Earth Sensor Assembly for the Tropical Rainfall Measuring Mission Observatory
NASA Technical Reports Server (NTRS)
Prince, Steven S.; Hoover, James M.
1995-01-01
EDO Corporation/Barnes Engineering Division (BED) has provided the Tropical Rainfall Measurement Mission (TRMM) Earth Sensor Assembly (ESA), a key element in the TRMM spacecraft's attitude control system. This report documents the history, design, fabrication, assembly, and test of the ESA.
The ESA scientific exploitation element results and outlook
NASA Astrophysics Data System (ADS)
Desnos, Yves-louis; Regner, Peter; Delwart, Steven; Benveniste, Jerome; Engdahl, Marcus; Donlon, Craig; Mathieu, Pierre-Philippe; Fernandez, Diego; Gascon, Ferran; Zehner, Claus; Davidson, Malcolm; Goryl, Philippe; Koetz, Benjamin; Pinnock, Simon
2017-04-01
The Scientific Exploitation of Operational Missions (SEOM) element of ESA's fourth Earth Observation Envelope Programme (EOEP4) prime objective is to federate, support and expand the international research community built up over the last 25 years exploiting ESA's EO missions. SEOM enables the science community to address new scientific research areas that are opened by the free and open access to data from operational EO missions. Based on community-wide recommendations, gathered through a series of international thematic workshops and scientific user consultation meetings, key research studies have been launched over the last years to further exploit data from the Sentinels (http://seom.esa.int/). During 2016 several Science users consultation workshops have been organized, new results from scientific studies have been published and open-source multi-mission scientific toolboxes have been distributed (SNAP 80000 users from 190 countries). In addition the first ESA Massive Open Online Courses on Climate from space have been deployed (20000 participants) and the second EO Open Science conference was organized at ESA in September 2016 bringing together young EO scientists and data scientists. The new EOEP5 Exploitation element approved in 2016 and starting in 2017 is taking stock of all precursor activities in EO Open Science and Innovation and in particular a workplan for ESA scientific exploitation activities has been presented to Member States taking full benefit of the latest information and communication technology. The results and highlights from current scientific exploitation activities will be presented and an outlook on the upcoming activities under the new EOEP5 exploitation element will be given.
The European Astronaut Centre prepares for International Space Station operations.
Messerschmid, E; Haignere, J P; Damian, K; Damann, V
2004-04-01
The European Space Agency (ESA) contribution to the International Space Station (ISS) goes much beyond the delivery of hardware like the Columbus Laboratory, its payloads and the Automated Transfer Vehicles. ESA Astronauts will be members of the ISS crew. ESA, according to its commitments as ISS international partner, will be responsible to provide training on its elements and payloads to all ISS crewmembers and medical support for ESA astronauts. The European Astronaut Centre (EAC) in Cologne has developed over more than a decade into the centre of expertise for manned space activities within ESA by contributing to a number of important co-operative spaceflight missions. This role will be significantly extended for ISS manned operations. Apart from its support to ESA astronauts and their onboard operations, EAC will have a key role in training all ISS astronauts on ESA elements and payloads. The medical support of ISS crew, in particular of ESA astronauts has already started. This paper provides an overview on status and further plans in building up this homebase function for ESA astronauts and on the preparation towards Training Readiness for ISS crew training at EAC, Cologne. Copyright 2001 by the European Space Agency. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Released to IAF/IAA/AIAA to publish in all forms. c2003 Elsevier Ltd. All rights reserved.
ESA Sample Fetch Rover: Heritage and Way Forward
NASA Astrophysics Data System (ADS)
Duvet, L.; Beyer, F.; Delfa, J.; Zekri, E.
2018-04-01
The Sample Fetch Rover (SFR) is one of the key elements of the Mars Sample Return (MSR) campaign architecture. We will present the SFR heritage as well as a way forward identified to address this engineering challenge.
ESA's Earth Observation Programmes in the Changing Anthropocene
NASA Astrophysics Data System (ADS)
Liebig, Volker
2016-07-01
The intervention will present ESA's Earth Observation programmes and their relevance to studying the anthropocene. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and strategies. The Earth Explorers, who form the science and research element of ESA's Living Planet Programme, focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. The Earth Explorers also aim at learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The Sentinel missions provide accurate, timely, long term and uninterrupted data to provide key information services, improving the way the environment is managed, and helping to mitigate the effects of climate change. The operational Sentinel satellites can also be exploited for scientific studies of the anthropocene. In the anthropocene human activities affect the whole planet and space is a very efficient means to measure their impact, but for relevant endeavours to be successful they can only be carried out in international cooperation. ESA maintains long-standing partnerships with other space agencies and institutions worldwide. In running its Earth observation programmes, ESA responds to societal needs and challenges and to requirements resulting from political priorities set by decision makers. Activities related to Climate Change are a prime example. Within ESA's Climate Change Initiative, 13 Essential Climate Variables are constantly monitored to create a long-term record of key geophysical parameters.
ESA Earth Observation missions at the service of geoscience
NASA Astrophysics Data System (ADS)
Aschbacher, Josef
2017-04-01
The intervention will present ESA's Earth Observation programmes and their relevance to geoscience. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and boundary conditions. The Earth Explorers, who form the science and research element of ESA's Living Planet Programme, focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. The Earth Explorers also aim at learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The Sentinel missions provide accurate, timely, long term and uninterrupted data to provide key information services, improving the way the environment is managed, and helping to mitigate the effects of climate change. The operational Sentinel satellites can also be exploited for scientific endeavours. Meteorological satellites help to predict the weather and feature the most mature application of Earth observation. Over the last four decades satellites have been radically improving the accuracy of weather forecasts by providing unique and indispensable input data to numerical computation models. In addition, Essential Climate Variables (ECV) are constantly monitored within ESA's Climate Change Initiative in order to create a long-term record of key geophysical parameters. All of these activities can only be carried out in international cooperation. Accordingly, ESA maintains long-standing partnerships with other space agencies and relevant institutions worldwide. In running its Earth observation programmes, ESA responds to societal needs and challenges as well as to requirements resulting from political priorities, such as the United Nations' Sustainable Development Goals.
The Changing Earth Science Network- Projects and Results from the First Call
NASA Astrophysics Data System (ADS)
Dransfeld, Steffen; Fernandez, Diego; Doron, Maeva; Martinez, Elodie; Shutler, Jamie; Papandrea, Enzo; Biggs, Juliet; Dagestad, Knut-Frode; Palazzi, Elisa; Garcia-Comas, Maya; de Graaf, Martin; Schneising, Oliver; Pavon, Patricia Oliva
2010-12-01
To better understand the different processes and interactions that govern the earth system and to determine whether recent human-induced changes could ultimately de-stabilise its dynamics, both natural system variability and the consequences of human activities have to be observed and quantified. In this context, the European Space Agency published in 2006 "The Changing Earth: New Scientific Challenges for ESA's living Planet Programme" as the main driver of ESA's new EO science strategy. The document outlines 25 major scientific challenges covering all the different aspects of the Earth system, where EO technology and ESA missions may provide a key contribution. In this context, and responding to a request from ESAC (Earth Science Advisory Committee) to enhance the ESA scientific support towards the achievement of "The Challenges", the Agency has launched the Changing Earth Science Network as an important programmatic component of the new Support To Science Element (STSE) of the Earth Observation Envelope Programme (EOEP). In this paper we summarize the objectives of this initive and provide a review of the first projects that were selected in 2009 and are now generating their first results.
NASA and ESA Partnership on the Multi-Purpose Crew Vehicle Service Module
NASA Technical Reports Server (NTRS)
Schubert, Kathleen E.; Grantier, Julie A.
2012-01-01
(1) ESA decided in its Council Meeting in March 2011 to partially offset the European ISS obligations after 2015 with different means than ATVs; (2) The envisioned approach is based on a barter element(s) that would generate cost avoidance on the NASA side; (3) NASA and ESA considered a number of Barter options, NASA concluded that the provision by ESA of the Service Module for the NASA Multi-Purpose Crew Vehicle (MPCV) was the barter with the most interest;. (4) A joint ESA - NASA working group was established in May 2011 to assess the feasibility of Europe developing this Module based on ATV heritage; (5)The working group was supported by European and US industry namely Astrium, TAS-I and Lockheed-Martin; and (6) The project is currently in phase B1 with the objective to prepare a technical and programmatic proposal for an ESA MPCV-SM development. This proposal will be one element of the package that ESA plans submit to go forward for approval by European Ministers in November 2012.
Multi-cultural components and keys for European worldwide space programs
NASA Astrophysics Data System (ADS)
Pinotti, Roberto
1991-12-01
The role of different cultures in space missions is considered with regard to NASA and ESA astronauts and Russian cosmonauts. The identification of all the psychological and socio-anthropological components in the behavior of human groups in space is extremely important to understand and solve different problems and obtain the mission's success. In this light, the creation of a multicultural atmosphere aboard is considered a positive aspect for future space programs, and the synthesis of European cultural elements is a definite key to develop morale and productivity.
The ESA Scientific Exploitation of Operational Missions element
NASA Astrophysics Data System (ADS)
Desnos, Yves-Louis; Regner, Peter; Zehner, Claus; Engdahl, Marcus; Benveniste, Jerome; Delwart, Steven; Gascon, Ferran; Mathieu, Pierre-Philippe; Bojkov, Bojan; Koetz, Benjamin; Arino, Olivier; Donlon, Craig; Davidson, Malcolm; Goryl, Philippe; Foumelis, Michael
2014-05-01
The objectives of the ESA Scientific Exploitation of Operational Missions (SEOM) programme element are • to federate, support and expand the research community • to strengthen the leadership of European EO research community • to enable the science community to address new scientific research As a preparation for the SEOM element a series of international science users consultation has been organized by ESA in 2012 and 2013 In particular the ESA Living Planet Symposium was successfully organized in Edinburgh September 2013 and involving 1700 participants from 60 countries. The science users recommendations have been gathered and form the basis for the 2014 SEOM work plan approved by ESA member states. The SEOM element is organized along the following action lines: 1. Developing open-source, multi-mission, scientific toolboxes : the new toolboxes for Sentinel 1/2/3 and 5P will be introduced 2. Research and development studies: the first SEOM studies are being launched such as the INSARAP studies for Sentinel 1 interferometry in orbit demonstration , the IAS study to generate an improved spectroscopic database of the trace gas species CH4, H2O, and CO in the 2.3 μm region and SO2 in the UV region for Sentinel 5 P. In addition larger Sentinels for science call will be tendered in 2014 covering grouped studies for Sentinel 1 Land , Sentinel 1 Ocean , Sentinel 2 Land, Sentinel 3 SAR Altimetry ,Sentinel 3 Ocean color, Sentinel 3 Land and Sentinels Synergy . 3. Science users consultation : the Sentinel 2 for Science workshop is planned from 20 to 22 may 2014 at ESRIN to prepare for scientific exploitation of the Sentinel-2 mission (http://seom.esa.int/S2forScience2014 ) . In addition the FRINGE workshop focusing on scientific explotation of Sentinel1 using SAR interferometry is planned to be held at ESA ESRIN in Q2 2015 4. Training the next generation of European EO scientists on the scientific exploitation of Sentinels data: the Advanced Training course Land Remote sensing will be held in University of Valencia , Valencia, Spain from 8 to 12 September 2014 (see http://seom.esa.int/landtraining2014/index.php ). The bi-annual ESA EO summer school on "Earth System Monitoring & Modelling" will be held in ESRIN next summer (4-14 Aug 2014). (See: http://earth.eo.esa.int/trainingcourses/EOSummerSchool2012/index.php ) 5. Promoting Science data use and results : A web site has been prepared for the SEOM element and is available at: http://seom.esa.int/. Proceedings of the ESA Living Planet Symposium are in preparation to be published Q1-2014. The SEOM element plans for 2014 will be further detailed and the first results will be presented.
2001-06-05
This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101830, and TBD).
2001-06-05
This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830).
2001-06-05
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).
ESA Earth Observation Ground Segment Evolution Strategy
NASA Astrophysics Data System (ADS)
Benveniste, J.; Albani, M.; Laur, H.
2016-12-01
One of the key elements driving the evolution of EO Ground Segments, in particular in Europe, has been to enable the creation of added value from EO data and products. This requires the ability to constantly adapt and improve the service to a user base expanding far beyond the `traditional' EO user community of remote sensing specialists. Citizen scientists, the general public, media and educational actors form another user group that is expected to grow. Technological advances, Open Data policies, including those implemented by ESA and the EU, as well as an increasing number of satellites in operations (e.g. Copernicus Sentinels) have led to an enormous increase in available data volumes. At the same time, even with modern network and data handling services, fewer users can afford to bulk-download and consider all potentially relevant data and associated knowledge. The "EO Innovation Europe" concept is being implemented in Europe in coordination between the European Commission, ESA and other European Space Agencies, and industry. This concept is encapsulated in the main ideas of "Bringing the User to the Data" and "Connecting the Users" to complement the traditional one-to-one "data delivery" approach of the past. Both ideas are aiming to better "empower the users" and to create a "sustainable system of interconnected EO Exploitation Platforms", with the objective to enable large scale exploitation of European EO data assets for stimulating innovation and to maximize their impact. These interoperable/interconnected platforms are virtual environments in which the users - individually or collaboratively - have access to the required data sources and processing tools, as opposed to downloading and handling the data `at home'. EO-Innovation Europe has been structured around three elements: an enabling element (acting as a back office), a stimulating element and an outreach element (acting as a front office). Within the enabling element, a "mutualisation" of efforts and funding between public institutions should prevent an unnecessary duplication of investments for enabling infrastructures in Europe and will stimulate the existence of many exploitation platforms or value-adding add-ons funded by different public and private entities in the outreach element (front office).
Mars Express Interplanetary Navigation from Launch to Mars Orbit Insertion: The JPL Experience
NASA Technical Reports Server (NTRS)
Han, Dongsuk; Highsmith, Dolan; Jah, Moriba; Craig, Diane; Border, James; Kroger, Peter
2004-01-01
The National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) played a significant role in supporting the safe arrival of the European Space Agency (ESA) Mars Express (MEX) orbiter to Mars on 25 December 2003. MEX mission is an international collaboration between member nations of the ESA and NASA, where NASA is supporting partner. JPL's involvement included providing commanding and tracking service with JPL's Deep Space Network (DSN), in addition to navigation assurance. The collaborative navigation effort between European Space Operations Centre (ESOC) and JPL is the first since ESA's last deep space mission, Giotto, and began many years before the MEX launch. This paper discusses the navigational experience during the cruise and final approach phase of the mission from JPL's perspective. Topics include technical challenges such as orbit determination using non-DSN tracking data and media calibrations, and modeling of spacecraft physical properties for accurate representation of non-gravitational dynamics. Also mentioned in this paper is preparation and usage of DSN Delta Differential Oneway Range ((Delta)DOR) measurements, a key element to the accuracy of the orbit determination.
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101830, and TBD).
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830).
2001-06-05
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Here the transparent furnace is extracted for servicing. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).
Building Transatlantic Partnerships in Space Exploration The MPCV-SM Study
NASA Technical Reports Server (NTRS)
Wilde Detlef; Schubert, Kathy; Grantier, Julie; Deloo, Philippe; Price, Larry; Fenoglio, Franco; Chavy, Siegfrid
2012-01-01
Following the approval of the ESA ISS Exploitation Declaration for the ISS lifetime at the ESA Council Meeting in March 2011, ESA decided to partially offset the European obligations deriving from the extension of the ISS Programme until end 2020 with different means than ATVs, following the ATV-5 mission foreseen in mid 2014. The envisioned approach is based on a barter element(s) that would generate cost avoidance on the NASA side. NASA and ESA considered a number of Barter options, and concluded that the provision by ESA of the Service Module for the NASA Multi-Purpose Crew Vehicle (MPCV) was the barter with the most interest. A joint ESA - NASA working group was established to assess the feasibility of Europe developing this Module based on ATV heritage. The working group was supported by European and US industry namely Astrium, TAS-I and Lockheed-Martin. This paper gives an overview of the results of the on-going study as well as its perspective utilisation for the global space exploration endeavour.
Lunar Exploration and Science in ESA
NASA Astrophysics Data System (ADS)
Carpenter, James; Houdou, Bérengère; Fisackerly, Richard; De Rosa, Diego; Patti, Bernardo; Schiemann, Jens; Hufenbach, Bernhard; Foing, Bernard
2015-04-01
ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavor. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the Russian led science payload, focusing on developing an characterising the resource opportunities offered at the lunar surface. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. In the frame of a broader future international programme under discussion through the International Space Exploration Coordination Group (ISECG) future missions are under investigation that would provide access to the lunar surface through international cooperation and human-robotic partnerships.
Overview of ESA life support activities in preparation of future exploration
NASA Astrophysics Data System (ADS)
Lasseur, Christophe; Paille, Christel
2016-07-01
Since 1987, the European Space Agency has been active in the field of Life Support development. When compare to its international colleagues, it is clear that ESA started activities in the field with a "delay of around 25 years. Due to this situation and to avoid duplication, ESA decided to focus more on long term manned missions and to consider more intensively regenerative technologies as well as the associated risks management ( e.g. physical, chemical and contaminants). Fortunately or not, during the same period, no clear plan of exploration and consequently not specific requirements materialized. This force ESA to keep a broader and generic approach of all technologies. Today with this important catalogue of technologies and know-how, ESA is contemplating the different scenario of manned exploration beyond LEO. In this presentation we review the key scenario of future exploration, and identify the key technologies who loo the more relevant. An more detailed status is presented on the key technologies and their development plan for the future.
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD). This image is from a digital still camera; higher resolution is not available.
2001-06-05
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, and TBD). This composite is from a digital still camera; higher resolution is not available.
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Here the transparent furnace is extracted for servicing. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).
2001-06-05
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD). This image is from a digital still camera; higher resolution is not available.
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, and TBD). This composite is from a digital still camera; higher resolution is not available.
Optical filters for the Multispectral Instrument (MSI) on Sentinel-2
NASA Astrophysics Data System (ADS)
Merschdorf, M.; Camus, F.; Kirschner, V.
2017-11-01
Multi-spectral optical filters are essential parts of spaceborne optical imagers such as the Multispectral Instrument (MSI) for the Sentinel-2 satellite in the framework of ESA's GMES programme for earth observation. In this development, Jena-Optronik is responsible for the design, manufacturing and test of the spectral filter assemblies. They are the key elements that define the spectral quality of the instrument. Besides the challenging spectral requirements straylight aspects are of crucial importance due to the close neighbourhood of the filter elements to the detector. Results will be presented of the extensive analyses and measurements that have been performed on component and assembly level to ensure the optical performance.
The ESA Scientific Exploitation of Operational Missions element, first results
NASA Astrophysics Data System (ADS)
Desnos, Yves-Louis; Regner, Peter; Delwart, Steven; Benveniste, Jerome; Engdahl, Marcus; Mathieu, Pierre-Philippe; Gascon, Ferran; Donlon, Craig; Davidson, Malcolm; Pinnock, Simon; Foumelis, Michael; Ramoino, Fabrizio
2016-04-01
SEOM is a program element within the fourth period (2013-2017) of ESA's Earth Observation Envelope Programme (http://seom.esa.int/). The prime objective is to federate, support and expand the international research community that the ERS, ENVISAT and the Envelope programmes have built up over the last 25 years. It aims to further strengthen the leadership of the European Earth Observation research community by enabling them to extensively exploit future European operational EO missions. SEOM will enable the science community to address new scientific research that are opened by free and open access to data from operational EO missions. Based on community-wide recommendations for actions on key research issues, gathered through a series of international thematic workshops and scientific user consultation meetings, a work plan is established and is approved every year by ESA Members States. During 2015 SEOM, Science users consultation workshops have been organized for Sentinel1/3/5P ( Fringe, S3 Symposium and Atmospheric science respectively) , new R&D studies for scientific exploitation of the Sentinels have been launched ( S3 for Science SAR Altimetry and Ocean Color , S2 for Science,) , open-source multi-mission scientific toolboxes have been launched (in particular the SNAP/S1-2-3 Toolbox). In addition two advanced international training courses have been organized in Europe to exploit the new S1-A and S2-A data for Land and Ocean remote sensing (over 120 participants from 25 countries) as well as activities for promoting the first scientific results ( e.g. Chili Earthquake) . In addition the First EO Open Science 2.0 was organised at ESA in October 2015 with 225 participants from 31 countries bringing together young EO scientists and data scientists. During the conference precursor activities in EO Open Science and Innovation were presented, while developing a Roadmap preparing for future ESA scientific exploitation activities. Within the conference, the first EO Hackathon event took place bringing together volunteered programmers with the developers of SNAP. An interactive "Jam" session was also held that discussed and scoped challenging scientific and societal issues (e.g. climate change, quality of life and air quality). The status and first results from these SEOM projects will be presented and an outlook for upcoming SEOM studies and events in 2016 will be given.
Lunar Exploration and Science in ESA
NASA Astrophysics Data System (ADS)
Carpenter, J.; Houdou, B.; Fisackerly, R.; De Rosa, D.; Patti, B.; Schiemann, J.; Hufenbach, B.; Foing, B.
2014-04-01
ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavor. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the already selected Russian led payload, focusing on the composition and isotopic abundances of lunar volatiles in polar regions. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. This partnership will provide access for European investigators to the opportunities offered by the Russian led instruments on the missions, as well as providing Europe with a unique opportunity to characterize and utilize polar volatile populations. Ultimately samples of high scientific value, from as of yet unexplored and unsampled locations shall be made available to the scientific community. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. All of these activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensible partner in the exploration missions of the future. We report on the current status of the European elements in this cooperative scenario, with an emphasis on the investigations to be performed at the lunar surface. These investigations should generate knowledge that can be enabling for exploration in the future, and should also have a significant fundamental scientific return.
Lunar Exploration and Science Opportunities in ESA
NASA Astrophysics Data System (ADS)
Carpenter, J.; Houdou, B.; Fisackerly, R.; De Rosa, D.; Schiemann, J.; Patti, B.; Foing, B.
2014-04-01
ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavour. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the already selected Russian led payload, focusing on the composition and isotopic abundances of lunar volatiles in polar regions. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. This partnership will provide access for European investigators to the opportunities offered by the Russian led instruments on the missions, as well as providing Europe with a unique opportunity to characterize and utilize polar volatile populations. Ultimately samples of high scientific value, from as of yet unexplored and unsampled locations shall be made available to the scientific community. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. All of these activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensible partner in the exploration missions of the future. We report on the current status of the European elements in this cooperative scenario, with an emphasis on the investigations to be performed at the lunar surface. These investigations should generate knowledge that can be enabling for exploration in the future, and should also have a significant fundamental scientific return.
Elements of ESA's policy on space and security
NASA Astrophysics Data System (ADS)
Giannopapa, Christina; Adriaensen, Maarten; Antoni, Ntorina; Schrogl, Kai-Uwe
2018-06-01
In the past decade Europe has been facing rising security threats, ranging from climate change, migrations, nearby conflicts and crises, to terrorism. The demand to tackle these critical challenges is increasing in Member States. Space is already contributing, and could further contribute with already existing systems and future ones. The increasing need for security in Europe and for safety and security of Europe's space activities has led to a growing number of activities in ESA in various domains. It has also driven new and strengthened partnerships with security stakeholders in Europe. At the European level, ESA is collaborating closely with the main European institutions dealing with space security. In addition, as an organisation ESA has evolved to conduct security-related projects and programmes and to address the threats to its own activities, thereby securing the investments of the Member States. Over the past years the Agency has set up a comprehensive regulatory framework in order to be able to cope with security related requirements. Over the past years, ESA has increased its exchanges with its Member States. The paper presents main elements of the ESA's policy on space and security. It introduces the current European context for space and security, the European goals in this domain and the specific objectives to which the Agency intends to contribute. Space and security in the ESA context is set out under two components: a) security from space and b) security in space, including the security of ESA's own activities (corporate security and the security of ESA's space missions). Subsequently, ESA's activities are elaborated around these two pillars, composed of different activities conducted in the most appropriate frameworks and in coordination with the relevant stakeholders and shareholders.
ESA and Television - bringing space to Europe's television viewers
NASA Astrophysics Data System (ADS)
Habfast, Claus
2007-05-01
Getting ESA into the TV news of its Member States is an important element of the Agency's communication strategy. TV news ingages the public in space activities, leading to political support and, ultimately, funding for future programmes. "ESA TV" is a trusted source of space images and stories for Europe's broadcasters. Space is too good a story not to be part of the news.
Lunar Exploration and Science in ESA
NASA Astrophysics Data System (ADS)
Carpenter, James; Houdou, Bérengère; Fisackerly, Richard; De Rosa, Diego; Patti, Bernardo; Schiemann, Jens; Hufenbach, Bernhard; Foing, Bernard
2014-05-01
ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavor. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the already selected Russian led payload, focusing on the composition and isotopic abundances of lunar volatiles in polar regions. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. This partnership will provide access for European investigators to the opportunities offered by the Russian led instruments on the missions, as well as providing Europe with a unique opportunity to characterize and utilize polar volatile populations. Ultimately samples of high scientific value, from as of yet unexplored and unsampled locations shall be made available to the scientific community. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. All of these activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensable partner in the exploration missions of the future.
The Sentinel 4 focal plane subsystem
NASA Astrophysics Data System (ADS)
Hohn, Rüdiger; Skegg, Michael P.; Hermsen, Markus; Hinger, Jürgen; Williges, Christian; Reulke, Ralf
2017-09-01
The Sentinel 4 instrument is an imaging spectrometer, developed by Airbus under ESA contract in the frame of the joint European Union (EU)/ESA COPERNICUS program with the objective of monitoring trace gas concentrations. Sentinel 4 will provide accurate measurements of key atmospheric constituents such as ozone, nitrogen dioxide, sulfur dioxide, formaldehyde, as well as aerosol and cloud properties. Sentinel 4 is unique in being the first geostationary UVN mission. The SENTINEL 4 space segment will be integrated on EUMETSAT's Meteosat Third Generation Sounder satellite (MTG-S). Sentinel 4 will provide coverage of Europe and adjacent regions. The Sentinel 4 instrument comprises as a major element two Focal Plane Subsystems (FPS) covering the wavelength ranges 305 nm to 500 nm (UVVIS) and 750 nm to 775 nm (NIR) respectively. The paper describes the Focal Plane Subsystems, comprising the detectors, the optical bench and the control electronics. Further the design and development approach will be presented as well as first measurement results of FPS Qualification Model.
NASA Astrophysics Data System (ADS)
Pruin, B.; Martini, A.; Shanmugam, P.; Lopes, C.
2015-04-01
The Swarm mission consists of 3 satellites, each carrying an identical set of instruments. The scientific algorithms for processing are organized in 11 separate processing steps including automated product quality control. In total, the mission data consists of data products of several hundred distinct types from raw to level 2 product types and auxiliary data. The systematic production for Swarm within the ESA Archiving and Payload Data Facility (APDF) is performed up to level 2. The production up to L2 (CAT2-mature algorithm) is performed completely within the APDF. A separate systematic production chain from L1B to L2 (CAT1-evolving algorithm) is performed by an external facility (L2PS) with output files archived within the APDF as well. The APDF also performs re-processing exercises. Re-processing may start directly from the acquired data or from any other intermediate level resulting in the need for a refined product version and baseline management. Storage, dissemination and circulation functionality is configurable in the ESA generic multi-mission elements and does not require any software coding. The control of the production is more involved. While the interface towards the algorithmic entities is standardized due to the introduction of a generic IPF interface by ESA, the orchestration of the individual IPFs into the overall workflows is distinctly mission-specific and not as amenable to standardization. The ESA MMFI production management system provides extension points to integrate additional logical elements for the build-up of complex orchestrated workflows. These extension points have been used to inject the Swarm-specific production logic into the system. A noteworthy fact about the APDF is that the dissemination elements are hosted in a high bandwidth infrastructure procured as a managed service, thus affording users a considerable access bandwidth. This paper gives an overview of the Swarm APDF data flows. It describes the elements of the solution with particular focus on how the available generic multi-mission functionality of the ESA MMFI was utilized and where there was a need to implement missionspecific extensions and plug-ins. The paper concludes with some statistics on the system output during commissioning and early operational phases as well as some general considerations on the utilization of a framework like the ESA MMFI, discussing benefits and pitfalls of the approach.
Analysis and Optimization of the Recovered ESA Huygens Mission
NASA Astrophysics Data System (ADS)
Kazeminejad, Bobby
2002-06-01
The Huygens Probe is the ESA-provided element of the joint NASA/ESA Cassini - Huygens mission to Saturn and Titan. A recently discovered design flaw in the Huygens radio receiver onboard Cassini led to a significantly different mission geometry, redesigned and implemented by both the ESA Huygens and NASA Cassini project teams. A numerical integration of the Orbiter trajectory and the Huygens descent profile with simplified assumptions for Probe attitude and correlated aerodynamic aspects offered the opportunity to re-calculate key mission parameters, which depend on the relative geometry and motion of the bodies. This was a crucial step to assess whether science-imposed constraints were not violated. A review of existing Titan wind and atmosphere models and their physical background led to a subsequent parametric study of their impact on the supersonic entry phase, the parachute descent and finally the bodyfixed landing coordinates of the Probe. In addition to the deterministic (nominal) Probe trajectory, it is important to quantify the influence of various uncertainties that enter into the equations of motion on the results (e.g., state vectors, physical parameters of the environment and the Probe itself). This was done by propagating the system covariance matrix together with the nominal state vectors. A sophisticated Monte Carlo technique developed to save up computation time was then used to determine statistical percentiles of the key parameters. The Probe Orbiter link geometry was characterized by evaluating the link budget and received frequency at receiver level. In this calculation the spin of the Probe and the asymmetric gain pattern of the transmitting antennas was taken into account. The results were then used in a mathematical model that describes the tracking capability of the receiver symbol synchronizer. This allowed the loss of data during the mission to be quantified. A subsequent parametric study of different sets of mission parameters with the goal of minimizing the data losses and maximizing the overall mission robustness resulted in the recommendation to change the flyby altitude of the Orbiter from 65,000 km down to 60,000 km.
Lunar Exploration and Science in ESA
NASA Astrophysics Data System (ADS)
Carpenter, James; Foing, Bernard H.; Fisackerly, Richard; Houdou, Berengere; De Rosa, Diego; Patti, Bernado; Schiemann, Jens
ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavor. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the already selected Russian led payload, focusing on the abundance, composition and isotopes of lunar volatiles in polar regions, and their associated chemistry. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. This partnership will provide access for European investigators to the opportunities offered by the Russian led instruments on the missions, as well as providing Europe with a unique opportunity to characterise and utilise polar volatile populations. Ultimately samples of high scientific value, from as of yet unexplored and unsampled locations shall be made available to the scientific community. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. All of these activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensable partner in the exploration missions of the future.
Automation and Robotics for Human Mars Exploration (AROMA)
NASA Technical Reports Server (NTRS)
Hofmann, Peter; von Richter, Andreas
2003-01-01
Automation and Robotics (A&R) systems are a key technology for Mars exploration. All over the world initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. From December 2000 to February 2002 Kayser-Threde GmbH, Munich, Germany lead a study called AROMA (Automation and Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals of this effort is to initiate new developments and to maintain the competitiveness of European industry within this field. c2003 Published by Elsevier Science Ltd.
Automation and Robotics for Human Mars Exploration (AROMA).
Hofmann, Peter; von Richter, Andreas
2003-01-01
Automation and Robotics (A&R) systems are a key technology for Mars exploration. All over the world initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. From December 2000 to February 2002 Kayser-Threde GmbH, Munich, Germany lead a study called AROMA (Automation and Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals of this effort is to initiate new developments and to maintain the competitiveness of European industry within this field. c2003 Published by Elsevier Science Ltd.
Education Savings Accounts: Key Provisions and State Variations. Education Trends
ERIC Educational Resources Information Center
Railey, Hunter
2016-01-01
In 2011, the Arizona State Legislature adopted a law creating the first education savings account (ESA) in the United States. Following Arizona's lead, several other states, including Florida Tennessee,Mississippi and Nevada, have implemented ESA policies. Typical eligibility requirements include conditions such as a pupil's diagnosed disability,…
ARTES: the future of satellite telecommunication
NASA Astrophysics Data System (ADS)
González-Blázquez, Angel; Detain, Dominique
2005-08-01
Throughout its 30-year existence, ESA has played a key role by providing telecommunications infrastructures that have allowed the in-orbit validation, qualification and demonstration of equipment, technology and services. In the past, this has been achieved through the provision of dedicated satellites like OTS, Marecs, Olympus and Artemis, as well as by the implementation of piggy-back payloads on other ESA or commercial satellites. Today, due to the importance of satellite telecommunications, ESA continues to support this sector mainly through its ARTES - Advanced Research in Telecommunications - Programme.
