Mackenzie W.; Oakley, Derek H.; Gnirke, Andreas; Eggan, Kevin; Meissner, Alexander
2011-01-01
SUMMARY The developmental potential of human pluripotent stem cells suggests that they can produce disease-relevant cell types for biomedical research. However, substantial variation has been reported among pluripotent cell lines, which could affect their utility and clinical safety. Such cell-line-specific differences must be better understood before one can confidently use embryonic stem (ES) or induced pluripotent stem (iPS) cells in translational research. Toward this goal we have established genome-wide reference maps of DNA methylation and gene expression for 20 previously derived human ES lines and 12 human iPS cell lines, and we have measured the in vitro differentiation propensity of these cell lines. This resource enabled us to assess the epigenetic and transcriptional similarity of ES and iPS cells and to predict the differentiation efficiency of individual cell lines. The combination of assays yields a scorecard for quick and comprehensive characterization of pluripotent cell lines. PMID:21295703
Gordeeva, O F; Nikonova, T M
2013-01-01
Pluripotent stem cells represent an attractive cell source for regenerative medicine. However, the risk of teratoma formation after transplantation restricts their clinical application. Therefore, to adequately evaluate the potential risk of tumorigenicity after cell transplantation into human tissues, effective animal transplantation assays need to be developed. We performed a multiparameter (cell number, transplantation site, cell type, host) comparative analysis of the efficiency of tumor development after transplantation of mouse and human embryonic stem (ES) cells and their malignant counterparts, teratocarcinoma (EC) cells, into animal recipients and revealed several key correlations. We found that the efficiency of tumor growth was higher after intraperitoneal than after subcutaneous transplantations of all cell lines studied. The minimal cell numbers sufficient for tumor growth in immunodeficient nude mice were 100-fold lower for intraperitoneal than for subcutaneous transplantations of mouse and human ES cells (10(3) vs. 10(5) and 10(4) vs. 10(6), respectively). Moreover, mouse ES and EC cells formed tumors in immunodeficient and immunocompetent mice more effectively than human ES and EC cells. After intraperitoneal transplantation of 10(3), 10(4), and 10(5) mouse ES cells, teratomas developed in 83%, 100%, and 100% of nude mice, whereas after human ES cell transplantation, teratomas developed in 0%, 17%, and 60%, respectively. In addition, malignant mouse and human EC cells initiated tumor growth after intraperitoneal transplantation significantly faster and more effectively than ES cells. Mouse and human ES cells formed different types of teratomas containing derivatives of three germ layers but different numbers of undifferentiated cells. ES cell-like sublines with differentiation potential similar to the parental cell line were recloned only from mouse, but not from human, ES cell teratomas. These findings provide new information about the possibility and efficiency of tumor growth after transplantation of pluripotent stem cells. This information allows one to predict and possibly prevent the possible risks of tumorigenicity that could arise from stem cell therapeutics.
van de Kamp, Julia; Kramann, Rafael; Anraths, Julia; Schöler, Hans R; Ko, Kinarm; Knüchel, Ruth; Zenke, Martin; Neuss, Sabine; Schneider, Rebekka K
2012-03-01
For tissue engineering, cultivation of pluripotent stem cells on three-dimensional scaffolds allows the generation of organ-like structures. Previously, we have established an organotypic culture system of skin to induce epidermal differentiation in adult stem cells. Multipotent stem cells are not able to differentiate across germinal boundaries. In contrast, pluripotent stem cells readily differentiate into tissues of all three germ layers. Germline-derived pluripotent stem cells (gPS cells) can be generated by induction of pluripotency in mouse unipotent germline stem cells without the introduction of exogenous transcription factors. In the current study, we analyzed the influence of organotypic culture conditions of skin on the epithelial differentiation of gPS cells in comparison to the well-established HM1 ES cell line. Quantitative RT-PCR data of the pluripotency gene Oct4 showed that gPS cells are characterized by an accelerated Oct4-downregulation compared to HM1 ES cells. When subjected to the organotypic culture conditions of skin, gPS cells formed tubulocystic structures lined by stratified (CK5/6(+), CK14(+), CK8/18(-)) epithelia. HM1 ES cells formed only small tubulocystic structures lined by simple, CK8/18(+) epithelia. BMP-4, an epidermal morphogen, significantly enhanced the expression of epithelial markers in HM1 ES cells, but did not significantly affect the formation of complex (squamous) epithelia in gPS cells. In HM1 ES cells the differentiation into squamous epithelium was only inducible in the presence of mature dermal fibroblasts. Both pluripotent stem cell types spontaneously differentiated into mesodermal, endodermal and into neuroectodermal cells at low frequency, underlining their pluripotent differentiation capacity. Concluding, the organotypic culture conditions of skin induce a multilayered, stratified epithelium in gPS cells, in HM1 ES cells only in the presence of dermal fibroblasts. Thus, our data show that differentiation protocols strongly depend on the stem cell type and have to be modified for each specific stem cell type. Copyright © 2011 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Boyd, Ashleigh S; Wood, Kathryn J
2010-06-04
The fully differentiated progeny of ES cells (ESC) may eventually be used for cell replacement therapy (CRT). However, elements of the innate immune system may contribute to damage or destruction of these tissues when transplanted. Herein, we assessed the hitherto ill-defined contribution of the early innate immune response in CRT after transplantation of either ESC derived insulin producing cell clusters (IPCCs) or adult pancreatic islets. Ingress of neutrophil or macrophage cells was noted immediately at the site of IPCC transplantation, but this infiltration was attenuated by day three. Gene profiling identified specific inflammatory cytokines and chemokines that were either absent or sharply reduced by three days after IPCC transplantation. Thus, IPCC transplantation provoked less of an early immune response than pancreatic islet transplantation. Our study offers insights into the characteristics of the immune response of an ESC derived tissue in the incipient stages following transplantation and suggests potential strategies to inhibit cell damage to ensure their long-term perpetuation and functionality in CRT.
Derivation and characterization of gut-like structures from embryonic stem cells.
Yamada, Takatsugu; Nakajima, Yoshiyuki
2006-01-01
Embryonic stem (ES) cells have a pluripotent ability to differentiate into a variety of cell lineages of all three embryonic germ layers in vitro. The hanging drop culture of ES cell suspension in the absence of leukemia inhibitory factor induces aggregation and differentiation of the cells into simple or cystic embryoid bodies (EBs). After 6 d of hanging drop culture, the resulting EBs are plated onto plastic dishes for the outgrowth culture. At d 21 after outgrowth culture, cell populations of EBs can give rise to three-dimensional gut-like structures that exhibit spontaneous contraction and highly coordinated peristalsis. The gut-like structures have large lumens surrounded by three layers: epithelium, lamina propria, and muscularis. Ganglia are scattered along the periphery, and interstitial cells of Cajal are distributed among the smooth muscle cells. The fundamental process of formation of the in vitro organized gut-like structures is similar to embryonic gastrointestinal development in vivo. The EBs at the 6-d egg-cylinder stage may have the potential to regulate developmental programs associated with cell lineage commitment and provide an appropriate microenvironment to differentiate ES cells into enteric derivatives of all three embryonic germ layers and reproduce the gut organization process in vitro.
NASA Astrophysics Data System (ADS)
Meng, Qing-Yuan; Akaike, Toshihiro
2013-03-01
Induced embryonic stem (ES) cells are expected to be promising cell resources for the observation of the cell behaviors in developmental biology as well as the implantation in cell treatments in human diseases. A recombinant E-cadherin substratum was developed as a cell recognizable substratum to maintain the ES cells' self-renewal and pluripotency at single cell level. Furthermore, the generation of various cell lineages in different germ layers, including hepatic or neural cells, was achieved on the chimeric protein layer precisely and effectively. The induction and isolation of specific cell population was carried out with the enhancing effect of other artificial extracellular matrices (ECMs) in enzyme-free process. The murine ES cell-derived cells showed highly morphological similarities and functional expressions to matured hepatocytes or neural progenitor cells.
Production of medakafish chimeras from a stable embryonic stem cell line.
Hong, Y; Winkler, C; Schartl, M
1998-03-31
Embryonic stem (ES) cell lines provide a unique tool for introducing targeted or random genetic alterations through gene replacement, insertional mutagenesis, and gene addition because they offer the possibility for in vitro selection for the desired, but extremely rare, recombinant genotypes. So far only mouse blastocyst embryos are known to have the competence to give rise to such ES cell lines. We recently have established a stable cell line (Mes1) from blastulae of the medakafish (Oryzias latipes) that shows all characteristics of mouse ES cells in vitro. Here, we demonstrate that Mes1 cells also have the competence for chimera formation; 90% of host blastulae transplanted with Mes1 cells developed into chimeric fry. This high frequency was not compromised by cryostorage or DNA transfection of the donor cells. The Mes1 cells contributed to numerous organs derived from all three germ layers and differentiated into various types of functional cells, most readily observable in pigmented chimeras. These features suggest the possibility that Mes1 cells may be a fish equivalent of mouse ES cells and that medaka can be used as another system for the application of the ES cell technology.
Production of medakafish chimeras from a stable embryonic stem cell line
Hong, Yunhan; Winkler, Christoph; Schartl, Manfred
1998-01-01
Embryonic stem (ES) cell lines provide a unique tool for introducing targeted or random genetic alterations through gene replacement, insertional mutagenesis, and gene addition because they offer the possibility for in vitro selection for the desired, but extremely rare, recombinant genotypes. So far only mouse blastocyst embryos are known to have the competence to give rise to such ES cell lines. We recently have established a stable cell line (Mes1) from blastulae of the medakafish (Oryzias latipes) that shows all characteristics of mouse ES cells in vitro. Here, we demonstrate that Mes1 cells also have the competence for chimera formation; 90% of host blastulae transplanted with Mes1 cells developed into chimeric fry. This high frequency was not compromised by cryostorage or DNA transfection of the donor cells. The Mes1 cells contributed to numerous organs derived from all three germ layers and differentiated into various types of functional cells, most readily observable in pigmented chimeras. These features suggest the possibility that Mes1 cells may be a fish equivalent of mouse ES cells and that medaka can be used as another system for the application of the ES cell technology. PMID:9520425
Jean, Christian; Fragnet-Trapp, Laetitia; Rémy, Sylvie; Chabanne-Vautherot, Danièle; Montillet, Guillaume; Fuet, Aurélie; Denesvre, Caroline; Pain, Bertrand
2017-01-01
Marek’s disease virus is the etiological agent of a major lymphoproliferative disorder in poultry and the prototype of the Mardivirus genus. Primary avian somatic cells are currently used for virus replication and vaccine production, but they are largely refractory to any genetic modification compatible with the preservation of intact viral susceptibility. We explored the concept of induction of viral replication permissiveness in an established pluripotent chicken embryonic stem cell-line (cES) in order to derive a new fully susceptible cell-line. Chicken ES cells were not permissive for Mardivirus infection, but as soon as differentiation was triggered, replication of Marek’s disease virus was detected. From a panel of cyto-differentiating agents, hexamethylene bis (acetamide) (HMBA) was found to be the most efficient regarding the induction of permissiveness. These initial findings prompted us to analyse the effect of HMBA on gene expression, to derive a new mesenchymal cell line, the so-called ESCDL-1, and monitor its susceptibility for Mardivirus replication. All Mardiviruses tested so far replicated equally well on primary embryonic skin cells and on ESCDL-1, and the latter showed no variation related to its passage number in its permissiveness for virus infection. Viral morphogenesis studies confirmed efficient multiplication with, as in other in vitro models, no extra-cellular virus production. We could show that ESCDL-1 can be transfected to express a transgene and subsequently cloned without any loss in permissiveness. Consequently, ESCDL-1 was genetically modified to complement viral gene deletions thus yielding stable trans-complementing cell lines. We herein claim that derivation of stable differentiated cell-lines from cES cell lines might be an alternative solution to the cultivation of primary cells for virology studies. PMID:28406989
Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats.
Lund, Raymond D; Wang, Shaomei; Klimanskaya, Irina; Holmes, Toby; Ramos-Kelsey, Rebeca; Lu, Bin; Girman, Sergej; Bischoff, N; Sauvé, Yves; Lanza, Robert
2006-01-01
Embryonic stem cells promise to provide a well-characterized and reproducible source of replacement tissue for human clinical studies. An early potential application of this technology is the use of retinal pigment epithelium (RPE) for the treatment of retinal degenerative diseases such as macular degeneration. Here we show the reproducible generation of RPE (67 passageable cultures established from 18 different hES cell lines); batches of RPE derived from NIH-approved hES cells (H9) were tested and shown capable of extensive photoreceptor rescue in an animal model of retinal disease, the Royal College of Surgeons (RCS) rat, in which photoreceptor loss is caused by a defect in the adjacent retinal pigment epithelium. Improvement in visual performance was 100% over untreated controls (spatial acuity was approximately 70% that of normal nondystrophic rats) without evidence of untoward pathology. The use of somatic cell nuclear transfer (SCNT) and/or the creation of banks of reduced complexity human leucocyte antigen (HLA) hES-RPE lines could minimize or eliminate the need for immunosuppressive drugs and/or immunomodulatory protocols.
Generation of human pluripotent stem cell-derived hepatocyte-like cells for drug toxicity screening.
Takayama, Kazuo; Mizuguchi, Hiroyuki
2017-02-01
Because drug-induced liver injury is one of the main reasons for drug development failures, it is important to perform drug toxicity screening in the early phase of pharmaceutical development. Currently, primary human hepatocytes are most widely used for the prediction of drug-induced liver injury. However, the sources of primary human hepatocytes are limited, making it difficult to supply the abundant quantities required for large-scale drug toxicity screening. Therefore, there is an urgent need for a novel unlimited, efficient, inexpensive, and predictive model which can be applied for large-scale drug toxicity screening. Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are able to replicate indefinitely and differentiate into most of the body's cell types, including hepatocytes. It is expected that hepatocyte-like cells generated from human ES/iPS cells (human ES/iPS-HLCs) will be a useful tool for drug toxicity screening. To apply human ES/iPS-HLCs to various applications including drug toxicity screening, homogenous and functional HLCs must be differentiated from human ES/iPS cells. In this review, we will introduce the current status of hepatocyte differentiation technology from human ES/iPS cells and a novel method to predict drug-induced liver injury using human ES/iPS-HLCs. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
Marking Embryonic Stem Cells with a 2A Self-Cleaving Peptide: A NKX2-5 Emerald GFP BAC Reporter
Hsiao, Edward C.; Yoshinaga, Yuko; Nguyen, Trieu D.; Musone, Stacy L.; Kim, Judy E.; Swinton, Paul; Espineda, Isidro; Manalac, Carlota; deJong, Pieter J.; Conklin, Bruce R.
2008-01-01
Background Fluorescent reporters are useful for assaying gene expression in living cells and for identifying and isolating pure cell populations from heterogeneous cultures, including embryonic stem (ES) cells. Multiple fluorophores and genetic selection markers exist; however, a system for creating reporter constructs that preserve the regulatory sequences near a gene's native ATG start site has not been widely available. Methodology Here, we describe a series of modular marker plasmids containing independent reporter, bacterial selection, and eukaryotic selection components, compatible with both Gateway recombination and lambda prophage bacterial artificial chromosome (BAC) recombineering techniques. A 2A self-cleaving peptide links the reporter to the native open reading frame. We use an emerald GFP marker cassette to create a human BAC reporter and ES cell reporter line for the early cardiac marker NKX2-5. NKX2-5 expression was detected in differentiating mouse ES cells and ES cell-derived mice. Conclusions Our results describe a NKX2-5 ES cell reporter line for studying early events in cardiomyocyte formation. The results also demonstrate that our modular marker plasmids could be used for generating reporters from unmodified BACs, potentially as part of an ES cell reporter library. PMID:18596956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moscatelli, Ilana; Pierantozzi, Enrico; Camaioni, Antonella
2009-11-01
Neurotrophins and their receptors are known to play a role in the proliferation and survival of many different cell types of neuronal and non-neuronal lineages. In addition, there is much evidence in the literature showing that the p75 neurotrophin receptor (p75{sup NTR}), alone or in association with members of the family of Trk receptors, is expressed in a wide variety of stem cells, although its role in such cells has not been completely elucidated. In the present work we have investigated the expression of p75{sup NTR} and Trks in totipotent and pluripotent cells, the mouse pre-implantation embryo and embryonic stemmore » and germ cells (ES and EG cells). p75{sup NTR} and TrkA can be first detected in the blastocyst from which ES cell lines are derived. Mouse ES cells retain p75{sup NTR}/TrkA expression. Nerve growth factor is the only neurotrophin able to stimulate ES cell growth in culture, without affecting the expression of stem cell markers, alkaline phosphatase, Oct4 and Nanog. Such proliferation effect was blocked by antagonizing either p75{sup NTR} or TrkA. Interestingly, immunoreactivity to anti-p75{sup NTR} antibodies is lost upon ES cell differentiation. The expression pattern of neurotrophin receptors in murine ES cells differs from human ES cells, that only express TrkB and C, and do not respond to NGF. In this paper we also show that, while primordial germ cells (PGC) do not express p75{sup NTR}, when they are made to revert to an ES-like phenotype, becoming EG cells, expression of p75{sup NTR} is turned on.« less
Chen, Yen-Ming; Chen, Li-Hua; Li, Meng-Pei; Li, Hsing-Fen; Higuchi, Akon; Kumar, S. Suresh; Ling, Qing-Dong; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Chang, Yung; Benelli, Giovanni; Murugan, Kadarkarai; Umezawa, Akihiro
2017-01-01
Establishing cultures of human embryonic (ES) and induced pluripotent (iPS) stem cells in xeno-free conditions is essential for producing clinical-grade cells. Development of cell culture biomaterials for human ES and iPS cells is critical for this purpose. We designed several structures of oligopeptide-grafted poly (vinyl alcohol-co-itaconic acid) hydrogels with optimal elasticity, and prepared them in formations of single chain, single chain with joint segment, dual chain with joint segment, and branched-type chain. Oligopeptide sequences were selected from integrin- and glycosaminoglycan-binding domains of the extracellular matrix. The hydrogels grafted with vitronectin-derived oligopeptides having a joint segment or a dual chain, which has a storage modulus of 25 kPa, supported the long-term culture of human ES and iPS cells for over 10 passages. The dual chain and/or joint segment with cell adhesion molecules on the hydrogels facilitated the proliferation and pluripotency of human ES and iPS cells. PMID:28332572
Chen, Yen-Ming; Chen, Li-Hua; Li, Meng-Pei; Li, Hsing-Fen; Higuchi, Akon; Kumar, S Suresh; Ling, Qing-Dong; Alarfaj, Abdullah A; Munusamy, Murugan A; Chang, Yung; Benelli, Giovanni; Murugan, Kadarkarai; Umezawa, Akihiro
2017-03-23
Establishing cultures of human embryonic (ES) and induced pluripotent (iPS) stem cells in xeno-free conditions is essential for producing clinical-grade cells. Development of cell culture biomaterials for human ES and iPS cells is critical for this purpose. We designed several structures of oligopeptide-grafted poly (vinyl alcohol-co-itaconic acid) hydrogels with optimal elasticity, and prepared them in formations of single chain, single chain with joint segment, dual chain with joint segment, and branched-type chain. Oligopeptide sequences were selected from integrin- and glycosaminoglycan-binding domains of the extracellular matrix. The hydrogels grafted with vitronectin-derived oligopeptides having a joint segment or a dual chain, which has a storage modulus of 25 kPa, supported the long-term culture of human ES and iPS cells for over 10 passages. The dual chain and/or joint segment with cell adhesion molecules on the hydrogels facilitated the proliferation and pluripotency of human ES and iPS cells.
Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5
Ng, Ray Kit; Dean, Wendy; Dawson, Claire; Lucifero, Diana; Madeja, Zofia; Reik, Wolf; Hemberger, Myriam
2008-01-01
Mouse ES cells can differentiate into all three germ layers of the embryo but are generally excluded from the trophoblast lineage. Here we show that ES cells deficient in DNA methylation can differentiate efficiently into trophoblast derivatives. In a genome-wide screen we identify the transcription factor Elf5 as methylated and repressed in ES cells, and hypomethylated and expressed in TS and methylation-deficient ES cells. Elf5 creates a positive feedback loop with TS cell determinants Cdx2 and Eomes that is restricted to the trophoblast lineage by epigenetic regulation of Elf5. Importantly, the late-acting function of Elf5 allows initial plasticity and regulation in the early blastocyst. Thus, Elf5 acts downstream of initial lineage determination as a gatekeeper to reinforce commitment to the trophoblast lineage, or to abort this pathway in epiblast cells. This epigenetic restriction of cell lineage fate provides a molecular mechanism for Waddington’s concept of canalization of developmental pathways. PMID:18836439
Langa, F; Kress, C; Colucci-Guyon, E; Khun, H; Vandormael-Pournin, S; Huerre, M; Babinet, C
2000-10-01
Vimentin is a class III intermediate filament protein widely expressed in the developing embryo and in cells of mesenchymal origin in the adult. Vimentin knock-out mice develop and reproduce without any obvious defect. This is an unexpected finding in view of the high degree of conservation of the vimentin gene among vertebrates. However, it does not exclude the possibility of a role for vimentin in pathological conditions, like tumorigenesis. To address this question directly, we have used a teratocarcinoma model involving the injection of ES cells into syngeneic mice. ES cells lacking vimentin were generated from 129/Sv Vim-/- mice with high efficiency. The absence of vimentin did not affect ES cell morphology, viability or growth rate in vitro. Tumours were induced by subcutaneous injection of either Vim-/- or Vim+/+ ES cells into Vim+/+ and Vim-/- mice, in order to analyse the effect of the absence of vimentin in either the tumorigenic cells or the host mice. No significant differences were found in either tumour incidence, size or vascularization of teratocarcinomas obtained with all possible combinations. Vim-/- ES-derived tumours showed the same cellular composition typical of teratocarcinomas induced by wild-type ES cells together with a very similar apoptotic pattern. Taken together, these results demonstrate that in this model vimentin is not essential for efficient tumour growth and differentiation in vivo.
Wang, Yingjie; Zhang, Yunping; Zhang, Shichang; Peng, Guangyong; Liu, Tao; Li, Yangxin; Xiang, Dedong; Wassler, Michael J; Shelat, Harnath S; Geng, Yongjian
2012-11-01
Embryonic stem (ES) cells are pluripotent cells that are capable of differentiating all the somatic cell lineages, including those in the liver tissue. We describe the generation of functional hepatic-like cells from mouse ES (mES) cells using a biodegradable polymer scaffold and a rotating bioreactor that allows simulated microgravity. Cells derived from ES cells cultured in the three-dimensional (3D) culture system with exogenous growth factors and hormones can differentiate into hepatic-like cells with morphologic characteristics of typical mature hepatocytes. Reverse-transcription polymerase chain-reaction testing, Western blot testing, immunostaining, and flow cytometric analysis show that these cells express hepatic-specific genes and proteins during differentiation. Differentiated cells on scaffolds further exhibit morphologic traits and biomarkers characteristic of liver cells, including albumin production, cytochrome P450 activity, and low-density lipoprotein uptake. When these stem cell-bearing scaffolds are transplanted into severe combined immunodeficient mice, the 3D constructs remained viable, undergoing further differentiation and maturation of hepatic-like cells in vivo. In conclusion, the growth and differentiation of ES cells in a biodegradable polymer scaffold and a rotating microgravity bioreactor can yield functional and organizational hepatocytes useful for research involving bioartificial liver and engineered liver tissue.
Testa, Giuseppe; Harris, John
2005-04-01
The recent in vitro derivation of gamete-like cells from mouse embryonic stem (mES) cells is a major breakthrough and lays down several challenges, both for the further scientific investigation and for the bioethical and biolegal discourse. We refer here to these cells as gamete-like (sperm-like or oocyte-like, respectively), because at present there is still no evidence that these cells behave fully like bona fide sperm or oocytes, lacking the fundamental proof, i.e. combination with a normally derived gamete of the opposite sex to yield a normal individual. However, the results published so far do show that these cells share some defining features of gametes. We discuss these results in the light of the bioethical and legal questions that are likely to arise would the same process become possible with human embryonic stem (hES) cells.
Vendelova, Emilia; Camargo de Lima, Jeferson; Lorenzatto, Karina Rodrigues; Monteiro, Karina Mariante; Mueller, Thomas; Veepaschit, Jyotishman; Grimm, Clemens; Brehm, Klaus; Hrčková, Gabriela; Lutz, Manfred B.; Ferreira, Henrique B.
2016-01-01
Accumulating evidences have assigned a central role to parasite-derived proteins in immunomodulation. Here, we report on the proteomic identification and characterization of immunomodulatory excretory-secretory (ES) products from the metacestode larva (tetrathyridium) of the tapeworm Mesocestoides corti (syn. M. vogae). We demonstrate that ES products but not larval homogenates inhibit the stimuli-driven release of the pro-inflammatory, Th1-inducing cytokine IL-12p70 by murine bone marrow-derived dendritic cells (BMDCs). Within the ES fraction, we biochemically narrowed down the immunosuppressive activity to glycoproteins since active components were lipid-free, but sensitive to heat- and carbohydrate-treatment. Finally, using bioassay-guided chromatographic analyses assisted by comparative proteomics of active and inactive fractions of the ES products, we defined a comprehensive list of candidate proteins released by M. corti tetrathyridia as potential suppressors of DC functions. Our study provides a comprehensive library of somatic and ES products and highlight some candidate parasite factors that might drive the subversion of DC functions to facilitate the persistence of M. corti tetrathyridia in their hosts. PMID:27736880
Characterization of axon formation in the embryonic stem cell-derived motoneuron.
Pan, Hung-Chuan; Wu, Ya-Ting; Shen, Shih-Cheng; Wang, Chi-Chung; Tsai, Ming-Shiun; Cheng, Fu-Chou; Lin, Shinn-Zong; Chen, Ching-Wen; Liu, Ching-San; Su, Hong-Lin
2011-01-01
The developing neural cell must form a highly organized architecture to properly receive and transmit nerve signals. Neural formation from embryonic stem (ES) cells provides a novel system for studying axonogenesis, which are orchestrated by polarity-regulating molecules. Here the ES-derived motoneurons, identified by HB9 promoter-driven green fluorescent protein (GFP) expression, showed characteristics of motoneuron-specific gene expression. In the majority of motoneurons, one of the bilateral neurites developed into an axon that featured with axonal markers, including Tau1, vesicle acetylcholine transporter, and synaptophysin. Interestingly, one third of the motoneurons developed bi-axonal processes but no multiple axonal GFP cell was found. The neuronal polarity-regulating proteins, including the phosphorylated AKT and ERK, were compartmentalized into both of the bilateral axonal tips. Importantly, this aberrant axon morphology was still present after the engraftment of GFP(+) neurons into the spinal cord, suggesting that even a mature neural environment fails to provide a proper niche to guide normal axon formation. These findings underscore the necessity for evaluating the morphogenesis and functionality of neurons before the clinical trials using ES or somatic stem cells.
Leukemia Inhibitory Factor (L1F), a member of the Interleukin 6 cytokine family, has a role in differentiation of Human Neural Progenitor (hNP) cells in vitro. hNP cells, derived from Human Embryonic Stem (hES) cells, have an unlimited capacity for self-renewal in monolayer cultu...
Wu, Rongrong; Xu, Chenming; Jin, Fan; Tan, Zhou; Gu, Bin; Chen, Liangbiao; Yao, Xing; Zhang, Ming
2010-08-01
Currently worldwide attention has focused on the derivation of human embryonic stem cells (hESCs) for future therapeutic medicine. However, the majority of existing hESCs are directly or indirectly exposed to non-human materials during their derivation and/or propagation, which greatly restrict their therapeutic potential. Besides the efforts to improve culture systems, the derivation procedure, especially blastocyst manipulation, needs to be optimized. We adopted a non-contact laser-assisted hatching system in combination with sequential culture process to obtain hatched blastocysts as materials for hESC derivation, and derived a hESC line ZJUhES-1 of a Chinese population without exposure to any non-human materials during blastocyst manipulation. ZJUhES-1 satisfies the criteria of pluripotent hESCs: typically morphological characteristics; the expression of alkaline phosphatase, human telomerase reverse transcriptase and multiple hESC-specific markers including SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, OCT-4, Nanog, Rex-1, Sox-2, UTF-1, Connexins 43 and 45, TERF-1 and TERF-2, Glut-1, BCRP-1/ABCG-2, GDF3, LIN28, FGF4, Thy-1, Cripto1/TDGF1, AC133 as well as SMAD1/2/3/5; extended proliferative capacity; maintenance of a stable male karyotype after long-term cultivation; and robust multiple-lineage developmental potentials both in vivo and in vitro. Moreover, ZJUhES-1 has distinct identity revealed from DNA fingerprinting. Our xeno-free blastocyst manipulation procedure may promote the progression toward clinical-grade hESC derivation. © 2010 The Authors. Human Cell © 2010 Japan Human Cell Society.
Jeon, So-Ye; Hwang, Kyung-A; Kim, Cho-Won; Jeung, Eui-Bae; Choi, Kyung-Chul
2017-07-01
Embryonic stem (ES) cells are pluripotent stem cells derived from a developmental stage of pre‑implanted embryos. The present study investigated the effect of female sex steroid hormones on the characteristics of human ES cells by using a feeder‑free culture protocol. In a feeder‑free condition without sex hormones, human ES cells assumed the form of tightly packed cells that grow in a monolayer. The cells had clean and defined edges with no evidence of differentiation and expressed several markers specific for undifferentiated ES cells including POU class 5 homeobox 1 (POU5F1), sex determining region Y‑box 2 (SOX2) and NANOG homeobox (NANOG). It was then investigated if female sex steroid hormones including 17β‑estradiol (E2) and progesterone (P4) altered the protein expression of epithelial-mesenchymal transition (EMT) associated markers in addition to pluripotency markers including POU5F1, SOX2 and NANOG in human ES cells. The protein expression levels of N‑cadherin, Snail and Slug were increased while E‑cadherin expression was decreased by treatment of E2 or P4, and the expression levels of POU5F1, SOX2 and NANOG were decreased by the treatment of E2 or P4. When E2 and P4 were treated in combination with an estrogen receptor inhibitor (ICI 182,780) and progesterone receptor inhibitor (RU486) respectively, their effects on EMT and pluripotency of ES cells were restored to control levels. The results suggested that E2 and P4 may regulate EMT and pluripotency of human ES cells by mediating their receptors. The present study may aid in the understanding of the role of sex steroid hormones in the cellular biology of human ES cells.
Boyd, Ashleigh S.; Wood, Kathryn J.
2010-01-01
Background The fully differentiated progeny of ES cells (ESC) may eventually be used for cell replacement therapy (CRT). However, elements of the innate immune system may contribute to damage or destruction of these tissues when transplanted. Methodology/Principal Findings Herein, we assessed the hitherto ill-defined contribution of the early innate immune response in CRT after transplantation of either ESC derived insulin producing cell clusters (IPCCs) or adult pancreatic islets. Ingress of neutrophil or macrophage cells was noted immediately at the site of IPCC transplantation, but this infiltration was attenuated by day three. Gene profiling identified specific inflammatory cytokines and chemokines that were either absent or sharply reduced by three days after IPCC transplantation. Thus, IPCC transplantation provoked less of an early immune response than pancreatic islet transplantation. Conclusions/Significance Our study offers insights into the characteristics of the immune response of an ESC derived tissue in the incipient stages following transplantation and suggests potential strategies to inhibit cell damage to ensure their long-term perpetuation and functionality in CRT. PMID:20532031
Sharma, Ruchi; George, Aman; Kamble, Nitin Manchindra; Singh, Karn Pratap; Chauhan, Manmohan Singh; Singla, Suresh Kumar; Manik, Radhey Sham; Palta, Prabhat
2011-12-01
A culture system capable of sustaining self-renewal of buffalo embryonic stem (ES) cell-like cells in an undifferentiated state over a long period of time was developed. Inner cell masses were seeded on KO-DMEM+15% KO-serum replacer on buffalo fetal fibroblast feeder layer. Supplementation of culture medium with 5 ng/mL FGF-2 and 1000 IU/mL mLIF gave the highest (p<0.05) rate of primary colony formation. The ES cell-like cells' colony survival rate and increase in colony size were highest (p<0.05) following supplementation with FGF-2 and LIF compared to other groups examined. FGF-2 supplementation affected the quantitative expression of NANOG, SOX-2, ACTIVIN A, BMP 4, and TGFβ1, but not OCT4 and GREMLIN. Supplementation with SU5402, an FGFR inhibitor (≥20 μM) increased (p<0.05) the percentage of colonies that differentiated. FGFR1-3 and ERK1, K-RAS, E-RAS, and SHP-2, key signaling intermediates of FGF signaling, were detected in ES cell-like cells. Under culture conditions described, three ES cell lines were derived that, to date, have been maintained for 135, 95, and 85 passages for over 27, 19, and 17 months, respectively, whereas under other conditions examined, ES cell-like cells did not survive beyond passage 10. The ES cell-like cells were regularly monitored for expression of pluripotency markers and their potency to form embryoid bodies.
Mouse cloning and somatic cell reprogramming using electrofused blastomeres.
Riaz, Amjad; Zhao, Xiaoyang; Dai, Xiangpeng; Li, Wei; Liu, Lei; Wan, Haifeng; Yu, Yang; Wang, Liu; Zhou, Qi
2011-05-01
Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved. Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.
Germline competence of mouse ES and iPS cell lines: Chimera technologies and genetic background.
Carstea, Ana Claudia; Pirity, Melinda K; Dinnyes, Andras
2009-12-31
In mice, gene targeting by homologous recombination continues to play an essential role in the understanding of functional genomics. This strategy allows precise location of the site of transgene integration and is most commonly used to ablate gene expression ("knock-out"), or to introduce mutant or modified alleles at the locus of interest ("knock-in"). The efficacy of producing live, transgenic mice challenges our understanding of this complex process, and of the factors which influence germline competence of embryonic stem cell lines. Increasingly, evidence indicates that culture conditions and in vitro manipulation can affect the germline-competence of Embryonic Stem cell (ES cell) lines by accumulation of chromosome abnormalities and/or epigenetic alterations of the ES cell genome. The effectiveness of ES cell derivation is greatly strain-dependent and it may also influence the germline transmission capability. Recent technical improvements in the production of germline chimeras have been focused on means of generating ES cells lines with a higher germline potential. There are a number of options for generating chimeras from ES cells (ES chimera mice); however, each method has its advantages and disadvantages. Recent developments in induced pluripotent stem (iPS) cell technology have opened new avenues for generation of animals from genetically modified somatic cells by means of chimera technologies. The aim of this review is to give a brief account of how the factors mentioned above are influencing the germline transmission capacity and the developmental potential of mouse pluripotent stem cell lines. The most recent methods for generating specifically ES and iPS chimera mice, including the advantages and disadvantages of each method are also discussed.
Skoudy, Anouchka; Rovira, Meritxell; Savatier, Pierre; Martin, Franz; León-Quinto, Trinidad; Soria, Bernat; Real, Francisco X
2004-01-01
Extracellular signalling cues play a major role in the activation of differentiation programmes. Mouse embryonic stem (ES) cells are pluripotent and can differentiate into a wide variety of specialized cells. Recently, protocols designed to induce endocrine pancreatic differentiation in vitro have been designed but little information is currently available concerning the potential of ES cells to differentiate into acinar pancreatic cells. By using conditioned media of cultured foetal pancreatic rudiments, we demonstrate that ES cells can respond in vitro to signalling pathways involved in exocrine development and differentiation. In particular, modulation of the hedgehog, transforming growth factor beta, retinoid, and fibroblast growth factor pathways in ES cell-derived embryoid bodies (EB) resulted in increased levels of transcripts encoding pancreatic transcription factors and cytodifferentiation markers, as demonstrated by RT-PCR. In EB undergoing spontaneous differentiation, expression of the majority of the acinar genes (i.e. amylase, carboxypeptidase A and elastase) was induced after the expression of endocrine genes, as occurs in vivo during development. These data indicate that ES cells can undergo exocrine pancreatic differentiation with a kinetic pattern of expression reminiscent of pancreas development in vivo and that ES cells can be coaxed to express an acinar phenotype by activation of signalling pathways known to play a role in pancreatic development and differentiation. PMID:14733613
Kumagai, Katsuyoshi; Takanashi, Masakatsu; Ohno, Shin-Ichiro; Kuroda, Masahiko; Sudo, Katsuko
2017-05-03
Targeted mutant mice generated on a C57BL/6 background are powerful tools for analysis of the biological functions of genes, and gene targeting technologies using mouse embryonic stem (ES) cells have been used to generate such mice. Recently, a bacterial artificial chromosome (BAC) recombineering system was established for the construction of targeting vectors. However, gene retrieval from BACs for the generation of gene targeting vectors using this system remains difficult. Even when construction of a gene targeting vector is successful, the efficiency of production of targeted mutant mice from ES cells derived from C57BL/6 mice are poor. Therefore, in this study, we first improved the strategy for the retrieval of genes from BACs and their transfer into a DT-A plasmid, for the generation of gene targeting vectors using the BAC recombineering system. Then, we attempted to generate targeted mutant mice from ES cell lines derived from C57BL/6 mice, by culturing in serum-free medium. In conclusion, we established an improved strategy for the efficient generation of targeted mutant mice on a C57BL/6 background, which are useful for the in vivo analysis of gene functions and regulation.
2015-10-01
amniotic Fluid Derived Stem Cells (AFS). PRINCIPAL INVESTIGATOR: Thomas L. Smith, PhD CONTRACTING ORGANIZATION: Wake Forest University Health Sciences...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Wake Forest University Health Sciences Medical Center Boulevard Winston-Salem, NC 27157
Hyperforin inhibits cell proliferation and differentiation in mouse embryonic stem cells.
Nakamura, K; Aizawa, K; Yamauchi, J; Tanoue, A
2013-10-01
Hyperforin, a phloroglucinol derivative of St. John's Wort, has been identified as the major molecule responsible for this plant's products anti-depressant effects. It can be expected that exposure to St. John's Wort during pregnancy occurs with some frequency although embryotoxic or teratogenic effects of St. John's Wort and hyperforin have not yet been experimentally examined in detail. In this study, to determine any embryotoxic effects of hyperforin, we have attempted to determine whether hyperforin affects growth and survival processes of employing mouse embryonic stem (mES) cells (representing embryonic tissue) and fibroblasts (representing adult tissues). We used a modified embryonic stem cell test, which has been validated as an in vitro developmental toxicity protocol, mES cells, to assess embryotoxic potential of chemicals under investigation. We have identified that high concentrations of hyperforin inhibited mouse ES cell population growth and induced apoptosis in fibroblasts. Under our cell culture conditions, ES cells mainly differentiated into cardiomyocytes, although various other cell types were also produced. In this condition, hyperforin affected ES cell differentiation into cardiomyocytes in a dose-dependent manner. Analysis of tissue-specific marker expression also revealed that hyperforin at high concentrations partially inhibited ES cell differentiation into mesodermal and endodermal lineages. Hyperforin is currently used in the clinic as a safe and effective antidepressant. Our data indicate that at typical dosages it has only a low risk of embryotoxicity; ingestion of large amounts of hyperforin by pregnant women, however, may pose embryotoxic and teratogenic risks. © 2013 John Wiley & Sons Ltd.
Cui, Lin; Jiang, Jun; Wei, Ling; Zhou, Xin; Fraser, Jamie L; Snider, B Joy; Yu, Shan Ping
2008-05-01
Extensive research has focused on transplantation of pluripotent stem cells for the treatment of central nervous system disorders, the therapeutic potential of stem cell therapy for injured peripheral nerves is largely unknown. We used a rat sciatic nerve transection model to test the ability of implanted embryonic stem (ES) cell-derived neural progenitor cells (ES-NPCs) in promoting repair of a severely injured peripheral nerve. Mouse ES cells were neurally induced in vitro; enhanced expression and/or secretion of growth factors were detected in differentiating ES cells. One hour after removal of a 1-cm segment of the left sciatic nerve, ES-NPCs were implanted into the gap between the nerve stumps with the surrounding epineurium as a natural conduit. The transplantation resulted in substantial axonal regrowth and nerve repair, which were not seen in culture medium controls. One to 3 months after axotomy, co-immunostaining with the mouse neural cell membrane specific antibody M2/M6 and the Schwann cell marker S100 suggested that transplanted ES-NPCs had survived and differentiated into myelinating cells. Regenerated axons were myelinated and showed a uniform connection between proximal and distal stumps. Nerve stumps had near normal diameter with longitudinally oriented, densely packed Schwann cell-like phenotype. Fluoro-Gold retrogradely labeled neurons were found in the spinal cord (T12-13) and DRG (L4-L6), suggesting reconnection of axons across the transection. Electrophysiological recordings showed functional activity recovered across the injury gap. These data suggest that transplanted neurally induced ES cells differentiate into myelin-forming cells and provide a potential therapy for severely injured peripheral nerves.
Wang, Zhongde
2011-01-01
Cloning animals by nuclear transfer (NT) has been successful in several mammalian species. In addition to cloning live animals (reproductive cloning), this technique has also been used in several species to establish cloned embryonic stem (ntES) cell lines from somatic cells. It is the latter application of this technique that has been heralded as being the potential means to produce isogenic embryonic stem cells from patients for cell therapy (therapeutic cloning). These two types of cloning differ only in the steps after cloned embryos are produced: for reproductive cloning the cloned embryos are transferred to surrogate mothers to allow them to develop to full term and for therapeutic cloning the cloned embryos are used to derive ntES cells. In this chapter, a detailed NT protocol in mouse by using somatic stem cells (neuron and skin stem cells) and fully differentiated somatic cells (cumulus cells and fibroblast cells) as nuclear donors is described.
Tamai, Miho; Aoki, Mami; Nishimura, Akihito; Morishita, Koji; Tagawa, Yoh-ichi
2013-12-01
Ammonia, a toxic metabolite, is converted to urea in hepatocytes via the urea cycle, a process necessary for cell/organismal survival. In liver, hepatocytes, polygonal and multipolar structures, have a few sides which face hepatic sinusoids and adjacent hepatocytes to form intercellular bile canaliculi connecting to the ductules. The critical nature of this three-dimensional environment should be related to the maintenance of hepatocyte function such as urea synthesis. Recently, we established an in vitro liver model derived from murine embryonic stem cells, IVL(mES), which included the hepatocyte layer and a surrounding sinusoid vascular-like network. The IVL(mES) culture, where the hepatocyte is polarized in a similar fashion to its in vivo counterpart, could successfully recapitulate in vivo results. L-Ornithine is an intermediate of the urea cycle, but supplemental L-ornithine does not activate the urea cycle in the apolar primary hepatocyte of monolayer culture. In the IVL(mES), supplemental L-ornithine could activate the urea cycle, and also protect against ammonium/alcohol-induced hepatocyte death. While the IVL(mES) displays architectural and functional properties similar to the liver, primary hepatocyte of monolayer culture fail to model critical functional aspects of liver physiology. We propose that the IVL(mES) will represent a useful, humane alternative to animal studies for drug toxicity and mechanistic studies of liver injury.
Todorova, Mariana G; Soria, Bernat; Quesada, Ivan
2008-02-01
Pluripotent embryonic stem (ES) cells are capable of maintaining a self-renewal state and have the potential to differentiate into derivatives of all three embryonic germ layers. Despite their importance in cell therapy and developmental biology, the mechanisms whereby ES cells remain in a proliferative and pluripotent state are still not fully understood. Here we establish a critical role of gap junctional intercellular communication (GJIC) and connexin43 (Cx43) in both processes. Pharmacological blockers of GJIC and Cx43 down-regulation by small interfering RNA (siRNA) caused a profound inhibitory effect on GJIC, as evidenced by experiments of fluorescence recovery after photobleaching. This deficient intercellular communication in ES cells induced a loss of their pluripotent state, which was manifested in morphological changes, a decrease in alkaline phosphatase activity, Oct-3/4 and Nanog expression, as well as an up-regulation of several differentiation markers. A decrease in the proliferation rate was also detected. Under these conditions, the formation of embryoid bodies from mouse ES cells was impaired, although this inhibition was reversible upon restoration of GJIC. Our findings define a major function of GJIC in the regulation of self-renewal and maintenance of pluripotency in ES cells. (c) 2007 Wiley-Liss, Inc.
Stem cell research in Germany: ethics of healing vs. human dignity.
Oduncu, Fuat S
2003-01-01
On 25 April 2002, the German Parliament has passed a strict new law referring to stem cell research. This law took effect on July 1, 2002. The so-called embryonic Stem Cell Act ("Stammzellgesetz-StZG") permits the import of embryonic stem (ES) cells isolated from surplus lvF-embryos for research reasons. The production itself of ES cells from human blastocysts has been prohibited by the German Embryo Protection Act of 1990, with the exception of the use of ES cells which exist already. The debate on the legitimate use of ES cells escalated, after the main German research funding agency, the Deutsche Forschungsgemeinschaft (DFG), unexpectedly published new guidelines recommending a restricted use of human ES cells for research. Meanwhile, the debate has ethically divided society, political parties, government and church members into a group supporting and a group rejecting ES cell research. The arguments in favour of such a research can be summarized as arguments derived from a new "ethics of healing" calling for a therapeutic imperative, whereas the arguments against can be summarized as arguments violating the fundamental principle of human dignity as they imply the destruction of human embryos. This article will try to present and evaluate various ethical arguments founded on the latest biological and medical data on the potential use of stem cell technologies. It will finally come to the conclusion that ES cell research is opposed to human dignity, since the procedures of isolating ES cells require the destruction and instrumentalization of human embryos. Human embryos are human beings at a very early stage of their development, fully possessing the ability of completing their development. At this very early stage, human embryos are extremely dependent and fragile, and thus vulnerable corporealities. Vulnerability and human dignity demand the protection of the embryo's corporeal integrity. Hence, this essay will try to propagate research with adult stem (AS) cells, a procedure which does not require the destruction of human embryos; with regard to the necessary plasticity, it should be emphasized that AS cells very much resemble ES cells.
Son, Yeon Sung; Park, Jae Hyun; Kang, Young Kook; Park, Jin-Sung; Choi, Hong Seo; Lim, Ji Young; Lee, Jeoung Eun; Lee, Jung Bok; Ko, Myoung Seok; Kim, Yong-Sam; Ko, Jeong-Heon; Yoon, Hyun Soo; Lee, Kwang-Woong; Seong, Rho Hyun; Moon, Shin Yong; Ryu, Chun Jeih; Hong, Hyo Jeong
2005-01-01
The cell-surface markers used routinely to define the undifferentiated state and pluripotency of human embryonic stem cells (hESCs) are those used in mouse embryonic stem cells (mESCs) because of a lack of markers directly originated from hESC itself. To identify more hESC-specific cell-surface markers, we generated a panel of monoclonal antibodies (MAbs) by immunizing the irradiated cell clumps of hESC line Miz-hES1, and selected 26 MAbs that were able to bind to Miz-hES1 cells but not to mESCs, mouse embryonic fibroblast cells, and STO cells. Most antibodies did not bind to human neural progenitor cells derived from the Miz-hES1 cells, either. Of these, MAb 20-202S (IgG1, kappa) immunoprecipitated a cell-surface protein of 72-kDa from the lysate of biotin-labeled Miz-hES1 cells, which was identified to be heat shock 70-kDa protein 8 isoform 1 (HSPA8) by quadrupole time-of-flight tandem mass spectrometry. Immunocytochemical analyses proved that the HSPA8 protein was also present on the surface of hESC lines Miz-hES4, Miz-hES6, and HSF6. Two-color flow cytometric analysis of Miz-hES1 and HSF6 showed the coexpression of the HSPA8 protein with other hESC markers such as stage-specific embryonic antigen 3 (SSEA3), SSEA4, TRA-1-60, and TRA-1-81. Flow cytometric and Western blot analyses using various cells showed that MAb 20-202S specifically bound to the HSPA8 protein on the surface of Miz-hES1, contrary to other anti-HSP70 antibodies examined. Furthermore, the surface expression of the HSPA8 protein on Miz-hES1 was markedly downregulated upon differentiation. These data indicate that a novel MAb 20-202S recognizes the HSPA8 protein on the surface of hESCs and suggest that the HSPA8 protein is a putative cell-surface marker for undifferentiated hESCs.
Barbet, Romain; Peiffer, Isabelle; Hatzfeld, Antoinette; Charbord, Pierre; Hatzfeld, Jacques A
2011-01-01
We present a strategy to identify developmental/differentiation and plasma membrane marker genes of the most primitive human Mesenchymal Stem Cells (hMSCs). Using sensitive and quantitative TaqMan Low Density Arrays (TLDA) methodology, we compared the expression of 381 genes in human Embryonic Stem Cells (hESCs), hESC-derived MSCs (hES-MSCs), and hMSCs. Analysis of differentiation genes indicated that hES-MSCs express the sarcomeric muscle lineage in addition to the classical mesenchymal lineages, suggesting they are more primitive than hMSCs. Transcript analysis of membrane antigens suggests that IL1R1(low), BMPR1B(low), FLT4(low), LRRC32(low), and CD34 may be good candidates for the detection and isolation of the most primitive hMSCs. The expression in hMSCs of cytokine genes, such as IL6, IL8, or FLT3LG, without expression of the corresponding receptor, suggests a role for these cytokines in the paracrine control of stem cell niches. Our database may be shared with other laboratories in order to explore the considerable clinical potential of hES-MSCs, which appear to represent an intermediate developmental stage between hESCs and hMSCs.
Zhou, Jun-Mei; Chu, Jian-Xin; Chen, Xue-Jin
2008-01-01
Human embryonic stem (ES) cells have the capacity for self-renewal and are able to differentiate into any cell type. However, obtaining high-efficient neural differentiation from human ES cells remains a challenge. This study describes an improved 4-stage protocol to induce a human ES cell line derived from a Chinese population to differentiate into neural cells. At the first stage, embryonic bodies (EBs) were formed in a chemically-defined neural inducing medium rather than in traditional serum or serum-replacement medium. At the second stage, rosette-like structures were formed. At the third stage, the rosette-like structures were manually selected rather than enzymatically digested to form floating neurospheres. At the fourth stage, the neurospheres were further differentiated into neurons. The results show that, at the second stage, the rate of the formation of rosette-like structures from EBs induced by noggin was 88+/-6.32%, higher than that of retinoic acid 55+/-5.27%. Immunocytochemistry staining was used to confirm the neural identity of the cells. These results show a major improvement in obtaining efficient neural differentiation of human ES cells.
Wakayama, Teruhiko
2007-02-01
Although it has now been 10 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), most cloned embryos usually undergo developmental arrest prior to or soon after implantation, and the success rate for producing live offspring by cloning remains below 5%. The low success rate is believed to be associated with epigenetic errors, including abnormal DNA hypermethylation, but the mechanism of "reprogramming" is unclear. We have been able to develop a stable NT method in the mouse in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Especially in the mouse, only a few laboratories can make clones from adult somatic cells, and cloned mice are never successfully produced from most mouse strains. However, this technique promises to be an important tool for future research in basic biology. For example, NT can be used to generate embryonic stem (NT-ES) cell lines from a patient's own somatic cells. We have shown that NT-ES cells are equivalent to ES cells derived from fertilized embryos and that they can be generated relatively easily from a variety of mouse genotypes and cell types of both sexes, even though it may be more difficult to generate clones directly. In general, NT-ES cell techniques are expected to be applied to regenerative medicine; however, this technique can also be applied to the preservation of genetic resources of mouse strain instead of embryos, oocytes and spermatozoa. This review describes how to improve cloning efficiency and NT-ES cell establishment and further applications.
Wang, Chaochen; Lee, Ji-Eun; Cho, Young-Wook; Xiao, Ying; Jin, Qihuang; Liu, Chengyu; Ge, Kai
2012-09-18
To investigate the role of histone H3K27 demethylase UTX in embryonic stem (ES) cell differentiation, we have generated UTX knockout (KO) and enzyme-dead knock-in male ES cells. Deletion of the X-chromosome-encoded UTX gene in male ES cells markedly decreases expression of the paralogous UTY gene encoded by Y chromosome, but has no effect on global H3K27me3 level, Hox gene expression, or ES cell self-renewal. However, UTX KO cells show severe defects in mesoderm differentiation and induction of Brachyury, a transcription factor essential for mesoderm development. Surprisingly, UTX regulates mesoderm differentiation and Brachyury expression independent of its enzymatic activity. UTY, which lacks detectable demethylase activity, compensates for the loss of UTX in regulating Brachyury expression. UTX and UTY bind directly to Brachyury promoter and are required for Wnt/β-catenin signaling-induced Brachyury expression in ES cells. Interestingly, male UTX KO embryos express normal levels of UTY and survive until birth. In contrast, female UTX KO mice, which lack the UTY gene, show embryonic lethality before embryonic day 11.5. Female UTX KO embryos show severe defects in both Brachyury expression and embryonic development of mesoderm-derived posterior notochord, cardiac, and hematopoietic tissues. These results indicate that UTX controls mesoderm differentiation and Brachyury expression independent of H3K27 demethylase activity, and suggest that UTX and UTY are functionally redundant in ES cell differentiation and early embryonic development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozeki, Nobuaki; Hase, Naoko; Hiyama, Taiki
2014-10-15
We previously established a method for differentiating induced pluripotent stem cells and embryonic stem (ES) cells into α2 integrin-positive odontoblast-like cells. We also reported that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-3-regulated cell proliferation and suppresses apoptosis in these cells, suggesting that MMP-3 plays a potentially unique physiological role in the regeneration of odontoblast-like cells. Here, we examined whether up-regulation of MMP-3 activity by IL-1β was mediated by Wnt signaling and led to increased proliferation of odontoblast-like cells. IL-1β increased mRNA and protein levels of Wnt5a, Wnt5b and the Wnt receptor Lrp5. Exogenous Wnt5a and Wnt5b were found to increase MMP-3more » mRNA, protein and activity, and interestingly the rate of proliferation in these cells. Treatment with siRNAs against Wnt5a, Wnt5b and Lrp5 suppressed the IL-1β-induced increase in MMP-3 expression and suppressed cell proliferation, an effect rescued by application of exogenous Wnt5. These results demonstrate the sequential involvement of Wnt5, Lrp5 and MMP-3 in effecting IL-1β-induced proliferation of ES cell-derived odontoblast-like cells. - Highlights: • IL-1β induces Wnt5, Lrp5/Fzd9 and MMP-3 in ES cell-derived odontoblast-like cells. • IL-1β-induced Wnt5 expression results in increased cell proliferation. • Exogenous Wnt5 increases MMP-3 activity and cell proliferation. • Exogenous Wnt5 rescues IL-1β-driven proliferation with anti-Wnt5 siRNA suppression. • IL-1β-induced cell proliferation involves Wnt5, Lrp5, and MMP-3 sequentially.« less
The effect of matrix composition of 3D constructs on embryonic stem cell differentiation.
Battista, Sabrina; Guarnieri, Daniela; Borselli, Cristina; Zeppetelli, Stefania; Borzacchiello, Assunta; Mayol, Laura; Gerbasio, Diego; Keene, Douglas R; Ambrosio, Luigi; Netti, Paolo A
2005-11-01
The use of embryonic stem (ES) cells as unlimited cell source in tissue engineering has ignited the hope of regenerating any kind of tissue in vitro. However, the role of the material in control and guidance of their development and commitment into complex and viable three-dimensional (3D) tissues is still poorly understood. In this work, we investigate the role of material composition and structure on promoting ES cells growth and differentiation, by culturing mouse ES cell-derived embryoid bodies (EBs) in various semi-interpenetrating polymer networks (SIPNs), made of collagen, fibronectin (FN) and laminin (LM). We show that both composition and strength of the supportive matrix play an important role in EBs development. High collagen concentrations inhibit EBs cavitation and hence the following EBs differentiation, by inhibiting apoptosis. The presence of FN in 3D collagen constructs strongly stimulates endothelial cell differentiation and vascularization. Conversely, LM increases the ability of ES cells to differentiate into beating cardiomyocytes. Our data suggest that matrix composition has an important role in EBs development and that it is possible to influence stem cell differentiation toward preferential pattern, by modulating the physical and biochemical properties of the scaffold.
Abasi, M; Massumi, M; Riazi, G; Amini, H
2012-10-11
Parkinson's disease (PD) is a neurodegenerative disorder in which the nigro-striatal dopaminergic (DAergic) neurons have been selectively lost. Due to side effects of levodopa, a dopamine precursor drug, recently cell replacement therapy for PD has been considered. Lack of sufficient amounts of, embryos and ethical problems regarding the use of dopamine-rich embryonic neural cells have limited the application of these cells for PD cell therapy. Therefore, many investigators have focused on using the pluripotent stem cells to generate DAergic neurons. This study is aimed first to establish a mouse embryonic stem (mES) cell line that can stably co-express Nurr1 (Nuclear receptor subfamily 4, group A, member 2) transcription factor in order to efficiently generate DAergic neurons, and glutathione peroxidase-1 (GPX-1) to protect the differentiated DAergic-like cells against oxidative stress. In addition to genetic engineering of ES cells, the effect of Beta-boswellic acid (BBA) on DAergic differentiation course of mES cells was sought in the present study. To that end, the feeder-independent CGR8 mouse embryonic stem cells were transduced by Nurr1- and GPX-1-harboring Lentiviruses and the generated Nurr1/GPX-1-expresssing ES clones were characterized and verified. Gene expression analyses demonstrated that BBA treatment and overexpression of Nurr1 has a synergistic effect on derivation of DAergic neurons from Nurr1/GPX-1-expressing ES cells. The differentiated cells could exclusively synthesize and secrete dopamine in response to stimuli. Overexpression of GPX-1 in genetically engineered Nurr1/GPX-1-ES cells increased the viability of these cells during their differentiation into CNS stem cells. In conclusion, the results demonstrated that Nurr1-overexpressing feeder-independent ES cells like the feeder-dependent ES cells, can be efficiently programmed into functional DAergic neurons and additional treatment of cells by BBA can even augment this efficiency. GPX-1 overexpression in Nurr1/GPX-1-ES cells increases the viability of differentiated CNS stem-like cells. The result of this study may have impact on future stem cell therapy of PD. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Eischen-Loges, Maria; Oliveira, Karla M C; Bhavsar, Mit B; Barker, John H; Leppik, Liudmila
2018-01-01
Electrical stimulation (ES) has a long history of successful use in the clinical treatment of refractory, non-healing bone fractures and has recently been proposed as an adjunct to bone tissue-engineering treatments to optimize their therapeutic potential. This idea emerged from ES's demonstrated positive effects on stem cell migration, proliferation, differentiation and adherence to scaffolds, all cell behaviors recognized to be advantageous in Bone Tissue Engineering (BTE). In previous in vitro experiments we demonstrated that direct current ES, administered daily, accelerates Mesenchymal Stem Cell (MSC) osteogenic differentiation. In the present study, we sought to define the optimal ES regimen for maximizing this pro-osteogenic effect. Rat bone marrow-derived MSC were exposed to 100 mV/mm, 1 hr/day for three, seven, and 14 days, then osteogenic differentiation was assessed at Day 14 of culture by measuring collagen production, calcium deposition, alkaline phosphatase activity and osteogenic marker gene expression. We found that exposing MSC to ES for three days had minimal effect, while seven and 14 days resulted in increased osteogenic differentiation, as indicated by significant increases in collagen and calcium deposits, and expression of osteogenic marker genes Col1a1 , Osteopontin , Osterix and Calmodulin . We also found that cells treated with ES for seven days, maintained this pro-osteogenic activity long (for at least seven days) after discontinuing ES exposure. This study showed that while three days of ES is insufficient to solicit pro-osteogenic effects, seven and 14 days significantly increases osteogenic differentiation. Importantly, we found that cells treated with ES for only seven days, maintained this pro-osteogenic activity long after discontinuing ES exposure. This sustained positive osteogenic effect is likely due to the enhanced expression of RunX2 and Calmodulin we observed. This prolonged positive osteogenic effect, long after discontinuing ES treatment, if incorporated into BTE treatment protocols, could potentially improve outcomes and in doing so help BTE achieve its full therapeutic potential.
Scheper, Verena; Paasche, Gerrit; Miller, Josef M; Warnecke, Athanasia; Berkingali, Nurdanat; Lenarz, Thomas; Stöver, Timo
2009-05-01
Electrical stimulation (ES) of spiral ganglion cells (SGC) via a cochlear implant is the standard treatment for profound sensor neural hearing loss. However, loss of hair cells as the morphological correlate of sensor neural hearing loss leads to deafferentation and death of SGC. Although immediate treatment with ES or glial cell line-derived neurotrophic factor (GDNF) can prevent degeneration of SGC, only few studies address the effectiveness of delayed treatment. We hypothesize that both interventions have a synergistic effect and that even delayed treatment would protect SGC. Therefore, an electrode connected to a pump was implanted into the left cochlea of guinea pigs 3 weeks after deafening. The contralateral untreated cochleae served as deafened intraindividual controls. Four groups were set up. Control animals received intracochlear infusion of artificial perilymph (AP/-). The experimental groups consisted of animals treated with AP in addition to continuous ES (AP/ES) or treated with GDNF alone (GDNF/-) or GDNF combined with continuous ES (GDNF/ES). Acoustically and electrically evoked auditory brain stem responses were recorded. All animals were killed 48 days after deafening; their cochleae were histologically evaluated. Survival of SGC increased significantly in the GDNF/- and AP/ES group compared with the AP/- group. A highly significant increase in SGC density was observed in the GDNF/ES group compared with the control group. Additionally, animals in the GDNF/ES group showed reduced EABR thresholds. Thus, delayed treatment with GDNF and ES can protect SGC from degeneration and may improve the benefits of cochlear implants.
Mei, Yu-Qin; Pan, Zong-Fu; Chen, Wen-Teng; Xu, Min-Hua; Zhu, Dan-Yan; Yu, Yong-Ping; Lou, Yi-Jia
2016-01-01
Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of embryonic stem (ES) cells. By using a small molecule, present research has investigated the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons morphologically and functionally. The expression and localization of peroxisome proliferator-activated receptors (PPARs) were examined in neural progenitor cells. PPAR-β expression showed robust upregulation compared to solvent control. Treatment with PPAR-β agonist L165041 alone or together with compound 4a significantly promoted neuronal differentiation, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. Consistently, knockdown of PPAR-β in ES cells abolished compound 4a-induced neuronal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also abolished by sh-PPAR-β, resulting in abnormal mitochondrial Ca2+ ([Ca2+]M) transients as well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by modulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca2+, PPAR-β took an important role in neuronal differentiation induced by flavonoid compound 4a.
Mei, Yu-qin; Pan, Zong-fu; Chen, Wen-teng; Xu, Min-hua; Zhu, Dan-yan; Yu, Yong-ping; Lou, Yi-jia
2016-01-01
Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of embryonic stem (ES) cells. By using a small molecule, present research has investigated the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons morphologically and functionally. The expression and localization of peroxisome proliferator-activated receptors (PPARs) were examined in neural progenitor cells. PPAR-β expression showed robust upregulation compared to solvent control. Treatment with PPAR-β agonist L165041 alone or together with compound 4a significantly promoted neuronal differentiation, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. Consistently, knockdown of PPAR-β in ES cells abolished compound 4a-induced neuronal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also abolished by sh-PPAR-β, resulting in abnormal mitochondrial Ca2+ ([Ca2+]M) transients as well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by modulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca2+, PPAR-β took an important role in neuronal differentiation induced by flavonoid compound 4a. PMID:27315062
Forced expression of Hnf1b/Foxa3 promotes hepatic fate of embryonic stem cells.
Yahoo, Neda; Pournasr, Behshad; Rostamzadeh, Jalal; Hakhamaneshi, Mohammad Saeed; Ebadifar, Asghar; Fathi, Fardin; Baharvand, Hossein
2016-05-20
Embryonic stem (ES) cell-derived hepatocytes have the potential to be used for basic research, regenerative medicine, and drug discovery. Recent reports demonstrated that in addition to conventional differentiation inducers such as chemical compounds and cytokines, overexpression of lineage-specific transcription factors could induce ES cells to differentiate to a hepatic fate. Here, we hypothesized that lentivirus-mediated inducible expression of hepatic lineage transcription factors could enhance mouse ES cells to hepatocyte-like cells. We screened the effects of candidate transcription factors Hnf1b, Hnf1a, Hnf4a, Foxa1, Foxa3 and Hex, and determined that the combination of Hnf1b/Foxa3 promoted expression of several hepatic lineage-specific markers and proteins, in addition to glycogen storage, ICG uptake, and secretion of albumin and urea. The differentiated cells were engraftable and expressed albumin when transplanted into a carbon tetrachloride-injured mouse model. These results demonstrated the crucial role of Hnf1b and Foxa3 in hepatogenesis in vitro and provided a valuable tool for the efficient differentiation of HLCs from ES cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Ho, Hoang-Yen; Moffat, Ryan C; Patel, Rupal V; Awah, Franklin N; Baloue, Kaitrin; Crowe, David L
2010-09-01
Embryonic stem (ES) cells are derived from early stage mammalian embryos and have broad developmental potential. These cells can be manipulated experimentally to generate cells of multiple tissue types which could be important in treating human diseases. The ability to produce relevant amounts of these differentiated cell populations creates the basis for clinical interventions in tissue regeneration and repair. Understanding how embryonic stem cells differentiate also can reveal important insights into cell biology. A previously reported mouse embryonic stem cell model demonstrated that differentiated epithelial cells migrated out of embryoid bodies attached to reconstituted basement membrane. We used genomic technology to profile ES cell populations in order to understand the molecular mechanisms leading to epithelial differentiation. Cells with characteristics of cultured epithelium migrated from embryoid bodies attached to reconstituted basement membrane. However, cells that comprised embryoid bodies also rapidly lost ES cell-specific gene expression and expressed proteins characteristic of stratified epithelia within hours of attachment to basement membrane. Gene expression profiling of sorted cell populations revealed upregulation of the BMP/TGFbeta signaling pathway, which was not sufficient for epithelial differentiation in the absence of basement membrane attachment. Activation of c-jun N-terminal kinase 1 (JNK1) and increased expression of Jun family transcription factors was observed during epithelial differentiation of ES cells. Inhibition of JNK signaling completely blocked epithelial differentiation in this model, revealing a key mechanism by which ES cells adopt epithelial characteristics via basement membrane attachment. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Production of knock-in mice in a single generation from embryonic stem cells.
Ukai, Hideki; Kiyonari, Hiroshi; Ueda, Hiroki R
2017-12-01
The system-level identification and analysis of molecular networks in mammals can be accelerated by 'next-generation' genetics, defined as genetics that does not require crossing of multiple generations of animals in order to achieve the desired genetic makeup. We have established a highly efficient procedure for producing knock-in (KI) mice within a single generation, by optimizing the genome-editing protocol for KI embryonic stem (ES) cells and the protocol for the generation of fully ES-cell-derived mice (ES mice). Using this protocol, the production of chimeric mice is eliminated, and, therefore, there is no requirement for the crossing of chimeric mice to produce mice that carry the KI gene in all cells of the body. Our procedure thus shortens the time required to produce KI ES mice from about a year to ∼3 months. Various kinds of KI ES mice can be produced with a minimized amount of work, facilitating the elucidation of organism-level phenomena using a systems biology approach. In this report, we describe the basic technologies and protocols for this procedure, and discuss the current challenges for next-generation mammalian genetics in organism-level systems biology studies.
Transplantation of embryonic stem cell-derived dopaminergic neurons in MPTP-treated monkeys.
Takahashi, Jun; Takagi, Yasushi; Saiki, Hidemoto
2009-01-01
One of the target diseases of cell-replacement therapy is Parkinson's disease. Clinical experiences with fetal dopaminergic cell graft have shown that the therapy is effective, but limited and accompanied by side effects, such as dyskinesia. So, the therapy needs to be further improved and sophisticated. Embryonic stem (ES) cells are expected to be another donor cell for the treatment, because of its proliferative and differentiation capacities. For clinical application, experiments using non-human primates are important, because size, anatomy, and biological characteristics of the brain are different between rodents and primates. Here, we would like to discuss induction of dopaminergic neurons from monkey ES cells and cell transplantation into the brain of monkey Parkinson's disease model.
Repair of Avascular Meniscus Tears with Electrospun Collagen Scaffolds Seeded with Human Cells
Baek, Jihye; Sovani, Sujata; Glembotski, Nicholas E.; Du, Jiang; Jin, Sungho; Grogan, Shawn P.
2016-01-01
The self-healing capacity of an injured meniscus is limited to the vascularized regions and is especially challenging in the inner avascular regions. As such, we investigated the use of human meniscus cell-seeded electrospun (ES) collagen type I scaffolds to produce meniscal tissue and explored whether these cell-seeded scaffolds can be implanted to repair defects created in meniscal avascular tissue explants. Human meniscal cells (derived from vascular and avascular meniscal tissue) were seeded on ES scaffolds and cultured. Constructs were evaluated for cell viability, gene expression, and mechanical properties. To determine potential for repair of meniscal defects, human meniscus avascular cells were seeded and cultured on aligned ES collagen scaffolds for 4 weeks before implantation. Surgical defects resembling “longitudinal tears” were created in the avascular zone of bovine meniscus and implanted with cell-seeded collagen scaffolds and cultured for 3 weeks. Tissue regeneration and integration were evaluated by histology, immunohistochemistry, mechanical testing, and magentic resonance imaging. Ex vivo implantation with cell-seeded collagen scaffolds resulted in neotissue that was significantly better integrated with the native tissue than acellular collagen scaffolds or untreated defects. Human meniscal cell-seeded ES collagen scaffolds may therefore be useful in facilitating meniscal repair of avascular meniscus tears. PMID:26842062
Cui, Shu-Xiang; Qu, Xian-Jun; Gao, Zu-Hua; Zhang, Yu-Sheng; Zhang, Xiao-Fan; Zhao, Cui-Rong; Xu, Wen-Fang; Li, Qian-Bin; Han, Jin-Xiang
2010-06-28
Aminopeptidase N (APN/CD13) is an essential peptidase involved in the process of tumor growth, metastasis and angiogenesis. Inhibition of APN/CD13 may be an effective strategy for cancer treatment. CIP-13F is a cyclic-imide peptidomimetics compound designed to fit the active pockets S1 and S'1 of APN/CD13 that act in tumor proliferation. Our aim in this study was to evaluate the efficacy of CIP-13F as a candidate compound for cancer treatment. The experiments were performed on the human ovarian carcinoma (OVCA) ES-2 and HRA cell lines, which have high and low levels of APN/CD13 respectively. CIP-13F significantly blocked APN/CD13 activity on the surface of ES-2 cells as measured by quantitating the enzymatic cleavage of the substrate l-leucine-p-nitroanilide. CIP-13F effectively inhibited ES-2 cell growth and migration without significant cytotoxic effect. In contrast, CIP-13F did not significantly inhibit HRA cell growth, indicating that CIP-13F may inhibit ES-2 cell growth via suppression of APN/CD13. The suppression of APN/CD13 was also observed by using the assays of flow cytometry and Western blot analysis. Further, the inhibitory effects of CIP-13F on APN/CD13 and on ES-2 proliferation were supported by the induction of ES-2 apoptosis. CIP-13F-treated ES-2 cells resulted apoptotic characteristics, such as induction of externalization of phosphatidylserine and DNA laddering fragment. The activation of caspase-3 and poly ADP-ribose polymerase (PARP) was also enhanced. The inhibitory effects of CIP-13F on APN/CD13 expression and on ES-2 proliferation were confirmed in mice bearing ES-2 xenografts. CIP-13F delayed the growth of ES-2 xenografts in mice after 2 weeks of vena caudalis injection. These results suggest that CIP-13F has a high inhibitory effect on the growth of OVCA cells via decreasing the activity and expression of APN/CD13. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Fielder, Thomas J; Yi, Charles S; Masumi, Juliet; Waymire, Katrina G; Chen, Hsiao-Wen; Wang, Shuling; Shi, Kai-Xuan; Wallace, Douglas C; MacGregor, Grant R
2012-12-01
To identify ways to improve the efficiency of generating chimeric mice via microinjection of blastocysts with ES cells, we compared production and performance of ES-cell derived chimeric mice using blastocysts from two closely related and commonly used sub-strains of C57BL/6. Chimeras were produced by injection of the same JM8.N4 (C57BL/6NTac) derived ES cell line into blastocysts of mixed sex from either C57BL/6J (B6J) or C57BL/6NTac (B6NTac) mice. Similar efficiency of production and sex-conversion of chimeric animals was observed with each strain of blastocyst. However, B6J chimeric males had fewer developmental abnormalities involving urogenital and reproductive tissues (1/12, 8%) compared with B6NTac chimeric males (7/9, 78%). The low sample size did not permit determination of statistical significance for many parameters. However, in each category analyzed the B6J-derived chimeric males performed as well, or better, than their B6NTac counterparts. Twelve of 14 (86%) B6J male chimeras were fertile compared with 6 of 11 (55%) B6NTac male chimeras. Ten of 12 (83%) B6J chimeric males sired more than 1 litter compared with only 3 of 6 (50%) B6NTac chimeras. B6J male chimeras produced more litters per productive mating (3.42 ± 1.73, n = 12) compared to B6NTac chimeras (2.17 ± 1.33, n = 6). Finally, a greater ratio of germline transmitting chimeric males was obtained using B6J blastocysts (9/14; 64%) compared with chimeras produced using B6NTac blastocysts (4/11; 36%). Use of B6J host blastocysts for microinjection of ES cells may offer improvements over blastocysts from B6NTac and possibly other sub-strains of C57BL/6 mice.