NASA AND ESA Partnership on the Multi-Purpose Crew Vehicle Service Module
NASA Technical Reports Server (NTRS)
Free, James M.; Schubert, Kathleen; Grantier, Julie
2012-01-01
In March 2011, NASA and ESA made a decision to partially offset the European obligations deriving from the extension of the ISS Program until the end of 2020 with different means than ATVs, following the ATV-5 mission foreseen in mid-2014. NASA and ESA considered a number of barter options, and concluded that the provision by ESA of the Service Module and Spacecraft Adaptor for the NASA Multi-Purpose Crew Vehicle (MPCV) was the barter element with the most interest. A joint ESA - NASA working group was established to assess the feasibility of Europe developing this Module based on ATV heritage. The working group was supported by European and US industry namely Astrium, TAS-I and Lockheed-Martin. This paper gives an overview of the results of the on-going study as well as its projected utilization for the global space exploration endeavour.
VEGA Launch Vehicle: VV02 Flight Campaign Thermal Analysis
NASA Astrophysics Data System (ADS)
Moroni, D.; Perugini, P.; Mancini, R.; Bonnet, M.
2014-06-01
A reliable tool for the prediction of temperature trends vs. time during the operative timeline of a launcher represents one of the key elements for the qualification of a launch vehicle itself.The correct evaluation of the thermal behaviour during the mission, both for the launcher elements (structures, electronic items, tanks, motors...) and for the Payloads carried by the same Launcher, is one of the preliminary activities to be performed before a flight campaign.For such scope AVIO constructed a Thermal Mathematical Model (TMM) by means of the ESA software "ESATAN Thermal Modelling Suite (TMS)" [1] used for the prediction of the temperature trends both on VV01 (VEGA LV Qualification Flight) and VV02 (First VEGA LV commercial flight) with successfully results in terms of post-flight comparison with the sensor data outputs.Aim of this paper is to show the correlation obtained by AVIO VEGA LV SYS TMM in the frame of VV02 Flight.
NASA Astrophysics Data System (ADS)
Alvarez-Ríos, F. J.; Jiménez, J. J.; Apestigue, V.; Arruego, I.; Martin, I.; Sanchez-Brea, L. M.
2017-09-01
DREAMS SIS is an optical radiometer that will provide measurement of the sun irradiance on the Mars surface [1],[2],[3]. The instrument will be on board as payload of the EDM, (Entry and Descend module) of EXOMARS 2016 ESA [4] mission showed in Fig. 1a. (Courtesy of ESA).
NASA Astrophysics Data System (ADS)
Fea, M.
The European Space Agency (ESA) has built a long tradition and a large experience in the domain of education, training and capacity building throughout its space programmes. As an example, the ESA Science Programme dedicates 1% of its budget to these activities. One of the key reasons for it is the need of closing the loop along the chain from the provider to the user, that is to say between the space and the users elements. In fact, besides the obvious need for technology development, there is actually not very much justification in the long term for a space programme if the user communities are not able to make good use of programme outputs and provide feedback and proper requirements to space agencies. The case of ESA Earth Observation programmes is described to illustrate these considerations, as a way to also implement the European Space Policy and UNISPACE III recommendations. Since its foundation in 1975 and the implementation of its EO programme with the launch of Meteosat-1 in 1977 and the birth of the Earthnet Programme Office in 1978, the European Space Agency is very active in the field of capacity building in developing countries. That is performed through both ESA's specific projects and international co-operation activities. In the latter domain, ESA enjoys a long-standing collaboration with many entities, such as the Committee of Earth Observation Satellites (CEOS), and organisations, such as WMO, UN and its specialised agencies (FAO, UNESCO, UNEP, and so on). In that respect, the Agency is an active member of the CEOS Working Group on Education (WGEdu) and of the World Summit for Sustainable Development Follow-Up (WSSD) Module 1 group dedicated to education, training and capacity building. The overall ESA strategy targets various citizen communities and takes into account the fact that today's young generations will become tomorrow's professionals and decision makers. ESA's activities in this domain are in particular based on an end-to-end concept that includes a) the "train the trainer" approach, b) the prerequisite of a project proposal prepared by the trainee of a target institution on an issue of, possibly, national interest and focused towards establishing an operational autonomy and a routine practice in the integration and use of EO satellite data, c) the firm commitment of the institution to support the project and the trainee, d) the involvement of final users since the very beginning, and e) the exposure of trainees to public for presenting their results. In order to demonstrate how the Agency implements all the above, besides the typical training of external satellite ground station operators, and the way ahead strategy considered within the CEOS WGEdu and WSSD Mod.1 framework, three ESA endeavours are presented, namely the multi-language EDUSPACE web portal (www.eduspace.esa.int), the hosting of UN trainees, and the UN/ESA Course Follow-up Programme.
Joint NASA-ESA Outer Planet Mission study overview
NASA Astrophysics Data System (ADS)
Lebreton, J.-P.; Niebur, C.; Cutts, J.; Falkner, P.; Greeley, R.; Lunine, J.; Blanc, M.; Coustenis, A.; Pappalardo, R.; Matson, D.; Clark, K.; Reh, K.; Stankov, A.; Erd, C.; Beauchamp, P.
2009-04-01
In 2008, ESA and NASA performed joint studies of two highly capable scientific missions to the outer planets: the Europa Jupiter System Mission (EJSM) and the Titan Saturn System Mission (TSSM). Joint Science Definition Teams (JSDTs) were formed with U.S. and European membership to guide study activities that were conducted collaboratively by engineering teams working on both sides of the Atlantic. EJSM comprises the Jupiter Europa Orbiter (JEO) that would be provided by NASA and the Jupiter Ganymede Orbiter (JGO) that would be provided by ESA. Both spacecraft would be launched independently in 2020, and arrive 6 years later for a 3-4 year mission within the Jupiter System. Both orbiters would explore Jupiter's system on trajectories that include flybys of Io (JEO only), Europa (JEO only), Ganymede and Callisto. The operation of JEO would culminate in orbit around Europa while that of JGO would culminate in orbit around Ganymede. Synergistic and coordinated observations would be planned. The Titan Saturn System Mission (TSSM) comprises a Titan Orbiter provided by NASA that would carry two Titan in situ elements provided by ESA: the montgolfière and the lake lander. The mission would launch in 2020 and arrive 9 years later for a 4-year duration in the Saturn system. Following delivery of the ESA in situ elements to Titan, the Titan Orbiter would explore the Saturn system via a 2-year tour that includes Enceladus and Titan flybys. The montgolfière would last at least 6-12 months at Titan and the lake lander 8-10 hours. Following the Saturn system tour, the Titan Orbiter would culminate in a ~2-year orbit around Titan. Synergistic and coordinated observations would be planned between the orbiter and in situ elements. The ESA contribution to this joint endeavor will be implemented as the first Cosmic Vision Large-class (L1) mission; the NASA contribution will be implemented as the Outer Planet Flagship Mission. The contribution to each mission is being reviewed and evaluated by each agency between November 2008 and January 2009, and a joint decision as to which destination has been selected is expected to be announced in February 2009. The ESA Cosmic Vision selection process includes two additional competitive steps (that include two competing astronomy missions) before its contribution to the selected Outer Planet Mission is confirmed in 2012. NASA expects to proceed with the initial implementation of the mission in FY2009, while full implementation will start in FY2013, in line with ESA Cosmic Vision schedule. Should ESA select an astronomy mission instead, NASA would proceed in 2013 with the implementation of a NASA-only mission concept. This presentation will provide an overview of the selected Outer Planet Mission and outline the next steps towards its implementation.
NASA Astrophysics Data System (ADS)
Benveniste, J.; Regner, P.; Desnos, Y. L.
2015-12-01
The Scientific Exploitation of Operational Mission (SEOM) programme element (http://seom.esa.int/) is part of the ESA's Fourth Earth Observation Envelope Programme (2013-2017). The prime objective is to federate, support and expand the international research community that the ERS, ENVISAT and the Envelope programmes have built up over the last 25 years. It aims to further strengthen the leadership of the European Earth Observation research community by enabling them to extensively exploit future European operational EO missions. SEOM is enabling the science community to address new scientific research that are opened by free and open access to data from operational EO missions. The Programme is based on community-wide recommendations for actions on key research issues, gathered through a series of international thematic workshops and scientific user consultation meetings such as the Sentinel-3 for Science Workshop held last June in Venice, Italy (see http://seom.esa.int/S3forScience2015). The 2015 SEOM work plan includes the launch of new R&D studies for scientific exploitation of the Sentinels, the development of open-source multi-mission scientific toolboxes, the organization of advanced international training courses, summer schools and educational materials, as well as activities for promoting the scientific use of EO data, also via the organization of Workshops. This paper will report the recommendations from the International Scientific Community concerning the Sentinel-3 Scientific Exploitation, as expressed in Venice, keeping in mind that Sentinel-3 is an operational mission to provide operational services (see http://www.copernicus.eu).
Exomars 2018 Rover Pasteur Payload
NASA Astrophysics Data System (ADS)
Debus, Andre; Bacher, M.; Ball, A.; Barcos, O.; Bethge, B.; Gaubert, F.; Haldemann, A.; Lindner, R.; Pacros, A.; Trautner, R.; Vag, J.
ars programme is a joint ESA-NASA program having exobiology as one of the key science objectives. It is divided into 2 missions: the first mission is ESA-led with an ESA orbiter and an ESA Entry, Descent and Landing (EDL) demonstrator, launched in 2016 by NASA, and the second mission is NASA-led, launched in 2018 by NASA carrying an ESA rover and a NASA rover both deployed by a single NASA EDL system. For ESA, the ExoMars programme will demonstrate key flight and in situ enabling technologies in support of the European ambitions for future exploration missions, as outlined in the Aurora Declaration. While the ExoMars 2016 mission will accomplish a technological objective (Entry, Descent and Landing of a payload on the surface) and a Scientific objective (investigation of Martian atmospheric trace gases and their sources, focussing particularly on methane), the ExoMars 2018 ESA Rover will carry a comprehensive and coherent suite of analytical instruments dedicated to exobiology and geology research: the Pasteur Payload (PPL). This payload includes a selection of complementary instruments, having the following goals: to search for signs of past and present life on Mars and to investigate the water/geochemical environment as a function of depth in the shallow subsurface. The ExoMars Rover includes a drill for accessing underground materials, and a Sample Preparation and Distribution System. The Rover will travel several kilometres looking for sites warranting further investigation, where it will collect and analyse samples from within outcrops and from the subsurface for traces of complex organic molecules. In addition to further details on this Exomars 2018 rover mission, this presentation will focus on the scientific objectives and the instruments needed to achieve them, including details of how the Pasteur Payload as a whole addresses Mars research objectives.
LMSS - From low data rate to voice services
NASA Astrophysics Data System (ADS)
Rogard, R.
1992-03-01
An overview of ESA's approach towards the introduction of Land Mobile Communications in Europe is presented. Emphasis is placed on a description of the payload called EMS to be launched on a host satellite, the Italsat-F2 spacecraft, and the definition of services which are most appropriate for a first-generation-operating Land Mobile Satellite System, namely, PRODAT, a message-handling system, and Europhone, an original approach to 'voice' systems. Attention is given to the EMS payload, characteristics, and capacity, the IF processor and channelization, and market considerations. It is shown that the optimization of the satellite characteristics and the mix of services to be provided are the key elements of a successful entry into the market.
The ESA Space Weather Applications Pilot Project
NASA Astrophysics Data System (ADS)
Glover, A.; Hilgers, A.; Daly, E.
Following the completion in 2001 of two parallel studies to consider the feasibility of a European Space Weather Programme ESA embarked upon a space weather pilot study with the goal of prototyping European space weather services and assessing the overall market for such within Europe This pilot project centred on a number of targeted service development activities supported by a common infrastructure and making use of only existing space weather assets Each service activity included clear participation from at least one identified service user who was requested to provide initial requirements and regular feedback during the operational phase of the service These service activities are now reaching the end of their 2-year development and testing phase and are now accessible each with an element of the service in the public domain see http www esa-spaceweathet net swenet An additional crucial element of the study was the inclusion of a comprehensive and independent analysis of the benefits both economic and strategic of embarking on a programme which would include the deployment of an infrastructure with space-based elements The results of this study will be reported together with their implication for future coordinated European activities in this field
MOMA Gas Chromatograph-Mass Spectrometer onboard the 2018 ExoMars Mission: results and performance
NASA Astrophysics Data System (ADS)
Buch, A.; Pinnick, V. T.; Szopa, C.; Grand, N.; Humeau, O.; van Amerom, F. H.; Danell, R.; Freissinet, C.; Brinckerhoff, W.; Gonnsen, Z.; Mahaffy, P. R.; Coll, P.; Raulin, F.; Goesmann, F.
2015-10-01
The Mars Organic Molecule Analyzer (MOMA) is a dual ion source linear ion trap mass spectrometer that was designed for the 2018 joint ESA-Roscosmos mission to Mars. The main scientific aim of the mission is to search for signs of extant or extinct life in the near subsurface of Mars by acquiring samples from as deep as 2 m below the surface. MOMA will be a key analytical tool in providing chemical (molecular and chiral) information from the solid samples, with particular focus on the characterization of organic content. The MOMA instrument, itself, is a joint venture for NASA and ESA to develop a mass spectrometer capable of analyzing samples from pyrolysis/chemical derivatization gas chromatography (GC) as well as ambient pressure laser desorption ionization (LDI). The combination of the two analytical techniques allows for the chemical characterization of a broad range of compounds, including volatile and non-volatile species. Generally, MOMA can provide information on elemental and molecular makeup, polarity, chirality and isotopic patterns of analyte species. Here we report on the current performance of the MOMA prototype instruments, specifically the demonstration of the gas chromatographymass spectrometry (GC-MS) mode of operation.
In Brief: European Earth science network for postdocs
NASA Astrophysics Data System (ADS)
Showstack, Randy
2008-12-01
The European Space Agency (ESA) has launched a new initiative called the Changing Earth Science Network, to support young scientists undertaking leading-edge research activities aimed at advancing the understanding of the Earth system. The initiative will enable up to 10 young postdoctoral researchers from the agency's member states to address major scientific challenges by using Earth observation (EO) satellite data from ESA and its third-party missions. The initiative aims to foster the development of a network of young scientists in Europe with a good knowledge of the agency and its EO programs. Selected candidates will have the option to carry out part of their research in an ESA center as a visiting scientist. The deadline to submit proposals is 16 January 2009. Selections will be announced in early 2009. The Changing Earth Science Network was developed as one of the main programmatic components of ESA's Support to Science Element, launched in 2008. For more information, visit http://www.esa.int/stse.
Identification of a new sulfonic acid metabolite of metolachlor in soil
Aga, D.S.; Thurman, E.M.; Yockel, M.E.; Zimmerman, L.R.; Williams, T.D.
1996-01-01
An ethanesulfonic acid metabolite of metolachlor (metolachlor ESA) was identified in soil-sample extracts by negative-ion, fast-atom bombardment mass spectrometry (FAB-MS) and FAB tandem mass spectrometry (FAB-MS/MS). Production fragments from MS/MS analysis of the deprotonated molecular ion of metolachlor ESA in the soil extract can be reconciled with the structure of the synthesized standard. The elemental compositions of the (M - H)- ions of the metolachlor ESA standard and the soil-sample extracts were confirmed by high-resolution mass spectrometry. A dissipation study revealed that metolachlor ESA is formed in soil under field conditions corresponding to a decrease in the concentration of the parent herbicide, metolachlor. The identification of the sulfonated metabolite of metolachlor suggests that the glutathione conjugation pathway is a common detoxification pathway shared by chloroacetanilide herbicides.
Exomars 2018 Rover Pasteur Payload Sample Analysis
NASA Astrophysics Data System (ADS)
Debus, Andre; Bacher, M.; Ball, A.; Barcos, O.; Bethge, B.; Gaubert, F.; Haldemann, A.; Kminek, G.; Lindner, R.; Pacros, A.; Rohr, T.; Trautner, R.; Vago, J.
The ExoMars programme is a joint ESA-NASA program having exobiology as one of the key science objectives. It is divided into 2 missions: the first mission is ESA-led with an ESA orbiter and an ESA Entry, Descent and Landing (EDL) demonstrator, launched in 2016 by NASA, and the second mission is NASA-led, launched in 2018 by NASA including an ESA rover and a NASA rover both deployed by a single NASA EDL system. For ESA, the ExoMars programme will demonstrate key flight and in situ enabling technologies in support of the European ambitions for future exploration missions, as outlined in the Aurora Declaration. The ExoMars 2018 ESA Rover will carry a comprehensive and coherent suite of analytical instruments dedicated to exobiology and geology research: the Pasteur Payload (PPL). This payload includes a selection of complementary instruments, having the following goals: to search for signs of past and present life on Mars and to investigate the water/geochemical environment as a function of depth in the shallow subsurface. The ExoMars Rover will travel several kilometres searching for sites warranting further investigation. The Rover includes a drill and a Sample Preparation and Distribution System which will be used to collect and analyse samples from within outcrops and from the subsurface. The Rover systems and instruments, in particular those located inside the Analytical Laboratory Drawer must meet many stringent requirements to be compatible with exobiologic investigations: the samples must be maintained in a cold and uncontaminated environment, requiring sterile and ultraclean preparation of the instruments, to preserve volatile materials and to avoid false positive results. The value of the coordinated observations suggests that a significant return on investment is to be expected from this complex development. We will present the challenges facing the ExoMars PPL, and the plans for sending a robust exobiology laboratory to Mars in 2018.
Obitsu, S; Sakata, K; Teshima, R; Kondo, K
2013-01-01
RIP1 is a serine/threonine kinase, which is involved in apoptosis and necroptosis. In apoptosis, caspase-8 and FADD have an important role. On the other hand, RIP3 is a key molecule in necroptosis. Recently, we reported that eleostearic acid (ESA) elicits caspase-3- and PARP-1-independent cell death, although ESA-treated cells mediate typical apoptotic morphology such as chromatin condensation, plasma membrane blebbing and apoptotic body formation. The activation of caspases, Bax and PARP-1, the cleavage of AIF and the phosphorylation of histone H2AX, all of which are characteristics of typical apoptosis, do not occur in ESA-treated cells. However, the underlying mechanism remains unclear. To clarify the signaling pathways in ESA-mediated apoptosis, we investigated the functions of RIP1, MEK, ERK, as well as AIF. Using an extensive study based on molecular biology, we identified the alternative role of RIP1 in ESA-mediated apoptosis. ESA mediates RIP1-dependent apoptosis in a kinase independent manner. ESA activates serine/threonine phosphatases such as calcineurin, which induces RIP1 dephosphorylation, thereby ERK pathway is activated. Consequently, localization of AIF and ERK in the nucleus, ROS generation and ATP reduction in mitochondria are induced to disrupt mitochondrial cristae, which leads to cell death. Necrostatin (Nec)-1 blocked MEK/ERK phosphorylation and ESA-mediated apoptosis. Nec-1 inactive form (Nec1i) also impaired ESA-mediated apoptosis. Nec1 blocked the interaction of MEK with ERK upon ESA stimulation. Together, these findings provide a new finding that ERK and kinase-independent RIP1 proteins are implicated in atypical ESA-mediated apoptosis. PMID:23788031
Crew Launch Vehicle (CLV) Upper Stage Configuration Selection Process
NASA Technical Reports Server (NTRS)
Davis, Daniel J.; Coook, Jerry R.
2006-01-01
The Crew Launch Vehicle (CLV), a key component of NASA's blueprint for the next generation of spacecraft to take humans back to the moon, is being designed and built by engineers at NASA s Marshall Space Flight Center (MSFC). The vehicle s design is based on the results of NASA's 2005 Exploration Systems Architecture Study (ESAS), which called for development of a crew-launch system to reduce the gap between Shuttle retirement and Crew Exploration Vehicle (CEV) Initial Operating Capability, identification of key technologies required to enable and significantly enhance these reference exploration systems, and a reprioritization of near- and far-term technology investments. The Upper Stage Element (USE) of the CLV is a clean-sheet approach that is being designed and developed in-house, with element management at MSFC. The USE concept is a self-supporting cylindrical structure, approximately 115' long and 216" in diameter, consisting of the following subsystems: Primary Structures (LOX Tank, LH2 Tank, Intertank, Thrust Structure, Spacecraft Payload Adaptor, Interstage, Forward and Aft Skirts), Secondary Structures (Systems Tunnel), Avionics and Software, Main Propulsion System, Reaction Control System, Thrust Vector Control, Auxiliary Power Unit, and Hydraulic Systems. The ESAS originally recommended a CEV to be launched atop a four-segment Space Shuttle Main Engine (SSME) CLV, utilizing an RS-25 engine-powered upper stage. However, Agency decisions to utilize fewer CLV development steps to lunar missions, reduce the overall risk for the lunar program, and provide a more balanced engine production rate requirement prompted engineers to switch to a five-segment design with a single Saturn-derived J-2X engine. This approach provides for single upper stage engine development for the CLV and an Earth Departure Stage, single Reusable Solid Rocket Booster (RSRB) development for the CLV and a Cargo Launch Vehicle, and single core SSME development. While the RSRB design has changed since the CLV Project's inception, the USE design has remained essentially a clean-sheet approach. Although a clean-sheet upper stage design inherently carries more risk than a modified design, it does offer many advantages: a design for increased reliability; built-in extensibility to allow for commonality/growth without major redesign; and incorporation of state-of-the-art materials, hardware, and design, fabrication, and test techniques and processes to facilitate a potentially better, more reliable system. Because consideration was given in the ESAS to both clean-sheet and modified USE designs, this paper will highlight the advantages and disadvantages of both approaches and provide a detailed discussion of trades/selections made that led to the final upper stage configuration.
Space transportation systems within ESA programmes: Current status and perspectives
NASA Astrophysics Data System (ADS)
Delahais, Maurice
1993-03-01
An overview of the space transportation aspects of the ESA (European Space Agency) programs as they result from history, present status, and decisions taken at the ministerial level conference in Granada, Spain is presented. The new factors taken into consideration for the long term plan proposed in Munich, Germany, the three strategic options for the reorientation of the ESA long term plan, and the essential elements of space transportation in the Granada long term plan in three areas of space activities, scientific, and commercial launches with expendable launch vehicles, manned flight and in-orbit infrastructure, and future transportation systems are outlined. The new ESA long term plan, in the field of space transportation systems, constitutes a reorientation of the initial program contemplated in previous councils at ministerial level. It aims at balancing the new economic situation with the new avenues of cooperation, and the outcome will be a new implementation of the space transportation systems policy.
NASA and ESA Collaboration on Hexavalent Chrome Alternatives: Pretreatments Only Final Test Report
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2015-01-01
Hexavalent chromium (hex chrome or CR(VI)) is a widely used element within applied coating systems because of its self-healing and corrosion-resistant properties. The replacement of hex chrome in the processing of aluminum for aviation and aerospace applications remains a goal of great significance. Aluminum is the major manufacturing material of structures and components in the space flight arena. The National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) are engaged in a collaborative effort to test and evaluate alternatives to hexavalent chromium containing corrosion coating systems. NASA and ESA share common risks related to material obsolescence associated with hexavalent chromium used in corrosion-resistant coatings.
NASA Astrophysics Data System (ADS)
van der Schalie, Robin; de Jeu, Richard; Kerr, Yann; Wigneron, Jean-Pierre; Rodríguez-Fernández, Nemesio; Al-Yaari, Amen; Drusch, Matthias; Mecklenburg, Susanne; Dolman, Han
2016-04-01
Datasets that are derived from satellite observations are becoming increasingly important for measuring key parameters of the Earth's climate and are therefore crucial in research on climate change, giving the opportunity to researchers to detect anomalies and long-term trends globally. One of these key parameters is soil moisture (SM), which has a large impact on water, energy and biogeochemical cycles worldwide. A long-term SM data record from active and passive microwave satellite observations was developed as part of ESA's Climate Change Initiative (ESA-CCI-SM, http://www.esa-soilmoisture-cci.org/). Currently the dataset covers a period from 1978 to 2014 and is updated regularly, observations from a several microwave satellites including: ERS-1, ERS-2, METOP-A, Nimbus 7 SMMR, DMSP SSM/I, TRMM TMI, Aqua AMSRE, Coriolis WindSat, and GCOM-W1 AMSR2. In 2009, ESA launched the Soil Moisture and Ocean Salinity (SMOS, Kerr et al., 2010) mission, carrying onboard a unique L-band radiometer, but its SM retrievals are not yet part of this dataset. Due to the different radiometric characteristics of SMOS, integrating SMOS into the ESA-CCI-SM dataset is not straight forward. Therefore several approaches have been tested to fuse soil moisture retrievals from SMOS and AMSRE, which currently forms the basis of the passive microwave part within ESA-CCI-SM project. These approaches are: 1. A Neural Network Fusion approach (Rodríguez-Fernández et al., 2015), 2. A regression approach (Wigneron et al., 2004; Al-Yaari et al., 2015) and 3. A radiative transfer based approach, using the Land Parameter Retrieval Model (Van der Schalie et al., 2016). This study evaluates the three different approaches and tests their skills against multiple datasets, including MERRA-Land, ERA-Interim/Land, the current ESA-CCI-SM v2.2 and in situ measurements from the International Soil Moisture Network and present a recommendation for the potential integration of SMOS soil moisture into the ESA-CCI-SM dataset. This recommendation is based on a series of statistical metrics (i.e. correlation, unbiased root mean square error, bias, spatial correspondence and single to noise ratios (Gruber et al., 2015)) and will provide guidelines for a seamless integration. References Al-Yaari, A., Wigneron, J.P., Kerr, Y., De Jeu, R.A.M., Rodriguez-Fernandez, N., Van der Schalie, R., Al Bitar, A., Mialon, A., Richaume, P., Dolman, A., and Ducharne, A. (2015), "Testing regression equations to derive long-term global soil moisture datasets from passive microwave observations", Remote Sensing of Environment, IN PRESS. Gruber, A., Su, C.-H., Zwieback, S., Crowd, W., Dorigo, W., and Wagner, W. (2015), "Recent advances in (soil moisture) triple collocation analysis", Int. J. Appl. Earth Observ. Geoinf, doi: http://dx.doi.org/10.1016/j.jag.2015.09.002. Kerr, Y.H., Waldteufel, P., Wigneron, J.P., Delwart, S., Cabot, F., Boutin, J., Escorihuela, M.J., Font, J., Reul, N., Gruhier, C., Juglea, S.E., Drinkwater, M.R., Hahne, A., Martin-Neira, M., and Mecklenburg, S. (2010), "The SMOS mission: New tool for monitoring key elements of the global water cycle", Proceedings of the IEEE, vol. 98, no. 5, doi: 10.1109/JPROC.2010.2043043. Rodríguez-Fernández, N.J., Aires, F., Richaume, P., Kerr, Y.H., Prigent, C., Kolassa, J., Cabot, F., Jiménez, C., Mahmoodi, A., and Drusch, M. (2015), "Soil Moisture Retrieval Using Neural Networks: Application to SMOS", IEEE Trans. on Geosc. and Remote Sens., vol. 53, no. 11, doi: 10.1109/TGRS.2015.2430845. Van der Schalie, R., Kerr, Y.H., Wigneron, J.P., Rodriguez-Fernandez, N.J., Al-Yaari, A., and De Jeu, R.A.M. (2015), "Global SMOS Soil Moisture Retrievals from The Land Parameter Retrieval Model", Int. J. Appl. Earth Observ. Geoinf, doi: http://dx.doi.org/10.1016/j.jag.2015.08.005. Wigneron J.-P., Calvet, J.-C., De Rosnay, P., Kerr, Y., Waldteufel, P., Saleh, K., Escorihuela, M.J. and Kruszewski, A. (2004), "Soil Moisture Retrievals from Bi-Angular L-band Passive Microwave Observations", IEEE Trans. Geosc. Remote Sens. Let., vol. 1, no. 4, pp. 277-281.
Herschel Space Observatory - Overview and Observing Opportunities
NASA Astrophysics Data System (ADS)
Pilbratt, G. L.
2005-12-01
The Herschel Space Observatory is the fourth cornerstone mission in the European Space Agency (ESA) science programme. It will perform imaging photometry and spectroscopy in the far infrared and submillimetre part of the spectrum, covering approximately the 55-650 micron range. The key science objectives emphasize current questions connected to the formation and evolution of galaxies, stars, and our own planetary system. However, Herschel will offer unique observing capabilities available to the entire astronomical community. Herschel will carry a 3.5 metre diameter passively cooled telescope. The science payload complement - two cameras/medium resolution spectrometers (PACS and SPIRE) and a very high resolution heterodyne spectrometer (HIFI) - will be housed in a superfluid helium cryostat. The ground segment will be jointly developed by the ESA, the three instrument teams, and NASA/IPAC. Once operational in orbit around L2 sometime in 2008, Herschel will offer a minimum of 3 years of routine observations; roughly 2/3 of the available observing time is open to the general astronomical community through a standard competitive proposal procedure. I will report on the current implementation status of the various elements that together make up the Herschel mission, introduce the mission from the perspective of the prospective user of this major facility, and describe the plans for announcing observing opportunities.
The MetOp second generation 3MI mission
NASA Astrophysics Data System (ADS)
Manolis, Ilias; Caron, Jérôme; Grabarnik, Semen; Bézy, Jean-Loup; Betto, Maurizio; Barré, Hubert; Mason, Graeme; Meynart, Roland
2017-11-01
ESA is currently running two parallel, competitive phase A/B1 studies for MetOp Second Generation (MetOp-SG). MetOp-SG is the space segment of EUMETSAT Polar System (EPS-SG) consisting of the satellites and instruments. The Phase A/B1 studies will be completed in the first quarter of 2013. The final implementation phases (B2/C/D) are planned to start 2013. ESA is responsible for instrument design of five missions, namely Microwave Sounding Mission (MWS), Scatterometer mission (SCA), Radio Occultation mission (RO), Microwave Imaging mission (MWI), Ice Cloud Imaging (ICI) mission, and Multiviewing, Multi-channel, Multi-polarization imaging mission (3MI). This paper will present the instrument main design elements of the 3MI mission, primarily aimed at providing aerosol characterization for climate monitoring, Numerical Weather Prediction (NWP), atmospheric chemistry and air quality. The 3MI instrument is a passive radiometer measuring the polarized radiances reflected by the Earth under different viewing geometries and across several spectral bands spanning the visible and short-wave infrared spectrum. The paper will present the main performances of the instrument and will concentrate mainly on the performance improvements with respect to its heritage derived by the POLDER instrument. The engineering of some key performance requirements (multiviewing, polarization sensitivity, etc.) will also be discussed.
NASA Astrophysics Data System (ADS)
Benveniste, J.; Cotton, D.; Moreau, T.; Varona, E.; Roca, M.; Cipollini, P.; Cancet, M.; Martin, F.; Fenoglio-Marc, L.; Naeije, M.; Fernandes, J.; Restano, M.; Ambrozio, A.
2016-12-01
The ESA Sentinel-3 satellite, launched in February 2016 as a part of the Copernicus programme, is the second satellite to operate a SAR mode altimeter. The Sentinel 3 Synthetic Aperture Radar Altimeter (SRAL) is based on the heritage from Cryosat-2, but this time complemented by a Microwave Radiometer (MWR) to provide a wet troposphere correction, and operating at Ku and C-Bands to provide an accurate along-track ionospheric correction. Together this instrument package, including both GPS and DORIS instruments for accurate positioning, allows accurate measurements of sea surface height over the ocean, as well as measurements of significant wave height and surface wind speed. SCOOP (SAR Altimetry Coastal & Open Ocean Performance) is a project funded under the ESA SEOM (Scientific Exploitation of Operational Missions) Programme Element, started in September 2015, to characterise the expected performance of Sentinel-3 SRAL SAR mode altimeter products, in the coastal zone and open-ocean, and then to develop and evaluate enhancements to the baseline processing scheme in terms of improvements to ocean measurements. There is also a work package to develop and evaluate an improved Wet Troposphere correction for Sentinel-3, based on the measurements from the on-board MWR, further enhanced mostly in the coastal and polar regions using third party data, and provide recommendations for use. At the end of the project recommendations for further developments and implementations will be provided through a scientific roadmap. In this presentation we provide an overview of the SCOOP project, highlighting the key deliverables and discussing the potential impact of the results in terms of the application of delay-Doppler (SAR) altimeter measurements over the open-ocean and coastal zone. We also present the initial results from the project, including: Key findings from a review of the current "state-of-the-art" for SAR altimetry, Specification of the initial "reference" delay-Doppler and echo modelling /retracking processing schemes, Evaluation of the initial Test Data Set in the Open Ocean and Coastal Zone Overview of modifications planned to the reference delay-Doppler and echo modelling/ re-tracking processing schemes.
Sampled control stability of the ESA instrument pointing system
NASA Astrophysics Data System (ADS)
Thieme, G.; Rogers, P.; Sciacovelli, D.
Stability analysis and simulation results are presented for the ESA Instrument Pointing System (IPS) that is to be used in Spacelab's second launch. Of the two IPS plant dynamic models used in the ESA and NASA activities, one is based on six interconnected rigid bodies that represent the IPS and plant dynamic models used in the ESA and NASA activities, one is based on six interconnected rigid bodies that represent the IPS and its payload, while the other follows the NASA practice of defining an IPS-Spacelab 2 plant configuration through a structural finite element model, which is then used to generate modal data for various pointing directions. In both cases, the IPS dynamic plant model is truncated, then discretized at the sampling frequency and interfaces to a PID-based control law. A stability analysis has been carried out in discrete domain for various instrument pointing directions, taking into account suitable parameter variation ranges. A number of time simulations are presented.
ESA'S Biomass Mission System And Payload Overview
NASA Astrophysics Data System (ADS)
Arcioni, M.; Bensi, P.; Fois, F.; Gabriele, A.; Heliere, F.; Lin, C. C.; Massotti, L.; Scipal, K.
2013-12-01
Earth Explorers are the backbone of the science and research element of ESA's Living Planet Programme, providing an important contribution to the understanding of the Earth system. Following the User Consultation Meeting held in Graz, Austria on 5-6 March 2013, the Earth Science Advisory Committee (ESAC) has recommended implementing Biomass as the 7th Earth Explorer Mission within the frame of the ESA Earth Observation Envelope Programme. This paper will give an overview of the satellite system and its payload. The system technical description presented here is based on the results of the work performed during parallel Phase A system studies by two industrial consortia led by EADS Astrium Ltd. and Thales Alenia Space Italy. Two implementation concepts (respectively A and B) are described and provide viable options capable of meeting the mission requirements.
Science goals and concepts of a Saturn probe for the future L2/L3 ESA call
NASA Astrophysics Data System (ADS)
Schmider, F.-X.; Mousis, O.; Fletcher, L. N.; Altwegg, K.; André, N.; Blanc, M.; Coustenis, A.; Gautier, D.; Geppert, W. D.; Guillot, T.; Irwin, P.; Lebreton, J.-P.; Marty, B.; Sánchez-Lavega, A.; Waite, J. H.; Wurz, P.
2013-11-01
Comparative studies of the elemental enrichments and isotopic abundances measured on Saturn can provide unique insights into the processes at work within our planetary system and are related to the time and location of giant planet formation. In situ measurements via entry probes remain the only reliable, unambiguous method for determining the atmospheric composition from the thermosphere to the deep cloud-forming regions of their complex weather layers. Furthermore, in situ experiments can reveal the meteorological properties of planetary atmospheres to provide ``ground truth'' for orbital remote sensing. Following the orbital reconnaissance of the Galileo and Cassini spacecraft, and the single-point in situ measurement of the Galileo probe to Jupiter, we believe that an in situ measurement of Saturn's atmospheric composition should be an essential element of ESA's future cornerstone missions, providing the much-needed comparative planetology to reveal the origins of our outer planets. This quest for understanding the origins of our solar system and the nature of planetary atmospheres is in the heart of ESA's Cosmic Vision, and has vast implications for the origins of planetary systems around other stars.
NASA Astrophysics Data System (ADS)
Dutheil, Sylvain; Pibarot, Julien; Tran, Dac; Vallee, Jean-Jacques; Tribot, Jean-Pierre
2016-07-01
With the aim of placing Europe among the world's space players in the strategic area of atmospheric re-entry, several studies on experimental vehicle concepts and improvements of critical re-entry technologies have paved the way for the flight of an experimental space craft. The successful flight of the Intermediate eXperimental Vehicle (IXV), under ESA's Future Launchers Preparatory Programme (FLPP), is definitively a significant step forward from the Atmospheric Reentry Demonstrator flight (1998), establishing Europe as a key player in this field. The IXV project objectives were the design, development, manufacture and ground and flight verification of an autonomous European lifting and aerodynamically controlled reentry system, which is highly flexible and maneuverable. The paper presents, the role of aerodynamics aerothermodynamics as part of the key technologies for designing an atmospheric re-entry spacecraft and securing a successful flight.
The Sentinel-4 detectors: architecture and performance
NASA Astrophysics Data System (ADS)
Skegg, Michael P.; Hermsen, Markus; Hohn, Rüdiger; Williges, Christian; Woffinden, Charles; Levillain, Yves; Reulke, Ralf
2017-09-01
The Sentinel-4 instrument is an imaging spectrometer, developed by Airbus under ESA contract in the frame of the joint European Union (EU)/ESA COPERNICUS program. SENTINEL-4 will provide accurate measurements of trace gases from geostationary orbit, including key atmospheric constituents such as ozone, nitrogen dioxide, sulfur dioxide, formaldehyde, as well as aerosol and cloud properties. Key to achieving these atmospheric measurements are the two CCD detectors, covering the wavelengths in the ranges 305 nm to 500 nm (UVVIS) and 750 to 775 nm (NIR) respectively. The paper describes the architecture, and operation of these two CCD detectors, which have an unusually high full-well capacity and a very specific architecture and read-out sequence to match the requirements of the Sentinel- 4 instrument. The key performance aspects and their verification through measurement are presented, with a focus on an unusual, bi-modal dark signal generation rate observed during test.
Development of Onboard Computer Complex for Russian Segment of ISS
NASA Technical Reports Server (NTRS)
Branets, V.; Brand, G.; Vlasov, R.; Graf, I.; Clubb, J.; Mikrin, E.; Samitov, R.
1998-01-01
Report present a description of the Onboard Computer Complex (CC) that was developed during the period of 1994-1998 for the Russian Segment of ISS. The system was developed in co-operation with NASA and ESA. ESA developed a new computation system under the RSC Energia Technical Assignment, called DMS-R. The CC also includes elements developed by Russian experts and organizations. A general architecture of the computer system and the characteristics of primary elements of this system are described. The system was integrated at RSC Energia with the participation of American and European specialists. The report contains information on software simulators, verification and de-bugging facilities witch were been developed for both stand-alone and integrated tests and verification. This CC serves as the basis for the Russian Segment Onboard Control Complex on ISS.
NASA Astrophysics Data System (ADS)
Gulde, S. T.; Kolm, M. G.; Smith, D. J.; Maurer, R.; Bazalgette Courrèges-Lacoste, G.; Sallusti, M.; Bagnasco, G.
2017-11-01
SENTINEL 4 is an imaging UVN (UV-VIS-NIR) spectrometer, developed by Airbus Defence and Space under ESA contract in the frame of the joint European Union (EU)/ESA COPERNICUS program. The mission objective is the operational monitoring of trace gas concentrations for atmospheric chemistry and climate applications. To this end SENTINEL 4 will provide accurate measurements of key atmospheric constituents such as ozone, nitrogen dioxide, sulfur dioxide, formaldehyde, as well as aerosol and cloud properties.
NASA Astrophysics Data System (ADS)
Lumb, D.
2016-07-01
Athena has been selected by ESA for its second large mission opportunity of the Cosmic Visions programme, to address the theme of the Hot and Energetic Universe. Following the submission of a proposal from the community, the technical and programmatic aspects of the mission design were reviewed in ESA's Concurrent Design Facility. The proposed concept was deemed to betechnically feasible, but with potential constraints from cost and schedule. Two parallel industry study contracts have been conducted to explore these conclusions more thoroughly, with the key aim of providing consolidated inputs to a Mission Consolidation Review that was conducted in April-May 2016. This MCR has recommended a baseline design, which allows the agency to solicit proposals for a community provided payload. Key design aspects arising from the studies are described, and the new reference design is summarised.
Advances in Architectural Elements For Future Missions to Titan
NASA Astrophysics Data System (ADS)
Reh, Kim; Coustenis, Athena; Lunine, Jonathan; Matson, Dennis; Lebreton, Jean-Pierre; Vargas, Andre; Beauchamp, Pat; Spilker, Tom; Strange, Nathan; Elliott, John
2010-05-01
The future exploration of Titan is of high priority for the solar system exploration community as recommended by the 2003 National Research Council (NRC) Decadal Survey [1] and ESA's Cosmic Vision Program themes. Recent Cassini-Huygens discoveries continue to emphasize that Titan is a complex world with very many Earth-like features. Titan has a dense, nitrogen atmosphere, an active climate and meteorological cycles where conditions are such that the working fluid, methane, plays the role that water does on Earth. Titan's surface, with lakes and seas, broad river valleys, sand dunes and mountains was formed by processes like those that have shaped the Earth. Supporting this panoply of Earth-like processes is an ice crust that floats atop what might be a liquid water ocean. Furthermore, Titan is rich in very many different organic compounds—more so than any place in the solar system, except Earth. The Titan Saturn System Mission (TSSM) concept that followed the 2007 TandEM ESA CV proposal [2] and the 2007 Titan Explorer NASA Flagship study [3], was examined [4,5] and prioritized by NASA and ESA in February 2009 as a mission to follow the Europa Jupiter System Mission. The TSSM study, like others before it, again concluded that an orbiter, a montgolfiere hot-air balloon and a surface package (e.g. lake lander, Geosaucer (instrumented heat shield), …) are very high priority elements for any future mission to Titan. Such missions could be conceived as Flagship/Cosmic Vision L-Class or as individual smaller missions that could possibly fit into NASA New Frontiers or ESA Cosmic Vision M-Class budgets. As a result of a multitude of Titan mission studies, a clear blueprint has been laid out for the work needed to reduce the risks inherent in such missions and the areas where advances would be beneficial for elements critical to future Titan missions have been identified. The purpose of this paper is to provide a brief overview of the flagship mission architecture and to describe recent advances and ongoing planning for a Titan balloon and surface elements. References [1] NRC Space Studies Board (2003), New Frontiers in the Solar System: An Integrated Exploration Strategy (first Decadal Survey Report), National Academic Press, Washington, DC. [2] Coustenis et al. (2008). Experimental Astronomy, DOI: 10.1007/s10686-008-9103-z. [3] J. Leary, R. Strain, R. Lorenz, J. H. Waite, 2008. Titan Explorer Flagship Mission Study, http://www.lpi.usra.edu/opag/Titan_Explorer_Public_Report.pdf. [4] TSSM Final Report, 3 November 2008, NASA Task Order NMO710851 [5] TSSM NASA/ESA Joint Summary Report, 15 November 2008, NASA Task Order NMO710851
NASA Astrophysics Data System (ADS)
Galvez, A.; Carnelli, I.; Fontaine, M.; Corral Van Damme, C.
2012-09-01
ESA's Future Preparation and Strategic Studies Office has carried out the Asteroid Impact Mission (AIM) study with the objective of defining an affordable and fully independent mission element that ESA could contribute to an Asteroid Impact Deflection Assessment campaign (AIDA), a joint effort of ESA, JHU/APL, NASA, OCA and DLR. The mission design foresees two independent spacecraft, one impactor (DART) and one rendezvous probe (AIM). The target of this mission is the binary asteroid system (65803) Didymos (1996 GT): one spacecraft, DART, would impact the secondary of the Didymos binary system while AIM would observe and measure any the change in the relative orbit. For this joint project, the timing of the experiment is set (maximum proximity of the target to Earth allowing for ground-based characterisation of the experiment) but the spacecraft are still able to pursue their missions fully independently. This paper describes in particular the AIM rendezvous mission concept.
Doing Science with eLISA: Astrophysics and Cosmology in the Millihertz Regime
NASA Technical Reports Server (NTRS)
Amaro, Seoane, Pau; Aoudia, Sofiane; Babak, Stanislav; Binetruy, Pierre; Berti, Amanuele; Bohe, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J.; Danzmann, Karsten;
2012-01-01
This document introduces the exciting and fundamentally new science and astronomy that the European New Gravitational Wave Observatory (NGO) mission (derived from the previous LISA proposal) will deliver. The mission (which we will refer to by its informal name eLISA ) will survey for the first time the low-frequency gravitational wave band (about 0.1 mHz to 1 Hz), with sufficient sensitivity to detect interesting individual astrophysical sources out to z = 15. The measurements described here will address the basic scientific goals that have been captured in ESA s New Gravitational Wave Observatory Science Requirements Document ; they are presented here so that the wider scientific community can have access to them. The eLISA mission will discover and study a variety of cosmic events and systems with high sensitivity: coalescences of massive black holes binaries, brought together by galaxy mergers; mergers of earlier, less-massive black holes during the epoch of hierarchical galaxy and black-hole growth; stellar-mass black holes and compact stars in orbits just skimming the horizons of massive black holes in galactic nuclei of the present era; extremely compact white dwarf binaries in our Galaxy, a rich source of information about binary evolution and about future Type Ia supernovae; and possibly most interesting of all, the uncertain and unpredicted sources, for example relics of inflation and of the symmetry-breaking epoch directly after the Big Bang. eLISA s measurements will allow detailed studies of these signals with high signal-to-noise ratio, addressing most of the key scientific questions raised by ESA s Cosmic Vision programme in the areas of astrophysics and cosmology. They will also provide stringent tests of general relativity in the strong-field dynamical regime, which cannot be probed in any other way. This document not only describes the science but also gives an overview on the mission design and orbits. LISA s heritage in the eLISA design will be clear to those familiar with the previous proposal, as will its incorporation of key elements of hardware from the LISA Pathfinder mission, scheduled for launch by ESA in 2014. But eLISA is fundamentally a new mission, one that will pioneer the completely new science of low-frequency gravitational wave astronomy. 4 of
Solar Flare Prediction Science-to-Operations: the ESA/SSA SWE A-EFFort Service
NASA Astrophysics Data System (ADS)
Georgoulis, Manolis K.; Tziotziou, Konstantinos; Themelis, Konstantinos; Magiati, Margarita; Angelopoulou, Georgia
2016-07-01
We attempt a synoptical overview of the scientific origins of the Athens Effective Solar Flare Forecasting (A-EFFort) utility and the actions taken toward transitioning it into a pre-operational service of ESA's Space Situational Awareness (SSA) Programme. The preferred method for solar flare prediction, as well as key efforts to make it function in a fully automated environment by coupling calculations with near-realtime data-downloading protocols (from the Solar Dynamics Observatory [SDO] mission), pattern recognition (solar active-region identification) and optimization (magnetic connectivity by simulated annealing) will be highlighted. In addition, the entire validation process of the service will be described, with its results presented. We will conclude by stressing the need for across-the-board efforts and synergistic work in order to bring science of potentially limited/restricted interest into realizing a much broader impact and serving the best public interests. The above presentation was partially supported by the ESA/SSA SWE A-EFFort project, ESA Contract No. 4000111994/14/D/MRP. Special thanks go to the ESA Project Officers R. Keil, A. Glover, and J.-P. Luntama (ESOC), M. Bobra and C. Balmer of the SDO/HMI team at Stanford University, and M. Zoulias at the RCAAM of the Academy of Athens for valuable technical help.
SMART-1, Platform Design and Project Status
NASA Astrophysics Data System (ADS)
Sjoberg, F.
SMART-1 is the first of the Small Missions for Advanced Research and Technology (SMART), an element of ESA's Horizons 2000 plan for scientific projects. These missions aim at testing key technologies for future Cornerstone missions. The mission of SMART-1 is the flight demonstration of Electric Primary Propulsion for a scientifically relevant deep space trajectory. More specifically, SMART-1 will be launched into a geostationary transfer orbit and use a single ion thruster to achieve lunar orbit. include: -A modern avionics architecture with a clean-cut control hierarchy -Extensive Failure Detection, Isolation and Recovery (FDIR) capabilities following the control hierarchy of the -An advanced power control and distribution system -A newly developed gimbal mechanism for the orientation of the electric ion thruster The project is currently in the FM AIT phase scheduled for launch in late 2002. The paper will describe the SMART- 1 spacecraft platform design as well as the current project and spacecraft verification status.
NASA Astrophysics Data System (ADS)
Aleina, Sara Cresto; Viola, Nicole; Fusaro, Roberta; Saccoccia, Giorgio
2017-10-01
Exploration technology roadmaps have been developed by ESA in the past few years and the latest edition has been released in 2015. Scope of these technology roadmaps, elaborated in consultation with the different ESA stakeholders (e.g. European Industries and Research Entities), is to provide a powerful tool for strategic, programmatic and technical decisions in support of the European role within an International Space Exploration context. In the context of preparation for possible future European Moon exploration initiatives, the technology roadmaps have been used to highlight the role of technology within Missions, Building Blocks and Operational Capabilities of relevance. In particular, as part of reference missions to the Moon that would fit in the time frame 2020 to 2030, ESA has addressed the definition of lunar surface exploration missions in line with its space exploration strategy, with the common mission goals of returning samples from the Moon and Mars and expanding human presence to these destinations in a step-wise approach. The roadmaps for the procurement of technologies required for the first mission elements of the above strategy have been elaborated through their main building blocks, i.e. Visual navigation, Hazard detection and avoidance; Sample acquisition, processing and containment system; Surface mobility elements; Tele-robotic and autonomous control systems; and Storable propulsion modules and equipment. Technology prioritization methodologies have been developed in support of the ESA Exploration Technology Roadmaps, in order to provide logical and quantitative instruments to verify choices of prioritization that can be carried out based on important, but non-quantitative factors. These methodologies, which are thoroughly described in the first part of the paper, proceed through subsequent steps. First, technology prioritization's criteria are selected; then decision trees are developed to highlight all feasible paths of combination of technology prioritization's criteria and to assess the final achievement of each path, i.e. the cost-effectiveness. The risk associated to each path is also evaluated. In the second part of the paper, these prioritization methodologies have been applied to some of the building blocks of relevance for the mission concepts under evaluation at ESA (such as Tele-robotic and autonomous control systems; Storable propulsion modules and equipment) and the results are presented to highlight the approach for an effective TRL increase. Eventually main conclusions are drawn.
Starting a European Space Agency Sample Analogue Collection for Robotic Exploration Missions
NASA Astrophysics Data System (ADS)
Smith, C. L.; Mavris, C.; Michalski, J. R.; Rumsey, M. S.; Russell, S. S.; Jones, C.; Schroeven-Deceuninck, H.
2015-12-01
The Natural History Museum is working closely with the European Space Agency (ESA) and the UK Space Agency to develop a European collection of analogue materials with appropriate physical/mechanical and chemical (mineralogical) properties which can support the development and verification of both spacecraft and scientific systems for potential science and exploration missions to Phobos/Deimos, Mars, C-type asteroids and the Moon. As an ESA Collection it will be housed at the ESA Centre based at Harwell, UK. The "ESA Sample Analogues Collection" will be composed of both natural and artificial materials chosen to (as closely as possible) replicate the surfaces and near-surfaces of different Solar System target bodies of exploration interest. The analogue samples will be fully characterised in terms of both their physical/mechanical properties (compressive strength, bulk density, grain shape, grain size, cohesion and angle of internal friction) and their chemical/mineralogical properties (texture, modal mineralogy, bulk chemical composition - major, minor and trace elements and individual mineralogical compositions). The Collection will be fully curated to international standards including implementation of a user-friendly database and will be available for use by engineers and scientists across the UK and Europe. Enhancement of the initial Collection will be possible through collaborations with other ESA and UK Space Agency supported activities, such as the acquisition of new samples during field trials.
NASA Astrophysics Data System (ADS)
Cotton, P. D.; Andersen, O.; Stenseng, L.; Boy, F.; Cancet, M.; Cipollini, P.; Gommenginger, C.; Dinardo, S.; Egido, A.; Fernandes, M. J.; Garcia, P. N.; Moreau, T.; Naeije, M.; Scharroo, R.; Lucas, B.; Benveniste, J.
2016-08-01
The ESA CryoSat mission is the first space mission to carry a radar altimeter that can operate in Synthetic Aperture Radar (SAR) mode. Although the prime objective of the CryoSat mission is dedicated to monitoring land and marine ice, the SAR mode capability of the CryoSat SIRAL altimeter also presents significant potential benefits for ocean applications including improved range precision and finer along track spatial resolution.The "Cryosat Plus for Oceans" (CP4O) project, supported by the ESA Support to Science Element (STSE) Programme and by CNES, was dedicated to the exploitation of Cryosat-2 data over the open and coastal ocean. The general objectives of the CP4O project were: To build a sound scientific basis for new oceanographic applications of Cryosat-2 data; to generate and evaluate new methods and products that will enable the full exploitation of the capabilities of the Cryosat-2 SIRAL altimeter, and to ensure that the scientific return of the Cryosat-2 mission is maximised.This task was addressed within four specific themes: Open Ocean Altimetry; High Resolution Coastal Zone Altimetry; High Resolution Polar Ocean Altimetry; High Resolution Sea-Floor Bathymetry, with further work in developing improved geophysical corrections. The Cryosat Plus 4 Oceans (CP4O) consortium brought together a uniquely strong team of key European experts to develop and validate new algorithms and products to enable users to fully exploit the novel capabilities of the Cryosat-2 mission for observations over ocean. The consortium was led by SatOC (UK), and included CLS (France), Delft University of Technology (The Netherlands), DTU Space (Denmark), isardSat (Spain), National Oceanography Centre (UK), Noveltis (France), Starlab (Spain) and the University of Porto (Portugal).This paper presents an overview of the major results and outlines a proposed roadmap for the further development and exploitation of these results in operational and scientific applications.
Modification of the surface of metal products with carbide coatings by electrospark alloying
NASA Astrophysics Data System (ADS)
Koshuro, Vladimir A.; Fomina, Marina A.; Fomin, Aleksandr A.
2018-04-01
Electrospark alloying (ESA) technology has existed for a long time (since the middle of the 20th century) but its potential has not been exhausted yet. In the present paper it is proposed to increase the mechanical properties of steel and titanium products by doping with a hard carbide alloy based on "WC-TiC-Co" system. As a result, the hardness of coatings obtained by ESA reaches at least 18-22 GPa with a layer thickness of up to 0.5 mm. The proposed solution can improve the functional qualities of various friction surfaces that are used in engineering, as well as in friction elements.
Development of liquid crystal based adaptive optical elements for space applications
NASA Astrophysics Data System (ADS)
Geday, M. A.; Quintana, X.; Otón, E.; Cerrolaza, B.; Lopez, D.; Garcia de Quiro, F.; Manolis, I.; Short, A.
2017-11-01
In this paper we present the results obtained within the context of the ESA-funded project Programmable Optoelectronic Adaptive Element (AO/1-5476/07/NL/EM). The objective of this project is the development of adaptive (reconfigurable) optical elements for use in space applications and the execution of preliminary qualification tests in the relevant environment. The different designs and materials that have been considered and manufactured for a 2D beam steerer based on passive matrix liquid crystal programmable blaze grating will described and discussed.
Management of the Space Physics Analysis Network (SPAN)
NASA Technical Reports Server (NTRS)
Green, James L.; Thomas, Valerie L.; Butler, Todd F.; Peters, David J.; Sisson, Patricia L.
1990-01-01
Here, the purpose is to define the operational management structure and to delineate the responsibilities of key Space Physics Analysis Network (SPAN) individuals. The management structure must take into account the large NASA and ESA science research community by giving them a major voice in the operation of the system. Appropriate NASA and ESA interfaces must be provided so that there will be adequate communications facilities available when needed. Responsibilities are delineated for the Advisory Committee, the Steering Committee, the Project Scientist, the Project Manager, the SPAN Security Manager, the Internetwork Manager, the Network Operations Manager, the Remote Site Manager, and others.
ESAS-Derived Earth Departure Stage Design for Human Mars Exploration
NASA Technical Reports Server (NTRS)
Flaherty, Kevin; Grant, Michael; Korzun, Ashley; Malo-Molina, Faure; Steinfeldt, Bradley; Stahl, Benjamin; Wilhite, Alan
2007-01-01
The Vision for Space Exploration has set the nation on a course to have humans on Mars as early as 2030. To reduce the cost and risk associated with human Mars exploration, NASA is planning for the Mars architecture to leverage the lunar architecture as fully as possible. This study takes the defined launch vehicles and system capabilities from ESAS and extends their application to DRM 3.0 to design an Earth Departure Stage suitable for the cargo and crew missions to Mars. The impact of a propellant depot in LEO was assessed and sLzed for use with the EDS. To quantitatively assess and compare the effectiveness of alternative designs, an initial baseline architecture was defined using the ESAS launch vehicles and DRM 3.0. The baseline architecture uses three NTR engines, LH2 propellant, no propellant depot in LEO, and launches on the Ares I and Ares V. The Mars transfer and surface elements from DRM 3.0 were considered to be fixed payloads in the design of the EDS. Feasible architecture alternatives were identified from previous architecture studies and anticipated capabilities and compiled in a morphological matrix. ESAS FOMs were used to determine the most critical design attributes for the effectiveness of the EDS. The ESAS-derived FOMs used in this study to assess alternative designs are effectiveness and performance, affordability, reliability, and risk. The individual FOMs were prioritized using the AHP, a method for pairwise comparison. All trades performed were evaluated with respect to the weighted FOMs, creating a Pareto frontier of equivalently ideal solutions. Additionally, each design on the frontier was evaluated based on its fulfillment of the weighted FOMs using TOPSIS, a quantitative method for ordinal ranking of the alternatives. The designs were assessed in an integrated environment using physics-based models for subsystem analysis where possible. However, for certain attributes such as engine type, historical, performance-based mass estimating relations were more easily employed. The elements from the design process were integrated into a single loop, allowing for rapid iteration of subsystem analyses and compilation of resulting designs.
Performance of novel polymer shields aboard the ESA Biopan-5 mission
NASA Astrophysics Data System (ADS)
Hajek, M.; Berger, T.; Fugger, M.; Vana, N.
Radiation exposure of astronaut crew has been identified as a key issue in human spaceflight The reduction of dose by appropriate shielding measures is thus donated an essential role for the future development of space exploration particularly with regard to long-term interplanetary missions Optimization of shielding strategies and design may involve polymeric materials with enhanced hydrogen content specifically developed to attenuate high charge-and-energy HZE particles such as those encountered in galactic cosmic rays GCR The projectile energy loss is proportional to rho cdot Z A and reaches a maximum for hydrogen targets Light elements are also expected to minimize target fragmentation particularly the production of secondary neutrons The LETVAR experiment flow aboard the European Space Agency ESA Biopan-5 mission as part of a 27 kg payload attached to the external surface of the Foton-M2 descent capsule was dedicated to studying the shielding performance of three different polymers in reference to aluminium when exposed to the unshielded space environment in low-earth orbit LEO The mission was launched successfully on May 31 2005 from the Baikonur Cosmodrome Kazakhstan and spent 15 6 days at an orbital altitude between 262 and 304 km inclined by 63 r to the equatorial plane After recovery absorbed dose and average linear energy transfer LET were determined in front and behind the material slabs To support data interpretation material samples equivalent to those flown in space were exposed---to the extent possible
NASA Astrophysics Data System (ADS)
Briois, C.; Cotti, H.; Thirkell, L.; Space Orbitrap Consortium[K. Aradj, French; Bouabdellah, A.; Boukrara, A.; Carrasco, N.; Chalumeau, G.; Chapelon, O.; Colin, F.; Coll, P.; Engrand, C.; Grand, N.; Kukui, A.; Lebreton, J.-P.; Pennanech, C.; Szopa, C.; Thissen, R.; Vuitton, V.; Zapf], P.; Makarov, A.
2014-07-01
Since about a decade the boundaries between comets and carbonaceous asteroids are fading [1,2]. No doubt that the Rosetta mission should bring a new wealth of data on the composition of comets. But as promising as it may look, the mass resolving power of the mass spectrometers onboard (so far the best on a space mission) will only be able to partially account for the diversity of chemical structures present. ILMA (Ion-Laser Mass Analyser) is a new generation high mass resolution LDI-MS (Laser Desorption-Ionization Mass Spectrometer) instrument concept using the Orbitrap technique, which has been developed in the frame of the two Marco Polo & Marco Polo-R proposals to the ESA Cosmic Vision program. Flagged by ESA as an instrument concept of interest for the mission in 2012, it has been under study for a few years in the frame of a Research and Technology (R&T) development programme between 5 French laboratories (LPC2E, IPAG, LATMOS, LISA, CSNSM) [3,4], partly funded by the French Space Agency (CNES). The work is undertaken in close collaboration with the Thermo Fisher Scientific Company, which commercialises Orbitrap-based laboratory instruments. The R&T activities are currently concentrating on the core elements of the Orbitrap analyser that are required to reach a sufficient maturity level for allowing design studies of future space instruments. A prototype is under development at LPC2E and a mass resolution (m/Δm FWHM) of 100,000 as been obtained at m/z = 150 for a background pressure of 10^{-8} mbar. ILMA would be a key instrument to measure the molecular, elemental and isotopic composition of objects such as carbonaceous asteroids, comets, or other bodies devoid of atmosphere such as the surface of an icy satellite, the Moon, or Mercury.
NASA Astrophysics Data System (ADS)
Jehlička, J.; Edwards, H. G. M.; Vítek, P.
2009-05-01
Several characteristic geological features found on the surface of Mars by planetary rovers suggest that a possible extinct biosphere could exist based on similar sources of energy as occurred on Earth. For this reason, analytical instrumental protocols for the detection of biomarkers in suitable geological matrices unequivocally have to be elaborated for future unmanned explorations including the forthcoming ESA ExoMars mission. As part of the Pasteur suite of analytical instrumentation on ExoMars, the Raman/LIBS instrument will seek elemental and molecular information about geological, biological and biogeological markers in the Martian record. A key series of experiments on terrestrial Mars analogues, of which this paper addresses a particularly important series of compounds, is required to obtain the Raman spectra of key molecules and crystals, which are characteristic for each biomarker. Here, we present Raman spectra of several examples of organic compounds which have been recorded non-destructively - higher n-alkanes, polycyclic aromatic hydrocarbons, carotenoids, salts of organic acids, pure crystalline terpenes as well as oxygen-containing organic compounds. In addition, the lower limit of β-carotene detection in sulphate matrices using Raman microspectroscopy was estimated.
Elisa technology consolidation study overview
NASA Astrophysics Data System (ADS)
Fitzsimons, E. D.; Brandt, N.; Johann, U.; Kemble, S.; Schulte, H.-R.; Weise, D.; Ziegler, T.
2017-11-01
The eLISA (evolved Laser Interferometer Space Antenna) mission is an ESA L3 concept mission intended to detect and characterise gravitational radiation emitted from astrophysical sources [1]. Current designs for eLISA [2] are based on the ESA study conducted in 2011 to reformulate the original ESA/NASA LISA concept [3] into an ESA-only L1 candidate named NGO (New Gravitational Observatory) [4]. During this brief reformulation period, a number of significant changes were made to the baseline LISA design in order to create a more costeffective mission. Some of the key changes implemented during this reformulation were: • A reduction in the inter satellite distance (the arm length) from 5 Gm to 1 Gm. • A reduction in the diameter of the telescope from 40 cm to 20 cm. • A reduction in the required laser power by approximately 40%. • Implementation of only 2 laser arms instead of 3. Many further simplifications were then enabled by these main design changes including the elimination of payload items in the two spacecraft (S/C) with no laser-link between them (the daughter S/C), a reduction in the size and complexity of the optical bench and the elimination of the Point Ahead Angle Mechanism (PAAM), which corrects for variations in the pointing direction to the far S/C caused by orbital dynamics [4] [5]. In the run-up to an L3 mission definition phase later in the decade, it is desirable to review these design choices and analyse the inter-dependencies and scaling between the key mission parameters with the goal of better understanding the parameter space and ensuring that in the final selection of the eLISA mission parameters the optimal balance between cost, complexity and science return can be achieved.