Gao, Yi-ning; Wang, Dan-ying; Pan, Zong-fu; Mei, Yu-qin; Wang, Zhi-qiang; Zhu, Dan-yan; Lou, Yi-jia
2012-07-01
To set up a platform for phenotype-based primary screening of drug candidates promoting neuronal subtype differentiation in embryonic stem cells (ES) with light microscope. Hanging drop culture 4-/4+ method was employed to harvest the cells around embryoid body (EB) at differentiation endpoint. Morphological evaluation for neuron-like cells was performed with light microscope. Axons for more than three times of the length of the cell body were considered as neuron-like cells. The compound(s) that promote neuron-like cells was further evaluated. Icariin (ICA, 10(-6)mol/L) and Isobavachin (IBA, 10(-7)mol/L) were selected to screen the differentiation-promoting activity on ES cells. Immunofluorescence staining with specific antibodies (ChAT, GABA) was used to evaluate the neuron subtypes. The cells treated with IBA showed neuron-like phenotype, but the cells treated with ICA did not exhibit the morphological changes. ES cells treated with IBA was further confirmed to be cholinergic and GABAergic neurons. Phenotypic screening with light microscope for molecules promoting neuronal differentiation is an effective method with advantages of less labor and material consuming and time saving, and false-positive results derived from immunofluorescence can be avoided. The method confirms that IBA is able to facilitate ES cells differentiating into neuronal cells, including cholinergic neurons and GABAergic neurons.
Bojnordi, Maryam Nazm; Azizi, Hossein; Skutella, Thomas; Movahedin, Mansoureh; Pourabdolhossein, Fereshteh; Shojaei, Amir; Hamidabadi, Hatef Ghasemi
2017-09-01
Transplantation of embryonic stem cells (ESCs) is a promising therapeutic approach for the treatment of neurodegenerative diseases. However, ESCs are not usable clinically due to immunological and ethical limitations. The identification of an alternative safe cell source opens novel options via autologous transplantation in neuro-regeneration circumventing these problems. Here, we examined the neurogenic capacity of embryonic stem-like cells (ES-like cells) derived from the testis using neural growth factor inducers and utilized them to generate functional mature neurons. The neuronal differentiation of ES-like cells is induced in three stages. Stage 1 is related to embryoid body (EB) formation. To induce neuroprogenitor cells, EBs were cultured in the presence of retinoic acid, N 2 supplement and fibroblast growth factor followed by culturing in a neurobasal medium containing B 27 , N 2 supplements for additional 10 days, to allow the maturation and development of neuronal progenitor cells. The neurogenic differentiation was confirmed by immunostaining for markers of mature neurons. The differentiated neurons were positive for Tuj1 and Tau1. Real-time PCR dates indicated the expression of Nestin and Neuro D (neuroprogenitor markers) in induced cells at the second stage of the differentiation protocol. The differentiated mature neurons exhibited the specific neuron markers Map2 and β-tubulin. The functional maturity of neurons was confirmed by an electrophysiological analysis of passive and active neural membrane properties. These findings indicated a differentiation capacity of ES-like cells derived from the testis to functionally mature neurons, which proposes them as a novel cell source for neuroregenerative medicine.
Human Induced Pluripotent Stem Cells Free of Vector and Transgene Sequences
Yu, Junying; Hu, Kejin; Smuga-Otto, Kim; Tian, Shulan; Stewart, Ron; Slukvin, Igor I.; Thomson, James A.
2009-01-01
Reprogramming differentiated human cells to induced pluripotent stem (iPS) cells has applications in basic biology, drug development, and transplantation. Human iPS cell derivation previously required vectors that integrate into the genome, which can create mutations and limit the utility of the cells in both research and clinical applications. Here we describe the derivation of human iPS cells using non-integrating episomal vectors. After removal of the episome, iPS cells completely free of vector and transgene sequences are derived that are similar to human embryonic stem (ES) cells in proliferative and developmental potential. These results demonstrate that reprogramming human somatic cells does not require genomic integration or the continued presence of exogenous reprogramming factors, and removes one obstacle to the clinical application of human iPS cells. PMID:19325077
2014-04-01
other groups are seeking to develop MSCs as vectors to deliver prostate - specific antigen (PSA)-activated prodrugs (Denmeade et al. 2003) and protoxins...Denmeade SR, Jakobsen CM, Janssen S, Khan SR, Garrett ES, Lilja H, Christensen SB & Isaacs JT 2003 Prostate - specific antigen -activated thapsigargin...cells derived from benign prostatic hyperplasia specimens possess stem cell like property. Prostate 67 1265–1276. (doi:10.1002/ pros .20599) Lin G, Yang R
Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses.
Furusawa, Tadashi; Ohkoshi, Katsuhiro; Kimura, Koji; Matsuyama, Shuichi; Akagi, Satoshi; Kaneda, Masahiro; Ikeda, Mitsumi; Hosoe, Misa; Kizaki, Keiichiro; Tokunaga, Tomoyuki
2013-08-01
Bovine embryonic stem (ES) cells have the potential to provide significant benefits in a range of agricultural and biomedical applications. Here, we employed a combination of conventional methods using glycogen synthase kinase 3 and mitogen-activated protein kinase inhibitors to establish ES cell lines from in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) bovine embryos. Five male cell lines were established from IVF embryos, and two female and three male cell lines from SCNT blastocysts; we named these lines bovine ES cell-like cells (bESLCs). The lines exhibited dome-shaped colonies, stained positively for alkaline phosphatase, and expressed pluripotent stem cell markers such as POU5F1, SOX2, and SSEA-1. The expression levels of these markers, especially for NANOG, varied among the cell lines. A DNA methylation assay showed the POU5F1 promoter region was hypomethylated compared to fibroblast cells. An in vitro differentiation assay showed that endoderm and ectoderm marker genes, but not mesoderm markers, were upregulated in differentiating bESLCs. To examine bESLCs in later embryonic stages, we created 22 chimeric blastocysts with a male bESLC line carrying a GFP marker gene and transferred these to a recipient cow. Four chimeric embryos were subsequently retrieved on Day 13 and retransferred to two recipient cows. One living fetus was obtained at Day 62. GFP signals were not identified in fetal cells by fluorescence microscopy; however, genomic PCR analysis detected the GFP gene in major organs. Clusters of GFP-positive cells were observed in amniotic membranes, suggesting that bESLCs can be categorized as a novel type of ICM-derived cells that can potentially differentiate into epiblast and hypoblast lineages.
Hong, Yunhan; Winkler, Christoph; Liu, Tongming; Chai, Guixuan; Schartl, Manfred
2004-07-01
The determination and maintenance of the cell fate is ultimately due to differential gene activity. In the mouse, expression of the transcription factor Oct4 is high in totipotent inner cell mass, germ cells and undifferentiated embryonic stem (ES) cells, but dramatically reduced or extinct upon differentiation. Here, we show that medaka blastula embryos and cells of the ES cell line MES1 are able to activate the Oct4 promoter. Ectopic expression of a fusion gene for beta-galactosidase and neomycin resistance from the Oct4 promoter conferred resistance to G418. G418 selection led to a homogeneous population of undifferentiated ES cells which were able to undergo induced or directed differentiation into various cell types including neuron-like cells and melanocytes. Furthermore, GFP-labeled GOF18geo-MES1 cells after differentiation ablation were able to contribute to a wide variety of organ systems derived from all the three germ layers. Most importantly, we show that drug ablation of differentiation on the basis of Oct4 promoter is a useful tool to improve ES cell cultivation and chimera formation: MES1 cells after differentiation ablation appeared to be better donors than the parental MES1 line, as the permissive number of input donor cells increases from 100 to 200, resulting in an enhanced degree of chimerism. Taken together, some transcription factors and cis-acting regulatory sequences controlling totipotency-specific gene expression appear to be conserved between mammals and fish, and medaka ES cells offer an in vitro system for characterizing the expression of totipotency-specific genes such as putative Oct4 homologs from fish.
Antitumor and Antibacterial Derivatives of Oridonin: A Main Composition of Dong-Ling-Cao.
Li, Dahong; Han, Tong; Xu, Shengtao; Zhou, Tingting; Tian, Kangtao; Hu, Xu; Cheng, Keguang; Li, Zhanlin; Hua, Huiming; Xu, Jinyi
2016-04-30
Isodon rubescens has been used as a traditional green tea for more than 1000 years and many medicinal functions of I. rubescens are also very useful, such as its well-known antitumor and antibacterial activities. Oridonin, a bioactive ent-kaurane diterpenoid, is the major ingredient of this medicinal tea. Herein, 22 novel oridonin derivatives were designed and synthesized. The antibacterial activity was evaluated for the first time. Compound 12 was the most promising one with MIC of 2.0 μg/mL against B. subtilis, which was nearly 3-fold stronger than positive control chloromycetin. The antiproliferative property was also assayed and compound 19 showed stronger activity than taxol. The apoptosis-inducing ability, cell cycle arrest effect at S phase and influence of mitochondrial membrane potential by 19 in CaEs-17 cancer cells were first disclosed. Based on the above results, the cell apoptosis induced by compound 19 in CaEs-17 cells was most probably involved in the intrinsic apoptotic pathway.
Dixon, Helen; Little, Matthew C.; Else, Kathryn J.
2010-01-01
Trichuris muris is a laboratory model for the human whipworm Trichuris trichiura which infects approximately 1 billion people in tropical and sub-tropical countries. The development of a vaccine would control trichuriasis by promoting the acquisition of immunity during childhood, thereby reducing faecal egg output by the community into their environment. Resistance to T. muris, defined as expulsion of the parasite prior to patency, requires the development of a T helper 2 (Th2) response during a primary infection. To our knowledge this is the first study to describe the protective immune response in the peripheral lymph nodes (PLN), mesenteric lymph nodes (MLN) and colonic mucosa following s.c. vaccination against T. muris. Susceptible AKR mice were either vaccinated with T. muris excretory–secretory product (ES) in incomplete Freund’s adjuvant (IFA) (ES/IFA) or injected with PBS in IFA (PBS/IFA) and for protection experiments were infected with embryonated infective T. muris eggs 10 days later. The ES/IFA vaccine induced the proliferation of PLN cells and their production of Th2 cytokines and the Th1-associated cytokine IFN-γ. Following a challenge infection, the ES/IFA vaccination offered susceptible mice complete protection. While MLN-derived IFN-γ was produced by infected mice following either ES/IFA vaccination or PBS/IFA, the protection of susceptible mice by ES/IFA was characterised by the production of MLN-derived Th2 cytokines. Goblet cell hyperplasia and the influx and alternative activation of macrophages were observed locally in the gut post-challenge infection. The rate of epithelial turnover did not appear to be increased by vaccination, suggesting that there are differences in the mechanisms of expulsion between ‘natural resistance’ and ‘vaccinated resistance’. High levels of serum IgG1 and cell-bound IgG1 in the colon of mice protected by the ES/IFA vaccine suggest that antibody may be involved in vaccination-induced worm expulsion. PMID:19968992
Nakano, Yu; Iwanaga, Shinya; Mizumoto, Hiroshi; Kajiwara, Toshihisa
2018-03-03
Hematopoietic stem cells (HSCs) have the ability to differentiate into all types of blood cells and can be transplanted to treat blood disorders. However, it is difficult to obtain HSCs in large quantities because of the shortage of donors. Recent efforts have focused on acquiring HSCs by differentiation of pluripotent stem cells. As a conventional differentiation method of pluripotent stem cells, the formation of embryoid bodies (EBs) is often employed. However, the size of EBs is limited by depletion of oxygen and nutrients, which prevents them from being efficient for the production of HSCs. In this study, we developed a large-scale hematopoietic differentiation approach for mouse embryonic stem (ES) cells by applying a hollow fiber (HF)/organoid culture method. Cylindrical organoids, which had the potential for further spontaneous differentiation, were established inside of hollow fibers. Using this method, we improved the proliferation rate of mouse ES cells to produce an increased HSC population and achieved around a 40-fold higher production volume of HSCs in HF culture than in conventional EB culture. Therefore, the HF/organoid culture method may be a new mass culture method to acquire pluripotent stem cell-derived HSCs.
Efficient differentiation of mouse embryonic stem cells into motor neurons.
Wu, Chia-Yen; Whye, Dosh; Mason, Robert W; Wang, Wenlan
2012-06-09
Direct differentiation of embryonic stem (ES) cells into functional motor neurons represents a promising resource to study disease mechanisms, to screen new drug compounds, and to develop new therapies for motor neuron diseases such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Many current protocols use a combination of retinoic acid (RA) and sonic hedgehog (Shh) to differentiate mouse embryonic stem (mES) cells into motor neurons. However, the differentiation efficiency of mES cells into motor neurons has only met with moderate success. We have developed a two-step differentiation protocol that significantly improves the differentiation efficiency compared with currently established protocols. The first step is to enhance the neuralization process by adding Noggin and fibroblast growth factors (FGFs). Noggin is a bone morphogenetic protein (BMP) antagonist and is implicated in neural induction according to the default model of neurogenesis and results in the formation of anterior neural patterning. FGF signaling acts synergistically with Noggin in inducing neural tissue formation by promoting a posterior neural identity. In this step, mES cells were primed with Noggin, bFGF, and FGF-8 for two days to promote differentiation towards neural lineages. The second step is to induce motor neuron specification. Noggin/FGFs exposed mES cells were incubated with RA and a Shh agonist, Smoothened agonist (SAG), for another 5 days to facilitate motor neuron generation. To monitor the differentiation of mESs into motor neurons, we used an ES cell line derived from a transgenic mouse expressing eGFP under the control of the motor neuron specific promoter Hb9. Using this robust protocol, we achieved 51 ± 0.8% of differentiation efficiency (n = 3; p < 0.01, Student's t-test). Results from immunofluorescent staining showed that GFP+ cells express the motor neuron specific markers, Islet-1 and choline acetyltransferase (ChAT). Our two-step differentiation protocol provides an efficient way to differentiate mES cells into spinal motor neurons.
Kramer, Jan; Steinhoff, Jürgen; Klinger, Matthias; Fricke, Lutz; Rohwedel, Jürgen
2006-03-01
Differentiation of mouse embryonic stem (ES) cells via embryoid bodies (EB) is established as a suitable model to study cellular processes of development in vitro. ES cells are known to be pluripotent because of their capability to differentiate into cell types of all three germ layers including germ cells. Here, we show that ES cells differentiate into renal cell types in vitro. We found that genes were expressed during EB cultivation, which have been previously described to be involved in renal development. Marker molecules characteristic for terminally differentiated renal cell types were found to be expressed predominantly during late stages of EB cultivation, while marker molecules involved in the initiation of nephrogenesis were already expressed during early steps of EB development. On the cellular level--using immunostaining--we detected cells expressing podocin, nephrin and wt-1, characteristic for differentiated podocytes and other cells, which expressed Tamm-Horsfall protein, a marker for distal tubule epithelial cells of kidney tissue. Furthermore, the proximal tubule marker molecules renal-specific oxido reductase, kidney androgen-related protein and 25-hydroxyvitamin D3alpha-hydroxylase were found to be expressed in EBs. In particular, we could demonstrate that cells expressing podocyte marker molecules assemble to distinct ring-like structures within the EBs. Because the differentiation efficiency into these cell types is still relatively low, application of fibroblast growth factor (FGF)-2 in combination with leukaemia inhibitory factor was tested for induction, but did not enhance ES cell-derived renal differentiation in vitro.
de Peppo, Giuseppe Maria; Sladkova, Martina; Sjövall, Peter; Palmquist, Anders; Oudina, Karim; Hyllner, Johan; Thomsen, Peter; Petite, Hervé; Karlsson, Camilla
2013-01-01
Bone tissue engineering represents a promising strategy to obviate bone deficiencies, allowing the ex vivo construction of bone substitutes with unprecedented potential in the clinical practice. Considering that in the human body cells are constantly stimulated by chemical and mechanical stimuli, the use of bioreactor is emerging as an essential factor for providing the proper environment for the reproducible and large-scale production of the engineered substitutes. Human mesenchymal stem cells (hMSCs) are experimentally relevant cells but, regardless the encouraging results reported after culture under dynamic conditions in bioreactors, show important limitations for tissue engineering applications, especially considering their limited proliferative potential, loss of functionality following protracted expansion, and decline in cellular fitness associated with aging. On the other hand, we previously demonstrated that human embryonic stem cell-derived mesodermal progenitors (hES-MPs) hold great potential to provide a homogenous and unlimited source of cells for bone engineering applications. Based on prior scientific evidence using different types of stem cells, in the present study we hypothesized that dynamic culture of hES-MPs in a packed bed/column bioreactor had the potential to affect proliferation, expression of genes involved in osteogenic differentiation, and matrix mineralization, therefore resulting in increased bone-like tissue formation. The reported findings suggest that hES-MPs constitute a suitable alternative cell source to hMSCs and hold great potential for the construction of bone substitutes for tissue engineering applications in clinical settings.
Oda, Masaaki; Kumaki, Yuichi; Shigeta, Masaki; Jakt, Lars Martin; Matsuoka, Chisa; Yamagiwa, Akiko; Niwa, Hitoshi; Okano, Masaki
2013-06-01
DNA methylation changes dynamically during development and is essential for embryogenesis in mammals. However, how DNA methylation affects developmental gene expression and cell differentiation remains elusive. During embryogenesis, many key transcription factors are used repeatedly, triggering different outcomes depending on the cell type and developmental stage. Here, we report that DNA methylation modulates transcription-factor output in the context of cell differentiation. Using a drug-inducible Gata4 system and a mouse embryonic stem (ES) cell model of mesoderm differentiation, we examined the cellular response to Gata4 in ES and mesoderm cells. The activation of Gata4 in ES cells is known to drive their differentiation to endoderm. We show that the differentiation of wild-type ES cells into mesoderm blocks their Gata4-induced endoderm differentiation, while mesoderm cells derived from ES cells that are deficient in the DNA methyltransferases Dnmt3a and Dnmt3b can retain their response to Gata4, allowing lineage conversion from mesoderm cells to endoderm. Transcriptome analysis of the cells' response to Gata4 over time revealed groups of endoderm and mesoderm developmental genes whose expression was induced by Gata4 only when DNA methylation was lost, suggesting that DNA methylation restricts the ability of these genes to respond to Gata4, rather than controlling their transcription per se. Gata4-binding-site profiles and DNA methylation analyses suggested that DNA methylation modulates the Gata4 response through diverse mechanisms. Our data indicate that epigenetic regulation by DNA methylation functions as a heritable safeguard to prevent transcription factors from activating inappropriate downstream genes, thereby contributing to the restriction of the differentiation potential of somatic cells.
Nuclear reprogramming by interphase cytoplasm of two-cell mouse embryos.
Kang, Eunju; Wu, Guangming; Ma, Hong; Li, Ying; Tippner-Hedges, Rebecca; Tachibana, Masahito; Sparman, Michelle; Wolf, Don P; Schöler, Hans R; Mitalipov, Shoukhrat
2014-05-01
Successful mammalian cloning using somatic cell nuclear transfer (SCNT) into unfertilized, metaphase II (MII)-arrested oocytes attests to the cytoplasmic presence of reprogramming factors capable of inducing totipotency in somatic cell nuclei. However, these poorly defined maternal factors presumably decline sharply after fertilization, as the cytoplasm of pronuclear-stage zygotes is reportedly inactive. Recent evidence suggests that zygotic cytoplasm, if maintained at metaphase, can also support derivation of embryonic stem (ES) cells after SCNT, albeit at low efficiency. This led to the conclusion that critical oocyte reprogramming factors present in the metaphase but not in the interphase cytoplasm are 'trapped' inside the nucleus during interphase and effectively removed during enucleation. Here we investigated the presence of reprogramming activity in the cytoplasm of interphase two-cell mouse embryos (I2C). First, the presence of candidate reprogramming factors was documented in both intact and enucleated metaphase and interphase zygotes and two-cell embryos. Consequently, enucleation did not provide a likely explanation for the inability of interphase cytoplasm to induce reprogramming. Second, when we carefully synchronized the cell cycle stage between the transplanted nucleus (ES cell, fetal fibroblast or terminally differentiated cumulus cell) and the recipient I2C cytoplasm, the reconstructed SCNT embryos developed into blastocysts and ES cells capable of contributing to traditional germline and tetraploid chimaeras. Last, direct transfer of cloned embryos, reconstructed with ES cell nuclei, into recipients resulted in live offspring. Thus, the cytoplasm of I2C supports efficient reprogramming, with cell cycle synchronization between the donor nucleus and recipient cytoplasm as the most critical parameter determining success. The ability to use interphase cytoplasm in SCNT could aid efforts to generate autologous human ES cells for regenerative applications, as donated or discarded embryos are more accessible than unfertilized MII oocytes.
Mammary Cancer and Activation of Transposable Elements
2015-03-01
regularly hold meetings. • Completed Y1 4-6 6. • Preliminary Methyl-MAPS analysis of pilot virgin samples • This material was never received. Based...construct the libraries for sequencing. A strategic decision was made to hold the material for validation, rather than attempt library construction. Y2 10...derived adipo- cytes and ADS-derived induced pluripotent stem cells (ADS-iPSCs) (19) and primary mouse ES cells to isolated sperm and oocytes (20). We
Differentiation induction of mouse embryonic stem cells into sinus node-like cells by suramin
Wiese, Cornelia; Nikolova, Teodora; Zahanich, Ihor; Sulzbacher, Sabine; Fuchs, Joerg; Yamanaka, Satoshi; Graf, Eva; Ravens, Ursula; Boheler, Kenneth R.; Wobus, Anna M.
2015-01-01
Background Embryonic stem (ES) cells differentiate into cardiac phenotypes representing early pacemaker-, atrial-, ventricular-, and sinus node-like cells, however, ES-derived specification into sinus nodal cells is not yet known. By using the naphthylamine derivative of urea, suramin, we were able to follow the process of cardiac specialization into sinus node-like cells. Methods Differentiating mouse ES cells were treated with suramin (500 μM) from day 5 to 7 of embryoid body formation, and cells were analysed for their differentiation potential via morphological analysis, flow cytometry, RT-PCR, immunohistochemistry and patch clamp analysis. Results Application of suramin resulted in an increased number of cardiac cells, but inhibition of neuronal, skeletal muscle and definitive endoderm differentiation. Immediately after suramin treatment, a decreased mesendoderm differentiation was found. Brachyury, FGF10, Wnt8 and Wnt3a transcript levels were significantly down-regulated, followed by a decrease in mesoderm- and cardiac progenitor-specific markers BMP2, GATA4/5, Wnt11, Isl1, Nkx2.5 and Tbx5 immediately after removal of the substance. With continued differentiation, a significant up-regulation of Brachyury, FGF10 and GATA5 transcript levels was observed, whereas Nkx2.5, Isl1, Tbx5, BMP2 and Wnt11 levels were normalized to control levels. At advanced differentiation stages, sinus node-specific HCN4, Tbx2 and Tbx3 transcript levels were significantly up-regulated. Immunofluorescence and patch-clamp analysis confirmed the increased number of sinus node-like cells, and electrophysiological analysis revealed a lower number of atrial- and ventricular-like cardiomyocytes following suramin treatment. Conclusion We conclude that the interference of suramin with the cardiac differentiation process modified mesoderm- and cardiac-specific gene expression resulting in enhanced formation of sinus node-like cells. PMID:19775764
Takizawa-Shirasawa, Sakiko; Yoshie, Susumu; Yue, Fengming; Mogi, Akimi; Yokoyama, Tadayuki; Tomotsune, Daihachiro; Sasaki, Katsunori
2013-12-01
The major molecular signals of pancreatic exocrine development are largely unknown. We examine the role of fibroblast growth factor 7 (FGF7) in the final induction of pancreatic amylase-containing exocrine cells from induced-pancreatic progenitor cells derived from human embryonic stem (hES) cells. Our protocol consisted in three steps: Step I, differentiation of definitive endoderm (DE) by activin A treatment of hES cell colonies; Step II, differentiation of pancreatic progenitor cells by re-plating of the cells of Step I onto 24-well plates at high density and stimulation with all-trans retinoic acid; Step III, differentiation of pancreatic exocrine cells with a combination of FGF7, glucagon-like peptide 1 and nicotinamide. The expression levels of pancreatic endodermal markers such as Foxa2, Sox17 and gut tube endoderm marker HNF1β were up-regulated in both Step I and II. Moreover, in Step III, the induced cells expressed pancreatic markers such as amylase, carboxypeptidase A and chymotrypsinogen B, which were similar to those in normal human pancreas. From day 8 in Step III, cells immunohistochemically positive for amylase and for carboxypeptidase A, a pancreatic exocrine cell product, were induced by FGF7. Pancreatic progenitor Pdx1-positive cells were localized in proximity to the amylase-positive cells. In the absence of FGF7, few amylase-positive cells were identified. Thus, our three-step culture protocol for human ES cells effectively induces the differentiation of amylase- and carboxypeptidase-A-containing pancreatic exocrine cells.
Acuna-Mendoza, Soledad; Martin, Sabrina; Kuchler-Bopp, Sabine; Ribes, Sandy; Thalgott, Jérémy; Chaussain, Catherine; Creuzet, Sophie; Lesot, Hervé; Lebrin, Franck; Poliard, Anne
2017-12-01
Neural crest (NC) cells are a migratory, multipotent population giving rise to numerous lineages in the embryo. Their plasticity renders attractive their use in tissue engineering-based therapies, but further knowledge on their in vivo behavior is required before clinical transfer may be envisioned. We here describe the isolation and characterization of a new mouse embryonic stem (ES) line derived from Wnt1-CRE-R26 Rosa TomatoTdv blastocyst and show that it displays the characteristics of typical ES cells. Further, these cells can be efficiently directed toward an NC stem cell-like phenotype as attested by concomitant expression of NC marker genes and Tomato fluorescence. As native NC progenitors, they are capable of differentiating toward typical derivative phenotypes and interacting with embryonic tissues to participate in the formation of neo-structures. Their specific fluorescence allows purification and tracking in vivo. This cellular tool should facilitate a better understanding of the mechanisms driving NC fate specification and help identify the key interactions developed within a tissue after in vivo implantation. Altogether, this novel model may provide important knowledge to optimize NC stem cell graft conditions, which are required for efficient tissue repair.
Araki, Ryoko; Mizutani, Eiji; Hoki, Yuko; Sunayama, Misato; Wakayama, Sayaka; Nagatomo, Hiroaki; Kasama, Yasuji; Nakamura, Miki; Wakayama, Teruhiko; Abe, Masumi
2017-05-01
Induced pluripotent stem cells hold great promise for regenerative medicine but point mutations have been identified in these cells and have raised serious concerns about their safe use. We generated nuclear transfer embryonic stem cells (ntESCs) from both mouse embryonic fibroblasts (MEFs) and tail-tip fibroblasts (TTFs) and by whole genome sequencing found fewer mutations compared with iPSCs generated by retroviral gene transduction. Furthermore, TTF-derived ntESCs showed only a very small number of point mutations, approximately 80% less than the number observed in iPSCs generated using retrovirus. Base substitution profile analysis confirmed this greatly reduced number of point mutations. The point mutations in iPSCs are therefore not a Yamanaka factor-specific phenomenon but are intrinsic to genome reprogramming. Moreover, the dramatic reduction in point mutations in ntESCs suggests that most are not essential for genome reprogramming. Our results suggest that it is feasible to reduce the point mutation frequency in iPSCs by optimizing various genome reprogramming conditions. We conducted whole genome sequencing of ntES cells derived from MEFs or TTFs. We thereby succeeded in establishing TTF-derived ntES cell lines with far fewer point mutations. Base substitution profile analysis of these clones also indicated a reduced point mutation frequency, moving from a transversion-predominance to a transition-predominance. Stem Cells 2017;35:1189-1196. © 2017 AlphaMed Press.
Unique differentiation profile of mouse embryonic stem cells in rotary and stirred tank bioreactors.
Fridley, Krista M; Fernandez, Irina; Li, Mon-Tzu Alice; Kettlewell, Robert B; Roy, Krishnendu
2010-11-01
Embryonic stem (ES)-cell-derived lineage-specific stem cells, for example, hematopoietic stem cells, could provide a potentially unlimited source for transplantable cells, especially for cell-based therapies. However, reproducible methods must be developed to maximize and scale-up ES cell differentiation to produce clinically relevant numbers of therapeutic cells. Bioreactor-based dynamic culture conditions are amenable to large-scale cell production, but few studies have evaluated how various bioreactor types and culture parameters influence ES cell differentiation, especially hematopoiesis. Our results indicate that cell seeding density and bioreactor speed significantly affect embryoid body formation and subsequent generation of hematopoietic stem and progenitor cells in both stirred tank (spinner flask) and rotary microgravity (Synthecon™) type bioreactors. In general, high percentages of hematopoietic stem and progenitor cells were generated in both bioreactors, especially at high cell densities. In addition, Synthecon bioreactors produced more sca-1(+) progenitors and spinner flasks generated more c-Kit(+) progenitors, demonstrating their unique differentiation profiles. cDNA microarray analysis of genes involved in pluripotency, germ layer formation, and hematopoietic differentiation showed that on day 7 of differentiation, embryoid bodies from both bioreactors consisted of all three germ layers of embryonic development. However, unique gene expression profiles were observed in the two bioreactors; for example, expression of specific hematopoietic genes were significantly more upregulated in the Synthecon cultures than in spinner flasks. We conclude that bioreactor type and culture parameters can be used to control ES cell differentiation, enhance unique progenitor cell populations, and provide means for large-scale production of transplantable therapeutic cells.
Wefers, Benedikt; Meyer, Melanie; Ortiz, Oskar; Hrabé de Angelis, Martin; Hansen, Jens; Wurst, Wolfgang; Kühn, Ralf
2013-01-01
The study of genetic disease mechanisms relies mostly on targeted mouse mutants that are derived from engineered embryonic stem (ES) cells. Nevertheless, the establishment of mutant ES cells is laborious and time-consuming, restricting the study of the increasing number of human disease mutations discovered by high-throughput genomic analysis. Here, we present an advanced approach for the production of mouse disease models by microinjection of transcription activator-like effector nucleases (TALENs) and synthetic oligodeoxynucleotides into one-cell embryos. Within 2 d of embryo injection, we created and corrected chocolate missense mutations in the small GTPase RAB38; a regulator of intracellular vesicle trafficking and phenotypic model of Hermansky-Pudlak syndrome. Because ES cell cultures and targeting vectors are not required, this technology enables instant germline modifications, making heterozygous mutants available within 18 wk. The key features of direct mutagenesis by TALENs and oligodeoxynucleotides, minimal effort and high speed, catalyze the generation of future in vivo models for the study of human disease mechanisms and interventions. PMID:23426636
Yoshie, Sachiko; Ogasawara, Yuki; Ikehata, Masateru; Ishii, Kazuyuki; Suzuki, Yukihisa; Wada, Keiji; Wake, Kanako; Nakasono, Satoshi; Taki, Masao; Ohkubo, Chiyoji
2016-01-01
The embryotoxic effect of intermediate frequency (IF) magnetic field (MF) was evaluated using murine embryonic stem (ES) cells and fibroblast cells based on the embryonic stem cell test (EST). The cells were exposed to 21 kHz IF-MF up to magnetic flux density of 3.9 mT during the cell proliferation process (7 days) or the cell differentiation process (10 days) during which an embryonic body differentiated into myocardial cells. As a result, there was no significant difference in the cell proliferation between sham- and IF-MF-exposed cells for both ES and fibroblast cells. Similarly, the ratio of the number of ES-derived cell aggregates differentiated to myocardial cells to total number of cell aggregates was not changed by IF-MF exposure. In addition, the expressions of a cardiomyocytes-specific gene, Myl2 , and an early developmental gene, Hba-x , in the exposed cell aggregate were not altered. Since the magnetic flux density adopted in this study is much higher than that generated by an inverter of the electrical railway, an induction heating (IH) cooktop, etc . in our daily lives, these results suggested that IF-MF in which the public is exposed to in general living environment would not have embryotoxic effect.
Pluripotent Conversion of Muscle Stem Cells Without Reprogramming Factors or Small Molecules.
Bose, Bipasha; Shenoy P, Sudheer
2016-02-01
Muscle derived stem cells (MDSCs) are multipotent stem cells that can differentiate into several lineages including skeletal muscle precursor cells. Here, we show that MDSCs from myostatin null mice (Mstn (-/-) ) can be readily induced into pluripotent stem cells without using reprogramming factors. Microarray studies revealed a strong upregulation of markers like Leukemia Inhibitory factor (LIF) and Leukemia Inhibitory factor receptor (LIFR) in Mstn (-/-) MDSCs as compared to wild type MDSCs (WT-MDSCs). Furthermore when cultured in mouse embryonic stem cell media with LIF for 95 days, Mstn (-/-) MDSCs formed embryonic stem cell (ES) like colonies. We termed such ES like cells as the culture-induced pluripotent stem cells (CiPSC). CiPSCs from Mstn (-/-) MDSCs were phenotypically similar to ESCs, expressed high levels of Oct4, Nanog, Sox2 and SSEA-1, maintained a normal karyotype. Furthermore, CiPSCs formed embryoid bodies and teratomas when injected into immunocompromised mice. In addition, CiPSCs differentiated into somatic cells of all three lineages. We further show that culturing in ES cell media, resulted in hypermethylation and downregulation of BMP2 in Mstn(-/-) MDSCs. Western blot further confirmed a down regulation of BMP2 signaling in Mstn (-/-) MDSCs in supportive of pluripotent reprogramming. Given that down regulation of BMP2 has been shown to induce pluripotency in cells, we propose that lack of myostatin epigenetically reprograms the MDSCs to become pluripotent stem cells. Thus, here we report the successful establishment of ES-like cells from adult stem cells of the non-germline origin under culture-induced conditions without introducing reprogramming genes.
[Programmed mouse genome modifications].
Babinet, C
1998-02-01
The availability, in the mouse, of embryonic stem cells (ES cells) which have the ability to colonize the germ line of a developing embryo, has opened entirely new avenues to the genetic approach of embryonic development, physiology and pathology of this animal. Indeed, it is now possible, using homologous recombination in ES cells, to introduce mutations in any gene as long as it has been cloned. Thus, null as well as more subtle mutations can be created. Furthermore, scenarios are currently being derived which will allow one to generate conditional mutations. Taken together, these methods offer a tremendous tool to study gene function in vivo; they also open the way to creating murine models of human genetic diseases.
Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells
NASA Astrophysics Data System (ADS)
Arshi, Armin; Nakashima, Yasuhiro; Nakano, Haruko; Eaimkhong, Sarayoot; Evseenko, Denis; Reed, Jason; Stieg, Adam Z.; Gimzewski, James K.; Nakano, Atsushi
2013-04-01
While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell-cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes.
Ikeda, Ritsuko; Kurokawa, Manae S; Chiba, Shunmei; Yoshikawa, Hideshi; Hashimoto, Takuo; Tadokoro, Mamoru; Suzuki, Noboru
2004-10-01
Mouse embryonic stem (ES) cells were transfected with a MASH1 expression vector and G418-resistant cells were selected. The MASH1-transfected cells became neuron-like appearance and expressed betaIIItubulin and panNCAM. Glial fibrillary acidic protein (GFAP) and galactocerebroside (GalC)-expressing cells were rarely detected. Half of the neural cells differentiated into the Islet1+ motoneuron lineage. Thus, we obtained motoneuron lineage-enriched neuronal cells by transfection of ES cells with MASH1. A hemiplegic model of mice was developed by cryogenic injury of the motor cortex, and motoneuron lineage-enriched neuronal cells were transplanted underneath the injured motor cortex neighboring the periventricular region. The motor function of the recipients was assessed by a beam walking and rotarod tests, whereby the results gradually improved, but little improvement was observed in vehicle injected control mice. We found that the grafted cells not only remained close to the implantation site, but also exhibited substantial migration, penetrating into the damaged lesion in a directed manner up to the cortical region. Grafted neuronal cells that had migrated into the cortex were elongated axon-positive for neurofilament middle chain (NFM). Synaptophysin immunostaining showed a positive staining pattern around the graft, suggesting that the transplanted neurons interacted with the recipient neurons to form a neural network. Our study suggests that the motoneuron lineage can be induced from ES cells, and grafted cells adapt to the host environment and can reconstitute a neural network to improve motor function of a paralyzed limb.
Reprogramming T cell Lymphocytes to Induced Pluripotent Stem Cells
NASA Astrophysics Data System (ADS)
Bared, Kalia
The discovery of induced pluripotent stem cells (iPSC) provided a novel technology for the study of development and pharmacology and complement embryonic stem cells (ES) for cell therapy applications. Though iPSC are derived from adult tissue they are comparable to ES cells in their behavior; multi-lineage differentiation and self-renewal. This makes iPSC research appealing because they can be studied in great detail and expanded in culture broadly. Fibroblasts were the first cell type reprogrammed to an iPSC using a retrovirus vector, since then alternative cell types including lymphocytes have been used to generate iPSC. Different types of vectors have also been developed to enhance iPSC formation and quality. However, specific T lymphocyte subsets have not been shown to reprogram to a pluripotent state to date. Here, we proposed to derive iPSC from peripheral blood effector and central memory T cells, reasoning that the resultant iPSC will maintain the epigenetic memory of a T lymphocyte, including the T cell receptor (TCR) gene rearrangement. This epigenetic memory will enable the differentiation and expansion of T cell iPSC into professional T cells containing a specific TCR. These could then be used for cell therapy to target specific antigens, as well as to improve culture techniques to expand T cells
Generation of male differentiated germ cells from various types of stem cells.
Hou, Jingmei; Yang, Shi; Yang, Hao; Liu, Yang; Liu, Yun; Hai, Yanan; Chen, Zheng; Guo, Ying; Gong, Yuehua; Gao, Wei-Qiang; Li, Zheng; He, Zuping
2014-06-01
Infertility is a major and largely incurable disease caused by disruption and loss of germ cells. It affects 10-15% of couples, and male factor accounts for half of the cases. To obtain human male germ cells 'especially functional spermatids' is essential for treating male infertility. Currently, much progress has been made on generating male germ cells, including spermatogonia, spermatocytes, and spermatids, from various types of stem cells. These germ cells can also be used in investigation of the pathology of male infertility. In this review, we focused on advances on obtaining male differentiated germ cells from different kinds of stem cells, with an emphasis on the embryonic stem (ES) cells, the induced pluripotent stem (iPS) cells, and spermatogonial stem cells (SSCs). We illustrated the generation of male differentiated germ cells from ES cells, iPS cells and SSCs, and we summarized the phenotype for these stem cells, spermatocytes and spermatids. Moreover, we address the differentiation potentials of ES cells, iPS cells and SSCs. We also highlight the advantages, disadvantages and concerns on derivation of the differentiated male germ cells from several types of stem cells. The ability of generating mature and functional male gametes from stem cells could enable us to understand the precise etiology of male infertility and offer an invaluable source of autologous male gametes for treating male infertility of azoospermia patients. © 2014 Society for Reproduction and Fertility.
Izuogu, Osagie G; Alhasan, Abd A; Mellough, Carla; Collin, Joseph; Gallon, Richard; Hyslop, Jonathon; Mastrorosa, Francesco K; Ehrmann, Ingrid; Lako, Majlinda; Elliott, David J; Santibanez-Koref, Mauro; Jackson, Michael S
2018-04-20
Circular RNAs (circRNAs) are predominantly derived from protein coding genes, and some can act as microRNA sponges or transcriptional regulators. Changes in circRNA levels have been identified during human development which may be functionally important, but lineage-specific analyses are currently lacking. To address this, we performed RNAseq analysis of human embryonic stem (ES) cells differentiated for 90 days towards 3D laminated retina. A transcriptome-wide increase in circRNA expression, size, and exon count was observed, with circRNA levels reaching a plateau by day 45. Parallel statistical analyses, controlling for sample and locus specific effects, identified 239 circRNAs with expression changes distinct from the transcriptome-wide pattern, but these all also increased in abundance over time. Surprisingly, circRNAs derived from long non-coding RNAs (lncRNAs) were found to account for a significantly larger proportion of transcripts from their loci of origin than circRNAs from coding genes. The most abundant, circRMST:E12-E6, showed a > 100X increase during differentiation accompanied by an isoform switch, and accounts for > 99% of RMST transcripts in many adult tissues. The second most abundant, circFIRRE:E10-E5, accounts for > 98% of FIRRE transcripts in differentiating human ES cells, and is one of 39 FIRRE circRNAs, many of which include multiple unannotated exons. Our results suggest that during human ES cell differentiation, changes in circRNA levels are primarily globally controlled. They also suggest that RMST and FIRRE, genes with established roles in neurogenesis and topological organisation of chromosomal domains respectively, are processed as circular lncRNAs with only minor linear species.
Experimental embryology of mammals at the Jastrzebiec Institute of Genetics and Animal Breeding.
Karasiewicz, Jolanta; Andrzej-Modlinski, Jacek
2008-01-01
Our Department of Experimental Embryology originated from The Laboratory of Embryo Biotechnology, which was organized and directed by Dr. Maria Czlonkowska until her premature death in 1991. Proving successful international transfer of frozen equine embryos and generation of an embryonic sheep-goat chimaera surviving ten years were outstanding achievements of her term. In the 1990s, we produced advanced fetuses of mice after reconstructing enucleated oocytes with embryonic stem (ES) cells, as well as mice originating entirely from ES cells by substitution of the inner cell mass with ES cells. Attempts at obtaining ES cells in sheep resulted in the establishment of embryo-derived epithelioid cell lines from Polish Heatherhead and Polish Merino breeds, producing overt chimaeras upon blastocyst injection. Successful re-cloning was achieved from 8-cell rabbit embryos, and healthy animals were born from the third generation of cloned embryos. Recently mice were born after transfer of 8-cell embryonic nuclei into selectively enucleated zygotes, and mouse blastocysts were produced from selectively enucleated germinal vesicle oocytes surrounded by follicular cells, upon their reconstruction with 2-cell nuclei and subsequent activation. Embryonic-somatic chimaeras were born after transfer of foetal fibroblasts into 8-cell embryos (mouse) and into morulae and blastocysts (sheep). We also regularly perform the following applications: in vitro production of bovine embryos from slaughterhouse oocytes or those recovered by ovum pick up; cryopreservation of oocytes and embryos (freezing: mouse, rabbit, sheep, goat; vitrification: rabbit, cow); and banking of somatic cells from endangered wild mammalian species (mainly Cervidae).
Supaphon, Preuttiporn; Phongpaichit, Souwalak; Rukachaisirikul, Vatcharin; Sakayaroj, Jariya
2013-01-01
Endophytic fungi from three commonly found seagrasses in southern Thailand were explored for their ability to produce antimicrobial metabolites. One hundred and sixty endophytic fungi derived from Cymodocea serrulata (Family Cymodoceaceae), Halophila ovalis and Thalassia hemprichii (Family Hydrocharitaceae) were screened for production of antimicrobial compounds by a colorimetric broth microdilution test against ten human pathogenic microorganisms including Staphylococcus aureus ATCC 25923, a clinical isolate of methicillin-resistant S. aureus, Escherichia coli ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 90028 and NCPF 3153, Cryptococcus neoformans ATCC 90112 and ATCC 90113 and clinical isolates of Microsporum gypseum and Penicillium marneffei . Sixty-nine percent of the isolates exhibited antimicrobial activity against at least one test strain. Antifungal activity was more pronounced than antibacterial activity. Among the active fungi, seven isolates including Hypocreales sp. PSU-ES26 from C . serrulata , Trichoderma spp. PSU-ES8 and PSU-ES38 from H . ovalis , and Penicillium sp. PSU-ES43, Fusarium sp. PSU-ES73, Stephanonectria sp. PSU-ES172 and an unidentified endophyte PSU-ES190 from T . hemprichii exhibited strong antimicrobial activity against human pathogens with minimum inhibitory concentrations (MIC) of less than 10 µg/ml. The inhibitory extracts at concentrations of 4 times their MIC destroyed the targeted cells as observed by scanning electron microscopy. These results showed the antimicrobial potential of extracts from endophytic fungi from seagrasses. PMID:23977310
Supaphon, Preuttiporn; Phongpaichit, Souwalak; Rukachaisirikul, Vatcharin; Sakayaroj, Jariya
2013-01-01
Endophytic fungi from three commonly found seagrasses in southern Thailand were explored for their ability to produce antimicrobial metabolites. One hundred and sixty endophytic fungi derived from Cymodoceaserrulata (Family Cymodoceaceae), Halophilaovalis and Thalassiahemprichii (Family Hydrocharitaceae) were screened for production of antimicrobial compounds by a colorimetric broth microdilution test against ten human pathogenic microorganisms including Staphylococcus aureus ATCC 25923, a clinical isolate of methicillin-resistant S. aureus, Escherichia coli ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 90028 and NCPF 3153, Cryptococcus neoformans ATCC 90112 and ATCC 90113 and clinical isolates of Microsporumgypseum and Penicilliummarneffei. Sixty-nine percent of the isolates exhibited antimicrobial activity against at least one test strain. Antifungal activity was more pronounced than antibacterial activity. Among the active fungi, seven isolates including Hypocreales sp. PSU-ES26 from C. serrulata, Trichoderma spp. PSU-ES8 and PSU-ES38 from H. ovalis, and Penicillium sp. PSU-ES43, Fusarium sp. PSU-ES73, Stephanonectria sp. PSU-ES172 and an unidentified endophyte PSU-ES190 from T. hemprichii exhibited strong antimicrobial activity against human pathogens with minimum inhibitory concentrations (MIC) of less than 10 µg/ml. The inhibitory extracts at concentrations of 4 times their MIC destroyed the targeted cells as observed by scanning electron microscopy. These results showed the antimicrobial potential of extracts from endophytic fungi from seagrasses.
Dixon, Helen; Little, Matthew C; Else, Kathryn J
2010-05-01
Trichuris muris is a laboratory model for the human whipworm Trichuris trichiura which infects approximately 1 billion people in tropical and sub-tropical countries. The development of a vaccine would control trichuriasis by promoting the acquisition of immunity during childhood, thereby reducing faecal egg output by the community into their environment. Resistance to T. muris, defined as expulsion of the parasite prior to patency, requires the development of a T helper 2 (Th2) response during a primary infection. To our knowledge this is the first study to describe the protective immune response in the peripheral lymph nodes (PLN), mesenteric lymph nodes (MLN) and colonic mucosa following s.c. vaccination against T. muris. Susceptible AKR mice were either vaccinated with T. muris excretory-secretory product (ES) in incomplete Freund's adjuvant (IFA) (ES/IFA) or injected with PBS in IFA (PBS/IFA) and for protection experiments were infected with embryonated infective T. muris eggs 10 days later. The ES/IFA vaccine induced the proliferation of PLN cells and their production of Th2 cytokines and the Th1-associated cytokine IFN-gamma. Following a challenge infection, the ES/IFA vaccination offered susceptible mice complete protection. While MLN-derived IFN-gamma was produced by infected mice following either ES/IFA vaccination or PBS/IFA, the protection of susceptible mice by ES/IFA was characterised by the production of MLN-derived Th2 cytokines. Goblet cell hyperplasia and the influx and alternative activation of macrophages were observed locally in the gut post-challenge infection. The rate of epithelial turnover did not appear to be increased by vaccination, suggesting that there are differences in the mechanisms of expulsion between 'natural resistance' and 'vaccinated resistance'. High levels of serum IgG1 and cell-bound IgG1 in the colon of mice protected by the ES/IFA vaccine suggest that antibody may be involved in vaccination-induced worm expulsion. (c) 2009 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Sontag, Stephanie; Förster, Malrun; Qin, Jie; Wanek, Paul; Mitzka, Saskia; Schüler, Herdit M; Koschmieder, Steffen; Rose-John, Stefan; Seré, Kristin; Zenke, Martin
2017-04-01
Human induced pluripotent stem (iPS) cells can differentiate into cells of all three germ layers, including hematopoietic stem cells and their progeny. Interferon regulatory factor 8 (IRF8) is a transcription factor, which acts in hematopoiesis as lineage determining factor for myeloid cells, including dendritic cells (DC). Autosomal recessive or dominant IRF8 mutations occurring in patients cause severe monocytic and DC immunodeficiency. To study IRF8 in human hematopoiesis we generated human IRF8-/- iPS cells and IRF8-/- embryonic stem (ES) cells using RNA guided CRISPR/Cas9n genome editing. Upon induction of hematopoietic differentiation, we demonstrate that IRF8 is dispensable for iPS cell and ES cell differentiation into hemogenic endothelium and for endothelial-to-hematopoietic transition, and thus development of hematopoietic progenitors. We differentiated iPS cell and ES cell derived progenitors into CD141+ cross-presenting cDC1 and CD1c+ classical cDC2 and CD303+ plasmacytoid DC (pDC). We found that IRF8 deficiency compromised cDC1 and pDC development, while cDC2 development was largely unaffected. Additionally, in an unrestricted differentiation regimen, IRF8-/- iPS cells and ES cells exhibited a clear bias toward granulocytes at the expense of monocytes. IRF8-/- DC showed reduced MHC class II expression and were impaired in cytokine responses, migration, and antigen presentation. Taken together, we engineered a human IRF8 knockout model that allows studying molecular mechanisms of human immunodeficiencies in vitro, including the pathophysiology of IRF8 deficient DC. Stem Cells 2017;35:898-908. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Li, Hequn; Flick, Burkhard; Rietjens, Ivonne M C M; Louisse, Jochem; Schneider, Steffen; van Ravenzwaay, Bennard
2016-05-01
The mouse embryonic stem D3 (ES-D3) cell differentiation assay is based on the morphometric measurement of cardiomyocyte differentiation and is a promising tool to detect developmental toxicity of compounds. The BeWo transport model, consisting of BeWo b30 cells grown on transwell inserts and mimicking the placental barrier, is useful to determine relative placental transport velocities of compounds. We have previously demonstrated the usefulness of the ES-D3 cell differentiation assay in combination with the in vitro BeWo transport model to predict the relative in vivo developmental toxicity potencies of a set of reference azole compounds. To further evaluate this combined in vitro toxicokinetic and toxicodynamic approach, we combined ES-D3 cell differentiation data of six novel triazoles with relative transport rates obtained from the BeWo model and compared the obtained ranking to the developmental toxicity ranking as derived from in vivo data. The data show that the combined in vitro approach provided a correct prediction for in vivo developmental toxicity, whereas the ES-D3 cell differentiation assay as stand-alone did not. In conclusion, we have validated the combined in vitro approach for developmental toxicity, which we have previously developed with a set of reference azoles, for a set of six novel triazoles. We suggest that this combined model, which takes both toxicodynamic and toxicokinetic aspects into account, should be further validated for other chemical classes of developmental toxicants.
3D spheroid culture of hESC/hiPSC-derived hepatocyte-like cells for drug toxicity testing.
Takayama, Kazuo; Kawabata, Kenji; Nagamoto, Yasuhito; Kishimoto, Keisuke; Tashiro, Katsuhisa; Sakurai, Fuminori; Tachibana, Masashi; Kanda, Katsuhiro; Hayakawa, Takao; Furue, Miho Kusuda; Mizuguchi, Hiroyuki
2013-02-01
Although it is expected that hepatocyte-like cells differentiated from human embryonic stem (ES) cells or induced pluripotent stem (iPS) cells will be utilized in drug toxicity testing, the actual applicability of hepatocyte-like cells in this context has not been well examined so far. To generate mature hepatocyte-like cells that would be applicable for drug toxicity testing, we established a hepatocyte differentiation method that employs not only stage-specific transient overexpression of hepatocyte-related transcription factors but also a three-dimensional spheroid culture system using a Nanopillar Plate. We succeeded in establishing protocol that could generate more matured hepatocyte-like cells than our previous protocol. In addition, our hepatocyte-like cells could sensitively predict drug-induced hepatotoxicity, including reactive metabolite-mediated toxicity. In conclusion, our hepatocyte-like cells differentiated from human ES cells or iPS cells have potential to be applied in drug toxicity testing. Copyright © 2012 Elsevier Ltd. All rights reserved.
Abboud, Nesrine; Fontbonne, Arnaud; Watabe, Isabelle; Tonetto, Alain; Brezun, Jean Michel; Feron, François; Zine, Azel
2017-09-01
The generation of replacement inner ear hair cells (HCs) remains a challenge and stem cell therapy holds the potential for developing therapeutic solutions to hearing and balance disorders. Recent developments have made significant strides in producing mouse otic progenitors using cell culture techniques to initiate HC differentiation. However, no consensus has been reached as to efficiency and therefore current methods remain unsatisfactory. In order to address these issues, we compare the generation of otic and HC progenitors from embryonic stem (ES) cells in two cell culture systems: suspension vs. adherent conditions. In the present study, an ES cell line derived from an Atoh1-green fluorescent protein (GFP) transgenic mouse was used to track the generation of otic progenitors, initial HCs and to compare these two differentiation systems. We used a two-step short-term differentiation method involving an induction period of 5 days during which ES cells were cultured in the presence of Wnt/transforming growth factor TGF-β inhibitors and insulin-like growth factor IGF-1 to suppress mesoderm and reinforce presumptive ectoderm and otic lineages. The generated embryoid bodies were then differentiated in medium containing basic fibroblast growth factor (bFGF) for an additional 5 days using either suspension or adherent culture methods. Upon completion of differentiation, quantitative polymerase chain reaction analysis and immunostaining monitored the expression of otic/HC progenitor lineage markers. The results indicate that cells differentiated in suspension cultures produced cells expressing otic progenitor/HC markers at a higher efficiency compared with the production of these cell types within adherent cultures. Furthermore, we demonstrated that a fraction of these cells can incorporate into ototoxin-injured mouse postnatal cochlea explants and express MYO7A after transplantation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Cieślar-Pobuda, Artur; Knoflach, Viktoria; Ringh, Mikael V; Stark, Joachim; Likus, Wirginia; Siemianowicz, Krzysztof; Ghavami, Saeid; Hudecki, Andrzej; Green, Jason L; Łos, Marek J
2017-07-01
Reprogramming, or generation of induced pluripotent stem (iPS) cells (functionally similar to embryonic stem cells or ES cells) by the use of transcription factors (typically: Oct3/4, Sox2, c-Myc, Klf4) called "Yamanaka factors" (OSKM), has revolutionized regenerative medicine. However, factors used to induce stemness are also overexpressed in cancer. Both, ES cells and iPS cells cause teratoma formation when injected to tissues. This raises a safety concern for therapies based on iPS derivates. Transdifferentiation (lineage reprogramming, or -conversion), is a process in which one mature, specialized cell type changes into another without entering a pluripotent state. This process involves an ectopic expression of transcription factors and/or other stimuli. Unlike in the case of reprogramming, tissues obtained by this method do not carry the risk of subsequent teratomagenesis. Copyright © 2017 Elsevier B.V. All rights reserved.
Determinants of the epithelial-muscular axis on embryonic stem cell-derived gut-like structures.
Luo, Yi; Takaki, Miyako; Misawa, Hiromi; Matsuyoshi, Hiroko; Sasahira, Tomonori; Chihara, Yoshitomo; Fujii, Kiyomu; Ohmori, Hitoshi; Kuniyasu, Hiroki
2010-01-01
Dome-like structures with epithelial-muscular layers resembling the gut have been derived from mouse embryonic stem (ES) cells. These domes have been reported to show spontaneous contractions and are called ES gut. In the present study, we examined the epithelial-muscular axis of these domes by detecting differentiation markers. A normal epithelial-muscular axis was exhibited in the domes with spontaneous motility, whereas the domes without spontaneous motility showed either an inverted or obscure axis. To investigate the factors affecting the epithelial-muscular axis, we examined the expression of hedgehog signaling factors in the domes. Expression of hedgehog family factors was detected in the epithelial components of the domes with motility, whereas this expression was inverted or obscure in the domes without motility. Out of the 25 domes, 10 of the 10 motility (+) domes showed a normal epithelial-muscular axis, whereas 14 of the 15 motility (-) domes lacked a normal epithelial-muscular axis. This implies that activin A upregulated the expression of sonic hedgehog and intestinal alkaline phosphatase in the embryoid bodies. These findings suggest that the motility of the ES gut depends on the domes' epithelial-muscular axis. Copyright © 2010 S. Karger AG, Basel.
Konerding, W S; Janssen, H; Hubka, P; Tornøe, J; Mistrik, P; Wahlberg, L; Lenarz, T; Kral, A; Scheper, V
2017-07-01
Profound hearing impairment can be overcome by electrical stimulation (ES) of spiral ganglion neurons (SGNs) via a cochlear implant (CI). Thus, SGN survival is critical for CI efficacy. Application of glial cell line-derived neurotrophic factor (GDNF) has been shown to reduce SGN degeneration following deafness. We tested a novel method for local, continuous GDNF-delivery in combination with ES via a CI. The encapsulated cell (EC) device contained a human ARPE-19 cell-line, genetically engineered for secretion of GDNF. In vitro, GDNF delivery was stable during ES delivered via a CI. In the chronic in vivo part, cats were systemically deafened and unilaterally implanted into the scala tympani with a CI and an EC device, which they wore for six months. The implantation of control devices (same cell-line not producing GDNF) had no negative effect on SGN survival. GDNF application without ES led to an unexpected reduction in SGN survival, however, the combination of GDNF with initial, short-term ES resulted in a significant protection of SGNs. A tight fibrous tissue formation in the scala tympani of the GDNF-only group is thought to be responsible for the increased SGN degeneration, due to mechanisms related to an aggravated foreign body response. Furthermore, the fibrotic encapsulation of the EC device led to cell death or cessation of GDNF release within the EC device during the six months in vivo. In both in vitro and in vivo, fibrosis was reduced by CI stimulation, enabling the neuroprotective effect of the combined treatment. Thus, fibrous tissue growth limits treatment possibilities with an EC device. For a stable and successful long-term neurotrophic treatment of the SGN via EC devices in human CI users, it would be necessary to make changes in the treatment approach (provision of anti-inflammatories), the EC device surface (reduced cell adhesion) and the ES (initiation prior to fibrosis formation). Copyright © 2017 Elsevier B.V. All rights reserved.
Calreticulin reveals a critical Ca2+ checkpoint in cardiac myofibrillogenesis
Li, Jian; Pucéat, Michel; Perez-Terzic, Carmen; Mery, Annabelle; Nakamura, Kimitoshi; Michalak, Marek; Krause, Karl-Heinz; Jaconi, Marisa E.
2002-01-01
Calreticulin (crt) is an ubiquitously expressed and multifunctional Ca2+-binding protein that regulates diverse vital cell functions, including Ca2+ storage in the ER and protein folding. Calreticulin deficiency in mice is lethal in utero due to defects in heart development and function. Herein, we used crt − / − embryonic stem (ES) cells differentiated in vitro into cardiac cells to investigate the molecular mechanisms underlying heart failure of knockout embryos. After 8 d of differentiation, beating areas were prominent in ES-derived wild-type (wt) embryoid bodies (EBs), but not in ES-derived crt − / − EBs, despite normal expression levels of cardiac transcription factors. Crt − / − EBs exhibited a severe decrease in expression and a lack of phosphorylation of ventricular myosin light chain 2 (MLC2v), resulting in an impaired organization of myofibrils. Crt − / − phenotype could be recreated in wt cells by chelating extracellular or cytoplasmic Ca2+ with EGTA or BAPTA, or by inhibiting Ca2+/calmodulin-dependent kinases (CaMKs). An imposed ionomycin-triggered cystolic-free Ca2+ concentration ([Ca2+]c) elevation restored the expression, phosphorylation, and insertion of MLC2v into sarcomeric structures and in turn the myofibrillogenesis. The transcription factor myocyte enhancer factor C2 failed to accumulate into nuclei of crt − / − cardiac cells in the absence of ionomycin-triggered [Ca2+]c increase. We conclude that the absence of calreticulin interferes with myofibril formation. Most importantly, calreticulin deficiency revealed the importance of a Ca2+-dependent checkpoint critical for early events during cardiac myofibrillogenesis. PMID:12105184
Ilic, Nataša; Gruden-Movsesijan, Alisa; Cvetkovic, Jelena; Tomic, Sergej; Vucevic, Dragana Bozidar; Aranzamendi, Carmen; Colic, Miodrag; Pinelli, Elena; Sofronic-Milosavljevic, Ljiljana
2018-01-01
Trichinella spiralis, as well as its muscle larvae excretory–secretory products (ES L1), given either alone or via dendritic cells (DCs), induce a tolerogenic immune microenvironment in inbred rodents and successfully ameliorate experimental autoimmune encephalomyelitis. ES L1 directs the immunological balance away from T helper (Th)1, toward Th2 and regulatory responses by modulating DCs phenotype. The ultimate goal of our work is to find out if it is possible to translate knowledge obtained in animal model to humans and to generate human tolerogenic DCs suitable for therapy of autoimmune diseases through stimulation with ES L1. Here, the impact of ES L1 on the activation of human monocyte-derived DCs is explored for the first time. Under the influence of ES L1, DCs acquired tolerogenic (semi-matured) phenotype, characterized by low expression of HLA-DR, CD83, and CD86 as well as moderate expression of CD40, along with the unchanged production of interleukin (IL)-12 and elevated production of IL-10 and transforming growth factor (TGF)-β, compared to controls. The interaction with DCs involved toll-like receptors (TLR) 2 and 4, and this interaction was mainly responsible for the phenotypic and functional properties of ES L1-treated DCs. Importantly, ES L1 potentiated Th2 polarizing capacity of DCs, and impaired their allo-stimulatory and Th1/Th17 polarizing properties. Moreover, ES L1-treated DCs promoted the expansion of IL-10- and TGF-β- producing CD4+CD25hiFoxp3hi T cells in indolamine 2, 3 dioxygenase (IDO)-1-dependent manner and increased the suppressive potential of the primed T cell population. ES L1-treated DCs retained the tolerogenic properties, even after the challenge with different pro-inflammatory stimuli, including those acting via TLR3 and, especially TLR4. These results suggest that the induction of tolerogenic properties of DCs through stimulation with ES L1 could represent an innovative approach for the preparation of tolerogenic DC for treatment of inflammatory and autoimmune disorders. PMID:29416536
Peón, Alberto N; Ledesma-Soto, Yadira; Olguín, Jonadab E; Bautista-Donis, Marcel; Sciutto, Edda; Terrazas, Luis I
2017-01-01
A negative correlation between the geographical distribution of autoimmune diseases and helminth infections has been largely associated in the last few years with a possible role for such type of parasites in the regulation of inflammatory diseases, suggesting new pathways for drug development. However, few helminth-derived immunomodulators have been tested in experimental autoimmune encephalomyelitis (EAE), an animal model of the human disease multiple sclerosis (MS). The immunomodulatory activities of Taenia crassiceps excreted/secreted products (TcES) that may suppress EAE development were sought for. Interestingly, it was discovered that TcES was able to suppress EAE development with more potency than dexamethasone; moreover, TcES treatment was still effective even when inoculated at later stages after the onset of EAE. Importantly, the TcES treatment was able to induce a range of Th2-type cytokines, while suppressing Th1 and Th17 responses. Both the polyclonal and the antigen-specific proliferative responses of lymphocytes were also inhibited in EAE-ill mice receiving TcES in association with a potent recruitment of suppressor cell populations. Peritoneal inoculation of TcES was able to direct the normal inflammatory cell traffic to the site of injection, thus modulating CNS infiltration, which may work along with Th2 immune polarization and lymphocyte activation impairment to downregulate EAE development.
Ishiwata, Isamu; Tamagawa, Tomoharu; Tokieda, Yuko; Iguchi, Megumi; Sato, Kahei; Ishikawa, Hiroshi
2003-03-01
Regenerative medical treatment with embryonic stem cells (an ES cell) is a goal for organ transplantation. Structures that are tubular in nature (i.e. blood capillaries) were induced from early embryonic stem (EES) cells in vitro using embryotrophic factor (ETFs). In addition, cardiac muscle cells could be identified as well. However, differentiation of EES cells into a complete cardiovascular system was difficult because 3 germ layer primordial organs are directed embryologically in various ways and it is not possible to guide only cardiovascular organs. Thus, we introduced ETFs after the formation of an embryoid body and were successful in cloning cell clusters that beat, thus deriving only cardiovascular organs. The application of this to the treatment of various cardiovascular diseases is promising.
Tilan, Jason U.; Krailo, Mark; Barkauskas, Donald A.; Galli, Susana; Mtaweh, Haifa; Long, Jessica; Wang, Hongkun; Hawkins, Kirsten; Lu, Congyi; Jeha, Dima; Izycka-Swieszewska, Ewa; Lawlor, Elizabeth R.; Toretsky, Jeffrey A.; Kitlinska, Joanna
2014-01-01
Background Ewing sarcoma (ES) is driven by fusion of the EWS gene with an ETS transcription factor, most often FLI1. Neuropeptide Y (NPY) is an EWS-FLI1 transcriptional target. NPY is highly expressed in ES and exerts opposing effects, ranging from ES cell death to angiogenesis and cancer stem cell propagation. The functions of NPY are regulated by dipeptidyl peptidase IV (DPPIV), a hypoxia-inducible enzyme that cleaves the peptide and activates its growth-promoting actions. The goal of this study was to determine clinically relevant functions of NPY by identifying the associations between its concentrations and DPP activity in patients and ES phenotype. Methods NPY concentrations and DPP activity were measured in serum samples from 223 patients with localized and 9 patients with metastatic ES provided by Children’s Oncology Group. Results Serum NPY levels were elevated in ES patients, as compared to healthy control and osteosarcoma populations, independently of the EWS-ETS translocation type. Significantly higher NPY concentrations were detected in ES patients with tumors of pelvic and bone origin. A similar trend was observed in patients with metastatic ES. There was no effect of NPY on survival in patients with localized ES. DPP activity in sera of ES patients was not significantly different from healthy control and osteosarcoma patients. However, high DPP levels were associated with improved survival. Conclusion Systemic NPY is elevated in ES patients and its high levels associate with unfavorable disease features. DPPIV in patients’ sera is derived from non-tumoral sources and its high activity correlates with improved survival. PMID:25387699
Pluripotent stem cells for cardiac regeneration: Overview of recent advances & emerging trends
Pawani, Harsha; Bhartiya, Deepa
2013-01-01
Cell based regenerative therapy has emerged as one of the most promising options of treatment for patients suffering from heart failure. Various adult stem cells types have undergone extensive clinical trials with limited success which is believed to be more of a cytokine effect rather than cell therapy. Pluripotent human embryonic stem cells (hESCs) have emerged as an attractive candidate stem cell source for obtaining cardiomyocytes (CMs) because of their tremendous capacity for expansion and unquestioned potential to differentiate into CMs. Studies carried out in animal models indicate that ES-derived CMs can partially remuscularize infarcted hearts and improve contractile function; however, the effect was not sustained over long follow up periods due to their limited capacity of cell division in vivo. Thus, the concept of transplanting multipotent cardiovascular progenitors derived from ES cells has emerged since the progenitors retain robust proliferative ability and multipotent nature enabling repopulation of other myocardial elements also in addition to CMs. Transplantation of CMs (progenitors) seeded in biodegradable scaffold and gel based engineered constructs has met with modest success due to issues like cell penetration, nutrient and oxygen availability and inflammation triggered during scaffold degradation inversely affecting the seeded cells. Recently cell sheet based tissue engineering involving culturing cells on ‘intelligent’ polymers has been evolved. Generation of a 3-D pulsatile myocardial tissue has been achieved. However, these advances have to be looked at with cautious optimism as many challenges need to be overcome before using these in clinical practice. PMID:23563370
Regulated expression of Brachyury(T), Nkx1.1 and Pax genes in embryoid bodies.
Yamada, G; Kioussi, C; Schubert, F R; Eto, Y; Chowdhury, K; Pituello, F; Gruss, P
1994-03-15
Embryonic stem cells (ES) can be exploited to analyze in vitro mechanisms of cellular differentiation. We have utilized ES-derived embryoid body formation in an attempt to study cell types resulting from in vitro differentiation. To this end, a variety of molecular markers, preferably those which have been associated with regulatory events during mouse embryogenesis, was employed. Specifically, Brachyury (T), Pax-3 and Pax-6 genes as well as Nkx-1.1 were used. We could demonstrate that the expression of these genes in vitro was regulated by growth factors such as activin A or bFGF. Implications of these findings and the possible applications for identifying new genes are discussed.
Robb, Sheri L; Burns, Debra S; Stegenga, Kristin A; Haut, Paul R; Monahan, Patrick O; Meza, Jane; Stump, Timothy E; Cherven, Brooke O; Docherty, Sharron L; Hendricks-Ferguson, Verna L; Kintner, Eileen K; Haight, Ann E; Wall, Donna A; Haase, Joan E
2014-03-15
To reduce the risk of adjustment problems associated with hematopoietic stem cell transplant (HSCT) for adolescents/young adults (AYAs), we examined efficacy of a therapeutic music video (TMV) intervention delivered during the acute phase of HSCT to: 1) increase protective factors of spiritual perspective, social integration, family environment, courageous coping, and hope-derived meaning; 2) decrease risk factors of illness-related distress and defensive coping; and 3) increase outcomes of self-transcendence and resilience. This was a multisite randomized, controlled trial (COG-ANUR0631) conducted at 8 Children's Oncology Group sites involving 113 AYAs aged 11-24 years undergoing myeloablative HSCT. Participants, randomized to the TMV or low-dose control (audiobooks) group, completed 6 sessions over 3 weeks with a board-certified music therapist. Variables were based on Haase's Resilience in Illness Model (RIM). Participants completed measures related to latent variables of illness-related distress, social integration, spiritual perspective, family environment, coping, hope-derived meaning, and resilience at baseline (T1), postintervention (T2), and 100 days posttransplant (T3). At T2, the TMV group reported significantly better courageous coping (Effect Size [ES], 0.505; P = .030). At T3, the TMV group reported significantly better social integration (ES, 0.543; P = .028) and family environment (ES, 0.663; P = .008), as well as moderate nonsignificant effect sizes for spiritual perspective (ES, 0.450; P = .071) and self-transcendence (ES, 0.424; P = .088). The TMV intervention improves positive health outcomes of courageous coping, social integration, and family environment during a high-risk cancer treatment. We recommend the TMV be examined in a broader population of AYAs with high-risk cancers. © 2013 American Cancer Society.