Venus entry probe technology reference mission
NASA Astrophysics Data System (ADS)
van den Berg, M. L.; Falkner, P.; Atzei, A. C.; Phipps, A.; Mieremet, A.; Kraft, S.; Peacock, A.
The Venus Entry Probe is one of ESA's Technology Reference Missions (TRM). TRMs are model science-driven missions that are, although not part of the ESA science programme, able to provide focus to future technology requirements. This is accomplished through the study of several technologically demanding and scientifically meaningful mission concepts, which are strategically chosen to address diverse technological issues. The TRMs complement ESA's current mission specific development programme and allow the ESA Science Directorate to strategically plan the development of technologies that will enable potential future scientific missions. Key technological objectives for future planetary exploration include the use of small orbiters and in-situ probes with highly miniaturized and highly integrated payload suites. The low resource, and therefore low cost, spacecraft allow for a phased strategic approach to planetary exploration. The aim of the Venus Entry Probe TRM (VEP) is to study approaches for low cost in-situ exploration of the Venusian atmosphere. The mission profile consists of two minisats. The first satellite enters low Venus orbit. This satellite contains a highly integrated remote sensing payload suite primarily dedicated to support the in-situ atmospheric measurements of the aerobot. The second minisat enters deep elliptical orbit, deploys the aerobot, and subsequently operates as a data relay, data processing and overall resource allocation satellite. The micro-aerobot consists of a long-duration balloon that will analyze the Venusian middle cloud layer at an altitude of ˜ 55 km, where the environment is relatively benign (T = 20 C and p = 0.45 bars). The balloon will deploy a swarm of active ballast probes, which determine vertical profiles of selected properties of the lower atmosphere. In this presentation, the mission objectives and profile of the Venus Entry Probe TRM will be given as well as the key technological challenges.
Future Exploration of Titan and Enceladus
NASA Astrophysics Data System (ADS)
Matson, D. L.; Coustenis, A.; Lunine, J.; Lebreton, J.; Reh, K.; Beauchamp, P.
2009-05-01
The future exploration of Titan and Enceladus has become very important for the planetary community. The study conducted last year of the Titan Saturn System Mission (TSSM) led to an announcement in which ESA and NASA prioritized future OPF missions, stating that TSSM is planned after EJSM (for details see http://www.lpi.usra.edu/opag/). TSSM consists of a TSSM Orbiter that would carry two in situ elements: the Titan Montgolfiere hot air balloon and the Titan Lake Lander. The mission could launch in the 2023-2025 timeframe on a trajectory to arrive ~9 years later for a 4-year mission in the Saturn system. Soon after arrival at Saturn, the montgolfiere would be delivered to Titan to begin its mission of airborne, scientific observations of Titan from an altitude of about 10 km. The montgolfiere would have a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) power system and would be designed to last at least 6-12 months in Titan's atmosphere. With the predicted winds and weather, that would be sufficient to circumnavigate the globe! On a subsequent fly-by, the TSSM orbiter would release the Lake Lander on a trajectory toward Titan for a targeted entry. It would descend through the atmosphere making scientific measurements, much like Huygens did, and then land and float on one of Titan's seas. This would be its oceanographic phase, making a physical and chemical assessment of the sea. The Lake Lander would operate 8-10 hours until its batteries become depleted. Following the delivery of the in situ elements, the TSSM orbiter would explore the Saturn system via a 2-year tour that includes in situ sampling of Enceladus' plumes as well as Titan flybys. After the Saturn system tour, the TSSM orbiter would enter orbit around Titan for a global survey phase. Synergistic and coordinated observations would be carried out between the TSSM orbiter and the in situ elements. The scientific requirements were developed by the international TSSM Joint Science Definition Team (JSDT). The orbiter was NASA's responsibility while the in situ elements were designed by ESA. The engineering and flight operations aspects of TSSM were developed in a collaborative study, conducted by NASA and ESA engineering teams working on both sides of the Atlantic. This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The European part was conducted in ESA within the Cosmic Vision 1 plan. Copyright 2008 California Institute of Technology. Government sponsorship acknowledged.
Mechanical Overview of the International X-Ray Observatory
NASA Technical Reports Server (NTRS)
Robinson, David W.; McClelland, Ryan S.
2009-01-01
The International X-ray Observatory (IXO) is a new collaboration between NASA, ESA, and JAXA which is under study for launch in 2020. IXO will be a large 6600 kilogram Great Observatory-class mission which will build upon the legacies of the Chandra and XMM-Newton X-ray observatories. It combines elements from NASA's Constellation-X program and ESA's XEUS program. The observatory will have a 20-25 meter focal length, which necessitates the use of a deployable instrument module. Currently the project is actively trading configurations and layouts of the various instruments and spacecraft components. This paper will provide a snapshot of the latest observatory configuration under consideration and summarize the observatory from the mechanical engineering perspective.
NASA Technical Reports Server (NTRS)
Keyes, Jennifer; Troutman, Patrick A.; Saucillo, Rudolph; Cirillo, William M.; Cavanaugh, Steve; Stromgren, Chel
2006-01-01
The NASA Langley Research Center (LaRC) Systems Analysis & Concepts Directorate (SACD) began studying human exploration missions beyond low Earth orbit (LEO) in the year 1999. This included participation in NASA s Decadal Planning Team (DPT), the NASA Exploration Team (NExT), Space Architect studies and Revolutionary Aerospace Systems Concepts (RASC) architecture studies that were used in formulating the new Vision for Space Exploration. In May of 2005, NASA initiated the Exploration Systems Architecture Study (ESAS). The primary outputs of the ESAS activity were concepts and functional requirements for the Crewed Exploration Vehicle (CEV), its supporting launch vehicle infrastructure and identification of supporting technology requirements and investments. An exploration systems analysis capability has evolved to support these functions in the past and continues to evolve to support anticipated future needs. SACD had significant roles in supporting the ESAS study team. SACD personnel performed the liaison function between the ESAS team and the Shuttle/Station Configuration Options Team (S/SCOT), an agency-wide team charged with using the Space Shuttle to complete the International Space Station (ISS) by the end of Fiscal Year (FY) 2010. The most significant of the identified issues involved the ability of the Space Shuttle system to achieve the desired number of flights in the proposed time frame. SACD with support from the Kennedy Space Center performed analysis showing that, without significant investments in improving the shuttle processing flow, that there was almost no possibility of completing the 28-flight sequence by the end of 2010. SACD performed numerous Lunar Surface Access Module (LSAM) trades to define top level element requirements and establish architecture propellant needs. Configuration trades were conducted to determine the impact of varying degrees of segmentation of the living capabilities of the combined descent stage, ascent stage, and other elements. The technology assessment process was developed and implemented by SACD as the ESAS architecture was refined. SACD implemented a rigorous and objective process which included (a) establishing architectural functional needs, (b) collection, synthesis and mapping of technology data, and (c) performing an objective decision analysis resulting in technology development investment recommendations. The investment recommendation provided budget, schedule, and center/program allocations to develop required technologies for the exploration architecture, as well as the identification of other investment opportunities to maximize performance and flexibility while minimizing cost and risk. A summary of the trades performed and methods utilized by SACD for the Exploration Systems Mission Directorate (ESAS) activity is presented along with how SACD is currently supporting the implementation of the Vision for Space Exploration.
NASA Technical Reports Server (NTRS)
Lavalle, Marco; Ahmed, Razi; Neumann, Maxim; Hensley, Scott
2013-01-01
In this paper we present our latest developments and experiments with the random-motion-over-ground (RMoG) model used to extract canopy height and other important forest parameters from repeat-pass polarimetricinterferometric SAR (Pol-InSAR) data. More specifically, we summarize the key features of the RMoG model in contrast with the random-volume-over-ground (RVoG) model, describe in detail a possible inversion scheme for the RMoG model and illustrate the results of the RMoG inversion using airborne data collected by the Jet Propulsion Laboratory (JPL) and the European Space Agency (ESA).
Hello, world: Harnessing social media for the Rosetta mission
NASA Astrophysics Data System (ADS)
Baldwin, Emily; Mignone, Claudia; O'Flaherty, Karen; Homfeld, Anne-Mareike; Bauer, Markus; McCaughrean, Mark
2015-04-01
The European Space Agency's (ESA) comet-chasing Rosetta mission was launched in 2004, before social media became a popular tool for mainstream communication. By harnessing a range of platforms for communicating the key messages of this unprecedented mission as it reached its destination ten years later, new audiences were reached and a global impact was achieved. Rosetta-specific social media accounts - @ESA_Rosetta on Twitter, the Rosetta Mission Facebook page and the rosettamission Instagram account - were developed during 2013/14 and used alongside the traditional reporting line of the main ESA website and the Rosetta blog to build awareness about the mission. Coordinated with ESA's existing social media channels (Flickr, YouTube, G+, Twitter, Facebook and Livestream) and with the support of ESA's country desks and Rosetta partner agency accounts (including @philae2014), information could be shared in a number of European languages, ensuring a wide reach across Europe - and the world. We discuss the roles of the various social media accounts in supporting and promoting the competitions and social media campaigns that were built around the key mission milestones of 2014: waking up from deep space hibernation (January), arriving at Comet 67P/Churyumov-Gerasimenko (August) and naming the landing site for Philae ahead of the landing event in November. We discuss the different approach to each channel, such as the first person twitter accounts, the dialogue with and between blog users, and the discussions held live via G+ Hangouts with leading scientists and spacecraft operators. We compare and contrast the audiences, the interaction we had with them and how challenges were overcome. We also use the science-fiction-meets-science-fact Ambition short movie, and its "undercover" dissemination on social media, as an example of how the profile of the Rosetta mission was raised in a unique way. By using a variety of social media platforms to target different audiences with specific content in a coordinated way, we have been able to share the human aspect of the mission, allowing our audiences to feel part of every step of the adventure.
Nuclear Thermal Propulsion Mars Mission Systems Analysis and Requirements Definition
NASA Technical Reports Server (NTRS)
Mulqueen, Jack; Chiroux, Robert C.; Thomas, Dan; Crane, Tracie
2007-01-01
This paper describes the Mars transportation vehicle design concepts developed by the Marshall Space Flight Center (MSFC) Advanced Concepts Office. These vehicle design concepts provide an indication of the most demanding and least demanding potential requirements for nuclear thermal propulsion systems for human Mars exploration missions from years 2025 to 2035. Vehicle concept options vary from large "all-up" vehicle configurations that would transport all of the elements for a Mars mission on one vehicle. to "split" mission vehicle configurations that would consist of separate smaller vehicles that would transport cargo elements and human crew elements to Mars separately. Parametric trades and sensitivity studies show NTP stage and engine design options that provide the best balanced set of metrics based on safety, reliability, performance, cost and mission objectives. Trade studies include the sensitivity of vehicle performance to nuclear engine characteristics such as thrust, specific impulse and nuclear reactor type. Tbe associated system requirements are aligned with the NASA Exploration Systems Mission Directorate (ESMD) Reference Mars mission as described in the Explorations Systems Architecture Study (ESAS) report. The focused trade studies include a detailed analysis of nuclear engine radiation shield requirements for human missions and analysis of nuclear thermal engine design options for the ESAS reference mission.
NASA Astrophysics Data System (ADS)
Digoin, JJ.; Boutelet, E.
2011-10-01
The main objective of the ExoMars program is to demonstrate key flight in situ enabling technologies in support of the European ambitions for future exploration missions and to pursue fundamental scientific investigations. Two missions are foreseen within the ExoMars program for the 2016 and 2018 launch opportunities to Mars. The 2016 mission is an ESA led mission that will supply a Mars Orbiter Module (OM) carrying an Entry Descent module (EDM) and NASA/ESA scientific instruments. The 2018 mission is a NASA led mission bringing one ESA rover and one NASA rover onto the Mars surface. This paper presents the OM Electrical Power Sub- system (EPS) design achieved at the end of pre- development phase. The main aspects addressed are: - EPS major constraints due to mission and environment, a succinct description of the power units, - Trade-off analyses results leading to the selected EPS architecture, - Preliminary results of electrical and energy simulations, - EPS units development plan.
Lunar Net—a proposal in response to an ESA M3 call in 2010 for a medium sized mission
NASA Astrophysics Data System (ADS)
Smith, Alan; Crawford, I. A.; Gowen, Robert Anthony; Ambrosi, R.; Anand, M.; Banerdt, B.; Bannister, N.; Bowles, N.; Braithwaite, C.; Brown, P.; Chela-Flores, J.; Cholinser, T.; Church, P.; Coates, A. J.; Colaprete, T.; Collins, G.; Collinson, G.; Cook, T.; Elphic, R.; Fraser, G.; Gao, Y.; Gibson, E.; Glotch, T.; Grande, M.; Griffiths, A.; Grygorczuk, J.; Gudipati, M.; Hagermann, A.; Heldmann, J.; Hood, L. L.; Jones, A. P.; Joy, K. H.; Khavroshkin, O. B.; Klingelhoefer, G.; Knapmeyer, M.; Kramer, G.; Lawrence, D.; Marczewski, W.; McKenna-Lawlor, S.; Miljkovic, K.; Narendranath, S.; Palomba, E.; Phipps, A.; Pike, W. T.; Pullan, D.; Rask, J.; Richard, D. T.; Seweryn, K.; Sheridan, S.; Sims, M.; Sweeting, M.; Swindle, T.; Talboys, D.; Taylor, L.; Teanby, N.; Tong, V.; Ulamec, S.; Wawrzaszek, R.; Wieczorek, M.; Wilson, L.; Wright, I.
2012-04-01
Emplacement of four or more kinetic penetrators geographically distributed over the lunar surface can enable a broad range of scientific exploration objectives of high priority and provide significant synergy with planned orbital missions. Whilst past landed missions achieved a great deal, they have not included a far-side lander, or investigation of the lunar interior apart from a very small area on the near side. Though the LCROSS mission detected water from a permanently shadowed polar crater, there remains in-situ confirmation, knowledge of concentration levels, and detailed identification of potential organic chemistry of astrobiology interest. The planned investigations will also address issues relating to the origin and evolution of the Earth-Moon system and other Solar System planetary bodies. Manned missions would be enhanced with use of water as a potential in-situ resource; knowledge of potential risks from damaging surface Moonquakes, and exploitation of lunar regolith for radiation shielding. LunarNet is an evolution of the 2007 LunarEX proposal to ESA (European Space Agency) which draws on recent significant advances in mission definition and feasibility. In particular, the successful Pendine full-scale impact trials have proved impact survivability for many of the key technology items, and a penetrator system study has greatly improved the definition of descent systems, detailed penetrator designs, and required resources. LunarNet is hereby proposed as an exciting stand-alone mission, though is also well suited in whole or in-part to contribute to the jigsaw of upcoming lunar missions, including that of a significant element to the ILN (International Lunar Network).
NASA Technical Reports Server (NTRS)
Rothgeb, Matthew J.; Kessel, Kurt R.
2015-01-01
Hexavalent chromium (hex chrome or Cr(VI)) is a widely used element within applied coating systems because of its self-healing and corrosion-resistant properties. The replacement of hex chrome in the processing of aluminum for aviation and aerospace applications remains a goal of great significance. Aluminum is the major manufacturing material of structures and components in the space flight arena. The National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) are engaged in a collaborative effort to test and evaluate alternatives to hexavalent chromium containing corrosion coating systems. NASA and ESA share common risks related to material obsolescence associated with hexavalent chromium used in corrosion-resistant coatings. In the United States, Occupational Safety and Health Administration (OSHA) studies have concluded that hexavalent chromium is carcinogenic and poses significant risk to human health. On May 5, 2011, amendments to the Defense Federal Acquisition Regulation Supplement (DFARS) were issued in the Federal Register. Subpart 223.73 prohibits contracts from requiring hexavalent chromium in deliverables unless certain exceptions apply. Subpart 252.223-7008 provides the contract clause prohibiting contractors and subcontractors from using or delivering hexavalent chromium in a concentration greater than 0.1 percent by weight for all new contracts associated with supplies, maintenance and repair services, and construction materials. ESA faces its own increasingly stringent regulations within European directives such as Registration, Evaluation, Authorization and Restriction of Chemical (REACH) substances and the Restriction of Hazardous Substances Directive (RoHS) which have set a mid-2017 sunset date for hexavalent chromium. NASA and ESA continue to search for an alternative to hexavalent chromium in coatings applications that meet their performance requirements in corrosion protection, cost, operability, and health and safety, while typically specifying that performance must be equal to or greater than existing systems. The overall objective of the collaborative effort between NASA TEERM and ESA is to test and evaluate coating systems (pretreatments, pretreatments with primer, and pretreatments with primer and topcoat) as replacements for hexavalent chrome coatings in aerospace applications. This objective will be accomplished by testing promising coatings identified from previous NASA, ESA, Department of Defense (DOD), and other project experience. Additionally, several new materials will be analyzed according to ESA-identified specifications.
Lunar plasma measurement by MAP-PACE onboard KAGUYA (SELENE)
NASA Astrophysics Data System (ADS)
Saito, Yoshifumi
Low energy charged particles around the Moon were vigorously observed by Moon orbiting satellites and plasma instrumentation placed on the lunar surface in 1960s and 1970s. Though there were some satellites that explored the Moon afterwards, most of them were dedicated to the global mapping of the lunar surface. KAGUYA(SELENE) is a Japanese lunar orbiter that studies the origin and evolution of the Moon by means of global mapping of element abundances, mineralogical composition, and surface geographical mapping from 100km altitude. KAGUYA was successfully launched on 14 September 2007 by HIIA launch vehicle from Tanegashima Space Center in Japan. KAGUYA was inserted into a circular lunar polar orbit of 100km altitude and started continuous observation in mid-December 2007. One of the fourteen science instruments MAP-PACE (MAgnetic field and Plasma experiment - Plasma energy Angle and Composition Experiment) was developed for the comprehensive three-dimensional plasma measurement around the Moon. MAP-PACE consists of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). ESA-S1 and S2 measure the distribution function of low energy electrons below 15keV. IMA and IEA measure the distribution function of low energy ions below 28keV/q. IMA has an ability to discriminate the ion mass with high mass resolution. PACE sensors have been measuring solar wind, plasmas in the wake region of the Moon and plasmas in the Earth's magnetosphere. ESA sensors have discovered electron heating over magnetic anomalies on the lunar surface. ESA sensors have also observed electrons accelerated from the lunar surface in the wake region. PACE ion sensors have discovered new features of low energy ions around the Moon. IMA has discovered the existence of alkali ions that are originated from the lunar surface or lunar atmosphere and are picked up by the solar wind. IEA and IMA sensors discovered solar wind reflection by the Moon. PACE ion sensors also discovered that ions are rarefied over the magnetic anomaly on the lunar surface while electrons are heated. MAP-PACE has been revealing unexpectedly active plasma environment around the Moon.
Sentinel-1 Mission Overview and Implementation Status
NASA Astrophysics Data System (ADS)
Davidson, M.; Attema, E.; Snoeij, P.; Levrini, G.
2009-04-01
Sentinel-1 is an imaging radar mission at C-band consisting of a constellation of two satellites aimed at providing continuity of all-weather day-and-night supply of imagery for user services. Special emphasis is placed on services identified in ESA's GMES service elements program and on projects funded by the European Union Framework Programmes. Three priorities (fast-track services) for the mission have been identified by user consultation working groups of the European Union: Marine Core Services, Land Monitoring and Emergency Services. These cover applications such as: - Monitoring sea ice zones and the arctic environment - Surveillance of marine environment - Monitoring land surface motion risks - Mapping of land surfaces: forest, water and soil, agriculture - Mapping in support of humanitarian aid in crisis situations. The Sentinel 1 space segment will be designed and built by an industrial consortium with Thales Alenia Space Italia as prime contractor and EADS Astrium GmbH as C-SAR instrument responsible. Data products from current and previous ESA missions including ERS-1, ERS-2 and Envisat missions form the basis for many of the pilot GMES services. Consequently Sentinel-1 data maintain data quality levels of the Agency‘s previous SAR missions in terms of spatial resolution, sensitivity, accuracy, polarization and wavelength. Nonetheless, the Sentinel-1 synthetic aperture radar (SAR) constellation represents a completely new approach to SAR mission design by ESA in direct response to the operational needs for SAR data expressed under the EU-ESA Global Monitoring for Environment and Security (GMES) programme. The Sentinel-1 constellation is expected to provide near daily coverage over Europe and Canada, global coverage all independent of weather with delivery of radar data within 1 hour of acquisition - all vast improvements with respect to the existing SAR systems. The continuity of C-band SAR data combined with the greatly improved data provision is expected not only to support the existing key operational services but will also support the evolving user community both for operational and remote sensing science applications. The Sentinel-1 satellite carries a Synthetic Aperture Radar (SAR) instrument with four standard operational modes: Strip Map Mode, Interferometric Wide Swath Mode, Extra-wide Swath Mode and Wave Mode. Some of their important characteristics are listed below. MODE ACCESS ANGLE (DEG.) SINGLE LOOK RESOLUTION RANGE X AZIMUTH SWATH WIDTH POLARISATION STRIP MAP 20-45 5 X 5 M > 80 KM HH+HV OR VV+VH INTERFEROMETRIC WIDE SWATH > 25 5 X 20 M > 250 KM HH+HV OR VV+VH EXTRA WIDE SWATH > 20 20 X 40 M > 400 KM HH+HV OR VV+VH WAVE MODE 23 AND 36.5 20 X 5 M > 20 X 20 KM VIGNETTES AT 100 KM INTERVALS HH OR VV FOR ALL MODES RADIOMETRIC ACCURACY (3 Σ) 1 DB NOISE EQUIVALENT SIGMA ZERO -22 DB POINT TARGET AMBIGUITY RATIO -25 DB DISTRIBUTED TARGET AMBIGUITY RATIO -22 DB It is expected that Sentinel-1 be launched in 2011. Once in orbit Sentinel-1 will be operated from two centres on the ground. The Agency‘s facilities in Darmstadt, Germany will command the satellite ensuring its proper functioning along the orbit. The mission exploitation will be managed at the Agency‘s facilities in Frascati, Italy, including the planning of the acquisitions by the SAR instrument according to the mission requirements, the processing of the acquired data and the provision of the resulting products to the users. he presentation will provide an overview of the Sentinel-1 mission, the user requirements driving the mission, the status and characteristics of the technical implementation. The key elements of the mission supporting the evolving needs of the user community both in operational and remote sensing science applications will be highlighted.
Strategies for the return of science data from in situ vehicles at Titan
NASA Astrophysics Data System (ADS)
Spilker, T. R.; Reh, K. R.; Erd, C.; Elliott, J. O.; Mohr, D.; Strange, N. J.
2009-04-01
Collaborative studies of the Titan Saturn System Mission (TSSM) in 2008 by ESA and NASA have included examination of strategies for optimizing the science return from that mission concept's proposed in situ elements. The current baselined mission concept calls for an orbiter provided and launched by NASA that would deliver to Titan and support two ESA-provided in situ elements, a lake lander whose science mission duration would be about nine hours, and a montgolfière (hot-air balloon) that would operate at ~10 km altitude in Titan's lower atmosphere for 6-12 months. This architecture has much in common with the highly successful Cassini-Huygens mission. The short-lived lake lander in particular would have a mission profile very similar to that of the Huygens probe, with all science data communications occurring while the NASA orbiter is relatively near Titan. Practical mission profile options for the montgolfière include extended periods when the NASA orbiter is farther from Titan, reducing data rates. Over long periods of time the montgolfière cannot be considered fixed over one location on Titan's surface, and in fact is expected to circumnavigate Titan in less than six months. Thus the schedule of communications windows between the in situ elements and the orbiter cannot be precisely determined far in advance, varying as the balloon literally "rides the wind". Other issues played critical roles in evaluating the many options available early in the studies. Some options for the timing of delivery of the in situ elements yielded more mass capability available for those elements, but their reduced data return due to orbit geometry outweighs the added mass capability. Another delivery option, delivery from Titan orbit, yields reduced delivery mass capability but was thought (before studies) to offer better data relay capability. Studies revealed that this strategy actually decreases the return from the lake lander as compared to options delivering the in situ elements from hyperbolic flybys. This presentation will describe options examined in the TSSM communications strategy studies. Particular attention is given to that chosen for the baseline strategy, with potential returned data volumes that provide generous margins over anticipated data requirements. Many of the results are not unique to Titan alone, but are applicable to in situ missions at any satellite of a giant planet. These collaborative studies were funded by, and performed under the cognizance of, NASA and ESA.
NASA Astrophysics Data System (ADS)
Cotton, D.; Garcia, P. N.; Cancet, M.; Andersen, O.; Stenseng, L.; Martin, F.; Cipollini, P.; Calafat, F. M.; Passaro, M.; Restano, M.; Ambrozio, A.; Benveniste, J.
2016-08-01
The ESA CryoSat-2 mission is the first space mission to carry a radar altimeter that can operate in Synthetic Aperture Radar (SAR) mode. Although the prime objective of the CryoSat-2 mission is dedicated to monitoring land and marine ice, the SAR mode capability of the CryoSat-2 SIRAL altimeter also presents significant potential benefits for ocean applications including improved range precision and finer along track spatial resolution.The "CryoSat Plus for Oceans" (CP4O) project, supported by the ESA Support to Science Element (STSE) Programme and by CNES, was dedicated to the exploitation of CryoSat-2 data over the open and coastal ocean. The general objectives of the CP4O project were: to build a sound scientific basis for new oceanographic applications of CryoSat-2 data; to generate and evaluate new methods and products that will enable the full exploitation of the capabilities of the CryoSat-2 SIRAL altimeter, and to ensure that the scientific return of the CryoSat-2 mission is maximised. Cotton et al, (2015) is the final report on this work.However, whilst the results from CP4O were highly promising and confirmed the potential of SAR altimetry to support new scientific and operational oceanographic applications, it was also apparent that further work was needed in some key areas to fully realise the original project objectives. Thus additional work in four areas has been supported by ESA under a Contract Change Notice:• Developments in SARin data processing for Coastal Altimetry (isardSAT).• Implementation of a Regional Tidal Atlas for the Arctic Ocean (Noveltis and DTU Space).• Improvements to the SAMOSA re-tracker: Implementation and Evaluation- Optimised Thermal Noise Estimation. (Starlab and SatOC).• Extended evaluation of CryoSat-2 SAR data for Coastal Applications (NOC).This work was managed by SatOC. The results of this work are summarized here. Detailed information regarding the CP4O project can be found at: http://www.satoc.eu/projects/CP4O/
Spacecraft Exploration of Titan and Enceladus
NASA Astrophysics Data System (ADS)
Matson, D.; Coustenis, A.; Lunine, J. I.; Lebreton, J.; Reh, K.; Beauchamp, P.; Erd, C.
2009-12-01
The future exploration of Titan and Enceladus is very important for planetary science. The study titled Titan Saturn System Mission (TSSM) led to an announcement in which ESA and NASA prioritized future OPF missions, stating that TSSM is planned after EJSM (for details see http://www.lpi.usra.edu/opag/). The TSSM concept consists of an Orbiter that would carry two in situ elements: the Titan Montgolfiere hot air balloon and the Titan Lake Lander. This mission could launch in the 2023-2025 timeframe on a trajectory to arrive ~9 years later and begin a 4-year mission in the Saturnian system. At an appropriate time after arrival at Saturn, the montgolfiere would be delivered to Titan to begin its mission of airborne, scientific observations of Titan from an altitude of about 10 km above the surface. The montgolfiere would have a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) power system whose waste heat would warm the gas in the balloon, providing buoyancy. It would be designed to survive at least 6-12 months in Titan’s atmosphere. With the predicted winds and weather, it should be possible to circumnavigate the globe! Later, on a subsequent fly-by, the TSSM orbiter would send the Lake Lander to Titan. It would descend through the atmosphere making scientific measurements, much like Huygens did, and then land and float on one of Titan’s seas. This would be its oceanographic phase of making a physical and chemical assessment of the sea. The Lake Lander would operate for 8-10 hours until its batteries become depleted. Following the delivery of the in situ elements, the TSSM orbiter would then explore the Saturn system for two years on a tour that includes in situ sampling of Enceladus’ plumes as well as flybys of Titan. After the Saturn tour, the TSSM orbiter would go into orbit around Titan and carry out a global survey phase. Synergistic observations would be carried out by the TSSM orbiter and the in situ elements. The scientific requirements for TSSM were developed by a Joint Science Definition Team (JSDT). In the TSSM study the orbiter was assumed to be NASA’s responsibility while the in situ elements were assumed to be provided by ESA. The engineering and flight operations aspects were developed in a collaborative study by NASA and ESA engineering teams. This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The European part was conducted in ESA within the Cosmic Vision 1 plan. Copyright 2008 California Institute of Technology. Government sponsorship acknowledged.
ESTRACK Support for CCSDS Space Communication Cross Support Service Management
NASA Astrophysics Data System (ADS)
Dreihahn, H.; Unal, M.; Hoffmann, A.
2011-08-01
The CCSDS Recommended Standard for Space Communication Cross Support Service Management (SCCS SM) published as Blue Book in August 2009 is intended to provide standardised interfaces to negotiate, schedule, and manage the support of space missions by ground station network operators. ESA as a member of CCSDS has actively supported the development of the SCCS SM standard and is obviously interested in adopting it. Support of SCCS SM conforming interfaces and procedures includes:• Provision of SCCS SM conforming interfaces to non ESA missions;• Use of SCCS SM interfaces provided by other ground station operators to manage cross support of ESA missions;• In longer terms potentially use of SCCS SM interfaces and procedures also internally for support of ESA missions by ESTRACK.In the recent years ESOC has automated management and scheduling of ESA Tracking Network (ESTRACK) services by the specification, development, and deployment of the ESTRACK Management System (EMS), more specifically its planning and scheduling components ESTRACK Planning System and ESTRACK Scheduling System. While full support of the SCCS SM standard will involve also other elements of the ground segment operated by ESOC such as the Flight Dynamic System, EMS is at the core of service management and it is therefore appropriate to initially focus on the question to what extent EMS can support SCCS SM. This paper presents results of the initial analysis phase. After briefly presenting the SCCS SM standard and the relevant components of the ESTRACK management system, we will discuss the initial deployment options, open issues and a tentative roadmap for the way to proceed. Obviously the adoption of a cross support standard requires and discussion and coordination of the involved parties and agencies, especially in the light of the fact that the SCCS SM standard has many optional parts.
Incorporating climate science in applications of the US endangered species act for aquatic species.
McClure, Michelle M; Alexander, Michael; Borggaard, Diane; Boughton, David; Crozier, Lisa; Griffis, Roger; Jorgensen, Jeffrey C; Lindley, Steven T; Nye, Janet; Rowland, Melanie J; Seney, Erin E; Snover, Amy; Toole, Christopher; VAN Houtan, Kyle
2013-12-01
Aquatic species are threatened by climate change but have received comparatively less attention than terrestrial species. We gleaned key strategies for scientists and managers seeking to address climate change in aquatic conservation planning from the literature and existing knowledge. We address 3 categories of conservation effort that rely on scientific analysis and have particular application under the U.S. Endangered Species Act (ESA): assessment of overall risk to a species; long-term recovery planning; and evaluation of effects of specific actions or perturbations. Fewer data are available for aquatic species to support these analyses, and climate effects on aquatic systems are poorly characterized. Thus, we recommend scientists conducting analyses supporting ESA decisions develop a conceptual model that links climate, habitat, ecosystem, and species response to changing conditions and use this model to organize analyses and future research. We recommend that current climate conditions are not appropriate for projections used in ESA analyses and that long-term projections of climate-change effects provide temporal context as a species-wide assessment provides spatial context. In these projections, climate change should not be discounted solely because the magnitude of projected change at a particular time is uncertain when directionality of climate change is clear. Identifying likely future habitat at the species scale will indicate key refuges and potential range shifts. However, the risks and benefits associated with errors in modeling future habitat are not equivalent. The ESA offers mechanisms for increasing the overall resilience and resistance of species to climate changes, including establishing recovery goals requiring increased genetic and phenotypic diversity, specifying critical habitat in areas not currently occupied but likely to become important, and using adaptive management. Incorporación de las Ciencias Climáticas en las Aplicaciones del Acta Estadunidense de Especies en Peligro para Especies Acuáticas. © 2013 Society for Conservation Biology No claim to original US government works.
Double Asteroid Redirection Test (DART) element of AIDA mission
NASA Astrophysics Data System (ADS)
Cheng, A.; Michel, P.; Rivkin, A.; Barnouin, O.; Stickle, A.; Miller, P.; Chesley, S.; Richardson, D.