Qin, Weiping; Sun, Li; Cao, Jay; Peng, Yuanzhen; Collier, Lauren; Wu, Yong; Creasey, Graham; Li, Jianhua; Qin, Yiwen; Jarvis, Jonathan; Bauman, William A; Zaidi, Mone; Cardozo, Christopher
2013-05-10
Mechanisms by which muscle regulates bone are poorly understood. Electrically stimulated muscle contraction reversed elevations in bone resorption and increased Wnt signaling in bone-derived cells after spinal cord transection. Muscle contraction reduced resorption of unloaded bone independently of the CNS, through mechanical effects and, potentially, nonmechanical signals (e.g. myokines). The study provides new insights regarding muscle-bone interactions. Muscle and bone work as a functional unit. Cellular and molecular mechanisms underlying effects of muscle activity on bone mass are largely unknown. Spinal cord injury (SCI) causes muscle paralysis and extensive sublesional bone loss and disrupts neural connections between the central nervous system (CNS) and bone. Muscle contraction elicited by electrical stimulation (ES) of nerves partially protects against SCI-related bone loss. Thus, application of ES after SCI provides an opportunity to study the effects of muscle activity on bone and roles of the CNS in this interaction, as well as the underlying mechanisms. Using a rat model of SCI, the effects on bone of ES-induced muscle contraction were characterized. The SCI-mediated increase in serum C-terminal telopeptide of type I collagen (CTX) was completely reversed by ES. In ex vivo bone marrow cell cultures, SCI increased the number of osteoclasts and their expression of mRNA for several osteoclast differentiation markers, whereas ES significantly reduced these changes; SCI decreased osteoblast numbers, but increased expression in these cells of receptor activator of NF-κB ligand (RANKL) mRNA, whereas ES increased expression of osteoprotegerin (OPG) and the OPG/RANKL ratio. A microarray analysis revealed that ES partially reversed SCI-induced alterations in expression of genes involved in signaling through Wnt, FSH, parathyroid hormone (PTH), oxytocin, and calcineurin/nuclear factor of activated T-cells (NFAT) pathways. ES mitigated SCI-mediated increases in mRNA levels for the Wnt inhibitors DKK1, sFRP2, and sclerostin in ex vivo cultured osteoblasts. Our results demonstrate an anti-bone-resorptive activity of muscle contraction by ES that develops rapidly and is independent of the CNS. The pathways involved, particularly Wnt signaling, suggest future strategies to minimize bone loss after immobilization.
Lineage specific expression of Polycomb Group Proteins in human embryonic stem cells in vitro.
Pethe, Prasad; Pursani, Varsha; Bhartiya, Deepa
2015-05-01
Human embryonic (hES) stem cells are an excellent model to study lineage specification and differentiation into various cell types. Differentiation necessitates repression of specific genes not required for a particular lineage. Polycomb Group (PcG) proteins are key histone modifiers, whose primary function is gene repression. PcG proteins form complexes called Polycomb Repressive Complexes (PRCs), which catalyze histone modifications such as H2AK119ub1, H3K27me3, and H3K9me3. PcG proteins play a crucial role during differentiation of stem cells. The expression of PcG transcripts during differentiation of hES cells into endoderm, mesoderm, and ectoderm lineage is yet to be shown. In-house derived hES cell line KIND1 was differentiated into endoderm, mesoderm, and ectoderm lineages; followed by characterization using RT-PCR for HNF4A, CDX2, MEF2C, TBX5, SOX1, and MAP2. qRT-PCR and western blotting was performed to compare expression of PcG transcripts and proteins across all the three lineages. We observed that cells differentiated into endoderm showed upregulation of RING1B, BMI1, EZH2, and EED transcripts. Mesoderm differentiation was characterized by significant downregulation of all PcG transcripts during later stages. BMI1 and RING1B were upregulated while EZH2, SUZ12, and EED remained low during ectoderm differentiation. Western blotting also showed distinct expression of BMI1 and EZH2 during differentiation into three germ layers. Our study shows that hES cells differentiating into endoderm, mesoderm, and ectoderm lineages show distinct PcG expression profile at transcript and protein level. © 2015 International Federation for Cell Biology.
Rhee, Yong-Hee; Ko, Ji-Yun; Chang, Mi-Yoon; Yi, Sang-Hoon; Kim, Dohoon; Kim, Chun-Hyung; Shim, Jae-Won; Jo, A-Young; Kim, Byung-Woo; Lee, Hyunsu; Lee, Suk-Ho; Suh, Wonhee; Park, Chang-Hwan; Koh, Hyun-Chul; Lee, Yong-Sung; Lanza, Robert; Kim, Kwang-Soo; Lee, Sang-Hun
2011-06-01
Parkinson disease (PD) involves the selective loss of midbrain dopamine (mDA) neurons and is a possible target disease for stem cell-based therapy. Human induced pluripotent stem cells (hiPSCs) are a potentially unlimited source of patient-specific cells for transplantation. However, it is critical to evaluate the safety of hiPSCs generated by different reprogramming methods. Here, we compared multiple hiPSC lines derived by virus- and protein-based reprogramming to human ES cells (hESCs). Neuronal precursor cells (NPCs) and dopamine (DA) neurons delivered from lentivirus-based hiPSCs exhibited residual expression of exogenous reprogramming genes, but those cells derived from retrovirus- and protein-based hiPSCs did not. Furthermore, NPCs derived from virus-based hiPSCs exhibited early senescence and apoptotic cell death during passaging, which was preceded by abrupt induction of p53. In contrast, NPCs derived from hESCs and protein-based hiPSCs were highly expandable without senescence. DA neurons derived from protein-based hiPSCs exhibited gene expression, physiological, and electrophysiological properties similar to those of mDA neurons. Transplantation of these cells into rats with striatal lesions, a model of PD, significantly rescued motor deficits. These data support the clinical potential of protein-based hiPSCs for personalized cell therapy of PD.
iPS-cell derived dendritic cells and macrophages for cancer therapy.
Senju, Satoru
2016-08-01
Antibody-based anti-cancer immunotherapy was recently recognized as one of the truly effective therapies for cancer patients. Antibodies against cell surface cancer antigens, such as CD20, and also those against immune-inhibitory molecules called "immune checkpoint blockers", such as CTLA4 or PD1, have emerged. Large-scale clinical trials have confirmed that, in some cases, antibody-based drugs are superior to conventional chemotherapeutic agents. These antibody-based drugs are now being manufactured employing a mass-production system by pharmaceutical companies. Anti-cancer therapy by immune cells, i.e. cell-based immunotherapy, is expected to be more effective than antibody therapy, because immune cells can recognize, infiltrate, and act in cancer tissues more directly than antibodies. In order to achieve cell-based anti-cancer immunotherapy, it is necessary to develop manufacturing systems for mass-production of immune cells. Our group has been studying immunotherapy with myeloid cells derived from ES cells or iPS cells. These pluripotent stem cells can be readily propagated under constant culture conditions, with expansion into a large quantity. We consider these stem cells to be the most suitable cellular source for mass-production of immune cells. This review introduces our studies on anti-cancer therapy with iPS cell-derived dendritic cells and iPS cell-derived macrophages.
Ghazalli, Nadiah; Wu, Xiaoxing; Walker, Stephanie; Trieu, Nancy; Hsin, Li-Yu; Choe, Justin; Chen, Chialin; Hsu, Jasper; LeBon, Jeanne; Kozlowski, Mark T; Rawson, Jeffrey; Tirrell, David A; Yip, M L Richard; Ku, Hsun Teresa
2018-06-06
Pluripotent stem cells may serve as an alternative source of beta-like cells for replacement therapy of type 1 diabetes; however, the beta-like cells generated in many differentiation protocols are immature. The maturation of endogenous beta cells involves an increase in insulin expression starting in late gestation and a gradual acquisition of the abilities to sense glucose and secrete insulin by week 2 after birth in mice; however, what molecules regulate these maturation processes are incompletely known. In this study, we aim to identify small molecules that affect immature beta cells. A cell-based assay, using pancreatic beta-like cells derived from murine embryonic stem (ES) cells harboring a transgene containing an insulin 1-promoter driven enhanced green fluorescent protein reporter, was used to screen a compound library (NIH Clinical Collection-003). Cortisone, a glucocorticoid, was among five positive hit compounds. Quantitative reverse transcription-polymerase chain reaction analysis revealed that glucocorticoids enhance the gene expression of not only insulin 1 but also glucose transporter-2 (Glut2; Slc2a2) and glucokinase (Gck), two molecules important for glucose sensing. Mifepristone, a pharmacological inhibitor of glucocorticoid receptor (GR) signaling, reduced the effects of glucocorticoids on Glut2 and Gck expression. The effects of glucocorticoids on ES-derived cells were further validated in immature primary islets. Isolated islets from 1-week-old mice had an increased Glut2 and Gck expression in response to a 4-day treatment of exogenous hydrocortisone in vitro. Gene deletion of GR in beta cells using rat insulin 2 promoter-driven Cre crossed with GR flox/flox mice resulted in a reduced gene expression of Glut2, but not Gck, and an abrogation of insulin secretion when islets were incubated in 0.5 mM d-glucose and stimulated by 17 mM d-glucose in vitro. These results demonstrate that glucocorticoids positively regulate glucose sensors in immature murine beta-like cells.
[Establishment of human embryonic stem cell lines and their therapeutic application].
Suemori, Hirofumi
2004-03-01
Embryonic stem (ES) cell lines are pluripotent stem cell lines that can be propagated indefinitely in culture, retaining their potency to differentiate into every type of cell and tissue in the body. ES cell lines were first established from mouse blastocysts, and have been used for research in developmental biology. ES cells have been proven to be very valuable in the genetic modification of the mouse, especially in producing knockout mice. Since establishment of human ES cell lines was reported, their use in cell replacement therapies has been enthusiastically expected. There have been reports of the differentiation of several useful cell types from human ES cell lines, and clinical use of functional tissues and cells from human ES cells is anticipated. In Japan, there have also been many demands for the use of human ES cells in basic and pre-clinical research. We obtained governmental permission to establish human ES cell lines in April 2002 and started research using donated frozen embryos in January 2003. We successfully established three ES cell line from three blastocysts. These cell lines will be distributed at cost to researchers who have governmental permission to use human ES cells.
Markert, Lotte D'Andrea; Lovmand, Jette; Foss, Morten; Lauridsen, Rune Hoff; Lovmand, Michael; Füchtbauer, Ernst-Martin; Füchtbauer, Annette; Wertz, Karin; Besenbacher, Flemming; Pedersen, Finn Skou; Duch, Mogens
2009-11-01
The potential of embryonic stem (ES) cells for both self-renewal and differentiation into cells of all three germ layers has generated immense interest in utilizing these cells for tissue engineering or cell-based therapies. However, the ability to culture undifferentiated ES cells without the use of feeder cells as well as means to obtain homogeneous, differentiated cell populations devoid of residual pluripotent ES cells still remain major challenges. Here we have applied murine ES cells to topographically microstructured surface libraries, BioSurface Structure Arrays (BSSA), and investigated whether these could be used to (i) identify topographically microstructured growth supports alleviating the need for feeder cells for expansion of undifferentiated ES cells and (ii) identify specific types of microstructures enforcing differentiation of ES cells. The BSSA surfaces arrays consisted of 504 different topographical microstructures each located in a tester field of 3 x 3 mm. The murine ES cell lines CJ7 and KH2 were seeded upon the BSSA libraries and specific topographical structures facilitating either undifferentiated ES cell growth or enhancing spreading indicative of differentiation of the ES cells were identified. Secondly serial passage of undifferentiated CJ7 ES cells on selected microstructures, identified in the screening of these BSSA libraries, showed that these cells had retained germ-line potential. These results indicate that one specific type of topographical surface microstructures, identified by the BSSA technology, can substitute for feeder cells and that another subset may be used to eliminate undifferentiated ES cells from a population of differentiated ES cells.
Zhang, Yancong; Li, Yongliang; Shi, Ruirui; Zhang, Siqi; Liu, Hao; Zheng, Yunfei; Li, Yan; Cai, Jinglei; Pei, Duanqing; Wei, Shicheng
2017-06-08
A number of studies have shown that tooth-like structures can be regenerated using induced pluripotent stem cells and mouse embryonic stem (mES) cells. However, few studies have reported the regeneration of tooth-periodontium complex structures, which are more suitable for clinical tooth transplantation. We established an optimized approach to induce high-odontogenic potential dental epithelium derived from mES cells by temporally controlling bone morphogenic protein 4 (BMP4) function and regenerated tooth-periodontium complex structures in vivo. First, immunofluorescence and quantitative reverse transcription-polymerase chain reaction were used to identify the watershed of skin and the oral ectoderm. LDN193189 was then used to inhibit the BMP4 receptor around the watershed, followed by the addition of exogenous BMP4 to promote BMP4 function. The generated dental epithelium was confirmed by western blot analysis and immunofluorescence. The generated epithelium was ultimately combined with embryonic day 14.5 mouse mesenchyme and transplanted into the renal capsules of nude mice. After 4 weeks, the tooth-periodontium complex structure was examined by micro-computed tomography (CT) and hematoxylin and eosin (H&E) staining. Our study found that the turning point of oral ectoderm differentiation occurred around day 3 after the embryoid body was transferred to a common culture plate. Ameloblastin-positive dental epithelial cells were detected following the temporal regulation of BMP4. Tooth-periodontium complex structures, which included teeth, a periodontal membrane, and alveolar bone, were formed when this epithelium was combined with mouse dental mesenchyme and transplanted into the renal capsules of nude mice. Micro-CT and H&E staining revealed that the generated tooth-periodontium complex structures shared a similar histological structure with normal mouse teeth. An optimized induction method was established to promote the differentiation of mES cells into dental epithelium by temporally controlling the function of BMP4. A novel tooth-periodontium complex structure was generated using the epithelium.
Production of human monoclonal antibody in eggs of chimeric chickens.
Zhu, Lei; van de Lavoir, Marie-Cecile; Albanese, Jenny; Beenhouwer, David O; Cardarelli, Pina M; Cuison, Severino; Deng, David F; Deshpande, Shrikant; Diamond, Jennifer H; Green, Lynae; Halk, Edward L; Heyer, Babette S; Kay, Robert M; Kerchner, Allyn; Leighton, Philip A; Mather, Christine M; Morrison, Sherie L; Nikolov, Zivko L; Passmore, David B; Pradas-Monne, Alicia; Preston, Benjamin T; Rangan, Vangipuram S; Shi, Mingxia; Srinivasan, Mohan; White, Steven G; Winters-Digiacinto, Peggy; Wong, Susan; Zhou, Wen; Etches, Robert J
2005-09-01
The tubular gland of the chicken oviduct is an attractive system for protein expression as large quantities of proteins are deposited in the egg, the production of eggs is easily scalable and good manufacturing practices for therapeutics from eggs have been established. Here we examined the ability of upstream and downstream DNA sequences of ovalbumin, a protein produced exclusively in very high quantities in chicken egg white, to drive tissue-specific expression of human mAb in chicken eggs. To accommodate these large regulatory regions, we established and transfected lines of chicken embryonic stem (cES) cells and formed chimeras that express mAb from cES cell-derived tubular gland cells. Eggs from high-grade chimeras contained up to 3 mg of mAb that possesses enhanced antibody-dependent cellular cytotoxicity (ADCC), nonantigenic glycosylation, acceptable half-life, excellent antigen recognition and good rates of internalization.
From “ES-like” cells to induced pluripotent stem cells: A historical perspective in domestic animals
Koh, Sehwon; Piedrahita, Jorge A.
2013-01-01
Pluripotent stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) provide great potential as cell sources for gene editing to generate genetically modified animals, as well as in the field of regenerative medicine. Stable, long-term ESCs have been established in laboratory mouse and rat, however, isolation of true pluripotent ESCs in domesticated animals such as pigs and dogs have been less successful. Initially, domesticated animal pluripotent cell lines were referred to as “ES-like” cells due to similar morphological characteristics to mouse ESCs but accompanied by a limited ability to proliferate in vitro in an undifferentiated state. That is, they shared some but not all the characteristics of true ESCs. More recently, advances in reprogramming using exogenous transcription factors, combined with the utilization of small chemical inhibitors of key biochemical pathways, have led to the isolation of induced pluripotent stem cells. In this review, we provide a historical perspective of the isolation of various types of pluripotent stem cells in domesticated animals. In addition, we summarize the latest progress and limitations in the derivation and application of induced pluripotent stem cells. PMID:24274415
Ode, Koji L; Ukai, Hideki; Susaki, Etsuo A; Narumi, Ryohei; Matsumoto, Katsuhiko; Hara, Junko; Koide, Naoshi; Abe, Takaya; Kanemaki, Masato T; Kiyonari, Hiroshi; Ueda, Hiroki R
2017-01-05
To conduct comprehensive characterization of molecular properties in organisms, we established an efficient method to produce knockout (KO)-rescue mice within a single generation. We applied this method to produce 20 strains of almost completely embryonic stem cell (ESC)-derived mice ("ES mice") rescued with wild-type and mutant Cry1 gene under a Cry1 -/- :Cry2 -/- background. A series of both phosphorylation-mimetic and non-phosphorylation-mimetic CRY1 mutants revealed that multisite phosphorylation of CRY1 can serve as a cumulative timer in the mammalian circadian clock. KO-rescue ES mice also revealed that CRY1-PER2 interaction confers a robust circadian rhythmicity in mice. Surprisingly, in contrast to theoretical predictions from canonical transcription/translation feedback loops, the residues surrounding the flexible P loop and C-lid domains of CRY1 determine circadian period without changing the degradation rate of CRY1. These results suggest that CRY1 determines circadian period through both its degradation-dependent and -independent pathways. Copyright © 2017 Elsevier Inc. All rights reserved.
In vitro developmental model of the gastrointestinal tract from mouse embryonic stem cells.
Torihashi, Shigeko; Kuwahara, Masaki; Kurahashi, Masaaki
2007-10-01
Mouse embryonic stem (ES) cells are pluripotent and retain their potential to form cells, tissues and organs originated from three embryonic germ layers. Recently, we developed in vitro organ--gut-like structures--from mouse ES cells. They had basically similar morphological features to a mouse gastrointestinal tract in vivo composed of three distinct layers (i.e., epithelium, connective tissue and musculature). Gut-like structures showed spontaneous contractions derived from pacemaker cells (interstitial cells of Cajal) in the musculature. We also examined their formation process and expression pattern of transcription factors crucial for gut organogenesis such as Id2, Sox17, HNF3beta/Foxa2 and GATA4. We found that they mimic the development of embryonic gut in vivo and showed a similar expression pattern of common transcription factors. They also maintain their developmental potential after transplantation to a renal capsule. Therefore, gut-like structures are suitable for in vitro models of gastrointestinal tracts and their development. In addition, we pointed out several unique features different from gut in vivo that provide useful and advantageous tools to investigate the developmental mechanism of the gastrointestinal tract.
Generation of diverse neuronal subtypes in cloned populations of stem-like cells
Varga, Balázs V; Hádinger, Nóra; Gócza, Elen; Dulberg, Vered; Demeter, Kornél; Madarász, Emília; Herberth, Balázs
2008-01-01
Background The central nervous tissue contains diverse subtypes of neurons with characteristic morphological and physiological features and different neurotransmitter phenotypes. The generation of neurons with defined neurotransmitter phenotypes seems to be governed by factors differently expressed along the anterior-posterior and dorsal-ventral body axes. The mechanisms of the cell-type determination, however, are poorly understood. Selected neuronal phenotypes had been generated from embryonic stem (ES) cells, but similar results were not obtained on more restricted neural stem cells, presumably due to the lack of homogeneous neural stem cell populations as a starting material. Results In the presented work, the establishment of different neurotransmitter phenotypes was investigated in the course of in vitro induced neural differentiation of a one-cell derived neuroectodermal cell line, in conjunction with the activation of various region-specific genes. For comparison, similar studies were carried out on the R1 embryonic stem (ES) and P19 multipotent embryonic carcinoma (EC) cells. In response to a short treatment with all-trans retinoic acid, all cell lines gave rise to neurons and astrocytes. Non-induced neural stem cells and self-renewing cells persisting in differentiated cultures, expressed "stemness genes" along with early embryonic anterior-dorsal positional genes, but did not express the investigated CNS region-specific genes. In differentiating stem-like cell populations, on the other hand, different region-specific genes, those expressed in non-overlapping regions along the body axes were activated. The potential for diverse regional specifications was induced in parallel with the initiation of neural tissue-type differentiation. In accordance with the wide regional specification potential, neurons with different neurotransmitter phenotypes developed. Mechanisms inherent to one-cell derived neural stem cell populations were sufficient to establish glutamatergic and GABAergic neuronal phenotypes but failed to manifest cathecolaminergic neurons. Conclusion The data indicate that genes involved in positional determination are activated along with pro-neuronal genes in conditions excluding any outside influences. Interactions among progenies of one cell derived neural stem cells are sufficient for the activation of diverse region specific genes and initiate different routes of neuronal specification. PMID:18808670
Isolation and culture of rabbit embryonic stem cells.
Honda, Arata
2013-01-01
Mammalian stem cells are invaluable research resources for the study of cell and embryonic development as well as practical tools for use in the production of genetically engineered animals and further therapeutics. It is important that we further our knowledge and understanding of a variety of stem cells from several different animal species before trials in humans commence. Here we describe methods for establishing rabbit embryonic stem (rES) cell lines with indefinite proliferation potential. rES cells attain maximum proliferation potential when cultured at a feeder cell density of one-sixth of that of full confluency. Higher and lower densities of feeder cells induced ES cell differentiation or division arrest. Fibroblast growth factor (FGF)2 can maintain the undifferentiated status of rES cells; however leukemia inhibitory factor (LIF) is dispensable. Under optimized conditions, rES cells could be passaged by trypsinization 50 times. This culture system enabled efficient gene transduction and clonal expansion from single cells. rES cells grew as flat monolayer cell colonies, as reported for monkey and human ES cells, and expressed pluripotency markers. Embryoid bodies and teratomas formed readily in vitro and in vivo, respectively. Characterization of ES cells from different species is important for establishing common features of pluripotency. We have demonstrated the similarity of ES cells between rabbit and humans. These cell lines could be applied directly using gene-targeting techniques, or in combination with induced pluripotent stem cells. Thus, rES cells are a suitable model for studying human transplantation therapy and disease treatments.
The p53 inhibitor, pifithrin-{alpha}, suppresses self-renewal of embryonic stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelalim, Essam Mohamed, E-mail: essam_abdelalim@yahoo.com; Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522; Tooyama, Ikuo
2012-04-13
Highlights: Black-Right-Pointing-Pointer We determine the role of p53 in ES cells under unstressful conditions. Black-Right-Pointing-Pointer PFT-{alpha} suppresses ES cell proliferation. Black-Right-Pointing-Pointer PFT-{alpha} induces ES cell cycle arrest. Black-Right-Pointing-Pointer PFT-{alpha} downregulates Nanog and cyclin D1. -- Abstract: Recent studies have reported the role of p53 in suppressing the pluripotency of embryonic stem (ES) cells after DNA damage and blocking the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. However, to date no evidence has been presented to support the function of p53 in unstressed ES cells. In this study, we investigated the effect of pifithrin (PFT)-{alpha}, an inhibitor ofmore » p53-dependent transcriptional activation, on self-renewal of ES cells. Our results revealed that treatment of ES cells with PFT-{alpha} resulted in the inhibition of ES cell propagation in a dose-dependent manner, as indicated by a marked reduction in the cell number and colony size. Also, PFT-{alpha} caused a cell cycle arrest and significant reduction in DNA synthesis. In addition, inhibition of p53 activity reduced the expression levels of cyclin D1 and Nanog. These findings indicate that p53 pathway in ES cells rather than acting as an inactive gene, is required for ES cell proliferation and self-renewal under unstressful conditions.« less
DNA Methylation Profiling of Embryonic Stem Cell Differentiation into the Three Germ Layers
Isagawa, Takayuki; Nagae, Genta; Shiraki, Nobuaki; Fujita, Takanori; Sato, Noriko; Ishikawa, Shumpei; Kume, Shoen; Aburatani, Hiroyuki
2011-01-01
Embryogenesis is tightly regulated by multiple levels of epigenetic regulation such as DNA methylation, histone modification, and chromatin remodeling. DNA methylation patterns are erased in primordial germ cells and in the interval immediately following fertilization. Subsequent developmental reprogramming occurs by de novo methylation and demethylation. Variance in DNA methylation patterns between different cell types is not well understood. Here, using methylated DNA immunoprecipitation and tiling array technology, we have comprehensively analyzed DNA methylation patterns at proximal promoter regions in mouse embryonic stem (ES) cells, ES cell-derived early germ layers (ectoderm, endoderm and mesoderm) and four adult tissues (brain, liver, skeletal muscle and sperm). Most of the methylated regions are methylated across all three germ layers and in the three adult somatic tissues. This commonly methylated gene set is enriched in germ cell-associated genes that are generally transcriptionally inactive in somatic cells. We also compared DNA methylation patterns by global mapping of histone H3 lysine 4/27 trimethylation, and found that gain of DNA methylation correlates with loss of histone H3 lysine 4 trimethylation. Our combined findings indicate that differentiation of ES cells into the three germ layers is accompanied by an increased number of commonly methylated DNA regions and that these tissue-specific alterations in methylation occur for only a small number of genes. DNA methylation at the proximal promoter regions of commonly methylated genes thus appears to be an irreversible mark which functions to fix somatic lineage by repressing the transcription of germ cell-specific genes. PMID:22016810
DNA methylation profiling of embryonic stem cell differentiation into the three germ layers.
Isagawa, Takayuki; Nagae, Genta; Shiraki, Nobuaki; Fujita, Takanori; Sato, Noriko; Ishikawa, Shumpei; Kume, Shoen; Aburatani, Hiroyuki
2011-01-01
Embryogenesis is tightly regulated by multiple levels of epigenetic regulation such as DNA methylation, histone modification, and chromatin remodeling. DNA methylation patterns are erased in primordial germ cells and in the interval immediately following fertilization. Subsequent developmental reprogramming occurs by de novo methylation and demethylation. Variance in DNA methylation patterns between different cell types is not well understood. Here, using methylated DNA immunoprecipitation and tiling array technology, we have comprehensively analyzed DNA methylation patterns at proximal promoter regions in mouse embryonic stem (ES) cells, ES cell-derived early germ layers (ectoderm, endoderm and mesoderm) and four adult tissues (brain, liver, skeletal muscle and sperm). Most of the methylated regions are methylated across all three germ layers and in the three adult somatic tissues. This commonly methylated gene set is enriched in germ cell-associated genes that are generally transcriptionally inactive in somatic cells. We also compared DNA methylation patterns by global mapping of histone H3 lysine 4/27 trimethylation, and found that gain of DNA methylation correlates with loss of histone H3 lysine 4 trimethylation. Our combined findings indicate that differentiation of ES cells into the three germ layers is accompanied by an increased number of commonly methylated DNA regions and that these tissue-specific alterations in methylation occur for only a small number of genes. DNA methylation at the proximal promoter regions of commonly methylated genes thus appears to be an irreversible mark which functions to fix somatic lineage by repressing the transcription of germ cell-specific genes.
NASA Technical Reports Server (NTRS)
Chen, Silvia S.; Revoltella, Roberto P.; Papini, Sandra; Michelini, Monica; Fitzgerald, Wendy; Zimmerberg, Joshua; Margolis, Leonid
2003-01-01
In the course of normal embryogenesis, embryonic stem (ES) cells differentiate along different lineages in the context of complex three-dimensional (3D) tissue structures. In order to study this phenomenon in vitro under controlled conditions, 3D culture systems are necessary. Here, we studied in vitro differentiation of rhesus monkey ES cells in 3D collagen matrixes (collagen gels and porous collagen sponges). Differentiation of ES cells in these 3D systems was different from that in monolayers. ES cells differentiated in collagen matrixes into neural, epithelial, and endothelial lineages. The abilities of ES cells to form various structures in two chemically similar but topologically different matrixes were different. In particular, in collagen gels ES cells formed gland-like circular structures, whereas in collagen sponges ES cells were scattered through the matrix or formed aggregates. Soluble factors produced by feeder cells or added to the culture medium facilitated ES cell differentiation into particular lineages. Coculture with fibroblasts in collagen gel facilitated ES cell differentiation into cells of a neural lineage expressing nestin, neural cell adhesion molecule, and class III beta-tubulin. In collagen sponges, keratinocytes facilitated ES cell differentiation into cells of an endothelial lineage expressing factor VIII. Exogenous granulocyte-macrophage colony-stimulating factor further enhanced endothelial differentiation. Thus, both soluble factors and the type of extracellular matrix seem to be critical in directing differentiation of ES cells and the formation of tissue-like structures. Three-dimensional culture systems are a valuable tool for studying the mechanisms of these phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Funabashi, Hisakage; Takatsu, Makoto; Saito, Mikako
2010-10-01
Research highlights: {yields} SV40-DTS worked as a DTS in ES cells as well as other types of cells. {yields} Sox2 regulatory region 2 worked as a DTS in ES cells and thus was termed as SRR2-DTS. {yields} SRR2-DTS was suggested as an ES cell-specific DTS. -- Abstract: In this report, the effects of two DNA nuclear targeting sequence (DTS) candidates on the gene expression efficiency in ES cells were investigated. Reporter plasmids containing the simian virus 40 (SV40) promoter/enhancer sequence (SV40-DTS), a DTS for various types of cells but not being reported yet for ES cells, and the 81 basemore » pairs of Sox2 regulatory region 2 (SRR2) where two transcriptional factors in ES cells, Oct3/4 and Sox2, are bound (SRR2-DTS), were introduced into cytoplasm in living cells by femtoinjection. The gene expression efficiencies of each plasmid in mouse insulinoma cell line MIN6 cells and mouse ES cells were then evaluated. Plasmids including SV40-DTS and SRR2-DTS exhibited higher gene expression efficiency comparing to plasmids without these DTSs, and thus it was concluded that both sequences work as a DTS in ES cells. In addition, it was suggested that SRR2-DTS works as an ES cell-specific DTS. To the best of our knowledge, this is the first report to confirm the function of DTSs in ES cells.« less
Soncin, Francesca; Mohamet, Lisa; Eckardt, Dominik; Ritson, Sarah; Eastham, Angela M; Bobola, Nicoletta; Russell, Angela; Davies, Steve; Kemler, Rolf; Merry, Catherine L R; Ward, Christopher M
2009-09-01
We have previously demonstrated that differentiation of embryonic stem (ES) cells is associated with downregulation of cell surface E-cadherin. In this study, we assessed the function of E-cadherin in mouse ES cell pluripotency and differentiation. We show that inhibition of E-cadherin-mediated cell-cell contact in ES cells using gene knockout (Ecad(-/-)), RNA interference (EcadRNAi), or a transhomodimerization-inhibiting peptide (CHAVC) results in cellular proliferation and maintenance of an undifferentiated phenotype in fetal bovine serum-supplemented medium in the absence of leukemia inhibitory factor (LIF). Re-expression of E-cadherin in Ecad(-/-), EcadRNAi, and CHAVC-treated ES cells restores cellular dependence to LIF supplementation. Although reversal of the LIF-independent phenotype in Ecad(-/-) ES cells is dependent on the beta-catenin binding domain of E-cadherin, we show that beta-catenin null (betacat(-/-)) ES cells also remain undifferentiated in the absence of LIF. This suggests that LIF-independent self-renewal of Ecad(-/-) ES cells is unlikely to be via beta-catenin signaling. Exposure of Ecad(-/-), EcadRNAi, and CHAVC-treated ES cells to the activin receptor-like kinase inhibitor SB431542 led to differentiation of the cells, which could be prevented by re-expression of E-cadherin. To confirm the role of transforming growth factor beta family signaling in the self-renewal of Ecad(-/-) ES cells, we show that these cells maintain an undifferentiated phenotype when cultured in serum-free medium supplemented with Activin A and Nodal, with fibroblast growth factor 2 required for cellular proliferation. We conclude that transhomodimerization of E-cadherin protein is required for LIF-dependent ES cell self-renewal and that multiple self-renewal signaling networks subsist in ES cells, with activity dependent upon the cellular context.
Zhang, Wei; Peng, Peng; Kuang, Yun; Yang, Jiaxin; Cao, Dongyan; You, Yan; Shen, Keng
2016-03-01
Cellular exosomes are involved in many disease processes and have the potential to be used for diagnosis and treatment. In this study, we compared the characteristics of exosomes derived from human ovarian epithelial cells (HOSEPiC) and three epithelial ovarian cancer cell lines (OVCAR3, IGROV1, and ES-2) to investigate the differences between exosomes originating from normal and malignant cells. Two established colloid-chemical methodologies, electron microscopy (EM) and dynamic light scattering (DLS), and a relatively new method, nanoparticle tracking analysis (NTA), were used to measure the size and size distribution of exosomes. The concentration and epithelial cellular adhesion molecule (EpCAM) expression of exosomes were measured by NTA. Quantum dots were conjugated with anti-EpCAM to label exosomes, and the labeled exosomes were detected by NTA in fluorescent mode. The normal-cell-derived exosomes were significantly larger than those derived from malignant cells, and exosomes were successfully labeled using anti-EpCAM-conjugated quantum dots. Exosomes from different cell lines may vary in size, and exosomes might be considered as potential diagnosis biomarkers. NTA can be considered a useful, efficient, and objective method for the study of different exosomes and their unique properties in ovarian cancer.
Choi, Kyeng-Won; Oh, Hye-Rim; Lee, Jaeyoung; Lim, Bobae; Han, Yong-Mahn; Oh, Junseo; Kim, Jungho
2014-02-01
Although octamer-binding transcription factor 4 (Oct-4) is one of the most intensively studied factors in mammalian development, no cellular genes capable of replacing Oct-4 function in embryonic stem (ES) cells have been found. Recent data show that nuclear receptor subfamily 5, group A, member 2 (Nr5a2) is able to replace Oct-4 function in the reprogramming process; however, it is unclear whether Nr5a2 can replace Oct-4 function in ES cells. In this study, the ability of Nr5a2 to maintain self-renewal and pluripotency in ES cells was investigated. Nr5a2 localized to the nucleus in ES cells, similarly to Oct-4. However, expression of Nr5a2 failed to rescue the stem cell phenotype or to maintain the self-renewal ability of ES cells. Furthermore, as compared with Oct-4-expressing ES cells, Nr5a2-expressing ES cells showed a reduced number of cells in S-phase, did not expand normally, and did not remain in an undifferentiated state. Ectopic expression of Nr5a2 in ES cells was not able to activate transcription of ES cell-specific genes, and gene expression profiling demonstrated differences between Nr5a2-expressing and Oct-4-expressing ES cells. In addition, Nr5a2-expressing ES cells were not able to form teratomas in nude mice. Taken together, these results strongly suggest that the gene regulation properties of Nr5a2 and Oct-4 and their abilities to confer self-renewal and pluripotency of ES cells differ. The present study provides strong evidence that Nr5a2 cannot replace Oct-4 function in ES cells. © 2013 FEBS.
Transcriptional profiling of CD31(+) cells isolated from murine embryonic stem cells.
Mariappan, Devi; Winkler, Johannes; Chen, Shuhua; Schulz, Herbert; Hescheler, Jürgen; Sachinidis, Agapios
2009-02-01
Identification of genes involved in endothelial differentiation is of great interest for the understanding of the cellular and molecular mechanisms involved in the development of new blood vessels. Mouse embryonic stem (mES) cells serve as a potential source of endothelial cells for transcriptomic analysis. We isolated endothelial cells from 8-days old embryoid bodies by immuno-magnetic separation using platelet endothelial cell adhesion molecule-1 (also known as CD31) expressed on both early and mature endothelial cells. CD31(+) cells exhibit endothelial-like behavior by being able to incorporate DiI-labeled acetylated low-density lipoprotein as well as form tubular structures on matrigel. Quantitative and semi-quantitative PCR analysis further demonstrated the increased expression of endothelial transcripts. To ascertain the specific transcriptomic identity of the CD31(+) cells, large-scale microarray analysis was carried out. Comparative bioinformatic analysis reveals an enrichment of the gene ontology categories angiogenesis, blood vessel morphogenesis, vasculogenesis and blood coagulation in the CD31(+) cell population. Based on the transcriptomic signatures of the CD31(+) cells, we conclude that this ES cell-derived population contains endothelial-like cells expressing a mesodermal marker BMP2 and possess an angiogenic potential. The transcriptomic characterization of CD31(+) cells enables an in vitro functional genomic model to identify genes required for angiogenesis.
Stem cell regulatory function mediated by expression of a novel mouse Oct4 pseudogene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Huey; Shabbir, Arsalan; Molnar, Merced
2007-03-30
Multiple pseudogenes have been proposed for embryonic stem (ES) cell-specific genes, and their abundance suggests that some of these potential pseudogenes may be functional. ES cell-specific expression of Oct4 regulates stem cell pluripotency and self-renewing state. Although Oct4 expression has been reported in adult tissues during gene reprogramming, the detected Oct4 signal might be contributed by Oct4 pseudogenes. Among the multiple Oct4 transcripts characterized here is a {approx}1 kb clone derived from P19 embryonal carcinoma stem cells, which shares a {approx}87% sequence homology with the parent Oct4 gene, and has the potential of encoding an 80-amino acid product (designated asmore » Oct4P1). Adenoviral expression of Oct4P1 in mesenchymal stem cells promotes their proliferation and inhibits their osteochondral differentiation. These dual effects of Oct4P1 are reminiscent of the stem cell regulatory function of the parent Oct4, and suggest that Oct4P1 may be a functional pseudogene or a novel Oct4-related gene with a unique function in stem cells.« less
Secretory products of helminth parasites as immunomodulators.
Harnett, William
2014-07-01
Parasitic helminths release molecules into their environment, which are generally referred to as excretory-secretory products or ES. ES derived from a wide range of nematodes, trematodes and cestodes have been studied during the past 30-40 years, their characterization evolving from simple biochemical procedures such as SDS-PAGE in the early days to sophisticated proteomics in the 21st century. Study has incorporated investigation of ES structure, potential as vaccines, immunodiagnostic utility, functional activities and immunomodulatory properties. Immunomodulation by ES is increasingly the area of most intensive research with a number of defined helminth products extensively analyzed with respect to the nature of their selective effects on cells of the immune system as well as the molecular mechanisms, which underlie these immunomodulatory effects. As a consequence, we are now beginning to learn the identities of the receptors that ES employ and are increasingly acquiring detailed knowledge of the signalling pathways that they interact with and subvert. Such information is contributing to the growing idea that the anti-inflammatory properties of a number of ES products makes them suitable starting points for the development of novel drugs for treating human inflammatory disease. Copyright © 2014 Elsevier B.V. All rights reserved.
wnt3a but not wnt11 supports self-renewal of embryonic stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singla, Dinender K.; Schneider, David J.; LeWinter, Martin M.
2006-06-30
wnt proteins (wnts) promote both differentiation of midbrain dopaminergic cells and self-renewal of haematopoietic stem cells. Mouse embryonic stem (ES) cells can be maintained and self-renew on mouse feeder cell layers or in media containing leukemia inhibitory factor (LIF). However, the effects of wnts on ES cells self-renewal and differentiation are not clearly understood. In the present study, we found that conditioned medium prepared from L cells expressing wnt3a can replace feeder cell layers and medium containing LIF in maintaining ES cells in the proliferation without differentiation (self-renewal) state. By contrast, conditioned medium from NIH3T3 cells expressing wnt11 did not.more » Alkaline phosphatase staining and compact colony formation were used as criteria of cells being in the undifferentiated state. ES cells maintained in medium conditioned by Wnt3a expressing cells underwent freezing and thawing while maintaining properties seen with LIF maintained ES cells. Purified wnt3a did not maintain self-renewal of ES cells for prolonged intervals. Thus, other factors in the medium conditioned by wnt3a expressing cells may have contributed to maintenance of ES cells in a self-renewal state. Pluripotency of ES cells was determined with the use of embryoid bodies in vitro. PD98059, a MEK specific inhibitor, promoted the growth of undifferentiated ES cells maintained in conditioned medium from wnt3a expressing cells. By contrast, the P38 MAPK inhibitor SB230580 did not, suggesting a role for the MEK pathway in self-renewal and differentiation of ES cells maintained in the wnt3a cell conditioned medium. Thus, our results show that conditioned medium from wnt3a but not wnt11 expressing cells can maintain ES cells in self-renewal and in a pluripotent state.« less
Zscan4 restores the developmental potency of embryonic stem cells
Amano, Tomokazu; Hirata, Tetsuya; Falco, Geppino; Monti, Manuela; Sharova, Lioudmila V.; Amano, Misa; Sheer, Sarah; Hoang, Hien G.; Piao, Yulan; Stagg, Carole A.; Yamamizu, Kohei; Akiyama, Tomohiko; Ko, Minoru S.H.
2013-01-01
The developmental potency of mouse embryonic stem (ES) cells, which is the ability to contribute to a whole embryo is known to deteriorate during long-term cell culture. Previously we have shown that ES cells oscillate between Zscan4- and Zscan4+ states, and the transient activation of Zscan4 is required for the maintenance of telomeres and genome stability of ES cells. Here we show that increasing the frequency of Zscan4 activation in mouse ES cells restores and maintains their developmental potency in long-term cell culture. Injection of a single ES cell with such increased potency into a tetraploid blastocyst gives rise to an entire embryo with a higher success rate. These results not only provide a means to rejuvenate ES cells by manipulating Zscan4 expression, but also indicate the active roles of Zscan4 in the long-term maintenance of ES cell potency. PMID:23739662
Human embryonic stem cells express a unique set of microRNAs.
Suh, Mi-Ra; Lee, Yoontae; Kim, Jung Yeon; Kim, Soo-Kyoung; Moon, Sung-Hwan; Lee, Ji Yeon; Cha, Kwang-Yul; Chung, Hyung Min; Yoon, Hyun Soo; Moon, Shin Yong; Kim, V Narry; Kim, Kye-Seong
2004-06-15
Human embryonic stem (hES) cells are pluripotent cell lines established from the explanted inner cell mass of human blastocysts. Despite their importance for human embryology and regenerative medicine, studies on hES cells, unlike those on mouse ES (mES) cells, have been hampered by difficulties in culture and by scant knowledge concerning the regulatory mechanism. Recent evidence from plants and animals indicates small RNAs of approximately 22 nucleotides (nt), collectively named microRNAs, play important roles in developmental regulation. Here we describe 36 miRNAs (from 32 stem-loops) identified by cDNA cloning in hES cells. Importantly, most of the newly cloned miRNAs are specifically expressed in hES cells and downregulated during development into embryoid bodies (EBs), while miRNAs previously reported from other human cell types are poorly expressed in hES cells. We further show that some of the ES-specific miRNA genes are highly related to each other, organized as clusters, and transcribed as polycistronic primary transcripts. These miRNA gene families have murine homologues that have similar genomic organizations and expression patterns, suggesting that they may operate key regulatory networks conserved in mammalian pluripotent stem cells. The newly identified hES-specific miRNAs may also serve as molecular markers for the early embryonic stage and for undifferentiated hES cells.
Zhang, Kehua; Cai, Zhe; Li, Yang; Shu, Jun; Pan, Lin; Wan, Fang; Li, Hong; Huang, Xiaojie; He, Chun; Liu, Yanqiu; Cui, Xiaohui; Xu, Yang; Gao, Yan; Wu, Liqun; Cao, Shanxia; Li, Lingsong
2011-08-01
Human embryonic stem (ES) cells are usually maintained in the undifferentiated state by culturing on feeder cells layers of mouse embryonic fibroblasts (MEFs). However, MEFs are not suitable to support human ES cells used for clinical purpose because of risk of zoonosis from animal cells. Therefore, human tissue-based feeder layers need to be developed for human ES cells for clinical purpose. Hereof we report that human amniotic mesenchymal cells (hAMCs) could act as feeder cells for human ES cells, because they are easily obtained and relatively exempt from ethical problem. Like MEFs, hAMCs could act as feeder cells for human ES cells to grow well on. The self-renewal rate of human ES cells cultured on hAMCs feeders was higher than that on MEFs and human amniotic epithelial cells determined by measurement of colonial diameters and growth curve as well as cell cycle analysis. Both immunofluorescence staining and immunoblotting showed that human ES cells cultured on hAMCs expressed stem cell markers such as Oct-3/4, Sox2, and NANOG. Verified by embryoid body formation in vitro and teratoma formation in vivo, we found out that after 20 passages of culture, human ES cells grown on hAMCs feeders could still retain the potency of differentiating into three germ layers. Taken together, our data suggested hAMCs may be safe feeder cells to sustain the propagation of human ES cells in undifferentiated state for future therapeutic use.
Komazaki, Shinji; Enomoto, Kei; Seki, Yasuhiro; Wang, Ying Ying; Ishigaki, Yohei; Ninomiya, Naoto; Noguchi, Taka-aki K.; Kokubu, Yuko; Ohnishi, Keigoh; Nakajima, Yoshiro; Kato, Kaoru; Intoh, Atsushi; Takada, Hitomi; Yamakawa, Norio; Wang, Pi-Chao; Asashima, Makoto; Kurisaki, Akira
2014-01-01
Background The pluripotent state of embryonic stem (ES) cells is controlled by a network of specific transcription factors. Recent studies also suggested the significant contribution of mitochondria on the regulation of pluripotent stem cells. However, the molecules involved in these regulations are still unknown. Methodology/Principal Findings In this study, we found that prohibitin 2 (PHB2), a pleiotrophic factor mainly localized in mitochondria, is a crucial regulatory factor for the homeostasis and differentiation of ES cells. PHB2 was highly expressed in undifferentiated mouse ES cells, and the expression was decreased during the differentiation of ES cells. Knockdown of PHB2 induced significant apoptosis in pluripotent ES cells, whereas enhanced expression of PHB2 contributed to the proliferation of ES cells. However, enhanced expression of PHB2 strongly inhibited ES cell differentiation into neuronal and endodermal cells. Interestingly, only PHB2 with intact mitochondrial targeting signal showed these specific effects on ES cells. Moreover, overexpression of PHB2 enhanced the processing of a dynamin-like GTPase (OPA1) that regulates mitochondrial fusion and cristae remodeling, which could induce partial dysfunction of mitochondria. Conclusions/Significance Our results suggest that PHB2 is a crucial mitochondrial regulator for homeostasis and lineage-specific differentiation of ES cells. PMID:24709813
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, W.M.; Dausman, J.; Beard, C.
Molecular complementation of mutant phenotypes by transgenic technology is a potentially important tool for gene identification. A technology was developed to allow the transfer of a physically intact yeast artificial chromosome (YAC) into the germ line of the mouse. A purified 150-kilobase YAC encompassing the murine gene Col1a1 was efficiently introduced into embryonic stem (ES) cells via lipofection. Chimeric founder mice were derived from two transfected ES cell clones. These chimeras transmitted the full length transgene through the germ line, generating two transgenic mouse strains. Transgene expression was visualized as nascent transcripts in interphase nuclei and quantitated by ribonuclease protectionmore » analysis. Both assays indicated that the transgene was expressed at levels comparable to the endogenous collagen gene. 32 refs., 3 figs., 1 tab.« less
EDA-containing fibronectin increases proliferation of embryonic stem cells.
Losino, Noelia; Waisman, Ariel; Solari, Claudia; Luzzani, Carlos; Espinosa, Darío Fernández; Sassone, Alina; Muro, Andrés F; Miriuka, Santiago; Sevlever, Gustavo; Barañao, Lino; Guberman, Alejandra
2013-01-01
Embryonic stem cells (ESC) need a set of specific factors to be propagated. They can also grow in conditioned medium (CM) derived from a bovine granulosa cell line BGC (BGC-CM), a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA(+)). Here, we investigated if the FN EDA(+) isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF) lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA(-)), and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC's proliferation rate. Here we showed for the first time that this FN isoform enhances ESC's proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy.
EDA-Containing Fibronectin Increases Proliferation of Embryonic Stem Cells
Losino, Noelia; Waisman, Ariel; Solari, Claudia; Luzzani, Carlos; Espinosa, Darío Fernández; Sassone, Alina; Muro, Andrés F.; Miriuka, Santiago; Sevlever, Gustavo; Barañao, Lino; Guberman, Alejandra
2013-01-01
Embryonic stem cells (ESC) need a set of specific factors to be propagated. They can also grow in conditioned medium (CM) derived from a bovine granulosa cell line BGC (BGC-CM), a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA+). Here, we investigated if the FN EDA+ isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF) lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA-), and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC’s proliferation rate. Here we showed for the first time that this FN isoform enhances ESC’s proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy. PMID:24244705
Cattavarayane, Sandhanakrishnan; Palovuori, Riitta; Tanjore Ramanathan, Jayendrakishore; Manninen, Aki
2015-02-27
The growth properties and self-renewal capacity of embryonic stem (ES) cells are regulated by their immediate microenvironment such as the extracellular matrix (ECM). Integrins, a central family of cellular ECM receptors, have been implicated in these processes but their specific role in ES cell self-renewal remains unclear. Here we have studied the effects of different ECM substrates and integrins in mouse ES cells in the absence of Leukemia Inhibitory Factor (LIF) using short-term assays as well as long-term cultures. Removal of LIF from ES cell culture medium induced morphological differentiation of ES cells into polarized epistem cell-like cells. These cells maintained epithelial morphology and expression of key stemness markers for at least 10 passages in the absence of LIF when cultured on laminin, fibronectin or collagen IV substrates. The specific functional roles of α6-, αV- and β1-integrin subunits were dissected using stable lentivirus-mediated RNAi methodology. β1-integrins were required for ES cell survival in long-term cultures and for the maintenance of stem cell marker expression. Inhibition of α6-integrin expression compromised self-renewal on collagen while αV-integrins were required for robust ES cell adhesion on laminin. Analysis of the stemness marker expression revealed subtle differences between α6- and αV-depleted ES cells but the expression of both was required for optimal self-renewal in long-term ES cell cultures. In the absence of LIF, long-term ES cell cultures adapt an epistem cell-like epithelial phenotype and retain the expression of multiple stem cell markers. Long-term maintenance of such self-renewing cultures depends on the expression of β1-, α6- and αV-integrins.
Lee, Seung Tae; Oh, Se Woong; Kim, Dae Yong; Han, Jae Yong; Moon, Shin Yong; Lim, Jeong Mook
2006-10-01
To evaluate whether serum replacement with growth factor-free synthetic substances contributed to the effective establishment of embryonic stem (ES) cells. Randomized, prospective model study. Gamete and stem cell biotechnology laboratory at Seoul National University in Korea. F1 (C57BL6 x DBA2) mice. Blastocysts of different origins were cultured in serum-replaced media. Embryonic stem cell establishment. Eight batches of ES cells were established from colony-forming inner cell mass cells after the replacement of fetal bovine serum (FBS) with synthetic knockout serum replacement (KSR) in mkDMEM. The established cells were positive for ES cell markers and formed both embryoid bodies in vitro and teratomas in vivo, but the established cell batches and control (transformed) ES cells responded differently to the culture media. Higher levels of cell viability were detected after the replacement with the 75:25 FBS-KSR mixture than with any other mixtures, and a gradual decrease in viability was detected as the KSR volume ratio was increased. The 75:25 FBS-KSR mixture-containing medium supported ES cell establishment of outbred ICR, F1, and F2 of C57BL6/DBA2; F1 parthenogenetic and ES cell-complemented tetraploid blastocysts; and single ES-cell cultures. A serum-replaced medium could be used for effective ES-cell establishment of various origins.
Knipping, Karen; Simons, Peter J; Buelens-Sleumer, Laura S; Cox, Linda; den Hartog, Marcel; de Jong, Niels; Teshima, Reiko; Garssen, Johan; Boon, Louis; Knippels, Léon M J
2014-01-01
Cow's milk-derived whey hydrolysates are nutritional substitutes for allergic infants. Safety or residual allergenicity assessment of these whey hydrolysates is crucial. Currently, rat basophilic leukemia RBL-2H3 cells expressing the human IgE receptor α-chain (huFcεRIα-RBL-2H3), sensitized with serum IgE from cow's milk allergic children, are being employed to assess in vitro residual allergenicity of these whey hydrolysates. However, limited availability and inter-lot variation of these allergic sera impede standardization of whey hydrolysate safety testing in degranulation assays. An oligoclonal pool of chimeric human (chu)IgE antibodies against bovine β-lactoglobulin (a major allergen in whey) was generated to increase sensitivity, specificity, and reproducibility of existing degranulation assays. Mice were immunized with bovine β-lactoglobulin, and subsequently the variable domains of dissimilar anti-β-lactoglobulin mouse IgG antibodies were cloned and sequenced. Six chimeric antibodies were generated comprising mouse variable domains and human constant IgE/κ domains. After sensitization with this pool of anti-β-lactoglobulin chuIgEs, huFcεRIα-expressing RBL-2H3 cells demonstrated degranulation upon cross-linking with whey, native 18 kDa β-lactoglobulin, and 5-10 kDa whey hydrolysates, whereas a 3 kDa whey hydrolysate and cow's milk powder (mainly casein) showed no degranulation. In parallel, allergic serum IgEs were less sensitive. In addition, our pool anti-β-lactoglobulin chuIgEs recognized multiple allergenic immunodominant regions on β-lactoglobulin, which were also recognized by serum IgEs from cow's milk allergic children. Usage of our 'unlimited' source and well-defined pool of β-lactoglobulin-specific recombinant chuIgEs to sensitize huFcεRIα on RBL-2H3 cells showed to be a relevant and sensitive alternative for serum IgEs from cow's milk allergic patients to assess safety of whey-based non-allergic hydrolyzed formula.
Bañuelos, C A; Banáth, J P; MacPhail, S H; Zhao, J; Eaves, C A; O'Connor, M D; Lansdorp, P M; Olive, P L
2008-09-01
Mouse embryonic stem (mES) cells will give rise to all of the cells of the adult mouse, but they failed to rejoin half of the DNA double-strand breaks (dsb) produced by high doses of ionizing radiation. A deficiency in DNA-PK(cs) appears to be responsible since mES cells expressed <10% of the level of mouse embryo fibroblasts (MEFs) although Ku70/80 protein levels were higher than MEFs. However, the low level of DNA-PK(cs) found in wild-type cells appeared sufficient to allow rejoining of dsb after doses <20Gy even in G1 phase cells. Inhibition of DNA-PK(cs) with wortmannin and NU7026 still sensitized mES cells to radiation confirming the importance of the residual DNA-PK(cs) at low doses. In contrast to wild-type cells, mES cells lacking H2AX, a histone protein involved in the DNA damage response, were radiosensitive but they rejoined double-strand breaks more rapidly. Consistent with more rapid dsb rejoining, H2AX(-/-) mES cells also expressed 6 times more DNA-PK(cs) than wild-type mES cells. Similar results were obtained for ATM(-/-) mES cells. Differentiation of mES cells led to an increase in DNA-PK(cs), an increase in dsb rejoining rate, and a decrease in Ku70/80. Unlike mouse ES, human ES cells were proficient in rejoining of dsb and expressed high levels of DNA-PK(cs). These results confirm the importance of homologous recombination in the accurate repair of double-strand breaks in mES cells, they help explain the chromosome abnormalities associated with deficiencies in H2AX and ATM, and they add to the growing list of differences in the way rodent and human cells deal with DNA damage.
Chung, HaeWon; Lee, Bum-Kyu; Uprety, Nadima; Shen, Wenwen; Lee, Jiwoon; Kim, Jonghwan
2016-04-01
Yap1 is a transcriptional co-activator of the Hippo pathway. The importance of Yap1 in early cell fate decision during embryogenesis has been well established, though its role in embryonic stem (ES) cells remains elusive. Here, we report that Yap1 plays crucial roles in normal differentiation rather than self-renewal of ES cells. Yap1-depleted ES cells maintain undifferentiated state with a typical colony morphology as well as robust alkaline phosphatase activity. These cells also retain comparable levels of the core pluripotent factors, such as Pou5f1 and Sox2, to the levels in wild-type ES cells without significant alteration of lineage-specific marker genes. Conversely, overexpression of Yap1 in ES cells promotes nuclear translocation of Yap1, resulting in disruption of self-renewal and triggering differentiation by up-regulating lineage-specific genes. Moreover, Yap1-deficient ES cells show impaired induction of lineage markers during differentiation. Collectively, our data demonstrate that Yap1 is a required factor for proper differentiation of mouse ES cells, while remaining dispensable for self-renewal. © 2016 The Authors.
Burnett, James C.; Nuss, Jonathan E.; Wanner, Laura M.; Peyser, Brian D.; Du, Hao T.; Gomba, Glenn Y.; Kota, Krishna P.; Panchal, Rekha G.; Gussio, Rick; Kane, Christopher D.; Tessarollo, Lino
2015-01-01
Botulinum neurotoxins (BoNTs), the causative agents of botulism, are potent inhibitors of neurotransmitter release from motor neurons. There are currently no drugs to treat BoNT intoxication after the onset of the disease symptoms. In this study, we explored how modulation of key host pathways affects the process of BoNT intoxication in human motor neurons, focusing on Src family kinase (SFK) signaling. Motor neurons derived from human embryonic stem (hES) cells were treated with a panel of SFK inhibitors and intoxicated with BoNT serotypes A, B, or E (which are responsible for >95 % of human botulism cases). Subsequently, it was found that bosutinib, dasatinib, KX2-391, PP1, PP2, Src inhibitor-1, and SU6656 significantly antagonized all three of the serotypes. Furthermore, the data indicated that the treatment of hES-derived motor neurons with multiple SFK inhibitors increased the antagonistic effect synergistically. Mechanistically, the small molecules appear to inhibit BoNTs by targeting host pathways necessary for intoxication and not by directly inhibiting the toxins’ proteolytic activity. Importantly, the identified inhibitors are all well-studied with some in clinical trials while others are FDA-approved drugs. Overall, this study emphasizes the importance of targeting host neuronal pathways, rather than the toxin’s enzymatic components, to antagonize multiple BoNT serotypes in motor neurons. PMID:25782580
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, M.; Auerbach, W.; Buchwald, M.
1994-09-01
Fanconi anemia (FA) is an autosomal recessive disease characterized by bone marrow failure, congenital malformations and predisposition to malignancies. The gene responsible for the defect in FA group C has been cloned and designated the Fanconi Anemia Complementation Group C gene (FACC). A murine cDNA for this gene (Facc) was also cloned. Here we report our progress in the establishment of a mouse model for FA. The mouse Facc cDNA was used as probe to screen a genomic library of mouse strain 129. More than twenty positive clones were isolated. Three of them were mapped and found to be overlappingmore » clones, encompassing the genomic region from exon 8 to the end of the 3{prime} UTR of the mouse cDNA. A targeting vector was constructed using the most 5{prime} mouse genomic sequence available. The end result of the homologous recombination is that exon 8 is deleted and the neo gene is inserted. The last exon, exon 14, is essential for the complementing function of the FACC gene product; the disruption in the middle of the murine Facc gene should render this locus biologically inactive. This targeting vector was linearized and electroporated into R1 embryonic stem (ES) cells which were derived from the 129 mouse. Of 102 clones screened, 19 positive cell lines were identified. Four targeted cell lines have been used to produce chimeric mice. 129-derived ES cells were aggregated ex vivo into the morulas derived from CD1 mice and then implanted into foster mothers. 22 chimeras have been obtained. Moderately and strongly chimeric mice have been bred to test for germline transmission. Progeny with the expected coat color derived from 2 chimeras are currently being examined to confirm transmission of the targeted allele.« less
Maria, Sundberg; Helle, Bogetofte; Tristan, Lawson; Gaynor, Smith; Arnar, Astradsson; Michele, Moore; Teresia, Osborn; Oliver, Cooper; Roger, Spealman; Penelope, Hallett; Ole, Isacson
2013-01-01
The main motor symptoms of Parkinson’s disease are due to the loss of dopaminergic (DA) neurons in the ventral midbrain (VM). For the future treatment of Parkinson’s disease with cell transplantation it is important to develop efficient differentiation methods for production of human iPSCs and hESCs-derived midbrain-type DA neurons. Here we describe an efficient differentiation and sorting strategy for DA-neurons from both human ES/iPS cells and non-human primate iPSCs. The use of non-human primate iPSCs for neuronal differentiation and autologous transplantation is important for pre-clinical evaluation of safety and efficacy of stem cell-derived DA neurons. The aim of this study was to improve the safety of human- and non-human primate-iPSC (PiPSC)-derived DA neurons. According to our results, NCAM+/CD29low sorting enriched VM DA-neurons from pluripotent stem cell-derived neural cell populations. NCAM+/CD29low DA-neurons were positive for FOXA2/TH and EN1/TH and this cell population had increased expression levels of FOXA2, LMX1A, TH, GIRK2, PITX3, EN1, NURR1 mRNA compared to unsorted neural cell populations. PiPSC-derived NCAM+/CD29low DA-neurons were able to restore motor function of 6-OHDA lesioned rats 16 weeks after transplantation. The transplanted sorted cells also integrated in the rodent brain tissue, with robust TH+/hNCAM+ neuritic innervation of the host striatum. One year after autologous transplantation, the primate iPSC-derived neural cells survived in the striatum of one primate without any immunosuppression. These neural cell grafts contained FOXA2/TH-positive neurons in the graft site. This is an important proof of concept for the feasibility and safety of iPSC-derived cell transplantation therapies in the future. PMID:23666606
Tichy, Elisia D; Pillai, Resmi; Deng, Li; Liang, Li; Tischfield, Jay; Schwemberger, Sandy J; Babcock, George F; Stambrook, Peter J
2010-11-01
Embryonic stem (ES) cells give rise to all cell types of an organism. Since mutations at this embryonic stage would affect all cells and be detrimental to the overall health of an organism, robust mechanisms must exist to ensure that genomic integrity is maintained. To test this proposition, we compared the capacity of murine ES cells to repair DNA double-strand breaks with that of differentiated cells. Of the 2 major pathways that repair double-strand breaks, error-prone nonhomologous end joining (NHEJ) predominated in mouse embryonic fibroblasts, whereas the high fidelity homologous recombinational repair (HRR) predominated in ES cells. Microhomology-mediated end joining, an emerging repair pathway, persisted at low levels in all cell types examined. The levels of proteins involved in HRR and microhomology-mediated end joining were highly elevated in ES cells compared with mouse embryonic fibroblasts, whereas those for NHEJ were quite variable, with DNA Ligase IV expression low in ES cells. The half-life of DNA Ligase IV protein was also low in ES cells. Attempts to increase the abundance of DNA Ligase IV protein by overexpression or inhibition of its degradation, and thereby elevate NHEJ in ES cells, were unsuccessful. When ES cells were induced to differentiate, however, the level of DNA Ligase IV protein increased, as did the capacity to repair by NHEJ. The data suggest that preferential use of HRR rather than NHEJ may lend ES cells an additional layer of genomic protection and that the limited levels of DNA Ligase IV may account for the low level of NHEJ activity.
Shiozawa, Seiji; Kawai, Kenji; Okada, Yohei; Tomioka, Ikuo; Maeda, Takuji; Kanda, Akifumi; Shinohara, Haruka; Suemizu, Hiroshi; James Okano, Hirotaka; Sotomaru, Yusuke; Sasaki, Erika; Okano, Hideyuki
2011-09-01
Nonhuman primate embryonic stem (ES) cells have vast promise for preclinical studies. Genetic modification in nonhuman primate ES cells is an essential technique for maximizing the potential of these cells. The common marmoset (Callithrix jacchus), a nonhuman primate, is expected to be a useful transgenic model for preclinical studies. However, genetic modification in common marmoset ES (cmES) cells has not yet been adequately developed. To establish efficient and stable genetic modifications in cmES cells, we inserted the enhanced green fluorescent protein (EGFP) gene with heterotypic lox sites into the β-actin (ACTB) locus of the cmES cells using gene targeting. The resulting knock-in ES cells expressed EGFP ubiquitously under the control of the endogenous ACTB promoter. Using inserted heterotypic lox sites, we demonstrated Cre recombinase-mediated cassette exchange (RMCE) and successfully established a monomeric red fluorescent protein (mRFP) knock-in cmES cell line. Further, a herpes simplex virus-thymidine kinase (HSV-tk) knock-in cmES cell line was established using RMCE. The growth of tumor cells originating from the cell line was significantly suppressed by the administration of ganciclovir. Therefore, the HSV-tk/ganciclovir system is promising as a safeguard for stem cell therapy. The stable and ubiquitous expression of EGFP before RMCE enables cell fate to be tracked when the cells are transplanted into an animal. Moreover, the creation of a transgene acceptor locus for site-specific transgenesis will be a powerful tool, similar to the ROSA26 locus in mice.
Sharifpanah, Fatemeh; Behr, Sascha; Wartenberg, Maria; Sauer, Heinrich
2016-12-01
Differentiation of embryonic stem (ES) cells may be regulated by mechanical strain. Herein, signaling molecules underlying mechanical stimulation of vasculogenesis and expression of angiogenesis guidance cues were investigated in ES cell-derived embryoid bodies. Treatment of embryoid bodies with 10% static mechanical strain using a Flexercell strain system significantly increased CD31-positive vascular structures and the angiogenesis guidance molecules plexinB1, ephrin B2, neuropilin1 (NRP1), semaphorin 4D (sem4D) and robo4 as well as vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor-BB (PDGF-BB) as evaluated by Western blot and real time RT-PCR. In contrast ephrin type 4 receptor B (EphB4) expression was down-regulated upon mechanical strain, indicating an arterial-type differentiation. Robo1 protein expression was modestly increased with no change in mRNA expression. Mechanical strain increased intracellular calcium as well as reactive oxygen species (ROS) and nitric oxide (NO). Mechanical strain-induced vasculogenesis was abolished by the NOS inhibitor L-NAME, the NADPH oxidase inhibitor VAS2870, upon chelation of intracellular calcium by BAPTA as well as upon siRNA inactivation of ephrin B2, NRP1 and robo4. BAPTA blunted the strain-induced expression of angiogenic growth factors, the increase in NO and ROS as well as the expression of NRP1, sem4D and plexinB1, whereas ephrin B2, EphB4 as well as robo1 and robo4 expression were not impaired. Mechanical strain stimulates vasculogenesis of ES cells by the intracellular messengers ROS, NO and calcium as well as by upregulation of angiogenesis guidance molecules and the angiogenic growth factors VEGF, FGF-2 and PDGF-BB. Copyright © 2016 Elsevier B.V. All rights reserved.
From engineering to editing the rat genome.
Meek, Stephen; Mashimo, Tomoji; Burdon, Tom
2017-08-01
Since its domestication over 100 years ago, the laboratory rat has been the preferred experimental animal in many areas of biomedical research (Lindsey and Baker The laboratory rat. Academic, New York, pp 1-52, 2006). Its physiology, size, genetics, reproductive cycle, cognitive and behavioural characteristics have made it a particularly useful animal model for studying many human disorders and diseases. Indeed, through selective breeding programmes numerous strains have been derived that are now the mainstay of research on hypertension, obesity and neurobiology (Okamoto and Aoki Jpn Circ J 27:282-293, 1963; Zucker and Zucker J Hered 52(6):275-278, 1961). Despite this wealth of genetic and phenotypic diversity, the ability to manipulate and interrogate the genetic basis of existing phenotypes in rat strains and the methodology to generate new rat models has lagged significantly behind the advances made with its close cousin, the laboratory mouse. However, recent technical developments in stem cell biology and genetic engineering have again brought the rat to the forefront of biomedical studies and enabled researchers to exploit the increasingly accessible wealth of genome sequence information. In this review, we will describe how a breakthrough in understanding the molecular basis of self-renewal of the pluripotent founder cells of the mammalian embryo, embryonic stem (ES) cells, enabled the derivation of rat ES cells and their application in transgenesis. We will also describe the remarkable progress that has been made in the development of gene editing enzymes that enable the generation of transgenic rats directly through targeted genetic modifications in the genomes of zygotes. The simplicity, efficiency and cost-effectiveness of the CRISPR/Cas gene editing system, in particular, mean that the ability to engineer the rat genome is no longer a limiting factor. The selection of suitable targets and gene modifications will now become a priority: a challenge where ES culture and gene editing technologies can play complementary roles in generating accurate bespoke rat models for studying biological processes and modelling human disease.
Differentiating Mouse Embryonic Stem Cells into Embryoid Bodies by Hanging-Drop Cultures.
Behringer, Richard; Gertsenstein, Marina; Nagy, Kristina Vintersten; Nagy, Andras
2016-12-01
Embryonic stem (ES) cells can develop into many types of differentiated tissues if they are placed into a differentiating environment. This can occur in vivo when the ES cells are injected into or aggregated with an embryo, or in vitro if their culture conditions are modified to induce differentiation. There are an increasing number of differentiating culture conditions that can bias the differentiation of ES cells into desired cell types. Determining the mechanisms that control ES cell differentiation into therapeutically important cell types is a quickly growing area of research. Knowledge gained from these studies may eventually lead to the use of stem cells to repair specific damaged tissues. Many times ES cell differentiation proceeds through an intermediate stage called the embryoid body (EB). EBs are round structures composed of ES cells that have undergone some of the initial stages of differentiation. EBs can then be manipulated further to generate more specific cell types. This protocol describes a method to differentiate ES cells into EBs. It produces EBs of comparable size. This aspect is important because the differentiation processes taking place inside an EB are influenced by its size. © 2016 Cold Spring Harbor Laboratory Press.
Basic FGF Support of Human Embryonic Stem Cell Self-Renewal
Levenstein, Mark E.; Ludwig, Tenneille E.; Xu, Ren-He; Llanas, Rachel A.; VanDenHeuvel-Kramer, Kaitlyn; Manning, Daisy; Thomson, James A.
2015-01-01
Human embryonic stem (ES) cells have most commonly been cultured in the presence of basic FGF (FGF2) either on fibroblast feeder layers or in fibroblast-conditioned medium. Recently, it has been reported that elevated concentrations of FGF2 permit the culture of human ES cells in the absence of fibroblasts or fibroblast-conditioned medium. Here we compare the ability of unconditioned medium (UM) supplemented with 4, 24, 40, 80, 100 and 250 ng/ml FGF2 to sustain low-density human ES cell cultures through multiple passages. In these stringent culture conditions, 4, 24, and 40 ng/ml FGF2 failed to sustain human ES cells through three passages, but 100 ng/ml sustained human ES cells with an effectiveness comparable to conditioned medium (CM). Two human ES cell lines (H1 and H9) were maintained for up to 164 population doublings (7 and 4 months) in UM supplemented with 100 ng/ml FGF2. After prolonged culture the cells formed teratomas when injected into SCID-beige mice, and expressed markers characteristic of undifferentiated human ES cells. We also demonstrate that FGF2 is degraded more rapidly in UM than in CM, partly explaining the need for higher concentrations of FGF2 in UM. These results further facilitate the large-scale, routine culture of human ES cells, and suggest that fibroblasts and fibroblast-conditioned medium sustain human ES cells in part by stabilizing FGF signaling above a critical threshold. PMID:16282444
Genetic engineering of human embryonic stem cells with lentiviral vectors.
Xiong, Chen; Tang, Dong-Qi; Xie, Chang-Qing; Zhang, Li; Xu, Ke-Feng; Thompson, Winston E; Chou, Wayne; Gibbons, Gary H; Chang, Lung-Ji; Yang, Li-Jun; Chen, Yuqing E
2005-08-01
Human embryonic stem (hES) cells present a valuable source of cells with a vast therapeutic potential. However, the low efficiency of directed differentiation of hES cells remains a major obstacle in their uses for regenerative medicine. While differentiation may be controlled by the genetic manipulation, effective and efficient gene transfer into hES cells has been an elusive goal. Here, we show stable and efficient genetic manipulations of hES cells using lentiviral vectors. This method resulted in the establishment of stable gene expression without loss of pluripotency in hES cells. In addition, lentiviral vectors were effective in conveying the expression of an U6 promoter-driven small interfering RNA (siRNA), which was effective in silencing its specific target. Taken together, our results suggest that lentiviral gene delivery holds great promise for hES cell research and application.
Malavasi, N V; Rodrigues, D B; Chammas, R; Chura-Chambi, R M; Barbuto, J A M; Balduino, K; Nonogaki, S; Morganti, L
2010-01-01
Endostatin (ES) is a potent inhibitor of angiogenesis and tumor growth. Continuous ES delivery of ES improves the efficacy and potency of the antitumoral therapy. The TheraCyte system is a polytetrafluoroethylene (PTFE) semipermeable membrane macroencapsulation system for implantation of genetically engineered cells specially designed for the in vivo delivery of therapeutic proteins, such as ES, which circumvents the problem of limited half-life and variation in circulating levels. In order to enable neovascularization at the tissues adjacent to the devices prior to ES secretion by the cells inside them, we designed a scheme in which empty TheraCyte devices were preimplanted SC into immunodeficient mice. Only after healing (17 days later) were Chinese hamster ovary cells expressing ES injected into the preimplanted devices. In another model for device implantation, the cells expressing ES where loaded into the immunoisolation devices prior to implantation into the animals, and the TheraCyte were then immediately implanted SC into the mice. Throughout the 2-month study, constant high ES levels of up to 3.7 microg/ml were detected in the plasma of the mice preimplanted with the devices, while lower but also constant levels of ES (up to 2.1 microg/ml plasma) were detected in the mice that had received devices preloaded with the ES-expressing cells. Immunohistochemistry using anti-ES antibody showed reaction within the device and outside it, demonstrating that ES, secreted by the confined recombinant cells, permeated through the membrane and reached the surrounding tissues.
Antitumor activity of combined endostatin and thymidine kinase gene therapy in C6 glioma models.
Chen, Yan; Huang, Honglan; Yao, Chunshan; Su, Fengbo; Guan, Wenming; Yan, Shijun; Ni, Zhaohui
2016-09-01
The combination of Endostatin (ES) and Herpes Simplex Virus thymidine kinase (HSV-TK) gene therapy is known to have antitumor activity in bladder cancer. The potential effect of ES and TK therapy in glioma has not yet been investigated. In this study, pTK-internal ribosome entry site (IRES), pIRES-ES, and pTK-IRES-ES plasmids were constructed; pIRES empty vector served as the negative control. The recombinant constructs were transfected into human umbilical vein endothelial cells (HUVECs) ECV304 and C6 rat glioma cell line. Ganciclovir (GCV) was used to induce cell death in transfected C6 cells. We found that ECV304 cells expressing either ES or TK-ES showed reduced proliferation, decreased migration capacity, and increased apoptosis, as compared to untransfected cells or controls. pTK-IRES-ES/GCV or pTK-IRES/GCV significantly suppressed cell proliferation and induced cell apoptosis in C6 cells, as compared to the control. In addition, the administration of pIRES-ES, pTK-IRES/GCV, or pTK-IRES-ES/GCV therapy improved animal activity and behavior; was associated with prolonged animal survival, and a lower microvessel density (MVD) value in tumor tissues of C6 glioma rats. In comparison to others, dual gene therapy in form of pTK-IRES-ES/GCV had a significant antitumor activity against C6 glioma. These findings indicate combined TK and ES gene therapy was associated with a superior antitumor efficacy as compared to single gene therapy in C6 glioma. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Myeloid-Derived Suppressor Cells in Checkpoint Protein Inhibition for Melanoma
2017-09-01
Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for Public Release...official Department of the Army position, policy or decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE Form Approved...6402 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical Research and Materiel Command Fort
Xu, Zengguang; Zhang, Lei; Fei, Xuejie; Yi, Xiuwen; Li, Wenxian; Wang, Qingxiu
2014-07-01
Endogenous reactive oxygen species (ROS) control is important for the maintenance of self-renewal of embryonic stem (ES) cells. Although miRNAs have been found to be critically involved in the regulation of the self-renewal, whether miRNAs can regulate the signaling axis to control ROS in ES cells is unclear. Here we show that miR-29b specifically regulates the self-renewal of mouse ES cells in response to ROS generated by antioxidant-free culture. Sirt1 is the direct target of miR-29b and can also make mES cells sensitive to ROS and regulate the self-renewal of mES cells during the response of ROS. We further found that Sirt1 could attenuate the miR-29b function in regulating mES cells' self-renewal in response to ROS. Our results determined that miR-29b-Sirt1 axis regulates self-renewal of mES cells in response to ROS. Copyright © 2014 Elsevier Inc. All rights reserved.
CrxOS maintains the self-renewal capacity of murine embryonic stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, Ryota; Yamasaki, Tokiwa; Nagai, Yoko
2009-12-25
Embryonic stem (ES) cells maintain pluripotency by self-renewal. Several homeoproteins, including Oct3/4 and Nanog, are known to be key factors in maintaining the self-renewal capacity of ES cells. However, other genes required for the mechanisms underlying this process are still unclear. Here we report the identification by in silico analysis of a homeobox-containing gene, CrxOS, that is specifically expressed in murine ES cells and is essential for their self-renewal. ES cells mainly express the short isoform of endogenous CrxOS. Using a polyoma-based episomal expression system, we demonstrate that overexpression of the CrxOS short isoform is sufficient for maintaining the undifferentiatedmore » morphology of ES cells and stimulating their proliferation. Finally, using RNA interference, we show that CrxOS is essential for the self-renewal of ES cells, and provisionally identify foxD3 as a downstream target gene of CrxOS. To our knowledge, ours is the first delineation of the physiological role of CrxOS in ES cells.« less
Wang, Yong Xin; Mandal, Deendayal; Wang, Suizhau; Hughes, Dennis; Pollock, Raphael E; Lev, Dina; Kleinerman, Eugenie; Hayes-Jordan, Andrea
2009-01-01
Despite aggressive therapy, Ewing's sarcoma (ES) patients have a poor five-year overall survival of only 20-40%. Pulmonary metastasis is the most common form of demise in these patients. The pathogenesis of pulmonary metastasis is poorly understood and few orthotopic models exist that allow study of spontaneous pulmonary metastasis in ES. We have developed a novel orthotopic xenograft model in which spontaneous pulmonary metastases develop. While the underlying biology of ES is incompletely understood, in addition to the EWS-FLI-1 mutation, it is known that platelet-derived growth factor receptor beta (PDGFR-beta) is highly expressed in ES. Hypothesizing that PDGFR-beta expression is indicative of a specific role for this receptor protein in ES progression, the effect of PDGFR-beta inhibition on ES growth and metastasis was assessed in this novel orthotopic ES model. Silencing PDGFR-beta reduced spontaneous growth and metastasis in ES. Preclinical therapeutically relevant findings such as these may ultimately lead to new treatment initiatives in ES.
Properties of murine embryonic stem cells maintained on human foreskin fibroblasts without LIF.
Meng, G L; Zur Nieden, N I; Liu, S Y; Cormier, J T; Kallos, M S; Rancourt, D E
2008-04-01
In embryonic stem (ES) cells, leukemia inhibitory factor (LIF)/STAT3, wnt and nodal/activin signaling are mainly active to control pluripotency during expansion. To maintain pluripotency, ES cells are typically cultured on feeder cells of varying origins. Murine ES cells are commonly cultured on murine embryonic fibroblasts (MEFs), which senesce early and must be frequently prepared. This process is laborious and leads to batch variation presenting a challenge for high-throughput ES cell expansion. Although some cell lines can be sustained by exogenous LIF, this method is costly. We present here a novel and inexpensive culture method for expanding murine ES cells on human foreskin fibroblast (HFF) feeders. After 20 passages on HFFs without LIF, ES cell lines showed normal expression levels of pluripotency markers, maintained a normal karyotype and retained the ability to contribute to the germline. As HFFs do not senesce for at least 62 passages, they present a vast supply of feeders. Copyright 2007 Wiley-Liss, Inc.
The cell cycle as a brake for β-cell regeneration from embryonic stem cells.
El-Badawy, Ahmed; El-Badri, Nagwa
2016-01-13
The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.
Xue, Fei; Ma, Yinghong; Chen, Y Eugene; Zhang, Jifeng; Lin, Tzu-An; Chen, Chien-Hong; Lin, Wei-Wen; Roach, Marsha; Ju, Jyh-Cherng; Yang, Lan; Du, Fuliang; Xu, Jie
2012-08-01
The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2×3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs.
Effects of electrical stimulation on cell proliferation and apoptosis.
Love, Maria R; Palee, Siripong; Chattipakorn, Siriporn C; Chattipakorn, Nipon
2018-03-01
The application of exogenous electrical stimulation (ES) to cells in order to manipulate cell apoptosis and proliferation has been widely investigated as a possible method of treatment in a number of diseases. Alteration of the transmembrane potential of cells via ES can affect various intracellular signaling pathways which are involved in the regulation of cellular function. Controversially, several types of ES have proved to be effective in both inhibiting or inducing apoptosis, as well as increasing proliferation. However, the mechanisms through which ES achieves this remain fairly unclear. The aim of this review was to comprehensively summarize current findings from in vitro and in vivo studies on the effects of different types of ES on cell apoptosis and proliferation, highlighting the possible mechanisms through which ES induced these effects and define the optimum parameters at which ES can be used. Through this we hope to provide a greater insight into how future studies can most effectively use ES at the clinical trial stage. © 2017 Wiley Periodicals, Inc.
Robb, Sheri L.; Burns, Debra S.; Stegenga, Kristin A.; Haut, Paul R.; Monahan, Patrick O.; Meza, Jane; Stump, Timothy E.; Cherven, Brooke O.; Docherty, Sharron L.; Hendricks-Ferguson, Verna L.; Kintner, Eileen K.; Haight, Ann E.; Wall, Donna A.; Haase, Joan E.
2013-01-01
Background To reduce the risk of adjustment problems associated with Hematopoietic Stem Cell Transplant (HSCT) for adolescents/young adults (AYA), we examined efficacy of a therapeutic music video (TMV) intervention delivered during the acute phase of HSCT to: (a) increase protective factors of spiritual perspective, social integration, family environment, courageous coping, and hope-derived meaning; (b) decrease risk factors of illness-related distress and defensive coping; and (c) increase outcomes of self-transcendence and resilience. Methods A multi-site, randomized controlled trial (COG-ANUR0631) conducted at 8 Children’s Oncology Group sites involving 113 AYA aged 11–24 years undergoing myeloablative HSCT. Participants, randomized to the TMV or low-dose control (audiobooks) group, completed 6 sessions over 3 weeks with a board-certified music therapist. Variables were based on Haase’s Resilience in Illness Model. Participants completed measures related to latent variables of illness-related distress, social integration, spiritual perspective, family environment, coping, hope-derived meaning and resilience at baseline (T1), post-intervention (T2), and 100-days post-transplant (T3). Results At T2, the TMV group reported significantly better courageous coping (ES=0.505; P=0.030). At T3, the TMV group reported significantly better social integration (ES=0.543; P=.028) and family environment (ES=0.663; P=0.008), as well as moderate non-significant effect sizes for spiritual perspective (E=0.450; P=0.071) and self-transcendence (ES=0.424; P=0.088). Conclusion The TMV intervention improves positive health outcomes of courageous coping, social integration, and family environment during a high risk cancer treatment. We recommend the TMV be examined in a broader population of AYA with high risk cancers. PMID:24469862
Effect of Gsk3 inhibitor CHIR99021 on aneuploidy levels in rat embryonic stem cells.
Bock, Anagha S; Leigh, Nathan D; Bryda, Elizabeth C
2014-06-01
Germline competent embryonic stem (ES) cells can serve as a tool to create genetically engineered rat strains used to elucidate gene function or provide disease models. In optimum culture conditions, ES cells are able to retain their pluripotent state. The type of components present and their concentration in ES cell culture media greatly influences characteristics of ES cells including the ability to maintain the cells in a pluripotent state. We routinely use 2i media containing inhibitors CHIR99021 and PD0325901 to culture rat ES cells. CHIR99021 specifically inhibits the Gsk3β pathway. We have found that the vendor source of CHIR99021 has a measurable influence on the level of aneuploidy seen over time as rat ES cells are passaged. Karyotyping of three different rat ES cell lines passaged multiple times showed increased aneuploidy when CHIR99021 from source B was used. Mass spectrometry analysis of this inhibitor showed the presence of unexpected synthetic small molecules, which might directly or indirectly cause increases in chromosome instability. Identifying these molecules could further understanding of their influence on chromosome stability and indicate how to improve synthesis of this media component to prevent deleterious effects in culture.
Schulze, Sebastian; Kay, Sabine; Büttner, Daniela; Egler, Monique; Eschen-Lippold, Lennart; Hause, Gerd; Krüger, Antje; Lee, Justin; Müller, Oliver; Scheel, Dierk; Szczesny, Robert; Thieme, Frank; Bonas, Ulla
2012-09-01
The pathogenicity of the Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) is dependent on type III effectors (T3Es) that are injected into plant cells by a type III secretion system and interfere with cellular processes to the benefit of the pathogen. In this study, we analyzed eight T3Es from Xcv strain 85-10, six of which were newly identified effectors. Genetic studies and protoplast expression assays revealed that XopB and XopS contribute to disease symptoms and bacterial growth, and suppress pathogen-associated molecular pattern (PAMP)-triggered plant defense gene expression. In addition, XopB inhibits cell death reactions induced by different T3Es, thus suppressing defense responses related to both PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). XopB localizes to the Golgi apparatus and cytoplasm of the plant cell and interferes with eukaryotic vesicle trafficking. Interestingly, a XopB point mutant derivative was defective in the suppression of ETI-related responses, but still interfered with vesicle trafficking and was only slightly affected with regard to the suppression of defense gene induction. This suggests that XopB-mediated suppression of PTI and ETI is dependent on different mechanisms that can be functionally separated. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Leitch, Harry G.; Blair, Kate; Mansfield, William; Ayetey, Harold; Humphreys, Peter; Nichols, Jennifer; Surani, M. Azim; Smith, Austin
2010-01-01
Mouse and rat embryonic stem cells can be sustained in defined medium by dual inhibition (2i) of the mitogen-activated protein kinase (Erk1/2) cascade and of glycogen synthase kinase 3. The inhibitors suppress differentiation and enable self-renewal of pluripotent cells that are ex vivo counterparts of naïve epiblast cells in the mature blastocyst. Pluripotent stem cell lines can also be derived from unipotent primordial germ cells via a poorly understood process of epigenetic reprogramming. These are termed embryonic germ (EG) cells to denote their distinct origin. Here we investigate whether EG cell self-renewal and derivation are supported by 2i. We report that mouse EG cells can be established with high efficiency using 2i in combination with the cytokine leukaemia inhibitory factor (LIF). Furthermore, addition of fibroblast growth factor or stem cell factor is unnecessary using 2i-LIF. The derived EG cells contribute extensively to healthy chimaeric mice, including to the germline. Using the same conditions, we describe the first derivations of EG cells from the rat. Rat EG cells express a similar marker profile to rat and mouse ES cells. They have a diploid karyotype, can be clonally expanded and genetically manipulated, and are competent for multilineage colonisation of chimaeras. These findings lend support to the postulate of a conserved molecular ground state in pluripotent rodent cells. Future research will determine the extent to which this is maintained in other mammals and whether, in some species, primordial germ cells might be a more tractable source than epiblast for the capture of naïve pluripotent stem cells. PMID:20519324
Two Pore Channel 2 Differentially Modulates Neural Differentiation of Mouse Embryonic Stem Cells
Zhang, Zhe-Hao; Lu, Ying-Ying; Yue, Jianbo
2013-01-01
Nicotinic acid adenine dinucleotide phosphate (NAADP) is an endogenous Ca2+ mobilizing nucleotide presented in various species. NAADP mobilizes Ca2+ from acidic organelles through two pore channel 2 (TPC2) in many cell types and it has been previously shown that NAADP can potently induce neuronal differentiation in PC12 cells. Here we examined the role of TPC2 signaling in the neural differentiation of mouse embryonic stem (ES) cells. We found that the expression of TPC2 was markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebounded during the late stages of neurogenesis. Correspondingly, TPC2 knockdown accelerated mouse ES cell differentiation into neural progenitors but inhibited these neural progenitors from committing to neurons. Overexpression of TPC2, on the other hand, inhibited mouse ES cell from entering the early neural lineage. Interestingly, TPC2 knockdown had no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Taken together, our data indicate that TPC2 signaling plays a temporal and differential role in modulating the neural lineage entry of mouse ES cells, in that TPC2 signaling inhibits ES cell entry to early neural progenitors, but is required for late neuronal differentiation. PMID:23776607
Design and Assessment of a Dynamic Perfusion Bioreactor for Large Bone Tissue Engineering Scaffolds.
Bhaskar, Birru; Owen, Robert; Bahmaee, Hossein; Rao, Parcha Sreenivasa; Reilly, Gwendolen C
2018-06-01
Bioreactors can be used to apply fluid flow in vitro to scaffolds to improve mass transport of media and apply mechanical forces to cells. In this study, we developed and tested an autoclavable, modular perfusion bioreactor suitable for large scaffolds. We investigated the effects of fluid flow induced shear stress (FFSS) on osteogenic differentiation of human embryonic stem cell-derived mesenchymal progenitors (hES-MP cells) cultured on large polyurethane (PU) scaffolds (30 mm diameter × 5 mm thickness) in osteogenesis induction media (OIM). After seeding, scaffolds were either maintained in static conditions or transferred to the bioreactor 3 days post-seeding and a continuous flow rate of 3.47 mL/min was applied. Alkaline phosphatase activity (ALP) was used to evaluate osteogenic differentiation and resazurin salt reduction (RR) to measure metabolic activity after 10 days. Cultures subjected to flow contained significantly more metabolically active cells and higher total DNA content, as well as significantly higher ALP activity compared to scaffolds grown in static culture. These results confirm the responsiveness of hES-MP cells to fluid flow stimuli, and present a cost-effective, user-friendly bioreactor capable of supporting the growth and differentiation of mesenchymal progenitor cells within scaffolds capable of filling large bone defects.
The commercialization of human stem cells: ethical and policy issues.
Resnik, David B
2002-01-01
The first stage of the human embryonic stem (ES) cell research debate revolved around fundamental questions, such as whether the research should be done at all, what types of research may be done, who should do the research, and how the research should be funded. Now that some of these questions are being answered, we are beginning to see the next stage of the debate: the battle for property rights relating to human ES cells. The reason why property rights will be a key issue in this debate is simple and easy to understand: it costs a great deal of money to do this research, to develop new products, and to implement therapies; and private companies, researchers, and health professionals require returns on investments and reimbursements for goods and services. This paper considers arguments for and against property rights relating to ES cells defends the following points: (1) It should be legal to buy and sell ES cells and products. (2) It should be legal to patent ES cells, products, and related technologies. (3) It should not be legal to buy, sell, or patent human embryos. (4) Patents on ES cells, products, and related technologies should not be excessively broad. (5) Patents on ES cells, products, and related technologies should be granted only when applicants state definite, plausible uses for their inventions. (6) There should be a research exemption in ES cell patenting to allow academic scientists to conduct research in regenerative medicine. (7) It may be appropriate to take steps to prevent companies from using patents in ES cells, products, and related technologies only to block competitors. (8) As the field of regenerative medicine continues to develop, societies should revisit issues relating to property rights on a continuing basis in order to develop policies and develop regulations to maximize the social, medical, economic, and scientific benefits of ES cell research and product development.
Roche, Cherie M; Smith, Amanda; Lindsey, Devin R; Meher, Akshay; Schluns, Kimberly; Arora, Ashish; Armitige, Lisa Y; Jagannath, Chinnaswamy
2011-12-01
The ΔfbpA candidate vaccine derived from Mycobacterium tuberculosis (H37Rv) (Mtb) protects mice better than BCG against tuberculosis, and we investigated the hypothesis that ΔfbpA may induce a stronger Th1 immunity. Since T-bet transcription factor regulates Th1 immunity, mice infected with ΔfbpA, BCG vaccine and related mycobacteria were analyzed for T-bet positive T cells. Mouse dendritic cells (DCs) or macrophages were also pulsed with excretory-secreted antigens (ES; Antigen-85B, ESAT-6 and CFP10) and cocultured with T cells from immunized or naïve mice and tested for in vitro induction of T-bet and IFN-γ. In both models, ΔfbpA mutant induced a stronger response of T-bet(+)CD4 T cells, which correlated with an increased expansion of IFN-γ(+)CD4 T cells in vivo and in vitro. When DCs pulsed with ES antigens were allowed to stimulate T cells, ESAT-6 and CFP-10 failed to induce a recall expansion of T-bet(+)IFN-γ(+)CD4 T cells from BCG vaccinated mice. Thus, deletion of RD1 in BCG seems to reduce its ability to induce T-bet and induce stronger Th1 immunity. Finally, mice were vaccinated with ΔfbpA and BCG and challenged with virulent Mtb for evaluation of protection and T cell expansion. ΔfbpA vaccinated mice showed a rapid and stronger expansion of CD4(+)CXCR3(+) IFN-γ(+) T cells in the lungs of Mtb challenged mice, compared to those which had BCG vaccine. ΔfbpA immunized mice also showed a better decline of the Mtb bacterial counts of the lungs. Mtb derived ΔfbpA candidate vaccine therefore induces qualitatively better T-bet dependent Th1 immunity than BCG vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.
Banáth, J P; Bañuelos, C A; Klokov, D; MacPhail, S M; Lansdorp, P M; Olive, P L
2009-05-01
Pluripotent mouse embryonic stem cells (mES cells) exhibit approximately 100 large gammaH2AX repair foci in the absence of measurable numbers of DNA double-strand breaks. Many of these cells also show excessive numbers of DNA single-strand breaks (>10,000 per cell) when analyzed using the alkaline comet assay. To understand the reasons for these unexpected observations, various methods for detecting DNA strand breaks were applied to wild-type mES cells and to mES cells lacking H2AX, ATM, or DNA-PKcs. H2AX phosphorylation and expression of other repair complexes were measured using flow and image analysis of antibody-stained cells. Results indicate that high numbers of endogenous gammaH2AX foci and single-strand breaks in pluripotent mES cells do not require ATM or DNA-PK kinase activity and appear to be associated with global chromatin decondensation rather than pre-existing DNA damage. This will limit applications of gammaH2AX foci analysis in mES cells to relatively high levels of initial or residual DNA damage. Excessive numbers of single-strand breaks in the alkaline comet assay can be explained by the vulnerability of replicating chromatin in mES cells to osmotic shock. This suggests that caution is needed in interpreting results with the alkaline comet assay when applied to certain cell types or after treatment with agents that make chromatin vulnerable to osmotic changes. Differentiation of mES cells caused a reduction in histone acetylation, gammaH2AX foci intensity, and DNA single-strand breakage, providing a link between chromatin structural organization, excessive gammaH2AX foci, and sensitivity of replicating mES cell chromatin to osmotic shock.
Li, Cuiping; Lai, Weiyi; Wang, Hailin
2018-06-01
Embryonic stem (ES) cells have the potential to differentiate into any of the three germ layers (endoderm, mesoderm, or ectoderm), and can generate many lineages for regenerative medicine. ES cell culture in vitro has long been the subject of widespread concerns. Classically, mouse ES cells are maintained in serum and leukemia inhibitory factor (LIF)-containing medium. However, under serum/LIF conditions, cells show heterogeneity in morphology and the expression profile of pluripotency-related genes, and are mostly in a metastable state. Moreover, cultured ES cells exhibit global hypermethylation, but naïve ES cells of the inner cell mass (ICM) and primordial germ cells (PGCs) are in a state of global hypomethylation. The hypomethylated state of ICM and PGCs is closely associated with their pluripotency. To improve mouse ES cell culture methods, we have recently developed a new method based on the selectively combined utilization of two small-molecule compounds to maintain the DNA hypomethylated and pluripotent state. Here, we present that the co-treatment of vitamin C (Vc) and PD0325901 can erase about 90% of 5-methylcytosine (5mC) at 5 days in mouse ES cells. The generated 5mC content is comparable to that in PGCs. The mechanistic investigation shows that PD0325901 up-regulates Prdm14 expression to suppress Dnmt3b (de novo DNA methyltransferase) and Dnmt3l (the cofactor of Dnmt3b), by reducing de novo 5mC synthesis. Vc facilitates the conversion of 5mC to 5-hydroxymethylcytosine (5hmC) catalyzed mainly by Tet1 and Tet2, indicating the involvement of both passive and active DNA demethylations. Moreover, under Vc/PD0325901 conditions, mouse ES cells show homogeneous morphology and pluripotent state. Collectively, we propose a novel and chemical-synergy culture method for achieving DNA hypomethylation and maintenance of pluripotency in mouse ES cells. The small-molecule chemical-dependent method overcomes the major shortcomings of serum culture, and holds promise to generate homogeneous ES cells for further clinical applications and researches.
Hirabayashi, Masumi; Goto, Teppei; Tamura, Chihiro; Sanbo, Makoto; Hara, Hiromasa; Hochi, Shinichi
2014-03-07
This study was designed to investigate whether supplementation of 2i medium with leukemia inhibitory factor (LIF) and/or forskolin would support establishment of germline-competent rat embryonic stem (ES) cell lines. Due to the higher likelihood of outgrowth rates, supplementation of forskolin with or without LIF contributed to the higher establishment efficiency of ES cell lines in the WDB strain. Germline transmission competency of the chimeric rats was not influenced by the profile of ES cell lines until their establishment. When the LIF/forskolin-supplemented 2i medium was used, the rat strain used as the blastocyst donor, such as the WI strain, was a possible factor negatively influencing the establishment efficiency of ES cell lines. Once ES cell lines were established, all lines were found to be germline-competent by a progeny test in chimeric rats. In conclusion, both LIF and forskolin are not essential but can play a beneficial role in the establishment of "genuine" rat ES cell lines.
Anti-inflammatory and immunomodulatory effects of Aquaphilus dolomiae extract on in vitro models.
Aries, Marie-Françoise; Hernandez-Pigeon, Hélène; Vaissière, Clémence; Delga, Hélène; Caruana, Antony; Lévêque, Marguerite; Bourrain, Muriel; Ravard Helffer, Katia; Chol, Bertrand; Nguyen, Thien; Bessou-Touya, Sandrine; Castex-Rizzi, Nathalie
2016-01-01
Atopic dermatitis (AD) is a common skin disease characterized by recurrent pruritic inflammatory skin lesions resulting from structural and immune defects of the skin barrier. Previous studies have shown the clinical efficacy of Avène thermal spring water in AD, and a new microorganism, Aquaphilus dolomiae was suspected to contribute to these unique properties. The present study evaluated the anti-inflammatory, antipruritic, and immunomodulatory properties of ES0, an original biological extract of A. dolomiae , in immune and inflammatory cell models in order to assess its potential use in the treatment of AD. An ES0 extract containing periplasmic and membrane proteins, peptides, lipopolysaccharides, and exopolysaccharides was obtained from A. dolomiae. The effects of the extract on pruritus and inflammatory mediators and immune mechanisms were evaluated by using various AD cell models and assays. In a keratinocyte model, ES0 inhibited the expression of the inflammatory mediators, thymic stromal lymphopoietin, interleukin (IL)-18, IL-4R, IL-8, monocyte chemoattractant protein-3, macrophage inflammatory protein-3α, and macrophage-derived chemokine and induced the expression of involucrin, which is involved in skin barrier keratinocyte terminal differentiation. In addition, ES0 inhibited protease-activated receptor-2 activation in HaCaT human keratinocytes stimulated by stratum corneum tryptic enzyme and T helper type (Th) 1, Th2, and Th17 cytokine production in Staphylococcal enterotoxin B-stimulated CD4+ lymphocytes. Lastly, ES0 markedly activated innate immunity through toll-like receptor (TLR) 2, TLR4, and TLR5 activation (in recombinant human embryonic kidney 293 cells) and through antimicrobial peptide induction (psoriasin, human beta-defensin-2, and cathelicidin), mainly through TLR5 activation (in normal human keratinocytes). Overall, these in vitro results confirm the marked regulatory activity of this A. dolomiae extract on inflammatory and immune responses, which may be of value by virtue of its potential as an adjunctive treatment of AD inflammatory and pruritic lesions.
Reprogramming of Somatic Cells Towards Pluripotency by Cell Fusion.
Malinowski, Andrzej R; Fisher, Amanda G
2016-01-01
Pluripotent reprogramming can be dominantly induced in a somatic nucleus upon fusion with a pluripotent cell such as embryonic stem (ES) cell. Cell fusion between ES cells and somatic cells results in the formation of heterokaryons, in which the somatic nuclei begin to acquire features of the pluripotent partner. The generation of interspecies heterokaryons between mouse ES- and human somatic cells allows an experimenter to distinguish the nuclear events occurring specifically within the reprogrammed nucleus. Therefore, cell fusion provides a simple and rapid approach to look at the early nuclear events underlying pluripotent reprogramming. Here, we describe a polyethylene glycol (PEG)-mediated cell fusion protocol to generate interspecies heterokaryons and intraspecies hybrids between ES cells and B lymphocytes or fibroblasts.
Wang, Dan; Sang, Hui; Zhang, Kaiyue; Nie, Yan; Zhao, Shuang; Zhang, Yan; He, Ningning; Wang, Yuebing; Xu, Yang; Xie, Xiaoyan; Li, Zongjin; Liu, Na
2017-05-09
Embryonic stem cells (ES cells) can be maintained its undifferentiated state with feeder cells or LIF, which can activate Jak/Stat3 pathway. Recently, it has been reported a new culture condition comprising serum-free medium with ERK and GSK3β inhibitors (2i) could drive ES cells into a state of pluripotency more like inner cell mass (ICM) in mouse blastocysts called ground state. However, although 2i could sustain ES cells self-renewal, LIF is routinely added. The roles of Stat3 activation are still unclear now. Here we investigated whether Jak/Stat3 might also contribute to the induction of ground state pluripotency. We introduced a lentiviral construct with 7-repeat Stat3-binding sequence to drive Renilla luciferase into ES cells, which can be used as a reporter to detect Stat3 activation by noninvasive bioluminescence imaging. Using this ES cells, we investigated the role of Stat3 activation in ground state maintenance. The results showed that Stat3 could be activated by 2i. Stattic, a chemical inhibitor of Stat3 phosphorylation, could effectively inhibit Stat3 activation in ES cells. When Stat3 activation was suppressed, ground state related genes were down regulated, and ES cells could not be maintained the ground state pluripotency even in 2i medium. All of these results indicate Stat3 activation is required in ground state maintenance.
Eshkiki, Zahra Shokati; Ghahremani, Mohammad Hossein; Shabani, Parisa; Firuzjaee, Sattar Gorgani; Sadeghi, Asie; Ghanbarian, Hossein; Meshkani, Reza
2017-01-01
Protein tyrosine phosphatase 1B (PTP1B) has been shown to regulate multiple cellular events such as differentiation, cell growth, and proliferation; however, the role of PTP1B in differentiation of embryonic stem (ES) cells into cardiomyocytes remains unexplored. In the present study, we investigated the effects of PTP1B inhibition on differentiation of ES cells into cardiomyocytes. PTP1B mRNA and protein levels were increased during the differentiation of ES cells into cardiomyocytes. Accordingly, a stable ES cell line expressing PTP1B shRNA was established. In vitro, the number and size of spontaneously beating embryoid bodies were significantly decreased in PTP1B-knockdown cells, compared with the control cells. Decreased expression of cardiac-specific markers Nkx2-5, MHC-α, cTnT, and CX43, as assessed by real-time PCR analysis, was further confirmed by immunocytochemistry of the markers. The results also showed that PTP1B inhibition induced apoptosis in both differentiated and undifferentiated ES cells, as presented by increasing the level of cleaved caspase-3, cytochrome C, and cleaved PARP. Further analyses revealed that PTP1B inhibition did not change proliferation and pluripotency of undifferentiated ES cells. Taken together, the data presented here suggest that PTP1B is essential for proper differentiation of ES cells into cardiomyocytes.
Mason, Mike J; Fan, Guoping; Plath, Kathrin; Zhou, Qing; Horvath, Steve
2009-01-01
Background Recent work has revealed that a core group of transcription factors (TFs) regulates the key characteristics of embryonic stem (ES) cells: pluripotency and self-renewal. Current efforts focus on identifying genes that play important roles in maintaining pluripotency and self-renewal in ES cells and aim to understand the interactions among these genes. To that end, we investigated the use of unsigned and signed network analysis to identify pluripotency and differentiation related genes. Results We show that signed networks provide a better systems level understanding of the regulatory mechanisms of ES cells than unsigned networks, using two independent murine ES cell expression data sets. Specifically, using signed weighted gene co-expression network analysis (WGCNA), we found a pluripotency module and a differentiation module, which are not identified in unsigned networks. We confirmed the importance of these modules by incorporating genome-wide TF binding data for key ES cell regulators. Interestingly, we find that the pluripotency module is enriched with genes related to DNA damage repair and mitochondrial function in addition to transcriptional regulation. Using a connectivity measure of module membership, we not only identify known regulators of ES cells but also show that Mrpl15, Msh6, Nrf1, Nup133, Ppif, Rbpj, Sh3gl2, and Zfp39, among other genes, have important roles in maintaining ES cell pluripotency and self-renewal. We also report highly significant relationships between module membership and epigenetic modifications (histone modifications and promoter CpG methylation status), which are known to play a role in controlling gene expression during ES cell self-renewal and differentiation. Conclusion Our systems biologic re-analysis of gene expression, transcription factor binding, epigenetic and gene ontology data provides a novel integrative view of ES cell biology. PMID:19619308
Liu, Chang Ching; Ma, Dong Liang; Yan, Ting-Dong; Fan, XiuBo; Poon, Zhiyong; Poon, Lai-Fong; Goh, Su-Ann; Rozen, Steve G; Hwang, William Ying Khee; Tergaonkar, Vinay; Tan, Patrick; Ghosh, Sujoy; Virshup, David M; Goh, Eyleen L K; Li, Shang
2016-10-01
In most human somatic cells, the lack of telomerase activity results in progressive telomere shortening during each cell division. Eventually, DNA damage responses triggered by critically short telomeres induce an irreversible cell cycle arrest termed replicative senescence. However, the cellular responses of human pluripotent stem cells to telomere uncapping remain unknown. We generated telomerase knockout human embryonic stem (ES) cells through gene targeting. Telomerase inactivation in ES cells results in progressive telomere shortening. Telomere DNA damage in ES cells and neural progenitor cells induces rapid apoptosis when telomeres are uncapped, in contrast to fibroblast cells that enter a state of replicative senescence. Significantly, telomerase inactivation limits the proliferation capacity of human ES cells without affecting their pluripotency. By targeting telomerase activity, we can functionally separate the two unique properties of human pluripotent stem cells, namely unlimited self-renewal and pluripotency. We show that the potential of ES cells to form teratomas in vivo is dictated by their telomere length. By controlling telomere length of ES cells through telomerase inactivation, we can inhibit teratoma formation and potentially improve the safety of cell therapies involving terminally differentiated cells as well as specific progenitor cells that do not require sustained cellular proliferation in vivo, and thus sustained telomerase activity. Stem Cells 2016;34:2471-2484. © 2016 AlphaMed Press.
Lipchina, Inna; Elkabetz, Yechiel; Hafner, Markus; Sheridan, Robert; Mihailovic, Aleksandra; Tuschl, Thomas; Sander, Chris; Studer, Lorenz; Betel, Doron
2011-01-01
MicroRNAs are important regulators in many cellular processes, including stem cell self-renewal. Recent studies demonstrated their function as pluripotency factors with the capacity for somatic cell reprogramming. However, their role in human embryonic stem (ES) cells (hESCs) remains poorly understood, partially due to the lack of genome-wide strategies to identify their targets. Here, we performed comprehensive microRNA profiling in hESCs and in purified neural and mesenchymal derivatives. Using a combination of AGO cross-linking and microRNA perturbation experiments, together with computational prediction, we identified the targets of the miR-302/367 cluster, the most abundant microRNAs in hESCs. Functional studies identified novel roles of miR-302/367 in maintaining pluripotency and regulating hESC differentiation. We show that in addition to its role in TGF-β signaling, miR-302/367 promotes bone morphogenetic protein (BMP) signaling by targeting BMP inhibitors TOB2, DAZAP2, and SLAIN1. This study broadens our understanding of microRNA function in hESCs and is a valuable resource for future studies in this area. PMID:22012620
In vitro differentiation of mouse embryonic stem (mES) cells using the hanging drop method.
Wang, Xiang; Yang, Phillip
2008-07-23
Stem cells have the remarkable potential to develop into many different cell types. When a stem cell divides, each new cell has the potential to either remain a stem cell or become another type of cell with a more specialized function, This promising of science is leading scientists to investigate the possibility of cell-based therapies to treat disease. When culture in suspension without antidifferentiation factors, embryonic stem cells spontaneously differentiate and form three-dimensional multicellular aggregates. These cell aggregates are called embryoid bodies(EB). Hanging drop culture is a widely used EB formation induction method. The rounded bottom of hanging drop allows the aggregation of ES cells which can provide mES cells a good environment for forming EBs. The number of ES cells aggregatied in a hanging drop can be controlled by varying the number of cells in the initial cell suspension to be hung as a drop from the lid of Petri dish. Using this method we can reproducibly form homogeneous EBs from a predetermined number of ES cells.
Therapeutic approaches for treating hemophilia A using embryonic stem cells.
Kasuda, Shogo; Tatsumi, Kohei; Sakurai, Yoshihiko; Shima, Midori; Hatake, Katsuhiko
2016-06-01
Hemophilia A is an X-linked rescessive bleeding disorder that results from F8 gene aberrations. Previously, we established embryonic stem (ES) cells (tet-226aa/N6-Ainv18) that secrete human factor VIII (hFVIII) by introducing the human F8 gene in mouse Ainv18 ES cells. Here, we explored the potential of cell transplantation therapy for hemophilia A using the ES cells. Transplant tet-226aa/N6-Ainv18 ES cells were injected into the spleens of severe combined immunodeficiency (SCID) mice, carbon tetrachloride (CCl4)-pretreated wild-type mice, and CCl4-pretreated hemophilia A mice. F8 expression was induced by doxycycline in drinking water, and hFVIII-antigen production was assessed in all cell transplantation experiments. Injecting the ES cells into SCID mice resulted in an enhanced expression of the hFVIII antigen; however, teratoma generation was confirmed in the spleen. Transplantation of ES cells into wild-type mice after CCl4-induced liver injury facilitated survival and engraftment of transplanted cells without teratoma formation, resulting in hFVIII production in the plasma. Although CCl4 was lethal to most hemophilia A mice, therapeutic levels of FVIII activity, as well as the hFVIII antigen, were detected in surviving hemophilia A mice after cell transplantation. Immunolocalization results for hFVIII suggested that transplanted ES cells might be engrafted at the periportal area in the liver. Although the development of a safer induction method for liver regeneration is required, our results suggested the potential for developing an effective ES-cell transplantation therapeutic model for treating hemophilia A in the future. Copyright © 2016 King Faisal Specialist Hospital & Research Centre. Published by Elsevier Ltd. All rights reserved.
Buelens-Sleumer, Laura S.; Cox, Linda; den Hartog, Marcel; de Jong, Niels; Teshima, Reiko; Garssen, Johan; Boon, Louis; Knippels, Léon M. J.
2014-01-01
Background Cow’s milk-derived whey hydrolysates are nutritional substitutes for allergic infants. Safety or residual allergenicity assessment of these whey hydrolysates is crucial. Currently, rat basophilic leukemia RBL-2H3 cells expressing the human IgE receptor α-chain (huFcεRIα-RBL-2H3), sensitized with serum IgE from cow’s milk allergic children, are being employed to assess in vitro residual allergenicity of these whey hydrolysates. However, limited availability and inter-lot variation of these allergic sera impede standardization of whey hydrolysate safety testing in degranulation assays. Objective An oligoclonal pool of chimeric human (chu)IgE antibodies against bovine β-lactoglobulin (a major allergen in whey) was generated to increase sensitivity, specificity, and reproducibility of existing degranulation assays. Methods Mice were immunized with bovine β-lactoglobulin, and subsequently the variable domains of dissimilar anti-β-lactoglobulin mouse IgG antibodies were cloned and sequenced. Six chimeric antibodies were generated comprising mouse variable domains and human constant IgE/κ domains. Results After sensitization with this pool of anti-β-lactoglobulin chuIgEs, huFcεRIα-expressing RBL-2H3 cells demonstrated degranulation upon cross-linking with whey, native 18 kDa β-lactoglobulin, and 5–10 kDa whey hydrolysates, whereas a 3 kDa whey hydrolysate and cow’s milk powder (mainly casein) showed no degranulation. In parallel, allergic serum IgEs were less sensitive. In addition, our pool anti-β-lactoglobulin chuIgEs recognized multiple allergenic immunodominant regions on β-lactoglobulin, which were also recognized by serum IgEs from cow’s milk allergic children. Conclusion Usage of our ‘unlimited’ source and well-defined pool of β-lactoglobulin-specific recombinant chuIgEs to sensitize huFcεRIα on RBL-2H3 cells showed to be a relevant and sensitive alternative for serum IgEs from cow’s milk allergic patients to assess safety of whey-based non-allergic hydrolyzed formula. PMID:25153680
Dewari, Pooran Singh; Southgate, Benjamin; Mccarten, Katrina; Monogarov, German; O'Duibhir, Eoghan; Quinn, Niall; Tyrer, Ashley; Leitner, Marie-Christin; Plumb, Colin; Kalantzaki, Maria; Blin, Carla; Finch, Rebecca; Bressan, Raul Bardini; Morrison, Gillian; Jacobi, Ashley M; Behlke, Mark A; von Kriegsheim, Alex; Tomlinson, Simon; Krijgsveld, Jeroen
2018-01-01
CRISPR/Cas9 can be used for precise genetic knock-in of epitope tags into endogenous genes, simplifying experimental analysis of protein function. However, Cas9-assisted epitope tagging in primary mammalian cell cultures is often inefficient and reliant on plasmid-based selection strategies. Here, we demonstrate improved knock-in efficiencies of diverse tags (V5, 3XFLAG, Myc, HA) using co-delivery of Cas9 protein pre-complexed with two-part synthetic modified RNAs (annealed crRNA:tracrRNA) and single-stranded oligodeoxynucleotide (ssODN) repair templates. Knock-in efficiencies of ~5–30%, were achieved without selection in embryonic stem (ES) cells, neural stem (NS) cells, and brain-tumor-derived stem cells. Biallelic-tagged clonal lines were readily derived and used to define Olig2 chromatin-bound interacting partners. Using our novel web-based design tool, we established a 96-well format pipeline that enabled V5-tagging of 60 different transcription factors. This efficient, selection-free and scalable epitope tagging pipeline enables systematic surveys of protein expression levels, subcellular localization, and interactors across diverse mammalian stem cells. PMID:29638216
AIRE is a critical spindle-associated protein in embryonic stem cells
Gu, Bin; Lambert, Jean-Philippe; Cockburn, Katie; Gingras, Anne-Claude; Rossant, Janet
2017-01-01
Embryonic stem (ES) cells go though embryo-like cell cycles regulated by specialized molecular mechanisms. However, it is not known whether there are ES cell-specific mechanisms regulating mitotic fidelity. Here we showed that Autoimmune Regulator (Aire), a transcription coordinator involved in immune tolerance processes, is a critical spindle-associated protein in mouse ES(mES) cells. BioID analysis showed that AIRE associates with spindle-associated proteins in mES cells. Loss of function analysis revealed that Aire was important for centrosome number regulation and spindle pole integrity specifically in mES cells. We also identified the c-terminal LESLL motif as a critical motif for AIRE’s mitotic function. Combined maternal and zygotic knockout further revealed Aire’s critical functions for spindle assembly in preimplantation embryos. These results uncovered a previously unappreciated function for Aire and provide new insights into the biology of stem cell proliferation and potential new angles to understand fertility defects in humans carrying Aire mutations. DOI: http://dx.doi.org/10.7554/eLife.28131.001 PMID:28742026
Imaizumi, Keitaro; Iha, Momoe; Nishishita, Naoki; Kawamata, Shin; Nishikawa, Shinichi; Akuta, Teruo
2016-01-01
Protocols available for the cryopreservation of human embryonic stem (ES) and induced pluripotent stem (iPS) cells are very inefficient and laborious compared to those for the cryopreservation of murine ES/iPS cells or other general cell lines. While the vitrification method may be adequate when working with small numbers of human ES/iPS cells, it requires special skills and is unsuitable when working with large cell numbers. Here, we describe a simple and efficient method for the cryopreservation of hES/hiPS cells that is based on a conventional slow freezing method that uses a combination of Pronase/EDTA for Stem™ and CP-5E™ [final concentrations: 6 % hydroxyethyl starch, 5 % DMSO, and 5 % ethylene glycol in saline]. CP-5E™ is highly effective for the cryopreservation of small cell clumps produced by hES/hiPS colony detachment in the presence of Pronase and EDTA (Pronase/EDTA for Stem™, a formulation containing multiple digestive enzymes from Streptomyces griseus). This novel method would be quite useful for large-scale hES/iPS cell banking for use in clinical applications.
Jiang, Yanrui; Boll, Werner; Noll, Markus
2015-01-15
The Pox neuro (Poxn) gene of Drosophila plays a crucial role in the development of poly-innervated external sensory (p-es) organs. However, how Poxn exerts this role has remained elusive. In this study, we have analyzed the cell lineages of all larval p-es organs, namely of the kölbchen, papilla 6, and hair 3. Surprisingly, these lineages are distinct from any previously reported cell lineages of sensory organs. Unlike the well-established lineage of mono-innervated external sensory (m-es) organs and a previously proposed model of the p-es lineage, we demonstrate that all wild-type p-es lineages exhibit the following features: the secondary precursor, pIIa, gives rise to all three support cells-socket, shaft, and sheath, whereas the other secondary precursor, pIIb, is neuronal and gives rise to all neurons. We further show that in one of the p-es lineages, that of papilla 6, one cell undergoes apoptosis. By contrast in Poxn null mutants, all p-es lineages have a reduced number of cells and their pattern of cell divisions is changed to that of an m-es organ, with the exception of a lineage in a minority of mutant kölbchen that retains a second bipolar neuron. Indeed, the role of Poxn in p-es lineages is consistent with the specification of the developmental potential of secondary precursors and the regulation of cell division but not apoptosis. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamm, Christoffer, E-mail: christoffer.tamm@imbim.uu.se; Galito, Sara Pijuan, E-mail: sara.pijuan@imbim.uu.se; Anneren, Cecilia, E-mail: cecilia.anneren@imbim.uu.se
2012-02-15
The Src family of non-receptor tyrosine kinases (SFKs) has been shown to play an intricate role in embryonic stem (ES) cell maintenance. In the present study we have focused on the underlying molecular mechanisms responsible for the vastly different effects induced by various commonly used SFK inhibitors. We show that several diverse cell types, including fibroblasts completely lacking SFKs, cannot undergo mitosis in response to SU6656 and that this is caused by an unselective inhibition of Aurora kinases. In contrast, PP2 and PD173952 block motility immediately upon exposure and forces cells to grow in dense colonies. The subsequent halt inmore » proliferation of fibroblast and epithelial cells in the center of the colonies approximately 24 h post-treatment appears to be caused by cell-to-cell contact inhibition rather than a direct effect of SFK kinase inhibition. Interestingly, in addition to generating more homogenous and dense ES cell cultures, without any diverse effect on proliferation, PP2 and PD173652 also promote ES cell self-renewal by reducing the small amount of spontaneous differentiation typically observed under standard ES cell culture conditions. These effects could not be mirrored by the use of Gleevec, a potent inhibitor of c-Abl and PDGFR kinases that are also inhibited by PP2. -- Highlights: Black-Right-Pointing-Pointer SFK inhibitor SU6656 induces senescence in mouse ES cells. Black-Right-Pointing-Pointer SU6656 inhibits mitosis in a SFK-independent manner via cross-selectivity for Aurora kinases. Black-Right-Pointing-Pointer SFK inhibitor PP2 impairs cell motility in various cell lines, including mouse ES cells. Black-Right-Pointing-Pointer Ensuing impeded motility, PP2 inhibits proliferation of various cells lines except for mouse ES cells. Black-Right-Pointing-Pointer SFK inhibitors PP2 and PD173952 impede spontaneous differentiation in standard mouse ES culture maintenance.« less
Yuri, Shunsuke; Fujimura, Sayoko; Nimura, Keisuke; Takeda, Naoki; Toyooka, Yayoi; Fujimura, Yu-Ichi; Aburatani, Hiroyuki; Ura, Kiyoe; Koseki, Haruhiko; Niwa, Hitoshi; Nishinakamura, Ryuichi
2009-04-01
Sall4 is a mouse homolog of a causative gene of the autosomal dominant disorder Okihiro syndrome. We previously showed that the absence of Sall4 leads to lethality during peri-implantation and that Sall4-null embryonic stem (ES) cells proliferate poorly with intact pluripotency when cultured on feeder cells. Here, we report that, in the absence of feeder cells, Sall4-null ES cells express the trophectoderm marker Cdx2, but are maintained for a long period in an undifferentiated state with minimally affected Oct3/4 expression. Feeder-free Sall4-null ES cells contribute solely to the inner cell mass and epiblast in vivo, indicating that these cells still retain pluripotency and do not fully commit to the trophectoderm. These phenotypes could arise from derepression of the Cdx2 promoter, which is normally suppressed by Sall4 and the Mi2/NuRD HDAC complex. However, proliferation was impaired and G1 phase prolonged in the absence of Sall4, suggesting another role for Sall4 in cell cycle control. Although Sall1, also a Sall family gene, is known to genetically interact with Sall4 in vivo, Sall1-null ES cells have no apparent defects and no exacerbation is observed in ES cells lacking both Sall1 and Sall4, compared with Sall4-null cells. This suggests a unique role for Sall4 in ES cells. Thus, though Sall4 does not contribute to the central machinery of the pluripotency, it stabilizes ES cells by repressing aberrant trophectoderm gene expression.
TBX1 Represses Vegfr2 Gene Expression and Enhances the Cardiac Fate of VEGFR2+ Cells
Lania, Gabriella; Ferrentino, Rosa; Baldini, Antonio
2015-01-01
The T-box transcription factor TBX1 has critical roles in maintaining proliferation and inhibiting differentiation of cardiac progenitor cells of the second heart field (SHF). Haploinsufficiency of the gene that encodes it is a cause of congenital heart disease. Here, we developed an embryonic stem (ES) cell-based model in which Tbx1 expression can be modulated by tetracycline. Using this model, we found that TBX1 down regulates the expression of VEGFR2, and we confirmed this finding in vivo during embryonic development. In addition, we found a Vegfr2 domain of expression, not previously described, in the posterior SHF and this expression is extended by loss of Tbx1. VEGFR2 has been previously described as a marker of a subpopulation of cardiac progenitors. Clonal analysis of ES-derived VEGFR2+ cells indicated that 12.5% of clones expressed three markers of cardiac lineage (cardiomyocyte, smooth muscle and endothelium). However, a pulse of Tbx1 expression was sufficient to increase the percentage to 20.8%. In addition, the percentage of clones expressing markers of multiple cardiac lineages increased from 41.6% to 79.1% after Tbx1 pulse. These results suggest that TBX1 plays a role in maintaining a progenitor state in VEGFR2+ cells. PMID:26382615
Honda, Arata; Hatori, Masanori; Hirose, Michiko; Honda, Chizumi; Izu, Haruna; Inoue, Kimiko; Hirasawa, Ryutaro; Matoba, Shogo; Togayachi, Sumie; Miyoshi, Hiroyuki; Ogura, Atsuo
2013-01-01
Although induced pluripotent stem (iPS) cells are indistinguishable from ES cells in their expression of pluripotent markers, their differentiation into targeted cells is often limited. Here, we examined whether the limited capacity of iPS cells to differentiate into neural lineage cells could be mitigated by improving their base-line level of pluripotency, i.e. by converting them into the so-called “naive” state. In this study, we used rabbit iPS and ES cells because of the easy availability of both cell types and their typical primed state characters. Repeated passages of the iPS cells permitted their differentiation into early neural cell types (neural stem cells, neurons, and glial astrocytes) with efficiencies similar to ES cells. However, unlike ES cells, their ability to differentiate later into neural cells (oligodendrocytes) was severely compromised. In contrast, after these iPS cells had been converted to a naive-like state, they readily differentiated into mature oligodendrocytes developing characteristic ramified branches, which could not be attained even with ES cells. These results suggest that the naive-like conversion of iPS cells might endow them with a higher differentiation capacity. PMID:23880763
Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells.
Choi, Jiho; Huebner, Aaron J; Clement, Kendell; Walsh, Ryan M; Savol, Andrej; Lin, Kaixuan; Gu, Hongcang; Di Stefano, Bruno; Brumbaugh, Justin; Kim, Sang-Yong; Sharif, Jafar; Rose, Christopher M; Mohammad, Arman; Odajima, Junko; Charron, Jean; Shioda, Toshi; Gnirke, Andreas; Gygi, Steven; Koseki, Haruhiko; Sadreyev, Ruslan I; Xiao, Andrew; Meissner, Alexander; Hochedlinger, Konrad
2017-08-10
Concomitant activation of the Wnt pathway and suppression of Mapk signalling by two small molecule inhibitors (2i) in the presence of leukaemia inhibitory factor (LIF) (hereafter termed 2i/L) induces a naive state in mouse embryonic stem (ES) cells that resembles the inner cell mass (ICM) of the pre-implantation embryo. Since the ICM exists only transiently in vivo, it remains unclear how sustained propagation of naive ES cells in vitro affects their stability and functionality. Here we show that prolonged culture of male mouse ES cells in 2i/L results in irreversible epigenetic and genomic changes that impair their developmental potential. Furthermore, we find that female ES cells cultured in conventional serum plus LIF medium phenocopy male ES cells cultured in 2i/L. Mechanistically, we demonstrate that the inhibition of Mek1/2 is predominantly responsible for these effects, in part through the downregulation of DNA methyltransferases and their cofactors. Finally, we show that replacement of the Mek1/2 inhibitor with a Src inhibitor preserves the epigenetic and genomic integrity as well as the developmental potential of ES cells. Taken together, our data suggest that, although short-term suppression of Mek1/2 in ES cells helps to maintain an ICM-like epigenetic state, prolonged suppression results in irreversible changes that compromise their developmental potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiang; Zhao, Fang
Triptolide (TP), derived from the medicinal plant Triterygium wilfordii Hook. f. (TWHF), is a diterpene triepoxide with variety biological and pharmacological activities. However, TP has been restricted in clinical application due to its narrow therapeutic window especially in reproductive system. During spermatogenesis, Sertoli cell cytoskeleton plays an essential role in facilitating germ cell movement and cell-cell actin-based adherens junctions (AJ). At Sertoli cell-spermatid interface, the anchoring device is a kind of AJ, known as ectoplasmic specializations (ES). In this study, we demonstrate that β-actin, an important component of cytoskeleton, has been significantly down-regulated after TP treatment. TP can inhibit themore » expression of Rho GTPase such as, RhoA, RhoB, Cdc42 and Rac1. Downstream of Rho GTPase, Rho-associated protein kinase (ROCKs) gene expressions were also suppressed by TP. F-actin immunofluorescence proved that TP disrupts Sertoli cells cytoskeleton network. As a result of β-actin down-regulation, TP treatment increased expression of testin, which indicating ES has been disassembled. In summary, this report illustrates that TP induces cytoskeleton dysfunction and disrupts cell-cell adherens junctions via inhibition of Rho GTPases. - Highlights: • Triptolide induced the disruption of Sertoli-germ cell adherens junction. • Rho GTPases expression and actin dynamics have been suppressed by triptolide. • Actin-based adherens junction is a potential antifertility target of triptolide. • Rho-Rock is involved in the regulation of actin dynamics.« less
Actin nucleator Spire 1 is a regulator of ectoplasmic specialization in the testis.
Wen, Qing; Li, Nan; Xiao, Xiang; Lui, Wing-Yee; Chu, Darren S; Wong, Chris K C; Lian, Qingquan; Ge, Renshan; Lee, Will M; Silvestrini, Bruno; Cheng, C Yan
2018-02-12
Germ cell differentiation during the epithelial cycle of spermatogenesis is accompanied by extensive remodeling at the Sertoli cell-cell and Sertoli cell-spermatid interface to accommodate the transport of preleptotene spermatocytes and developing spermatids across the blood-testis barrier (BTB) and the adluminal compartment of the seminiferous epithelium, respectively. The unique cell junction in the testis is the actin-rich ectoplasmic specialization (ES) designated basal ES at the Sertoli cell-cell interface, and the apical ES at the Sertoli-spermatid interface. Since ES dynamics (i.e., disassembly, reassembly and stabilization) are supported by actin microfilaments, which rapidly converts between their bundled and unbundled/branched configuration to confer plasticity to the ES, it is logical to speculate that actin nucleation proteins play a crucial role to ES dynamics. Herein, we reported findings that Spire 1, an actin nucleator known to polymerize actins into long stretches of linear microfilaments in cells, is an important regulator of ES dynamics. Its knockdown by RNAi in Sertoli cells cultured in vitro was found to impede the Sertoli cell tight junction (TJ)-permeability barrier through changes in the organization of F-actin across Sertoli cell cytosol. Unexpectedly, Spire 1 knockdown also perturbed microtubule (MT) organization in Sertoli cells cultured in vitro. Biochemical studies using cultured Sertoli cells and specific F-actin vs. MT polymerization assays supported the notion that a transient loss of Spire 1 by RNAi disrupted Sertoli cell actin and MT polymerization and bundling activities. These findings in vitro were reproduced in studies in vivo by RNAi using Spire 1-specific siRNA duplexes to transfect testes with Polyplus in vivo-jetPEI as a transfection medium with high transfection efficiency. Spire 1 knockdown in the testis led to gross disruption of F-actin and MT organization across the seminiferous epithelium, thereby impeding the transport of spermatids and phagosomes across the epithelium and perturbing spermatogenesis. In summary, Spire 1 is an ES regulator to support germ cell development during spermatogenesis.
Practical Integration-Free Episomal Methods for Generating Human Induced Pluripotent Stem Cells.
Kime, Cody; Rand, Tim A; Ivey, Kathryn N; Srivastava, Deepak; Yamanaka, Shinya; Tomoda, Kiichiro
2015-10-06
The advent of induced pluripotent stem (iPS) cell technology has revolutionized biomedicine and basic research by yielding cells with embryonic stem (ES) cell-like properties. The use of iPS-derived cells for cell-based therapies and modeling of human disease holds great potential. While the initial description of iPS cells involved overexpression of four transcription factors via viral vectors that integrated within genomic DNA, advances in recent years by our group and others have led to safer and higher quality iPS cells with greater efficiency. Here, we describe commonly practiced methods for non-integrating induced pluripotent stem cell generation using nucleofection of episomal reprogramming plasmids. These methods are adapted from recent studies that demonstrate increased hiPS cell reprogramming efficacy with the application of three powerful episomal hiPS cell reprogramming factor vectors and the inclusion of an accessory vector expressing EBNA1. Copyright © 2015 John Wiley & Sons, Inc.
Cechin, Sirlene; Álvarez-Cubela, Silvia; Giraldo, Jaime A.; Molano, Ruth D.; Villate, Susana; Ricordi, Camillo; Pileggi, Antonello; Inverardi, Luca
2014-01-01
The possibility of using human embryonic stem (hES) cell-derived β cells as an alternative to cadaveric islets for the treatment of type 1 diabetes is now widely acknowledged. However, current differentiation methods consistently fail to generate meaningful numbers of mature, functional β cells. In order to address this issue, we set out to explore the role of oxygen modulation in the maturation of pancreatic progenitor (PP) cells differentiated from hES cells. We have previously determined that oxygenation is a powerful driver of murine PP differentiation along the endocrine lineage of the pancreas. We hypothesized that targeting physiological oxygen partial pressure (pO2) levels seen in mature islets would help the differentiation of PP cells along the β-cell lineage. This hypothesis was tested both in vivo (by exposing PP-transplanted immunodeficient mice to a daily hyperbaric oxygen regimen) and in vitro (by allowing PP cells to mature in a perfluorocarbon-based culture device designed to carefully adjust pO2 to a desired range). Our results show that oxygen modulation does indeed contribute to enhanced maturation of PP cells, as evidenced by improved engraftment, segregation of α and β cells, body weight maintenance, and rate of diabetes reversal in vivo, and by elevated expression of pancreatic endocrine makers, β-cell differentiation yield, and insulin production in vitro. Our studies confirm the importance of oxygen modulation as a key variable to consider in the design of β-cell differentiation protocols and open the door to future strategies for the transplantation of fully mature β cells. PMID:24375542
Mori, Nozomu; Miyashita, Takenori; Inamoto, Ryuhei; Matsubara, Ai; Mori, Terushige; Akiyama, Kosuke; Hoshikawa, Hiroshi
2017-04-01
Ion transport and its regulation in the endolymphatic sac (ES) are reviewed on the basis of recent lines of evidence. The morphological and physiological findings demonstrate that epithelial cells in the intermediate portion of the ES are more functional in ion transport than those in the other portions. Several ion channels, ion transporters, ion exchangers, and so on have been reported to be present in epithelial cells of ES intermediate portion. An imaging study has shown that mitochondria-rich cells in the ES intermediate portion have a higher activity of Na + , K + -ATPase and a higher Na + permeability than other type of cells, implying that molecules related to Na + transport, such as epithelial sodium channel (ENaC), Na + -K + -2Cl - cotransporter 2 (NKCC2) and thiazide-sensitive Na + -Cl - cotransporter (NCC), may be present in mitochondria-rich cells. Accumulated lines of evidence suggests that Na + transport is most important in the ES, and that mitochondria-rich cells play crucial roles in Na + transport in the ES. Several lines of evidence support the hypothesis that aldosterone may regulate Na + transport in ES, resulting in endolymph volume regulation. The presence of molecules related to acid/base transport, such as H + -ATPase, Na + -H + exchanger (NHE), pendrin (SLC26A4), Cl - -HCO 3 - exchanger (SLC4A2), and carbonic anhydrase in ES epithelial cells, suggests that acid/base transport is another important one in the ES. Recent basic and clinical studies suggest that aldosterone may be involved in the effect of salt-reduced diet treatment in Meniere's disease.
Watanabe-Susaki, Kanako; Takada, Hitomi; Enomoto, Kei; Miwata, Kyoko; Ishimine, Hisako; Intoh, Atsushi; Ohtaka, Manami; Nakanishi, Mahito; Sugino, Hiromu; Asashima, Makoto; Kurisaki, Akira
2014-12-01
Pluripotent stem cells have been shown to have unique nuclear properties, for example, hyperdynamic chromatin and large, condensed nucleoli. However, the contribution of the latter unique nucleolar character to pluripotency has not been well understood. Here, we show that fibrillarin (FBL), a critical methyltransferase for ribosomal RNA (rRNA) processing in nucleoli, is one of the proteins highly expressed in pluripotent embryonic stem (ES) cells. Stable expression of FBL in ES cells prolonged the pluripotent state of mouse ES cells cultured in the absence of leukemia inhibitory factor (LIF). Analyses using deletion mutants and a point mutant revealed that the methyltransferase activity of FBL regulates stem cell pluripotency. Knockdown of this gene led to significant delays in rRNA processing, growth inhibition, and apoptosis in mouse ES cells. Interestingly, both partial knockdown of FBL and treatment with actinomycin D, an inhibitor of rRNA synthesis, induced the expression of differentiation markers in the presence of LIF and promoted stem cell differentiation into neuronal lineages. Moreover, we identified p53 signaling as the regulatory pathway for pluripotency and differentiation of ES cells. These results suggest that proper activity of rRNA production in nucleoli is a novel factor for the regulation of pluripotency and differentiation ability of ES cells. © 2014 AlphaMed Press.
Ramírez, M Á; Pericuesta, E; Yáñez-Mó, M; Palasz, A; Gutiérrez-Adán, A
2011-02-01
Maintaining undifferentiated stem cells in defined conditions is of critical importance to improve their in vitro culture. We have evaluated the effects of culturing mouse stem (mES) cells under physiological oxygen concentration as well as by replacing fibroblast feeder layer (mEF) with gelatin or glycosaminoglycan hyaluronan (HA), on cell proliferation and differentiation. After 3 days culture or after long-term cell culture under different conditions, levels of apoptotic cell death were determined by cell cycle and TUNEL (TdT-mediated dUTP nick end labelling) assays and levels of cell proliferation by CFSE (5-(and-6)-carboxyfluorescein diacetate succinimidyl ester) labelling. We assessed spontaneous differentiation into cardiomyocytes and mRNA expression of pluripotency and differentiation biomarkers. After 3 days culture under hypoxic conditions, levels of proliferation and apoptosis of mES cells were higher, in correlation with increase in intracellular reactive oxygen species. However, when cells were continuously grown for 1 month under those conditions, the level of apoptosis was, in all cases, under 4%. Hypoxia reduced spontaneous differentiation of mES into cardiomyocytes. Long-term culture on HA was more effective in maintaining the pluripotent state of the mES cells when compared to that on gelatin. Level of terminal differentiation was highest on mEF, intermediate on HA and lowest on gelatin. Our data suggest that hypoxia is not necessary for maintaining pluripotency of mES cells and appeared to be detrimental during ES differentiation. Moreover, HA may offer a valuable alternative for long-term culture of mES cells in vitro. © 2010 Blackwell Publishing Ltd.
Generation of chondrocytes from embryonic stem cells.
Khillan, Jaspal Singh
2006-01-01
Pluripotent embryonic stem (ES) cells have complete potential for all the primary germ layers, such as ectoderm, mesoderm, and endoderm. However, the cellular and molecular mechanisms that control their lineage-restricted differentiation are not understood. Although embryoid bodies, which are formed because of the spontaneous differentiation of ES cells, have been used to study the differentiation into different cell types, including neurons, chondrocytes, insulin-producing cells, bone-forming cells, hematopoietic cells, and so on, this system has limitations for investigating the upstream events that lead to commitment of cells that occur during the inaccessible period of development. Recent developments in human ES cells have offered a challenge to develop strategies for understanding the basic mechanisms that play a key role in differentiation of stem cell into specific cell types for their applications in regenerative medicine and cell-based therapies. A micromass culture system was developed to induce the differentiation of ES cells into chondrocytes, the cartilage-producing cells, as a model to investigate the upstream events of stem cell differentiation. ES cells were co-cultured with limb bud progenitor cells. A high percentage of differentiated cells exhibit typical morphological characteristics of chondrocytes and express cartilage matrix genes such as collagen type II and proteoglycans, suggesting that signals from the progenitor cells are sufficient to induce ES cells into the chondrogenic lineage. Degeneration of cartilage in the joints is associated with osteoarthritis, which affects the quality of life of human patients. Therefore, the quantitative production of chondrocytes can be a powerful resource to alleviate the suffering of those patients.
Rockwood, Danielle N; Akins, Robert E; Parrag, Ian C; Woodhouse, Kimberly A; Rabolt, John F
2008-12-01
The function of the mammalian heart depends on the functional alignment of cardiomyocytes, and controlling cell alignment is an important consideration in biomaterial design for cardiac tissue engineering and research. The physical cues that guide functional cell alignment in vitro and the impact of substrate-imposed alignment on cell phenotype, however, are only partially understood. In this report, primary cardiac ventricular cells were grown on electrospun, biodegradable polyurethane (ES-PU) with either aligned or unaligned microfibers. ES-PU scaffolds supported high-density cultures and cell subpopulations remained intact over two weeks in culture. ES-PU cultures contained electrically-coupled cardiomyocytes with connexin-43 localized to points of cell:cell contact. Multi-cellular organization correlated with microfiber orientation and aligned materials yielded highly oriented cardiomyocyte groupings. Atrial natriuretic peptide, a molecular marker that shows decreasing expression during ventricular cell maturation, was significantly lower in cultures grown on ES-PU scaffolds than in those grown on tissue culture polystyrene. Cells grown on aligned ES-PU had significantly lower steady state levels of ANP and constitutively released less ANP over time indicating that scaffold-imposed cell organization resulted in a shift in cell phenotype to a more mature state. We conclude that the physical organization of microfibers in ES-PU scaffolds impacts both multi-cellular architecture and cardiac cell phenotype in vitro.
Lee, Hae-June; Yoon, Changhwan; Schmidt, Benjamin; Park, Do Joong; Zhang, Alexia Y.; Erkizan, Hayriye V.; Toretsky, Jeffrey A.; Kirsch, David G.; Yoon, Sam S.
2013-01-01
Ewing sarcomas (ES) harbor a chromosomal translocation that fuses the EWS gene to an ETS transcription factor, most commonly FLI1. The EWS-FLI1 fusion acts in a positive feedback loop to maintain expression of poly(ADP-ribose) polymerase 1 (PARP-1), which is involved in repair of DNA damage. Here, we examine the effects of PARP-1 inhibition and radiation therapy (RT) on ES. In proliferation assays, the ES cell lines RD-ES and SK-N-MC were much more sensitive than non-ES cell lines to the PARP-1 inhibitor olaparib (Ola) (IC50 0.5–1 uM vs >5 uM) and to radiation (IC50 2–4 Gy vs >6 Gy). PARP-1 inhibition with shRNA or Ola sensitized ES cells but not non-ES cells to RT in both proliferation and colony formation assays. Using the Comet assay, radiation of ES cells with Ola, compared to without Ola, resulted in more DNA damage at 1 hr (mean tail moment 36–54 vs. 26–28) and sustained DNA damage at 24 hr (24–29 vs. 6–8). This DNA damage led to a 2.9–4.0 fold increase in apoptosis and a 1.6–2.4 fold increase in cell death. The effect of PARP-1 inhibition and RT on ES cells was lost when EWS-FLI1 was silenced by shRNA. A small dose of RT (4 Gy), when combined with PARP-1 inhibition, stopped growth of SK-N-MC flank tumors xenografts. In conclusion, PARP-1 inhibition in ES amplifies the level and duration of DNA damage caused by RT leading to synergistic increases in apoptosis and cell death in a EWS-FLI1 dependent manner. PMID:23966622
Electrical stimulation as a biomimicry tool for regulating muscle cell behavior
Ahadian, Samad; Ostrovidov, Serge; Hosseini, Vahid; Kaji, Hirokazu; Ramalingam, Murugan; Bae, Hojae; Khademhosseini, Ali
2013-01-01
There is a growing need to understand muscle cell behaviors and to engineer muscle tissues to replace defective tissues in the body. Despite a long history of the clinical use of electric fields for muscle tissues in vivo, electrical stimulation (ES) has recently gained significant attention as a powerful tool for regulating muscle cell behaviors in vitro. ES aims to mimic the electrical environment of electroactive muscle cells (e.g., cardiac or skeletal muscle cells) by helping to regulate cell-cell and cell-extracellular matrix (ECM) interactions. As a result, it can be used to enhance the alignment and differentiation of skeletal or cardiac muscle cells and to aid in engineering of functional muscle tissues. Additionally, ES can be used to control and monitor force generation and electrophysiological activity of muscle tissues for bio-actuation and drug-screening applications in a simple, high-throughput, and reproducible manner. In this review paper, we briefly describe the importance of ES in regulating muscle cell behaviors in vitro, as well as the major challenges and prospective potential associated with ES in the context of muscle tissue engineering. PMID:23823664
Electrical stimulation as a biomimicry tool for regulating muscle cell behavior.
Ahadian, Samad; Ostrovidov, Serge; Hosseini, Vahid; Kaji, Hirokazu; Ramalingam, Murugan; Bae, Hojae; Khademhosseini, Ali
2013-01-01
There is a growing need to understand muscle cell behaviors and to engineer muscle tissues to replace defective tissues in the body. Despite a long history of the clinical use of electric fields for muscle tissues in vivo, electrical stimulation (ES) has recently gained significant attention as a powerful tool for regulating muscle cell behaviors in vitro. ES aims to mimic the electrical environment of electroactive muscle cells (e.g., cardiac or skeletal muscle cells) by helping to regulate cell-cell and cell-extracellular matrix (ECM) interactions. As a result, it can be used to enhance the alignment and differentiation of skeletal or cardiac muscle cells and to aid in engineering of functional muscle tissues. Additionally, ES can be used to control and monitor force generation and electrophysiological activity of muscle tissues for bio-actuation and drug-screening applications in a simple, high-throughput, and reproducible manner. In this review paper, we briefly describe the importance of ES in regulating muscle cell behaviors in vitro, as well as the major challenges and prospective potential associated with ES in the context of muscle tissue engineering.