2017-09-01
The AIDA mission, an international cooperation between NASA and ESA, will be the first demonstration of a kinetic impactor spacecraft to deflect an asteroid. AIDA will perform the first hypervelocity impact on an asteroid where the impact conditions are fully known and the target properties are also characterized. AIDA will reduce risks for any future asteroid hazard mitigation.
Multiculturalism as an Educational Policy. ESA 842, Policy Development and Analysis.
ERIC Educational Resources Information Center
Rizvi, Fazal
The monograph that begins this volume analyzes multiculturalism as an educational policy in order to identify the broader values and interests that are served by its promotion. It begins with a historical review of Australia's post-World-War-II immigration policies. In the next two sections, the major elements of the policy of assimilation, a…
Electronic structure of atoms: atomic spectroscopy information system
NASA Astrophysics Data System (ADS)
Kazakov, V. V.; Kazakov, V. G.; Kovalev, V. S.; Meshkov, O. I.; Yatsenko, A. S.
2017-10-01
The article presents a Russian atomic spectroscopy, information system electronic structure of atoms (IS ESA) (http://grotrian.nsu.ru), and describes its main features and options to support research and training. The database contains over 234 000 records, great attention paid to experimental data and uniform filling of the database for all atomic numbers Z, including classified levels and transitions of rare earth and transuranic elements and their ions. Original means of visualization of scientific data in the form of spectrograms and Grotrian diagrams have been proposed. Presentation of spectral data in the form of interactive color charts facilitates understanding and analysis of properties of atomic systems. The use of the spectral data of the IS ESA together with its functionality is effective for solving various scientific problems and training of specialists.
ESA presents INTEGRAL, its space observatory for Gamma-ray astronomy
NASA Astrophysics Data System (ADS)
1998-09-01
A unique opportunity for journalists and cameramen to view INTEGRAL will be provided at ESA/ESTEC, Noordwijk, the Netherlands on Tuesday 22 September. On show will be the full-size structural thermal model which is now beeing examined in ESA's test centre. Following introductions to the project, the INTEGRAL spacecraft can be seen, filmed and photographed in its special clean room environment.. Media representatives wishing to participate in the visit to ESA's test centre and the presentation of INTEGRAL are kindly requested to return by fax the attached registration form to ESA Public relations, Tel. +33 (0) 1.53.69.71.55 - Fax. +33 (0) 1.53.69.76.90. For details please see the attached programme Gamma-ray astronomy - why ? Gamma-rays cannot be detected from the ground since the earth's atmosphere shields us from high energetic radiation. Only space technology has made gamma-astronomy possible. To avoid background radiation effects INTEGRAL will spend most of its time in the orbit outside earth's radiation belts above an altitude of 40'000 km. Gamma-rays are the highest energy form of electromagnetic radiation. Therefore gamma-ray astronomy explores the most energetic phenomena occurring in nature and addresses some of the most fundamental problems in physics. We know for instance that most of the chemical elements in our bodies come from long-dead stars. But how were these elements formed? INTEGRAL will register gamma-ray evidence of element-making. Gamma-rays also appear when matter squirms in the intense gravity of collapsed stars or black holes. One of the most important scientific objectives of INTEGRAL is to study such compact objects as neutron stars or black holes. Besides stellar black holes there may exist much bigger specimens of these extremely dense objects. Most astronomers believe that in the heart of our Milky Way as in the centre of other galaxies there may lurk giant black holes. INTEGRAL will have to find evidence of these exotic objects. Even more strange than the energetic radiation coming from the centre of distant galaxies are flashes of extremely powerful radiation that suddenly appear somewhere on the gamma-sky and disappear again after a short time. These gamma-bursts seem to be the biggest observed explosions in the Universe. But nobody knows their source. Integral will help to solve this long-standing mystery. ESA, the pioneer in gamma-ray astronomy The satellite as it can now be seen at ESA's test centre is five meters high and weighs more than four tonnes. Two main instruments observe the gamma-rays. An imager will give the sharpest gamma-ray images. It is provided by a consortium led by an Italian scientist. Gamma-rays ignore lenses and mirror, so INTEGRAL makes its images with so-called coded-masks. A coded-mask telescope is basically a pinhole camera, but with a larger aperture, i.e. many pinholes. A spectrometer will gauge gamma-ray energies extremely precisely. It is developed by a team of scientists under joint French-German leadership and will be a 100 times more sensitive than the previous high spectral resolution space instrument. It is made of a high-purity Germanium detector that has to be cooled down to minus 188 degree Celsius. These two gamma-ray-instruments are supported by two monitor instruments that play a crucial role in the detection and identification of the gamma-ray sources. An X-ray monitor developed in Denmark will observe X-rays, still powerful but less energetic than gamma-rays. An optical telescope provided by Spain will observe the visible light emitted by the energetic objects. Switzerland will host the Integral Science Data Centre which will preprocess and distribute the scientific data. The mission is conceived as an observatory led by ESA with Russia contributing the launcher and NASA providing tracking support with its Deep Space Network. Alenia Aerospazio in Turin, Italy is ESA's prime contractor for building INTEGRAL. Launch by a Russian Proton rocket from Baikonur is actually scheduled for 2001. ESA pioneered gamma-ray astronomy in space with its COS-B satellite (1975). Russia's Granat (1989) and NASA's Compton GRO (1991) followed. But INTEGRAL will be better still. With this mission ESA will further strengthen its lead in gamma-astronomy. Principal Investigators : Imager : Pietro Ubertini (IAS, Frascati, Italy) Spectrometer : Gilbert Vedrenne (CESR, Toulouse/France) Volker Schoenfelder (MPE, Garching/.Germany) X-Ray monitor : Niels Lund (DSRI, Copenhagen/Denmark) Optical Monitoring Camera : Alvaro Gimenez (INTA, Madrid/Spain) Integral Science Data Center : Thierry Courvoisier (Genova Observatory, Switzerland) For further information, please contact : ESA Public Relations Division Tel: +33(0)1.53.69.71.55 Fax: +33(0)1.53.69.76.90 INTEGRAL MEDIA DAY Tuesday 22 September 1998 Newton Conference Centre ESTEC, Noordwijk, Keplerlaan 1 (The Netherlands) Programme 10:30 . Arrival and Registration in the Newton Conference Centre 10:45. Welcome and introduction by David Dale, Director of ESTEC 10:50 The Scientific Challenge : the mission of INTEGRAL, by Chistoph Winkler, INTEGRAL Project Scientist 11:10 The Technical Challenge : the INTEGRAL spacecraft, by Kai Clausen, INTEGRAL Project Manager 11:30 The Industrial Challenge by A. Simeone, Programme Director at Aleniaspazio 11:45 Question/Answer session 12:00 Visit to INTEGRAL spacecraft ; photo and film opportunities, incl. Interview opportunities with speakers 13:00 Informal buffet lunch in Foyer of Conference Centre Newton 14:30 End of event
Climate change, marine environments, and the US Endangered species act.
Seney, Erin E; Rowland, Melanie J; Lowery, Ruth Ann; Griffis, Roger B; McClure, Michelle M
2013-12-01
Climate change is expected to be a top driver of global biodiversity loss in the 21st century. It poses new challenges to conserving and managing imperiled species, particularly in marine and estuarine ecosystems. The use of climate-related science in statutorily driven species management, such as under the U.S. Endangered Species Act (ESA), is in its early stages. This article provides an overview of ESA processes, with emphasis on the mandate to the National Marine Fisheries Service (NMFS) to manage listed marine, estuarine, and anadromous species. Although the ESA is specific to the United States, its requirements are broadly relevant to conservation planning. Under the ESA, species, subspecies, and "distinct population segments" may be listed as either endangered or threatened, and taking of most listed species (harassing, harming, pursuing, wounding, killing, or capturing) is prohibited unless specifically authorized via a case-by-case permit process. Government agencies, in addition to avoiding take, must ensure that actions they fund, authorize, or conduct are not likely to jeopardize a listed species' continued existence or adversely affect designated critical habitat. Decisions for which climate change is likely to be a key factor include: determining whether a species should be listed under the ESA, designating critical habitat areas, developing species recovery plans, and predicting whether effects of proposed human activities will be compatible with ESA-listed species' survival and recovery. Scientific analyses that underlie these critical conservation decisions include risk assessment, long-term recovery planning, defining environmental baselines, predicting distribution, and defining appropriate temporal and spatial scales. Although specific guidance is still evolving, it is clear that the unprecedented changes in global ecosystems brought about by climate change necessitate new information and approaches to conservation of imperiled species. El Cambio Climático, los Ecosistemas Marinos y el Acta Estadunidense de Especies en Peligro. © 2013 Society for Conservation Biology.
Plans for a Next Generation Space-Based Gravitational-Wave Observatory (NGO)
NASA Technical Reports Server (NTRS)
Livas, Jeffrey C.; Stebbins, Robin T.; Jennrich, Oliver
2012-01-01
The European Space Agency (ESA) is currently in the process of selecting a mission for the Cosmic Visions Program. A space-based gravitational wave observatory in the low-frequency band (0.0001 - 1 Hz) of the gravitational wave spectrum is one of the leading contenders. This low frequency band has a rich spectrum of astrophysical sources, and the LISA concept has been the key mission to cover this science for over twenty years. Tight budgets have recently forced ESA to consider a reformulation of the LISA mission concept that wi" allow the Cosmic Visions Program to proceed on schedule either with the US as a minority participant, or independently of the US altogether. We report on the status of these reformulation efforts.
NASA Astrophysics Data System (ADS)
Adriaensen, Maarten; Giannopapa, Christina; Sagath, Daniel; Papastefanou, Anastasia
2015-12-01
The European Space Agency (ESA) has twenty Member States with a variety of strategic priorities and governance structures regarding their space activities. A number of countries engage in space activities exclusively though ESA, while others have also their own national space programme. Some consider ESA as their prime space agency and others have additionally their own national agency with respective programmes. The main objective of this paper is to provide an up-to date overview and a holistic assessment of strategic priorities and the national space governance structures in 20 ESA Member States. This analysis and assessment has been conducted by analysing the Member States public documents, information provided at ESA workshop on this topic and though unstructured interviews. The paper is structured to include two main elements: priorities and trends in national space strategies and space governance in ESA Member States. The first part of this paper focuses on the content and analysis of the national space strategies and indicates the main priorities and trends in Member States. The priorities are categorised with regards to technology domains, the role of space in the areas of sustainability and the motivators that boost engagement in space. These vary from one Member State to another and include with different levels of engagement in technology domains amongst others: science and exploration, navigation, Earth observation, human space flight, launchers, telecommunications, and integrated applications. Member States allocate a different role of space as enabling tool adding to the advancement of sustainability areas including: security, resources, environment and climate change, transport and communication, energy, and knowledge and education. The motivators motivating reasoning which enhances or hinders space engagement also differs. The motivators identified are industrial competitiveness, job creation, technology development and transfer, social benefits, international cooperation, and European non-dependence. The second part of the paper provides a categorisation of national space governance structures in ESA Member States. Different governance models are identified depending on the responsible ministries for space for a number of space related organisations and ESA. In the case of ESA, these can typically vary from the more traditional ministry of science and/or education, the ministry of industry and/or innovation to the more recent ones being the ministry of economy and the ministry of transport. Recognising the transverse nature of space and its potential as a tool for a number of policies like agriculture, environment, maritime, disaster management, etc., other ministries are more and more getting involved in space activities. The development and implementation of the space strategy and policy of a Member State is realised though the engagement of an implementing entity. The type, role and activity vary from Member State to Member State.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingmann, P.; Readings, C. J.; Knott, K.
For the post-2000 time-frame two general classes of Earth Observation missions have been identified to address user requirements (see e.g. ESA, 1995), namely Earth Watch and Earth Explorer missions. One of the candidate Earth Explorer Missions selected for Phase A study is the Atmospheric Dynamics Mission which is intended to exploit a Doppler wind lidar, ALADIN, to measure winds in clear air (ESA, 1995 and ESA, 1996). It is being studied as a candidate for flight on the International Space Station (ISS) as an externally attached payload. The primary, long-term objective of the Atmospheric Dynamics Mission is to provide observationsmore » of wind profiles (e.g. radial wind component). Such data would be assimilated into numerical forecasting models leading to an improvement in objective analyses and hence in Numerical Weather Prediction. The mission would also provide data needed to address some of the key concerns of the World Climate Research Programme (WCRP) i.e. quantification of climate variability, validation and improvement of numerical models and process studies relevant to climate change. The newly acquired data would also help realize some of the objectives of the Global Climate Observing System (GCOS)« less
The ESA Nanosatellite Beacons for Space Weather Monitoring Study
NASA Astrophysics Data System (ADS)
Hapgood, M.; Eckersley, S.; Lundin, R.; Kluge, M.
2008-09-01
This paper will present final results from this ESA-funded study that has investigated how current and emerging concepts for nanosats may be used to monitor space weather conditions and provide improved access to data needed for space weather services. The study has reviewed requirements developed in previous ESA space weather studies to establish a set of service and measurements requirements appropriate to nanosat solutions. The output is conveniently represented as a set of five distinct classes of nanosat constellations, each in different orbit locations and which can address a specific group of measurement requirements. One example driving requirement for several of the constellations was the need for real-time data reception. Given this background, the study then iterated a set of instrument and spacecraft solutions to address each of the nanosat constellations from the requirements. Indeed, iteration has proved to be a critical aspect of the study. The instrument solutions have driven a refinement of requirements through assessment of whether or not the physical parameters to be measured dictate instrument components too large for a nanosat. In addition, the study has also reviewed miniaturization trends for instruments relevant to space weather monitoring by nanosats, looking at the near, mid and far-term timescales. Within the spacecraft solutions the study reviewed key technology trends relevant to space weather monitoring by nanosats: (a) micro and nano-technology devices for spacecraft communications, navigation, propulsion and power, and (b) development and flight experience with nanosats for science and for engineering demonstration. These requirements and solutions were then subject to an iterative system and mission analysis including key mission design issues (e.g. launch/transfer, mission geometry, instrument accommodation, numbers of spacecraft, communications architectures, de-orbit, nanosat reliability and constellation robustness) and the impact of nanosat fundamental limitations (e.g. mass, volume/size, power, communications). As a result, top-level Strawman mission concepts were developed for each constellation, and ROM costs were derived for programme development, operation and maintenance over a ten-year period. Nanosat reliability and constellation robustness were shown to be a key driver in deriving mission costs. In parallel with the mission analysis the study results have been reviewed to identify key issues that determine the prospects for a space weather nanosat programme and to make recommendations on measures to enable implementation of such a programme. As a follow-on to this study, a student MSc project was initiated by Astrium at Cranfield University to analyse a potential space weather precursor demonstration mission in GTO (one of the recommendations from this ESA study), composing of a reduced constellation of nanosats, launched on ASAP or some other low cost method. The demonstration would include: 1/ Low cost multiple manufacture techniques for a fully industrial nanosat constellation programme 2/ Real time datalinks and fully operational mission for space weather 3/ Miniaturised payloads to fit in a nanosat for space weather monitoring: 4/ Other possible demonstrations of advanced technology The aim was to comply with ESA demonstration mission (i.e. PROBA-type) requirements, to be representative on issues such as cost and risk
Putting the International Space Station to work.
Clancy, Paul
2003-08-01
The International Space Station (ISS) is the largest international cooperative science and technology project ever undertaken. Involving the United States, Russia, Japan, Canada and 10 ESA Member States, it is now rapidly becoming a reality in orbit, offering unprecedented access for research and applications under space conditions. Europe has invested heavily in this endeavour and plans to exploit that investment by a vigorous utilisation of the ISS for life and physical sciences research and applications, space science, Earth observation, space technology development, the promotion of commercial access to space, and the use of space for educational purposes. In recent years, ESA has engaged in an intensive promotional effort to encourage potential user communities to exploit the novel opportunities that the ISS offers. It has also made significant financial commitments to develop both multi-user facilities for life and physical sciences studies in the Columbus Laboratory, and observational and technology exposure instruments using the external Columbus mounting locations, as well as giving financial support to promote commercial and educational activities. ESA has now elaborated a European Strategy for the efficient utilisation of the ISS by European scientists and other users, which is being coordinated with the Agency's Member States contributing to the ISS Programme, and with the European Science Foundation (ESF). In cooperation with the European Commission, ESA is also fostering synergy with the European Commission's Framework Programmes in terms of shared R&D objectives. This article describes the plan that has been evolved to integrate all of these various elements.
Maximising the benefits of satellite LST within the user community: ESA DUE GlobTemperature
NASA Astrophysics Data System (ADS)
Ghent, D.
2014-12-01
Land surface temperature (LST) is the mean radiative skin temperature of an area of land resulting from the mean balance of solar heating and land-atmosphere cooling fluxes. It is a basic determinant of the terrestrial thermal behaviour, as it controls the effective radiating temperature of the Earth's surface. The sensitivity of LST to soil moisture and vegetation cover means it is an important component in numerous applications. With the demand for LST data from Earth Observation currently experiencing considerable growth it is important that the users of this data are appropriately engaged by the LST data providers. The GlobTemperature project under the Data User Element of ESA's 4th Earth Observation Envelope Programme (2013-2017) aims to promote the wider uptake of global-scale satellite LST by the research and operational user communities; the key to success depending on the coherence and openness of the interactions between the LST and user communities. By incorporating detailed user input into the specifications, their subsequent testing of the LST data sets, and sustained access to data in a user-friendly manner through common data formats GlobTemperature is enhancing the portfolio of LST products from Earth Observation, while concurrently breaking down the barriers to successful application of such data through its programme of dialogue between the data providers and data users. Here we present the outcomes from the first phase of the project, which is achieving some innovative developments: a globally representative and consistent matchup database enabling validation and intercomparison of multi-sensor LST data sets; a prototype combined geostationary earth orbit (GEO) and low earth orbit (LEO) global data set for LST to resolve the diurnal cycle which is a key request from users of LST data; the delivery of the first LST data sets via a dedicated Data Portal in harmonised data format; and the establishment, in collaboration with international colleagues of a first working group (ILSTE-WG) dedicated to LST and Emissivity, whereby user evaluation of products by climate services aims to provide a thrust to sustained operational support of this group meeting a critical need amongst users of LST data.
Performance of the MOMA Gas Chromatograph-Mass Spectrometer onboard the 2018 ExoMars Mission
NASA Astrophysics Data System (ADS)
Buch, Arnaud; Pinnick, Veronica; Szopa, Cyril; Grand, Noël; Freissinet, Caroline; Danell, Ryan; van Ameron, Friso; Arevalo, Ricardo; Brinckerhoff, William; Raulin, François; Mahaffy, Paul; Goesmann, Fred
2015-04-01
The Mars Organic Molecule Analyzer (MOMA) is a dual ion source linear ion trap mass spectrometer that was designed for the 2018 joint ESA-Roscosmos mission to Mars. The main scientific aim of the mission is to search for signs of extant or extinct life in the near subsurface of Mars by acquir-ing samples from as deep as 2 m below the surface. MOMA will be a key analytical tool in providing chemical (molecular) information from the solid samples, with particular focus on the characterization of organic content. The MOMA instrument, itself, is a joint venture for NASA and ESA to develop a mass spectrometer capable of analyzing samples from pyrolysis gas chromatograph (GC) as well as ambient pressure laser desorption ionization (LDI). The combination of the two analytical techniques allows for the chemical characterization of a broad range of compounds, including volatile and non-volatile species. Generally, MOMA can provide in-formation on elemental and molecular makeup, po-larity, chirality and isotopic patterns of analyte spe-cies. Here we report on the current performance of the MOMA prototype instruments, specifically the demonstration of the gas chromatography-mass spec-trometry (GC-MS) mode of operation. Both instruments have been tested separately first and have been coupled in order to test the efficiency of the future MOMA GC-MS instrument. The main objective of the second step has been to test the quantitative response of both instruments while they are coupled and to characterize the combined instrument detection limit for several compounds. A final experiment has been done in order to test the feasibility of the separation and detection of a mixture contained in a soil sample introduced in the MOMA oven.
NASA Astrophysics Data System (ADS)
Di Tullio, M.; Nocchi, F.; Camplani, A.; Emanuelli, N.; Nascetti, A.; Crespi, M.
2018-04-01
The glaciers are a natural global resource and one of the principal climate change indicator at global and local scale, being influenced by temperature and snow precipitation changes. Among the parameters used for glacier monitoring, the surface velocity is a key element, since it is connected to glaciers changes (mass balance, hydro balance, glaciers stability, landscape erosion). The leading idea of this work is to continuously retrieve glaciers surface velocity using free ESA Sentinel-1 SAR imagery and exploiting the potentialities of the Google Earth Engine (GEE) platform. GEE has been recently released by Google as a platform for petabyte-scale scientific analysis and visualization of geospatial datasets. The algorithm of SAR off-set tracking developed at the Geodesy and Geomatics Division of the University of Rome La Sapienza has been integrated in a cloud based platform that automatically processes large stacks of Sentinel-1 data to retrieve glacier surface velocity field time series. We processed about 600 Sentinel-1 image pairs to obtain a continuous time series of velocity field measurements over 3 years from January 2015 to January 2018 for two wide glaciers located in the Northern Patagonian Ice Field (NPIF), the San Rafael and the San Quintin glaciers. Several results related to these relevant glaciers also validated with respect already available and renown software (i.e. ESA SNAP, CIAS) and with respect optical sensor measurements (i.e. LANDSAT8), highlight the potential of the Big Data analysis to automatically monitor glacier surface velocity fields at global scale, exploiting the synergy between GEE and Sentinel-1 imagery.
NASA Astrophysics Data System (ADS)
Fernandez, Valerie; Martimort, Philippe; Spoto, Francois; Sy, Omar; Laberinti, Paolo
2013-10-01
GMES is a joint initiative of the European Commission (EC) and the European Space Agency (ESA), designed to establish a European capacity for the provision and use of operational monitoring information for environment and security applications. ESA's role in GMES is to provide the definition and the development of the space- and ground-related system elements. GMES Sentinel-2 mission provides continuity to services relying on multi-spectral highresolution optical observations over global terrestrial surfaces. The key mission objectives for Sentinel-2 are: (1) to provide systematic global acquisitions of high-resolution multi-spectral imagery with a high revisit frequency, (2) to provide enhanced continuity of multi-spectral imagery provided by the SPOT series of satellites, and (3) to provide observations for the next generation of operational products such as landcover maps, land change detection maps, and geophysical variables. Consequently, Sentinel-2 will directly contribute to the Land Monitoring, Emergency Response, and Security services. The corresponding user requirements have driven the design towards a dependable multi-spectral Earthobservation system featuring the MSI with 13 spectral bands spanning from the visible and the near infrared to the short wave infrared. The spatial resolution varies from 10 m to 60 m depending on the spectral band with a 290 km field of view. This unique combination of high spatial resolution, wide field of view and large spectral coverage will represent a major step forward compared to current multi-spectral missions. The mission foresees a series of satellites, each having a 7.25-year lifetime (extendable to 12 years) over a 20-year period starting with the launch of Sentinel-2A foreseen by mid-2014. During full operations two identical satellites will be maintained in the same sun synchronous orbit with a phase delay of 180° providing a revisit time of five days at the equator.
Using Space to Inspire and Engage Children
ERIC Educational Resources Information Center
Clements, Allan
2015-01-01
The European Space Education Resources Office (ESERO-UK) is a project of the European Space Agency (ESA) and national partners including the Department for Education (DfE), The UK Space Agency (UKSA) and the Science and Technology Facilities Council (STFC). The key objective of the project is to promote space as an exciting inspirational context…
Malcom, Jacob W; Webber, Whitney M; Li, Ya-Wei
2016-01-01
Managers of large, complex wildlife conservation programs need information on the conservation status of each of many species to help strategically allocate limited resources. Oversimplifying status data, however, runs the risk of missing information essential to strategic allocation. Conservation status consists of two components, the status of threats a species faces and the species' demographic status. Neither component alone is sufficient to characterize conservation status. Here we present a simple key for scoring threat and demographic changes for species using detailed information provided in free-form textual descriptions of conservation status. This key is easy to use (simple), captures the two components of conservation status without the cost of more detailed measures (sufficient), and can be applied by different personnel to any taxon (consistent). To evaluate the key's utility, we performed two analyses. First, we scored the threat and demographic status of 37 species recently recommended for reclassification under the Endangered Species Act (ESA) and 15 control species, then compared our scores to two metrics used for decision-making and reports to Congress. Second, we scored the threat and demographic status of all non-plant ESA-listed species from Florida (54 spp.), and evaluated scoring repeatability for a subset of those. While the metrics reported by the U.S. Fish and Wildlife Service (FWS) are often consistent with our scores in the first analysis, the results highlight two problems with the oversimplified metrics. First, we show that both metrics can mask underlying demographic declines or threat increases; for example, ∼40% of species not recommended for reclassification had changes in threats or demography. Second, we show that neither metric is consistent with either threats or demography alone, but conflates the two. The second analysis illustrates how the scoring key can be applied to a substantial set of species to understand overall patterns of ESA implementation. The scoring repeatability analysis shows promise, but indicates thorough training will be needed to ensure consistency. We propose that large conservation programs adopt our simple scoring system for threats and demography. By doing so, program administrators will have better information to monitor program effectiveness and guide their decisions.
NASA Astrophysics Data System (ADS)
Morel de Westgaver, Eric; van Beekhuizen, Pieter; Fiorilli, Stefano M.
2007-02-01
Space projects are marked by their high technologies and their lengthy development and operations. The procurement process is a critical element that must adapt to a changing industrial landscape and new methods and tools, such as electronic procurement. ESA will host an international symposium in May [2007] to bring all the major players together.
Low-stress soldering technique used to assemble an optical system for aerospace missions
NASA Astrophysics Data System (ADS)
Ribes-Pleguezuelo, P.; Koechlin, C.; Burkhardt, T.; Hornaff, M.; Kamm, A.; Gramens, S.; Beckert, E.; Fiault, G.; Eberhardt, R.; Tünnermann, A.
2017-09-01
A high-precision opto-mechanical breadboard for a lens mount has been assembled by means of a laserbased soldering process called Solderjet Bumping; which thanks to its localized and minimized input of thermal energy, is well suited for the joining of optical components made of fragile and brittle materials such as glasses. An optical element made of a silica lens and a titanium barrel has been studied to replicate the lens mounts of the afocal beam expander used in the LIDAR instrument (ATLID) of the ESA EarthCare Mission, whose aim is to monitor molecular and particle-based back-scattering in order to analyze atmosphere composition. Finally, a beam expander optical element breadboard with a silica lens and a titanium barrel was assembled using the Solderjet Bumping technology with Sn96.5Ag3Cu0.5 SAC305 alloy resulting in a low residual stress (<1 MPa) on the joining areas, a low light-depolarization (<0.2 %) and low distortion (wave-front error measurement < 5 nm rms) on the assemblies. The devices also successfully passed humidity, thermal-vacuum, vibration, and shock tests with conditions similar to the ones expected for the ESA EarthCare mission and without altering their optical performances.
NASA Astrophysics Data System (ADS)
Lawrence, D. J.; Maurice, S.; Patterson, G. W.; Hibbitts, C. A.
2010-05-01
Understanding the global composition of Ganymede's surface is a key goal of the Europa Jupiter System Mission (EJSM) that is being jointly planned by NASA and ESA. Current plans for obtaining surface information with the Jupiter Ganymede Orbiter (JGO) use spectral imaging measurements. While spectral imaging can provide good mineralogy-related information, quantitative data about elemental abundances can often be hindered by non-composition variations due to surface effects (e.g., space weathering, grain effects, temperature, etc.). Orbital neutron and gamma-ray spectroscopy can provide quantitative composition information that is complementary to spectral imaging measurements, as has been demonstrated with similar instrumental combinations at the Moon, Mars, and Mercury. Neutron and gamma-ray measurements have successfully returned abundance information in a hydrogen-rich environment on Mars. In regards to neutrons and gamma-rays, there are many similarities between the Mars and Ganymede hydrogen-rich environments. In this study, we present results of neutron transport models, which show that quantitative composition information from Ganymede's surface can be obtained in a realistic mission scenario. Thermal and epithermal neutrons are jointly sensitive to the abundances of hydrogen and neutron absorbing elements, such as iron and titanium. These neutron measurements can discriminate between regions that are rich or depleted in neutron absorbing elements, even in the presence of large amounts of hydrogen. Details will be presented about how the neutron composition parameters can be used to meet high-level JGO science objectives, as well as an overview of a neutron spectrometer than can meet various mission and stringent environmental requirements.
Consolidated View on Space Software Engineering Problems - An Empirical Study
NASA Astrophysics Data System (ADS)
Silva, N.; Vieira, M.; Ricci, D.; Cotroneo, D.
2015-09-01
Independent software verification and validation (ISVV) has been a key process for engineering quality assessment for decades, and is considered in several international standards. The “European Space Agency (ESA) ISVV Guide” is used for the European Space market to drive the ISVV tasks and plans, and to select applicable tasks and techniques. Software artefacts have room for improvement due to the amount if issues found during ISVV tasks. This article presents the analysis of the results of a large set of ISVV issues originated from three different ESA missions-amounting to more than 1000 issues. The study presents the main types, triggers and impacts related to the ISVV issues found and sets the path for a global software engineering improvement based on the most common deficiencies identified for space projects.
EuroGeoMars Field Campaign: habitability studies in preparation for future Mars missions
NASA Astrophysics Data System (ADS)
Ehrenfreund, Pascale; Foing, B. H.; Stoker, C.; Zhavaleta, J.; Orzechowska, G.; Kotler, M.; Martins, Z.; Sephton, M.; Becker, L.; Quinn, R.; van Sluis, C.; Boche-Sauvan, L.; Gross, C.; Thiel, C.; Wendt, L.; Sarrazin, P.; Mahapatra, P.; Direito, S.; Roling, W.
The goal of the EuroGeoMars field campaign sponsored by ESA, NASA and the international lunar exploration working group (ILEWG) was to demonstrate instrument capabilities in sup-port of current and future planetary missions, to validate a procedure for Martian surface in-situ and return science, and to study human performance aspects. The Mars Desert Re-search Station (MDRS) represents an ideal basis to simulate aspects of robotic and human exploration in support of future missions to planetary bodies. During the campaign, MDRS Crew 77 tested X-ray diffraction and Raman instruments, and assessed habitat and operations. Special emphasis was given to sample collection in the geologically rich vicinity of MDRS and subsequent analysis of organic molecules in the soil to simulate the search for bio-signatures with field instrumentation. We describe the results of in-situ and posterior analysis of the physical and chemical properties including elemental composition, salt concentrations as well as carbon and amino acid abundances. The analyses of organics and minerals show that the subsurface mineral matrix represents a key to our understanding of the survival of organics on Mars.
Spacelab 1 - Mission overview and summary of scientific results
NASA Technical Reports Server (NTRS)
Knott, K.; Chappell, C. R.
1985-01-01
This paper recalls the reasons which led NASA to build the Space Shuttle and ESA to manufacture Spacelab and presents the most important features of the mission where these two elements were combined for the first time. An overview on the objectives of the seven science disciplines participating in this mission is given and selected results as far as known in June 1984 are presented.
The Hera Saturn Entry Probe Mission: a Proposal in Response to the ESA M5 Call
NASA Astrophysics Data System (ADS)
Mousis, Olivier; Atkinson, David; Amato, Michael; Aslam, Shahid; Atreya, Sushil; Blanc, Michel; Bolton, Scott; Brugger, Bastien; Calcutt, Simon; Cavalié, Thibault; Charnoz, Sébastien; Coustenis, Athena; Deleuil, Magali; Dobrijevic, Michel; Ferri, Francesca; Fletcher, Leigh; Gautier, Daniel; Guillot, Tristan; Hartogh, Paul; Holland, Andrew
2017-04-01
The Hera Saturn entry probe mission is proposed as an ESA M-class mission to be piggybacked on a NASA spacecraft sent to or past the Saturn system. Hera consists of an atmospheric probe built by ESA and released into the atmosphere of Saturn by its NASA companion Saturn Carrier-Relay spacecraft. Hera will perform in situ measurements of the chemical and isotopic composition as well as the structure and dynamics of Saturn's atmosphere using a single probe, with the goal of improving our understanding of the origin, formation, and evolution of Saturn, the giant planets and their satellite systems, with extrapolation to extrasolar planets. Hera will probe well into and possibly beneath the cloud-forming region of the troposphere, below the region accessible to remote sensing, to locations where certain cosmogenically abundant species are expected to be well mixed. The Hera probe will be designed from ESA elements with possible contributions from NASA, and the Saturn/Carrier-Relay Spacecraft will be supplied by NASA through its selection via the New Frontier 2016 call or in the form of a flagship mission selected by the NASA "Roadmaps to Ocean Worlds" (ROW) program. The Hera probe will be powered by batteries, and we therefore anticipate only one major subsystems to be possibly supplied by the United States, either by direct procurement by ESA or by contribution from NASA: the thermal protection system of the probe. Following the highly successful example of the Cassini-Huygens mission, Hera will carry European and American instruments, with scientists and engineers from both agencies and many affiliates participating in all aspects of mission development and implementation. A Saturn probe is one of the six identified desired themes by the Planetary Science Decadal Survey committee on the NASA New Frontier's list, providing additional indication that a Saturn probe is of extremely high interest and a very high priority for the international community.