Xue, Fei; Ma, Yinghong; Chen, Y. Eugene; Zhang, Jifeng; Lin, Tzu-An; Chen, Chien-Hong; Lin, Wei-Wen; Roach, Marsha; Ju, Jyh-Cherng; Yang, Lan; Du, Fuliang
2012-01-01
Abstract The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2×3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs. PMID:22775411
Morizane, Ryuji; Monkawa, Toshiaki; Fujii, Shizuka; Yamaguchi, Shintaro; Homma, Koichiro; Matsuzaki, Yumi; Okano, Hideyuki; Itoh, Hiroshi
2014-01-01
Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be induced in vitro because of the complexity of kidney structures and the diversity of kidney-component cells. Here, we describe a method of inducing renal tubular cells from mouse embryonic stem cells via the cell purification of kidney specific protein (KSP)-positive cells using an anti-KSP antibody. The global gene expression profiles of KSP-positive cells derived from ES cells exhibited characteristics similar to those of cells in the developing kidney, and KSP-positive cells had the capacity to form tubular structures resembling renal tubular cells when grown in a 3D culture in Matrigel. Moreover, our results indicated that KSP-positive cells acquired the characteristics of each segment of renal tubular cells through tubular formation when stimulated with Wnt4. This method is an important step toward kidney disease research using pluripotent stem cells, and the development of kidney regeneration therapies.
Kirschner, Andreas; Thiede, Melanie; Rubio, Rebeca Alba; Schirmer, David; Kirchner, Thomas; Richter, Gunther H.S.; Mall, Sabine; Klar, Richard; Riddell, Stanley; Busch, Dirk H.; Krackhardt, Angela; Grunewald, Thomas G.P.; Burdach, Stefan
2016-01-01
The endochondral bone protein Chondromodulin-I (CHM1) provides oncogene addiction in Ewing sarcoma (ES). We pre-clinically tested the targetability of CHM1 by TCR transgenic, allo-restricted, peptide specific T cells to treat ES. We previously generated allo-restricted wildtype CD8+ T cells directed against the ES specific antigen CHM1319 causing specific responses against ES. However, utilization of these cells in current therapy protocols is hampered due to high complexity in production, relatively low cell numbers, and rapid T cell exhaustion. In order to provide off-the-shelf products in the future, we successfully generated HLA-A*02:01-restricted T cell receptor (TCR) transgenic T cells directed against CHM1319 by retroviral transduction. After short-term expansion a 100% purified CHM1319-TCR-transgenic T cell population expressed a CD62L+/CD45RO and CD62L+/CD45RA+ phenotype. These cells displayed specific in vitro IFNg and granzyme B release in co-culture with HLA-A*02:01+ ES cell lines expressing CHM1. When co-injected with ES cells in Rag2−/−ɣc−/− mice, CHM1-specific TCR-transgenic T cells significantly inhibited the formation of lung and liver metastases in contrast to control mice. Lungs and livers of representative mice displayed CD8+ T cell infiltration in the presence (control group treated with unspecific T cells) and in the absence (study group) of metastatic disease, respectively. Furthermore, mice receiving unspecific T cells showed signs of graft-versus-host-disease in contrast to all mice, receiving CHM1319-TCR-transgenic T cells. CHM1319 specific TCR-transgenic T cells were successfully generated causing anti-ES responses in vitro and in vivo. In the future, CHM1319-TCR-transgenic T cells may control minimal residual disease rendering donor lymphocyte infusions more efficacious and less toxic. PMID:27281613
Fujii, Hiroshi; Ikeuchi, Yu; Kurata, Yasutaka; Ikeda, Nobuhito; Bahrudin, Udin; Li, Peili; Nakayama, Yuji; Endo, Ryo; Hasegawa, Akira; Morikawa, Kumi; Miake, Junichiro; Yoshida, Akio; Hidaka, Kyoko; Morisaki, Takayuki; Ninomiya, Haruaki; Shirayoshi, Yasuaki; Yamamoto, Kazuhiro; Hisatome, Ichiro
2012-01-01
The prion protein (PrP) has been reported to serve as a surface maker for isolation of cardiomyogenic progenitors from murine embryonic stem (ES) cells. Although PrP-positive cells exhibited automaticity, their electrophysiological characteristics remain unresolved. The aim of the present study was therefore to investigate the electrophysiological properties of PrP-positive cells in comparison with those of HCN4p-or Nkx2.5-positive cells. Differentiation of AB1, HCN5p-EGFP and hcgp7 ES cells into cardiac progenitors was induced by embryoid body (EB) formation. EBs were dissociated and cells expressing PrP, HCN4-EGFP and/or Nkx2.5-GFP were collected via flow cytometry. Sorted cells were subjected to reverse transcriptase-polymerase chain reaction, immunostaining and patch-clamp experiments. PrP-positive cells expressed mRNA of undifferentiation markers, first and second heart field markers, and cardiac-specific genes and ion channels, indicating their commitment to cardiomyogenic progenitors. PrP-positive cells with automaticity showed positive and negative chronotropic responses to isoproterenol and carbamylcholine, respectively. Hyperpolarization-activated cation current (I(f)) was barely detectable, whereas Na(+) and L-type Ca(2+) channel currents were frequently observed. Their spontaneous activity was slowed by inhibition of sarcoplasmic reticulum Ca(2+) uptake and release but not by blocking I(f). The maximum diastolic potential of their spontaneous firings was more depolarized than that of Nkx2.5-GFP-positive cells. PrP-positive cells contained cardiac progenitors that separated from the lineage of sinoatrial node cells. PrP can be used as a marker to enrich nascent cardiac progenitors.
Effects of nuclear transfer procedures on ES cell cloning efficiency in the mouse.
Yabuuchi, Akiko; Yasuda, Yoshiko; Kato, Yoko; Tsunoda, Yukio
2004-04-01
Enucleated oocytes receiving mouse embryonic stem (ES) cells develop into fertile young. The developmental potential to young is low, however, and the rate of postnatal death is high. We examined the effect of various nuclear transfer procedures on the in vitro and in vivo developmental potential of nuclear-transferred oocytes. The potential of oocytes receiving ES cells at M phase to develop into blastocysts after fusion by Sendai virus was high compared with that after direct injection (67% vs. 30%). The developmental potential of oocytes receiving ES cells at the M phase is higher than that of oocytes receiving ES cells at the G(1) phase (30-67% vs. 2-5%). Developmental ability to live young was low in all groups (0-4%). Different activation protocols affected the potential to develop into blastocysts to a different extent (27-62%), but did not affect the potential to develop into live young (0-3%). The present study demonstrated that the various conditions examined did not affect the potential of nuclear-transferred oocytes receiving ES cells to develop into live young or the incidence of postnatal death.
Embryonic Stem Cells Contribute to Mouse Chimeras in the Absence of Detectable Cell Fusion
Kidder, Benjamin L.; Oseth, Leann; Miller, Shanna; Hirsch, Betsy; Verfaillie, Catherine
2008-01-01
Abstract Embryonic stem (ES) cells are capable of differentiating into all embryonic and adult cell types following mouse chimera production. Although injection of diploid ES cells into tetraploid blastocysts suggests that tetraploid cells have a selective disadvantage in the developing embryo, tetraploid hybrid cells, formed by cell fusion between ES cells and somatic cells, have been reported to contribute to mouse chimeras. In addition, other examples of apparent stem cell plasticity have recently been shown to be the result of cell fusion. Here we investigate whether ES cells contribute to mouse chimeras through a cell fusion mechanism. Fluorescence in situ hybridization (FISH) analysis for X and Y chromosomes was performed on dissociated tissues from embryonic, neonatal, and adult wild-type, and chimeric mice to follow the ploidy distributions of cells from various tissues. FISH analysis showed that the ploidy distributions in dissociated tissues, notably the tetraploid cell number, did not differ between chimeric and wild-type tissues. To address the possibility that early cell fusion events are hidden by subsequent reductive divisions or other changes in cell ploidy, we injected Z/EG (lacZ/EGFP) ES cells into ACTB-cre blastocysts. Recombination can only occur as the result of cell fusion, and the recombined allele should persist through any subsequent changes in cell ploidy. We did not detect evidence of fusion in embryonic chimeras either by direct fluorescence microscopy for GFP or by PCR amplification of the recombined Z/EG locus on genomic DNA from ACTB-cre::Z/EG chimeric embryos. Our results argue strongly against cell fusion as a mechanism by which ES cells contribute to chimeras. PMID:18338954
2014-01-01
Background Ewing’s sarcoma (ES) is the second most frequent primitive malignant bone tumor in adolescents with a very poor prognosis for high risk patients, mainly when lung metastases are detected (overall survival <15% at 5 years). Zoledronic acid (ZA) is a potent inhibitor of bone resorption which induces osteoclast apoptosis. Our previous studies showed a strong therapeutic potential of ZA as it inhibits ES cell growth in vitro and ES primary tumor growth in vivo in a mouse model developed in bone site. However, no data are available on lung metastasis. Therefore, the aim of this study was to determine the effect of ZA on ES cell invasion and metastatic properties. Methods Invasion assays were performed in vitro in Boyden’s chambers covered with Matrigel. Matrix Metalloproteinase (MMP) activity was analyzed by zymography in ES cell culture supernatant. In vivo, a relevant model of spontaneous lung metastases which disseminate from primary ES tumor was induced by the orthotopic injection of 106 human ES cells in the tibia medullar cavity of nude mice. The effect of ZA (50 μg/kg, 3x/week) was studied over a 4-week period. Lung metastases were observed macroscopically at autopsy and analysed by histology. Results ZA induced a strong inhibition of ES cell invasion, probably due to down regulation of MMP-2 and −9 activities as analyzed by zymography. In vivo, ZA inhibits the dissemination of spontaneous lung metastases from a primary ES tumor but had no effect on the growth of established lung metastases. Conclusion These results suggest that ZA could be used early in the treatment of ES to inhibit bone tumor growth but also to prevent the early metastatic events to the lungs. PMID:24612486
Abramson, S
2010-01-01
Embryonic stem (ES) cells recently became the Holy Grail for the treatment of multiple diseases including cancer. A recent discovery of Israeli scientists however shows that ES cells can also become one of the causes triggering cancer. They base this hypothesis on a case of an Israeli boy suffering from Ataxia teleangiectasia, who developed cancer 4 years after ES transplantation. DNA analysis of the tumors showed that the malignant cells originated from the transplanted ES cells of the donors and not from the recipient's own cells. Given the fact that the therapeutic application of ES cells is still in the beginning, it is therefore necessary to thoroughly verify and test all the risks of their potential therapeutic use. This article also discusses in detail ethical and other aspects of ES cells applications, in particular the differences in points of view between Christianity and Judaism. Israeli Health to address these issues draws on traditional Judaism. Judaism defines an individual as a man if he cans a separate existence, in comparison with the human embryo, which is still directly dependent on his or her mother. Therefore, in matters of saving lives, including treatment options for improving the living, treatment with ES cells is tolerated Judaism as a clear preference for live and self-sustaining individual, before a cluster of cells. On the other hand, it is clear that all these therapies must have their basic rules and ethical reasons. In Israel, research on ESC and allowed it to those obtained in the course of unsuccessful fertility treatment by artificial insemination.
The maintenance of pluripotency following laser direct-write of mouse embryonic stem cells.
Raof, Nurazhani Abdul; Schiele, Nathan R; Xie, Yubing; Chrisey, Douglas B; Corr, David T
2011-03-01
The ability to precisely pattern embryonic stem (ES) cells in vitro into predefined arrays/geometries may allow for the recreation of a stem cell niche for better understanding of how cellular microenvironmental factors govern stem cell maintenance and differentiation. In this study, a new gelatin-based laser direct-write (LDW) technique was utilized to deposit mouse ES cells into defined arrays of spots, while maintaining stem cell pluripotency. Results obtained from these studies showed that ES cells were successfully printed into specific patterns and remained viable. Furthermore, ES cells retained the expression of Oct4 in nuclei after LDW, indicating that the laser energy did not affect their maintenance of an undifferentiated state. The differentiation potential of mouse ES cells after LDW was confirmed by their ability to form embryoid bodies (EBs) and to spontaneously become cell lineages representing all three germ layers, revealed by the expression of marker proteins of nestin (ectoderm), Myf-5 (mesoderm) and PDX-1 (endoderm), after 7 days of cultivation. Gelatin-based LDW provides a new avenue for stem cell patterning, with precision and control of the cellular microenvironment. Copyright © 2010 Elsevier Ltd. All rights reserved.
Sharma, Ruchi; George, Aman; Chauhan, Manmohan S; Singla, Suresh; Manik, Radhey S; Palta, Prabhat
2013-01-01
This study investigated the effects of supplementation of culture medium with 10 μM Y-27632, a specific inhibitor of Rho kinase activity, for 6 days on self-renewal of buffalo embryonic stem (ES) cell-like cells at Passage 50-80. Y-27632 increased mean colony area (P<0.05) although it did not improve their survival. It decreased OCT4 expression (P<0.05), increased NANOG expression (P<0.05), but had no effect on SOX2 expression. It also increased expression of anti-apoptotic gene BCL-2 (P<0.05) and decreased that of pro-apoptotic genes BAX and BID (P<0.05). It increased plating efficiency of single-cell suspensions of ES cells (P<0.05). Following vitrification, the presence of Y-27632 in the vitrification solution or thawing medium or both did not improve ES cell colony survival. However, following seeding of clumps of ES cells transfected with pAcGFP1N1 carrying green fluorescent protein (GFP), Y-27632 increased colony formation rate (P<0.01). ES cell colonies that formed in all Y-27632-supplemented groups were confirmed for expression of pluripotency markers alkaline phosphatase, SSEA-4 and TRA-1-60, and for their ability to generate embryoid bodies containing cells that expressed markers of ectoderm, mesoderm and endoderm. In conclusion, Y-27632 improves survival of buffalo ES cells under unfavourable conditions such as enzymatic dissociation to single cells or antibiotic-assisted selection after transfection, without compromising their pluripotency.
Airaki, Morad; Sánchez-Moreno, Lourdes; Leterrier, Marina; Barroso, Juan B; Palma, José M; Corpas, Francisco J
2011-11-01
Glutathione (GSH) is one of the major, soluble, low molecular weight antioxidants, as well as the major non-protein thiol in plant cells. However, the relevance of this molecule could be even greater considering that it can react with nitric oxide (NO) to generate S-nitrosoglutathione (GSNO) which is considered to function as a mobile reservoir of NO bioactivity in plants. Although this NO-derived molecule has an increased physiological and phytopathological relevance in plants cells, its identification and quantification in plant tissues have not be reported so far. Using liquid chromatography-electrospray/mass spectrometry (LC-ES/MS), a method was set up to detect and quantify simultaneously GSNO as well reduced and oxidized glutathione (GSH and GSSG, respectively) in different pepper plant organs including roots, stems and leaves, and in Arabidopsis leaves. The analysis of NO and GSNO reductase (GSNOR) activity in these pepper organs showed that the content of GSNO was directly related to the content of NO in each organ and oppositely related to the GSNOR activity. This approach opens up new analytical possibilities to understand the relevance of GSNO in plant cells under physiological and stress conditions.
Highly efficient biallelic genome editing of human ES/iPS cells using a CRISPR/Cas9 or TALEN system.
Takayama, Kazuo; Igai, Keisuke; Hagihara, Yasuko; Hashimoto, Rina; Hanawa, Morifumi; Sakuma, Tetsushi; Tachibana, Masashi; Sakurai, Fuminori; Yamamoto, Takashi; Mizuguchi, Hiroyuki
2017-05-19
Genome editing research of human ES/iPS cells has been accelerated by clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) and transcription activator-like effector nucleases (TALEN) technologies. However, the efficiency of biallelic genetic engineering in transcriptionally inactive genes is still low, unlike that in transcriptionally active genes. To enhance the biallelic homologous recombination efficiency in human ES/iPS cells, we performed screenings of accessorial genes and compounds. We found that RAD51 overexpression and valproic acid treatment enhanced biallelic-targeting efficiency in human ES/iPS cells regardless of the transcriptional activity of the targeted locus. Importantly, RAD51 overexpression and valproic acid treatment synergistically increased the biallelic homologous recombination efficiency. Our findings would facilitate genome editing study using human ES/iPS cells. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Kawai, R; Ozeki, N; Yamaguchi, H; Tanaka, T; Nakata, K; Mogi, M; Nakamura, H
2014-05-01
We examined whether mouse embryonic stem (ES) cells can differentiate into odontoblast-like cells without epithelial-mesenchymal interaction. Cells were cultured by the 'hanging drop' method using a collagen type-I scaffold (CS) combined with bone morphogenetic protein (BMP)-4 (CS/BMP-4). Expression of odontoblast-related mRNA and protein, and cell proliferation were performed by reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence staining and WST-1 assay, respectively. Cells potently expressed odontoblast-related cell marker mRNAs following induction of odontoblastic differentiation. Dentin sialophosphoprotein, a marker of mature odontoblasts, was strongly expressed in differentiated ES cells. The cells also acquired an odontoblast-like functional phenotype, as evidenced by the appearance of alkaline phosphatase activity and calcification. The cell-surface expression of α2, α6, αV and αVβ3 integrin proteins was rapidly upregulated in differentiated cells. Finally, anti-α2 integrin antibody suppressed the expression of odontoblastic markers in cells grown using this culture system, suggesting that α2 integrin expression in ES cells triggers their differentiation into odontoblast-like cells. Mouse ES cells cultured by the 'hanging drop' method are able to differentiate into cells with odontoblast-specific physiological functions and cell-surface integrin protein expression. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Development of the endolymphatic sac and duct in the Japanese red-bellied newt, Cynops pyrrhogaster
NASA Technical Reports Server (NTRS)
Gao, W.; Wiederhold, M. L.; Harrison, J. L.
1998-01-01
The development and maturation of the endolymphatic sac (ES) and duct (ED) were studied in the newt Cynops pyrrhogaster. The ES first appears as an oval capsule at the dorsal-medial tip of the otic vesicle at stage 39, about 11 days after oviposition. The ES consists of polymorphous epithelial cells with a minimum of cytoplasm. The intercellular space (IS) between the epithelial cells is narrow and has a smooth surface. At stage 44, the size of the ES increases as many vacuoles in the IS become filled. At stage 46, 18 days after oviposition, the ES elongates markedly and a slit-like lumen is found in the ES. The epithelium contains a few cell organelles which are scattered in the cytoplasm. The vacuoles in the IS are fused, which expands the IS. Two days later (stage 48), floccular material (endolymph) is present in the expanded lumen. The IS dilates and has a wide and irregular appearance. At stage 50, approximately 26 days after oviposition, the ES extends and expands significantly and crystals (otoconia) can now be seen in the widened lumen of the ES. The cytoplasm of the cuboidal epithelial cells contains an abundance of vesicles surrounded by ribosomes and Golgi complexes. Intercellular digitations are formed in the expanded IS. At stage 54, the ES forms a large bellow-like pouch. Numerous otoconia accumulate in the lumen. Free floating cells and cell debris can be seen in the lumen at this stage. The epithelial cells contain numerous cytoplasmic organelles which are evenly distributed in the cytoplasm. Granules are found in the apical and lateral cytoplasm. The IS is loose and displays a labyrinthine appearance. The primitive ED first appears as a connection between the ES and the saccule but no lumen is present inside at stage 39. At stage 46, a narrow lumen is formed in the ED, which corresponds to the formation of the ES lumen. At stage 50, as the ED extends, floccular material is seen in the lumen. At stage 54, the ED bears numerous microvilli on its luminal surface. Otoconia and endolymph are present in the ED. Tight junctions between the epithelial cells are formed at stage 46. A fully developed intercellular junctional complex is produced at stage 54. Based on the development of the ES and ED, the maturation of function of the ES and ED are discussed.
Shibagaki, Shohei; Tahara-Hanaoka, Satoko; Hiroyama, Takashi; Nakamura, Yukio; Shibuya, Akira
2017-05-01
Mast cells (MCs) play pivotal roles in allergic reactions and the host defense against microbial infection through the IgE-dependent and IgE-independent signaling pathways. MC lines that can be analyzed both in vitro and in vivo would be useful for the study of MC-dependent immune responses. Here, we investigated the functional characteristics of a mouse embryonic stem cell-derived MC-like cell line, MEDMC-BRC6. The cell line expressed FcεRI and c-Kit and showed degranulation and production of inflammatory cytokines and chemokines, including TNF-α, IL-6 and MCP-1, upon cross-linking FcεRI with IgE. These cytokines and chemokines were also produced by the cell line by stimulation of TLR2 and TLR4. MEDMC-BRC6 survived in the peritoneal cavity and the ear skin for at least 6 months after the transfer into genetically compatible MC-deficient KitW-sh/W-sh mice, in which systemic anaphylaxis was successfully induced. Thus, MEDMC-BRC6 cells represent a potent tool for investigating the functions of MCs in vitro and in vivo. © The Japanese Society for Immunology. 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
[Rhythmic beating cardiomyocytes derived from human embryonic germ (EG) cells in vitro].
Hua, Jinlian; Xu, Xiaoming; Dou, Zhongying
2006-10-01
Embryonic germ (EG) cells are pluripotent cells derived from primordial germ cells (PGCs) of gonads, gonadal ridges and mesenteries, analogies of fetuses,with the ability to undergo both highly self-renewal and multiple differentiation. These cells in vitro can differentiate into derivatives of all three embryonic germ layers when transferred to an in vitro environment and have the ability to form any fully differentiated cells of the body. The aim of this study is to investigate the potentiality of human EG cells differentiation into cardiomyocytes. Inducing human EG cells with the method of murine ES cells differentiation into cardiomyocytes, supplemented with 0.75%-1% DMSO, 20% NBS, 10(-7) mM RA and 20% cardiomyocytes conditioned medium. 20 heart-like (rhythmic beating cell masses were observed in vitro culture and delayed human EG cells, which beat spontaneously from 20-120 times per minute and maintained beating for 2-15 days, periodic acid's staining (PAS), Myoglobin and a-actin immunological histology positive were all positive and reacted with K+, Ca2+ and adrenalin. Relatively unorganized myofibrillar bundles or more organized sarcomeres, z-bands or a gap junction, the presence of desmosomes in a few cells of the cell masses was observed with transmision electron microscope, which initially demonstrated that these cells were cardiomyocytes. We could not get rhythmly beating cardiomyocytes with 0.75%-1% DMSO, 10-7 mM RA and 20% cardiomyocytes conditioned medium,but in which the percentage of cardiac alpha-actin immunostaining positive cells were increased. The results first demonstrated that human EG cells can differentiate into rhythmic beating cardiomyocytes in vitro and suggests that human EG cells may represent a new potent resource for cardiomyocytes transplantation therapy for myocardium infarction.
Liang, Xingguang; Hong, Dongsheng; Huang, Yujie; Rao, Yuefeng; Ma, Kuifen; Huang, Mingzhu; Zhang, Xingguo; Lou, Yijia; Zhao, Qingwei
2015-12-01
Junctophilin2 (JP2) is a critical protein associated with cardiogenesis. Icariin (ICA) facilitated the directional differentiation of murine embryonic stem (ES) cells into cardiomyocytes. However, little is known about the effects of ICA on JP2 during cardiac differentiation. Here, we explored whether ICA has effects on the expression and Ca2+ related function of JP2 during cardiomyocyte differentiation of ES cells in vitro. Embryonid bodies (EBs) formed by hanging drop were treated with 10(-7) mol/L ICA from day 5 to promote the cardiac differentiation. Percentage of beating EBs and number of beating area within EBs were monitored. Cardiomyocytes were purified by discontinuous percoll gradient centrifugation from EBs. The expression of JP2, α-actinin and troponin-T within EBs or isolated cardiomyocytes were analyzed by immunocytochemistry, western blot and flow cytometry. The transient Ca2+ release was characterized in cardiomyocytes treated with/without 10 mmol/L caffeine and 8 mmol/L Ca2+. Our results showed that ES cell-derived cardiomyocytes were well characterized with JP2 proteins. ICA promoted cardiomyocyte differentiation as indicated by an increased percentage of beating EBs and number of beating area within EBs. The expression of JP2, α-actinin and troponin-T were up-regulated both in EBs and isolated cardiomyocytes from EBs. Furthermore, ICA-induced JP2 expression was accompanied by a remarkable increase of the amplitude of Ca2+ transients in cardiomyocytes before/after caffeine and Ca2+ stimulating. In conclusion, ICA promotes in cardiac differentiation partly through regulating JP2 and improved the Ca2+ modulatory function of cardiomyocytes.
The death-inducer obliterator 1 (Dido1) gene regulates embryonic stem cell self-renewal.
Liu, Yinyin; Kim, Hyeung; Liang, Jiancong; Lu, Weisi; Ouyang, Bin; Liu, Dan; Songyang, Zhou
2014-02-21
The regulatory network of factors that center on master transcription factors such as Oct4, Nanog, and Sox2 help maintain embryonic stem (ES) cells and ensure their pluripotency. The target genes of these master transcription factors define the ES cell transcriptional landscape. In this study, we report our findings that Dido1, a target of canonical transcription factors such as Oct4, Sox2, and Nanog, plays an important role in regulating ES cell maintenance. We found that depletion of Dido1 in mouse ES cells led to differentiation, and ectopic expression of Dido1 inhibited differentiation induced by leukemia inhibitory factor withdrawal. We further demonstrated that whereas Nanog and Oct4 could occupy the Dido1 locus and promote its transcription, Dido1 could also target to the loci of pluripotency factors such as Nanog and Oct4 and positively regulate their expression. Through this feedback and feedforward loop, Dido1 is able to regulate self-renewal of mouse ES cells.
Roebroek, Anton J M; Van Gool, Bart
2014-01-01
Molecular genetic strategies applying embryonic stem cell (ES cell) technologies to study the function of a gene in mice or to generate a mouse model for a human disease are continuously under development. Next to (conditional) inactivation of genes the application and importance of approaches to generate knock-in mutations are increasing. In this chapter the principle and application of recombinase-mediated cassette exchange (RMCE) are discussed as being a new emerging knock-in strategy, which enables easy generation of a series of different knock-in mutations within one gene. An RMCE protocol, which was used to generate a series of different knock-in mutations in the Lrp1 gene of ES cells, is described in detail as an example of how RMCE can be used to generate highly efficiently an allelic series of differently modified ES cell clones from a parental modified ES cell clone. Subsequently the differently modified ES cell clones can be used to generate an allelic series of mutant knock-in mice.
Mao, Xinliang; He, Shengjie; Zhang, Ting; Guo, Xiaolei; Ge, Yazhong; Ma, Chungwah; Zhang, Xuewu
2017-11-01
In this study, the whole proteins from a Chinese three-striped box turtle (Cuora trifasciata) were extracted and hydrolyzed using three proteases (alcalase, papain, and protamex). By orthogonal experiments, the optimal hydrolysis conditions for producing peptides with the highest cancer cells growth inhibition activity were determined. Such as, the maximum inhibition on MCF-7 cancer cells (92.37% at 1 mg/mL) was achieved by papain hydrolysis (pH 8, 37 °C, enzyme-to-substrate ratio (E/S) 1.5%), and the maximum inhibition on HepG2 cancer cells (94.16% at 1 mg/mL) was reached by protamex hydrolysis (pH 8, 40 °C, E/S 2%). Using ultrafiltration and Sephadex G-15 column chromatography, two polypeptides M2 and F4 were isolated. At 500 μg/mL, M2 exhibited 74.7% and 62.9% of antiproliferation activities on MCF-7 and HepG2 cancer cells, respectively; and F4 displayed good inhibitory effects on MCF-7 (70.59%) and HepG2 (78.6%) cancer cells. M2 and F4 had lower inhibition (<20%) than drug 5-FU (>60%) on normal liver cells L-O2. Moreover, three peptides, EMLQPPL, PGKPLFL, and SCCSCDED, were identified; their inhibitory effects on cancer cells were confirmed after synthesis. These data, for the first time, demonstrated that Cuora trifasciata-derived proteins could be used for preparing antiproliferation peptides. © 2016 International Union of Biochemistry and Molecular Biology, Inc.
Varma, Sandeep R; Sundaram, R; Gopumadhavan, S; Vidyashankar, Satyakumar; Patki, Pralhad S
2013-01-01
HD-03/ES is a herbal formulation used for the treatment of hepatitis B. However, the molecular mechanism involved in the antihepatitis B (HBV) activity of this drug has not been studied using in vitro models. The effect of HD-03/ES on hepatitis B surface antigen (HBsAg) secretion and its gene expression was studied in transfected human hepatocarcinoma PLC/PRF/5 cells. The anti-HBV activity was tested based on the inhibition of HBsAg secretion into the culture media, as detected by HBsAg-specific antibody-mediated enzyme assay (ELISA) at concentrations ranging from 125 to 1000 μ g/mL. The effect of HD-03/ES on HBsAg gene expression was analyzed using semiquantitative multiplex RT-PCR by employing specific primers. The results showed that HD-03/ES suppressed HBsAg production with an IC50 of 380 μ g/mL in PLC/PRF/5 cells for a period of 24 h. HD-03/ES downregulated HBsAg gene expression in PLC/PRF/5 cells. In conclusion, HD-03/ES exhibits strong anti-HBV properties by inhibiting the secretion of hepatitis B surface antigen in PLC/PRF/5 cells, and this action is targeted at the transcription level. Thus, HD-03/ES could be beneficial in the treatment of acute and chronic hepatitis B infections.
Meek, Stephen; Sutherland, Linda; Burdon, Tom
2015-01-01
The rat is one of the most commonly used laboratory animals in biomedical research and the recent isolation of genuine pluripotent rat embryonic stem (ES) cell lines has provided new opportunities for applying contemporary genetic engineering techniques to the rat and enhancing the use of this rodent in scientific research. Technical refinements that improve the stability of the rat ES cell cultures will undoubtedly further strengthen and broaden the use of these stem cells in biomedical research. Here, we describe a relatively simple and robust protocol that supports the propagation of germ line competent rat ES cells, and outline how tuning stem cell signaling using small molecule inhibitors can be used to both stabilize self-renewal of rat ES cell cultures and aid evaluation of their differentiation potential in vitro.
Ecabet sodium alleviates neomycin-induced hair cell damage.
Rah, Yoon Chan; Choi, June; Yoo, Myung Hoon; Yum, Gunhwee; Park, Saemi; Oh, Kyoung Ho; Lee, Seung Hoon; Kwon, Soon Young; Cho, Seung Hyun; Kim, Suhyun; Park, Hae-Chul
2015-12-01
Ecabet sodium (ES) is currently applied to some clinical gastrointestinal disease primarily by the inhibition of the ROS production. In this study, the protective role of ES was evaluated against the neomycin-induced hair cell loss using zebrafish experimental animal model. Zebrafish larvae (5-7 dpf), were treated with each of the following concentrations of ES: 5, 10, 20, 40, and 80 μg/mL for 1 h, followed by 125 μM neomycin for 1h. The positive control group was established by 125 μM neomycin-only treatment (1h) and the negative control group with no additional chemicals was also established. Hair cells inside four neuromasts ( SO1, SO2, O1, OC1) were assessed using fluorescence microscopy (n = 10). Hair cell survival was calculated as the mean number of viable hair cells for each group. Apoptosis and mitochondrial damage were investigated using special staining (TUNEL and DASPEI assay, respectively), and compared among groups. Ultrastructural changes were evaluated using scanning electron microscopy. Pre-treatment group with ES increased the mean number of viable hair cells as a dose-dependent manner achieving almost same number of viable hair cells with 40 μM/ml ES treatment (12.98 ± 2.59 cells) comparing to that of the negative control group (14.15 ± 1.39 cells, p = 0.72) and significantly more number of viable hair cells than that of the positive control group (7.45 ± 0.91 cells, p < 0.01). The production of reactive oxygen species significantly increased by 183% with 125 μM neomycin treatment than the negative control group and significantly decreased down to 105% with the pre-treatment with 40 μM/ml ES (n = 40, p = 0.04). A significantly less number of TUNEL-positive cells (reflecting apoptosis, p < 0.01) and a significantly increased DASPEI reactivity (reflecting viable mitochondria, p < 0.01) were observed in 40 μM/ml ES pre-treatment group. Our data suggest that ES could protect against neomycin-induced hair cell loss possibly by reducing apoptosis, mitochondrial damages, and the ROS generation. Copyright © 2015 Elsevier Inc. All rights reserved.
Paulsen, Bruna S.; Rehen, Stevens K.
2011-01-01
The mechanisms underlying pluripotency and differentiation in embryonic and reprogrammed stem cells are unclear. In this work, we characterized the pluripotent state towards neural differentiated state through analysis of trace elements distribution using the Synchrotron Radiation X-ray Fluorescence Spectroscopy. Naive and neural-stimulated embryoid bodies (EB) derived from embryonic and induced pluripotent stem (ES and iPS) cells were irradiated with a spatial resolution of 20 µm to make elemental maps and qualitative chemical analyses. Results show that these embryo-like aggregates exhibit self-organization at the atomic level. Metallic elements content rises and consistent elemental polarization pattern of P and S in both mouse and human pluripotent stem cells were observed, indicating that neural differentiation and elemental polarization are strongly correlated. PMID:22195032
Cheng, Ya-Ting; Yeih, Dong-Feng; Liang, Shu-Man; Chien, Chia-Ying; Yu, Yen-Ling; Ko, Bor-Sheng; Jan, Yee-Jee; Kuo, Cheng-Chin; Sung, Li-Ying; Shyue, Song-Kun; Chen, Ming-Fong; Yet, Shaw-Fang; Wu, Kenneth K; Liou, Jun-Yang
2015-12-15
Rho-associated kinase (ROCK) plays an important role in maintaining embryonic stem (ES) cell pluripotency. To determine whether ROCK is involved in ES cell differentiation into cardiac and hematopoietic lineages, we evaluated the effect of ROCK inhibitors, Y-27632 and fasudil on murine ES and induced pluripotent stem (iPS) cell differentiation. Gene expression levels were determined by real-time PCR, Western blot analysis and immunofluorescent confocal microscopy. Cell transplantation of induced differentiated cells were assessed in vivo in a mouse model (three groups, n=8/group) of acute myocardial infarction (MI). The cell engraftment was examined by immunohistochemical staining and the outcome was analyzed by echocardiography. Cells were cultured in hematopoietic differentiation medium in the presence or absence of ROCK inhibitor and colony formation as well as markers of ES, hematopoietic stem cells (HSC) and cells of cardiac lineages were analyzed. ROCK inhibition resulted in a drastic change in colony morphology accompanied by loss of hematopoietic markers (GATA-1, CD41 and β-Major) and expressed markers of cardiac lineages (GATA-4, Isl-1, Tbx-5, Tbx-20, MLC-2a, MLC-2v, α-MHC, cTnI and cTnT) in murine ES and iPS cells. Fasudil-induced cardiac progenitor (Mesp-1 expressing) cells were infused into a murine MI model. They engrafted into the peri-infarct and infarct regions and preserved left ventricular function. These findings provide new insights into the signaling required for ES cell differentiation into hematopoietic as well as cardiac lineages and suggest that ROCK inhibitors are useful in directing iPS cell differentiation into cardiac progenitor cells for cell therapy of cardiovascular diseases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Amranul Haque, Md; Nagaoka, Masato; Hexig, Bayar; Akaike, Toshihiro
2010-02-01
Nanobiomaterials can play a central role in regenerative medicine and tissue engineering by facilitating cellular behavior and function, such as those where extracellular matrices (ECMs) direct embryonic stem (ES) cell morphogenesis, proliferation, differentiation and apoptosis. However, controlling ES cell proliferation and differentiation using matrices from natural sources is still challenging due to complex and heterogeneous culture conditions. Moreover, the systemic investigation of the regulation of self-renewal and differentiation to lineage specific cells depends on the use of defined and stress-free culture conditions. Both goals can be achieved by the development of biomaterial design targeting ECM or growth factors for ES cell culture. This targeted application will benefit from expansion of ES cells for transplantation, as well as the production of a specific differentiated cell type either by controlling the differentiation in a very specific pathway or by elimination of undesirable cell types.
Defensin-Like ZmES4 Mediates Pollen Tube Burst in Maize via Opening of the Potassium Channel KZM1
Márton, Mihaela L.; Debener, Thomas; Geiger, Dietmar; Becker, Dirk; Dresselhaus, Thomas
2010-01-01
In contrast to animals and lower plant species, sperm cells of flowering plants are non-motile and are transported to the female gametes via the pollen tube, i.e. the male gametophyte. Upon arrival at the female gametophyte two sperm cells are discharged into the receptive synergid cell to execute double fertilization. The first players involved in inter-gametophyte signaling to attract pollen tubes and to arrest their growth have been recently identified. In contrast the physiological mechanisms leading to pollen tube burst and thus sperm discharge remained elusive. Here, we describe the role of polymorphic defensin-like cysteine-rich proteins ZmES1-4 (Zea mays embryo sac) from maize, leading to pollen tube growth arrest, burst, and explosive sperm release. ZmES1-4 genes are exclusively expressed in the cells of the female gametophyte. ZmES4-GFP fusion proteins accumulate in vesicles at the secretory zone of mature synergid cells and are released during the fertilization process. Using RNAi knock-down and synthetic ZmES4 proteins, we found that ZmES4 induces pollen tube burst in a species-preferential manner. Pollen tube plasma membrane depolarization, which occurs immediately after ZmES4 application, as well as channel blocker experiments point to a role of K+-influx in the pollen tube rupture mechanism. Finally, we discovered the intrinsic rectifying K+ channel KZM1 as a direct target of ZmES4. Following ZmES4 application, KZM1 opens at physiological membrane potentials and closes after wash-out. In conclusion, we suggest that vesicles containing ZmES4 are released from the synergid cells upon male-female gametophyte signaling. Subsequent interaction between ZmES4 and KZM1 results in channel opening and K+ influx. We further suggest that K+ influx leads to water uptake and culminates in osmotic tube burst. The species-preferential activity of polymorphic ZmES4 indicates that the mechanism described represents a pre-zygotic hybridization barrier and may be a component of reproductive isolation in plants. PMID:20532241
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirai, Hidenori; Fujimori, Hiroaki; Gunji, Akemi
Highlights: •Parg{sup −/−} ES cells were more sensitive to γ-irradiation than Parp-1{sup −/−} ES cells. •Parg{sup −/−} cells were more sensitive to carbon-ion irradiation than Parp-1{sup −/−} cells. •Parg{sup −/−} cells showed defects in DSB repair after carbon-ion irradiation. •PAR accumulation was enhanced after carbon-ion irradiation compared to γ-irradiation. -- Abstract: Poly(ADP-ribose) glycohydrolase (Parg) is the main enzyme involved in poly(ADP-ribose) degradation. Here, the effects of Parg deficiency on sensitivity to low and high linear-energy-transfer (LET) radiation were investigated in mouse embryonic stem (ES) cells. Mouse Parg{sup −/−} and poly(ADP-ribose) polymerase-1 deficient (Parp-1{sup −/−}) ES cells were used and responsesmore » to low and high LET radiation were assessed by clonogenic survival and biochemical and biological analysis methods. Parg{sup −/−} cells were more sensitive to γ-irradiation than Parp-1{sup −/−} cells. Transient accumulation of poly(ADP-ribose) was enhanced in Parg{sup −/−} cells. Augmented levels of phosphorylated H2AX (γ-H2AX) from early phase were observed in Parg{sup −/−} ES cells. The induction level of p53 phophorylation at ser18 was similar in wild-type and Parp-1{sup −/−} cells and apoptotic cell death process was mainly observed in the both genotypes. These results suggested that the enhanced sensitivity of Parg{sup −/−} ES cells to γ-irradiation involved defective repair of DNA double strand breaks. The effects of Parg and Parp-1 deficiency on the ES cell response to carbon-ion irradiation (LET13 and 70 keV/μm) and Fe-ion irradiation (200 keV/μm) were also examined. Parg{sup −/−} cells were more sensitive to LET 70 keV/μm carbon-ion irradiation than Parp-1{sup −/−} cells. Enhanced apoptotic cell death also accompanied augmented levels of γ-H2AX in a biphasic manner peaked at 1 and 24 h. The induction level of p53 phophorylation at ser18 was not different between wild-type and Parg{sup −/−} cells. The augmented level of poly(ADP-ribose) accumulation was noted after carbon-ion irradiation compared to γ-irradiation even in the wild-type cells. An enhanced poly(ADP-ribose) accumulation was further observed in Parg{sup −/−} cells. Both Parg{sup −/−} cells and Parp-1{sup −/−} cells did not show sensitization to Fe-ion irradiation. Parg deficiency sensitizes mouse ES cells to a wide therapeutic range of LET radiation through the effects on DNA double strand break repair responses and enhanced cell death.« less
Zfp206 regulates ES cell gene expression and differentiation.
Zhang, Wen; Walker, Emily; Tamplin, Owen J; Rossant, Janet; Stanford, William L; Hughes, Timothy R
2006-01-01
Understanding transcriptional regulation in early developmental stages is fundamental to understanding mammalian development and embryonic stem (ES) cell properties. Expression surveys suggest that the putative SCAN-Zinc finger transcription factor Zfp206 is expressed specifically in ES cells [Zhang,W., Morris,Q.D., Chang,R., Shai,O., Bakowski,M.A., Mitsakakis,N., Mohammad,N., Robinson,M.D., Zirngibl,R., Somogyi,E. et al., (2004) J. Biol., 3, 21; Brandenberger,R., Wei,H., Zhang,S., Lei,S., Murage,J., Fisk,G.J., Li,Y., Xu,C., Fang,R., Guegler,K. et al., (2004) Nat. Biotechnol., 22, 707-716]. Here, we confirm this observation, and we show that ZFP206 expression decreases rapidly upon differentiation of cultured mouse ES cells, and during development of mouse embryos. We find that there are at least six isoforms of the ZFP206 transcript, the longest being predominant. Overexpression and depletion experiments show that Zfp206 promotes formation of undifferentiated ES cell clones, and positively regulates abundance of a very small set of transcripts whose expression is also specific to ES cells and the two- to four-cell stages of preimplantation embryos. This set includes members of the Zscan4, Thoc4, Tcstv1 and eIF-1A gene families, none of which have been functionally characterized in vivo but whose members include apparent transcription factors, RNA-binding proteins and translation factors. Together, these data indicate that Zfp206 is a regulator of ES cell differentiation that controls a set of genes expressed very early in development, most of which themselves appear to be regulators.
Ecosystem services: a new NRS-FIA analytical science initiative
Brian G. Tavernia; Mark D. Nelson; James D. Garner
2015-01-01
Forest ecosystem services (ES) are linked to sustaining human well-being. Recognizing an inappropriate economic valuation of ecosystem properties and processes, many ecologists, economists, and political scientists have pushed for an increasing awareness and appreciation of ES. Many definitions of ES include both direct and indirect benefits humans derive from...
Hong, Sung-Hyeok; Tilan, Jason U.; Galli, Susana; Izycka-Swieszewska, Ewa; Polk, Taylor; Horton, Meredith; Mahajan, Akanksha; Christian, David; Jenkins, Shari; Acree, Rachel; Connors, Katherine; Ledo, Phuong; Lu, Congyi; Lee, Yi-Chien; Rodriguez, Olga; Toretsky, Jeffrey A.; Albanese, Chris; Kitlinska, Joanna
2015-01-01
Ewing sarcoma (ES) develops in bones or soft tissues of children and adolescents. The presence of bone metastases is one of the most adverse prognostic factors, yet the mechanisms governing their formation remain unclear. As a transcriptional target of EWS-FLI1, the fusion protein driving ES transformation, neuropeptide Y (NPY) is highly expressed and released from ES tumors. Hypoxia up-regulates NPY and activates its pro-metastatic functions. To test the impact of NPY on ES metastatic pattern, ES cell lines, SK-ES1 and TC71, with high and low peptide release, respectively, were used in an orthotopic xenograft model. ES cells were injected into gastrocnemius muscles of SCID/beige mice, the primary tumors excised, and mice monitored for the presence of metastases. SK-ES1 xenografts resulted in thoracic extra-osseous metastases (67%) and dissemination to bone (50%) and brain (25%), while TC71 tumors metastasized to the lungs (70%). Bone dissemination in SK-ES1 xenografts associated with increased NPY expression in bone metastases and its accumulation in bone invasion areas. The genetic silencing of NPY in SK-ES1 cells reduced bone degradation. Our study supports the role for NPY in ES bone invasion and provides new models for identifying pathways driving ES metastases to specific niches and testing anti-metastatic therapeutics. PMID:25714031
Skeletal and cardiac myogenesis accompany adipogenesis in P19 embryonal stem cells.
Bouchard, Frédéric; Paquin, Joanne
2009-09-01
P19 embryonic carcinoma cells resemble normal embryonic stem (ES) cells. They generate cardiac and skeletal myocytes in response to retinoic acid (RA) or oxytocin (OT). RA treatment followed by exposure to triiodothyronine (T3) and insulin induces ES cells differentiation into adipocytes and skeletomyocytes. On the other hand, OT (10(-7) M) was reported to inhibit 3T3 preadipocyte maturation. The present work was undertaken to determine whether P19 cells have an adipogenic potential that could be affected by OT. Cells were treated with RA (10(-6) M)/T3+insulin (adipogenic protocol) or 10(-7) M OT (cardiomyogenic protocol), and analyzed by polymerase chain reaction, immunotechniques, and cytochemistry. Oil-Red-O staining and expression of peroxisome proliferator-activated receptor-gamma (PPARgamma) and aP2 indicated the generation of adipocytes in cultures submitted to the adipogenic protocol. Contracting cells were also generated. Cells positive for sarcomeric actinin and negative for cardiac troponin inhibitor (cTpnI) indicated generation of skeletomyocytes, and cTpnI positive cells revealed generation of cardiomyocytes. Levels of cTpnI and of the skeletal marker MyoD were almost similar in both protocols, whereas no Oil-Red-O staining was associated with the cardiomyogenic protocol. Addition of 10(-7) M OT to the adipogenic protocol did not affect Oil-Red-O staining and PPARgamma expression. Interestingly, Oct3/4 pluripotency marker disappeared in the adipogenic protocol but remained expressed in the cardiomyogenic one. P19 cells thus have an adipogenic potential non affected by 10(-7) M OT. RA/T3+insulin combination generates a larger spectrum of mesodermal cell derivatives and is a more potent morphogenic treatment than OT. P19 cells could help investigating mechanisms of cell fate decision during development.
Wei, Qing; Liu, Hongliang; Ai, Zhiying; Wu, Yongyan; Liu, Yingxiang; Shi, Zhaopeng; Ren, Xuexue; Guo, Zekun
2017-01-01
Self-renewal is one of the most important features of embryonic stem (ES) cells. SC1 is a small molecule modulator that effectively maintains the self-renewal of mouse ES cells in the absence of leukemia inhibitory factor (LIF), serum and feeder cells. However, the mechanism by which SC1 maintains the undifferentiated state of mouse ES cells remains unclear. In this study, microarray and small RNA deep-sequencing experiments were performed on mouse ES cells treated with or without SC1 to identify the key genes and microRNAs that contributed to self-renewal. SC1 regulates the expressions of pluripotency and differentiation factors, and antagonizes the retinoic acid (RA)-induced differentiation in the presence or absence of LIF. SC1 inhibits the MEK/ERK pathway through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and pathway reporting experiments. Small RNA deep-sequencing revealed that SC1 significantly modulates the expression of multiple microRNAs with crucial functions in ES cells. The expression of miR124-3p is upregulated in SC1-treated ES cells, which significantly inhibits the MEK/ERK pathway by targeting Grb2, Sos2 and Egr1. SC1 enhances the self-renewal capacity of mouse ES cells by modulating the expression of key regulatory genes and pluripotency-associated microRNAs. SC1 significantly upregulates miR124-3p expression to further inhibit the MEK/ ERK pathway by targeting Grb2, Sos2 and Egr1. © 2017 The Author(s). Published by S. Karger AG, Basel.
Yin, Mengmeng; Yuan, Yin; Cui, Yurong; Hong, Xian; Luo, Hongyan; Hu, Xinwu; Tang, Ming; Hescheler, Jurgen; Xi, Jiaoya
2015-01-01
Puerarin shows a wide range of biological activities, including affecting the cardiac differentiation from murine embryonic stem (mES) cells. However, little is known about its effect and mechanism of action on the self-renewal of mES cells. This study aimed to determine the effect of puerarin on the self-renewal and pluripotency of mES cells and its underlying mechanisms. RT-PCR and real-time PCR were used to detect the transcripts of core transcription factors, specific markers for multiple lineages, REST and microRNA-21 (miR-21). Colony-forming assay was performed to estimate the self-renewal capacity of mES cells. Western blotting and wortmannin were employed to explore the role of PI3K/Akt signaling pathway in the inhibitory action of puerarin on REST transcript. Transfected mES cells with antagomir21 were used to confirm the role of miR-21 in the action of puerarin on cell self-renewal. Puerarin significantly decreased the percentage of the self-renewal colonies, and suppressed the transcripts of Oct4, Nanog, Sox2, c-Myc and REST. Besides, PECAM, NCAM and miR-21 were up-regulated both under the self-renewal conditions and at day 4 of differentiation. The PI3K inhibitor wortmannin successfully reversed the mRNA expression changes of REST, Nanog and Sox2. Transfection of antagomir21 efficiently reversed the effects of puerarin on mES cells self-renewal. Inhibition of REST-miR-21 regulatory pathway may be the key mechanism of puerarin-induced suppression of mES cells self-renewal.
Zandi, Mohammad; Shah, Syed Mohamad; Muzaffar, Musharifa; Kumar Singh, Manoj; Palta, Prabhat; Kumar Singla, Suresh; Sham Manik, Radhey; Chauhan, Manmohan Singh
2015-01-01
This research studies the effects of activation and inhibition of Wnt3A signaling pathway in buffalo (Bubalus bubalis) embryonic stem (ES) cell-like cells. To carry on this experimental study, the effects of activation and inhibition of Wnt3A signaling in buffalo ES cell-like cells were examined using Bio (0.5 mM) combined with WNT3A (200 ng/ml), as an activator, and Dickkopf-1 (Dkk1, 250 ng/ml), as an inhibitor, of the pathway. ES cells were cultured up to three weeks in ES cell medium without fibroblast growth factor-2 (FGF-2) and leukemia inhibitory factor (LIF), but in the presence of Bio, WNT3A, Bio+WNT3A and Dkk1. The effects of these supplements were measured on the mean area of ES cell colonies and on the expression levels of a number of important genes related to pluripotency (Oct4, Nanog, Sox2 and c-Myc) and the Wnt pathway (β-catenin). ES cell colonies cultured in ES cell medium that contained optimized quantities of LIF and FGF-2 were used as the control. Data were collected for week-1 and week-3 treated cultures. In addition, WNT3A-transfected ES cells were compared with the respective mock-transfected colonies, either alone or in combination with Dkk1 for expression of β-catenin and the pluripotency-related genes. Data were analyzed by ANOVA, and statistical significance was accepted at P<0.05. Among various examined concentrations of Bio (0.5-5 mM), the optimum effect was observed at the 0.5 mM dose as indicated by colony area and expressions of pluripotency-related genes at both weeks-1 and -3 culture periods. At this concentration,the expressions of Nanog, Oct3/4, Sox2, c-Myc and β-catenin genes were nonsignificantly higher compared to the controls. Expressions of these genes were highest in the Bio+WNT3A treated group, followed by the WNT3A and Bio-supplemented groups, and lowest in the Dkk1-treated group. The WNT-transfected colonies showed higher expressions compared to both mock and Dkk1-treated mock transfected colonies. WNT3A functions to maintain the pluripotency of ES cell-like cells both as an exogenous growth factor as well as an endogenously expressed gene. It complements the absence of FGF-2 and LIF, otherwise propounded essential for buffalo ES cell culture. WNT3A antagonizes the inhibitory effects of Dkk1 and acts in combination with its activator, Bio, to activate the Wnt signaling pathway.
Zhang, Zheng; Chen, Yunsheng; Xu, Heng; Wo, Yan; Zhang, Zhen; Liu, Ying; Su, Weijie; Cui, Daxiang; Zhang, Yixin
2016-11-24
Photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA) is an alternative therapy for hypertrophic scars (HS), which destroys human hypertrophic scar fibroblasts (HSF). However, the poor permeability of ALA both in HS tissue and HSF significantly restricts the PDT of HS. To overcome these barriers, ALA-loaded ethosomal vesicles (ALA-ES) were developed by a pH gradient active loading method and characterized by morphology, entrapment efficiency (EE) and stability. Results show that prepared ALA-ES are homogenous spherical lamellar vesicles, 53 ± 7 nm in size, 50.6 ± 2.3% in EE and have excellent stability. In vitro transdermal delivery studies through HS tissue were carried out by using Franz diffusion cells. Compared to the traditional ALA hydroalcoholic solution (ALA-HA), ALA-ES achieve higher drug retention in less administration time, and fluorescence microscopy showed that ALA-ES penetrate into the deeper dermis of HS in a shorter time, indicating that ALA-ES can enhance the penetration of ALA into HS. Additionally, ALA-ES was visualized in HS tissue for the first time by transmission electron microscopy (TEM). The irregular and collapsed ALA-ES suggest that they can squeeze through narrow spaces to the target area and release ALA into HS. Taking HSF as the target, the transcellular delivery of ALA-ES into HSF cells was investigated by intracellular protoporphyrin IX (PpIX) accumulation. The efficiency of PDT for HSF cells, including the formation of reactive oxygen species (ROS) and cell apoptosis, were also well investigated. Furthermore, the detailed changes of HSF were observed by TEM. The results strongly indicate that ALA-ES can facilitate ALA penetration into HSF cells, and can cause a higher level of cell apoptosis or necrosis than ALA-HA. ALA-ES with high EE is therefore a promising transdermal delivery system for topical ALA administration and has great potential in ALA-PDT of HS.
Differential regulation of genomic imprinting by TET proteins in embryonic stem cells.
Liu, Lizhi; Mao, Shi-Qing; Ray, Chelsea; Zhang, Yu; Bell, Fong T; Ng, Sheau-Fang; Xu, Guo-Liang; Li, Xiajun
2015-09-01
TET proteins have been found to play an important role in active demethylation at CpG sites in mammals. There are some reports implicating their functions in removal of DNA methylation imprint at the imprinted regions in the germline. However, it is not well established whether TET proteins can also be involved in demethylation of DNA methylation imprint in embryonic stem (ES) cells. Here we report that loss of TET proteins caused a significant increase in DNA methylation at the Igf2-H19 imprinted region in ES cells. We also observed a variable increase in DNA methylation at the Peg1 imprinted region in the ES clones devoid of TET proteins, in particular in the differentiated ES cells. By contrast, we did not observe a significant increase of DNA methylation imprint at the Peg3, Snrpn and Dlk1-Dio3 imprinted regions in ES cells lacking TET proteins. Interestingly, loss of TET proteins did not result in a significant increase of DNA methylation imprint at the Igf2-H19 and Peg1 imprinted regions in the embryoid bodies (EB). Therefore, TET proteins seem to be differentially involved in maintaining DNA methylation imprint at a subset of imprinted regions in ES cells and EBs. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Hai, Tang; Hao, Jie; Wang, Liu; Jouneau, Alice; Zhou, Qi
2011-02-01
Reprogramming of somatic cells to pluripotency can be achieved by nuclear transfer into enucleated oocytes (SCNT). A key event of this process is the demethylation of the Oct4 gene and its temporally and spatially regulated expression. Different studies have shown that it occurs abnormally in some SCNT embryos. TSA is a histone deacetylase inhibitor known to increase the efficiency of development to term of SCNT embryos, but its impact on the developmental features of SCNT embryos is poorly understood. Here, we have followed the fate of the pluripotent cells within SCNT embryos, from the late blastocyst to the early epiblast prior to gastrulation. Our data show a delay in development correlated with a defect in forming and maintaining a correct number of Oct4 expressing ICM and epiblast cells in SCNT embryos. As a consequence, during the outgrowth phase of embryonic stem cell derivation as well as during diapause in vivo, part of the SCNT blastocysts completely lose their ICM cells. Meanwhile, the others display a correctly reprogrammed ICM compatible with the derivation of ES cells and development of the epiblast. Our data also indicate that TSA favors the establishment of pluripotency in SCNT embryos.
Hunt, Geoffrey C.; Singh, Purva; Schwarzbauer, Jean E.
2012-01-01
Pluripotent cells are attached to the extracellular matrix (ECM) as they make cell fate decisions within the stem cell niche. Here we show that the ubiquitous ECM protein fibronectin is required for self-renewal decisions by cultured mouse embryonic stem (mES) cells. Undifferentiated mES cells produce fibronectin and assemble a fibrillar matrix. Increasing the level of substrate fibronectin increased cell spreading and integrin receptor signaling through focal adhesion kinase, while concomitantly inducing the loss of Nanog and Oct4 self-renewal markers. Conversely, reducing fibronectin production by mES cells growing on a feeder-free gelatin substrate caused loss of cell adhesion, decreased integrin signaling, and decreased expression of self-renewal markers. These effects were reversed by providing the cells with exogenous fibronectin, thereby restoring adhesion to the gelatin substrate. Interestingly, mES cells do not adhere directly to the gelatin substrate, but rather adhere indirectly through gelatin-bound fibronectin, which facilitates self-renewal via its effects on cell adhesion. These results provide new insights into the mechanism of regulation of self-renewal by growth on a gelatin-coated surface. The effects of increasing or decreasing fibronectin levels show that self-renewal depends on an intermediate level of cell-fibronectin interactions. By providing cell adhesive signals that can act with other self-renewal factors to maintain mES cell pluripotency, fibronectin is therefore a necessary component of the self-renewal signaling pathway in culture. PMID:22710062
Hunt, Geoffrey C; Singh, Purva; Schwarzbauer, Jean E
2012-09-10
Pluripotent cells are attached to the extracellular matrix (ECM) as they make cell fate decisions within the stem cell niche. Here we show that the ubiquitous ECM protein fibronectin is required for self-renewal decisions by cultured mouse embryonic stem (mES) cells. Undifferentiated mES cells produce fibronectin and assemble a fibrillar matrix. Increasing the level of substrate fibronectin increased cell spreading and integrin receptor signaling through focal adhesion kinase, while concomitantly inducing the loss of Nanog and Oct4 self-renewal markers. Conversely, reducing fibronectin production by mES cells growing on a feeder-free gelatin substrate caused loss of cell adhesion, decreased integrin signaling, and decreased expression of self-renewal markers. These effects were reversed by providing the cells with exogenous fibronectin, thereby restoring adhesion to the gelatin substrate. Interestingly, mES cells do not adhere directly to the gelatin substrate, but rather adhere indirectly through gelatin-bound fibronectin, which facilitates self-renewal via its effects on cell adhesion. These results provide new insights into the mechanism of regulation of self-renewal by growth on a gelatin-coated surface. The effects of increasing or decreasing fibronectin levels show that self-renewal depends on an intermediate level of cell-fibronectin interactions. By providing cell adhesive signals that can act with other self-renewal factors to maintain mES cell pluripotency, fibronectin is therefore a necessary component of the self-renewal signaling pathway in culture. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yisong; Giannone, Richard J; Wu, Jun
Telomerase deficiency leads to a progressive loss of telomeric DNA that eventually triggers cell apoptosis in human primary cells during prolonged growth in culture. Rare survivors can maintain telomere length through either activation of telomerase or recombination-based telomere lengthening, and thus proliferate indefinitely. We have explored the possibility that telomeres may be maintained through telomere sister chromatid exchange (T-SCE) in murine telomere reverse transcriptase-deficient (mTert -/-) splenocytes and ES cells. Because telomerase deficiency leads to gradual loss of telomeric DNA in mTert -/- splenocytes and ES cells and eventually to chromosomes with telomere signal-free ends (SFEs), we examined these cellmore » types for evidence of sister chromatid exchange at telomeres, and observed an increase in T-SCEs only in a subset of mTert -/- splenocytes or ES cells that possessed multiple SFEs. Furthermore, T-SCEs were more often detected in ES cells than in splenocytes that harbored a similar frequency of SFEs. In mTert heterozygous (mTert +/-) ES cells or splenocytes, which are known to exhibit a decrease in average telomere length but no SFEs, no increase in T-SCE was observed. In addition to T-SCE, other genomic rearrangements (i.e., SCE) were also significantly increased in mTert -/- ES cells possessing critically short telomeres, but not in splenocytes. Our results suggest that animals and cell culture differ in their ability to carry out genomic rearrangements as a means of maintaining telomere integrity when telomeres become critically shortened.« less
Stimuli-sensitive nanoparticles for multiple anti-HIV microbicides
NASA Astrophysics Data System (ADS)
Giri, Namita; Oh, Byeongtaek; Lee, Chi H.
2016-05-01
This study is aimed to develop and evaluate an advanced intravaginal formulation for the delivery of multiple anti-HIV microbicides. Novel stimuli-sensitive nanoparticles (NPs) which protected the encapsulated drugs from being degraded in acidic pH conditions were made of Eudragit S-100® (ES100®), a pH-sensitive polymer. ES100® NPs were prepared using the quasi-emulsion solvent diffusion technique and loaded with two microbicides namely Tenofovir (TNF) and Etravirine (ETV). The effects of various fabrication parameters on the formulation properties were evaluated for the optimization of ES100® NPs. The morphology of the ES100® NPs was examined by scanning electron microscopy. The cytotoxicity of NPs containing microbicides individually or in a combination was assessed using cell viability and trans-epithelial electrical resistance (TEER) measurements. The cellular uptake rates of the model microbicides by human vaginal epithelial cells, VK2 E6/E7 cells, were evaluated using confocal microscopy and florescence-assisted cell sorting technique. ES100® NPs had a spherical shape, smooth surface, and uniform texture with a little aggregation. The average particle size for NPs loaded with TNF ranged from 125 to 230 nm, whereas those for ETV-loaded NPs ranged from 160 to 280 nm. ES100® NPs had zeta potential in the range of -5 to -10 mV. In-vitro release studies displayed the potential benefits of ES100® NPs in retaining and protecting the loaded microbicides at vaginal pH (acidic), but immediately releasing them as the pH changes to neutral or 7.4 (physiological pH). Cell viability studies demonstrated that ES100® NPs did not exert any cytotoxicity individually or in a combination of both microbicides. TEER measurements confirmed that ES100® NPs loaded with TNF and ETV did not cause any changes in the barrier integrity of VK2 E6/E7 cell monolayer. The cellular uptake study revealed that ES100® NPs were taken by vaginal epithelial cells through the endocytosis process and that the uptake rate of the model microbicides loaded in nanoparticles was greater than that in the solution. The ES100® NPs whose degradation rates are dependent on environmental pH would serve as an efficient platform for targeted delivery of multiple microbicides to protect women from sexually transmitted diseases including HIV-1 infection.
Podocalyxin Is a Glycoprotein Ligand of the Human Pluripotent Stem Cell-Specific Probe rBC2LCN
Tateno, Hiroaki; Matsushima, Asako; Hiemori, Keiko; Onuma, Yasuko; Ito, Yuzuru; Hasehira, Kayo; Nishimura, Ken; Ohtaka, Manami; Takayasu, Satoko; Nakanishi, Mahito; Ikehara, Yuzuru; Nakanishi, Mio; Ohnuma, Kiyoshi; Chan, Techuan; Toyoda, Masashi; Akutsu, Hidenori; Umezawa, Akihiro; Asashima, Makoto
2013-01-01
In comprehensive glycome analysis with a high-density lectin microarray, we have previously shown that the recombinant N-terminal domain of the lectin BC2L-C from Burkholderia cenocepacia (rBC2LCN) binds exclusively to undifferentiated human induced pluripotent stem (iPS) cells and embryonic stem (ES) cells but not to differentiated somatic cells. Here we demonstrate that podocalyxin, a heavily glycosylated type 1 transmembrane protein, is a glycoprotein ligand of rBC2LCN on human iPS cells and ES cells. When analyzed by DNA microarray, podocalyxin was found to be highly expressed in both iPS cells and ES cells. Western and lectin blotting revealed that rBC2LCN binds to podocalyxin with a high molecular weight of more than 240 kDa in undifferentiated iPS cells of six different origins and four ES cell lines, but no binding was observed in either differentiated mouse feeder cells or somatic cells. The specific binding of rBC2LCN to podocalyxin prepared from a large set of iPS cells (138 types) and ES cells (15 types) was also confirmed using a high-throughput antibody-overlay lectin microarray. Alkaline digestion greatly reduced the binding of rBC2LCN to podocalyxin, indicating that the major glycan ligands of rBC2LCN are presented on O-glycans. Furthermore, rBC2LCN was found to exhibit significant affinity to a branched O-glycan comprising an H type 3 structure (Ka, 2.5 × 104 M−1) prepared from human 201B7 iPS cells, indicating that H type 3 is a most probable potential pluripotency marker. We conclude that podocalyxin is a glycoprotein ligand of rBC2LCN on human iPS cells and ES cells. PMID:23526252
Qi, Zhiping; Xia, Peng; Pan, Su; Zheng, Shuang; Fu, Chuan; Chang, Yuxin; Ma, Yue; Wang, Jincheng; Yang, Xiaoyu
2018-01-01
Electrical stimulation (ES) and insulin-like growth factor-1 (IGF-1) are widely used in bone regeneration because of their osteogenic activity. However, the combined effects of ES and supplemental IGF-1 on the whole bone formation process remain unclear. In this study, fluorescence staining and an MTT assay were first utilized to observe the influence of ES and IGF-1 on MC3T3-E1 cell proliferation and adhesion in vitro. Subsequently, osteogenic differentiation was evaluated by the alkaline phosphatase activity (ALP) and the expression of osteogenic marker genes. In addition, cell mineralization was determined by alizarin red staining and scanning electron microscopy (SEM). We demonstrated that the MC3T3-E1 cell proliferation was significantly higher for treatments combining IGF-1 and ES than for treatments with IGF-1 alone. The combination of IGF-1 and ES increased the MC3T3-E1 cell ALP activity, the expression of osteogenesis-related genes and the calcium deposition with a clear dose-dependent effect. Our data show the synergistic effect of IGF-1 and ES in promoting the proliferation, differentiation and mineralization of MC3T3-E1 cells, which suggests that it would be more effective to combine the proper dose of IGF-1 with ES to promote local bone damage repair and regeneration.
Kiris, Erkan; Nuss, Jonathan E.; Stanford, Stephanie M.; Wanner, Laura M.; Cazares, Lisa; Maestre, Michael F.; Du, Hao T.; Gomba, Glenn Y.; Burnett, James C.; Gussio, Rick; Bottini, Nunzio; Panchal, Rekha G.; Kane, Christopher D.; Tessarollo, Lino; Bavari, Sina
2015-01-01
There is an urgent need to develop novel treatments to counter Botulinum neurotoxin (BoNT) poisoning. Currently, the majority of BoNT drug development efforts focus on directly inhibiting the proteolytic components of BoNT, i.e. light chains (LC). Although this is a rational approach, previous research has shown that LCs are extremely difficult drug targets and that inhibiting multi-serotype BoNTs with a single LC inhibitor may not be feasible. An alternative approach would target neuronal pathways involved in intoxication/recovery, rather than the LC itself. Phosphorylation-related mechanisms have been implicated in the intoxication pathway(s) of BoNTs. However, the effects of phosphatase inhibitors upon BoNT activity in the physiological target of BoNTs, i.e. motor neurons, have not been investigated. In this study, a small library of phosphatase inhibitors was screened for BoNT antagonism in the context of mouse embryonic stem cell-derived motor neurons (ES-MNs). Four inhibitors were found to function as BoNT/A antagonists. Subsequently, we confirmed that these inhibitors protect against BoNT/A in a dose-dependent manner in human ES-MNs. Additionally, these compounds provide protection when administered in post-intoxication scenario. Importantly, the inhibitors were also effective against BoNT serotypes B and E. To the best of our knowledge, this is the first study showing phosphatase inhibitors as broad-spectrum BoNT antagonists. PMID:26061731
Kiris, Erkan; Nuss, Jonathan E; Stanford, Stephanie M; Wanner, Laura M; Cazares, Lisa; Maestre, Michael F; Du, Hao T; Gomba, Glenn Y; Burnett, James C; Gussio, Rick; Bottini, Nunzio; Panchal, Rekha G; Kane, Christopher D; Tessarollo, Lino; Bavari, Sina
2015-01-01
There is an urgent need to develop novel treatments to counter Botulinum neurotoxin (BoNT) poisoning. Currently, the majority of BoNT drug development efforts focus on directly inhibiting the proteolytic components of BoNT, i.e. light chains (LC). Although this is a rational approach, previous research has shown that LCs are extremely difficult drug targets and that inhibiting multi-serotype BoNTs with a single LC inhibitor may not be feasible. An alternative approach would target neuronal pathways involved in intoxication/recovery, rather than the LC itself. Phosphorylation-related mechanisms have been implicated in the intoxication pathway(s) of BoNTs. However, the effects of phosphatase inhibitors upon BoNT activity in the physiological target of BoNTs, i.e. motor neurons, have not been investigated. In this study, a small library of phosphatase inhibitors was screened for BoNT antagonism in the context of mouse embryonic stem cell-derived motor neurons (ES-MNs). Four inhibitors were found to function as BoNT/A antagonists. Subsequently, we confirmed that these inhibitors protect against BoNT/A in a dose-dependent manner in human ES-MNs. Additionally, these compounds provide protection when administered in post-intoxication scenario. Importantly, the inhibitors were also effective against BoNT serotypes B and E. To the best of our knowledge, this is the first study showing phosphatase inhibitors as broad-spectrum BoNT antagonists.
NASA Technical Reports Server (NTRS)
Balcer-Kubiczek, Elizabeth K.; Harrison, George H.; Xu, Jing-Fan; Gutierrez, Peter L.
2002-01-01
The trefoil factors (TFFs) are pleiotropic factors involved in organization and homeostasis of the gastrointestinal tract, estrogen responsiveness, inflammatory disorders, and carcinogenesis. In an earlier study using cDNA array technologies to identify new genes expressed in irradiated cell survivors, we isolated a cDNA clone corresponding to the reported human TFF1 gene (E. K. Balcer-Kubiczek et al., Int. J. Radiat. Biol., 75: 529-541, 1999). To determine whether expression of other TFFs is altered by ionizing radiation, we quantified changes in expression of TFF3 as well as TFF1 in RNA samples obtained from irradiated and control human tumor breast, colon, and gastric tumor cells and examined expression kinetics up to 2 weeks after irradiation. X-ray-induced TFF1 and TFF3 expression profiles were compared with those induced by hydrogen peroxide (H2O2) or 17beta-estradiol (ES). The results revealed that TFF1 and TFF3 mRNA are coinduced by X-irradiation in a subset of the lines, but substantial heterogeneity in their responses was observed in cells derived from a single cell type. TFF1 and TFF3 transcriptional response to X-irradiation differed from that to H2O2 or ES in the timing of their induction as well as tissue-type dependence, i.e., their induction pattern after X-irradiation was late and sustained, whereas their induction by H2O2 or ES was early and transient. TFF1 mRNA, protein production in the cytoplasm, and secretion in the culture supernatant were coordinately regulated after X-irradiation. There was no requirement for TP53 in this induction. These results demonstrate the existence of a novel class of radiation-responsive genes that might be involved in bystander effects.
Huang, Ching-Ying; Ho, Ming-Ching; Lee, Jia-Jung; Hwang, Daw-Yang; Ko, Hui-Wen; Cheng, Yu-Che; Hsu, Yu-Hung; Lu, Huai-En; Chen, Hung-Chun; Hsieh, Patrick C H
2017-10-01
Autosomal dominant polycystic kidney disease is one of the most prevalent forms of inherited cystic kidney disease, and can be characterized by kidney cyst formation and enlargement. Here we report the generation of a Type 1 ADPKD disease iPS cell line, IBMS-iPSC-012-12, which retains the conserved deletion of PKD1, normal karyotype and exhibits the properties of pluripotent stem cells such as ES-like morphology, expression of pluripotent markers and capacity to differentiate into all three germ layers. Our results show that we have successfully generated a patient-specific iPS cell line with a mutation in PKD1 for study of renal disease pathophysiology. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Matveeva, Natalia M; Fishman, Veniamin S; Zakharova, Irina S; Shevchenko, Alexander I; Pristyazhnyuk, Inna E; Menzorov, Aleksei G; Serov, Oleg L
2017-12-22
For the first time, two types of hybrid cells with embryonic stem (ES) cell-like and fibroblast-like phenotypes were produced through the fusion of mouse ES cells with fibroblasts. Transcriptome analysis of 2,848 genes differentially expressed in the parental cells demonstrated that 34-43% of these genes are expressed in hybrid cells, consistent with their phenotypes; 25-29% of these genes display intermediate levels of expression, and 12-16% of these genes maintained expression at the parental cell level, inconsistent with the phenotype of the hybrid cell. Approximately 20% of the analyzed genes displayed unexpected expression patterns that differ from both parents. An unusual phenomenon was observed, namely, the illegitimate activation of Xist expression and the inactivation of one of two X-chromosomes in the near-tetraploid fibroblast-like hybrid cells, whereas both Xs were active before and after in vitro differentiation of the ES cell-like hybrid cells. These results and previous data obtained on heterokaryons suggest that the appearance of hybrid cells with a fibroblast-like phenotype reflects the reprogramming, rather than the induced differentiation, of the ES cell genome under the influence of a somatic partner.
2010-01-01
Background Identifying developmental processes regulated by Notch1 can be addressed in part by characterizing mice with graded levels of Notch1 signaling strength. Here we examine development in embryos expressing various combinations of Notch1 mutant alleles. Mice homozygous for the hypomorphic Notch112f allele, which removes the single O-fucose glycan in epidermal growth factor-like repeat 12 (EGF12) of the Notch1 ligand binding domain (lbd), exhibit reduced growth after weaning and defective T cell development. Mice homozygous for the inactive Notch1lbd allele express Notch1 missing an ~20 kDa internal segment including the canonical Notch1 ligand binding domain, and die at embryonic day ~E9.5. The embryonic and vascular phenotypes of compound heterozygous Notch112f/lbd embryos were compared with Notch1+/12f, Notch112f/12f, and Notch1lbd/lbd embryos. Embryonic stem (ES) cells derived from these embryos were also examined in Notch signaling assays. While Notch1 signaling was stronger in Notch112f/lbd compound heterozygotes compared to Notch1lbd/lbd embryos and ES cells, Notch1 signaling was even stronger in embryos carrying Notch112f and a null Notch1 allele. Results Mouse embryos expressing the hypomorphic Notch112f allele, in combination with the inactive Notch1lbd allele which lacks the Notch1 ligand binding domain, died at ~E11.5-12.5. Notch112f/lbd ES cells signaled less well than Notch112f/12f ES cells but more strongly than Notch1lbd/lbd ES cells. However, vascular defects in Notch112f/lbd yolk sac were severe and similar to Notch1lbd/lbd yolk sac. By contrast, vascular disorganization was milder in Notch112f/lbd compared to Notch1lbd/lbd embryos. The expression of Notch1 target genes was low in Notch112f/lbd yolk sac and embryo head, whereas Vegf and Vegfr2 transcripts were increased. The severity of the compound heterozygous Notch112f/lbd yolk sac phenotype suggested that the allelic products may functionally interact. By contrast, compound heterozygotes with Notch112f in combination with a Notch1 null allele (Notch1tm1Con) were capable of surviving to birth. Conclusions Notch1 signaling in Notch112f/lbd compound heterozygous embryos is more defective than in compound heterozygotes expressing a hypomorphic Notch112f allele and a Notch1 null allele. The data suggest that the gene products Notch1lbd and Notch112f interact to reduce the activity of Notch112f. PMID:20346184
Ukaji, Tamami; Lin, Yinzhi; Banno, Kouji; Okada, Shoshiro; Umezawa, Kazuo
2015-01-01
Previously we isolated migracin A from a Streptomyces culture filtrate as an inhibitor of cancer cell migration. In the present research, we found that migracin A inhibited migration and invasion of ovarian clear cell carcinoma ES-2 cells. In the course of our mechanistic study, migracin A was shown to enhance vasohibin-1 expression in an angiogenesis array. We also confirmed that it increased the mRNA expression of this protein. Moreover, overexpression of vasohibin-1 lowered the migration but not the invasion of ES-2 cells. Then, we looked for another target protein employing a motility array, and found that migracin A lowered the IGF-1 expression. Knockdown of IGF-1 by siRNA decreased the migration and invasion of ES-2 cells. Migracin A also decreased Akt phosphorylation involved in the downstream signaling. Crosstalk analysis indicated that overexpression of vasohibin-1 decreased the IGF-1 expression. On the other hand, it showed no direct anticancer activity in terms of the ES-2 growth in agar. Migracin A inhibited the migration and IGF-1 expression in not only ES-2 but also another ovarian clear cell carcinoma JHOC-5 cells. In addition, it also inhibited capillary tube formation of human umbilical vein endothelial cells. Since its cytotoxicity is very low, migracin A may be a candidate for an anti-metastasis agent not exhibiting prominent toxicity.
Melidoni, Anna N.; Dyson, Michael R.; Wormald, Sam; McCafferty, John
2013-01-01
Antibodies that modulate receptor function have great untapped potential in the control of stem cell differentiation. In contrast to many natural ligands, antibodies are stable, exquisitely specific, and are unaffected by the regulatory mechanisms that act on natural ligands. Here we describe an innovative system for identifying such antibodies by introducing and expressing antibody gene populations in ES cells. Following induced antibody expression and secretion, changes in differentiation outcomes of individual antibody-expressing ES clones are monitored using lineage-specific gene expression to identify clones that encode and express signal-modifying antibodies. This in-cell expression and reporting system was exemplified by generating blocking antibodies to FGF4 and its receptor FGFR1β, identified through delayed onset of ES cell differentiation. Functionality of the selected antibodies was confirmed by addition of exogenous antibodies to three different ES reporter cell lines, where retained expression of pluripotency markers Oct4, Nanog, and Rex1 was observed. This work demonstrates the potential for discovery and utility of functional antibodies in stem cell differentiation. This work is also unique in constituting an example of ES cells carrying an inducible antibody that causes a functional protein “knock-down” and allows temporal control of stable signaling components at the protein level. PMID:24082130
Zhou, Jin; Zhang, Ye; Lin, Qiuxia; Liu, Zhiqiang; Wang, Haibin; Duan, Cuimi; Wang, Yanmeng; Hao, Tong; Wu, Kuiwu; Wang, Changyong
2010-07-01
Embryonic stem (ES) cells have the potential to develop into any type of tissue and are considered as a promising source of seeding cells for tissue engineering and transplantation therapy. The main catalyst for ES cells differentiation is the growth into embryoid bodies (EBs), which are utilized widely as the trigger of in vitro differentiation. In this study, a novel method for generating EBs from mouse ES cells through culture in collagen/Matrigel scaffolds was successfully established. When single ES cells were seeded in three dimensional collagen/Matrigel scaffolds, they grew into aggregates gradually and formed simple EBs with circular structures. After 7 days' culture, they formed into cystic EBs that would eventually differentiate into the three embryonic germ layers. Evaluation of the EBs in terms of morphology and potential to differentiate indicated that they were typical in structure and could generate various cell types; they were also able to form into tissue-like structures. Moreover, with introduction of ascorbic acid, ES cells differentiated into cardiomyocytes efficiently and started contracting synchronously at day 19. The results demonstrated that collagen/Matrigel scaffolds supported EBs formation and their subsequent differentiation in a single three dimensional environment. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
Wassenaar, Peter A; Eleswarpu, Chethanya N; Schroeder, Samuel A; Mo, Xiaokui; Raterman, Brian D; White, Richard D; Kolipaka, Arunark
2015-01-01
Purpose To assess reproducibility in measuring left ventricular (LV) myocardial stiffness in volunteers throughout the cardiac cycle using magnetic resonance elastography (MRE) and to determine its correlation with age. Methods Cardiac MRE (CMRE) was performed on 29 normal volunteers, with ages ranging from 21 to 73 years. For assessing reproducibility of CMRE-derived stiffness measurements, scans were repeated per volunteer. Wave images were acquired throughout the LV myocardium, and were analyzed to obtain mean stiffness during the cardiac cycle. CMRE-derived stiffness values were correlated to age. Results Concordance correlation coefficient revealed good inter-scan agreement with rc of 0.77, with p-value<0.0001. Significantly higher myocardial stiffness was observed during end-systole (ES) compared to end-diastole (ED) across all subjects. Additionally, increased deviation between ES and ED stiffness was observed with increased age. Conclusion CMRE-derived stiffness is reproducible, with myocardial stiffness changing cyclically across the cardiac cycle. Stiffness is significantly higher during ES compared to ED. With age, ES myocardial stiffness increases more than ED, giving rise to an increased deviation between the two. PMID:26010456
Guyochin, Aurélia; Maenner, Sylvain; Chu, Erin Tsi-Jia; Hentati, Asma; Attia, Mikael; Avner, Philip; Clerc, Philippe
2014-01-01
Random X-chromosome inactivation ensures dosage compensation in mammals through the transcriptional silencing of one of the two X chromosomes present in each female cell. Silencing is initiated in the differentiating epiblast of the mouse female embryos through coating of the nascent inactive X chromosome by the non-coding RNA Xist, which subsequently recruits the Polycomb Complex PRC2 leading to histone H3-K27 methylation. Here we examined in mouse ES cells the early steps of the transition from naive ES cells towards epiblast stem cells as a model for inducing X chromosome inactivation in vitro. We show that these conditions efficiently induce random XCI. Importantly, in a transient phase of this differentiation pathway, both X chromosomes are coated with Xist RNA in up to 15% of the XX cells. In an attempt to determine the dynamics of this process, we designed a strategy aimed at visualizing the nascent inactive X-chromosome in live cells. We generated transgenic female XX ES cells expressing the PRC2 component Ezh2 fused to the fluorescent protein Venus. The fluorescent fusion protein was expressed at sub-physiological levels and located in nuclei of ES cells. Upon differentiation of ES cell towards epiblast stem cell fate, Venus-fluorescent territories appearing in interphase nuclei were identified as nascent inactive X chromosomes by their association with Xist RNA. Imaging of Ezh2-Venus for up to 24 hours during the differentiation process showed survival of some cells with two fluorescent domains and a surprising dynamics of the fluorescent territories across cell division and in the course of the differentiation process. Our data reveal a strategy for visualizing the nascent inactive X chromosome and suggests the possibility for a large plasticity of the nascent inactive X chromosome. PMID:25546018
Kakitani, Makoto; Oshima, Takeshi; Horikoshi, Kaori; Yoshitome, Tetsuo; Ueda, Akiko; Kajikawa, Miwa; Iba, Yumi; Ozone, Yoshinao; Ijima, Yuki; Yoshino, Tohko; Itoh, Mikiko; Seki, Sachiko; Aoki, Ayako; Ishihara, Toshie; Shionoya, Michiyo; Makino, Utako; Kitada, Rina; Ohguma, Atsuko; Ohta, Takami; Yoshida, Yoshimasa; Kudoh, Hiroe; Hanaoka, Kazunori; Sibuya, Kazunori; Ishida, Isao; Kakeda, Minoru; Yagi, Mikio; Yoneya, Takashi; Tomizuka, Kazuma
2005-01-01
A major challenge of the post-genomic era is the functional characterization of anonymous open reading frames (ORFs) identified by the Human Genome Project. In this context, there is a strong requirement for the development of technologies that enhance our ability to analyze gene functions at the level of the whole organism. Here, we describe a rapid and efficient procedure to generate transgenic chimaeric mice that continuously secrete a foreign protein into the systemic circulation. The transgene units were inserted into the genomic site adjacent to the endogenous immunoglobulin (Ig) κ locus by homologous recombination, using a modified mouse embryonic stem (ES) cell line that exhibits a high frequency of homologous recombination at the Igκ region. The resultant ES clones were injected into embryos derived from a B-cell-deficient host strain, thus producing chimaerism-independent, B-cell-specific transgene expression. This feature of the system eliminates the time-consuming breeding typically implemented in standard transgenic strategies and allows for evaluating the effect of ectopic transgene expression directly in the resulting chimaeric mice. To demonstrate the utility of this system we showed high-level protein expression in the sera and severe phenotypes in human EPO (hEPO) and murine thrombopoietin (mTPO) transgenic chimaeras. PMID:15914664
Requirement for erythroblast-macrophage protein (Emp) in definitive erythropoiesis.
Soni, Shivani; Bala, Shashi; Hanspal, Manjit
2008-01-01
Emp, erythroblast-macrophage protein was initially identified as a mediator of erythroblast-macrophage interactions during erythroid differentiation. More recent studies have shown that targeted disruption of Emp leads to abnormal erythropoiesis in the fetal liver, and fetal demise. To further address the activity of Emp in the hematopoietic lineage in adult bone marrow, we conducted fetal liver HSC reconstitution assay. Emp null fetal liver cells were transplanted into lethally irradiated wild-type sibling mice, and assessed the erythropoietic activity. We found that Emp null cells rescued lethally irradiated mice with efficiency comparable to that of wild-type cells. However, the recipients of Emp null cells showed abnormal erythropoiesis as indicated by the presence of persistent anemia, extensive extramedullary erythropoiesis, and increased apoptosis of erythroid precursors. Extramedullary erythropoiesis suggests perturbed interactions between the Emp-deficient hematopoietic cells and the wild-type niche. Furthermore, in spleen colony-forming unit assays, proliferation rates of the Emp null cells were greater than those of the wild-type cells. Similarly, in vitro burst-forming unit-erythroid and colony-forming unit-erythroid assays showed increased erythroid colony numbers from Emp null livers. Morphologic examination showed that Emp null CFU-E-derived erythroblasts were immature compared to those derived from wild-type CFU-Es, suggesting that loss of Emp function in erythroid cells results in impaired proliferation and terminal differentiation. These results demonstrate that Emp plays a cell intrinsic role in the erythroid lineage.
NASA Technical Reports Server (NTRS)
Gao, W.; Wiederhold, M. L.; Hejl, R.
1998-01-01
The formation of otoconia in the endolymphatic sac (ES) of the larval newt, Cynops pyrrhogaster, has been studied by light and transmission electron microscopy. Some of the epithelial cells of the ES contain an abundance of swollen vesicles, Golgi complexes, rough endoplasmic reticula and ribosomes at the late larval stages 50 and 51, approximately 26-30 days after eggs are laid. Five days later, at stage 52, crystals are present in the vacuoles between the epithelial cells. Serial sections indicate that these vacuoles actually form small canals which lie in the wall and join the lumen of the ES. Reconstruction of the ES shows that several canals are contained in the ES wall. At stage 56, about 72 days after eggs are laid, a large number of otoconia are present in the ES lumen, while the otoconia disappear from the canals. It appears that the otoconia are first produced in the canals and then released to the lumen. Some epithelial cells of the ES are thought to expel the organic and inorganic material to the canals to form the otoconia in situ. The process of formation of the otoconia in the ES is discussed.
Induction of pluripotent stem cells from fibroblast cultures.
Takahashi, Kazutoshi; Okita, Keisuke; Nakagawa, Masato; Yamanaka, Shinya
2007-01-01
Clinical application of embryonic stem (ES) cells faces difficulties regarding use of embryos, as well as tissue rejection after implantation. One way to circumvent these issues is to generate pluripotent stem cells directly from somatic cells. Somatic cells can be reprogrammed to an embryonic-like state by the injection of a nucleus into an enucleated oocyte or by fusion with ES cells. However, little is known about the mechanisms underlying these processes. We have recently shown that the combination of four transcription factors can generate ES-like pluripotent stem cells directly from mouse fibroblast cultures. The cells, named induced pluripotent stem (iPS) cells, can be differentiated into three germ layers and committed to chimeric mice. Here we describe detailed methods and tips for the generation of iPS cells.
Björninen, Miina; Gilmore, Kerry; Pelto, Jani; Seppänen-Kaijansinkko, Riitta; Kellomäki, Minna; Miettinen, Susanna; Wallace, Gordon; Grijpma, Dirk; Haimi, Suvi
2017-04-01
We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a reliable, repeatable, and cost-efficient way in a 3D environment. Long pulse (1 ms) or short pulse (0.25 ms) biphasic electric current at a frequency of 10 Hz was applied to ASCs to study the effects of ES on ASC viability and differentiation towards SMCs on the PPy-coated scaffolds. PPy-coated scaffolds promoted proliferation and induced stronger calponin, myosin heavy chain (MHC) and smooth muscle actin (SMA) expression in ASCs compared to uncoated scaffolds. ES with 1 ms pulse width increased the number of viable cells by day 7 compared to controls and remained at similar levels to controls by day 14, whereas shorter pulses significantly decreased viability compared to the other groups. Both ES protocols supported smooth muscle expression markers. Our results indicate that electrical stimulation on PPy-coated scaffolds applied through the novel 3D ES device is a valid approach for vascular smooth muscle tissue engineering.
Stochastic Cell Fate Progression in Embryonic Stem Cells
NASA Astrophysics Data System (ADS)
Zou, Ling-Nan; Doyle, Adele; Jang, Sumin; Ramanathan, Sharad
2013-03-01
Studies on the directed differentiation of embryonic stem (ES) cells suggest that some early developmental decisions may be stochastic in nature. To identify the sources of this stochasticity, we analyzed the heterogeneous expression of key transcription factors in single ES cells as they adopt distinct germ layer fates. We find that under sufficiently stringent signaling conditions, the choice of lineage is unambiguous. ES cells flow into differentiated fates via diverging paths, defined by sequences of transitional states that exhibit characteristic co-expression of multiple transcription factors. These transitional states have distinct responses to morphogenic stimuli; by sequential exposure to multiple signaling conditions, ES cells are steered towards specific fates. However, the rate at which cells travel down a developmental path is stochastic: cells exposed to the same signaling condition for the same amount of time can populate different states along the same path. The heterogeneity of cell states seen in our experiments therefore does not reflect the stochastic selection of germ layer fates, but the stochastic rate of progression along a chosen developmental path. Supported in part by the Jane Coffin Childs Fund
Sun, H; Lesche, R; Li, D M; Liliental, J; Zhang, H; Gao, J; Gavrilova, N; Mueller, B; Liu, X; Wu, H
1999-05-25
To investigate the molecular basis of PTEN-mediated tumor suppression, we introduced a null mutation into the mouse Pten gene by homologous recombination in embryonic stem (ES) cells. Pten-/- ES cells exhibited an increased growth rate and proliferated even in the absence of serum. ES cells lacking PTEN function also displayed advanced entry into S phase. This accelerated G1/S transition was accompanied by down-regulation of p27(KIP1), a major inhibitor for G1 cyclin-dependent kinases. Inactivation of PTEN in ES cells and in embryonic fibroblasts resulted in elevated levels of phosphatidylinositol 3,4,5,-trisphosphate, a product of phosphatidylinositol 3 kinase. Consequently, PTEN deficiency led to dosage-dependent increases in phosphorylation and activation of Akt/protein kinase B, a well-characterized target of the phosphatidylinositol 3 kinase signaling pathway. Akt activation increased Bad phosphorylation and promoted Pten-/- cell survival. Our studies suggest that PTEN regulates the phosphatidylinositol 3,4, 5,-trisphosphate and Akt signaling pathway and consequently modulates two critical cellular processes: cell cycle progression and cell survival.
Defining an optimal surface chemistry for pluripotent stem cell culture in 2D and 3D
NASA Astrophysics Data System (ADS)
Zonca, Michael R., Jr.
Surface chemistry is critical for growing pluripotent stem cells in an undifferentiated state. There is great potential to engineer the surface chemistry at the nanoscale level to regulate stem cell adhesion. However, the challenge is to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a high-throughput polymerization and screening platform, a chemically defined, synthetic polymer grafted coating that supports strong attachment and high expansion capacity of pluripotent stem cells has been discovered using mouse embryonic stem (ES) cells as a model system. This optimal substrate, N-[3-(Dimethylamino)propyl] methacrylamide (DMAPMA) that is grafted on 2D synthetic poly(ether sulfone) (PES) membrane, sustains the self-renewal of ES cells (up to 7 passages). DMAPMA supports cell attachment of ES cells through integrin beta1 in a RGD-independent manner and is similar to another recently reported polymer surface. Next, DMAPMA has been able to be transferred to 3D by grafting to synthetic, polymeric, PES fibrous matrices through both photo-induced and plasma-induced polymerization. These 3D modified fibers exhibited higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D PES membranes. Our results indicated that desirable surfaces in 2D can be scaled to 3D and that both surface chemistry and structural dimension strongly influence the growth and differentiation of pluripotent stem cells. Lastly, the feasibility of incorporating DMAPMA into a widely used natural polymer, alginate, has been tested. Novel adhesive alginate hydrogels have been successfully synthesized by either direct polymerization of DMAPMA and methacrylic acid blended with alginate, or photo-induced DMAPMA polymerization on alginate nanofibrous hydrogels. In particular, DMAPMA-coated alginate hydrogels support strong ES cell attachment, exhibiting a concentration dependency of DMAPMA. This research provides a new avenue for stem cell culture and maintenance using an optimal organic-based chemistry.
An mDia2/ROCK Signaling Axis Regulates Invasive Egress from Epithelial Ovarian Cancer Spheroids
Pettee, Krista M.; Dvorak, Kaitlyn M.; Nestor-Kalinoski, Andrea L.; Eisenmann, Kathryn M.
2014-01-01
Multi-cellular spheroids are enriched in ascites of epithelial ovarian cancer (OvCa) patients. They represent an invasive and chemoresistant cellular population fundamental to metastatic dissemination. The molecular mechanisms triggering single cell invasive egress from spheroids remain enigmatic. mDia formins are Rho GTPase effectors that are key regulators of F-actin cytoskeletal dynamics. We hypothesized that mDia2-driven F-actin dynamics promote single cell invasive transitions in clinically relevant three-dimensional (3D) OvCa spheroids. The current study is a dissection of the contribution of the F-actin assembly factor mDia2 formin in invasive transitions and using a clinically relevant ovarian cancer spheroid model. We show that RhoA-directed mDia2 activity is required for tight spheroid organization, and enrichment of mDia2 in the invasive cellular protrusions of collagen-embedded OVCA429 spheroids. Depleting mDia2 in ES-2 spheroids enhanced invasive dissemination of single amoeboid-shaped cells. This contrasts with spheroids treated with control siRNA, where a mesenchymal invasion program predominated. Inhibition of another RhoA effector, ROCK, had no impact on ES-2 spheroid formation but dramatically inhibited spheroid invasion through induction of a highly elongated morphology. Concurrent inhibition of ROCK and mDia2 blocked single cell invasion from ES-2 spheroids more effectively than inhibition of either protein alone, indicating that invasive egress of amoeboid cells from mDia2-depleted spheroids is ROCK-dependent. Our findings indicate that multiple GTPase effectors must be suppressed in order to fully block invasive egress from ovarian cancer spheroids. Furthermore, tightly regulated interplay between ROCK and mDia2 signaling pathways dictates the invasive capacities and the type of invasion program utilized by motile spheroid-derived ovarian cancer cells. As loss of the gene encoding mDia2, DRF3, has been linked to cancer progression and metastasis, our results set the stage for understanding molecular mechanisms involved in mDia2-dependent egress of invasive cells from primary epithelial tumors. PMID:24587343
An mDia2/ROCK signaling axis regulates invasive egress from epithelial ovarian cancer spheroids.
Pettee, Krista M; Dvorak, Kaitlyn M; Nestor-Kalinoski, Andrea L; Eisenmann, Kathryn M
2014-01-01
Multi-cellular spheroids are enriched in ascites of epithelial ovarian cancer (OvCa) patients. They represent an invasive and chemoresistant cellular population fundamental to metastatic dissemination. The molecular mechanisms triggering single cell invasive egress from spheroids remain enigmatic. mDia formins are Rho GTPase effectors that are key regulators of F-actin cytoskeletal dynamics. We hypothesized that mDia2-driven F-actin dynamics promote single cell invasive transitions in clinically relevant three-dimensional (3D) OvCa spheroids. The current study is a dissection of the contribution of the F-actin assembly factor mDia2 formin in invasive transitions and using a clinically relevant ovarian cancer spheroid model. We show that RhoA-directed mDia2 activity is required for tight spheroid organization, and enrichment of mDia2 in the invasive cellular protrusions of collagen-embedded OVCA429 spheroids. Depleting mDia2 in ES-2 spheroids enhanced invasive dissemination of single amoeboid-shaped cells. This contrasts with spheroids treated with control siRNA, where a mesenchymal invasion program predominated. Inhibition of another RhoA effector, ROCK, had no impact on ES-2 spheroid formation but dramatically inhibited spheroid invasion through induction of a highly elongated morphology. Concurrent inhibition of ROCK and mDia2 blocked single cell invasion from ES-2 spheroids more effectively than inhibition of either protein alone, indicating that invasive egress of amoeboid cells from mDia2-depleted spheroids is ROCK-dependent. Our findings indicate that multiple GTPase effectors must be suppressed in order to fully block invasive egress from ovarian cancer spheroids. Furthermore, tightly regulated interplay between ROCK and mDia2 signaling pathways dictates the invasive capacities and the type of invasion program utilized by motile spheroid-derived ovarian cancer cells. As loss of the gene encoding mDia2, DRF3, has been linked to cancer progression and metastasis, our results set the stage for understanding molecular mechanisms involved in mDia2-dependent egress of invasive cells from primary epithelial tumors.
Engineered 3D vascular and neuronal networks in a microfluidic platform.
Osaki, Tatsuya; Sivathanu, Vivek; Kamm, Roger D
2018-03-26
Neurovascular coupling plays a key role in the pathogenesis of neurodegenerative disorders including motor neuron disease (MND). In vitro models provide an opportunity to understand the pathogenesis of MND, and offer the potential for drug screening. Here, we describe a new 3D microvascular and neuronal network model in a microfluidic platform to investigate interactions between these two systems. Both 3D networks were established by co-culturing human embryonic stem (ES)-derived MN spheroids and endothelial cells (ECs) in microfluidic devices. Co-culture with ECs improves neurite elongation and neuronal connectivity as measured by Ca 2+ oscillation. This improvement was regulated not only by paracrine signals such as brain-derived neurotrophic factor secreted by ECs but also through direct cell-cell interactions via the delta-notch pathway, promoting neuron differentiation and neuroprotection. Bi-directional signaling was observed in that the neural networks also affected vascular network formation under perfusion culture. This in vitro model could enable investigations of neuro-vascular coupling, essential to understanding the pathogenesis of neurodegenerative diseases including MNDs such as amyotrophic lateral sclerosis.
Lysine-specific demethylase 2A (KDM2A) normalizes human embryonic stem cell derived keratinocytes
Iuchi, Shiro; Green, Howard
2012-01-01
Studies on human lysine-specific demethylase 2A (KDM2A) by others have recently begun. To date, the demethylase activity has been known to reduce expression of genes and eventually inhibit proliferation of cells. However, while attempting to improve proliferation of hES-cell–derived Nod keratinocytes, which grow poorly and have a short life span, we found that high expression of the KDM2A gene improves the poor proliferation of the cells. Of the four isomer cDNAs that we prepared from alternatively spliced KDM2A transcripts, only one stimulates the proliferation. This (KDM2A-N782) encodes the 782AA protein containing the JmjC, CXXC, and Ring domains, but not the F-box and AMN1 domains, unlike KDM2A, which has been studied by other groups. Our results not only show that differently spliced transcripts from a gene result in totally opposite outcomes, but also present critical evidence of the complicated activities of KDM2A, which contains all of the five domains. PMID:22635273
NASA Astrophysics Data System (ADS)
Yamauchi, Toyohiko; Fukami, Tadashi; Iwai, Hidenao; Yamashita, Yutaka
2012-03-01
Embryonal carcinoma (EC) cells, which are cell lines derived from teratocarcinomas, have characteristics in common with stem cells and differentiate into many kinds of functional cells. Similar to embryonic stem (ES) cells, undifferentiated EC cells form multi-layered spheroids. In order to visualize the three-dimensional structure of multilayered EC cells without labeling, we employed full-field interference microscopy with the aid of a low-coherence quantitative phase microscope, which is a reflection-type interference microscope employing the digital holographic technique with a low-coherent light source. Owing to the low-coherency of the light-source (halogen lamp), only the light reflected from reflective surface at a specific sectioning height generates an interference image on the CCD camera. P19CL6 EC cells, derived from mouse teratocarcinomas, formed spheroids that are about 50 to 200 micrometers in diameter. Since the height of each cell is around 10 micrometers, it is assumed that each spheroid has 5 to 20 cell layers. The P19CL6 spheroids were imaged in an upright configuration and the horizontally sectioned reflection images of the sample were obtained by sequentially and vertically scanning the zero-path-length height. Our results show the threedimensional structure of the spheroids, in which plasma and nuclear membranes were distinguishably imaged. The results imply that our technique is further capable of imaging induced pluripotent stem (iPS) cells for the assessment of cell properties including their pluripotency.
The cytotoxic effect of Elephantopus scaber Linn extract against breast cancer (T47D) cells
NASA Astrophysics Data System (ADS)
Sulistyani, N.; Nurkhasanah
2017-11-01
Breast cancer is one of the main cause of death. Elephantopus scaber Linn (ES) which has been used as a traditional medicine contains an antitumor compounds. This study aimed to explore the active fraction from ethanolic extract of ES as anticancer and to determine its inhibition effect on the cell proliferation cycle of breast cancer (T47D) cells. The ES leaf was macerated with ethanol and then evaporated to get the concentrated extract. The extract was fractionated using petroleum ether, chloroform, and methanol respectively. The cytotoxic activity of each fraction was carried out with MTT method, and the inhibition of cell cycle test were observed by flowcytometry method. The result showed that ES and the fractions have cytotoxic activity against T47D cell lines with IC50 values of extract, petroleum ether, chloroform, and methanol fractions were 58.36±2.38, 132.17±9.69, 7.08±2.11, and 572.89±69.23 µg/mL. The inhibition effect of ethanol extract on the lifecycle of cells was occured in sub G1 phase. There was no prolonging of G1, S, G2/M and polyploidy phase of T47D cell lines. The chloroform fraction of ES is the most cytotoxic fraction against T47D cells without prolonging the cell lifecycle.
A biodegradable, immunoprotective, dual nanoporous capsule for cell-based therapies.
Zhang, Xulang; He, Hongyan; Yen, Chi; Ho, Wiston; Lee, L James
2008-11-01
To demonstrate the transplantation of drug-secreting cells with immunoprotection, a biodegradable delivery device combining two nanoporous capsules is developed using secretory alkaline phosphatase gene (SEAP) transfected mouse embryonic stem (mES) cells as a model system. The outer capsule is a poly (ethylene glycol) (PEG)-coated poly (epsilon-caprolactone) (PCL) chamber covered with a PEG grafted PCL nanoporous membrane made by phase inversion technique. SEAP gene transfected mES cells encapsulated in alginate-poly-L-lysine (AP) microcapsules are placed in the PCL capsule. Both nanoporous capsules showed good immunoprotection in the IgG solution. In microcapsules, mES cells could form a spheroid embryonic body (EB) and grow close to the microcapsule size. The secreted SEAP from encapsulated mES cells increased gradually to a maximum value before reaching a steady level, following the cell growth pattern in the microcapsule. Without microcapsules, mES cells only formed a monolayer in the large PCL capsule. The secreted SEAP release was very low. The integrated device showed a similar cell growth pattern to that in microcapsules alone, while the SEAP release rate could be regulated by the pore size of the large capsule. This integrated device can achieve multi-functionalities for cell-based therapy, i.e. a 3-D microenvironment provided by microcapsules for cell growth, superior immunoprotection and controllable release performance provided by the two nanoporous membranes, and good fibrosis prevention by PEG surface modification of the large capsule.
An RNA tool kit to study the status of mouse ES cells: sex determination and stemness.
Jay, F; Ciaudo, C
2013-09-01
Mouse embryonic stem cells (mESCs) are pluripotent stem cells derived from the inner cell mass of the blastocyst. They can be maintained under controlled culture conditions in a pluripotent state, or be induced to differentiate into all derivatives of the three primary germ layers: ectoderm, endoderm and mesoderm. Several studies have characterised the coding and non-coding (nc) RNA repertoires of mESCs, uncovering highly dynamic variations during the process of differentiation, but also qualitative differences pertaining to sex. For example, up-regulation of the long non-coding RNA Xist on the X chromosome induces gene silencing and X inactivation exclusively during female mESC differentiation. In contrast, specific small RNAs have been shown to be up-regulated during male mESC differentiation. Here, we illustrate how a small set of key coding and ncRNAs can be exploited as dynamic and sensitive markers of the stemness and/or the differentiation status of male or female mESC lines. We describe adapted techniques for the extended characterization and analysis of mESCs from as little material as that cultured in a single 75cm(2) flask. Copyright © 2013 Elsevier Inc. All rights reserved.
Self-organization of neural patterns and structures in 3D culture of stem cells
NASA Astrophysics Data System (ADS)
Sasai, Yoshiki
2013-05-01
Over the last several years, much progress has been made for in vitro culture of mouse and human ES cells. Our laboratory focuses on the molecular and cellular mechanisms of neural differentiation from pluripotent cells. Pluripotent cells first become committed to the ectodermal fate and subsequently differentiate into uncommitted neuroectodermal cells. Both previous mammalian and amphibian studies on pluripotent cells have indicated that the neural fate is a sort of the basal direction of the differentiation of these cells while mesoendodermal differentiation requires extrinsic inductive signals. ES cells differentiate into neuroectodermal cells with a rostral-most character (telencephalon and hypothalamus) when they are cultured in the absence of strong patterning signals. In this talk, I first discuss this issue by referring to our recent data on the mechanism of spontaneous neural differentiation in serum-free culture of mouse ES cells. Then, I will talk about self-organization phenomena observed in 3D culture of ES cells, which lead to tissue-autonomous formation of regional structures such as layered cortical tissues. I also discuss our new attempt to monitor these in vitro morphogenetic processes by live imaging, in particular, self-organizing morphogenesis of the optic cup in three-dimensional cultures.
Matin, Maryam M; Walsh, James R; Gokhale, Paul J; Draper, Jonathan S; Bahrami, Ahmad R; Morton, Ian; Moore, Harry D; Andrews, Peter W
2004-01-01
We have used RNA interference (RNAi) to downregulate beta2-microglobulin and Oct4 in human embryonal carcinoma (hEC) cells and embryonic stem (hES) cells, demonstrating that RNAi is an effective tool for regulating specific gene activity in these human stem cells. The knockdown of Oct4 but not beta2-microglobulin expression in both EC and ES cells resulted in their differentiation, as indicated by a marked change in morphology, growth rate, and surface antigen phenotype, with respect to SSEA1, SSEA3, and TRA-1-60 expression. Expression of hCG and Gcm1 was also induced following knockdown of Oct4 expression, in both 2102Ep hEC cells and in H7 and H14 hES cells, consistent with the conclusion that, as in the mouse, Oct4 is required to maintain the undifferentiated stem cell state, and that differentiation to trophectoderm occurs in its absence. NTERA2 hEC cells also differentiated, but not to trophectoderm, suggesting their equivalence to a later stage of embryogenesis than other hEC and hES cells.
Bustamante, Mario; Fernández-Verdejo, Rodrigo; Jaimovich, Enrique; Buvinic, Sonja
2014-04-15
Interleukin-6 (IL-6) is an important myokine that is highly expressed in skeletal muscle cells upon exercise. We assessed IL-6 expression in response to electrical stimulation (ES) or extracellular ATP as a known mediator of the excitation-transcription mechanism in skeletal muscle. We examined whether the canonical signaling cascade downstream of IL-6 (IL-6/JAK2/STAT3) also responds to muscle cell excitation, concluding that IL-6 influences its own expression through a positive loop. Either ES or exogenous ATP (100 μM) increased both IL-6 expression and p-STAT3 levels in rat myotubes, a process inhibited by 100 μM suramin and 2 U/ml apyrase. ATP also evoked IL-6 expression in both isolated skeletal fibers and extracts derived from whole FDB muscles. ATP increased IL-6 release up to 10-fold. STAT3 activation evoked by ATP was abolished by the JAK2 inhibitor HBC. Blockade of secreted IL-6 with a neutralizing antibody or preincubation with the STAT3 inhibitor VIII reduced STAT3 activation evoked by extracellular ATP by 70%. Inhibitor VIII also reduced by 70% IL-6 expression evoked by ATP, suggesting a positive IL-6 loop. In addition, ATP increased up to 60% the protein levels of SOCS3, a negative regulator of the IL-6 signaling pathway. On the other hand, intracellular calcium chelation or blockade of IP3-dependent calcium signals abolished STAT3 phosphorylation evoked by either extracellular ATP or ES. These results suggest that expression of IL-6 in stimulated skeletal muscle cells is mediated by extracellular ATP and nucleotide receptors, involving IP3-dependent calcium signals as an early step that triggers a positive IL-6 autocrine loop.
Cho, Lily Ting-yin; Andrews, Robert; Carroll, Thomas; Iyer, Vivek; Tate, Peri; Rosen, Barry; Stunnenberg, Hendrik G.; Fisher, Amanda G.; Skarnes, William C.
2017-01-01
Abstract Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC ‘knockout-first’ ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the ‘knockout-first’ allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency ‘2i’ media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors. PMID:28981838
Pluripotent cells in farm animals: state of the art and future perspectives.
Nowak-Imialek, Monika; Niemann, Heiner
2012-01-01
Pluripotent cells, such as embryonic stem (ES) cells, embryonic germ cells and embryonic carcinoma cells are a unique type of cell because they remain undifferentiated indefinitely in in vitro culture, show self-renewal and possess the ability to differentiate into derivatives of the three germ layers. These capabilities make them a unique in vitro model for studying development, differentiation and for targeted modification of the genome. True pluripotent ESCs have only been described in the laboratory mouse and rat. However, rodent physiology and anatomy differ substantially from that of humans, detracting from the value of the rodent model for studies of human diseases and the development of cellular therapies in regenerative medicine. Recently, progress in the isolation of pluripotent cells in farm animals has been made and new technologies for reprogramming of somatic cells into a pluripotent state have been developed. Prior to clinical application of therapeutic cells differentiated from pluripotent stem cells in human patients, their survival and the absence of tumourigenic potential must be assessed in suitable preclinical large animal models. The establishment of pluripotent cell lines in farm animals may provide new opportunities for the production of transgenic animals, would facilitate development and validation of large animal models for evaluating ESC-based therapies and would thus contribute to the improvement of human and animal health. This review summarises the recent progress in the derivation of pluripotent and reprogrammed cells from farm animals. We refer to our recent review on this area, to which this article is complementary.
Using the mouse embryonic stem cell test (EST) to evaluate the embryotoxicity of haloacetic acids
The Embryonic Stem Cell Test (EST) is used to predict the embryotoxic potential of a test compound by combining the data from cytotoxicity assays in undifferentiated mouse embryonic stem (mES) cells and differentiated mouse cells with the data from a differentiation assay in mES ...
Rodgers, D T; Pineda, M A; Suckling, C J; Harnett, W
2015-01-01
Introduction ES-62, a phosphorylcholine (PC)-containing immunomodulator secreted by the parasitic worm Acanthocheilonema viteae, protects against nephritis in the MRL/Lpr mouse model of systemic lupus erythematosus (SLE). However, ES-62 is not suitable for development as a therapy and thus we have designed drug-like small molecule analogues (SMAs) based around its active PC-moiety. To provide proof of concept that ES-62-based SMAs exhibit therapeutic potential in SLE, we have investigated the capacity of two SMAs to protect against nephritis when administered to MRL/Lpr mice after onset of kidney damage. Methods SMAs 11a and 12b were evaluated for their ability to suppress antinuclear antibody (ANA) generation and consequent kidney pathology in MRL/Lpr mice when administered after the onset of proteinuria. Results SMAs 11a and 12b suppressed development of ANA and proteinuria. Protection reflected downregulation of MyD88 expression by kidney cells and this was associated with reduced production of IL-6, a cytokine that exhibits promise as a therapeutic target for this condition. Conclusions SMAs 11a and 12b provide proof of principle that synthetic compounds based on the safe immunomodulatory mechanisms of parasitic worms can exhibit therapeutic potential as a novel class of drugs for SLE, a disease for which current therapies remain inadequate. PMID:26085597
Parthenogenesis and somatic cell nuclear transfer in sheep oocytes using Polscope.
Nandedkar, Pandit; Chohan, Parul; Patwardhan, Archana; Gaikwad, Santosh; Bhartiya, Deepa
2009-07-01
Parthenogenesis and Somatic cell nuclear transfer (SCNT) techniques, offer a unique approach to manipulate the genetic composition of derived human embryonic stem cells - an essential step if the full opportunities for disease modeling, drug discovery or individualized stem cell therapy are to be realized. The present study describes the use of sheep oocytes to acquire expertise and establish methods to reconstruct embryos for obtaining blastocysts before venturing into human SCNT where the oocytes are a very precious starting material. Maturation of sheep eggs in vitro for 20-24 hr resulted in 65% metaphase II (MII) eggs which were either parthenogenetically activated using calcium ionomycin or ethanol or subjected to SCNT using cumulus cell as somatic cell. Sixteen blastocysts were produced by parthenogenetic activation of 350 eggs whereas reconstructed embryos, after SCNT carried out in 139 eggs, progressed only up to morula stage. The procedure of parthenogenesis and SCNT will be useful to generate autologous ES cells using human eggs.
Boyle, N A; Talesa, V; Giovannini, E; Rosi, G; Norton, S J
1997-09-12
Fourteen alkyl and aryl thiocarbonate derivatives of choline were synthesized and studied as potential inhibitors of acetylcholinesterase (AChE). Twelve of the compounds inhibited AChEs derived from calf forebrain, human red blood cells, and octopus brain ranging from low to moderately high inhibition potency. The concentration of each inhibitory compound giving 50% inhibition of enzyme activity (IC50 values, which ranged from 1 x 10(-2) to 8 x 10(-7) M) was determined and is reported; inhibitor constants (Ki values) for the most inhibitory compounds, (1-pentylthiocarbonyl)choline chloride and (1-heptylthiocarbonyl)choline chloride, were calculated from kinetic data and are also reported. The inhibitors are competitive with substrate, and they are not hydrolyzed by the AChE activities. Certain of these new compounds may provide direction for the development of new drugs that have anticholinesterase activity and may be used for the treatment of Alzheimer's disease.
Boo, Kyungjin; Bhin, Jinhyuk; Jeon, Yoon; Kim, Joomyung; Shin, Hi-Jai R; Park, Jong-Eun; Kim, Kyeongkyu; Kim, Chang Rok; Jang, Hyonchol; Kim, In-Hoo; Kim, V Narry; Hwang, Daehee; Lee, Ho; Baek, Sung Hee
2015-04-10
The actions of transcription factors, chromatin modifiers and noncoding RNAs are crucial for the programming of cell states. Although the importance of various epigenetic machineries for controlling pluripotency of embryonic stem (ES) cells has been previously studied, how chromatin modifiers cooperate with specific transcription factors still remains largely elusive. Here, we find that Pontin chromatin remodelling factor plays an essential role as a coactivator for Oct4 for maintenance of pluripotency in mouse ES cells. Genome-wide analyses reveal that Pontin and Oct4 share a substantial set of target genes involved in ES cell maintenance. Intriguingly, we find that the Oct4-dependent coactivator function of Pontin extends to the transcription of large intergenic noncoding RNAs (lincRNAs) and in particular linc1253, a lineage programme repressing lincRNA, is a Pontin-dependent Oct4 target lincRNA. Together, our findings demonstrate that the Oct4-Pontin module plays critical roles in the regulation of genes involved in ES cell fate determination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimada, Hidenori; Hashimoto, Yoshiya; Nakada, Akira
2012-01-13
Highlights: Black-Right-Pointing-Pointer Very rapid generation of human iPS cells under optimized conditions. Black-Right-Pointing-Pointer Five chemical inhibitors under hypoxia boosted reprogramming. Black-Right-Pointing-Pointer We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain largemore » amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly generating bona fide human iPS cells and facilitates the application of iPS cell technology to biomedical research.« less
Xie, Xiaoyan; Cao, Feng; Sheikh, Ahmad Y; Li, Zongjin; Connolly, Andrew J; Pei, Xuetao; Li, Ren-Ke; Robbins, Robert C; Wu, Joseph C
2007-01-01
Cardiac stem cell therapy remains hampered by acute donor cell death posttransplantation and the lack of reliable methods for tracking cell survival in vivo. We hypothesize that cells transfected with inducible vascular endothelial growth factor 165 (VEGF(165)) can improve their survival as monitored by novel molecular imaging techniques. Mouse embryonic stem (ES) cells were transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF(165) and renilla luciferase (Rluc). Addition of doxycycline induced Bi-Tet expression of VEGF(165) and Rluc significantly compared to baseline (p<0.05). Expression of VEGF(165) enhanced ES cell proliferation and inhibited apoptosis as determined by Annexin-V staining. For noninvasive imaging, ES cells were transduced with a double fusion (DF) reporter gene consisting of firefly luciferase and enhanced green fluorescence protein (Fluc-eGFP). There was a robust correlation between cell number and Fluc activity (R(2)=0.99). Analysis by immunostaining, histology, and RT-PCR confirmed that expression of Bi-Tet and DF systems did not affect ES cell self-renewal or pluripotency. ES cells were differentiated into beating embryoid bodies expressing cardiac markers such as troponin, Nkx2.5, and beta-MHC. Afterward, 5 x 10(5) cells obtained from these beating embryoid bodies or saline were injected into the myocardium of SV129 mice (n=36) following ligation of the left anterior descending (LAD) artery. Bioluminescence imaging (BLI) and echocardiography showed that VEGF(165) induction led to significant improvements in both transplanted cell survival and cardiac function (p<0.05). This is the first study to demonstrate imaging of embryonic stem cell-mediated gene therapy targeting cardiovascular disease. With further validation, this platform may have broad applications for current basic research and further clinical studies.
Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaca, Pilar; Berna, Genoveva; Araujo, Raquel
2008-03-10
The poly(ADP-ribose) polymerase (PARP) inhibitor, nicotinamide, induces differentiation and maturation of fetal pancreatic cells. In addition, we have previously reported evidence that nicotinamide increases the insulin content of cells differentiated from embryonic stem (ES) cells, but the possibility of nicotinamide acting as a differentiating agent on its own has never been completely explored. Islet cell differentiation was studied by: (i) X-gal staining after neomycin selection; (ii) BrdU studies; (iii) single and double immunohistochemistry for insulin, C-peptide and Glut-2; (iv) insulin and C-peptide content and secretion assays; and (v) transplantation of differentiated cells, under the kidney capsule, into streptozotocin (STZ)-diabetic mice.more » Here we show that undifferentiated mouse ES cells treated with nicotinamide: (i) showed an 80% decrease in cell proliferation; (ii) co-expressed insulin, C-peptide and Glut-2; (iii) had values of insulin and C-peptide corresponding to 10% of normal mouse islets; (iv) released insulin and C-peptide in response to stimulatory glucose concentrations; and (v) after transplantation into diabetic mice, normalized blood glucose levels over 7 weeks. Our data indicate that nicotinamide decreases ES cell proliferation and induces differentiation into insulin-secreting cells. Both aspects are very important when thinking about cell therapy for the treatment of diabetes based on ES cells.« less
NASA Astrophysics Data System (ADS)
Imai, Koichi; Akasaka, Tsukasa; Watari, Fumio; Tanoue, Akito; Nakamura, Kazuaki; Suese, Kazuhiko; Takashima, Hiromasa; Nishikawa, Tetsunari; Tanaka, Akio; Takeda, Shoji
2012-09-01
The effects of nanomaterials on human reproduction and development remain unknown. The risks of nanomaterials for future generations should be elucidated. Thus, it is important to establish an experimental method to accurately examine embryotoxicity. We previously investigated the myocardial cell differentiation of ES-D3 cells using monolayer (SWCNTs) and multilayer (MWCNTs) nanocarbon tubes. As a result, in spite of having the same carbon composition, the effects on the cell differentiation levels differed between the tubes. We investigated their cell differentiation and cytotoxic effects on EL M3 and ES-R1-EGFP B2/EGFP cells, which require feeder cells. As a result, myocardial pulse rates differed between the presence of SWCNTs and MWCNTs even when feeder cells existed between the samples and cells. The different surface structures of SWCNTs and MWCNTs may have influenced ES cell differentiation.
Isolation and characterization of anti c-met single chain fragment variable (scFv) antibodies.
Qamsari, Elmira Safaie; Sharifzadeh, Zahra; Bagheri, Salman; Riazi-Rad, Farhad; Younesi, Vahid; Abolhassani, Mohsen; Ghaderi, Sepideh Safaei; Baradaran, Behzad; Somi, Mohammad Hossein; Yousefi, Mehdi
2017-12-01
The receptor tyrosine kinase (RTK) Met is the cell surface receptor for hepatocyte growth factor (HGF) involved in invasive growth programs during embryogenesis and tumorgenesis. There is compelling evidence suggesting important roles for c-Met in colorectal cancer proliferation, migration, invasion, angiogenesis, and survival. Hence, a molecular inhibitor of an extracellular domain of c-Met receptor that blocks c-Met-cell surface interactions could be of great thera-peutic importance. In an attempt to develop molecular inhibitors of c-Met, single chain variable fragment (scFv) phage display libraries Tomlinson I + J against a specific synthetic oligopeptide from the extracellular domain of c-Met receptor were screened; selected scFv were then characterized using various immune techniques. Three c-Met specific scFv (ES1, ES2, and ES3) were selected following five rounds of panning procedures. The scFv showed specific binding to c-Met receptor, and significantly inhibited proliferation responses of a human colorectal carcinoma cell line (HCT-116). Moreover, anti- apoptotic effects of selected scFv antibodies on the HCT-116 cell line were also evaluated using Annexin V/PI assays. The results demonstrated rates of apoptotic cell death of 46.0, 25.5, and 37.8% among these cells were induced by use of ES1, ES2, and ES3, respectively. The results demonstrated ability to successfully isolate/char-acterize specific c-Met scFv that could ultimately have a great therapeutic potential in immuno-therapies against (colorectal) cancers.
Pangestuti, Ratih; Ryu, Bomi; Himaya, Swa; Kim, Se-Kwon
2013-08-01
Hippocampus trimaculatus is one of the most heavily traded seahorse species for traditional medicine purposes in many countries. In the present study, we showed neuroprotective effects of peptide derived from H. trimaculatus against amyloid-β42 (Aβ42) toxicity which are central to the pathogenesis of Alzheimer's diseases (AD). Firstly, H. trimaculatus was separately hydrolyzed by four different enzymes and tested for their protective effect on Aβ42-induced neurotoxicity in differentiated PC12 cells. Pronase E hydrolysate exerted highest protection with cell viability value of 88.33 ± 3.33 %. Furthermore, we used response surface methodology to optimize pronase E hydrolysis conditions and found that temperature at 36.69 °C with the hydrolysis time 20.01 h, enzyme to substrate (E/S) ratio of 2.02 % and pH 7.34 were the most optimum conditions. Following several purification steps, H. trimaculatus-derived neuroprotective peptides (HTP-1) sequence was identified as Gly-Thr-Glu-Asp-Glu-Leu-Asp-Lys (906.4 Da). HTP-1 protected PC12 cells from Aβ42-induced neuronal death with the cell viability value of 85.52 ± 2.22 % and up-regulated pro-survival gene (Bcl-2) expressions. These results suggest that HTP-1 has the potential to be used in treatment of neurodegenerative diseases, particularly AD. Identification, characterization, and synthesis of bioactive components derived from H. trimaculatus have the potential to replace or at least complement the use of seahorse as traditional medicine, which further may become an approach to minimize seahorse exploitation in traditional medicine.
Choi, Hyunmin; Park, Kyu-Hyung; Lee, Ah-Reum; Mun, Chin Hee; Shin, Yong Dae; Park, Yong-Beom; Park, Young-Bum
2017-07-01
The aim of this study is to investigate the behaviour of iPSc derived from dental stem cells in terms of initial adhesion, differentiation potential on differently surface-treated titanium disc. iPSc derived from human gingival fibroblasts (hGFs) were established using 4-reprogramming factors transduction with Sendai virus. The hGF-iPSc established in this study exhibited the morphology and growth properties similar to human embryonic stem (ES) cells and expressed pluripotency makers. Alkaline Phosphatase (AP) staining, Embryoid Body (EB) formation and in vitro differentiation and karyotyping further confirmed pluripotency of hGF-iPSc. Then, hGF-iPSc were cultured on machined- and Sandblasted and acid etched (SLA)-treated titanium discs with osteogenic induction medium and their morphological as well as quantitative changes according to different surface types were investigated using Alizrin Red S staining, Scanning electron microscopy (SEM), Flow cytometry and RT-PCR. Time-dependent and surface-dependent morphological changes as well as quantitative change in osteogenic differentiation of hGF-iPSc were identified and osteogenic gene expression of hGF-iPSc cultured on SLA-treated titanium disc found to be greater than machined titanium disc, suggesting the fate of hGF-iPSc may be determined by the characteristics of surface to which hGF-iPSc first adhere. iPSc derived from dental stem cell can be one of the most promising and practical cell sources for personalized regenerative dentistry and their morphological change as well as quantitative change in osteogenic differentiation according to different surface types may be further utilized for future clinical application incorporated with dental implant.
Efficacy of ATR inhibitors as single agents in Ewing sarcoma
Lecona, Emilio; Murga, Matilde; Callen, Elsa; Azorin, Daniel; Alonso, Javier; Lopez, Andres J.; Nussenzweig, Andre; Fernandez-Capetillo, Oscar
2016-01-01
Ewing sarcomas (ES) are pediatric bone tumors that arise from a driver translocation, most frequently EWS/FLI1. Current ES treatment involves DNA damaging agents, yet the basis for the sensitivity to these therapies remains unknown. Oncogene-induced replication stress (RS) is a known source of endogenous DNA damage in cancer, which is suppressed by ATR and CHK1 kinases. We here show that ES suffer from high endogenous levels of RS, rendering them particularly dependent on the ATR pathway. Accordingly, two independent ATR inhibitors show in vitro toxicity in ES cell lines as well as in vivo efficacy in ES xenografts as single agents. Expression of EWS/FLI1 or EWS/ERG oncogenic translocations sensitizes non-ES cells to ATR inhibitors. Our data shed light onto the sensitivity of ES to genotoxic agents, and identify ATR inhibitors as a potential therapy for Ewing Sarcomas. PMID:27577084
Sonnemann, Jürgen; Kahl, Melanie; Siranjeevi, Priyanka M; Blumrich, Annelie; Blümel, Lisa; Becker, Sabine; Wittig, Susan; Winkler, René; Krämer, Oliver H; Beck, James F
2016-01-01
SIRT1-activating compounds (STACs) may have potential in the management of cancer. However, the best-studied STAC, the naturally occurring compound resveratrol, is reported to have contradictory effects in combination chemotherapy regimens: It has been shown both to increase and to decrease the action of anticancer agents. To shed more light on this issue, we comparatively investigated the impact of resveratrol and the synthetic STAC SRT1720 on the responsiveness of Ewing's sarcoma (ES) cells to the chemotherapeutic drugs etoposide and vincristine. Because the effects of STACs can depend on the functionality of the tumor suppressor protein p53, we used three ES cell lines differing in their p53 status, i.e., wild-type p53 WE-68 cells, mutant p53 SK-ES-1 cells and p53 null SK-N-MC cells. Single agent and combination therapy effects were assessed by flow cytometric analyses of propidium iodide uptake and mitochondrial depolarization, by measuring caspase 3/7 activity and by gene expression profiling. When applied as single agents, both STACs were effective in ES cells irrespective of their p53 status. Strikingly, however, when applied in conjunction with cytostatic agents, the STACs displayed reverse effects: SRT1720 largely enhanced etoposide- and vincristine-induced cell death, while resveratrol inhibited it. Combination index analyses validated the antipodal impact of the STACs on the effectiveness of the chemotherapeutics. These findings suggest that the synthetic STAC SRT1720 may be useful to enhance the efficacy of anticancer therapy in ES. But they also suggest that the dietary intake of the natural STAC resveratrol may be detrimental during chemotherapy of ES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horiuchi, Rie; Akimoto, Takayuki, E-mail: akimoto@m.u-tokyo.ac.jp; Institute for Biomedical Engineering, Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041
2012-08-15
Mechanical strain has been reported to affect the proliferation/differentiation of many cell types; however, the effects of mechanotransduction on self-renewal as well as pluripotency of embryonic stem (ES) cells remains unknown. To investigate the effects of mechanical strain on mouse ES cell fate, we examined the expression of Nanog, which is an essential regulator of self-renewal and pluripotency as well as Nanog-associated intracellular signaling during uniaxial cyclic mechanical strain. The mouse ES cell line, CCE was plated onto elastic membranes, and we applied 10% strain at 0.17 Hz. The expression of Nanog was reduced during ES cell differentiation in responsemore » to the withdrawal of leukemia inhibitory factor (LIF); however, two days of cyclic mechanical strain attenuated this reduction of Nanog expression. On the other hand, the cyclic mechanical strain promoted PI3K-Akt signaling, which is reported as an upstream of Nanog transcription. The cyclic mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor wortmannin. Furthermore, cytochalasin D, an inhibitor of actin polymerization, also inhibited the mechanical strain-induced increase in phospho-Akt. These findings imply that mechanical force plays a role in regulating Nanog expression in ES cells through the actin cytoskeleton-PI3K-Akt signaling. -- Highlights: Black-Right-Pointing-Pointer The expression of Nanog, which is an essential regulator of 'stemness' was reduced during embryonic stem (ES) cell differentiation. Black-Right-Pointing-Pointer Cyclic mechanical strain attenuated the reduction of Nanog expression. Black-Right-Pointing-Pointer Cyclic mechanical strain promoted PI3K-Akt signaling and mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor and an inhibitor of actin polymerization.« less
Forrai, Ariel; Boyle, Kristy; Hart, Adam H; Hartley, Lynne; Rakar, Steven; Willson, Tracy A; Simpson, Ken M; Roberts, Andrew W; Alexander, Warren S; Voss, Anne K; Robb, Lorraine
2006-03-01
Leukemia inhibitory factor (LIF) is required to maintain pluripotency and permit self-renewal of murine embryonic stem (ES) cells. LIF binds to a receptor complex of LIFR-beta and gp130 and signals via the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway, with signalling attenuated by suppressor of cytokine signalling (SOCS) proteins. Recent in vivo studies have highlighted the role of SOCS-3 in the negative regulation of signalling via gp130. To determine the role of SOCS-3 in ES cell biology, SOCS-3-null ES cell lines were generated. When cultured in LIF levels that sustain self-renewal of wild-type cells, SOCS-3-null ES cell lines exhibited less self-renewal and greater differentiation into primitive endoderm. The absence of SOCS-3 enhanced JAK-STAT and extracellular signal-related kinase 1/2 (ERK-1/2)-mitogen-activated protein kinase (MAPK) signal transduction via gp130, with higher levels of phosphorylated STAT-1, STAT-3, SH-2 domain-containing cytoplasmic protein tyrosine phosphatase 2 (SHP-2), and ERK-1/2 in steady state and in response to LIF stimulation. Attenuation of ERK signalling by the addition of MAPK/ERK kinase (MEK) inhibitors to SOCS-3-null ES cell cultures rescued the differentiation phenotype, but did not restore proliferation to wild-type levels. In summary, SOCS-3 plays a crucial role in the regulation of the LIF signalling pathway in murine ES cells. Its absence perturbs the balance between activation of the JAK-STAT and SHP-2-ERK-1/2-MAPK pathways, resulting in less self-renewal and a greater potential for differentiation into the primitive endoderm lineage.
David, Robert; Groebner, Michael; Franz, Wolfgang-Michael
2005-04-01
Embryonic stem (ES) cells offer great potential in regenerative medicine and tissue engineering. Clinical applications are still hampered by the lack of protocols for gentle, high-yield isolation of specific cell types for transplantation expressing no immunogenic markers. We describe labeling of stably transfected ES cells expressing a human CD4 molecule lacking its intracellular domain (DeltaCD4) under control of the phosphoglycerate kinase promoter for magnetic cell sorting (MACS). To track the labeled ES cells, we fused DeltaCD4 to an intracellular enhanced green fluorescent protein domain (DeltaCD4EGFP). We showed functionality of the membrane-bound fluorescent fusion protein and its suitability for MACS leading to purities greater than 97%. Likewise, expression of DeltaCD4 yielded up to 98.5% positive cells independently of their differentiation state. Purities were not limited by the initial percentage of DeltaCD4(+) cells, ranging from 0.6%-16%. The viability of MACS-selected cells was demonstrated by reaggregation and de novo formation of embryoid bodies developing all three germ layers. Thus, expression of DeltaCD4 in differentiated ES cells may enable rapid, high-yield purification of a desired cell type for tissue engineering and transplantation studies.
Sangiuolo, Federica; Scaldaferri, Maria Lucia; Filareto, Antonio; Spitalieri, Paola; Guerra, Lorenzo; Favia, Maria; Caroppo, Rosa; Mango, Ruggiero; Bruscia, Emanuela; Gruenert, Dieter C; Casavola, Valeria; De Felici, Massimo; Novelli, Giuseppe
2008-01-01
Different gene targeting approaches have been developed to modify endogenous genomic DNA in both human and mouse cells. Briefly, the process involves the targeting of a specific mutation in situ leading to the gene correction and the restoration of a normal gene function. Most of these protocols with therapeutic potential are oligonucleotide based, and rely on endogenous enzymatic pathways. One gene targeting approach, "Small Fragment Homologous Replacement (SFHR)", has been found to be effective in modifying genomic DNA. This approach uses small DNA fragments (SDF) to target specific genomic loci and induce sequence and subsequent phenotypic alterations. This study shows that SFHR can stably introduce a 3-bp deletion (deltaF508, the most frequent cystic fibrosis (CF) mutation) into the Cftr (CF Transmembrane Conductance Regulator) locus in the mouse embryonic stem (ES) cell genome. After transfection of deltaF508-SDF into murine ES cells, SFHR-mediated modification was evaluated at the molecular levels on DNA and mRNA obtained from transfected ES cells. About 12% of transcript corresponding to deleted allele was detected, while 60% of the electroporated cells completely lost any measurable CFTR-dependent chloride efflux. The data indicate that the SFHR technique can be used to effectively target and modify genomic sequences in ES cells. Once the SFHR-modified ES cells differentiate into different cell lineages they can be useful for elucidating tissue-specific gene function and for the development of transplantation-based cellular and therapeutic protocols.
Park, Jeong-A; Kim, Young-Eun; Seok, Hyun-Jeong; Park, Woo-Youn; Kwon, Hyung-Joo; Lee, Younghee
2011-03-01
Inhibiting histone deacetylase (HDAC) activity modulates the epigenetic status of cells, resulting in an alteration of gene expression and cellular function. Here, we investigated the effects of HDAC inhibitors on mouse embryonic stem (ES) cells. The HDAC inhibitors trichostatin A, suberoylanilide hydroxamic acid, sodium butyrate, and valproic acid induced early differentiation of mouse ES cells and triggered induction of heatshock protein (HSP)70. In contrast, class III HDAC inhibitors failed to induce differentiation or HSP70 expression. Transcriptional upregulation of HSP70 was confirmed by mRNA expression analysis, an inhibitor study, and chromatin immunoprecipitation. HSP70 induction was dependent on the SAPK/ JNK, p38, and PI3K/Akt pathways. Differentiation and induction of HSP70 by a subset of HDAC inhibitors was also examined in human ES cells, which suggests that the phenomenon generally occurs in ES cells. A better understanding of the effects of HDAC inhibitors may give more insight into their application in stem cell biology.
In situ electrochemical detection of embryonic stem cell differentiation.
Yea, Cheol-Heon; An, Jeung Hee; Kim, Jungho; Choi, Jeong-Woo
2013-06-20
Stem cell sensors have emerged as a promising technique to electrochemically monitor the functional status and viability of stem cells. However, efficient electrochemical analysis techniques are required for the development of effective electrochemical stem cell sensors. In the current study, we report a newly developed electrochemical cyclic voltammetry (CV) system to determine the status of mouse embryonic stem (ES) cells. 1-Naphthly phosphate (1-NP), which was dephosphorylated by alkaline phosphatase into a 1-naphthol on an undifferentiated mouse ES cell, was used as a substrate to electrochemically monitor the differentiation status of mouse ES cells. The peak current in the cyclic voltammetry of 1-NP increased linearly with the concentration of pure 1-NP (R(2)=0.9623). On the other hand, the peak current in the electrochemical responses of 1-NP decreased as the number of undifferentiated ES cells increased. The increased dephosphorylation of 1-NP to 1-naphthol made a decreased electrochemical signal. Non-toxicity of 1-NP was confirmed. In conclusion, the proposed electrochemical analysis system can be applied to an electrical stem cell chip for diagnosis, drug detection and on-site monitoring. Copyright © 2013 Elsevier B.V. All rights reserved.
Non-Neuronal Release of Gamma-Aminobutyric Acid by Embryonic Pluripotent Stem Cells
Teng, Lin; Tang, Ya-Bin; Sun, Fan; An, Shi-Min; Zhang, Chun; Yang, Xin-Jie; Lv, Hao-Yu; Lu, Qin; Cui, Yong-Yao; Hu, Jin-Jia
2013-01-01
γ-Aminobutyric acid (GABA), the principle inhibitory transmitter in the mature central nervous system, is also involved in activities outside the nervous system. Recent studies have shown that functional GABA receptors are expressed in embryonic stem (ES) cells and these receptors control ES cell proliferation. However, it is not clear whether ES cells have their own GABAergic transmission output machinery that can fulfill GABA release or whether the cells merely process the GABA receptors by receiving and responding to the diffused GABA released elsewhere. To get further insight into this unresolved problem, we detected the repertoire of components for GABA synthesis, storage, reaction, and termination in ES and embryonal carcinoma stem cells by biological assays, and then directly quantified released GABA in the intercellular milieu from these pluripotent stem (PS) cells by an analytical chemical assay based on high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). We found that embryonic PS cells processed a GABAergic circuit machinery and spontaneously released GABA, which suggests the potential that embryonic PS cells could autonomously establish a GABA niche via release of the transmitter. PMID:23799822
Development of an ES-like cell culture system (RESC) from rohu, Labeo rohita (Ham.).
Goswami, M; Lakra, W S; Yadav, Kamalendra; Jena, J K
2012-12-01
An embryonic stem (ES)-like cell culture system RESC from a commercially important freshwater carp, Labeo rohita, was developed using blastula stage embryos. The cells were cultured in Leibovitz-15 (L-15) medium in gelatin-coated cell culture flask supplemented with 15 % fetal bovine serum along with 10 ng ml(-1) basic fibroblast growth factor at 28 °C under feeder-free conditions. The ES-like cells were characterized by their unique morphology, alkaline phosphatase activity, embryoid body formation tendency, expression of transcription factor Oct4, and consistent chromosome count. The RESC cells when treated with retinoic acid differentiated into cells of different lineages. The RESC developed from mid-blastula embryos of L. rohita would be a useful tool for cellular differentiation and gene expression studies.
Pollex, Tim; Piolot, Tristan; Heard, Edith
2013-01-01
Differentiation of embryonic stem cells is accompanied by changes of gene expression and chromatin and chromosome dynamics. One of the most impressive examples for these changes is inactivation of one of the two X chromosomes occurring upon differentiation of mouse female embryonic stem cells. With a few exceptions, these events have been mainly studied in fixed cells. In order to better understand the dynamics, kinetics, and order of events during differentiation, one needs to employ live-cell imaging techniques. Here, we describe a combination of live-cell imaging with techniques that can be used in fixed cells (e.g., RNA FISH) to correlate locus dynamics or subnuclear localization with, e.g., gene expression. To study locus dynamics in female ES cells, we generated cell lines containing TetO arrays in the X-inactivation center, the locus on the X chromosome regulating X-inactivation, which can be visualized upon expression of TetR fused to fluorescent proteins. We will use this system to elaborate on how to generate ES cell lines for live-cell imaging of locus dynamics, how to culture ES cells prior to live-cell imaging, and to describe typical live-cell imaging conditions for ES cells using different microscopes. Furthermore, we will explain how RNA, DNA FISH, or immunofluorescence can be applied following live-cell imaging to correlate gene expression with locus dynamics.
Chura-Chambi, Rosa Maria; Arcuri, Helen Andrade; Lino, Felipe; Versati, Natan; Palma, Mario Sergio; Favaro, Denize C; Morganti, Ligia
2017-05-01
Endostatin (ES) is an antiangiogenic protein that exhibits antitumor activity in animal models. However, the activity observed in animals was not observed in human clinical trials. ES-BAX is a fusion protein composed of two functional domains: ES, which presents specificity and is internalized by activated endothelial cells and the proapoptotic BH3 domain of the protein BAX, a peptide inductor of cellular death when internalized. We have previously shown (Chura-Chambi et al., Cell Death Dis, 5, e1371, 2014) that ES-BAX presents improved antitumor activity in relation to wild-type ES. Secondary and tertiary structures of ES-BAX are similar to ES, as indicated by homology-modeling studies and molecular dynamics simulations. Tryptophan intrinsic fluorescence and circular dichroism spectroscopy corroborate these data. 15 N HSQC NMR indicates that ES-BAX is structured, but some ES residues have suffered chemical shift perturbations, suggesting that the BH3 peptide interacts with some parts of the ES protein. ES and ES-BAX present similar stability to thermal denaturation. The production of stable hybrid proteins can be a new approach to the development of therapeutic agents presenting specificity for tumoral endothelium and improved antitumor effect. © 2016 International Union of Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakano, Yuriko; Ochiai, Asumi; Kawamoto, Keisuke
To understand the competing effects of the components in extracellular substances (ES), polymeric substances (PS) and low-molecular-weight small substances (SS) <1 kDa derived from microorganisms, on the colloidal stability of cerium dioxide nanoparticles (CeNPs), we investigated their adsorption to sparingly soluble CeNPs at room temperature at pH 6.0. The ES was extracted from the fungus S. cerevisiae. The polypeptides and phosphates in all components preferentially adsorbed onto the CeNPs. The zeta potentials of ES + CeNPs, PS + CeNPs, and SS + CeNPs overlapped on the plot of PS itself, indicating the surface charge of the polymeric substances controls themore » zeta potentials. The sizes of the CeNP aggregates, 100–1300 nm, were constrained by the zeta potentials. The steric barrier derived from the polymers, even in SS, enhanced the CeNP dispersibility at pH 1.5–10. Consequently, the PS and SS had similar effects on modifying the CeNP surfaces. The adsorption of ES, which contains PS + SS, can suppress the aggregation of CeNPs over a wider pH range than that for PS only. The present study addresses the non-negligible effects of small-sized molecules derived from microbial activity on the migration of CeNP in aquatic environments, especially where bacterial consortia prevail.« less
Murine mesenchymal and embryonic stem cells express a similar Hox gene profile.