Wu, Haoyi; Chiang, Sum Wai; Yang, Cheng; Lin, Ziyin; Liu, Jingping; Moon, Kyoung-Sik; Kang, Feiyu; Li, Bo; Wong, Ching Ping
2015-01-01
Electrically small antennas (ESAs) are becoming one of the key components in the compact wireless devices for telecommunications, defence, and aerospace systems, especially for the spherical one whose geometric layout is more closely approaching Chu's limit, thus yielding significant bandwidth improvements relative to the linear and planar counterparts. Yet broad applications of the volumetric ESAs are still hindered since the low cost fabrication has remained a tremendous challenge. Here we report a state-of-the-art technology to transfer electrically conductive composites (ECCs) from a planar mould to a volumetric thermoplastic substrate by using pad-printing technology without pattern distortion, benefit from the excellent properties of the ECCs as well as the printing-calibration method that we developed. The antenna samples prepared in this way meet the stringent requirement of an ESA (ka is as low as 0.32 and the antenna efficiency is as high as 57%), suggesting that volumetric electronic components i.e. the antennas can be produced in such a simple, green, and cost-effective way. This work can be of interest for the development of studies on green and high performance wireless communication devices.
Overview of Key Saturn Probe Mission Trades
NASA Technical Reports Server (NTRS)
Balint, Tibor S.; Kowalkowski, Theresa; Folkner, Bill
2007-01-01
Ongoing studies, performed at NASA/JPL over the past two years in support of NASA's SSE Roadmap activities, proved the feasibility of a NF class Saturn probe mission. I. This proposed mission could also provide a good opportunity for international collaboration with the proposed Cosmic Vision KRONOS mission: a) With ESA contributed probes (descent modules) on a NASA lead mission; b) Early 2017 launch could be a good programmatic option for ESA-CV/NASA-NF. II. A number of mission architectures could be suitable for this mission: a) Probe Relay based architecture with short flight time (approx. 6.3-7 years); b) DTE probe telecom based architecture with long flight time (-11 years), and low probe data rate, but with the probes decoupled from the carrier, allowing for polar trajectories I orbiter. This option may need technology development for telecom; c) Orbiter would likely impact mission cost over flyby, but would provide significantly higher science return. The Saturn probes mission is expected to be identified in NASA's New Frontiers AO. Thus, further studies are recommended to refine the most suitable architecture. International collaboration is started through the KRONOS proposal work; further collaborated studies will follow once KRONOS is selected in October under ESA's Cosmic Vision Program.
NASA Astrophysics Data System (ADS)
Pavlis, E. C.; Ciufolini, I.; Paolozzi, A.
2012-12-01
LARES, Laser Relativity Satellite, is a spherical laser-ranged satellite, passive and covered with retroreflectors. It will be launched with ESA's new launch vehicle VEGA (ESA-ELV-ASI-AVIO) in early 2012. Its orbital elements will be: inclination 70° ± 1, semi-major axis 7830 km and near zero eccentricity. Its weight is about 387 kg and its radius 18.2 cm. It will be the single known most dense body orbiting Earth in the solar system, and the non-gravitational perturbations will be minimized by its very small 'cross-section-to-mass' ratio. The main objective of the LARES satellite is a test of the frame-dragging effect, a consequence of the gravitomagnetic field predicted by Einstein's theory of General Relativity. Together with the orbital data from LAGEOS and LAGEOS 2, it will allow a measurement of frame-dragging with an accuracy of a few percent.
Freedom is an international partnership. [foreign contributions to NASA Space Station project
NASA Technical Reports Server (NTRS)
Kohrs, Richard H.
1990-01-01
The NASA Space Station Freedom (SSF) project initiated in 1984 is a collaborative one among the U.S., Japan, Canada, and the 10 nations participating in ESA. The SSF partners have over the last six years defined user requirements, decided on the hardware to be manufactured, and constructed a framework for long-term cooperation. SSF will be composed of user elements furnished by the foreign partners and a U.S.-supplied infrastructure encompassing the truss assembly, electrical power system, and crew living quarters. The U.S. will also furnish a lab and a polar-orbit platform; ESA, a second lab and the coorbiting Free-Flying Laboratory, as well as a second polar platform. Japan's Japanese Experiment Module shall include an Exposed Facility and an Experimental Logistics module. Canada will contribute the Mobile Servicing System robotic assembler/maintainer for the whole of SFF.
The telecommunications programme of the European Space Agency
NASA Astrophysics Data System (ADS)
Collette, R. C. L.; Ashford, E. W.
An overview of the long-term telecommunications program of the ESA approved in November 1992 is presented. The project involves the Data Relay and Technology Mission (DRTM) program, and the Advanced Research in Telecommunications Systems (ARTES) program. The DRTM program contains both ARTEMIS and the operational DRS satellites, together with their corresponding earth segment elements required for satellite checkout, control and operation. ARTES is designed to group together all ongoing and future ESA telecommunications programs, with the exception of DRTM, into one large legal and financial framework. It will incorporate all running and planned activities in the present Payload and Spacecraft Development and Experimentation program, together with activities that would otherwise have been carried out as part of the Advanced Systems and Technology program. ARTES goals are: promotion of new and improved satellite communications services, cooperation with operating entities, improvements in the competitiveness of industry, and international cooperation.
European agreement on James Webb Space Telescope's Mid-Infrared Instrument (MIRI) signed
NASA Astrophysics Data System (ADS)
2004-06-01
Artist's impression of the JWST hi-res Size hi-res: 1601 kb Credits: ESA Artist's impression of the JWST An artist's impression of the selected design for the JWST spacecraft. Northrop Grumman and Ball Aerospace are the prime contractors for JWST. Artist's impression of the JWST Credits: ESA Artist's impression of the JWST An artist's impression of the selected design for the JWST spacecraft. Northrop Grumman and Ball Aerospace are the prime contractors for JWST. Observing the first light, the James Webb Space Telescope (JWST) will help to solve outstanding questions about our place in the evolving Universe. MIRI, the Mid-Infrared Instrument, is one of the four instruments on board the JWST, the mission scheduled to follow on the heritage of Hubble in 2011. MIRI will be built in cooperation between Europe and the United States (NASA), both equally contributing to its funding. MIRI’s optics, core of the instrument, will be provided by a consortium of European institutes. According to this formal agreement, ESA will manage and co-ordinate the whole development of the European part of MIRI and act as the sole interface with NASA, which is leading the JWST project. This marks a difference with respect to the previous ESA scientific missions. In the past the funding and the development of the scientific instruments was agreed by the participating ESA Member States on the basis of purely informal arrangements with ESA. In this case, the Member States involved in MIRI have agreed on formally guaranteeing the required level of funding on the basis of a multi-lateral international agreement, which still keeps scientists in key roles. Over the past years, missions have become more complex and demanding, and more costly within an ever tighter budget. They also require a more and more specific expertise which is spread throughout the vast European scientific community. As a result, a new management procedure for co-ordination of payload development has become a necessity to secure the successful and timely completion of scientific space projects. ESA’s co-ordination of the MIRI European consortium represents the first time such an approach has been used, which will be applied to the future missions of the ESA long-term Science Programme - the ‘Cosmic Vision’. The technology package for LISA (LTP), an ESA/NASA mission to detect gravitational waves, is already being prepared under the same scheme. Sergio Volonte, ESA Co-ordinator for Astrophysics and Fundamental Physics Missions, comments: “I’m delighted for such an achievement between ESA and its Member States. With MIRI we will start an even more effective co-ordination on developing our scientific instruments, setting a new framework to further enhance their excellence.” Note to Editors The James Webb Space Telescope (JWST), is a partnership between ESA, NASA and the Canadian Space Agency. Formerly known as the Next Generation Space Telescope (NGST), it is due to be launched in August 2011, and it is considered the successor of the NASA/ESA Hubble Space Telescope. It is three times larger and more powerful than its predecessor and it is expected to shed light on the 'Dark Ages of the Universe' by studying the very distant Universe, observing infrared light from the first stars and galaxies that ever emerged. MIRI (Mid-Infrared Camera-Spectrograph) is essential for the study of the old and distant stellar population; regions of obscured star formation; hydrogen emission from previously unthinkable distances; the physics of protostars; and the sizes of ‘Kuiper belt’ objects and faint comets. Further to the contribution to MIRI, Europe through ESA is contributing to JWST with the NIRSPEC (Near-Infrared multi-object Spectrograph) instrument (fully funded and managed by ESA) and, as agreed in principle with NASA, with the Ariane 5 launcher. The ESA financial contribution to JWST will be about 300 million Euros, including the launcher. The European institutions involved in MIRI will contribute about 70 million Euros overall. The European institutions who signed the MIRI agreement with ESA are: the Centre Nationale des Etudes Spatiales (CNES), the Danish Space Research Institute (DSRI), the German Aerospace Centre (DLR), the Spanish Ministerio de Educación y Ciencia (MEC), the Nederlandse Onderzoekschool voor Astronomie (NOVA), the UK Particle Physics and Astronomy Research Council (PPARC) and the Swedish National Space Board (SNSB). Four European countries, Belgium, Denmark, Ireland and Switzerland contribute to MIRI through their participation into ESA’s Scientific Experiment Development programme (PRODEX). This is an optional programme, mainly used by smaller countries, by which they delegate to ESA the management of funding to develop scientific instruments. The delivery to NASA of the MIRI instrument is due for March 2009.
Logan, John M; Bean, Sarah B; Myers, Andrew E
2017-01-01
Authorship is a central element of scientific research carrying a variety of rewards and responsibilities, and while various guidelines exist, actual author contributions are often ambiguous. Inconsistent or limited contributions threaten to devalue authorship as intellectual currency and diminish authors' responsibility for published content. Researchers have assessed author contributions in the medical literature and other research fields, but similar data for the field of ecological research are lacking. Authorship practices in ecological research are broadly representative of a variety of fields due to the cross-disciplinary nature of collaborations in ecological studies. To better understand author contributions to current research, we distributed a survey regarding co-author contributions to a random selection of 996 lead authors of manuscripts published in ecological journals in 2010. We obtained useable responses from 45% of surveyed authors. Reported lead author contributions in ecological research studies consistently included conception of the project idea, data collection, analysis, and writing. Middle and last author contributions instead showed a high level of individual variability. Lead authorship in ecology is well defined while secondary authorship is more ambiguous. Nearly half (48%) of all studies included in our survey had some level of non-compliance with Ecological Society of America (ESA) authorship guidelines and the majority of studies (78%) contained at least one co-author that did not meet International Committee of Medical Journal Editors (ICMJE) requirements. Incidence of non-compliance varied with lead author occupation and author position. The probability of a study including an author that was non-compliant with ESA guidelines was lowest for professor-led studies and highest for graduate student and post doctoral researcher-led studies. Among studies with > two co-authors, all lead authors met ESA guidelines and only 2% failed to meet ICMJE requirements. Middle (24% ESA, 63% ICMJE) and last (37% ESA, 60% ICMJE) authors had higher rates of non-compliance. The probability of a study containing a co-author that did not meet ESA or ICMJE requirements increased significantly with the number of co-authors per study although even studies with only two co-authors had a high probability of non-compliance of approximately 60% (ICMJE) and 15 to 40% (ESA). Given the variable and often limited contributions of authors in our survey and past studies of other research disciplines, institutions, journals, and scientific societies need to implement new approaches to instill meaning in authorship status. A byline approach may not alter author contributions but would better define individual contributions and reduce existing ambiguity regarding the meaning of authorship in modern ecological research.
The MetOp second generation 3MI instrument
NASA Astrophysics Data System (ADS)
Manolis, Ilias; Grabarnik, Semen; Caron, Jérôme; Bézy, Jean-Loup; Loiselet, Marc; Betto, Maurizio; Barré, Hubert; Mason, Graeme; Meynart, Roland
2013-10-01
The MetOp-SG programme is a joint Programme of EUMETSAT and ESA. ESA develops the prototype MetOp-SG satellites (including associated instruments) and procures, on behalf of EUMETSAT, the recurrent satellites (and associated instruments). Two parallel, competitive phase A/B1 studies for MetOp Second Generation (MetOp-SG) have been concluded in May 2013. The implementation phases (B2/C/D/E) are planned to start the first quarter of 2014. ESA is responsible for instrument design of six missions, namely Microwave Sounding Mission (MWS), Scatterometer mission (SCA), Radio Occultation mission (RO), Microwave Imaging mission (MWI), Ice Cloud Imager (ICI) and Multi-viewing, Multi-channel, Multi-polarisation imaging mission (3MI). The paper will present the main performances of the 3MI instrument and will highlight the performance improvements with respect to its heritage derived by the POLDER instrument, such as number of spectral channels and spectral range coverage, swath and ground spatial resolution. The engineering of some key performance requirements (multi-viewing, polarisation sensitivity, straylight etc.) will also be discussed. The results of the feasibility studies will be presented together with the programmatics for the instrument development. Several pre-development activities have been initiated to retire highest risks and to demonstrate the ultimate performances of the 3MI optics. The scope, objectives and current status of those activities will be presented. Key technologies involved in the 3MI instrument design and implementation are considered to be: the optical design featuring aspheric optics, the implementation of broadband Anti Reflection coatings featuring low polarisation and low de-phasing properties, the development and qualification of polarisers with acceptable performances as well as spectral filters with good uniformities over a large clear aperture.
Hanass-Hancock, Jill; Grant, Catherine; Strode, Ann
2012-01-01
Many Eastern and Southern African (ESA) states are obliged to review and amend their legal frameworks with regards to disability since signing and ratifying the UN Convention on the Rights of Persons with Disabilities (CRPD). The HIV epidemic is one of the main health concerns in the region and is becoming increasingly associated with causing disabilities. In addition, people with disabilities are particularly at risk of exposure to HIV. Despite this, HIV programming has not yet included the interrelationship of disability and HIV. The principles within the CRPD may create much-needed international pressure and so provide a platform for the integration and inclusion of disability into HIV policies and programs. This paper is based on a review of the legal framework in relation to HIV and disability in 19 ESA countries. It identifies 12 key articles of the Convention, which are particularly relevant to the interrelationship of HIV and disability. The paper assesses how these are integrated in the region's disability or HIV legal frameworks and identifies the main gaps within these legal systems. While many country's constitutions, disability and HIV laws protect certain key rights, such as the rights to equality and nondiscrimination, employment and health, there are clear gaps in the legal responses to disability and HIV. In particular, legal frameworks fail to provide adequately for accessibility, mobility and access to justice and protection from violence for people with disabilities. This results in limited protection for people with disabilities from HIV exposure and access to services to address HIV-related health and welfare needs. The paper identifies the gaps and makes recommendations for implementing steps toward the integration of disability into HIV-related laws, policies and programs.
Measuring Environmental Value in Nonmonetary Terms: A Review of Common Practices and Elements
2014-05-01
recreational/ tourism use). This tendency can be seen in the outcomes of the ESA. Protection of threatened and endangered species has tenuously kept many...from biological resources (e.g., commodity production, recreational tourism ) while sustaining all potential use for future generations of people...SpecialReport. Canberra, AU: NSW National Parks and Wildlife Service, Department of the Environment, Sport and Territories. Folke,C., C. S
The COSPIX Mission: Focusing on the Energetic and Obscured Universe
NASA Technical Reports Server (NTRS)
Ferrando, P.; Goldwurm, A.; Laurent, P.; Limousin, O.; Beckmann, V; Arnaud, M.; Barcons, X.; Bomans, D.; Caballero, I.; Carrera, F.;
2010-01-01
Tracing the formation and evolution of all supermassive black holes, including the obscured ones, understanding how black holes influence their surroundings and how matter behaves under extreme conditions, are recognized as key science objectives to be addressed by the next generation of instruments. These are the main goals of the COSPIX proposal, made to ESA in December 2010 in the context of its call for selection of the M3 mission. In addition, COSPIX, will also provide key measurements on the non thermal Universe, particularly in relation to the question of the acceleration of particles, as well as on many other fundamental questions as for example the energetic particle content of clusters of galaxies. COSPIX is proposed as an observatory operating from 0.3 to more than 100 keV. The payload features a single long focal length focusing telescope offering an effective area close to ten times larger than any scheduled focusing mission at 30 keV, an angular resolution better than 20 arcseconds in hard X-rays, and polarimetric capabilities within the same focal plane instrumentation. In this paper, we describe the science objectives of the mission, its baseline design, and its performances, as proposed to ESA.
NASA Astrophysics Data System (ADS)
Rivera, Juan J.; Trachtman, Eyal; Richharia, Madhavendra
2005-11-01
Mobile satellite telecommunications systems have undergone an enormous evolution in the last decades, with the interest in having advanced telecommunications services available on demand, anywhere and at any time, leading to incredible advances. The demand for braodband data is therefore rapidly gathering pace, but current solutions are finding it increasingly difficult to combine large bandwidth with ubiquitous coverage, reliability and portability. The BGAN (Broadband Global Area Network) system, designed to operate with the Inmarsat-4 satellites, provides breakthrough services that meet all of these requirements. It will enable broadband connection on the move, delivering all the key tools of the modern office. Recognising the great impact that Inmarsat's BGAN system will have on the European satellite communications industry, and the benefits that it will bring to a wide range of European industries, in 2003 ESA initiated the "BGAN Extension" project. Its primary goals are to provide the full range of BGAN services to truly mobile platforms, operating in aeronautical, vehicular and maritime environments, and to introduce a multicast service capability. The project is supported by the ARTES Programme which establishes a collaboration agreement between ESA, Inmarsat and a group of key industrial and academic institutions which includes EMS, Logica, Nera and the University of Surrey (UK).
Validation of the French Version of the Edmonton Symptom Assessment System.
Pautex, Sophie; Vayne-Bossert, Petra; Bernard, Mathieu; Beauverd, Michel; Cantin, Boris; Mazzocato, Claudia; Thollet, Catherine; Bollondi-Pauly, Catherine; Ducloux, Dominique; Herrmann, François; Escher, Monica
2017-11-01
The Edmonton Symptom Assessment System (ESAS) is a brief, widely adopted, multidimensional questionnaire to evaluate patient-reported symptoms. The objective of this study was to define a standard French version of the ESAS (F-ESAS) to determine the psychometric properties in French-speaking patients. In a first pilot study, health professionals (n = 20) and patients (n = 33) defined the most adapted terms in French (F-ESAS). In a prospective multicentric study, palliative care patients completed the three forms of F-ESAS (F-ESAS-VI, F-ESAS-VE, and F-ESAS-NU, where VI is visual, VE, verbal, and NU, numerical), the Hospital Anxiety and Depression Scale. All patients had a test-retest evaluation during the same half-day. Standardized distraction material was used between each scale. One hundred twenty-four patients were included (mean age [±SD]: 68.3 ± 12; 70 women; 54 men). Test-retest reliability was high for all three F-ESAS, and the correlation between these scales was nearly perfect (Spearman rs = 0.66-0.91; P < 0.05). F-ESAS-VI, F-ESAS-VE, and F-ESAS-NU performed similarly and were equally reliable, although there was a trend toward lower reliability for F-ESAS-VI. Correlation between F-ESAS depression and anxiety and HADS depression and anxiety, respectively, were positive (Spearman rs = 0.38-0.41 for depression; Spearman rs = 0.48-0.57 for anxiety, P < 0.05). Among patients, 59 (48%), 45 (36%), and 20 (16%) preferred to assess their symptoms with F-ESAS-VE, F-ESAS-NU, and F-ESAS-VI, respectively. The F-ESAS is a valid and reliable tool for measuring multidimensional symptoms in French-speaking patients with an advanced cancer. All forms of F-ESAS performed well with a trend for better psychometric performance for F-ESAS-NU, but patients preferred the F-ESAS-VE. Copyright © 2017. Published by Elsevier Inc.
Modelling radiation damage to ESA's Gaia satellite CCDs
NASA Astrophysics Data System (ADS)
Seabroke, George; Holland, Andrew; Cropper, Mark
2008-07-01
The Gaia satellite is a high-precision astrometry, photometry and spectroscopic ESA cornerstone mission, currently scheduled for launch in late 2011. Its primary science drivers are the composition, formation and evolution of the Galaxy. Gaia will not achieve its scientific requirements without detailed calibration and correction for radiation damage. Microscopic models of Gaia's CCDs are being developed to simulate the effect of radiation damage, charge trapping, which causes charge transfer inefficiency. The key to calculating the probability of a photoelectron being captured by a trap is the 3D electron density within each CCD pixel. However, this has not been physically modelled for Gaia CCD pixels. In this paper, the first of a series, we motivate the need for such specialised 3D device modelling and outline how its future results will fit into Gaia's overall radiation calibration strategy.
Engineering the LISA Project: Systems Engineering Challenges
NASA Technical Reports Server (NTRS)
Evans, Jordan P.
2006-01-01
The Laser Interferometer Space Antenna (LISA) is a joint NASA/ESA mission to detect and measure gravitational waves with periods from 1 s to 10000 s. The systems engineering challenges of developing a giant interferometer, 5 million kilometers on a side, an: numerous. Some of the key challenges are presented in this paper. The organizational challenges imposed by sharing the engineering function between three centers (ESA ESTEC, NASA GSFC, and JPL) across nine time zones are addressed. The issues and approaches to allocation of the acceleration noise and measurement sensitivity budget terms across a traditionally decomposed system are discussed. Additionally, using LISA to detect gravitational waves for the first time presents significant data analysis challenges, many of which drive the project system design. The approach to understanding the implications of science data analysis on the system is also addressed.
International migration and sustainable human development in eastern and southern Africa.
Oucho, J O
1995-01-01
International migration in eastern and southern Africa (ESA) is rarely addressed in population and development policies or regional organizations, and regional organizations must in the articulation of sustainable shared development identify the role of international migration. Poor quality data on international migration hampers analysis. Sustainable, shared, and human development within the region are subregional issues. Permanent migration is characterized among ESA countries as increasing demographic ethnic pluralism that may result in redrawing of territorial boundaries and further population movement. Portuguese and Arab settlement and integration in eastern areas resulted in coexistence, while European immigration to South Africa resulted in racial segregation. Modern colonial settlement and the aftermath of political conflict resulted in independent countries after the 1960s and outmigration of nonAfrican groups. Much of the labor migration in ESA is unskilled workers moving to South African mining regions. Labor migration to Zimbabwe and Zambia declined after the 1960s. The formation of the Common Market for ESA and the potential merger with the Preferential Trade Area and South African Development Community is a key approach to integration of migration into regional cooperation and shared development. Refugee movements create the most problems. Prior to 1992 ESA countries accounted for 83.4% of refugees, particularly in Mozambique, Ethiopia, and Somalia. Some countries blame poor economic performance on the deluge of refugees. Illegal migration is currently detected because of the required work permits, but the adoption of the Common Market would obscure this phenomenon. Human development is affected most by migrations related to drought, labor migration to strong economic areas, and return migration. The Inter-Governmental Authority on Drought and Development needs to become more active and establish better policies on nomadic and refugee movements and displaced populations. Movement of educated populations to countries lacking in trained and skilled human resources is a future challenge. Strategies of immigration should facilitate economic development.
NASA Astrophysics Data System (ADS)
Martinez, Santa; Besse, Sebastien; Heather, Dave; Barbarisi, Isa; Arviset, Christophe; De Marchi, Guido; Barthelemy, Maud; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; Macfarlane, Alan; Rios, Carlos; Vallejo, Fran; Saiz, Jaime; ESDC (European Space Data Centre) Team
2016-10-01
The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://archives.esac.esa.int/psa. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA is currently implementing a number of significant improvements, mostly driven by the evolution of the PDS standard, and the growing need for better interfaces and advanced applications to support science exploitation. The newly designed PSA will enhance the user experience and will significantly reduce the complexity for users to find their data promoting one-click access to the scientific datasets with more specialised views when needed. This includes a better integration with Planetary GIS analysis tools and Planetary interoperability services (search and retrieve data, supporting e.g. PDAP, EPN-TAP). It will be also up-to-date with versions 3 and 4 of the PDS standards, as PDS4 will be used for ESA's ExoMars and upcoming BepiColombo missions. Users will have direct access to documentation, information and tools that are relevant to the scientific use of the dataset, including ancillary datasets, Software Interface Specification (SIS) documents, and any tools/help that the PSA team can provide. A login mechanism will provide additional functionalities to the users to aid / ease their searches (e.g. saving queries, managing default views). This contribution will introduce the new PSA, its key features and access interfaces.
NASA Astrophysics Data System (ADS)
Acuña, M.
The International Solar Terrestrial Physics Program (ISTP) evolved from the individual plans of US, Japanese and European countries to develop space missions to expand our knowledge of the Sun-Earth connection as a "system". Previous experience with independent missions amply illustrated the critical need for coordinated and simultaneous observations in key regions of Sun-Earth space in order to resolve time-space ambiguities and cause-effect relationships. Mission studies such as the US Origins of Plasmas in the Earth's Neighborhood (OPEN), Geotail in Japan, the Solar Heliospheric Observatory in Europe and the Regatta and other magnetospheric missions in the former Soviert Union, formed the early conceptual elements that eventually led to the ISTP program. The coordinating role developed by the Inter-Agency-Consultative-Group (IACG) integrated by NASA, ESA, ISAS and IKI and demonstrated during the comet Halley apparition in 1986, was continued to include solar-terrestrial research and the mission elements described above. In addition to the space elements, a most important component of the coordination effort was the inclusion of data networks, analysis and planning tools as well as globally accessible data sets by the scientific community at large. This approach enabled the active and direct participation of scientists in developing countries in one of the most comprehensive solar-terrestrial research programs implemented to date. The creation of multiple ISTP data repositories throughout the world has enabled a large number of scientists in developing countries to have direct access to the latest spacecraft observations and a most fruitful interaction with fellow researchers throughout the world. This paper will present a review of the evolution of the ISTP program, its products, analysis tools, data bases, infrastructure and lessons learned applicable to future international collaborative programs.
The Hera Saturn entry probe mission
NASA Astrophysics Data System (ADS)
Mousis, O.; Atkinson, D. H.; Spilker, T.; Venkatapathy, E.; Poncy, J.; Frampton, R.; Coustenis, A.; Reh, K.; Lebreton, J.-P.; Fletcher, L. N.; Hueso, R.; Amato, M. J.; Colaprete, A.; Ferri, F.; Stam, D.; Wurz, P.; Atreya, S.; Aslam, S.; Banfield, D. J.; Calcutt, S.; Fischer, G.; Holland, A.; Keller, C.; Kessler, E.; Leese, M.; Levacher, P.; Morse, A.; Muñoz, O.; Renard, J.-B.; Sheridan, S.; Schmider, F.-X.; Snik, F.; Waite, J. H.; Bird, M.; Cavalié, T.; Deleuil, M.; Fortney, J.; Gautier, D.; Guillot, T.; Lunine, J. I.; Marty, B.; Nixon, C.; Orton, G. S.; Sánchez-Lavega, A.
2016-10-01
The Hera Saturn entry probe mission is proposed as an M-class mission led by ESA with a contribution from NASA. It consists of one atmospheric probe to be sent into the atmosphere of Saturn, and a Carrier-Relay spacecraft. In this concept, the Hera probe is composed of ESA and NASA elements, and the Carrier-Relay Spacecraft is delivered by ESA. The probe is powered by batteries, and the Carrier-Relay Spacecraft is powered by solar panels and batteries. We anticipate two major subsystems to be supplied by the United States, either by direct procurement by ESA or by contribution from NASA: the solar electric power system (including solar arrays and the power management and distribution system), and the probe entry system (including the thermal protection shield and aeroshell). Hera is designed to perform in situ measurements of the chemical and isotopic compositions as well as the dynamics of Saturn's atmosphere using a single probe, with the goal of improving our understanding of the origin, formation, and evolution of Saturn, the giant planets and their satellite systems, with extrapolation to extrasolar planets. Hera's aim is to probe well into the cloud-forming region of the troposphere, below the region accessible to remote sensing, to the locations where certain cosmogenically abundant species are expected to be well mixed. By leading to an improved understanding of the processes by which giant planets formed, including the composition and properties of the local solar nebula at the time and location of giant planet formation, Hera will extend the legacy of the Galileo and Cassini missions by further addressing the creation, formation, and chemical, dynamical, and thermal evolution of the giant planets, the entire solar system including Earth and the other terrestrial planets, and formation of other planetary systems.
Are you ready for Mars? - Main media events surrounding the arrival of ESA's Mars Express at Mars
NASA Astrophysics Data System (ADS)
2003-11-01
Launched on 2 June 2003 from Baikonur (Kazakhstan) on board a Russian Soyuz launcher operated by Starsem, the European probe -built for ESA by a European team of industrial companies led by Astrium - carries seven scientific instruments that will perform a series of remote-sensing experiments designed to shed new light on the Martian atmosphere, the planet’s structure and its geology. In particular, the British-made Beagle 2 lander, named after the ship on which Charles Darwin explored uncharted areas of the Earth in 1830, will contribute to the search for traces of life on Mars through exobiology experiments and geochemistry research. On Christmas Eve the Mars Express orbiter will be steered on a course taking it into an elliptical orbit, where it will safely circle the planet for a minimum of almost 2 Earth years. The Beagle 2 lander - which will have been released from the mother craft a few days earlier (on 19 December) - instead will stay on a collision course with the planet. It too should also be safe, being designed for atmospheric entry and geared for a final soft landing due to a sophisticated system of parachutes and airbags. On arrival, the Mars Express mission control team will report on the outcome of the spacecraft's delicate orbital insertion manoeuvre. It will take some time for Mars Express to manouvre into position to pick communications from Beagle 2. Hence, initially, other means will be used to check that Beagle 2 has landed: first signals from the Beagle 2 landing are expected to be available throughout Christmas Day, either through pick-up and relay of Beagle 2 radio signals by NASA’s Mars Odyssey, or by direct pick-up by the Jodrell Bank radio telescope in the UK. Mars Express will then pass over Beagle 2 in early January 2004, relaying data and images back to Earth. The first images from the cameras of Beagle 2 and Mars Express are expected to be available between the end of the year and the beginning of January 2004. The key dates relating to the arrival of Mars Express at its destination will be marked by several media events not to be missed. Pencil them into your diaries so as not to miss one of the most exciting events of the year. Tuesday 11 November Mars Express/Beagle 2 Media briefing Royal Society- 6-9 Carlton House Terrace, London 10:00 - 13:00 -Status report on the mission -Technical details on forthcoming Mars Express/Beagle 2 operations -News handling arrangements around Christmas Speakers: Prof. David Southwood, ESA Director of Science; Prof. Colin Pillinger, Beagle 2 Lander Lead Scientist; John Reddy, ESA Mars Express Principal Electrical Systems Engineer. Contact: Peter Barratt, PPARC Tel. + 44 (0) 1793 44 20 25 e-mail: Beagle2@pparc.ac.uk Wednesday 3 December ESA Media briefing ESA/ ESOC, Darmstadt, Germany 10:30 - 12:30 -Scientific outlook and expected results -Status report on the mission -Presentation of upcoming events Speakers: Rudolf Schmidt, ESA Mars Express Project Manager; Augustin Chicarro, ESA Mars Express Project Scientist. In addition, Mars Express scientists and Mission Control Managers will highlight their contribution to the Mars Express mission. In videoconference with ESA/Headquarters, Paris (F); ESA/ESTEC, Noordwijk (NL), ESA/ESRIN, Frascati (I). Contact: Jocelyne Landeau Constantin, ESA/ESOC Tel. + 49 6151 90 26 96 e-mail: Jocelyne.Landeau-Constantin@esa.int Friday 19 December Mars Express Orbiter/ Beagle 2 separation Mission Control Managers announce results of Beagle 2 separation from the mother craft. a.Event at ESA/ESOC, Darmstadt , Germany 08:30 - 14:00 Speakers: Prof. David Southwood, ESA Director of Science; Rudolf Schmidt, ESA Mars Express Project Manager Contact: Jocelyne Landeau Constantin, ESA/ESOC Tel. + 49 6151 90 26 96 e-mail: Jocelyne.Landeau-Constantin@esa.int b.Event in London -location and time t.b.c. Speaker: Prof. Colin Pillinger, Beagle 2 Lander Lead Scientist. Contact: Peter Barratt, PPARC Tel. + 44 (0) 1793 44 20 25 e-mail: Beagle2@pparc.ac.uk Thursday 25 December Christmas on Mars a.Media event at ESA/ ESOC, Darmstadt, Germany 03:00 - 07:00 Mars Express orbit insertion follow-up and Beagle 2 landing- Experience the accomplishment of one of the most exciting phases of the Mars Express mission in real time in the presence of Mission Control Managers and Scientists. 08:30 - 10:00 Christmas media brunch- Announcement of Mars orbit insertion results and Beagle 2 landing, with the participation of Prof. David Sourthwood, ESA Director of Science. Contact: Jocelyne Landeau Constantin, ESA/ESOC Tel. + 49 6151 90 26 96 e-mail: Jocelyne.Landeau-Constantin@esa.int b.Event in central London - location and time t.b.c. Contact: Peter Barratt, PPARC Tel. + 44 (0) 1793 44 20 25 e-mail: Beagle2@pparc.ac.uk Note to Editors: Timeline of expected main mission events 16 December All day Fine targeting of Mars Express to point at landing site - ranging 19 December 06:51 GMT/07:51 CET Decision to release Beagle 2 08:41 GMT/09:41 CET Eject command sent to Mars Express 10:15 GMT/11:15 CET First results of release available 20 December Re-targeting of Mars Express on an orbital insertion course 23 December Update on Mars Express Orbital Insertion Sequence 24 December Night Final decision to steer Mars Express into a Martian orbit 25 December 02:45 GMT/03:45 CET Beagle 2 landing on Mars 03:00 GMT/04:00 CET Mars Express Orbital Insertion 05:15 GMT/06:15 CET Mars Odyssey orbiter flight over Beagle 2 07:00 GMT/08:00 CET First evaluation of Mars Express orbital insertion 22:45 GMT/23:45 CET Possible direct capture of Beagle 2 signals at Jodrell Bank (UK)
Second space Christmas for ESA: Huygens to begin its final journey to Titan/ Media activities.