Phinney, Donald G; Gray, Andrew J; Hill, Katy; Pandey, Amitabh
2005-12-30
Using degenerate oligonucleotide primers targeting the homeobox domain, we amplified by PCR and sequenced 723 clones from five murine cell populations and lines derived from embryonic mesoderm and adult bone marrow. Transcripts from all four vertebrate Hox clusters were expressed by the different populations. Hierarchical clustering of the data revealed that mesenchymal stem cells (MSCs) and the embryonic stem (ES) cell line D3 shared a similar Hox expression profile. These populations exclusively expressed Hoxb2, Hoxb5, Hoxb7, and Hoxc4, transcripts regulating self-renewal and differentiation of other stem cells. Additionally, Hoxa7 transcript quantified by real-time PCR strongly correlated (r2=0.89) with the number of Hoxa7 clones identified by sequencing, validating that data from the PCR screen reflects differences in Hox mRNA abundance between populations. This is the first study to catalogue Hox transcripts in murine MSCs and by comparative analyses identify specific Hox genes that may contribute to their stem cell character.
Genetic analysis of mouse embryonic stem cells bearing Msh3 and Msh2 single and compound mutations.
Abuin, A; Zhang, H; Bradley, A
2000-01-01
We have previously described the use of homologous recombination and CRE-loxP-mediated marker recycling to generate mouse embryonic stem (ES) cell lines homozygous for mutations at the Msh3, Msh2, and both Msh3 and Msh2 loci (2). In this study, we describe the analysis of these ES cells with respect to processes known to be affected by DNA mismatch repair. ES cells homozygous for the Msh2 mutation displayed increased resistance to killing by the cytotoxic drug 6-thioguanine (6TG), indicating that the 6TG cytotoxic mechanism is mediated by Msh2. The mutation rate of the herpes simplex virus thymidine kinase 1 (HSV-tk1) gene was unchanged in Msh3-deficient ES cell lines but markedly elevated in Msh2-deficient and Msh3 Msh2 double-mutant cells. Notably, the HSV-tk1 mutation rate was 11-fold higher, on average, than that of the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus in Msh2-deficient cells. Sequence analysis of HSV-tk1 mutants from these cells indicated the presence of a frameshift hotspot within the HSV-tk1 coding region. Msh3-deficient cells displayed a modest (16-fold) elevation in the instability of a dinucleotide repeat, whereas Msh2-deficient and Msh2 Msh3 double-mutant cells displayed markedly increased levels of repeat instability. Targeting frequencies of nonisogenic vectors were elevated in Msh2-deficient ES cell lines, confirming the role of Msh2 in blocking recombination between diverged sequences (homeologous recombination) in mammalian cells. These results are consistent with accumulating data from other laboratories and support the current model of DNA mismatch repair in mammalian cells.
Genetic Analysis of Mouse Embryonic Stem Cells Bearing Msh3 and Msh2 Single and Compound Mutations
Abuin, Alejandro; Zhang, HeJu; Bradley, Allan
2000-01-01
We have previously described the use of homologous recombination and CRE-loxP-mediated marker recycling to generate mouse embryonic stem (ES) cell lines homozygous for mutations at the Msh3, Msh2, and both Msh3 and Msh2 loci (2). In this study, we describe the analysis of these ES cells with respect to processes known to be affected by DNA mismatch repair. ES cells homozygous for the Msh2 mutation displayed increased resistance to killing by the cytotoxic drug 6-thioguanine (6TG), indicating that the 6TG cytotoxic mechanism is mediated by Msh2. The mutation rate of the herpes simplex virus thymidine kinase 1 (HSV-tk1) gene was unchanged in Msh3-deficient ES cell lines but markedly elevated in Msh2-deficient and Msh3 Msh2 double-mutant cells. Notably, the HSV-tk1 mutation rate was 11-fold higher, on average, than that of the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus in Msh2-deficient cells. Sequence analysis of HSV-tk1 mutants from these cells indicated the presence of a frameshift hotspot within the HSV-tk1 coding region. Msh3-deficient cells displayed a modest (16-fold) elevation in the instability of a dinucleotide repeat, whereas Msh2-deficient and Msh2 Msh3 double-mutant cells displayed markedly increased levels of repeat instability. Targeting frequencies of nonisogenic vectors were elevated in Msh2-deficient ES cell lines, confirming the role of Msh2 in blocking recombination between diverged sequences (homeologous recombination) in mammalian cells. These results are consistent with accumulating data from other laboratories and support the current model of DNA mismatch repair in mammalian cells. PMID:10594017
Fisher, Cynthia L; Marks, Hendrik; Cho, Lily Ting-Yin; Andrews, Robert; Wormald, Sam; Carroll, Thomas; Iyer, Vivek; Tate, Peri; Rosen, Barry; Stunnenberg, Hendrik G; Fisher, Amanda G; Skarnes, William C
2017-12-01
Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC 'knockout-first' ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the 'knockout-first' allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency '2i' media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Hildebrand, Michael S; Dahl, Hans-Henrik M; Hardman, Jennifer; Coleman, Bryony; Shepherd, Robert K; de Silva, Michelle G
2005-12-01
The low regenerative capacity of the hair cells of the mammalian inner ear is a major obstacle for functional recovery following sensorineural hearing loss. A potential treatment is to replace damaged tissue by transplantation of stem cells. To test this approach, undifferentiated and partially differentiated mouse embryonic stem (ES) cells were delivered into the scala media of the deafened guinea pig cochlea. Transplanted cells survived in the scala media for a postoperative period of at least nine weeks, evidenced by histochemical and direct fluorescent detection of enhanced green fluorescent protein (EGFP). Transplanted cells were discovered near the spiral ligament and stria vascularis in the endolymph fluid of the scala media. In some cases, cells were observed close to the damaged organ of Corti structure. There was no evidence of significant immunological rejection of the implanted ES cells despite the absence of immunosuppression. Our surgical approach allowed efficient delivery of ES cells to the scala media while preserving the delicate structures of the cochlea. This is the first report of the survival of partially differentiated ES cells in the scala media of the mammalian cochlea, and it provides support for the potential of cell-based therapies for sensorineural hearing impairment.
Hildebrand, Michael S.; Dahl, Hans-Henrik M.; Hardman, Jennifer; Coleman, Bryony; Shepherd, Robert K.
2005-01-01
The low regenerative capacity of the hair cells of the mammalian inner ear is a major obstacle for functional recovery following sensorineural hearing loss. A potential treatment is to replace damaged tissue by transplantation of stem cells. To test this approach, undifferentiated and partially differentiated mouse embryonic stem (ES) cells were delivered into the scala media of the deafened guinea pig cochlea. Transplanted cells survived in the scala media for a postoperative period of at least nine weeks, evidenced by histochemical and direct fluorescent detection of enhanced green fluorescent protein (EGFP). Transplanted cells were discovered near the spiral ligament and stria vascularis in the endolymph fluid of the scala media. In some cases, cells were observed close to the damaged organ of Corti structure. There was no evidence of significant immunological rejection of the implanted ES cells despite the absence of immunosuppression. Our surgical approach allowed efficient delivery of ES cells to the scala media while preserving the delicate structures of the cochlea. This is the first report of the survival of partially differentiated ES cells in the scala media of the mammalian cochlea, and it provides support for the potential of cell-based therapies for sensorineural hearing impairment. PMID:16208453
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Anand S.; Kaushal, Sharmeela; Mishra, Rangnath
2006-07-28
Differentiating embryonic stem (ES) cells are increasingly emerging as an important source of hematopoietic progenitors with a potential to be useful for both basic and clinical research applications. It has been suggested that dexamethasone facilitates differentiation of ES cells towards erythrocytes but the mechanism responsible for sequential expression of genes regulating this process are not well-understood. Therefore, we in vitro induced differentiation of murine ES cells towards erythropoiesis and studied the sequential expression of a set of genes during the process. We hypothesized that dexamethasone-activates its cognate nuclear receptors inducing up-regulation of erythropoietic genes such as GATA-1, Flk-1, Epo-R, andmore » direct ES cells towards erythropoietic differentiation. ES cells were cultured in primary hematopoietic differentiation media containing methyl-cellulose, IMDM, IL-3, IL-6, and SCF to promote embryoid body (EB) formation. Total RNA of day 3, 5, and 9-old EBs was isolated for gene expression studies using RT-PCR. Cells from day 9 EBs were subjected to secondary differentiation using three different cytokines and growth factors combinations: (1) SCF, EPO, dexamethasone, and IGF; (2) SCF, IL-3, IL-6, and TPO; and (3) SCF IL-3, IL-6, TPO, and EPO. Total RNA from day 12 of secondary differentiated ES cells was isolated to study the gene expression pattern during this process. Our results demonstrate an up-regulation of GATA-1, Flk-1, HoxB-4, Epo-R, and globin genes ({alpha}-globin, {beta}H-1 globin, {beta}-major globin, {epsilon} -globin, and {zeta}-globin) in the 9-day-old EBs, whereas, RNA from 5-day-old EBs showed expression of HoxB-4, {epsilon}-globin, {gamma}-globin, {beta}H1-globin, and Flk-1. Three-day-old EBs showed only HoxB-4 and Flk-1 gene expression and lacked expression of all globin genes. These findings indicate that erythropoiesis-specific genes are activated later in the course of differentiation. Gene expression studies on the ES cells of secondary EB origin cultured in media containing dexamethasone showed a down-regulation of GATA-3 and an up-regulation of GATA-1, Flk-1, and Epo-R in comparison to the two other cytokines and growth factor combinations containing media. The secondary differentiation also showed an enhanced production of erythrocytic precursors in dexamethasone containing media in comparison to that in the control media. Our results indicate that dexamethasone can prove to be an effective agent which can be employed to enhance differentiation towards erythrocytic progenitors from ES cells.« less
Pontén, Annica; Walsh, Stuart; Malan, Daniela; Xian, Xiaojie; Schéele, Susanne; Tarnawski, Laura; Fleischmann, Bernd K; Jovinge, Stefan
2013-01-01
Purification of cardiomyocytes from the embryonic mouse heart, embryonic stem (ES) or induced pluripotent stem cells (iPS) is a challenging task and will require specific isolation procedures. Lately the significance of surface markers for the isolation of cardiac cell populations with fluorescence activated cell sorting (FACS) has been acknowledged, and the hunt for cardiac specific markers has intensified. As cardiomyocytes have traditionally been characterized by their expression of specific transcription factors and structural proteins, and not by specific surface markers, this constitutes a significant bottleneck. Lately, Flk-1, c-kit and the cellular prion protein have been reported to specify cardiac progenitors, however, no surface markers have so far been reported to specify a committed cardiomyocyte. Herein show for the first time, that embryonic cardiomyocytes can be isolated with 98% purity, based on their expression of vascular cell adhesion molecule-1 (VCAM-1). The FACS-isolated cells express phenotypic markers for embryonic committed cardiomyocytes but not cardiac progenitors. An important aspect of FACS is to provide viable cells with retention of functionality. We show that VCAM-1 positive cardiomyocytes can be isolated with 95% viability suitable for in vitro culture, functional assays or expression analysis. In patch-clamp experiments we provide evidence of functionally intact cardiomyocytes of both atrial and ventricular subtypes. This work establishes that cardiomyocytes can be isolated with a high degree of purity and viability through FACS, based on specific surface marker expression as has been done in the hematopoietic field for decades. Our FACS protocol represents a significant advance in which purified populations of cardiomyocytes may be isolated and utilized for downstream applications, such as purification of ES-cell derived cardiomyocytes.
Pontén, Annica; Walsh, Stuart; Malan, Daniela; Xian, Xiaojie; Schéele, Susanne; Tarnawski, Laura; Fleischmann, Bernd K.; Jovinge, Stefan
2013-01-01
Purification of cardiomyocytes from the embryonic mouse heart, embryonic stem (ES) or induced pluripotent stem cells (iPS) is a challenging task and will require specific isolation procedures. Lately the significance of surface markers for the isolation of cardiac cell populations with fluorescence activated cell sorting (FACS) has been acknowledged, and the hunt for cardiac specific markers has intensified. As cardiomyocytes have traditionally been characterized by their expression of specific transcription factors and structural proteins, and not by specific surface markers, this constitutes a significant bottleneck. Lately, Flk-1, c-kit and the cellular prion protein have been reported to specify cardiac progenitors, however, no surface markers have so far been reported to specify a committed cardiomyocyte. Herein show for the first time, that embryonic cardiomyocytes can be isolated with 98% purity, based on their expression of vascular cell adhesion molecule-1 (VCAM-1). The FACS-isolated cells express phenotypic markers for embryonic committed cardiomyocytes but not cardiac progenitors. An important aspect of FACS is to provide viable cells with retention of functionality. We show that VCAM-1 positive cardiomyocytes can be isolated with 95% viability suitable for in vitro culture, functional assays or expression analysis. In patch-clamp experiments we provide evidence of functionally intact cardiomyocytes of both atrial and ventricular subtypes. This work establishes that cardiomyocytes can be isolated with a high degree of purity and viability through FACS, based on specific surface marker expression as has been done in the hematopoietic field for decades. Our FACS protocol represents a significant advance in which purified populations of cardiomyocytes may be isolated and utilized for downstream applications, such as purification of ES-cell derived cardiomyocytes. PMID:24386094
Potential approaches to the treatment of Ewing's sarcoma
Huang, Lin
2017-01-01
Ewing’s sarcoma (ES) is a highly aggressive and metastatic tumor in children and young adults caused by a chromosomal fusion between the Ewing sarcoma breakpoint region 1 (EWSR1) gene and the transcription factor FLI1 gene. ES is managed with standard treatments, including chemotherapy, surgery and radiation. Although the 5-year survival rate for primary ES has improved, the survival rate for ES patients with metastases or recurrence remains low. Several novel molecular targets in ES have recently been identified and investigated in preclinical and clinical settings, and targeting the function of receptor tyrosine kinases (RTKs), the fusion protein EWS-FLI1 and mTOR has shown promise. There has also been increasing interest in the immune responses of ES patients. Immunotherapies using T cells, NK cells, cancer vaccines and monoclonal antibodies have been considered for ES, especially for recurrent patients. Because understanding the pathogenesis of ES is extremely important for the development of novel treatments, this review focuses on the mechanisms and functions of targeted therapies and immunotherapies in ES. It is anticipated that integrating the knowledge obtained from basic research and translational and clinical studies will lead to the development of novel therapeutic strategies for the treatment of ES. PMID:27740934
Potential approaches to the treatment of Ewing's sarcoma.
Yu, Hongjiu; Ge, Yonggui; Guo, Lianying; Huang, Lin
2017-01-17
Ewing's sarcoma (ES) is a highly aggressive and metastatic tumor in children and young adults caused by a chromosomal fusion between the Ewing sarcoma breakpoint region 1 (EWSR1) gene and the transcription factor FLI1 gene. ES is managed with standard treatments, including chemotherapy, surgery and radiation. Although the 5-year survival rate for primary ES has improved, the survival rate for ES patients with metastases or recurrence remains low. Several novel molecular targets in ES have recently been identified and investigated in preclinical and clinical settings, and targeting the function of receptor tyrosine kinases (RTKs), the fusion protein EWS-FLI1 and mTOR has shown promise. There has also been increasing interest in the immune responses of ES patients. Immunotherapies using T cells, NK cells, cancer vaccines and monoclonal antibodies have been considered for ES, especially for recurrent patients. Because understanding the pathogenesis of ES is extremely important for the development of novel treatments, this review focuses on the mechanisms and functions of targeted therapies and immunotherapies in ES. It is anticipated that integrating the knowledge obtained from basic research and translational and clinical studies will lead to the development of novel therapeutic strategies for the treatment of ES.
Gámez Escalona, José Antonio
2013-01-01
The possibility to isolate, cultivate, preserve, characterize and differentiate Human Embryonic Stem Cells (ES) discovered by James Thomson and his colleagues in 1998 was a milestone in the history of Stem Cell Research. Immediately after this discovery many speculations were made about the therapeutic possibilities of ES, motivated by ideological, political and economic aspects. The episode made clear the lack of scientific rationality and ethics when assessing realities as meaningful as those of human embryos obtained by in vitro fertilization techniques (IVF) or human eggs. Therapeutic Cloning as a promise to produce ″tailored″ Stem Cells reported by Hwang and his team in 2004, ended up being a scandal within the scientific community. The technical difficulties and ethical controversies that arose from obtaining ES were insurmountable. In 2010 only two clinical trials were reported using these cells. Those trials were abandoned in late 2011 arguing financial reasons. The discovery of Induced Pluripotent Stem Cell (iPS) in 2006 in mice and in 2007 in humans, represented the possibility of obtaining pluripotent stem cells without the need to destroy embryos. Today, the absence of clinical trials using ES, caused by financial difficulties as a result of its ineffectiveness, anticipates that the use of ES will be limited to certain experimental controls. Probably, the main contribution of Embryonic Stem Cells will be the understanding that biomedical research should follow an ethically and rationally based rigorous method that cannot be ignore.
Current-Controlled Electrical Point-Source Stimulation of Embryonic Stem Cells
Chen, Michael Q.; Xie, Xiaoyan; Wilson, Kitchener D.; Sun, Ning; Wu, Joseph C.; Giovangrandi, Laurent; Kovacs, Gregory T. A.
2010-01-01
Stem cell therapy is emerging as a promising clinical approach for myocardial repair. However, the interactions between the graft and host, resulting in inconsistent levels of integration, remain largely unknown. In particular, the influence of electrical activity of the surrounding host tissue on graft differentiation and integration is poorly understood. In order to study this influence under controlled conditions, an in vitro system was developed. Electrical pacing of differentiating murine embryonic stem (ES) cells was performed at physiologically relevant levels through direct contact with microelectrodes, simulating the local activation resulting from contact with surrounding electroactive tissue. Cells stimulated with a charged balanced voltage-controlled current source for up to 4 days were analyzed for cardiac and ES cell gene expression using real-time PCR, immunofluorescent imaging, and genome microarray analysis. Results varied between ES cells from three progressive differentiation stages and stimulation amplitudes (nine conditions), indicating a high sensitivity to electrical pacing. Conditions that maximally encouraged cardiomyocyte differentiation were found with Day 7 EBs stimulated at 30 µA. The resulting gene expression included a sixfold increase in troponin-T and a twofold increase in β-MHCwithout increasing ES cell proliferation marker Nanog. Subsequent genome microarray analysis revealed broad transcriptome changes after pacing. Concurrent to upregulation of mature gene programs including cardiovascular, neurological, and musculoskeletal systems is the apparent downregulation of important self-renewal and pluripotency genes. Overall, a robust system capable of long-term stimulation of ES cells is demonstrated, and specific conditions are outlined that most encourage cardiomyocyte differentiation. PMID:20652088
Application of infrared spectroscopy in the identification of Ewing sarcoma: A preliminary report
NASA Astrophysics Data System (ADS)
Chaber, Radosław; Łach, Kornelia; Szmuc, Kamil; Michalak, Elżbieta; Raciborska, Anna; Mazur, Damian; Machaczka, Maciej; Cebulski, Józef
2017-06-01
Fourier transform infrared (FTIR) spectroscopy is a highly sensitive, non-invasive analytical technique that can provide information about molecular changes in a biological sample. FTIR spectrum is a sum of the frequencies of many biomolecules which reveals a biochemical fingerprint for mineral identification, and can be analyzed for information about the mineral structure of malignant cells. This gives us the potential to differentiate tumor cells from normal cells in the early stage of relapse, before the tumor cells would be detectable in light microscopy. Ewing sarcoma (ES) is the second most common malignant bone tumor found in children and adolescents. ES affects annually almost 3 persons/1,000,000 mostly children and young adults under 20 years of age annually. ES originates from primitive, low-differentiated neuroectodermal cells. The current standard of therapy for ES is the surgical resection of the primary tumor and metastasis in combination with the chemo- and radiotherapy. The aim of this study was to compare the spectra of ES bone samples and the spectra of normal bone tissues, analyzed before and after induction chemotherapy, by means of FTIR spectroscopy. Six patients with ES affecting bones aged 5.5-16.5 years (median age 11.2 years), who were treated between 2011 and 2015, were included to the study. In all analyzed patients, the diagnosis of ES and the assessment of response to the chemotherapy were performed according to the Euro-EWING-2008 protocol. The Fourier transform infrared spectroscope (FT-IR; Vertex 70v from Bruker) was used in this study. Tissue specimens were applied to the attenuated total reflection (ATR) in the infrared (IR) radiation from the mid-infrared range using a single-reflection snap ATR crystal diamond. In the FTIR spectra we observed a shift in the wave number of the phosphate ion (from 3 to 26 [cm-1]) associated with the presence of tumor tissue. After chemotherapy, a change of the FTIR spectrum was associated with the ES's histopathological response. In patients with a high ratio of the necrotic cells in the tumor (>90% of cells) after chemotherapy, we showed a shift of the peak ⧹ absorption bands to the higher wave numbers. In contrast, in patients with a poor chemotherapy response (<30% of necrotic cells in the tumor), we observed a decline in the peak absorption bands to the lower wave numbers. The results showed that analysis of the spectrum changes of tissue specimens in ES can be helpful in the assessment of clinical response to cancer therapy. It seems that FTIR spectroscopy is a valuable tool for his purpose. The issue awaits full elucidation in further studies on larger groups of patients with ES.
Tan, Boon Siang Nicholas; Kwek, Joly; Wong, Chong Kum Edwin; Saner, Nicholas J.; Yap, Charlotte; Felquer, Fernando; Morris, Michael B.; Gardner, David K.; Rathjen, Peter D.; Rathjen, Joy
2016-01-01
Multiple pluripotent cell populations, which together comprise the pluripotent cell lineage, have been identified. The mechanisms that control the progression between these populations are still poorly understood. The formation of early primitive ectoderm-like (EPL) cells from mouse embryonic stem (mES) cells provides a model to understand how one such transition is regulated. EPL cells form from mES cells in response to l-proline uptake through the transporter Slc38a2. Using inhibitors of cell signaling we have shown that Src family kinases, p38 MAPK, ERK1/2 and GSK3β are required for the transition between mES and EPL cells. ERK1/2, c-Src and GSK3β are likely to be enforcing a receptive, primed state in mES cells, while Src family kinases and p38 MAPK are involved in the establishment of EPL cells. Inhibition of these pathways prevented the acquisition of most, but not all, features of EPL cells, suggesting that other pathways are required. L-proline activation of differentiation is mediated through metabolism and changes to intracellular metabolite levels, specifically reactive oxygen species. The implication of multiple signaling pathways in the process suggests a model in which the context of Src family kinase activation determines the outcomes of pluripotent cell differentiation. PMID:27723793
Cloning of ES cells and mice by nuclear transfer.
Wakayama, Sayaka; Kishigami, Satoshi; Wakayama, Teruhiko
2009-01-01
We have been able to develop a stable nuclear transfer (NT) method in the mouse, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Although the piezo unit is a complex tool, once mastered it is of great help not only in NT experiments, but also in almost all other forms of micromanipulation. Using this technique, embryonic stem (ntES) cell lines established from somatic cell nuclei can be generated relatively easily from a variety of mouse genotypes and cell types. Such ntES cells can be used not only for experimental models of human therapeutic cloning but also as a means of preserving mouse genomes instead of preserving germ cells. Here, we describe our most recent protocols for mouse cloning.
IRE1α-XBP1 inhibitors exerted anti-tumor activities in Ewing’s sarcoma
Tanabe, Yu; Suehara, Yoshiyuki; Kohsaka, Shinji; Hayashi, Takuo; Akaike, Keisuke; Mukaihara, Kenta; Kurihara, Taisei; Kim, Youngji; Okubo, Taketo; Ishii, Midori; Kazuno, Saiko; Kaneko, Kazuo; Saito, Tsuyoshi
2018-01-01
Ewing's sarcoma (ES) is the second-most frequent pediatric bone tumor. Chromosomal translocation t(11;22)(q24:q12) results in the formation of EWS/FLI1 gene fusion, which is detected in approximately 90% of tumors of the Ewing family. Several transcriptome studies have provided lists of genes associated with EWS/FLI1 expression. However, the protein expression profiles associated with EWS/FLI1 have yet to be elucidated. In this study, to identify the regulated proteins associated with EWS/FLI1 and therapeutic targets in ES, we conducted proteomic studies using EWS/FLI1 knockdown in four Ewing's sarcoma cell lines and human mesenchymal stem cells (hMSCs) expressing EWS/FLI1. Isobaric tags for relative and absolute quantitation (i-TRAQ) analyses identified more than 2,000 proteins regulated by the EWS/FLI1 fusion. In addition, the network analyses identified several critical pathways, including XBP1, which was ranked the highest. XBP1 is a protein well known to play an important role in the unfolded protein response (UPR) to endoplasmic reticulum (ER) stress through the IRE1α-XBP1 pathway. We confirmed the high mRNA expression of XBP1 (spliced XBP1 and unspliced XBPl) in surgical samples and cell lines in ES. The silencing of XBP1 significantly suppressed the cell viabilities in ES cell lines. In the inhibitor assays using IRE1α-XBP1 inhibitors, including toyocamycin, we confirmed that these agents significantly suppressed the cell viabilities, leading to apoptosis in ES cells both in vitro and in vivo. Our findings suggested that IRE1α-XBP1 inhibitors might be useful for developing novel therapeutic strategies in ES. PMID:29581854
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozeki, Nobuaki; Kawai, Rie; Hase, Naoko
We previously reported that interleukin 1β acts via matrix metalloproteinase (MMP)-3 to regulate cell proliferation and suppress apoptosis in α2 integrin-positive odontoblast-like cells differentiated from mouse embryonic stem (ES) cells. Here we characterize the signal cascade underpinning odontoblastic differentiation in mouse ES cells. The expression of α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and MMP-3 mRNA and protein were all potently increased during odontoblastic differentiation. Small interfering RNA (siRNA) disruption of the expression of these effectors potently suppressed the expression of the odontoblastic biomarkers dentin sialophosphoprotein, dentin matrix protein-1 and alkaline phosphatase, and blocked odontoblast calcification. Our siRNA, western blotmore » and blocking antibody analyses revealed a unique sequential cascade involving α2 integrin, Emmprin and MMP-3 that drives ES cell differentiation into odontoblasts. This cascade requires the interaction between α2 integrin and Emmprin and is potentiated by exogenous MMP-3. Finally, although odontoblast-like cells potently express α2, α6, αV, β1, and β3, integrins, we confirmed that β1 integrin acts as the trigger for ES cell differentiation, apparently in complex with α2 integrin. These results demonstrate a unique and unanticipated role for an α2 integrin-, Emmprin-, and MMP-3-mediated signaling cascade in driving mouse ES cell differentiation into odontoblast-like cells. - Highlights: • Odontoblast differentiation requires activation of α2 integrin, Emmprin and MMP-3. • α2 integrin, Emmprin and MMP-3 form a sequential signaling cascade. • β1 integrin acts a specific trigger for odontoblast differentiation. • The role of these effectors is highly novel and unanticipated.« less
Precious, Sophie V; Zietlow, Rike; Dunnett, Stephen B; Kelly, Claire M; Rosser, Anne E
2017-06-01
Huntington's disease (HD) is a neurodegenerative disease that offers an excellent paradigm for cell replacement therapy because of the associated relatively focal cell loss in the striatum. The predominant cells lost in this condition are striatal medium spiny neurons (MSNs). Transplantation of developing MSNs taken from the fetal brain has provided proof of concept that donor MSNs can survive, integrate and bring about a degree of functional recovery in both pre-clinical studies and in a limited number of clinical trials. The scarcity of human fetal tissue, and the logistics of coordinating collection and dissection of tissue with neurosurgical procedures makes the use of fetal tissue for this purpose both complex and limiting. Alternative donor cell sources which are expandable in culture prior to transplantation are currently being sought. Two potential donor cell sources which have received most attention recently are embryonic stem (ES) cells and adult induced pluripotent stem (iPS) cells, both of which can be directed to MSN-like fates, although achieving a genuine MSN fate has proven to be difficult. All potential donor sources have challenges in terms of their clinical application for regenerative medicine, and thus it is important to continue exploring a wide variety of expandable cells. In this review we discuss two less well-reported potential donor cell sources; embryonic germ (EG) cells and fetal neural precursors (FNPs), both are which are fetal-derived and have some properties that could make them useful for regenerative medicine applications. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Production of Functional Glucagon-Secreting α-Cells From Human Embryonic Stem Cells
Rezania, Alireza; Riedel, Michael J.; Wideman, Rhonda D.; Karanu, Francis; Ao, Ziliang; Warnock, Garth L.; Kieffer, Timothy J.
2011-01-01
OBJECTIVE Differentiation of human embryonic stem (hES) cells to fully developed cell types holds great therapeutic promise. Despite significant progress, the conversion of hES cells to stable, fully differentiated endocrine cells that exhibit physiologically regulated hormone secretion has not yet been achieved. Here we describe an efficient differentiation protocol for the in vitro conversion of hES cells to functional glucagon-producing α- cells. RESEARCH DESIGN AND METHODS Using a combination of small molecule screening and empirical testing, we developed a six-stage differentiation protocol for creating functional α-cells. An extensive in vitro and in vivo characterization of the differentiated cells was performed. RESULTS A high rate of synaptophysin expression (>75%) and robust expression of glucagon and the α-cell transcription factor ARX was achieved. After a transient polyhormonal state in which cells coexpress glucagon and insulin, maturation in vitro or in vivo resulted in depletion of insulin and other β-cell markers with concomitant enrichment of α-cell markers. After transplantation, these cells secreted fully processed, biologically active glucagon in response to physiologic stimuli including prolonged fasting and amino acid challenge. Moreover, glucagon release from transplanted cells was sufficient to reduce demand for pancreatic glucagon, resulting in a significant decrease in pancreatic α-cell mass. CONCLUSIONS These results indicate that fully differentiated pancreatic endocrine cells can be created via stepwise differentiation of hES cells. These cells may serve as a useful screening tool for the identification of compounds that modulate glucagon secretion as well as those that promote the transdifferentiation of α-cells to β-cells. PMID:20971966
Neural Differentiation of Embryonic Stem Cells In Vitro: A Road Map to Neurogenesis in the Embryo
Abranches, Elsa; Silva, Margarida; Pradier, Laurent; Schulz, Herbert; Hummel, Oliver; Henrique, Domingos; Bekman, Evguenia
2009-01-01
Background The in vitro generation of neurons from embryonic stem (ES) cells is a promising approach to produce cells suitable for neural tissue repair and cell-based replacement therapies of the nervous system. Available methods to promote ES cell differentiation towards neural lineages attempt to replicate, in different ways, the multistep process of embryonic neural development. However, to achieve this aim in an efficient and reproducible way, a better knowledge of the cellular and molecular events that are involved in the process, from the initial specification of neuroepithelial progenitors to their terminal differentiation into neurons and glial cells, is required. Methodology/Principal Findings In this work, we characterize the main stages and transitions that occur when ES cells are driven into a neural fate, using an adherent monolayer culture system. We established improved conditions to routinely produce highly homogeneous cultures of neuroepithelial progenitors, which organize into neural tube-like rosettes when they acquire competence for neuronal production. Within rosettes, neuroepithelial progenitors display morphological and functional characteristics of their embryonic counterparts, namely, apico-basal polarity, active Notch signalling, and proper timing of production of neurons and glia. In order to characterize the global gene activity correlated with each particular stage of neural development, the full transcriptome of different cell populations that arise during the in vitro differentiation protocol was determined by microarray analysis. By using embryo-oriented criteria to cluster the differentially expressed genes, we define five gene expression signatures that correlate with successive stages in the path from ES cells to neurons. These include a gene signature for a primitive ectoderm-like stage that appears after ES cells enter differentiation, and three gene signatures for subsequent stages of neural progenitor development, from an early stage that follows neural induction to a final stage preceding terminal differentiation. Conclusions/Significance Overall, our work confirms and extends the cellular and molecular parallels between monolayer ES cell neural differentiation and embryonic neural development, revealing in addition novel aspects of the genetic network underlying the multistep process that leads from uncommitted cells to differentiated neurons. PMID:19621087
Biological effects of Trichoderma harzianum peptaibols on mammalian cells.
Peltola, Joanna; Ritieni, Alberto; Mikkola, Raimo; Grigoriev, Pavel A; Pócsfalvi, Gabriella; Andersson, Maria A; Salkinoja-Salonen, Mirja S
2004-08-01
Trichoderma species isolated from water-damaged buildings were screened for toxicity by using boar sperm cells as indicator cells. The crude methanolic cell extract from Trichoderma harzianum strain ES39 inhibited the boar sperm cell motility at a low exposure concentration (50% effective concentration, 1 to 5 microg [dry weight] ml of extended boar semen(-1)). The same exposure concentration depleted the boar sperm cells of NADH(2). Inspection of the exposed boar sperm cells by transmission electron microscopy revealed damage to the plasma membrane. By using the black lipid membrane technique, it was shown that the semipurified metabolites (eluted from a SepPak C(18) cartridge) of T. harzianum strain ES39 induced voltage-dependent conductivity. The high-performance liquid chromatography-purified metabolites of T. harzianum strain ES39 dissipated the mitochondrial membrane potential (Deltapsi(m)) of human lung epithelial carcinoma cells (cell line A549). The semipurified metabolites (eluted from a SepPak C(18) cartridge) of T. harzianum strain ES39 were analyzed by mass spectrometry (MS). Matrix-assisted laser desorption ionization and nanoflow electrospray ionization MS revealed five major peptaibols, each of which contained 18 residues and had a mass ranging from 1,719 to 1,775 Da. Their partial amino acid sequences were determined by collision-induced dissociation tandem MS.
Biological Effects of Trichoderma harzianum Peptaibols on Mammalian Cells
Peltola, Joanna; Ritieni, Alberto; Mikkola, Raimo; Grigoriev, Pavel A.; Pócsfalvi, Gabriella; Andersson, Maria A.; Salkinoja-Salonen, Mirja S.
2004-01-01
Trichoderma species isolated from water-damaged buildings were screened for toxicity by using boar sperm cells as indicator cells. The crude methanolic cell extract from Trichoderma harzianum strain ES39 inhibited the boar sperm cell motility at a low exposure concentration (50% effective concentration, 1 to 5 μg [dry weight] ml of extended boar semen−1). The same exposure concentration depleted the boar sperm cells of NADH2. Inspection of the exposed boar sperm cells by transmission electron microscopy revealed damage to the plasma membrane. By using the black lipid membrane technique, it was shown that the semipurified metabolites (eluted from a SepPak C18 cartridge) of T. harzianum strain ES39 induced voltage-dependent conductivity. The high-performance liquid chromatography-purified metabolites of T. harzianum strain ES39 dissipated the mitochondrial membrane potential (Δψm) of human lung epithelial carcinoma cells (cell line A549). The semipurified metabolites (eluted from a SepPak C18 cartridge) of T. harzianum strain ES39 were analyzed by mass spectrometry (MS). Matrix-assisted laser desorption ionization and nanoflow electrospray ionization MS revealed five major peptaibols, each of which contained 18 residues and had a mass ranging from 1,719 to 1,775 Da. Their partial amino acid sequences were determined by collision-induced dissociation tandem MS. PMID:15294840
Rhee, Catherine; Lee, Bum-Kyu; Beck, Samuel; Anjum, Azeen; Cook, Kendra R.; Popowski, Melissa
2014-01-01
Despite their origin from the inner cell mass, embryonic stem (ES) cells undergo differentiation to the trophectoderm (TE) lineage by repression of the ES cell master regulator Oct4 or activation of the TE master regulator Caudal-type homeobox 2 (Cdx2). In contrast to the in-depth studies of ES cell self-renewal and pluripotency, few TE-specific regulators have been identified, thereby limiting our understanding of mechanisms underlying the first cell fate decision. Here we show that up-regulation and nuclear entry of AT-rich interactive domain 3a (Arid3a) drives TE-like transcriptional programs in ES cells, maintains trophoblast stem (TS) cell self-renewal, and promotes further trophoblastic differentiation both upstream and independent of Cdx2. Accordingly, Arid3a−/− mouse post-implantation placental development is severely impaired, resulting in early embryonic death. We provide evidence that Arid3a directly activates TE-specific and trophoblast lineage-specific genes while directly repressing pluripotency genes via differential regulation of epigenetic acetylation or deacetylation. Our results identify Arid3a as a critical regulator of TE and placental development through execution of the commitment and differentiation phases of the first cell fate decision. PMID:25319825
Forced expression of Hnf4a induces hepatic gene activation through directed differentiation.
Yahoo, Neda; Pournasr, Behshad; Rostamzadeh, Jalal; Fathi, Fardin
2016-08-05
Embryonic stem (ES) cells are capable of unlimited self-renewal and have a diverse differentiation potential. These unique features make ES cells as an attractive source for developmental biology studies. Having the mature hepatocyte in the lab with functional activities is valuable in drug discovery studies. Overexpression of hepatocyte lineage-specific transcription factors (TFs) becomes a promising approach in pluripotent cell differentiation toward liver cells. Many studies generate transgenic ES cell lines to examine the effects of specific TFs overexpression in cell differentiation. In the present report, we have addressed whether a suspension or adherent model of differentiation is an appropriate way to study the role of Hnf4a overexpression. We generated ES cells that carried a doxycycline (Dox)-inducible Hnf4a using lentiviral vectors. The transduced cells were subjected to induced Hnf4a overexpression through both spontaneous and directed differentiation methods. Gene expression analysis showed substantially increased expression of hepatic gene markers, particularly Ttr and endogenous Hnf4a, in transduced cells differentiated by the directed approach. These results demonstrated that forced expression of TFs during directed differentiation would be an appropriate way to study relevant gene activation and the effects of overexpression in the context of hepatic differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.
Efficient differentiation of mouse embryonic stem cells into insulin-producing cells.
Liu, Szu-Hsiu; Lee, Lain-Tze
2012-01-01
Embryonic stem (ES) cells are a potential source of a variety of differentiated cells for cell therapy, drug discovery, and toxicology screening. Here, we present an efficacy strategy for the differentiation of mouse ES cells into insulin-producing cells (IPCs) by a two-step differentiation protocol comprising of (i) the formation of definitive endoderm in monolayer culture by activin A, and (ii) this monolayer endoderm being induced to differentiate into IPCs by nicotinamide, insulin, and laminin. Differentiated cells can be obtained within approximately 7 days. The differentiation IPCs combined application of RT-PCR, ELISA, and immunofluorescence to characterize phenotypic and functional properties. In our study, we demonstrated that IPCs produced pancreatic transcription factors, endocrine progenitor marker, definitive endoderm, pancreatic β-cell markers, and Langerhans α and δ cells. The IPCs released insulin in a manner that was dose dependent upon the amount of glucose added. These techniques may be able to be applied to human ES cells, which would have very important ramifications for treating human disease.
Oliveira, C S; de Souza, M M; Saraiva, N Z; Tetzner, T A D; Lima, M R; Lopes, F L; Garcia, J M
2012-06-01
Despite extensive efforts, establishment of bovine embryonic stem (ES) cell lines has not been successful. We hypothesized that culture conditions for in vitro-produced (IVP) embryos, the most used source of inner cell mass (ICM) to obtain ES cells, might affect their undifferentiated state. Therefore, the aim of this work was to improve pluripotency of IVP blastocysts to produce suitable ICM for further culturing. We tested KSR and foetal calf serum (FCS) supplements in SOF medium and ES cell conditioned medium (CM) on IVC (groups: KSR, KSR CM, FCS and FCS CM). Cleavage and blastocyst rates were similar between all groups. Also, embryonic quality, assessed by apoptosis rates (TUNEL assay), total cell number and ICM percentage did not differ between experimental groups. However, expression of pluripotency-related markers was affected. We detected down-regulation of OCT3/4, SOX2 and SSEA1 in ICM of FCS CM blastocysts (p < 0.05). SOX2 gene expression revealed lower levels (p < 0.05) on KSR CM blastocysts and a remarkable variation in SOX2 mRNA levels on FCS-supplemented blastocysts. In conclusion, pluripotency-related markers tend to decrease after supplementation with ES cell CM, suggesting different mechanisms regulating mouse and bovine pluripotency. KSR supplementation did not differ from FCS, but FCS replacement by KSR may produce blastocysts with stable SOX2 gene expression levels. © 2011 Blackwell Verlag GmbH.
Schirmer, David; Grünewald, Thomas G. P.; Klar, Richard; Schmidt, Oxana; Wohlleber, Dirk; Rubío, Rebeca Alba; Uckert, Wolfgang; Thiel, Uwe; Bohne, Felix; Busch, Dirk H.; Krackhardt, Angela M.; Burdach, Stefan; Richter, Günther H. S.
2016-01-01
ABSTRACT Pediatric cancers, including Ewing sarcoma (ES), are only weakly immunogenic and the tumor-patients' immune system often is devoid of effector T cells for tumor elimination. Based on expression profiling technology, targetable tumor-associated antigens (TAA) are identified and exploited for engineered T-cell therapy. Here, the specific recognition and lytic potential of transgenic allo-restricted CD8+ T cells, directed against the ES-associated antigen 6-transmembrane epithelial antigen of the prostate 1 (STEAP1), was examined. Following repetitive STEAP1130 peptide-driven stimulations with HLA-A*02:01+ dendritic cells (DC), allo-restricted HLA-A*02:01− CD8+ T cells were sorted with HLA-A*02:01/peptide multimers and expanded by limiting dilution. After functional analysis of suitable T cell clones via ELISpot, flow cytometry and xCELLigence assay, T cell receptors' (TCR) α- and β-chains were identified, cloned into retroviral vectors, codon optimized, transfected into HLA-A*02:01− primary T cell populations and tested again for specificity and lytic capacity in vitro and in a Rag2−/−γc−/− mouse model. Initially generated transgenic T cells specifically recognized STEAP1130-pulsed or transfected cells in the context of HLA-A*02:01 with minimal cross-reactivity as determined by specific interferon-γ (IFNγ) release, lysed cells and inhibited growth of HLA-A*02:01+ ES lines more effectively than HLA-A*02:01− ES lines. In vivo tumor growth was inhibited more effectively with transgenic STEAP1130-specific T cells than with unspecific T cells. Our results identify TCRs capable of recognizing and inhibiting growth of STEAP1-expressing HLA-A*02:01+ ES cells in vitro and in vivo in a highly restricted manner. As STEAP1 is overexpressed in a wide variety of cancers, we anticipate these STEAP1-specific TCRs to be potentially useful for immunotherapy of other STEAP1-expressing tumors. PMID:27471654
Yang, Jaw-Yen; Yan, Chih-Yuan; Diaz, Manuel; Huang, Juan-Chen; Li, Zhihui; Zhang, Hanxin
2014-01-08
The ideal quantum gas dynamics as manifested by the semiclassical ellipsoidal-statistical (ES) equilibrium distribution derived in Wu et al. (Wu et al . 2012 Proc. R. Soc. A 468 , 1799-1823 (doi:10.1098/rspa.2011.0673)) is numerically studied for particles of three statistics. This anisotropic ES equilibrium distribution was derived using the maximum entropy principle and conserves the mass, momentum and energy, but differs from the standard Fermi-Dirac or Bose-Einstein distribution. The present numerical method combines the discrete velocity (or momentum) ordinate method in momentum space and the high-resolution shock-capturing method in physical space. A decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. Computations of two-dimensional Riemann problems are presented, and various contours of the quantities unique to this ES model are illustrated. The main flow features, such as shock waves, expansion waves and slip lines and their complex nonlinear interactions, are depicted and found to be consistent with existing calculations for a classical gas.
Signaling hierarchy regulating human endothelial cell development.
Kelly, Melissa A; Hirschi, Karen K
2009-05-01
Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these studies. Using human embryonic stem cells as a model system, we were able to reproducibly and robustly generate differentiated endothelial cells via coculture on OP9 marrow stromal cells. We found that, in contrast to studies in the mouse, bFGF and VEGF had no specific effects on the initiation of human vasculogenesis. However, exogenous Ihh promoted endothelial cell differentiation, as evidenced by increased production of cells with cobblestone morphology that coexpress multiple endothelial-specific genes and proteins, form lumens, and exhibit DiI-AcLDL uptake. Inhibition of BMP signaling using Noggin or BMP4, specifically, using neutralizing antibodies suppressed endothelial cell formation; whereas, addition of rhBMP4 to cells treated with the hedgehog inhibitor cyclopamine rescued endothelial cell development. Our studies revealed that Ihh promoted human endothelial cell differentiation from pluripotent hES cells via BMP signaling, providing novel insights applicable to modulating human endothelial cell formation and vascular regeneration for human clinical therapies.
Telomere sister chromatid exchange in telomerase deficient murine cells.
Wang, Yisong; Giannone, Richard J; Liu, Yie
2005-10-01
We have recently demonstrated that several types of genomic rearrangements (i.e., telomere sister chromatid exchange (T-SCE), genomic-SCE, or end-to-end fusions) were more often detected in long-term cultured murine telomerase deficient embryonic stem (ES) cells than in freshly prepared murine splenocytes, even through they possessed similar frequencies of critically short telomeres. The high rate of genomic rearrangements in telomerase deficient ES cells, when compared to murine splenocytes, may reflect the cultured cells' gained ability to protect chromosome ends with eroded telomeres allowing them to escape "end crisis". However, the possibility that ES cells were more permissive to genomic rearrangements than other cell types or that differences in the microenvironment or genetic background of the animals might consequentially determine the rate of T-SCEs or other genomic rearrangements at critically short telomeres could not be ruled out.
A nontranscriptional role for Oct4 in the regulation of mitotic entry
Zhao, Rui; Deibler, Richard W.; Lerou, Paul H.; Ballabeni, Andrea; Heffner, Garrett C.; Cahan, Patrick; Unternaehrer, Juli J.; Kirschner, Marc W.; Daley, George Q.
2014-01-01
Rapid progression through the cell cycle and a very short G1 phase are defining characteristics of embryonic stem cells. This distinct cell cycle is driven by a positive feedback loop involving Rb inactivation and reduced oscillations of cyclins and cyclin-dependent kinase (Cdk) activity. In this setting, we inquired how ES cells avoid the potentially deleterious consequences of premature mitotic entry. We found that the pluripotency transcription factor Oct4 (octamer-binding transcription factor 4) plays an unappreciated role in the ES cell cycle by forming a complex with cyclin–Cdk1 and inhibiting Cdk1 activation. Ectopic expression of Oct4 or a mutant lacking transcriptional activity recapitulated delayed mitotic entry in HeLa cells. Reduction of Oct4 levels in ES cells accelerated G2 progression, which led to increased chromosomal missegregation and apoptosis. Our data demonstrate an unexpected nontranscriptional function of Oct4 in the regulation of mitotic entry. PMID:25324523
Yan, Y; Xu, W; Chen, H; Ma, Z; Zhu, Y; Cai, S
1994-01-01
The partial structure gene encoding ES antigen derived from Trichinella spiralis (TSP) muscle larvae was cloned, characterized, and expressed in E. coli. The target DNA (0.7 kb) was directly obtained from the TSP total RNA by using RNA PCR technique. Based on the analysis with the RE digestion, the fragment was cloned into the fusion expression vector pEX31C. It was shown that a kind of 37kDa fusion protein was expressed in E. coli containing the recombinant plasmid by SDS-PAGE electrophoresis. The expressed protein was over 22% of the total cell protein, and it was aggregated in the form of inclusion bodies in E. coli. The purified protein could be recognized in ELISA both by sera from swine-infected with TSP and by the monoclonal antibody against TSP. These findings suggest that the recombinant protein is a potentially valuable antigen both for immunodiagnosis and vaccine development of trichinellosis.
Sułkowski, Maciej; Konieczny, Paweł; Chlebanowska, Paula; Majka, Marcin
2018-01-09
Since their invention in 2006, induced Pluripotent Stem (iPS) cells remain a great promise for regenerative medicine circumventing the ethical issues linked to Embryonic Stem (ES) cell research. iPS cells can be generated in a patient-specific manner as an unlimited source of various cell types for in vitro drug screening, developmental biology studies and regenerative use. Having the capacity of differentiating into the cells of all three primary germ layers, iPS cells have high potential to form teratoma tumors. This remains their main disadvantage and hazard which, until resolved, prevents utilization of iPS cells in clinic. Here, we present an approach for increasing iPS cells safety by introducing genetic modification-exogenous suicide gene Herpes Simplex Virus Thymidine Kinase ( HSV-TK ). Its expression results in specific vulnerability of genetically modified cells to prodrug-ganciclovir (GCV). We show that HSV-TK expressing cells can be eradicated both in vitro and in vivo with high specificity and efficiency with low doses of GCV. Described strategy increases iPS cells safety for future clinical applications by generating "emergency exit" switch allowing eradication of transplanted cells in case of their malfunction.
Codner, Gemma F; Lindner, Loic; Caulder, Adam; Wattenhofer-Donzé, Marie; Radage, Adam; Mertz, Annelyse; Eisenmann, Benjamin; Mianné, Joffrey; Evans, Edward P; Beechey, Colin V; Fray, Martin D; Birling, Marie-Christine; Hérault, Yann; Pavlovic, Guillaume; Teboul, Lydia
2016-08-05
Karyotypic integrity is essential for the successful germline transmission of alleles mutated in embryonic stem (ES) cells. Classical methods for the identification of aneuploidy involve cytological analyses that are both time consuming and require rare expertise to identify mouse chromosomes. As part of the International Mouse Phenotyping Consortium, we gathered data from over 1,500 ES cell clones and found that the germline transmission (GLT) efficiency of clones is compromised when over 50 % of cells harbour chromosome number abnormalities. In JM8 cells, chromosomes 1, 8, 11 or Y displayed copy number variation most frequently, whilst the remainder generally remain unchanged. We developed protocols employing droplet digital polymerase chain reaction (ddPCR) to accurately quantify the copy number of these four chromosomes, allowing efficient triage of ES clones prior to microinjection. We verified that assessments of aneuploidy, and thus decisions regarding the suitability of clones for microinjection, were concordant between classical cytological and ddPCR-based methods. Finally, we improved the method to include assay multiplexing so that two unstable chromosomes are counted simultaneously (and independently) in one reaction, to enhance throughput and further reduce the cost. We validated a PCR-based method as an alternative to classical karyotype analysis. This technique enables laboratories that are non-specialist, or work with large numbers of clones, to precisely screen ES cells for the most common aneuploidies prior to microinjection to ensure the highest level of germline transmission potential. The application of this method allows early exclusion of aneuploid ES cell clones in the ES cell to mouse conversion process, thus improving the chances of obtaining germline transmission and reducing the number of animals used in failed microinjection attempts. This method can be applied to any other experiments that require accurate analysis of the genome for copy number variation (CNV).
De Cegli, Rossella; Iacobacci, Simona; Flore, Gemma; Gambardella, Gennaro; Mao, Lei; Cutillo, Luisa; Lauria, Mario; Klose, Joachim; Illingworth, Elizabeth; Banfi, Sandro; di Bernardo, Diego
2013-01-01
Gene expression profiles can be used to infer previously unknown transcriptional regulatory interaction among thousands of genes, via systems biology 'reverse engineering' approaches. We 'reverse engineered' an embryonic stem (ES)-specific transcriptional network from 171 gene expression profiles, measured in ES cells, to identify master regulators of gene expression ('hubs'). We discovered that E130012A19Rik (E13), highly expressed in mouse ES cells as compared with differentiated cells, was a central 'hub' of the network. We demonstrated that E13 is a protein-coding gene implicated in regulating the commitment towards the different neuronal subtypes and glia cells. The overexpression and knock-down of E13 in ES cell lines, undergoing differentiation into neurons and glia cells, caused a strong up-regulation of the glutamatergic neurons marker Vglut2 and a strong down-regulation of the GABAergic neurons marker GAD65 and of the radial glia marker Blbp. We confirmed E13 expression in the cerebral cortex of adult mice and during development. By immuno-based affinity purification, we characterized protein partners of E13, involved in the Polycomb complex. Our results suggest a role of E13 in regulating the division between glutamatergic projection neurons and GABAergic interneurons and glia cells possibly by epigenetic-mediated transcriptional regulation.
Folpe, A L; Hill, C E; Parham, D M; O'Shea, P A; Weiss, S W
2000-12-01
The histologic and immunohistochemical differentiation of Ewing' s sarcoma/primitive neuroectodermal tumor (ES/PNET) from other small, blue, round cell tumors may be difficult. Despite initial promise, CD99 (MIC2) has not proven to be a specific marker. Approximately 90% of ES/PNET have a specific t(11; 22)(q24;q12) that results in fusion of the EWS and FLI-1 genes, and overexpression of FLI-1 protein. A recent study has shown immunohistochemical FLI-1 expression in five of seven of the ES/PNET cases tested. We evaluated FLI-1 expression in 132 well-characterized small, blue, round cell tumors. All tumors were immunostained for FLI-1 (1:40, Sc 356 polyclonal, Santa Cruz Biotechnology) using steam heat for epitope retrieval. Only nuclear staining was accepted as positive. Endothelial cells were strongly positive in all cases and served as an internal control. In many cases, a subset of lymphocytes also stained positive. No staining was seen in any other normal tissue. FLI-1 expression was seen in 29 of 41 (71%) ES/PNET, 7 of 8 (88%) lymphoblastic lymphomas, 0 of 8 poorly differentiated synovial sarcomas (PDSS), 0 of 32 rhabdomyosarcoma (RMS), 0 of 30 neuroblastomas, 0 of 8 esthesioneuroblastomas, 0 of 3 Wilms' tumors, 0 of 1 mesenchymal chondrosarcoma, and in 1 of 1 desmoplastic round cell tumor. This last case was known to have an EWS/WT-1 fusion. Although the EWS/FLI-1 fusion gene is specific for ES/PNET, FLI-1 protein expression is not. Significantly, the great majority of lymphoblastic lymphomas (also CD99-positive) are strongly FLI-1-positive. Immunohistochemical detection of FLI-1 may be valuable in confirming the diagnosis of ES/ PNET in cases in which molecular genetic evaluation is not feasible. FLI-1 protein expression is also helpful in distinguishing ES/PNET from other tumors that may be CD99-positive, such as PDSS and RMS. It is not surprising that some ES/ PNET are FLI-1-negative, because not all ES/PNET have the classic EWS/FLI-1, and some cases of ES/PNET may produce either low levels of protein or idiotypically different protein.
Veazey, Kylee J; Golding, Michael C
2011-01-01
Isolation and culture of both embryonic and tissue specific stem cells provide an enormous opportunity to study the molecular processes driving development. To gain insight into the initial events underpinning mammalian embryogenesis, pluripotent stem cells from each of the three distinct lineages present within the preimplantation blastocyst have been derived. Embryonic (ES), trophectoderm (TS) and extraembryonic endoderm (XEN) stem cells possess the developmental potential of their founding lineages and seemingly utilize distinct epigenetic modalities to program gene expression. However, the basis for these differing cellular identities and epigenetic properties remain poorly defined.Quantitative reverse transcription-polymerase chain reaction (qPCR) is a powerful and efficient means of rapidly comparing patterns of gene expression between different developmental stages and experimental conditions. However, careful, empirical selection of appropriate reference genes is essential to accurately measuring transcriptional differences. Here we report the quantitation and evaluation of fourteen commonly used references genes between ES, TS and XEN stem cells. These included: Actb, B2m, Hsp70, Gapdh, Gusb, H2afz, Hk2, Hprt, Pgk1, Ppia, Rn7sk, Sdha, Tbp and Ywhaz. Utilizing three independent statistical analysis, we identify Pgk1, Sdha and Tbp as the most stable reference genes between each of these stem cell types. Furthermore, we identify Sdha, Tbp and Ywhaz as well as Ywhaz, Pgk1 and Hk2 as the three most stable reference genes through the in vitro differentiation of embryonic and trophectoderm stem cells respectively.Understanding the transcriptional and epigenetic regulatory mechanisms controlling cellular identity within these distinct stem cell types provides essential insight into cellular processes controlling both embryogenesis and stem cell biology. Normalizing quantitative RT-PCR measurements using the geometric mean CT values obtained for the identified mRNAs, offers a reliable method to assess differing patterns of gene expression between the three founding stem cell lineages present within the mammalian preimplantation embryo.
Latos, Paulina A.; Stricker, Stefan H.; Steenpass, Laura; Pauler, Florian M.; Huang, Ru; Senergin, Basak H.; Regha, Kakkad; Koerner, Martha V.; Warczok, Katarzyna E.; Unger, Christine; Barlow, Denise P.
2010-01-01
Genomic imprinting is an epigenetic process that results in parental-specific gene expression. Advances in understanding the mechanism that regulates imprinted gene expression in mammals have largely depended on generating targeted manipulations in embryonic stem (ES) cells that are analysed in vivo in mice. However, genomic imprinting consists of distinct developmental steps, some of which occur in post-implantation embryos, indicating that they could be studied in vitro in ES cells. The mouse Igf2r gene shows imprinted expression only in post-implantation stages, when repression of the paternal allele has been shown to require cis-expression of the Airn non-coding (nc) RNA and to correlate with gain of DNA methylation and repressive histone modifications. Here we follow the gain of imprinted expression of Igf2r during in vitro ES cell differentiation and show that it coincides with the onset of paternal-specific expression of the Airn ncRNA. Notably, although Airn ncRNA expression leads, as predicted, to gain of repressive epigenetic marks on the paternal Igf2r promoter, we unexpectedly find that the paternal Igf2r promoter is expressed at similar low levels throughout ES cell differentiation. Our results further show that the maternal and paternal Igf2r promoters are expressed equally in undifferentiated ES cells, but during differentiation expression of the maternal Igf2r promoter increases up to 10-fold, while expression from the paternal Igf2r promoter remains constant. This indicates, contrary to expectation, that the Airn ncRNA induces imprinted Igf2r expression not by silencing the paternal Igf2r promoter, but by generating an expression bias between the two parental alleles. PMID:19141673
Krasity, Benjamin C; Troll, Joshua V; Lehnert, Erik M; Hackett, Kathleen T; Dillard, Joseph P; Apicella, Michael A; Goldman, William E; Weiss, Jerrold P; McFall-Ngai, Margaret J
2015-10-13
Mammalian lipopolysaccharide (LPS) binding proteins (LBPs) occur mainly in extracellular fluids and promote LPS delivery to specific host cell receptors. The function of LBPs has been studied principally in the context of host defense; the possible role of LBPs in nonpathogenic host-microbe interactions has not been well characterized. Using the Euprymna scolopes-Vibrio fischeri model, we analyzed the structure and function of an LBP family protein, E. scolopes LBP1 (EsLBP1), and provide evidence for its role in triggering a symbiont-induced host developmental program. Previous studies showed that, during initial host colonization, the LPS of V. fischeri synergizes with peptidoglycan (PGN) monomer to induce morphogenesis of epithelial tissues of the host animal. Computationally modeled EsLBP1 shares some but not all structural features of mammalian LBPs that are thought important for LPS binding. Similar to human LBP, recombinant EsLBP1 expressed in insect cells bound V. fischeri LPS and Neisseria meningitidis lipooligosaccharide (LOS) with nanomolar or greater affinity but bound Francisella tularensis LPS only weakly and did not bind PGN monomer. Unlike human LBP, EsLBP1 did not bind N. meningitidis LOS:CD14 complexes. The eslbp1 transcript was upregulated ~22-fold by V. fischeri at 24 h postinoculation. Surprisingly, this upregulation was not induced by exposure to LPS but, rather, to the PGN monomer alone. Hybridization chain reaction-fluorescent in situ hybridization (HCR-FISH) and immunocytochemistry (ICC) localized eslbp1 transcript and protein in crypt epithelia, where V. fischeri induces morphogenesis. The data presented here provide a window into the evolution of LBPs and the scope of their roles in animal symbioses. Mammalian lipopolysaccharide (LPS)-binding protein (LBP) is implicated in conveying LPS to host cells and potentiating its signaling activity. In certain disease states, such as obesity, the overproduction of this protein has been a reliable biomarker of chronic inflammation. Here, we describe a symbiosis-induced invertebrate LBP whose tertiary structure and LPS-binding characteristics are similar to those of mammalian LBPs; however, the primary structure of this distantly related squid protein (EsLBP1) differs in key residues previously believed to be essential for LPS binding, suggesting that an alternative strategy exists. Surprisingly, symbiotic expression of eslbp1 is induced by peptidoglycan derivatives, not LPS, a pattern converse to that of RegIIIγ, an important mammalian immunity protein that binds peptidoglycan but whose gene expression is induced by LPS. Finally, EsLBP1 occurs along the apical surfaces of all the host's epithelia, suggesting that it was recruited from a general defensive role to one that mediates specific interactions with its symbiont. Copyright © 2015 Krasity et al.
Negative feedback via RSK modulates Erk-dependent progression from naïve pluripotency.
Nett, Isabelle Re; Mulas, Carla; Gatto, Laurent; Lilley, Kathryn S; Smith, Austin
2018-06-12
Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signalling is implicated in initiation of embryonic stem (ES) cell differentiation. The pathway is subject to complex feedback regulation. Here, we examined the ERK-responsive phosphoproteome in ES cells and identified the negative regulator RSK1 as a prominent target. We used CRISPR/Cas9 to create combinatorial mutations in RSK family genes. Genotypes that included homozygous null mutations in Rps6ka1, encoding RSK1, resulted in elevated ERK phosphorylation. These RSK-depleted ES cells exhibit altered kinetics of transition into differentiation, with accelerated downregulation of naïve pluripotency factors, precocious expression of transitional epiblast markers and early onset of lineage specification. We further show that chemical inhibition of RSK increases ERK phosphorylation and expedites ES cell transition without compromising multilineage potential. These findings demonstrate that the ERK activation profile influences the dynamics of pluripotency progression and highlight the role of signalling feedback in temporal control of cell state transitions. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.
Nedelec, Stephane; Peljto, Mirza; Shi, Peng; Amoroso, Mackenzie W.; Kam, Lance C.; Wichterle, Hynek
2012-01-01
Formation of functional motor circuits relies on the ability of distinct spinal motor neuron subtypes to project their axons with high precision to appropriate muscle targets. While guidance cues contributing to motor axon pathfinding have been identified, the intracellular pathways underlying subtype specific responses to these cues remain poorly understood. In particular, it remains controversial whether responses to axon guidance cues depend on axonal protein synthesis. Using a growth cone collapse assay, we demonstrate that mouse embryonic stem cell (ESC) derived spinal motor neurons (ES-MNs) respond to ephrin-A5, Sema3f and Sema3a in a concentration dependent manner. At low doses, ES-MNs exhibit segmental or subtype specific responses, while this selectivity is lost at higher concentrations. Response to high doses of semaphorins and to all doses of ephrin-A5 is protein synthesis independent. In contrast, using microfluidic devices and stripe assays, we show that growth cone collapse and guidance at low concentrations of semaphorins relies on local protein synthesis in the axonal compartment. Similar bimodal response to low and high concentrations of guidance cues is observed in human ES-MNs, pointing to a general mechanism by which neurons increase their repertoire of responses to the limited set of guidance cues involved in neural circuit formation. PMID:22279234
NASA Astrophysics Data System (ADS)
Niinemets, ÜLo; Copolovici, Lucian; Hüve, Katja
2010-12-01
Isoprene emission potential (ES) varies in tree canopies, and such variations have potentially major implications for predicting canopy level emissions. So far, quantitative relationships of ES with irradiance are missing, and interspecific variation in ES plasticity and potential effects on canopy level emissions have not been characterized. ES, foliage structural, chemical, and photosynthetic characteristics were studied relative to integrated within-canopy daily quantum flux density (Qint) in temperate deciduous tree species Quercus robur, Populus tremula, Salix alba, and Salix caprea, and canopy isoprene emissions were calculated considering observed variation in ES and under different simplifying assumptions. Strong positive curvilinear relationships between nitrogen and dry mass per unit area, photosynthetic potentials and ES per area with Qint were observed. Structural, chemical, and photosynthetic traits varied 1.5-fold to 4-fold and ES per area 3-fold to 27-fold within the canopy. ES variation reflected accumulation of mesophyll cell layers and greater emission capacity of average cells. Species with largest structural and photosynthetic plasticity had greatest plasticity in ES. Relative to the simulation considering within-canopy variation in ES, the bias from assuming a constant ES varied between -8% and +68%, and it scaled positively with ES plasticity. The bias of big-leaf simulations varied between -22% and -35%, and it scaled negatively with ES plasticity. A generalized canopy response function of ES developed for all species resulted in the lowest bias between -11% and 6% and can be recommended for practical applications. The results highlight huge within-canopy and interspecific variation in ES and demonstrate that ignoring these variations strongly biases canopy emission predictions.
Xiong, Anqi; Kundu, Soumi; Forsberg, Maud; Xiong, Yuyuan; Bergström, Tobias; Paavilainen, Tanja; Kjellén, Lena; Li, Jin-Ping; Forsberg-Nilsson, Karin
2017-10-01
Heparan sulfate proteoglycans (HSPGs), ubiquitous components of mammalian cells, play important roles in development and homeostasis. These molecules are located primarily on the cell surface and in the pericellular matrix, where they interact with a multitude of macromolecules, including many growth factors. Manipulation of the enzymes involved in biosynthesis and modification of HSPG structures alters the properties of stem cells. Here, we focus on the involvement of heparanase (HPSE), the sole endo-glucuronidase capable of cleaving of HS, in differentiation of embryonic stem cells into the cells of the neural lineage. Embryonic stem (ES) cells overexpressing HPSE (Hpse-Tg) proliferated more rapidly than WT ES cells in culture and formed larger teratomas in vivo. In addition, differentiating Hpse-Tg ES cells also had a higher growth rate, and overexpression of HPSE in NSPCs enhanced Erk and Akt phosphorylation. Employing a two-step, monolayer differentiation, we observed an increase in HPSE as wild-type (WT) ES cells differentiated into neural stem and progenitor cells followed by down-regulation of HPSE as these NSPCs differentiated into mature cells of the neural lineage. Furthermore, NSPCs overexpressing HPSE gave rise to more oligodendrocytes than WT cultures, with a concomitant reduction in the number of neurons. Our present findings emphasize the importance of HS, in neural differentiation and suggest that by regulating the availability of growth factors and, or other macromolecules, HPSE promotes differentiation into oligodendrocytes. Copyright © 2016 Elsevier B.V. All rights reserved.
Viseshakul, Nareerat; Dechkhajorn, Wilanee; Benjathummarak, Surachet; Nuamtanong, Supaporn; Maneerat, Yaowapa
2017-10-01
Human gnathostomiasis caused by third-stage Gnathostoma spinigerum larvae (G. spinigerum L3) is an important zoonotic disease in tropical areas of the world. The excretory-secretory products (ES) that are excreted by infective larva play a significant role in host immune evasion and tissue destruction. To investigate the poorly understood mechanisms of G. spinigerum L3 pathogenesis, we focused on the potential effect of ES on inducing apoptosis in human immune cells by using human peripheral blood mononuclear cells (PBMCs) as a model. Early and late apoptosis of PBMCs were assessed following the exposure of these cells to G. spinigerum L3 ES (0.1, 0.5, and 1.0 μg/ml) for 6-48 h. The apoptotic cells were identified by flow cytometric staining of PBMC with FITC-annexin V and propidium iodide. The expression of regulatory genes related to apoptosis mechanisms in ES-treated PBMCs was investigated using a Human Apoptosis RT 2 Profiler™ PCR Array. The results showed significant levels of early phase apoptosis at 18 h and of late phase apoptosis at 24 h. We speculate that this apoptosis in PBMCs occurs via the extrinsic pathway. Apoptosis in the ES-induced PBMCs was observed as quickly as 90 min after exposure, and the highest effect was observed at 18-24 h. Furthermore, ES can trigger apoptosis lasting for 48 h. Our findings expand the understanding of one of the mechanisms involved, immune-evasive strategy mechanism used by G. spinigerum larvae during human gnathostomiasis.
Telomere sister chromatid exchange in telomerase deficient murine cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yisong; Giannone, Richard J; Liu, Yie
2005-01-01
We have recently demonstrated that several types of genomic rearrangements (i.e., telomere sister chromatid exchange (T-SCE), genomic-SCE, or end-to-end fusions) were more often detected in long-term cultured murine telomerase deficient embryonic stem (ES) cells than in freshly prepared murine splenocytes, even through they possessed similar frequencies of critically short telomeres. The high rate of genomic rearrangements in telomerase deficient ES cells, when compared to murine splenocytes, may reflect the cultured cells' gained ability to protect chromosome ends with eroded telomeres allowing them to escape 'end crisis'. However, the possibility that ES cells were more permissive to genomic rearrangements than othermore » cell types or that differences in the microenvironment or genetic background of the animals might consequentially determine the rate of T-SCEs or other genomic rearrangements at critically short telomeres could not be ruled out.« less
Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael
2011-01-01
In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08–0.85 MPa) and times (5–60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. (E-mail: Bazoud@tcd.ie) PMID:21208732
Production of stable GFP-expressing neural cells from P19 embryonal carcinoma stem cells.
Shirzad, Hedayatollah; Esmaeili, Fariba; Bakhshalizadeh, Shabnam; Ebrahimie, Marzieh; Ebrahimie, Esmaeil
2017-04-01
Murine P19 embryonal carcinoma (EC) cells are convenient to differentiate into all germ layer derivatives. One of the advantages of P19 cells is that the exogenous DNA can be easily inserted into them. Here, at the first part of this study, we generated stable GFP-expressing P19 cells (P19-GFP + ). FACS and western-blot analysis confirmed stable expression of GFP in the cells. We previously demonstrated the efficient induction of neuronal differentiation from mouse ES and EC cells by application of a neuroprotective drug, selegiline In the second part of this study selegiline was used to induce differentiation of P19-GFP + into stable GFP-expressing neuron-like cells. Cresyl violet staining confirmed neuronal morphology of the differentiated cells. Furthermore, real-time PCR and immunoflourescence approved the expression of neuron specific markers. P19-GFP + cells were able to survive, migrate and integrated into host tissues when transplanted to developing chick embryo CNS. The obtained live GFP-expressing cells can be used as an abundant source of developmentally pluripotent material for transplantation studies, investigating the cellular and molecular aspects of early differentiation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Matsumoto, Shogo; Nakao, Hiromi; Kawabe, Keiko; Nonaka, Motohiro; Toyoda, Hidenao; Takishima, Yuto; Kawabata, Kenji; Yamaguchi, Tomoko; Furue, Miho K.; Taki, Takao; Okumura, Takeshi; Yamazaki, Yuzo; Nakaya, Shuuichi; Kawasaki, Nobuko; Kawasaki, Toshisuke
2015-01-01
We have generated a mouse monoclonal antibody (R-17F, IgG1 subtype) specific to human induced pluripotent stem (hiPS)/embryonic stem (ES) cells by using a hiPS cell line as an antigen. Triple-color confocal immunostaining images of hiPS cells with R-17F indicated that the R-17F epitope was expressed exclusively and intensively on the cell membranes of hiPS cells and co-localized partially with those of SSEA-4 and SSEA-3. Lines of evidence suggested that the predominant part of the R-17F epitope was a glycolipid. Upon TLC blot of total lipid extracts from hiPS cells with R-17F, one major R-17F-positive band was observed at a slow migration position close to that of anti-blood group H1(O) antigen. MALDI-TOF-MS and MSn analyses of the purified antigen indicated that the presumptive structure of the R-17F antigen was Fuc-Hex-HexNAc-Hex-Hex-Cer. Glycan microarray analysis involving 13 different synthetic oligosaccharides indicated that R-17F bound selectively to LNFP I (Fucα1–2Galβ1–3GlcNAcβ1–3Galβ1–4Glc). A critical role of the terminal Fucα1–2 residue was confirmed by the selective disappearance of R-17F binding to the purified antigen upon α1–2 fucosidase digestion. Most interestingly, R-17F, when added to hiPS/ES cell suspensions, exhibited potent dose-dependent cytotoxicity. The cytotoxic effect was augmented markedly upon the addition of the secondary antibody (goat anti-mouse IgG1 antibody). R-17F may be beneficial for safer regenerative medicine by eliminating residual undifferentiated hiPS cells in hiPS-derived regenerative tissues, which are considered to be a strong risk factor for carcinogenesis. PMID:26100630
Extended Self-Renewal and Accelerated Reprogramming in the Absence of Kdm5b
Hu, Gangqing; Yu, Zu-Xi; Liu, Chengyu
2013-01-01
Embryonic stem (ES) cell pluripotency is thought to be regulated in part by H3K4 methylation. However, it is unclear how H3K4 demethylation contributes to ES cell function and participates in induced pluripotent stem (iPS) cell reprogramming. Here, we show that KDM5B, which demethylates H3K4, is important for ES cell differentiation and presents a barrier to the reprogramming process. Depletion of Kdm5b leads to an extension in the self-renewal of ES cells in the absence of LIF. Transcriptome analysis revealed the persistent expression of pluripotency genes and underexpression of developmental genes during differentiation in the absence of Kdm5b, suggesting that KDM5B plays a key role in cellular fate changes. We also observed accelerated reprogramming of differentiated cells in the absence of Kdm5b, demonstrating that KDM5B is a barrier to the reprogramming process. Expression analysis revealed that mesenchymal master regulators associated with the epithelial-to-mesenchymal transition (EMT) are downregulated during reprogramming in the absence of Kdm5b. Moreover, global analysis of H3K4me3/2 revealed that enhancers of fibroblast genes are rapidly deactivated in the absence of Kdm5b, and genes associated with EMT lose H3K4me3/2 during the early reprogramming process. These findings provide functional insight into the role for KDM5B in regulating ES cell differentiation and as a barrier to the reprogramming process. PMID:24100015
Kim, Hwa-Young; Baek, Song; Han, Na Rae; Lee, Eunsong; Park, Choon-Keun; Lee, Seung Tae
2018-05-29
In vitro expansion of undifferentiated porcine primed embryonic stem (ES) cells is facilitated by use of non-cellular niches that mimic three-dimensional (3D) microenvironments enclosing an inner cell mass of porcine blastocysts. Therefore, we investigated the integrin heterodimers on the surface of undifferentiated porcine primed ES cells for the purpose of developing a non-cellular niche to support in vitro maintenance of the self-renewal ability of porcine primed ES cells. Immunocytochemistry and a fluorescence immunoassay were performed to assess integrin α and β subunit levels, and attachment and antibody inhibition assays were used to evaluate the function of integrin heterodimers. The integrin α 3 , α 5 , α 6 , α 9 , α V , and β 1 subunits, but not the α 1 , α 2 , α 4 , α 7 , and α 8 subunits, were identified on the surface of undifferentiated porcine primed ES cells. Subsequently, significant increase of their adhesion to fibronectin, tenascin C and vitronectin were observed and functional blocking of integrin heterodimer α 5 β 1 , α 9 β 1 , or α V β 1 showed significantly inhibited adhesion to fibronectin, tenascin C, or vitronectin. No integrin α 6 β 1 heterodimer?mediated adhesion to laminin was detected. These results demonstrate that active α 5 β 1 , α 9 β 1 , and α V β 1 integrin heterodimers are present on the surface of undifferentiated porcine primed ES cells, together with inactive integrin α 3 (presumed) and α 6 subunits. This article is protected by copyright. All rights reserved.