NASA Astrophysics Data System (ADS)
2004-12-01
At 1.25 billion km from Earth, after a 7-year journey through the Solar system, ESA’s Huygens probe is about to separate from the Cassini orbiter to enter a ballistic trajectory toward Titan, the largest and most mysterious moon of Saturn, in order to dive into its atmosphere on 14 January. This will be the first man-made object to explore in-situ this unique environment, whose chemistry is assumed to be very similar to that of the early Earth just before life began, 3.8 billion years ago. The Cassini-Huygens pair, a joint mission conducted by NASA, ESA and the Italian space agency (ASI), was launched into space on 15 October 1997. With the help of several gravity assist manoeuvres during flybys of Venus, Earth and Jupiter, it took almost 7 years for the spacecraft to reach Saturn. The Cassini orbiter, carrying Huygens on its flank, entered an orbit around Saturn on 1 July 2004, and began to investigate the ringed planet and its moons for a mission that will last at least four years. The first distant flyby of Titan took place on 2-3 July 2004. It provided data on Titan's atmosphere which were confirmed by the data obtained during the first close flyby on 26 October 2004 at an altitude of 1174 km. These data were used to validate the entry conditions of the Huygens probe. A second close flyby of Titan by Cassini-Huygens at an altitude of 1200 km is scheduled on 13 December and will provide additional data to further validate the entry conditions of the Huygens probe. On 17 December the orbiter will be placed on a controlled collision course with Titan in order to release Huygens on the proper trajectory, and on 21 December (some dates and times are subject to minor adjustment for operational reasons, except the entry time on 14 January which is know to within an accuracy of under 2 minutes) all systems will be set up for separation and the Huygens timers will be set to wake the probe a few hours before its arrival at Titan. The Huygens probe is due to separate on the morning of 25 December at about 05:08 CET. Since the Cassini orbiter will have to achieve precise pointing for the release, there will be no real-time telemetry available until it turns back its main antenna toward Earth and beams the recorded data of the release. It will take over an hour (67 min) for the signals to reach us on Earth. The final data confirming the separation will be available later on Christmas Day. After release, Huygens will move away from Cassini at a speed of about 35 cm per second and, to keep on track, will spin on its axis, making about 7 revolutions a minute. Huygens will not communicate with Cassini for the whole period until after deployment of the main parachute following entry into Titan’s atmosphere. On 28 December Cassini will then manoeuvre off collision course to resume its mission and prepare itself to receive Huygens data, which it will record for later playback to Earth. Huygens will remain dormant until a few hours before its arrival at Titan on 14 January. The entry into the atmosphere is set for 11:15 CET. Huygens is planned to complete its descent in about two hours and 15 minutes, beaming back its science data to the Cassini orbiter for replay to Earth later in the afternoon. If Huygens, which is designed as an atmospheric probe rather than a lander, survives touchdown on the surface, it could deliver up to 2 hours of bonus data before the link with Cassini is lost. Direct radio signals from Huygens will reach Earth after 67 minutes of interplanetary travel at the speed of light. An experiment has been set up by radio scientists that will use an array of radio telescopes around the Pacific to attempt to detect a faint tone from Huygens. If successful, early detection is not expected before around 11:30 CET. The European Space Agency owns and manages the Huygens probe and is in charge of operations of the probe from its control centre in Darmstadt, Germany. NASA's Jet Propulsion Laboratory in Pasadena, California, designed, developed and assembled the Cassini orbiter. NASA's Deep Space Network, also managed by JPL, will be providing communications support via the Cassini orbiter and relaying it to ESA’s control centre in Darmstadt for processing. The Italian Space Agency provided the high-gain antenna on the Cassini orbiter, much of the radio system and elements of several of Cassini's science instruments. The Huygens payload has been provided by teams including from CNES, DLR, ASI and PPARC, and outside Europe, from NASA. Practical arrangements for the Media wishing to cover the event These dramatic events marking the first attempt ever to unveil the mysteries of Titan in-situ, a distant world bigger than Mercury and Pluto which may hold clues to the early days of our own planet, will be marked by several media activities not to be missed. Pencil them into your diary. Saturday 25 December Spacecraft operations will be run at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. The ESA Media Relations Office in Paris will be operational from 04:00 hrs to 12:00 CET. ESA specialists can be reached for interviews and comments via the ESA News Desk on +33(0)1.53.69.71.55. Contacts: Franco Bonacina, Anne-Marie Rémondin, Roberto Lo Verde. Interviews from JPL can also be arranged by calling the JPL media relations office at + 1. 818-354-5011. ESA specialists at JPL: Jean-Pierre Lebreton, Claudio Sollazzo. 05:08 CET - Expected separation of the Huygens probe from the Cassini orbiter ~07:00 CET - Status report upon successful separation from NASA/JPL 10:00 CET at the latest : ESA press release assessing the separation of the Huygens probe ~10:00 CET - ESA TV Video News Release produced at JPL during separation (contact for TVs: Claus Habfast: + 31(0)6.51.18.14.96, claus.habfast@esa.int) Transmission details will be on http://television.esa.int 12:00 CET - Replay of ESA TV Video News Release on separation Thursday 13 January ESA’s ESOC establishment in Darmstadt, Germany, will act as the main European press centre. The Huygens Principal Investigators, the ESA Huygens Mission Manager and Project Scientist will be at ESA/ESOC and available for interviews. If you wish to attend the media activities at ESOC, please return the attached accreditation form. Press Contacts: Jocelyne Landeau-Constantin jocelyne.landeau-constantin@esa.int (+49(0)6151.90.2696) Bernhard von Weyhe Bernhard.von.Weyhe@esa.int (+49(0)6151.90.2516). 17:00-17:30 CET - Press briefing at ESA/ESOC Control Centre. Televised on ESA TV - This event can also be followed remotely by phone : +49(0)69.4035.9681. Friday 14 January Media briefings originated at ESA/ESOC will also be retransmitted to several ESA establishments and across Europe: Cité des Sciences/ La Villette in Paris (F), (event hosted in coordination with ESA and CNES), ESA/ESTEC in Noordwijk (NL), ESA/ESRIN Frascati (I), ESA/ESAC in Villafranca (E), Central London (event hosted by PPARC). ESA specialists will be on hand at the various locations for interviews. If you wish to attend the briefings at one of these venues, please contact the local Communication services directly. ESA for Cité des Sciences, Paris (F): Anne-Marie Rémondin (Anne-Marie.Remondin@esa.int), + 33(0)1.5369.7155 or Brigitte Kolmsee (Brigitte.Kolmsee@esa.int), + 33(0)1.5369.7299 ESA/ESTEC,Noorwijk Space Expo (NL): + 31(0)71.565.3006- Wil Spangenberg (Wil.Spangenberg@esa.int) ESA/ESRIN, Frascati (I): + 39 06 9418 0951- Franca Morgia (Franca.Morgia@esa.int) ESA/ESAC, Villafranca (E): + 34 91 813 11 00- Monica Oerke (Monica.Oerke@esa.int) PPARC, London (UK) : Peter Barratt + 44 (0)1793 44 20 25 (Peter.Barratt@pparc.ac.uk) ESA TV Broadcast schedule for 14 January 2005 09:00-09:30 CET - ESA TV broadcast - Cassini turns to Huygens - Feeds from ESA/ESOC main Control Room 11:00-12:15 CET - ESA TV Broadcast - Probe activation to parachute deployment and status of tracking by radio-telescope 13:30-14:00 CET - Press briefing at ESA/ESOC: Huygens descent update (possible results from ground radio telescope observations - televised on ESA TV 14:30-15:00 CET - ESA TV broadcast: mission update 16:00-16:30 CET - ESA TV broadcast: mission update As of 17:15 CET - Press briefing: arrival of first data - televised on ESA TV 23:00-24:00 CET - Press briefing: presentation of first image if available) - Televised on ESA TV All events can also be followed (audio only) by calling + 49(0)69.4035.9681 and highlights of ESA TV can be watched on the Web at http://saturn.esa.int Saturday 15 January 11:00-12:00 CET - Press conference at ESA/ESOC: presentation of the first image, sounds, etc. - not broadcast live on ESA TV. This event can also be followed (audio only) by calling + 49(0)69.4035.9681. A video news release with the highlights will be available on ESA TV for broadcasters immediately at the end of the press conference. Satellite details for ESA TV broadcast reception: The ESA TV Service provides live broadcasts of ESA’s most important events on the Astra 2-C satellite, using a digital transponder that enables everyone in the satellite’s footprint, with a digital receiver and a parabolic pointing at 19.2 degrees East, to follow these events. For more information and updates, please check the ESA TV Website: http://television.esa.int . And on the Web You can follow all main Cassini/Huygens mission events on the ESA web at: http://saturn.esa.int Here you will find information on Cassini-Huygens and its status, a rich selection of multimedia material, news on the separation of Huygens from the Cassini orbiter and the latest updates on January 13. There will be continuous coverage during the last exciting hours of the descent on 14 January, with the first image expected late on 14 January or on 15 January. Bookmark now http://saturn.esa.int ! And if you have not already done so, subscribe to the ESA portal news at http://www.esa.int/esaCP/subscribers.html , you will get the latest news on this fascinating mission directly into your mail box! Messages from earthlings and pop music heading to Titan Before the mission was launched, ESA offered Europeans a unique opportunity to send a message to the unknown. Over 80 000 people wanted to share the excitement of this mission and wrote or drew a message that was engraved on a CD-ROM put on board the Huygens probe. The messages can be seen on http://television.esa.int/Huygens/index.cfm The same CD ROM carries four pop songs, composed by French musicians Julien Civange and Louis Haéri. More about this project at http://www.music2titan.com Specific information for media representatives going to ESA/ESOC Getting there: The nearest airport is Frankfurt-am-Main and it takes about 20 minutes by taxi to get to ESA/ESOC. A shuttle bus is also available from the airport approximately every 30 minutes. There are also frequent trains (approx. every 40 minutes) from the airport to Darmstadt (one change). http://www.heag.de/verkehr/02_02.html http://www.bahn.de/pv/view/index.shtml Accommodation: Darmstadt has many hotels, ranging in price from € 68 to € 230 (the closest to ESA/ESOC is a 4-star Maritim Konferenz Hotel, in walking distance from the Control Centre). For further information about Darmstadt hotels go to http://www.proregio-darmstadt.de/uebernachten/hotel.asp. If you need help with accommodation, do not hesitate to contact the ESA/ESOC travel office on +49(0)6151.902.885. Laptops/ Internet/ Cell Phones: Power supply rating: 220-240 volts (adaptor plug available in most hardware stores or at most international airport shops). Most North American cell phones will not work in Europe unless they are tri-band phones. Internet via LAN: Standard network connector RJ45 required in laptop. Internet via analogue modem: Standard RJ11 connector in laptop, special German Telekom TAE connection to the socket. Internet via ISDN: PCMCIA Card inside Laptop, RJ45 in the wall. The ESA/ESOC Press Rooms are equipped with ISDN and standard network with RJ45 cable. No wireless LAN is available for the media. Analog lines can be provided if needed.
NASA Technical Reports Server (NTRS)
Zipay, John J.; Bernstein, Karen S.; Bruno, Erica E.; Deloo, Phillipe; Patin, Raymond
2012-01-01
The International Space Station (ISS) can be considered one of the structural engineering wonders of the world. On par with the World Trade Center, the Colossus of Rhodes, the Statue of Liberty, the Great Pyramids, the Petronas towers and the Burj Khalifa skyscraper of Dubai, the ambition and scope of the ISS structural design, verification and assembly effort is a truly global success story. With its on-orbit life projected to be from its beginning in 1998 to the year 2020 (and perhaps beyond), all of those who participated in its development can consider themselves part of an historic engineering achievement representing all of humanity. The structural design and verification of the ISS could be the subject of many scholarly papers. Several papers have been written on the structural dynamic characterization of the ISS once it was assembled on-orbit [1], but the ground-based activities required to assure structural integrity and structural life of the individual elements from delivery to orbit through assembly and planned on-orbit operations have never been totally summarized. This paper is intended to give the reader an overview of some of the key decisions made during the structural verification planning for the elements of the U.S. On-Orbit Segment (USOS) as well as to summarize the many structural tests and structural analyses that were performed on its major elements. An effort is made for this paper to be summarily comprehensive, but as with all knowledge capture efforts of this kind, there are bound to be errors of omission. Should the reader discover any of these, please feel free to contact the principal author. The ISS (Figure 1) is composed of pre-integrated truss segments and pressurized elements supplied by NASA, the Russian Federal Space Agency (RSA), the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA). Each of these elements was delivered to orbit by a launch vehicle and connected to one another either robotically or autonomously. The primary structure of each element was assembled and verified by teams of responsible structural engineers within and among their respective agencies and agency contractors.
An X-Ray Diffractometer for Mineralogical Analysis of Exomars Mission
NASA Astrophysics Data System (ADS)
Marinangeli, L.; Baliva, A.; Critani, F.; Stevoli, A.; Scandelli, L.; Holland, A.; Hutchinson, I.; Nelms, N.; Delhez, R.
2006-12-01
The new results of the Mars Exploration Rovers and the Mars Express mission outline the importance of a correct assessment of the variety of geological contexts to understand the evolution of a habitable environment. The need of having complex scientific payload to perform a broad range of in situ measurements is a necessary step for a successful exobiological exploration. Furthermore, the compositional analysis of the surface samples is of fundamental importance to characterize the geological environments where life could have arisen and their evolution through time. In the last years, there has been a strong interest in Europe to develop a x-ray diffractometer (XRD) for mineralogical analyses of planetary surfaces. The identification of minerals using the diffraction technique is based on the x-ray interference with the geometrical parameters of the crystal lattice allowing an unequivocal recognition of different minerals. An US XRD instrument, CHEMIN, will flight for the first time in the NASA Mars Science Laboratory in 2009. An European XRD design has also been selected for the Pasteur Payload of the ESA ExoMars mission, planned for 2011. The proposed instrument is a miniaturised concept (1 kg) configured in a reflection geometry and will allow the identification of a large spectrum of minerals including those related to the presence of water, key element for the development of life. The complete mineralogical analysis will be performed on very small quantities of powder rock samples, thought analysis of pristine (no grinded) sample can also be achieved with the reflection configuration. Information on the elemental composition of the sample can be roughly estimated by the analysis of the x-ray fluorescence spectrum simultaneously acquired by the detection system. In order to demonstrate the instrument technological readiness for the ExoMars mission, the construction of a demonstrative prototype is on going with ESA funding. Preliminary result of the scientific evaluation of the prototype will be shown to assess the capability of the proposed concept in the identification of rock mineralogy. IRSPS and and Laben are respectively the team science coordinator and the engineering responsible for the instrument development. The detector assembly for the prototype has been developed by UK and discussion for the UK involvement on the future instrument development is on going. Delft is providing scientific contribution for the prototype evaluation.
Internationalization of the Space Station
NASA Technical Reports Server (NTRS)
Lottmann, R. V.
1985-01-01
Attention is given to the NASA Space Station system elements whose production is under consideration by potential foreign partners. The ESA's Columbus Program declaration encompasses studies of pressurized modules, unmanned payload carriers, and ground support facilities. Canada has expressed interest in construction and servicing facilities, solar arrays, and remote sensing facilities. Japanese studies concern a multipurpose experimental module concept. Each of these foreign investments would expand Space Station capabilities and lay the groundwork for long term partnerships.
STS-120 crew along with Expedition crew members Dan Tani and Sandra Magnus
2007-08-09
JSC2007-E-41540 (9 Aug. 2007) --- Astronauts Pamela A. Melroy, STS-120 commander, and European Space Agency's (ESA) Paolo Nespoli, mission specialist, use the virtual reality lab at Johnson Space Center to train for their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.
Proposal for a Comparison of Reliability and Maintainability Activities Across ESA, JAXA, and NASA
NASA Technical Reports Server (NTRS)
Evans, John; Groen, Frank
2015-01-01
NASA has developed an objectives based hierarchy for guiding Reliability and Maintainability activities. This presentation overviews the hierarchy and proposes to the international trilateral partners to formulate a task force to consider the elements of the NASA RM framework, as captured in the hierarchy of RM considerations, to identify commonalities and differences in the way reliability and maintainability is addressed by the flight projects among the partners.
Hello World: Harnessing social media for the Rosetta mission
NASA Astrophysics Data System (ADS)
Baldwin, E.; Mignone, C.; O'Flaherty, K. S.; Homfeld, A.-M.; Bauer, M.; McCaughrean, M. J.
2015-10-01
The European Space Agency's (ESA) comet-chasing Rosetta mission was launched in 2004, before social media became a popular tool for mainstream communication. By harnessing a range of platforms for communicating the key messages of this unprecedented space adventure as the spacecraft reached its destination ten years later, a wide range of new audiences were reached and could follow this once-in-a-lifetime mission.
MOMA: The Challenge to Search for Organics and Biosignatures on Mars
NASA Technical Reports Server (NTRS)
Goetz, Walter; Brinckerhoff, W. B.; Arevalo, R., Jr.; Freissinet, C.; Getty, S.; Glavin, D. P.; Siljestroem, S.; Buch, A.; Stalport, F.; Grubisic, A.;
2016-01-01
This paper describes strategies to search for, detect, and identify organic material on the surface and subsurface of Mars. The strategies described include those applied by landed missions in the past and those that will be applied in the future. The value and role of ESA's ExoMars rover and of her key science instrument Mars Organic Molecule Analyzer (MOMA) are critically assessed.
Webber, Whitney M.; Li, Ya-Wei
2016-01-01
Managers of large, complex wildlife conservation programs need information on the conservation status of each of many species to help strategically allocate limited resources. Oversimplifying status data, however, runs the risk of missing information essential to strategic allocation. Conservation status consists of two components, the status of threats a species faces and the species’ demographic status. Neither component alone is sufficient to characterize conservation status. Here we present a simple key for scoring threat and demographic changes for species using detailed information provided in free-form textual descriptions of conservation status. This key is easy to use (simple), captures the two components of conservation status without the cost of more detailed measures (sufficient), and can be applied by different personnel to any taxon (consistent). To evaluate the key’s utility, we performed two analyses. First, we scored the threat and demographic status of 37 species recently recommended for reclassification under the Endangered Species Act (ESA) and 15 control species, then compared our scores to two metrics used for decision-making and reports to Congress. Second, we scored the threat and demographic status of all non-plant ESA-listed species from Florida (54 spp.), and evaluated scoring repeatability for a subset of those. While the metrics reported by the U.S. Fish and Wildlife Service (FWS) are often consistent with our scores in the first analysis, the results highlight two problems with the oversimplified metrics. First, we show that both metrics can mask underlying demographic declines or threat increases; for example, ∼40% of species not recommended for reclassification had changes in threats or demography. Second, we show that neither metric is consistent with either threats or demography alone, but conflates the two. The second analysis illustrates how the scoring key can be applied to a substantial set of species to understand overall patterns of ESA implementation. The scoring repeatability analysis shows promise, but indicates thorough training will be needed to ensure consistency. We propose that large conservation programs adopt our simple scoring system for threats and demography. By doing so, program administrators will have better information to monitor program effectiveness and guide their decisions. PMID:27478713
Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf
NASA Astrophysics Data System (ADS)
Shakhova, Natalia; Semiletov, Igor; Gustafsson, Orjan; Sergienko, Valentin; Lobkovsky, Leopold; Dudarev, Oleg; Tumskoy, Vladimir; Grigoriev, Michael; Mazurov, Alexey; Salyuk, Anatoly; Ananiev, Roman; Koshurnikov, Andrey; Kosmach, Denis; Charkin, Alexander; Dmitrevsky, Nicolay; Karnaukh, Victor; Gunar, Alexey; Meluzov, Alexander; Chernykh, Denis
2017-06-01
The rates of subsea permafrost degradation and occurrence of gas-migration pathways are key factors controlling the East Siberian Arctic Shelf (ESAS) methane (CH4) emissions, yet these factors still require assessment. It is thought that after inundation, permafrost-degradation rates would decrease over time and submerged thaw-lake taliks would freeze; therefore, no CH4 release would occur for millennia. Here we present results of the first comprehensive scientific re-drilling to show that subsea permafrost in the near-shore zone of the ESAS has a downward movement of the ice-bonded permafrost table of ~14 cm year-1 over the past 31-32 years. Our data reveal polygonal thermokarst patterns on the seafloor and gas-migration associated with submerged taliks, ice scouring and pockmarks. Knowing the rate and mechanisms of subsea permafrost degradation is a prerequisite to meaningful predictions of near-future CH4 release in the Arctic.
Josset, Jean-Luc; Westall, Frances; Hofmann, Beda A; Spray, John; Cockell, Charles; Kempe, Stephan; Griffiths, Andrew D; De Sanctis, Maria Cristina; Colangeli, Luigi; Koschny, Detlef; Föllmi, Karl; Verrecchia, Eric; Diamond, Larryn; Josset, Marie; Javaux, Emmanuelle J; Esposito, Francesca; Gunn, Matthew; Souchon-Leitner, Audrey L; Bontognali, Tomaso R R; Korablev, Oleg; Erkman, Suren; Paar, Gerhard; Ulamec, Stephan; Foucher, Frédéric; Martin, Philippe; Verhaeghe, Antoine; Tanevski, Mitko; Vago, Jorge L
The Close-Up Imager (CLUPI) onboard the ESA ExoMars Rover is a powerful high-resolution color camera specifically designed for close-up observations. Its accommodation on the movable drill allows multiple positioning. The science objectives of the instrument are geological characterization of rocks in terms of texture, structure, and color and the search for potential morphological biosignatures. We present the CLUPI science objectives, performance, and technical description, followed by a description of the instrument's planned operations strategy during the mission on Mars. CLUPI will contribute to the rover mission by surveying the geological environment, acquiring close-up images of outcrops, observing the drilling area, inspecting the top portion of the drill borehole (and deposited fines), monitoring drilling operations, and imaging samples collected by the drill. A status of the current development and planned science validation activities is also given. Key Words: Mars-Biosignatures-Planetary Instrumentation. Astrobiology 17, 595-611.
System Engineering Infrastructure Evolution Galileo IOV and the Steps Beyond
NASA Astrophysics Data System (ADS)
Eickhoff, J.; Herpel, H.-J.; Steinle, T.; Birn, R.; Steiner, W.-D.; Eisenmann, H.; Ludwig, T.
2009-05-01
The trends to more and more constrained financial budgets in satellite engineering require a permanent optimization of the S/C system engineering processes and infrastructure. Astrium in the recent years already has built up a system simulation infrastructure - the "Model-based Development & Verification Environment" - which meanwhile is well known all over Europe and is established as Astrium's standard approach for ESA, DLR projects and now even the EU/ESA-Project Galileo IOV. The key feature of the MDVE / FVE approach is to provide entire S/C simulation (with full featured OBC simulation) already in early phases to start OBSW code tests on a simulated S/C and to later add hardware in the loop step by step up to an entire "Engineering Functional Model (EFM)" or "FlatSat". The subsequent enhancements to this simulator infrastructure w.r.t. spacecraft design data handling are reported in the following sections.
LISA Pathfinder Instrument Data Analysis
NASA Technical Reports Server (NTRS)
Guzman, Felipe
2010-01-01
LISA Pathfinder (LPF) is an ESA-launched demonstration mission of key technologies required for the joint NASA-ESA gravitational wave observatory in space, LISA. As part of the LPF interferometry investigations, analytic models of noise sources and corresponding noise subtraction techniques have been developed to correct for effects like the coupling of test mass jitter into displacement readout, and fluctuations of the laser frequency or optical pathlength difference. Ground testing of pre-flight hardware of the Optical Metrology subsystem is currently ongoing at the Albert Einstein Institute Hannover. In collaboration with NASA Goddard Space Flight Center, the LPF mission data analysis tool LTPDA is being used to analyze the data product of these tests. Furthermore, the noise subtraction techniques and in-flight experiment runs for noise characterization are being defined as part of the mission experiment master plan. We will present the data analysis outcome of preflight hardware ground tests and possible noise subtraction strategies for in-flight instrument operations.
The ESA FRM4DOAS project: Towards a quality-controlled MAXDOAS Centralized Processing System
NASA Astrophysics Data System (ADS)
Hendrick, Francois; Fayt, Caroline; Friess, Udo; Kreher, Karin; Piters, Ankie; Richter, Andreas; Wagner, Thomas; Cede, Alexander; Spinei, Elena; von Bismarck, Jonas; Fehr, Thorsten; Van Roozendael, Michel
2017-04-01
The Fiducial Reference Measurements for Ground-Based DOAS Air-Quality Observations (FRM4DOAS) is a two-year project funded by the European Space Agency (ESA). Started in July 2016, FRM4DOAS aims at further harmonizing MAXDOAS measurements and data sets, through (1) the specification of best practices for instrument operation, (2) the selection of state-of-the art retrieval algorithms, procedures, and settings, (3) the demonstration of a centralised rapid-delivery (6-24h latency) processing system for MAXDOAS instruments to be operated within the international Network for the Detection of Atmospheric Composition Change (NDACC). The project also links with the Pandonia initiative. In a first phase, the system concentrates on the development of 3 key products: NO2 vertical profiles, total O3 and tropospheric HCHO profiles, which will be retrieved at 11 MAXDOAS pilot stations. The system will also be tested and validated on data from the CINDI-2 campaign, and designed to allow further extension after commissioning. These activities will help and guarantee that homogenous, fully traceable, and quality-controlled datasets are generated from reference ground-based UV-vis instruments, which will play a crucial role in the validation of future ESA/Copernicus Sentinel satellite missions S-5P, S-4, and S-5.
ESA achievements: more than thirty years of pioneering space activity
NASA Astrophysics Data System (ADS)
Wilson, Andrew
2005-06-01
Contents: ESA and science. ESA and Earth observation (Explorer Core missions, Explorer opportunity missions, Earth Watch). ESA and telecommunications. ESA and navigation. ESA and launchers. ESA and manned spaceflight. The ESA Science Programme is one of the Agency's mandatory activities, in which all Member States participate. The origins of the Science Programme, the oldest in the Agency, hark back to the days of ESRO. ESRO's seven successful scientific satellites paved the way for ESA's remarkable series of pioneering missions that have placed Europe at the vanguard of disciplines such as X-ray, gamma-ray and infrared astronomy; astrometry; solar system sciences (especially cometary), solar and heliospheric physics, as well as space plasma physics. Driven by the limited available means, ESA's Science Programme has consistently focused on missions with strong innovative contents. All of the missions launched or approved so far are covered in separate entries in this volume.
ESA is now a major player in global space science
NASA Astrophysics Data System (ADS)
1997-07-01
* Results from the star-fixing satellite Hipparcos, released this summer to the world's astronomers, give the positions and motions of 118,000 stars a hundred times more accurately than ever before. * Every day the Infrared Space Observatory, ISO, examines 45 cosmic objects on average at many different wavelengths never observable before, giving fresh insights into cosmic history and chemistry. * Invaluable new knowledge of the Sun comes from SOHO, the Solar and Heliospheric Observatory, which is the first spacecraft able to observe the Sun's deep interior as well as its stormy surface and atmosphere. Besides these missions making present headlines, several other spacecraft are helping to fulfil ESA's scientific objectives. * 2 - * The launch in October 1997 of ESA's probe Huygens, aboard the Cassini spacecraft bound for Saturn, foreshadows a breakthrough in planetary science in 2004. That is when Huygens will carry its scientific instruments into the unique and puzzling atmosphere of Saturn's moon Titan. * Ulysses, also built in Europe, is exploring hitherto unknown regions of space, after making the first-ever visit to the Sun's polar regions in 1994-95. It will return to the Sun in 2000-2001, to observe the effects of the climax of solar activity due at that time. * The Cluster 2 mission, announced in April 1997 and to be launched in 2000, will explore the Earth's space environment far more throughly than ever before. ESA's decision to replace the four Cluster satellites lost in a launch accident in 1996 ensures that Europe will continue as the leader in solar-terrestrial research in space. * An example of the three unique 58-mirror X-ray telescopes for the XMM mission was unveiled for the press in May 1997. When it goes into orbit in 1999 XMM will make, in seconds, observations of cosmic objects that took hours with previous X-ray astronomy missions. * The Hubble Space Telescope, in which ESA is a partner, continues to deliver the sharpest pictures of the cosmos after its February 1997 refurbishment. Europe's astronomers make outstanding use of their right to make observations with Hubble, guaranteed by ESA's participation. ESA's table d'h^te for space scientists To provide world-class opportunities in space for Europe's scientific community is one of ESA's primary duties. The successes summarized here are not a matter of luck, but of decades of sustained planning and effort. Although ESA's science budget is small as compared with NASA=s equivalent programme, and is even being squeezed, yet every one of ESA's missions is first in its class. * 3- The scientists of ESA's member states draw up the table d'h^te, with a balanced menu of research opportunities in Solar System exploration and in astronomy. ESA coordinates the technological and scientific efforts across Europe needed to accomplish the missions, after many years of preparation and sometimes adversity. One of ESA's strengths is that it sticks to its promises, and maintains a balance with several small missions, remaining alert to new tasks for short-term projects. Besides the spacecraft mentioned earlier, ESA is actively working on: * Rosetta. As the successor to the very successful comet mission Giotto, which intercepted Halley's Comet in 1986 and Comet Grigg-Skjellerup in 1992, Rosetta will confirm ESA's role as the world leader in comet science. To be launched in 2003, Rosetta will rendezvous with Comet Wirtanen, and fly in close orbit around it as it makes its closest approach to the Sun ten years later. * Integral. Adapted from the XMM spacecraft to save money, Integral will go into orbit in 2001 and renew ESA's role in gamma-ray astronomy, pioneered in its COS-B mission some twenty years ago. Gamma-rays reveal the most violent events in the Universe, including the gamma-ray bursts that are exciting astronomers greatly at present. * FIRST and Planck Surveyor. FIRST is a long-standing major project to extend the scope of infrared space astronomy to wavelengths longer than ISO's. Planck Surveyor was recently selected as a medium-scale project, to chart the cosmic microwave background carefully enough to trace the origin of the galaxies. ESA is now examining the option of combining these two missions in a single spacecraft, for launching in 2005. Prominent among other enticing possibilities is Mars Express, a high-level, low-cost mission that could set off for the Red Planet in 2003. It would give Europe an important stake in the exploration of Mars, by remote sensing from an orbiter and by experiments in landers. The latter can exploit ESA=s experience in preparing for the Huygens mission to Titan. Some of the Mars experiments should be readily adaptable from instruments prepared for other missions. -4- ESA is also considering SMART missions, using small satellites to test key technologies. Solar-electric propulsion, long seen as a much-needed advance in spacecraft engines, could take a small spacecraft to the Moon and then onwards to an asteroid. A second candidate for a SMART mission would develop Adrag free@ technologies for testing Einstein=s theory of gravity. Other possibilities under review include participation in a replacement for the Hubble Space Telescope, and opportunities for science associated with the International Space Station. In addition, three major projects have been selected by Europe=s space scientists as long-term goals. A spacecraft to orbit the hot planet Mercury, barely explored till now, will shed new light on the history of the Solar System. An astronomical interferometric mission using two or more telescopes in combination will observe the stars and galaxies more accurately by visible or infrared light. And a novel kind of astronomy is promised by an ambitious gravitational-wave mission to detect radiation predicted by Einstein's theory of gravity, which supposedly stretches and squeezes space itself. In short, ESA is delivering superb space science and, if future funding allows, has exciting ideas for the new millennium. Note to Editors : A picture is available of a huge cloud of hydrogen gas around Comet Hale-Bopp. This image illustrates two areas of space science where ESA leads : comet research and solar research. The image is from SOHO=s SWAN instrument, the primary task of which is to chart the solar wind. Note : To learn more about ESA, visit the ESA homepage on the World Wide Web at the new address : http://www.esa.int
Logan, John M.; Bean, Sarah B.; Myers, Andrew E.