Bąska, Piotr; Norbury, Luke James; Zawistowska-Deniziak, Anna; Wiśniewski, Marcin; Januszkiewicz, Kamil
2017-10-01
Fasciola hepatica are trematodes that reside in the bile ducts of mammals. Infection causes US$3 billion in losses annually in animal production and is considered a zoonosis of growing importance. An under-represented area in F. hepatica research has been the examination of the different immunomodulatory abilities of various parasite isolates on the host immune system. In this paper, this issue was explored, with the bovine macrophage cell line "BOMA". The cells were matured by LPS treatment and stimulated with excretory/secretory antigens (ES) from two Fasciola hepatica isolates: a laboratory isolate "Weybridge" (Fh-WeyES) and a wild isolate (Fh-WildES). As expected, stimulation with antigen mixtures with highly similar compositions resulted in mild transcriptomic differences. However, there were significant differences in cytokine levels. Compared to Fh-WeyES, exposure to Fh-WildES upregulated 27 and downregulated 30 genes. Fh-ES from both isolates diminished the release of TNF-α, whereas only Fh-WildES decreased IL-10 secretion. Neither Fh-WeyES nor Fh-WildES had an impact on IL-12 release. Our results indicate that various isolates can have different immunomodulatory abilities and impacts on the bovine immune system.
ES1 is a mitochondrial enlarging factor contributing to form mega-mitochondria in zebrafish cones.
Masuda, Takamasa; Wada, Yasutaka; Kawamura, Satoru
2016-03-01
Total mass of mitochondria increases during cell proliferation and differentiation through mitochondrial biogenesis, which includes mitochondrial proliferation and growth. During the mitochondrial growth, individual mitochondria have been considered to be enlarged independently of mitochondrial fusion. However, molecular basis for this enlarging process has been poorly understood. Cone photoreceptor cells in the retina possess large mitochondria, so-called mega-mitochondria that have been considered to arise via the enlarging process. Here we show that ES1 is a novel mitochondria-enlarging factor contributing to form mega-mitochondria in cones. ES1 is specifically expressed in cones and localized to mitochondria including mega-mitochondria. Knockdown of ES1 markedly reduced the mitochondrial size in cones. In contrast, ectopic expression of ES1 in rods significantly increased both the size of individual mitochondria and the total mass of the mitochondrial cluster without changing the number of them. RNA-seq analysis showed that ERRα and its downstream mitochondrial genes were significantly up-regulated in the ES1-expressing rods, suggesting facilitation of mitochondrial enlargement via ERRα-dependent processes. Furthermore, higher energy state was detected in the ES1-expressing rods, indicating that the enlarged mitochondria by ES1 are capable of producing high energy. ES1 is the mitochondrial protein that is first found to promote enlargement of individual mitochondria.
Hael-Conrad, Verónica; Perato, Silvia Marisa; Arias, Marta Eugenia; Martínez-Zamora, Martín Gustavo; Di Peto, Pía de Los Ángeles; Martos, Gustavo Gabriel; Castagnaro, Atilio Pedro; Díaz-Ricci, Juan Carlos; Chalfoun, Nadia Regina
2018-01-01
The elicitor AsES (Acremonium strictum elicitor subtilisin) is a 34-kDa subtilisin-like protein secreted by the opportunistic fungus Acremonium strictum. AsES activates innate immunity and confers resistance against anthracnose and gray mold diseases in strawberry plants (Fragaria × ananassa Duch.) and the last disease also in Arabidopsis. In the present work, we show that, upon AsES recognition, a cascade of defense responses is activated, including: calcium influx, biphasic oxidative burst (O 2 ⋅- and H 2 O 2 ), hypersensitive cell-death response (HR), accumulation of autofluorescent compounds, cell-wall reinforcement with callose and lignin deposition, salicylic acid accumulation, and expression of defense-related genes, such as FaPR1, FaPG1, FaMYB30, FaRBOH-D, FaRBOH-F, FaCHI23, and FaFLS. All these responses occurred following a spatial and temporal program, first induced in infiltrated leaflets (local acquired resistance), spreading out to untreated lateral leaflets, and later, to distal leaves (systemic acquired resistance). After AsES treatment, macro-HR and macro-oxidative bursts were localized in infiltrated leaflets, while micro-HRs and microbursts occurred later in untreated leaves, being confined to a single cell or a cluster of a few epidermal cells that differentiated from the surrounding ones. The differentiated cells initiated a time-dependent series of physiological and anatomical changes, evolving to idioblasts accumulating H 2 O 2 and autofluorescent compounds that blast, delivering its content into surrounding cells. This kind of systemic cell-death process in plants is described for the first time in response to a single elicitor. All data presented in this study suggest that AsES has the potential to activate a wide spectrum of biochemical and molecular defense responses in F. ananassa that may explain the induced protection toward pathogens of opposite lifestyle, like hemibiotrophic and necrotrophic fungi.
Engineering an Escherichia coli platform to synthesize designer biodiesels.
Wierzbicki, Michael; Niraula, Narayan; Yarrabothula, Akshitha; Layton, Donovan S; Trinh, Cong T
2016-04-20
Biodiesels, fatty acid esters (FAEs), can be synthesized by condensation of fatty acid acyl CoAs and alcohols via a wax ester synthase in living cells. Biodiesels have advantageous characteristics over petrodiesels such as biodegradability, a higher flash point, and less emission. Controlling fatty acid and alcohol moieties are critical to produce designer biodiesels with desirable physiochemical properties (e.g., high cetane number, low kinematic viscosity, high oxidative stability, and low cloud point). Here, we developed a flexible framework to engineer Escherichia coli cell factories to synthesize designer biodiesels directly from fermentable sugars. In this framework, we designed each FAE pathway as a biodiesel exchangeable production module consisting of acyl CoA, alcohol, and wax ester synthase submodules. By inserting the FAE modules in an engineered E. coli modular chassis cell, we generated E. coli cell factories to produce targeted biodiesels (e.g., fatty acid ethyl (FAEE) and isobutyl (FAIbE) esters) with tunable and controllable short-chain alcohol moieties. The engineered E. coli chassis carrying the FAIbE production module produced 54mg/L FAIbEs with high specificity, accounting for>90% of the total synthesized FAEs and ∼4.7 fold increase in FAIbE production compared to the wildtype. Fed-batch cultures further improved FAIbE production up to 165mg/L. By mixing ethanol and isobutanol submodules, we demonstrated controllable production of mixed FAEEs and FAIbEs. We envision the developed framework offers a flexible, alternative route to engineer designer biodiesels with tunable and controllable properties using biomass-derived fermentable sugars. Copyright © 2016 Elsevier B.V. All rights reserved.
De Cegli, Rossella; Iacobacci, Simona; Flore, Gemma; Gambardella, Gennaro; Mao, Lei; Cutillo, Luisa; Lauria, Mario; Klose, Joachim; Illingworth, Elizabeth; Banfi, Sandro; di Bernardo, Diego
2013-01-01
Gene expression profiles can be used to infer previously unknown transcriptional regulatory interaction among thousands of genes, via systems biology ‘reverse engineering’ approaches. We ‘reverse engineered’ an embryonic stem (ES)-specific transcriptional network from 171 gene expression profiles, measured in ES cells, to identify master regulators of gene expression (‘hubs’). We discovered that E130012A19Rik (E13), highly expressed in mouse ES cells as compared with differentiated cells, was a central ‘hub’ of the network. We demonstrated that E13 is a protein-coding gene implicated in regulating the commitment towards the different neuronal subtypes and glia cells. The overexpression and knock-down of E13 in ES cell lines, undergoing differentiation into neurons and glia cells, caused a strong up-regulation of the glutamatergic neurons marker Vglut2 and a strong down-regulation of the GABAergic neurons marker GAD65 and of the radial glia marker Blbp. We confirmed E13 expression in the cerebral cortex of adult mice and during development. By immuno-based affinity purification, we characterized protein partners of E13, involved in the Polycomb complex. Our results suggest a role of E13 in regulating the division between glutamatergic projection neurons and GABAergic interneurons and glia cells possibly by epigenetic-mediated transcriptional regulation. PMID:23180766
Yan, Yun; Zhao, Wukui; Huang, Yikai; Tong, Huan; Xia, Yin; Jiang, Qing; Qin, Jinzhong
2017-01-01
The Polycomb repressive complex 1 (PRC1) is essential for fate decisions of embryonic stem (ES) cells. Emerging evidence suggests that six major variants of PRC1 complex, defined by the mutually exclusive presence of Pcgf subunit, regulate distinct biological processes, yet very little is known about the mechanism by which each version of PRC1 instructs and maintains cell fate. Here, we disrupted the Pcgf1, also known as Nspc1 and one of six Pcgf paralogs, in mouse ES cells by the CRISPR/Cas9 technology. We showed that although these mutant cells were viable and retained normal self-renewal, they displayed severe defects in differentiation in vitro. To gain a better understanding of the role of Pcgf1 in transcriptional control of differentiation, we analysed mRNA profiles from Pcgf1 deficient cells using RNA-seq. Interestingly, we found that Pcgf1 positively regulated expression of essential transcription factors involved in ectoderm and mesoderm differentiation, revealing an unexpected function of Pcgf1 in gene activation during ES cell lineage specification. Chromatin immunoprecipitation experiments demonstrated that Pcgf1 deletion caused a decrease in Ring1B and its associated H2AK119ub1 mark binding to target genes. Altogether, our results suggested an unexpected function of Pcgf1 in gene activation during ES cell maintenance. PMID:28393894
Reid, Katherine J; Lang, Kenneth; Froscio, Suzanne; Humpage, Andrew J; Young, Fiona M
2015-11-01
Undifferentiated mouse embryonic stem cell (mES) proliferation in vitro resembles aspects of in vivo pre-implantation embryonic development. mES were used to assess the embryo-toxicity of cylindrospermopsin (CYN), a water contaminant with an Australian Drinking Water Guideline (ADWG) of 1 μg/L. mES exposed to 0-1 μg/mL CYN for 24-168 h were subjected to an optimised crystal violet viability assay. mES exposed to retinoic acid ± 1 μg/L CYN differentiated into neural-like cells confirmed by morphological examination and RT-PCR for Oct4, Brachyury and Nestin. The CYN No Observed Effect Concentration (OEC) was 0.5 μg/mL, the Lowest OEC was 1 μg/mL (p < 0.001, n = 3), and the IC50 was 0.86 μg/mL after 24 h. The ADWG 1 μg/L CYN did not affect differentiation or proliferation after 72 h, but decreased proliferation after 168 h (p < 0.05). We conclude that higher algal bloom-associated CYN concentrations have the potential to impair in vivo pre-implantation development, and the mES crystal violet assay has broad application to screening environmental toxins. Copyright © 2015 Elsevier Ltd. All rights reserved.
Coco, Anne; Epp, Stephanie B.; Fallon, James B.; Xu, Jin; Millard, Rodney E.; Shepherd, Robert K.
2007-01-01
Increasing numbers of cochlear implant subjects have some level of residual hearing at the time of implantation. The present study examined whether (i) hair cells that have survived one pathological insult (aminoglycoside deafening), can survive and function following long-term cochlear implantation and electrical stimulation (ES); and (ii) chronic ES in these cochleae results in greater trophic support of spiral ganglion neurons (SGNs) compared with cochleae devoid of hair cells. Eight cats, with either partial (n=4) or severe (n=4) sensorineural hearing loss, were bilaterally implanted with scala tympani electrode arrays 2 months after deafening, and received unilateral ES using charge balanced biphasic current pulses for periods of up to 235 days. Frequency-specific compound action potentials and click-evoked auditory brainstem responses (ABRs) were recorded periodically to monitor the residual acoustic hearing. Electrically-evoked ABRs (EABRs) were recorded to confirm the stimulus levels were 3-6 dB above the EABR threshold. On completion of the ES program the cochleae were examined histologically. Partially deafened animals showed no significant increase in acoustic thresholds over the implantation period. Moreover, chronic ES of an electrode array located in the base of the cochlea did not adversely affect hair cells in the middle or apical turns. There was evidence of a small but statistically significant rescue of SGNs in the middle and apical turns of stimulated cochleae in animals with partial hearing. Chronic ES did not, however, prevent a reduction in SGN density for the severely deaf cohort, although SGNs adjacent to the stimulating electrodes did exhibit a significant increase in soma area (p<0.01). In sum, chronic ES in partial hearing animals does not adversely affect functioning residual hair cells apical to the electrode array. Moreover, while there is an increase in the soma area of SGNs close to the stimulating electrodes in severely deaf cochleae, this trophic effect does not result in increased SGN survival. PMID:17258411
Ikeda, Yuji; Park, Jae-Hyun; Miyamoto, Takashi; Takamatsu, Naofumi; Kato, Taigo; Iwasa, Akiko; Okabe, Shuhei; Imai, Yuichi; Fujiwara, Keiichi; Nakamura, Yusuke; Hasegawa, Kosei
2016-12-15
We aimed to clarify the clinical significance of TOPK (T-lymphokine-activated killer cell-originated protein kinase) expression in ovarian cancer and evaluate the possible effect of TOPK inhibitors, OTS514 and OTS964, on ovarian cancer cells. TOPK expression was examined by immunohistochemistry using 163 samples with epithelial ovarian cancer (EOC). TOPK protein level and FOXM1 transcriptional level in ovarian cancer cell lines were examined by Western blot and RT-PCR, respectively. Half-maximum inhibitory concentration (IC 50 ) values against TOPK inhibitors were examined by the MTT assay. Using the peritoneal dissemination model of ES-2 ovarian cancer cells, we examined the in vivo efficacy of OTS514. In addition, the cytotoxic effect of OTS514 and OTS964 on 31 patient-derived primary ovarian cancer cells was examined. TOPK was expressed very highly in 84 (52%) of 163 EOC tissues, and high TOPK expression was significantly associated with poor progression-free survival and overall survival in early-stage cases of EOC (P = 0.008 and 0.006, respectively). Both OTS514 and OTS964 showed significant growth-inhibitory effect on ovarian cancer cell lines with IC 50 values of 3.0 to 46 nmol/L and 14 to 110 nmol/L, respectively. TOPK protein and transcriptional levels of FOXM1 were reduced by TOPK inhibitor treatment. Oral administration of OTS514 significantly elongated overall survival in the ES-2 abdominal dissemination xenograft model, compared with vehicle control (P < 0.001). Two drugs showed strong growth-inhibitory effect on primary ovarian cancer cells regardless of tumor sites or histological subtypes. Our results demonstrated the clinical significance of high TOPK expression and potential of TOPK inhibitors to treat ovarian cancer. Clin Cancer Res; 22(24); 6110-7. ©2016 AACR. ©2016 American Association for Cancer Research.
Dekker, M; Brouwers, C; Aarts, M; van der Torre, J; de Vries, S; van de Vrugt, H; te Riele, H
2006-04-01
We have previously demonstrated that site-specific insertion, deletion or substitution of one or two nucleotides in mouse embryonic stem cells (ES cells) by single-stranded deoxyribo-oligonucleotides is several hundred-fold suppressed by DNA mismatch repair (MMR) activity. Here, we have investigated whether compound mismatches and larger insertions escape detection by the MMR machinery and can be effectively introduced in MMR-proficient cells. We identified several compound mismatches that escaped detection by the MMR machinery to some extent, but could not define general rules predicting the efficacy of complex base-pair substitutions. In contrast, we found that four-nucleotide insertions were largely subject to suppression by the MSH2/MSH3 branch of MMR and could be effectively introduced in Msh3-deficient cells. As these cells have no overt mutator phenotype and Msh3-deficient mice do not develop cancer, Msh3-deficient ES cells can be used for oligonucleotide-mediated gene disruption. As an example, we present disruption of the Fanconi anemia gene Fancf.
Assisted reproductive technologies in rhesus macaques
Wolf, Don P
2004-01-01
The assisted reproductive technologies (ARTs) have been used in the production of rhesus monkey offspring at the Oregon National Primate Research Center (ONPRC) and that experience is summarized here. Additionally these technologies serve as a source of oocytes/embryos for monozygotic twinning, embryonic stem (ES) cell derivation and cloning. High fertilization efficiencies were realized with conventional insemination or following the use of intracytoplasmic sperm injection (ICSI) and approximately 50% of the resulting embryos grew in vitro to blastocysts. Both fresh and frozen sperm were employed in fertilization by ICSI and the resulting embryos could be low temperature stored for subsequent thawing and transfer when a synchronized recipient female was available or after shipment to another facility. Following the transfer of up to 3 embryos, an overall pregnancy rate of 30% was achieved with increasing rates dependent upon the number of embryos transferred. Singleton pregnancy outcomes following the transfer of ART produced embryos were similar to those observed in a control group of animals in the timed mated breeding colony at ONPRC. ICSI produced embryos were used in efforts to create monozygotic twins by blastomere separation or blastocyst splitting. While pregnancies were achieved following the transfer of demi-embryos, only one was a twin and it was lost to spontaneous abortion. ICSI produced embryos have also served as the source of blastocysts for the derivation of embryonic stem cells. These pluripotent cells hold potential for cell based therapies and we consider the monkey an important translational model in which to evaluate safety, efficacy and feasibility of regenerative medicine approaches based on the transplantation of stem cell-derived progeny. Finally, efforts to produce genetically-identical monkeys by nuclear transfer have been briefly summarized. PMID:15200674
Du, Xiuquan; Hu, Changlin; Yao, Yu; Sun, Shiwei; Zhang, Yanping
2017-12-12
In bioinformatics, exon skipping (ES) event prediction is an essential part of alternative splicing (AS) event analysis. Although many methods have been developed to predict ES events, a solution has yet to be found. In this study, given the limitations of machine learning algorithms with RNA-Seq data or genome sequences, a new feature, called RS (RNA-seq and sequence) features, was constructed. These features include RNA-Seq features derived from the RNA-Seq data and sequence features derived from genome sequences. We propose a novel Rotation Forest classifier to predict ES events with the RS features (RotaF-RSES). To validate the efficacy of RotaF-RSES, a dataset from two human tissues was used, and RotaF-RSES achieved an accuracy of 98.4%, a specificity of 99.2%, a sensitivity of 94.1%, and an area under the curve (AUC) of 98.6%. When compared to the other available methods, the results indicate that RotaF-RSES is efficient and can predict ES events with RS features.
Yang, Jaw-Yen; Yan, Chih-Yuan; Diaz, Manuel; Huang, Juan-Chen; Li, Zhihui; Zhang, Hanxin
2014-01-01
The ideal quantum gas dynamics as manifested by the semiclassical ellipsoidal-statistical (ES) equilibrium distribution derived in Wu et al. (Wu et al. 2012 Proc. R. Soc. A 468, 1799–1823 (doi:10.1098/rspa.2011.0673)) is numerically studied for particles of three statistics. This anisotropic ES equilibrium distribution was derived using the maximum entropy principle and conserves the mass, momentum and energy, but differs from the standard Fermi–Dirac or Bose–Einstein distribution. The present numerical method combines the discrete velocity (or momentum) ordinate method in momentum space and the high-resolution shock-capturing method in physical space. A decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. Computations of two-dimensional Riemann problems are presented, and various contours of the quantities unique to this ES model are illustrated. The main flow features, such as shock waves, expansion waves and slip lines and their complex nonlinear interactions, are depicted and found to be consistent with existing calculations for a classical gas. PMID:24399919
Koh, Sehwon; Piedrahita, Jorge A
2014-01-01
Pluripotent stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) provide great potential as cell sources for gene editing to generate genetically modified animals, as well as in the field of regenerative medicine. Stable, long-term ESCs have been established in laboratory mouse and rat; however, isolation of true pluripotent ESCs in domesticated animals such as pigs and dogs have been less successful. Initially, domesticated animal pluripotent cell lines were referred to as "embryonic stem-like" cells owing to their similar morphologic characteristics to mouse ESCs, but accompanied by a limited ability to proliferate in vitro in an undifferentiated state. That is, they shared some but not all the characteristics of true ESCs. More recently, advances in reprogramming using exogenous transcription factors, combined with the utilization of small chemical inhibitors of key biochemical pathways, have led to the isolation of iPSCs. In this review, we provide a historical perspective of the isolation of various types of pluripotent stem cells in domesticated animals. In addition, we summarize the latest progress and limitations in the derivation and application of iPSCs. Copyright © 2014 Elsevier Inc. All rights reserved.
[Progress and application prospect of pig induced pluripotent stem cells].
Yan, Yi-Bo; Zhang, Yan-Li; Qi, Wei-Wei; Wan, Yong-Jie; Fan, Yi-Xuan; Wang, Feng
2011-04-01
Pig has always been the focus of establishing a big ungulate animal ES cell lines because of its convenient source, genetic similarity with humans, and their importance in animal husbandry, but little development is achieved. Induced pluripotent stem cells technology creates a new method of reprogramming somatic cells to pluripotent state. As the pig iPS cells is established and perfected, pig ES cells will be established in the coming years. The pig iPS cells will give a hint on other livestock ES cells. On the other hand, pig iPS cells can be used to improve the efficiency of transgenic cloning pigs to conduct effective breeding and conservation of breeds. It is particularly important that the pig iPS cells can provide new model for human medical research, a new donor cells for human tissue and organ engineering, and have extensive and far-reaching impact on the biomedical field. Here, we briefly review the major progress of iPS cells, and emphasize current state of pig iPS cells and its application prospect in biomedicine and animal husbandry in order to provide a useful reference for researchers working in this area.
Lee, Nikki P Y; Cheng, C Yan
2004-01-01
The seminiferous tubule of the mammalian testis is largely composed of Sertoli and germ cells, which coordinate with Leydig cells in the interstitium and perform two major physiological functions, namely spermatogenesis and steroidogenesis respectively. Each tubule is morphologically divided into (i) the seminiferous epithelium composing Sertoli and germ cells, and (ii) the basement membrane (a modified form of extracellular matrix); underneath this lies the collagen fibril network, the myoid cell layer, and the lymphatic vessel, which collectively constitute the tunica propia. In the seminiferous epithelium, of rodent testes each type A1 spermatogonium (diploid, 2n) differentiates into 256 elongated spermatids (haploid, 1n) during spermatogenesis. Additionally, developing germ cells must migrate progressively from the basal to the luminal edge of the adluminal compartment so that fully developed spermatids can be released into the lumen at spermiation. Without this timely event of cell movement, spermatogenesis cannot reach completion and infertility will result. Yet developing round elongating/elongated spermatids must remain attached to the epithelium via a specialized Sertoli-germ cell actin-based adherens junction (AJ) type known as ectoplasmic specialization (ES), which is crucial not only for cell attachment but also for spermatid movement and orientation in the epithelium. However, the biochemical composition and molecular architecture of the protein complexes that constitute the ES have only recently been studied. Furthermore, the signalling pathways that regulate ES dynamics are virtually unknown. This review highlights recent advances in these two areas of research. It is expected that, if adequately expanded, these studies should yield new insights into the development of novel contraceptives targeted to perturb ES function in the testis. The potential to specifically target the ES may also mean that contraceptive action could be achieved without perturbing the hypothalamic-pituitary-testicular axis.
The Science and Ethics of Induced Pluripotency: What Will Become of Embryonic Stem Cells?
Zacharias, David G.; Nelson, Timothy J.; Mueller, Paul S.; Hook, C. Christopher
2011-01-01
For over a decade, the field of stem cell research has advanced tremendously and gained new attention in light of novel insights and emerging developments for regenerative medicine. Invariably, multiple considerations come into play, and clinicians and researchers must weigh the benefits of certain stem cell platforms against the costs they incur. Notably, human embryonic stem (hES) cell research has been a source of continued debate, leading to differing policies and regulations worldwide. This article briefly reviews current stem cell platforms, looking specifically at the two existing pluripotent lines available for potential therapeutic applications: hES cells and induced pluripotent stem (iPS) cells. We submit iPS technology as a viable and possibly superior alternative for future medical and research endeavors as it obviates many ethical and resource-related concerns posed by hES cells while prospectively matching their potential for scientific use. However, while the clinical realities of iPS cells appear promising, we must recognize the current limitations of this technology, avoid hype, and articulate ethically acceptable medical and scientific goals. PMID:21719620
Adoptive natural killer cell therapy is effective in reducing pulmonary metastasis of Ewing sarcoma
Tong, Alexander A.; Hashem, Hasan; Eid, Saada; Allen, Frederick; Kingsley, Daniel
2017-01-01
ABSTRACT The survival of patients with metastatic or relapsed Ewing sarcoma (ES) remains dismal despite intensification of combination chemotherapy and radiotherapy, precipitating the need for novel alternative therapies with minimal side effects. Natural killer (NK) cells are promising additions to the field of cellular immunotherapy. Adoptive NK cell therapy has shown encouraging results in hematological malignancies. Despite these initial promising successes, however, NK cell therapy for solid tumors remains to be investigated using in vivo tumor models. The purpose of this study is to evaluate the efficacy of ex vivo expanded human NK cells in controlling primary and metastatic ES tumor growth in vitro and in vivo. Using membrane-bound IL-21 containing K562 (K562-mbIL-21) expansion platform, we were able to obtain sufficient numbers of expanded NK (eNK) cells that display favorable activation phenotypes and inflammatory cytokine secretion, along with a strong in vitro cytotoxic effect against ES. Furthermore, eNK therapy significantly decreased lung metastasis without any significant therapeutic effect in limiting primary tumor growth in an in vivo xenograft model. Our data demonstrate that eNK may be effective against pulmonary metastatic ES, but challenges remain to direct proper trafficking and augmenting the cytotoxic function of eNK to target primary tumor sites. PMID:28507811
EphA2 receptor is a key player in the metastatic onset of Ewing sarcoma.
Garcia-Monclús, Silvia; López-Alemany, Roser; Almacellas-Rabaiget, Olga; Herrero-Martín, David; Huertas-Martinez, Juan; Lagares-Tena, Laura; Alba-Pavón, Piedad; Hontecillas-Prieto, Lourdes; Mora, Jaume; de Álava, Enrique; Rello-Varona, Santi; Giangrande, Paloma H; Tirado, Oscar M
2018-03-26
Ewing sarcoma (ES) is the second most common bone malignancy affecting children and young adults with poor prognosis due to high metastasis incidence. Our group previously described that EphA2, a tyrosine kinase receptor, promotes angiogenesis in Ewing sarcoma (ES) cells via ligand-dependent signaling. Now we wanted to explore EphA2 ligand-independent activity, controlled upon phosphorylation at S897 (p-EphA2 S897 ), as it has been linked to metastasis in several malignancies. By reverse genetic engineering we explored the phenotypic changes after EphA2 removal or reintroduction. Gene expression microarray was used to identify key players in EphA2 signaling. Mice were employed to reproduce metastatic processes from orthotopically implanted engineered cells. We established a correlation between ES cells aggressiveness and p-EphA2 S897 . Moreover, stable overexpression of EphA2 in low EphA2 expression ES cells enhanced proliferation and migration, but not a non-phosphorylable mutant (S987A). Consistently, silencing of EphA2 reduced tumorigenicity, migration and invasion in vitro, and lung metastasis incidence in experimental and spontaneous metastasis assays in vivo. A gene expression microarray revealed the implication of EphA2 in cell signaling, cellular movement and survival. ADAM19 knockdown by siRNA technology strongly reproduced the negative effects on cell migration observed after EphA2 silencing. Altogether, our results suggest that p-EphA2 S897 correlates with aggressiveness in ES, so blocking its function may be a promising treatment. © 2018 UICC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Xiao-shan; Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501; Fujishiro, Masako
In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells weremore » tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.« less
Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast™ chemical screening and prioritization research project. Metabolites from hES cultur...
A resource of vectors and ES cells for targeted deletion of microRNAs in mice
Prosser, Haydn M.; Koike-Yusa, Hiroko; Cooper, James D.; Law, Frances C.; Bradley, Allan
2011-01-01
The 21-23 nucleotide single-stranded RNAs classified as microRNAs (miRNA) perform fundamental roles in a wide range of cellular and developmental processes. miRNAs regulate protein expression through sequence-specific base pairing with target messenger RNAs (mRNA) reducing both their stability and the process of protein translation1, 2. At least 30% of protein coding genes appear to be conserved targets for miRNAs1. In contrast to the protein coding genes3, 4, no public resource of miRNA mouse mutant alleles exists. We have generated a library of highly germ-line transmissible C57BL/6N mouse mutant embryonic stem (ES) cells with targeted deletions for the majority of miRNA genes currently annotated within the miRBase registry5. These alleles have been designed to be highly adaptable research tools that can be efficiently altered to create reporter, conditional and other allelic variants. This ES cell resource can be searched electronically and is available from ES cell repositories for distribution to the scientific community6. PMID:21822254
Xiao, Xiang; Mruk, Dolores D.
2013-01-01
During spermatogenesis, extensive restructuring takes place at the cell-cell interface since developing germ cells migrate progressively from the basal to the adluminal compartment of the seminiferous epithelium. Since germ cells per se are not motile cells, their movement relies almost exclusively on the Sertoli cell. Nonetheless, extensive exchanges in signaling take place between these cells in the seminiferous epithelium. c-Yes, a nonreceptor protein tyrosine kinase belonging to the Src family kinases (SFKs) and a crucial signaling protein, was recently shown to be upregulated at the Sertoli cell-cell interface at the blood-testis barrier (BTB) at stages VIII–IX of the seminiferous epithelial cycle of spermatogenesis. It was also highly expressed at the Sertoli cell-spermatid interface known as apical ectoplasmic specialization (apical ES) at stage V to early stage VIII of the epithelial cycle during spermiogenesis. Herein, it was shown that the knockdown of c-Yes by RNAi in vitro and in vivo affected both Sertoli cell adhesion at the BTB and spermatid adhesion at the apical ES, causing a disruption of the Sertoli cell tight junction-permeability barrier function, germ cell loss from the seminiferous epithelium, and also a loss of spermatid polarity. These effects were shown to be mediated by changes in distribution and/or localization of adhesion proteins at the BTB (e.g., occludin, N-cadherin) and at the apical ES (e.g., nectin-3) and possibly the result of changes in the underlying actin filaments at the BTB and the apical ES. These findings implicate that c-Yes is a likely target of male contraceptive research. PMID:23169788
Global distribution of neutral wind shear associated with sporadic E layers derived from GAIA
NASA Astrophysics Data System (ADS)
Shinagawa, H.; Miyoshi, Y.; Jin, H.; Fujiwara, H.
2017-04-01
There have been a number of papers reporting that the statistical occurrence rate of the sporadic E (Es) layer depends not only on the local time and season but also on the geographical location, implying that geographical and seasonal dependence in vertical neutral wind shear is one of the factors responsible for the geographical and seasonal dependence in Es layer occurrences rate. To study the role of neutral wind shear in the global distribution of the Es layer occurrence rate, we employ a self-consistent atmosphere-ionosphere coupled model called GAIA (Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy), which incorporates meteorological reanalysis data in the lower atmosphere. The average distribution of neutral wind shear in the lower thermosphere is derived for the June-August and December-February periods, and the global distribution of vertical ion convergence is obtained to estimate the Es layer occurrence rate. It is found that the local and seasonal dependence of neutral wind shear is an important factor in determining the dependence of the Es layer occurrence rate on geographical distribution and seasonal variation. However, there are uncertainties in the simulated vertical neutral wind shears, which have larger scales than the observed wind shear scales. Furthermore, other processes such as localization of magnetic field distribution, background metallic ion distribution, ionospheric electric fields, and chemical processes of metallic ions are also likely to make an important contribution to geographical distribution and seasonal variation of the Es occurrence rate.
Lai, Yue-Yun; Feng, Lin; Wang, Zheng; Lü, Shan; Dang, Hui; Shi, Yan; He, Qi; Huang, Xiao-Jun
2010-02-01
This study was aimed to verify the efficacy of home-made LSI bcr/abl ES probe for detection of bcr/abl fusion gene and derivative chromosome 9 deletions in chronic myeloid leukemia (CML). Fluorescence in situ hybridization (FISH) was carried out with dual color bcr/abl extra signal (ES) probe in 97 cases of CML based on morphology and cytogenetic karyotype and 129 cases of non-hematological malignancies/non-myeloproliferative diseases with normal cytogenetic karyotype. For the patients with signals of 1R1G1F indicating der(9) deletions, FISH were done using ASS DNA probe. The results showed that 91 cases with standard t(9;22) and 6 cases with variant translocation of t(9;22) were detected by conventional G banding technique. All of the 97 patients displayed bcr/abl fusion gene by ES-FISH, including 16 cases with signal patterns of 1R1G1F showing der(9) deletions. Among the 16 cases with der(9) deletions, 13 cases were detected to have deletions of ASS gene. Meanwhile, none of the 129 cases of negative control showed bcr/abl fusion gene by ES-FISH. It is concluded that home-made LSI bcr/abl ES probe is effective to identify the bcr/abl fusion gene and der(9) deletions in CML, and the ES-FISH results are consistent with conventional cytogenetic karyotype.
Mehling, Wolf E.; Lown, E. Anne; Dvorak, Christopher C.; Cowan, Morton J.; Horn, Biljana N.; Dunn, Elizabeth A.; Acree, Michael; Abrams, Donald I.; Hecht, Frederick M.
2012-01-01
Background. Pediatric hematopoietic cell transplant (HCT) is a lifesaving treatment that often results in physical and psychological discomfort. An acupressure-massage intervention may improve symptom management in this setting. Methods. This randomized controlled pilot trial compared a combined massage-acupressure intervention to usual care. Children were offered three practitioner-provided sessions per week throughout hospitalization. Parents were trained to provide additional acupressure as needed. Symptoms were assessed using nurses' reports and two questionnaires, the behavioral affective and somatic experiences scale and the Peds quality of life cancer module. Results. We enrolled 23 children, ages 5 to 18. Children receiving the intervention reported fewer days of mucositis (Hedges' g effect size ES = 0.63), lower overall symptom burden (ES = 0.26), feeling less tired and run-down (ES = 0.86), having fewer moderate/severe symptoms of pain, nausea, and fatigue (ES = 0.62), and less pain (ES = 0.42). The intervention group showed trends toward increasing contentness/serenity (ES = +0.50) and decreasing depression (ES = −0.45), but not decreased anxiety (ES = +0.42). Differences were not statistically significant. Discussion. Feasibility of studying massage-acupressure was established in children undergoing HCT. Larger studies are needed to test the efficacy of such interventions in reducing HCT-associated symptoms in children. PMID:22454665
Production of cloned mice from somatic cells, ES cells, and frozen bodies.
Wakayama, Sayaka; Mizutani, Eiji; Wakayama, Teruhiko
2010-01-01
Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, therefore, the nuclear transfer (NT) method has been thought of as a "black box approach" and inadequate to determine the detail of how genomic reprogramming occurs. However, only the NT approach can reveal dynamic and global modifications in the epigenome without using genetic modification, as well as can create live animals. At present, this is the only technique available for the preservation and propagation of valuable genetic resources from mutant mice that are infertile or too old, or recovered from carcasses, without the use of germ cells. This chapter describes a basic protocol for mouse cloning and embryonic stem (ES) cell establishment from cloned embryo using a piezo-actuated micromanipulator. This technique will greatly help not only in mouse cloning but also in other forms of micromanipulation such as intracytoplasmic sperm injection (ICSI) into oocytes or ES cell injection into blastocysts. In addition, we describe a new, more efficient mouse cloning protocol using histone deacetylase inhibitor (HDACi), which increases the success rates of cloned mice or establish rate of ES cells to fivefold. Copyright (c) 2010 Elsevier Inc. All rights reserved.
High-content screening of small compounds on human embryonic stem cells.
Barbaric, Ivana; Gokhale, Paul J; Andrews, Peter W
2010-08-01
Human ES (embryonic stem) cells and iPS (induced pluripotent stem) cells have been heralded as a source of differentiated cells that could be used in the treatment of degenerative diseases, such as Parkinson's disease or diabetes. Despite the great potential for their use in regenerative therapy, the challenge remains to understand the basic biology of these remarkable cells, in order to differentiate them into any functional cell type. Given the scale of the task, high-throughput screening of agents and culture conditions offers one way to accelerate these studies. The screening of small-compound libraries is particularly amenable to such high-throughput methods. Coupled with high-content screening technology that enables simultaneous assessment of multiple cellular features in an automated and quantitative way, this approach is proving powerful in identifying both small molecules as tools for manipulating stem cell fates and novel mechanisms of differentiation not previously associated with stem cell biology. Such screens performed on human ES cells also demonstrate the usefulness of human ES/iPS cells as cellular models for pharmacological testing of drug efficacy and toxicity, possibly a more imminent use of these cells than in regenerative medicine.
Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael
2011-02-01
In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08-0.85 MPa) and times (5-60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Hydrogen-bonded LbL Shells for Living Cell Surface Engineering
2011-03-21
unicellular organism duplicates, i.e., one cell produces two in a given period of time (see divided cells as indicated by arrows in Fig. 10c). During...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Georgia Institute of Technology,School of Materials Science and Engineering,Atlanta,GA,30332 8...PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT
[Embryonic stem cells. Future perspectives].
Groebner, M; David, R; Franz, W M
2006-05-01
Embryonic stem cells (ES cells) are able to differentiate into any cell type, and therefore represent an excellent source for cellular replacement therapies in the case of widespread diseases, for example heart failure, diabetes, Parkinson's disease and spinal cord injury. A major prerequisite for their efficient and safe clinical application is the availability of pure populations for direct cell transplantation or tissue engineering as well as the immunological compatibility of the transplanted cells. The expression of human surface markers under the control of cell type specific promoters represents a promising approach for the selection of cardiomyocytes and other cell types for therapeutic applications. The first human clinical trial using ES cells will start in the United States this year.
A hard X-ray view on two distant TeV-blazars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimer, A.; Costamante, L.; Reimer, O.
2008-12-24
We present a data set derived from {approx}50 ksec continuous Suzaku observations and covered with quasi-simultaneous TeV-observations (HESS, MAGIC) of two of the more distant TeV-blazars detected to date: 1ES 1101-232 and 1ES 1553+113. Both sources are found in a non-variable state with combined XIS-PIN spectra indicating downward curvature up to several tens of keV. 1ES 101-232 was found in a quiet state with the lowest X-ray flux ever measured. We discuss the contemporaneous broadband spectral energy distribution (SED) of both sources and implications from absorption in the EBL for the redshift of 1ES 1553+113.
Zhao, Guoying; Karageorgos, Litsa; Hutchinson, Rhonda G; Hopwood, John J; Hemsley, Kim
2010-05-01
Mucopolysaccharidosis type IIIA (MPS IIIA) is a lysosomal storage disorder (LSD) in which an absence of sulfamidase results in incomplete degradation and subsequent accumulation of its substrate, heparan sulfate. Most neurodegenerative LSD remain untreatable. However, therapy options, such as gene, enzyme end cell therapy, are under investigation. Previously, we have constructed an embryonic stem (ES) cell line (NS21) that over-expresses human sulphamidase as a potential treatment for murine MPS IIIA. In the present study the sulfatase-modifying factor I (SUMF1) and enhanced green fluorescence protein (eGFP) genes were co-introduced under a cytomegalovirus (CMV) promoter into NS21 cells, to enhance further sulfamidase activity and provide a marker for in vivo cell tracking, respectively. eGFP was also introduced under the control of the human elongation factor-1alpha (hEF-1alpha) promoter to compare the stability of transgene expression. During differentiation of ES cells into glial precursors, SUMF1 was down-regulated and was hardly detectable by day 18 of differentiation. Likewise, eGFP expression was heterogeneous and highly unstable. Use of a human EF-1alpha promoter resulted in more homogeneous eGFP expression, with approximately 50% of cells eGFP positive following differentiation into glial precursors. Compared with NS21 cells, the outgrowth of eGFP-expressing cells was not as confluent when differentiated into glial precursors. Our data suggest that SUMF1 enhances sulfamidase activity in ES cells, hEF-1alpha is a stronger promoter than CMV for ES cells and over-expression of eGFP may affect cell growth and contribute to unstable gene expression.
Marchetti, Sandrine; Gimond, Clotilde; Iljin, Kristiina; Bourcier, Christine; Alitalo, Kari; Pouysségur, Jacques; Pagès, Gilles
2002-05-15
Large scale purification of endothelial cells is of great interest as it could improve tissue transplantation, reperfusion of ischemic tissues and treatment of pathologies in which an endothelial cell dysfunction exists. In this study, we describe a novel genetic approach that selects for endothelial cells from differentiating embryonic stem (ES) cells. Our strategy is based on the establishment of ES-cell clones that carry an integrated puromycin resistance gene under the control of a vascular endothelium-specific promoter, tie-1. Using EGFP as a reporter gene, we first confirmed the endothelial specificity of the tie-1 promoter in the embryoid body model and in cells differentiated in 2D cultures. Subsequently, tie-1-EGFP ES cells were used as recipients for the tie-1-driven puror transgene. The resulting stable clones were expanded and differentiated for seven days in the presence of VEGF before puromycin selection. As expected, puromycin-resistant cells were positive for EGFP and also expressed several endothelial markers, including CD31, CD34, VEGFR-1, VEGFR-2, Tie-1, VE-cadherin and ICAM-2. Release from the puromycin selection resulted in the appearance of alpha-smooth muscle actin-positive cells. Such cells became more numerous when the population was cultured on laminin-1 or in the presence of TGF-beta1, two known inducers of smooth muscle cell differentiation. The hypothesis that endothelial cells or their progenitors may differentiate towards a smooth muscle cell phenotype was further supported by the presence of cells expressing both CD31 and alpha-smooth muscle actin markers. Finally, we show that purified endothelial cells can incorporate into the neovasculature of transplanted tumors in nude mice. Taken together, these results suggest that application of endothelial lineage selection to differentiating ES cells may become a useful approach for future pro-angiogenic and endothelial cell replacement therapies.
Two-dimensional relativistic space charge limited current flow in the drift space
NASA Astrophysics Data System (ADS)
Liu, Y. L.; Chen, S. H.; Koh, W. S.; Ang, L. K.
2014-04-01
Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.
Qin, Weiping; Sun, Li; Cao, Jay; Peng, Yuanzhen; Collier, Lauren; Wu, Yong; Creasey, Graham; Li, Jianhua; Qin, Yiwen; Jarvis, Jonathan; Bauman, William A.; Zaidi, Mone; Cardozo, Christopher
2013-01-01
Muscle and bone work as a functional unit. Cellular and molecular mechanisms underlying effects of muscle activity on bone mass are largely unknown. Spinal cord injury (SCI) causes muscle paralysis and extensive sublesional bone loss and disrupts neural connections between the central nervous system (CNS) and bone. Muscle contraction elicited by electrical stimulation (ES) of nerves partially protects against SCI-related bone loss. Thus, application of ES after SCI provides an opportunity to study the effects of muscle activity on bone and roles of the CNS in this interaction, as well as the underlying mechanisms. Using a rat model of SCI, the effects on bone of ES-induced muscle contraction were characterized. The SCI-mediated increase in serum C-terminal telopeptide of type I collagen (CTX) was completely reversed by ES. In ex vivo bone marrow cell cultures, SCI increased the number of osteoclasts and their expression of mRNA for several osteoclast differentiation markers, whereas ES significantly reduced these changes; SCI decreased osteoblast numbers, but increased expression in these cells of receptor activator of NF-κB ligand (RANKL) mRNA, whereas ES increased expression of osteoprotegerin (OPG) and the OPG/RANKL ratio. A microarray analysis revealed that ES partially reversed SCI-induced alterations in expression of genes involved in signaling through Wnt, FSH, parathyroid hormone (PTH), oxytocin, and calcineurin/nuclear factor of activated T-cells (NFAT) pathways. ES mitigated SCI-mediated increases in mRNA levels for the Wnt inhibitors DKK1, sFRP2, and sclerostin in ex vivo cultured osteoblasts. Our results demonstrate an anti-bone-resorptive activity of muscle contraction by ES that develops rapidly and is independent of the CNS. The pathways involved, particularly Wnt signaling, suggest future strategies to minimize bone loss after immobilization. PMID:23530032
NASA Astrophysics Data System (ADS)
Zhou, Junfeng; Cheng, Liang; Sun, Xiaodan; Wang, Xiumei; Jin, Shouhong; Li, Junxiang; Wu, Qiong
2016-09-01
Adult central nervous system (CNS) tissue has a limited capacity to recover after trauma or disease. Recent medical cell therapy using polymeric biomaterialloaded stem cells with the capability of differentiation to specific neural population has directed focuses toward the recovery of CNS. Fibers that can provide topographical, biochemical and electrical cues would be attractive for directing the differentiation of stem cells into electro-responsive cells such as neuronal cells. Here we report on the fabrication of an electrospun polypyrrole/polylactide composite nanofiber film that direct or determine the fate of mesenchymal stem cells (MSCs), via combination of aligned surface topography, and electrical stimulation (ES). The surface morphology, mechanical properties and electric properties of the film were characterized. Comparing with that on random surface film, expression of neurofilament-lowest and nestin of human umbilical cord mesenchymal stemcells (huMSCs) cultured on film with aligned surface topography and ES were obviously enhanced. These results suggest that aligned topography combining with ES facilitates the neurogenic differentiation of huMSCs and the aligned conductive film can act as a potential nerve scaffold.
Behr, Rüdiger; Heneweer, Carola; Viebahn, Christoph; Denker, Hans-Werner; Thie, Michael
2005-01-01
Rhesus monkey embryonic stem (rhES) cells were grown on mouse embryonic fibroblast (MEF) feeder layers for up to 10 days to form multilayered colonies. Within this period, stem cell colonies differentiated transiently into complex structures with a disc-like morphology. These complex colonies were characterized by morphology, immunohistochemistry, and marker mRNA expression to identify processes of epithelialization as well as epithelial-mesenchymal transition (EMT) and pattern formation. Typically, differentiated colonies were comprised of an upper and a lower ES cell layer, the former growing on top of the layer of MEF cells whereas the lower ES cell layer spread out underneath the MEF cells. Interestingly, in the central part of the colonies, a roundish pit developed. Here the feeder layer disappeared, and upper layer cells seemed to ingress and migrate through the pit downward to form the lower layer while undergoing a transition from the epithelial to the mesenchymal phenotype, which was indicated by the loss of the marker proteins E-cadherin and ZO-1 in the lower layer. In support of this, we found a concomitant 10-fold upregulation of the gene Snail2, which is a key regulator of the EMT process. Conversion of epiblast to mesoderm was also indicated by the regulated expression of the mesoderm marker Brachyury. An EMT is a characteristic process of vertebrate gastrulation. Thus, these rhES cell colonies may be an interesting model for studies on some basic processes involved in early primate embryogenesis and may open new ways to study the regulation of EMT in vitro.
Sugiyama, Hayami; Takahashi, Kazutoshi; Yamamoto, Takuya; Iwasaki, Mio; Narita, Megumi; Nakamura, Masahiro; Rand, Tim A; Nakagawa, Masato; Watanabe, Akira; Yamanaka, Shinya
2017-01-10
Novel APOBEC1 target 1 (Nat1) (also known as "p97," "Dap5," and "Eif4g2") is a ubiquitously expressed cytoplasmic protein that is homologous to the C-terminal two thirds of eukaryotic translation initiation factor 4G (Eif4g1). We previously showed that Nat1-null mouse embryonic stem cells (mES cells) are resistant to differentiation. In the current study, we found that NAT1 and eIF4G1 share many binding proteins, such as the eukaryotic translation initiation factors eIF3 and eIF4A and ribosomal proteins. However, NAT1 did not bind to eIF4E or poly(A)-binding proteins, which are critical for cap-dependent translation initiation. In contrast, compared with eIF4G1, NAT1 preferentially interacted with eIF2, fragile X mental retardation proteins (FMR), and related proteins and especially with members of the proline-rich and coiled-coil-containing protein 2 (PRRC2) family. We also found that Nat1-null mES cells possess a transcriptional profile similar, although not identical, to the ground state, which is established in wild-type mES cells when treated with inhibitors of the ERK and glycogen synthase kinase 3 (GSK3) signaling pathways. In Nat1-null mES cells, the ERK pathway is suppressed even without inhibitors. Ribosome profiling revealed that translation of mitogen-activated protein kinase kinase kinase 3 (Map3k3) and son of sevenless homolog 1 (Sos1) is suppressed in the absence of Nat1 Forced expression of Map3k3 induced differentiation of Nat1-null mES cells. These data collectively show that Nat1 is involved in the translation of proteins that are required for cell differentiation.
Javaheri, Tahereh; Kazemi, Zahra; Pencik, Jan; Pham, Ha Tt; Kauer, Maximilian; Noorizadeh, Rahil; Sax, Barbara; Nivarthi, Harini; Schlederer, Michaela; Maurer, Barbara; Hofbauer, Maximillian; Aryee, Dave Nt; Wiedner, Marc; Tomazou, Eleni M; Logan, Malcolm; Hartmann, Christine; Tuckermann, Jan P; Kenner, Lukas; Mikula, Mario; Dolznig, Helmut; Üren, Aykut; Richter, Günther H; Grebien, Florian; Kovar, Heinrich; Moriggl, Richard
2016-10-13
Ewing sarcoma (ES) is the second most frequent childhood bone cancer driven by the EWS/FLI1 (EF) fusion protein. Genetically defined ES models are needed to understand how EF expression changes bone precursor cell differentiation, how ES arises and through which mechanisms of inhibition it can be targeted. We used mesenchymal Prx1-directed conditional EF expression in mice to study bone development and to establish a reliable sarcoma model. EF expression arrested early chondrocyte and osteoblast differentiation due to changed signaling pathways such as hedgehog, WNT or growth factor signaling. Mesenchymal stem cells (MSCs) expressing EF showed high self-renewal capacity and maintained an undifferentiated state despite high apoptosis. Blocking apoptosis through enforced BCL2 family member expression in MSCs promoted efficient and rapid sarcoma formation when transplanted to immunocompromised mice. Mechanistically, high BCL2 family member and CDK4, but low P53 and INK4A protein expression synergized in Ewing-like sarcoma development. Functionally, knockdown of Mcl1 or Cdk4 or their combined pharmacologic inhibition resulted in growth arrest and apoptosis in both established human ES cell lines and EF-transformed mouse MSCs. Combinatorial targeting of survival and cell cycle progression pathways could counteract this aggressive childhood cancer.
Javaheri, Tahereh; Kazemi, Zahra; Pencik, Jan; Pham, Ha TT; Kauer, Maximilian; Noorizadeh, Rahil; Sax, Barbara; Nivarthi, Harini; Schlederer, Michaela; Maurer, Barbara; Hofbauer, Maximillian; Aryee, Dave NT; Wiedner, Marc; Tomazou, Eleni M; Logan, Malcolm; Hartmann, Christine; Tuckermann, Jan P; Kenner, Lukas; Mikula, Mario; Dolznig, Helmut; Üren, Aykut; Richter, Günther H; Grebien, Florian; Kovar, Heinrich; Moriggl, Richard
2016-01-01
Ewing sarcoma (ES) is the second most frequent childhood bone cancer driven by the EWS/FLI1 (EF) fusion protein. Genetically defined ES models are needed to understand how EF expression changes bone precursor cell differentiation, how ES arises and through which mechanisms of inhibition it can be targeted. We used mesenchymal Prx1-directed conditional EF expression in mice to study bone development and to establish a reliable sarcoma model. EF expression arrested early chondrocyte and osteoblast differentiation due to changed signaling pathways such as hedgehog, WNT or growth factor signaling. Mesenchymal stem cells (MSCs) expressing EF showed high self-renewal capacity and maintained an undifferentiated state despite high apoptosis. Blocking apoptosis through enforced BCL2 family member expression in MSCs promoted efficient and rapid sarcoma formation when transplanted to immunocompromised mice. Mechanistically, high BCL2 family member and CDK4, but low P53 and INK4A protein expression synergized in Ewing-like sarcoma development. Functionally, knockdown of Mcl1 or Cdk4 or their combined pharmacologic inhibition resulted in growth arrest and apoptosis in both established human ES cell lines and EF-transformed mouse MSCs. Combinatorial targeting of survival and cell cycle progression pathways could counteract this aggressive childhood cancer. PMID:27735950
Gamma-Glutamylcysteine Inhibits Oxidative Stress in Human Endothelial Cells
2012-01-01
NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) United States Army Institute of Surgical Research, JBSA Fort Sam Houston...TX 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR...Bartlesville, OK, USA), keeping cells cold in an ice-bath. Aliquots of the cell homogenate were kept at −70 °C until the performance of thiobarbituric acid
Propagation of senescent mice using nuclear transfer embryonic stem cell lines.
Mizutani, Eiji; Ono, Tetsuo; Li, Chong; Maki-Suetsugu, Rinako; Wakayama, Teruhiko
2008-09-01
Senescent mice are often infertile, and the cloning success rate decreases with age, making it almost impossible to produce cloned progeny directly from such animals. In this study, we tried to produce offspring from such "unclonable" senescent mice using nuclear transfer techniques. Donor fibroblasts were obtained from the tail tips of mice aged up to 2 years and 9 months. Although most attempts failed to produce cloned mice by direct somatic cell nuclear transfer, we managed to establish nuclear transfer embryonic stem (ntES) cell lines from all aged mice with an establishment rate of 10-25%, irrespective of sex or strain. Finally, cloned mice were obtained from these ntES cells by a second round of nuclear transfer. In addition, healthy offspring was obtained from all aged donors via germline transmission of ntES cells in chimeric mice. This technique is thus applicable to the propagation of a variety of animals, irrespective of age or fertile potential.
Non-Viral Generation of Marmoset Monkey iPS Cells by a Six-Factor-in-One-Vector Approach
Debowski, Katharina; Warthemann, Rita; Lentes, Jana; Salinas-Riester, Gabriela; Dressel, Ralf; Langenstroth, Daniel; Gromoll, Jörg; Sasaki, Erika; Behr, Rüdiger
2015-01-01
Groundbreaking studies showed that differentiated somatic cells of mouse and human origin could be reverted to a stable pluripotent state by the ectopic expression of only four proteins. The resulting pluripotent cells, called induced pluripotent stem (iPS) cells, could be an alternative to embryonic stem cells, which are under continuous ethical debate. Hence, iPS cell-derived functional cells such as neurons may become the key for an effective treatment of currently incurable degenerative diseases. However, besides the requirement of efficacy testing of the therapy also its long-term safety needs to be carefully evaluated in settings mirroring the clinical situation in an optimal way. In this context, we chose the long-lived common marmoset monkey (Callithrix jacchus) as a non-human primate species to generate iPS cells. The marmoset monkey is frequently used in biomedical research and is gaining more and more preclinical relevance due to the increasing number of disease models. Here, we describe, to our knowledge, the first-time generation of marmoset monkey iPS cells from postnatal skin fibroblasts by non-viral means. We used the transposon-based, fully reversible piggyback system. We cloned the marmoset monkey reprogramming factors and established robust and reproducible reprogramming protocols with a six-factor-in-one-construct approach. We generated six individual iPS cell lines and characterized them in comparison with marmoset monkey embryonic stem cells. The generated iPS cells are morphologically indistinguishable from marmoset ES cells. The iPS cells are fully reprogrammed as demonstrated by differentiation assays, pluripotency marker expression and transcriptome analysis. They are stable for numerous passages (more than 80) and exhibit euploidy. In summary, we have established efficient non-viral reprogramming protocols for the derivation of stable marmoset monkey iPS cells, which can be used to develop and test cell replacement therapies in preclinical settings. PMID:25785453
Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach.
Debowski, Katharina; Warthemann, Rita; Lentes, Jana; Salinas-Riester, Gabriela; Dressel, Ralf; Langenstroth, Daniel; Gromoll, Jörg; Sasaki, Erika; Behr, Rüdiger
2015-01-01
Groundbreaking studies showed that differentiated somatic cells of mouse and human origin could be reverted to a stable pluripotent state by the ectopic expression of only four proteins. The resulting pluripotent cells, called induced pluripotent stem (iPS) cells, could be an alternative to embryonic stem cells, which are under continuous ethical debate. Hence, iPS cell-derived functional cells such as neurons may become the key for an effective treatment of currently incurable degenerative diseases. However, besides the requirement of efficacy testing of the therapy also its long-term safety needs to be carefully evaluated in settings mirroring the clinical situation in an optimal way. In this context, we chose the long-lived common marmoset monkey (Callithrix jacchus) as a non-human primate species to generate iPS cells. The marmoset monkey is frequently used in biomedical research and is gaining more and more preclinical relevance due to the increasing number of disease models. Here, we describe, to our knowledge, the first-time generation of marmoset monkey iPS cells from postnatal skin fibroblasts by non-viral means. We used the transposon-based, fully reversible piggyback system. We cloned the marmoset monkey reprogramming factors and established robust and reproducible reprogramming protocols with a six-factor-in-one-construct approach. We generated six individual iPS cell lines and characterized them in comparison with marmoset monkey embryonic stem cells. The generated iPS cells are morphologically indistinguishable from marmoset ES cells. The iPS cells are fully reprogrammed as demonstrated by differentiation assays, pluripotency marker expression and transcriptome analysis. They are stable for numerous passages (more than 80) and exhibit euploidy. In summary, we have established efficient non-viral reprogramming protocols for the derivation of stable marmoset monkey iPS cells, which can be used to develop and test cell replacement therapies in preclinical settings.
Sanz, Carmen; Blázquez, Enrique
2011-09-01
In humans, glucagon-like peptide (GLP-1) functions during adult life as an incretin hormone with anorexigenic and antidiabetogenic properties. Also, the therapeutic potential of GLP-1 in preventing the adipocyte hyperplasia associated with obesity and in bolstering the maintenance of human mesenchymal stem cell (hMSC) stores by promoting the proliferation and cytoprotection of hMSC seems to be relevant. Since these observations suggest a role for GLP-1 during developmental processes, the aim of the present work was to characterize GLP-1 in early development as well as its gene targets in mouse embryonic stem (mES) cells. Mouse embryos E6, E8, and E10.5 and pluripotent mES were used for the inmunodetection of GLP-1 and GLP-1 receptor. Quantitative real-time PCR was used to determine the expression levels of GLP-1R in several tissues from E12.5 mouse embryos. Additionally, GLP-1 gene targets were studied in mES by multiple gene expression analyses. GLP-1 and its receptors were identified in mES and during embryonic development. In pluripotent mES, GLP-1 modified the expression of endodermal, ectodermal, and mesodermal gene markers as well as sonic hedgehog, noggin, members of the fibroblast and hepatic growth factor families, and others involved in pancreatic development. Additionally, GLP-1 promoted the expression of the antiapoptotic gene bcl2 and at the same time reduced proapoptotic caspase genes. Our results indicate that apart from the effects and therapeutic benefits of GLP-1 in adulthood, it may have additional gene targets in mES cells during embryonic life. Furthermore, the pathophysiological implications of GLP-1 imbalance in adulthood may have a counterpart during development.
Picarda, Gaëlle; Matous, Etienne; Amiaud, Jérôme; Charrier, Céline; Lamoureux, François; Heymann, Marie-Françoise; Tirode, Franck; Pitard, Bruno; Trichet, Valérie; Heymann, Dominique; Redini, Françoise
2013-01-01
Ewing's sarcoma (ES) associated with high osyeolytic lesions typically arises in the bones of children and adolescents. The development of multi-disciplinary therapy has increased current long-term survival rates to greater than 50% but only 20% for high risk group patients (relapse, metastases, etc.). Among new therapeutic approaches, osteoprotegerin (OPG), an anti-bone resorption molecule may represent a promising candidate to inhibit RANKL-mediated osteolytic component of ES and consequently to limit the tumor development. Xenogenic orthotopic models of Ewing's sarcoma were induced by intra-osseous injection of human TC-71 ES cells. OPG was administered in vivo by non-viral gene transfer using an amphiphilic non ionic block copolymer. ES bearing mice were assigned to controls (no treatment, synthetic vector alone or F68/empty pcDNA3.1 plasmid) and hOPG treated groups. A substantial but not significant inhibition of tumor development was observed in the hOPG group as compared to control groups. Marked bone lesions were revealed by micro-computed tomography analyses in control groups whereas a normal bone micro-architecture was preserved in the hOPG treated group. RANKL over-expressed in ES animal model was expressed by tumor cells rather than by host cells. However, TRAIL present in the tumor microenvironment may interfere with OPG effect on tumor development and bone remodeling via RANKL inhibition. In conclusion, the use of a xenogenic model of Ewing's sarcoma allowed discriminating between the tumor and host cells responsible for the elevation of RANKL production observed in this tumor and demonstrated the relevance of blocking RANKL by OPG as a promising therapy in ES. PMID:26909278
Statello, Luisa; Maugeri, Marco; Garre, Elena; Nawaz, Muhammad; Wahlgren, Jessica; Papadimitriou, Alexandros; Lundqvist, Christina; Lindfors, Lennart; Collén, Anna; Sunnerhagen, Per; Ragusa, Marco; Purrello, Michele; Di Pietro, Cinzia; Tigue, Natalie; Valadi, Hadi
2018-01-01
The RNA that is packaged into exosomes is termed as exosomal-shuttle RNA (esRNA); however, the players, which take this subset of RNA (esRNA) into exosomes, remain largely unknown. We hypothesized that RNA binding proteins (RBPs) could serve as key players in this mechanism, by making complexes with RNAs and transporting them into exosomes during the biosynthesis of exosomes. Here, we demonstrate the presence of 30 RBPs in exosomes that were shown to form RNA-RBP complexes with both cellular RNA and exosomal-RNA species. To assess the involvement of these RBPs in RNA-transfer into exosomes, the gene transcripts encoding six of the proteins identified in exosomes (HSP90AB1, XPO5, hnRNPH1, hnRNPM, hnRNPA2B1, and MVP) were silenced by siRNA and subsequent effect on esRNA was assessed. A significant reduction of total esRNA was observed by post-transcriptional silencing of MVP, compared to other RBPs. Furthermore, to confirm the binding of MVP with esRNA, a biotinylated-MVP was transiently expressed in HEK293F cells. Higher levels of esRNA were recovered from MVP that was eluted from exosomes of transfected cells, as compared to those of non-transfected cells. Our data indicate that these RBPs could end up in exosomes together with RNA molecules in the form of RNA-ribonucleoprotein complexes, which could be important for the transport of RNAs into exosomes and the maintenance of RNAs inside exosomes. This type of maintenance may favor the shuttling of RNAs from exosomes to recipient cells in the form of stable complexes.
Czyz, Jaroslaw; Guan, Kaomei; Zeng, Qinghua; Nikolova, Teodora; Meister, Armin; Schönborn, Frank; Schuderer, Jürgen; Kuster, Niels; Wobus, Anna M
2004-05-01
Effects of electromagnetic fields (EMF) simulating exposure to the Global System for Mobile Communications (GSM) signals were studied using pluripotent embryonic stem (ES) cells in vitro. Wild-type ES cells and ES cells deficient for the tumor suppressor p53 were exposed to pulse modulated EMF at 1.71 GHz, lower end of the uplink band of GSM 1800, under standardized and controlled conditions, and transcripts of regulatory genes were analyzed during in vitro differentiation. Two dominant GSM modulation schemes (GSM-217 and GSM-Talk), which generate temporal changes between GSM-Basic (active during talking phases) and GSM-DTX (active during listening phases thus simulating a typical conversation), were applied to the cells at and below the basic safety limits for local exposures as defined for the general public by the International Commission on Nonionizing Radiation Protection (ICNIRP). GSM-217 EMF induced a significant upregulation of mRNA levels of the heat shock protein, hsp70 of p53-deficient ES cells differentiating in vitro, paralleled by a low and transient increase of c-jun, c-myc, and p21 levels in p53-deficient, but not in wild-type cells. No responses were observed in either cell type after EMF exposure to GSM-Talk applied at similar slot-averaged specific absorption rates (SAR), but at lower time-averaged SAR values. Cardiac differentiation and cell cycle characteristics were not affected in embryonic stem and embryonic carcinoma cells after exposure to GSM-217 EMF signals. Our data indicate that the genetic background determines cellular responses to GSM modulated EMF. Bioelectromagnetics 25:296-307, 2004. Copyright 2004 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanungo, Jyotshna
RNA silencing is used as a common method for investigating loss-of-function effects of genes of interest. In mammalian cells, RNA interference (RNAi) or RNA silencing can be achieved by transient siRNA (small or short interfering RNA) transfection or by stable shRNA (short hairpin RNA) systems. Various vectors are used for efficient delivery of shRNA. Lentiviral vectors offer an efficient delivery system for stable and long-term expression of the shRNA in mammalian cells. The widely used lentiviral pLKO.1 plasmid vector is very popular in RNAi studies. A large RNAi database, a TRC (the RNAi Consortium) library, was established based on themore » pLKO.1-TRC plasmid vector. This plasmid (also called pLKO.1-puro) has a puromycin-resistant gene for selection in mammalian cells along with designs for generating lentiviral particles as well for RNA silencing. While using the pLKO.1-puro TRC control shRNA plasmid for transfection in murine P19 embryonic stem (ES) cells, it was unexpectedly discovered that this plasmid vector induced robust endodermal differentiation. Since P19 ES cells are pluripotent and respond to external stimuli that have the potential to alter the phenotype and thus its stemness, other cell types used in RNA silencing studies do not display the obvious effect and therefore, may affect experiments in subtle ways that would go undetected. This study for the first time provides evidence that raises concern and warrants extreme caution while using the pLKO.1-puro control shRNA vector because of its unexpected non-specific effects on cellular integrity. - Highlights: • In P19 ES cells the pLKO.1-puro lentiviral control shRNA vector induced endodermal differentiation. • P19 ES cells harboring the pCDNA3 plasmid vector retained their stem-ness as opposed to those harboring the pLKO.1-puro vector. • P19 ES cells can serve as a sensor to determine vector safety. • Extreme caution is warranted while using the widely used pLKO.1-puro lentiviral vector for experimental and therapeutic designs.« less
Handa, Kazuko; Takatani-Nakase, Tomoka; Larue, Lionel; Stemmler, Marc P; Kemler, Rolf; Hakomori, Sen-itiroh
2007-06-22
Le(x) glycan and E-cadherin (Ecad) are co-expressed at embryonal stem (ES) cells and embryonal carcinoma (EC) cells. While the structure and function of Ecad mediating homotypic adhesion of these cells have been well established, evidence that Le(x) glycan also mediates such adhesion is weak, despite the fact that Le(x) oligosaccharide inhibits the compaction process. To provide stronger evidence, we knocked out Ecad gene in EC and ES cells to establish F9 Ecad (-/-) and D3M Ecad (-/-) cells, which highly express Le(x) glycan but do not express Ecad at all. Both F9 Ecad (-/-) and D3M Ecad (-/-) cells displayed strong autoaggregation in the presence of Ca(2+), while PYS-2 cells, which express trace amount of Ecad and undetectable level of Le(x) glycan, did not display autoaggregation. In addition, F9 Ecad (-/-) and D3M Ecad (-/-) cells displayed strong adhesion to plates coated with Le(x) glycosphingolipid (III(3)FucnLc4Cer), in dose-dependent manner, in the presence of Ca(2+). Thus, ES or EC cells display autoaggregation and strong adhesion to Le(x)-coated plates in the absence of Ecad, further supporting the notion of Le(x) self-recognition (i.e., Le(x)-to-Le(x) interaction) in cell adhesion.
Zöllner, Stefan K; Selvanathan, Saravana P; Graham, Garrett T; Commins, Ryan M T; Hong, Sung Hyeok; Moseley, Eric; Parks, Sydney; Haladyna, Jessica N; Erkizan, Hayriye V; Dirksen, Uta; Hogarty, Michael D; Üren, Aykut; Toretsky, Jeffrey A
2017-10-03
Ewing's sarcoma (ES) is a rare and highly malignant cancer that grows in the bones or surrounding tissues mostly affecting adolescents and young adults. A chimeric fusion between the RNA binding protein EWS and the ETS family transcription factor FLI1 (EWS-FLI1), which is generated from a chromosomal translocation, is implicated in driving most ES cases by modulation of transcription and alternative splicing. The small-molecule YK-4-279 inhibits EWS-FLI1 function and induces apoptosis in ES cells. We aimed to identify both the underlying mechanism of the drug and potential combination therapies that might enhance its antitumor activity. We tested 69 anticancer drugs in combination with YK-4-279 and found that vinca alkaloids exhibited synergy with YK-4-279 in five ES cell lines. The combination of YK-4-279 and vincristine reduced tumor burden and increased survival in mice bearing ES xenografts. We determined that independent drug-induced events converged to cause this synergistic therapeutic effect. YK-4-279 rapidly induced G 2 -M arrest, increased the abundance of cyclin B1, and decreased EWS-FLI1-mediated generation of microtubule-associated proteins, which rendered cells more susceptible to microtubule depolymerization by vincristine. YK-4-279 reduced the expression of the EWS-FLI1 target gene encoding the ubiquitin ligase UBE2C, which, in part, contributed to the increase in cyclin B1. YK-4-279 also increased the abundance of proapoptotic isoforms of MCL1 and BCL2, presumably through inhibition of alternative splicing by EWS-FLI1, thus promoting cell death in response to vincristine. Thus, a combination of vincristine and YK-4-279 might be therapeutically effective in ES patients. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.