2017-01-01
Authorship is a central element of scientific research carrying a variety of rewards and responsibilities, and while various guidelines exist, actual author contributions are often ambiguous. Inconsistent or limited contributions threaten to devalue authorship as intellectual currency and diminish authors’ responsibility for published content. Researchers have assessed author contributions in the medical literature and other research fields, but similar data for the field of ecological research are lacking. Authorship practices in ecological research are broadly representative of a variety of fields due to the cross-disciplinary nature of collaborations in ecological studies. To better understand author contributions to current research, we distributed a survey regarding co-author contributions to a random selection of 996 lead authors of manuscripts published in ecological journals in 2010. We obtained useable responses from 45% of surveyed authors. Reported lead author contributions in ecological research studies consistently included conception of the project idea, data collection, analysis, and writing. Middle and last author contributions instead showed a high level of individual variability. Lead authorship in ecology is well defined while secondary authorship is more ambiguous. Nearly half (48%) of all studies included in our survey had some level of non-compliance with Ecological Society of America (ESA) authorship guidelines and the majority of studies (78%) contained at least one co-author that did not meet International Committee of Medical Journal Editors (ICMJE) requirements. Incidence of non-compliance varied with lead author occupation and author position. The probability of a study including an author that was non-compliant with ESA guidelines was lowest for professor-led studies and highest for graduate student and post doctoral researcher-led studies. Among studies with > two co-authors, all lead authors met ESA guidelines and only 2% failed to meet ICMJE requirements. Middle (24% ESA, 63% ICMJE) and last (37% ESA, 60% ICMJE) authors had higher rates of non-compliance. The probability of a study containing a co-author that did not meet ESA or ICMJE requirements increased significantly with the number of co-authors per study although even studies with only two co-authors had a high probability of non-compliance of approximately 60% (ICMJE) and 15 to 40% (ESA). Given the variable and often limited contributions of authors in our survey and past studies of other research disciplines, institutions, journals, and scientific societies need to implement new approaches to instill meaning in authorship status. A byline approach may not alter author contributions but would better define individual contributions and reduce existing ambiguity regarding the meaning of authorship in modern ecological research. PMID:28650967
Modelling the evolution of a comet subsurface: implications for 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Guilbert-Lepoutre, Aurélie; Rosenberg, Eric D.; Prialnik, Dina; Besse, Sébastien
2016-11-01
Modelling the evolution of comets is a complex task aiming at providing constraints on physical processes and internal properties that are inaccessible to observations, although they could potentially bring key elements to our understanding of the origins of these primitive objects. This field has made a tremendous step forward in the post-Giotto area, owing to detailed space- and ground-based observations, as well as detailed laboratory simulations of comet nuclei. In this paper, we review studies that we believe are significant for interpreting the observations of 67P/Churyumov-Gerasimenko by the ESA/Rosetta mission, and provide new calculations where needed. These studies hold a strong statistical significance, which is exactly what is needed for this comet with an orbital evolution that cannot be traced back accurately for more than hundreds of years. We show that radial and lateral differentiation may have occurred on 67P's chaotic path to the inner Solar system, and that internal inhomogeneities may result in an erratic activity pattern. Finally, we discuss the origins of circular depressions seen on several comets including 67P, and suggest that they could be considered as evidence of the past processing of subsurface layers.
Kuipers conducts ARGES experiment OPS at the MSG during EXP 8 / EXP 9
2004-04-24
ISS008-E-22128 (24 April 2004) --- European Space Agency (ESA) astronaut Andre Kuipers of the Netherlands works with the ARGES experiment for the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station (ISS). The main objectives of ARGES are to determine which factors are critical in the onset of instabilities in High-Intensity Discharge (HID) lamps and to characterize the separation of individual gaseous elements inside.
Vocational Qualifications for the UK Explosives Industry
2010-07-15
Army, Royal Navy, Royal Air Force , Dstl, QinetiQ, AWE, Leafield Engineering and MBDA. ESA project outputs The key outcomes of the project were...specifically those who give fireworks displays or work as special effects technicians and armourers in film, TV and theatre and members of re-enactment...is scheduled to come into force in January 2011. We have developed “new style” QCF qualifications for two different communities: • those who
Automation &robotics for future Mars exploration
NASA Astrophysics Data System (ADS)
Schulte, W.; von Richter, A.; Bertrand, R.
2003-04-01
Automation and Robotics (A&R) are currently considered as a key technology for Mars exploration. initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. Kayser-Threde led the study AROMA (Automation &Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals was to define new developments and to maintain the competitiveness of European industry within this field. We present a summary of the A&R study in respect to a particular system: The Autonomous Research Island (ARI). In the Mars exploration scenario initially a robotic outpost system lands at pre-selected sites in order to search for life forms and water and to analyze the surface, geology and atmosphere. A&R systems, i.e. rovers and autonomous instrument packages, perform a number of missions with scientific and technology development objectives on the surface of Mars as part of preparations for a human exploration mission. In the Robotic Outpost Phase ARI is conceived as an automated lander which can perform in-situ analysis. It consists of a service module and a micro-rover system for local investigations. Such a system is already under investigation and development in other TRP activities. The micro-rover system provides local mobility for in-situ scientific investigations at a given landing or deployment site. In the long run ARI supports also human Mars missions. An astronaut crew would travel larger distances in a pressurized rover on Mars. Whenever interesting features on the surface are identified, the crew would interrupt the travel and perform local investigations. In order to save crew time ARI could be deployed by the astronauts to perform time-consuming investigations as for example in-situ geochemistry analysis of rocks/soil. Later, the crew could recover the research island for refurbishment and deployment at another site. In the frame of near-term Mars exploration a dedicated exobiology mission is envisaged. Scientific and technical studies for a facility to detect the evidence of past of present life have been carried out under ESA contract. Mars soil/rock samples are to be analyzed for their morphology, organic and inorganic composition using a suite of scientific instruments. Robotic devices, e.g. for the acquisition, handling and onboard processing of Mars sample material retrieved from different locations, and surface mobility are important elements in a fully automated mission. Necessary robotic elements have been identified in past studies. Their realization can partly be based on heritage of existing space hardware, but will require dedicated development effort.
NASA Astrophysics Data System (ADS)
Da Deppo, Vania; Naletto, Giampiero; Cremonese, Gabriele; Debei, Stefano; Flamini, Enrico
2017-11-01
The paper describes the optical design and performance budget of a novel catadioptric instrument chosen as baseline for the Stereo Channel (STC) of the imaging system SIMBIOSYS for the BepiColombo ESA mission to Mercury. The main scientific objective is the 3D global mapping of the entire surface of Mercury with a scale factor of 50 m per pixel at periherm in four different spectral bands. The system consists of two twin cameras looking at +/-20° from nadir and sharing some components, such as the relay element in front of the detector and the detector itself. The field of view of each channel is 4° x 4° with a scale factor of 23''/pixel. The system guarantees good optical performance with Ensquared Energy of the order of 80% in one pixel. For the straylight suppression, an intermediate field stop is foreseen, which gives the possibility to design an efficient baffling system.
Electrostatic Assist of Liquid Transfer in Printing Processes
NASA Astrophysics Data System (ADS)
Huang, Chung-Hsuan; Kumar, Satish
2016-11-01
Transfer of liquid from one surface to another plays an important role in many printing processes. Incomplete liquid transfer can produce defects that are detrimental to the operation of printed electronic devices, and one strategy for minimizing these defects is to apply an electric field, a technique known as electrostatic assist (ESA). However, the underlying physical mechanisms of ESA remain a mystery. To better understand these mechanisms, slender-jet models for both perfect dielectric and leaky dielectric Newtonian liquid bridges with moving contact lines are developed. Nonlinear partial differential equations describing the time- and axial-evolution of the bridge radius and interfacial charge are derived, and then solved using finite-element methods. For perfect dielectrics, it is found that application of an electric field enhances transfer of liquid to the more wettable surface. For leaky dielectrics, application of an electric field can augment or oppose the influence of wettability differences, depending on the direction of the electric field and the sign of the interfacial charge. The physical mechanisms underlying these observations will be discussed.
LIDAR technology developments in support of ESA Earth observation missions
NASA Astrophysics Data System (ADS)
Durand, Yannig; Caron, Jérôme; Hélière, Arnaud; Bézy, Jean-Loup; Meynart, Roland
2017-11-01
Critical lidar technology developments have been ongoing at the European Space Agency (ESA) in support of EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer), the 6th Earth Explorer mission, and A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), one of the candidates for the 7th Earth Explorer mission. EarthCARE is embarking an Atmospheric backscatter Lidar (ATLID) while A-SCOPE is based on a Total Column Differential Absorption Lidar. As EarthCARE phase B has just started, the pre-development activities, aiming at validating the technologies used in the flight design and at verifying the overall instrument performance, are almost completed. On the other hand, A-SCOPE pre-phase A has just finished. Therefore technology developments are in progress, addressing critical subsystems or components with the lowest TRL, selected in the proposed instrument concepts. The activities described in this paper span over a broad range, addressing all critical elements of a lidar from the transmitter to the receiver.
Planetary Protection Considerations For Exomars Meteorological Instrumentation.
NASA Astrophysics Data System (ADS)
Camilletti, Adam
2007-10-01
Planetary protection requirements for Oxford University's contribution to the upcoming ESA ExoMars mission are discussed and the current methods being used to fulfil these requirements are detailed and reviewed. Oxford University is supplying temperature and wind sensors to the mission and since these will be exposed to the Martian environment there is a requirement that they are sterilised to stringent COSPAR standards adhered to by ESA. Typically dry heat microbial reduction (DHMR) is used to reduce spacecraft bioburden but the high temperatures involved are not compatible with the some hardware elements. Alternative, low-temperature sterilisation methods are reviewed and their applicability to spacecraft hardware discussed. The use of a commercially available, bench-top endotoxin tester in planetary protection is also discussed and data from preliminary tests performed at Oxford are presented. These devices, which utilise the immune response of horseshoe crabs to the presence of endotoxin, have the potential to reduce the time taken to determine bioburden by removing the need for conventional assaying -a lengthy and sometimes expensive process.
The Panoramic Camera (PanCam) Instrument for the ESA ExoMars Rover
NASA Astrophysics Data System (ADS)
Griffiths, A.; Coates, A.; Jaumann, R.; Michaelis, H.; Paar, G.; Barnes, D.; Josset, J.
The recently approved ExoMars rover is the first element of the ESA Aurora programme and is slated to deliver the Pasteur exobiology payload to Mars by 2013. The 0.7 kg Panoramic Camera will provide multispectral stereo images with 65° field-of- view (1.1 mrad/pixel) and high resolution (85 µrad/pixel) monoscopic "zoom" images with 5° field-of-view. The stereo Wide Angle Cameras (WAC) are based on Beagle 2 Stereo Camera System heritage. The Panoramic Camera instrument is designed to fulfil the digital terrain mapping requirements of the mission as well as providing multispectral geological imaging, colour and stereo panoramic images, solar images for water vapour abundance and dust optical depth measurements and to observe retrieved subsurface samples before ingestion into the rest of the Pasteur payload. Additionally the High Resolution Camera (HRC) can be used for high resolution imaging of interesting targets detected in the WAC panoramas and of inaccessible locations on crater or valley walls.
The Europa Jupiter System Mission
NASA Astrophysics Data System (ADS)
Hendrix, A. R.; Clark, K.; Erd, C.; Pappalardo, R.; Greeley, R. R.; Blanc, M.; Lebreton, J.; van Houten, T.
2009-05-01
Europa Jupiter System Mission (EJSM) will be an international mission that will achieve Decadal Survey and Cosmic Vision goals. NASA and ESA have concluded a joint study of a mission to Europa, Ganymede and the Jupiter system with orbiters developed by NASA and ESA; contributions by JAXA are also possible. The baseline EJSM architecture consists of two primary elements operating in the Jovian system: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). The JEO mission has been selected by NASA as the next Flagship mission to the out solar system. JEO and JGO would execute an intricately choreographed exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. JEO and JGO would carry eleven and ten complementary instruments, respectively, to monitor dynamic phenomena (such as Io's volcanoes and Jupiter's atmosphere), map the Jovian magnetosphere and its interactions with the Galilean satellites, and characterize water oceans beneath the ice shells of Europa and Ganymede. EJSM will fully addresses high priority science objectives identified by the National Research Council's (NRC's) Decadal Survey and ESA's Cosmic Vision for exploration of the outer solar system. The Decadal Survey recommended a Europa Orbiter as the highest priority outer planet flagship mission and also identified Ganymede as a highly desirable mission target. EJSM would uniquely address several of the central themes of ESA's Cosmic Vision Programme, through its in-depth exploration of the Jupiter system and its evolution from origin to habitability. EJSM will investigate the potential habitability of the active ocean-bearing moons Europa and Ganymede, detailing the geophysical, compositional, geological and external processes that affect these icy worlds. EJSM would also explore Io and Callisto, Jupiter's atmosphere, and the Jovian magnetosphere. By understanding the Jupiter system and unraveling its history, the formation and evolution of gas giant planets and their satellites will be better known. Most important, EJSM will shed new light on the potential for the emergence of life in the celestial neighborhood and beyond. The EJSM mission architecture provides opportunities for coordinated synergistic observations by JEO and JGO of the Jupiter and Ganymede magnetospheres, the volcanoes and torus of Io, the atmosphere of Jupiter, and comparative planetology of icy satellites. Each spacecraft could and would conduct "stand-alone" measurements, including the detailed investigation of Europa and Ganymede, providing significant programmatic flexibility. Although engineering advances are needed for JEO (radiation designs) and JGO, no new technologies will be required to execute either EJSM mission element. The development schedule for the mission is such that a technology developed by 2012 - 2013 could easily be incorporated if it enhances the mission capability. Risk mitigation activities are under way to ensure that the radiation designs are implemented in the lowest-risk approach. The baseline mission concepts include robust mass and power margins.
The Europa Jupiter system mission
NASA Astrophysics Data System (ADS)
Clark, K.; Stankov, A.; Pappalardo, R. T.; Greeley, R.; Blanc, M.; Lebreton, J.-P.; van Houten, T.
2009-04-01
Europa Jupiter System Mission (EJSM)— would be an international mission that would achieve Decadal Survey and Cosmic Vision goals. NASA and ESA have concluded a joint study of a mission to Europa, Ganymede and the Jupiter system with orbiters developed by NASA and ESA; contributions by JAXA are also possible. The baseline EJSM architecture consists of two primary elements operating in the Jovian system: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). JEO and JGO would execute an intricately choreographed exploration of the Jupiter System be-fore settling into orbit around Europa and Ganymede, respectively. JEO and JGO would carry eleven and ten complementary instruments, respectively, to monitor dynamic phenomena (such as Io's volcanoes and Jupi-ter's atmosphere), map the Jovian magnetosphere and its interactions with the Galilean satellites, and charac-terize water oceans beneath the ice shells of Europa and Ganymede. EJSM would fully addresses high priority science objectives identified by the National Research Coun-cil's (NRC's) Decadal Survey and ESA's Cosmic Vi-sion for exploration of the outer solar system. The De-cadal Survey recommended a Europa Orbiter as the highest priority outer planet flagship mission and also identified Ganymede as a highly desirable mission tar-get. EJSM would uniquely addresse several of the cen-tral themes of ESA's Cosmic Vision Programme, through its in-depth exploration of the Jupiter system and its evolution from origin to habitability. EJSM would investigate the potential habitability of the active ocean-bearing moons Europa and Gany-mede, detailing the geophysical, compositional, geo-logical, and external processes that affect these icy worlds. EJSM would also explore Io and Callisto, Jupi-ter's atmosphere, and the Jovian magnetosphere. By understanding the Jupiter system and unraveling its history, the formation and evolution of gas giant plan-ets and their satellites would be better known. Most important, EJSM would shed new light on the potential for the emergence of life in the celestial neighborhood and beyond. The EJSM mission architecture provides opportu-nities for coordinated synergistic observations by JEO and JGO of the Jupiter and Ganymede magnetospheres, the volcanoes and torus of Io, the atmosphere of Jupi-ter, and comparative planetology of icy satellites. Each spacecraft could and would conduct "stand-alone" measurements, including the detailed investigation of Europa and Ganymede, providing significant pro-grammatic flexibility. Although engineering advances are needed for JEO (radiation designs) and JGO, no new technologies would be required to execute either EJSM mission element. The development schedule for the mission is such that a technology developed by 2012 - 2013 could easily be incorporated if it enhances the mission capability. Risk mitigation activities are under way to ensure that the radiation designs are implemented in the lowest-risk approach. The baseline mission con-cepts include robust mass and power margins. The EJSM mission architecture provides the opti-mal balance between science, risk, and cost using three guiding principles: achieve Decadal science; builds on lessons learned; and leverages international collabora-tions.
ESA airborne campaigns in support of Earth Explorers
NASA Astrophysics Data System (ADS)
Casal, Tania; Davidson, Malcolm; Schuettemeyer, Dirk; Perrera, Andrea; Bianchi, Remo
2013-04-01
In the framework of its Earth Observation Programmes the European Space Agency (ESA) carries out ground based and airborne campaigns to support geophysical algorithm development, calibration/validation, simulation of future spaceborne earth observation missions, and applications development related to land, oceans and atmosphere. ESA has been conducting airborne and ground measurements campaigns since 1981 by deploying a broad range of active and passive instrumentation in both the optical and microwave regions of the electromagnetic spectrum such as lidars, limb/nadir sounding interferometers/spectrometers, high-resolution spectral imagers, advanced synthetic aperture radars, altimeters and radiometers. These campaigns take place inside and outside Europe in collaboration with national research organisations in the ESA member states as well as with international organisations harmonising European campaign activities. ESA campaigns address all phases of a spaceborne missions, from the very beginning of the design phase during which exploratory or proof-of-concept campaigns are carried out to the post-launch exploitation phase for calibration and validation. We present four recent campaigns illustrating the objectives and implementation of such campaigns. Wavemill Proof Of Concept, an exploratory campaign to demonstrate feasibility of a future Earth Explorer (EE) mission, took place in October 2011 in the Liverpool Bay area in the UK. The main objectives, successfully achieved, were to test Astrium UKs new airborne X-band SAR instrument capability to obtain high resolution ocean current and topology retrievals. Results showed that new airborne instrument is able to retrieve ocean currents to an accuracy of ± 10 cms-1. The IceSAR2012 campaign was set up to support of ESA's EE Candidate 7,BIOMASS. Its main objective was to document P-band radiometric signatures over ice-sheets, by upgrading ESA's airborne POLARIS P-band radar ice sounder with SAR capability. Campaign comprised three airborne campaigns in Greenland from April to June 2012 separated by roughly one month and preliminary results showed the instrument capability to detect ice motion. CryoVEx 2012 was a large collaborative effort to help ensure the accuracy of ESA's ice mission CryoSat. The aim of this large-scale Arctic campaign was to record sea-ice thickness and conditions of the ice exactly below the CryoSat-2 path. A range of sensors installed on different aircraft included simple cameras to get a visual record of the sea ice, laser scanners to clearly map the height of the ice, an ice-thickness sensor (EM-Bird), ESA's radar altimeter (ASIRAS) and NASA's snow and Ku-band radars, which mimic CryoSat's measurements but at a higher resolution. Preliminary results reveal the ability to detect centimetre differences between sea-ice and thin ice/water which in turn allow for the estimation of actual sea ice thickness. In support of two currently operating EE Missions: SMOS (Soil Moisture and Ocean Salinity) and GOCE (Gravity field and steady-state Ocean Circulation Explorer), DOMECair airborne campaign will take place in Antarctica, in the Dome C region during the middle of January 2013. The two main objectives are to quantify and document the spatial variability in the DOME C area, important to establish long-term cross-calibrated multi-mission L-band measurement time-series (SMOS) and fill in the gap in the high-quality gravity anomaly maps in Antarctica since airborne gravity measurements are sparse (GOCE). Key airborne instruments in the campaign are EMIRAD-2 L-band radiometer, designed and operated by DTU and a gravimeter from AWI. ESA campaigns have been fundamental and an essential part in the preparation of new Earth Observation missions, as well as in the independent validation of their measurements and quantification of error sources. For the different activities a rich variety of datasets has been recorded, are archived and users can access campaign data through the EOPI web portal [http://eopi.esa.int].
Hubble Admires a Youthful Globular Star Cluster
2017-12-08
Hubble sees an unusal global cluster that is enriching the interstellar medium with metals Globular clusters offer some of the most spectacular sights in the night sky. These ornate spheres contain hundreds of thousands of stars, and reside in the outskirts of galaxies. The Milky Way contains over 150 such clusters — and the one shown in this NASA/ESA Hubble Space Telescope image, named NGC 362, is one of the more unusual ones. As stars make their way through life they fuse elements together in their cores, creating heavier and heavier elements — known in astronomy as metals — in the process. When these stars die, they flood their surroundings with the material they have formed during their lifetimes, enriching the interstellar medium with metals. Stars that form later therefore contain higher proportions of metals than their older relatives. By studying the different elements present within individual stars in NGC 362, astronomers discovered that the cluster boasts a surprisingly high metal content, indicating that it is younger than expected. Although most globular clusters are much older than the majority of stars in their host galaxy, NGC 362 bucks the trend, with an age lying between 10 and 11 billion years old. For reference, the age of the Milky Way is estimated to be above 13 billion years. This image, in which you can view NGC 362’s individual stars, was taken by Hubble’s Advanced Camera for Surveys (ACS). Credit: ESA/Hubble& NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Waples, Robin S; Adams, Peter B; Bohnsack, James; Taylor, Barbara L
2007-08-01
Under the U.S. Endangered Species Act (ESA), a species can be listed if it is at risk "in all or a significant portion of its range," but the ESA provides no guidance on how to interpret this key phrase. We propose a simple test to determine whether the areas of a species' range in which it is currently at risk amount to a significant portion: If the species were to become extirpated from these areas, at that point would the entire species be at risk? If so, then these areas represent a significant portion of the species' range. By establishing the species itself as the point of reference for determining significance, this test directs attention to biological risk factors and avoids difficulties inherent in subjective evaluations of importance to humans. For broadly distributed species this framework could provide ESA protection due to cumulative risks before the entire species met the criteria to be considered threatened or endangered. This framework also allows a somewhat broader concept of range to include major components of diversity necessary for long-term persistence. The concept of a historical template (i.e., conditions under which the species was known to be viable) is important in providing a fixed reference point for evaluating viability. Empirical examples illustrate how these concepts have been applied in recent ESA listing determinations. Most ESA-listed units of Pacific salmon (Oncorhynchus spp.) can be divided into multiple strata that differ in terms of ecology, geology, or life-history traits of the component populations. The goal of ESA recovery planning is to restore viable populations in enough strata that the listed unit as a whole is no longer threatened or endangered in all or a significant portion of its range. In a recent review of Pacific herring (Clupea pallasii) in Puget Sound, current status (some populations increasing and others declining) was evaluated in the context of the historical template, and it was concluded that current patterns of distribution and abundance do not depart substantially from what would be expected at any point in time under natural conditions in a large metapopulation. The Canadian lynx (Lynx canadensis) is ESA listed in the contiguous United States, where it occurs in four geographic areas. Populations in one region, the Northern Rockies/Cascades, have always been the most important for long-term persistence of the species in the United States. Because the other regions never contained more than limited amounts of good-quality lynx habitat, those areas are not considered to represent a significant portion of the species' range.
Ulysses(*) reaches the South Pole of the Sun
NASA Astrophysics Data System (ADS)
1994-08-01
One of the many investigations being carried out is a search for the Sun's south magnetic pole. As in the case of the Earth, the magnetic pole is offset from the rotation axis, and at some time in September it should sweep directly into line with Ulysses. Just as the polar regions of the Earth were the last to be explored, so it is with the Sun. For more than thirty years spacecraft have investigated the stream of electric particles know as the solar wind. Ulysses, developed by ESA, built by European Industry and flown in collaboration with NASA, is the first to fly through the solar wind coming from the poles. As Ulysses reaches its highest solar latitude of 80.2 degrees on 13 September, European and American researchers will gather at the ESA/ESTEC, the European Space Research and Technology Centre in Noordwijk, the Netherlands, for a scientific workshop at which they will assess the results from the nine experiments carried by the spacecraft. For the week of the workshop, the ESA/ESTEC conference centre will be transformed into a busy scientific laboratory. The large meeting rooms will be divided into 24 working areas, where the Ulysses experiment teams will take up temporary residence. Bringing a variety of computing equipment with them, the scientists will be able to retrieve the latest data from the spacecraft and perform detailed analyses. The emphasis will be on informality, with exchange of scientific ideas - and data - the key ingredient, leading ultimately to a better understanding of the fascinating information being gathered by Ulysses on its unique exploratory journey. Presentations to the media at ESA/ESTEC will start at 10h00 on 16 September. Media representatives wishing to attend are kindly requested to fill out the attached form and return it - preferably by fax (+33.1.42.73.76.90) - to : ESA Public Relations Division, 8/10, rue Mario Nikis - 75015-PARIS. Note to Television Editors : A video index, containing extensive background material on the Ulysses voyage (including specially created 3-D animation), is available on Betacam SP together with a VHS time-coded copy and printed information. This package is available on request. On Thursday 15 and Friday 16 September video news releases explaining this memorable event will be distributed by Reuters London via satellite to all European broadcasters. (*) Ulysses is a joint ESA/NASA mission. ESA developed the probe and is contributing an estimated ECU 170 million up to 1995 to its in-flight operation. European research laboratories provided half of the scientific instruments. NASA provided the other half of the experiments flown, a radio-isotopic power generator and the launch; it is also maintaining day-to-day communications with the probe via its dedicated antennas.
Iodine Plasma Species Measurements in a Hall Effect Thruster Plume
2013-05-01
with an ExB probe , an electrostatic analyzer (ESA), and a combined ESA/ExB probe . The distribution of xenon ions was also measured. Multiply charge...of iodine ions was measured with an ExB probe , an electrostatic analyzer (ESA), and a combined ESA/ExB probe . • Results: – Multiply charged species...Test Hardware – Vacuum test facility (6’ diameter) – Faraday probe (MIT) – ESA, ExB, ESA/ExB Probes (Plasma Controls) – Rotary probe arm (about
Towards A Moon Village: Vision and Opportunities
NASA Astrophysics Data System (ADS)
Foing, Bernard
2016-04-01
The new DG of ESA, Jan Wörner, has expressed from the very beginning of his duty a clear ambition towards a Moon Village, where Europe could have a lead role. The concept of Moon Village is basically to start with a robotic lunar village and then develop a permanent station on the Moon with different countries and partners that can participate and contribute with different elements, experiments, technologies, and overall support. ESA's DG has communicated about this programme and invited inputs from all the potential stakeholders, especially member states, engineers, industry, scientists, innovators and diverse representatives from the society. In order to fulfill this task, a series of Moon Village workshops have been organized first internally at ESA and then at international community events, and are also planned for the coming months, to gather stakeholders to present their ideas, their developments and their recommendations on how to put Moon Village into the minds of Europeans, international partners and prepare relevant actions for upcoming International Lunar Decade. Moon Village Workshop: The Moon Village Workshop in ESTEC on the 14th December was organized by ILEWG & ESTEC Staff Association in conjunction with the Moon 2020-2030 Symposium. It gathered people coming from all around the world, with many young professionals involved, as well as senior experts and representatives, with a very well gender balanced and multidisciplinary group. Engineers, business experts, managers, scientists, architects, artists, students presented their views and work done in the field of Lunar Exploration. Participants included colleagues from ESA, SGAC Space Generation Advisory Council, NASA, and industries such as OHB SE, TAS, Airbus DS, CGI, etc… and researchers or students from various Universities in Europe, America, and Asia. Working groups include: Moon Habitat Design, Science and Technology potentials on the Moon Village, and Engaging Stakeholders. The Moon Habitat Design group discussed principles and concepts for a minimum base that would start with 4-10 crew, allowing a later evolution to 50 crew and elements contributed by Moon Village partners at large. Various aspects were assessed including habitats, laboratories, EVAs, pressurized vehicles, core modules, inflatable extensions, power systems, life support systems and bioreactors, ISRU using regolith, emergency, services, medical, escape, shelters. The Science and Technology group analyzed the importance and readiness level of technologies needed for lunar robotic landers and for the Moon Village. The current ESA lunar exploration activities focus on the contribution within ISS operations barter of the ESA service module to bring Orion capsule to the Moon starting with an automatic demonstration in 2018. It is encouraged to consolidate this path for using the ser-vice module for crewed missions EM2 and EM3 giving also the possibility of an ESA astronaut, together with advanced technology, operations and science utilization. They noted the interesting contribution of instruments, drill, communications, and landing in support to Russian lunar polar lander missions Luna 27. The Engaging Stakeholders working group started by identifying the main stakeholders and groups that play a role or that could play a role towards the Moon Village project. These stakeholders were classified on their influence towards the programme, and their attitude towards it. One clear conclusion was that most of the stakeholders showed a positive view towards the Moon Village programme, and that the most important step within a short term strategy should focus on the actions to be taken to engage stakeholders for the next ESA Ministerial to support the programme. Finally the group came up with some recommendations on which should be the actions to be taken by the ESA DG to engage the most direct stakeholders: ESA delegations, media, national governments, citizens, taxpayers, and to invite partners. Building on previous studies (EuroMoon, lunar polar lander) ESA should develop a mid-class lunar lander (affordable in cost 300 Meu class), demonstrating the expertise at system level for a platform, that could carry innovative competitive robotic payload contributed and already with advance development from member states and international or commercial partners. With teleoperations from Earth and cis-lunar orbit, this will advance progress towards the next steps of Moon Village and beyond. Recommendations: The participants encourage the design and operations of a Moon base simulation at EAC with facility and activities in the context of SpaceShip EAC, with the support of EAC, DLR, ESTEC, ISU and other partners, and collaborations with other Lunar Research Parks worldwide. It was also proposed to have an "ESTEC Moon Village pilot project" where 20 young professional in-terns could be hosted to work concurrently on various aspects (technology, science, instruments platforms, Moon base design, human factors, programmatics, outreach, community events) with links and support activities from ESTEC senior experts, and interactions with colleagues in member states, academia and industries . The workshop finalized with some hands-on experiments, organized with some students demonstrating their work on a lunar lander with tele-operated instruments and systems, and on the measuring spectra of Moon-Mars analogue minerals. The day ended with a refreshing lunar music session, and a networking event on ESTEC ESCAPE where the last informal conversations marked a great wrap up of such exciting day. Follow up Moon Village events are planned in 2016 at ESTEC, EAC and at international community venues. New means of outreach, communications and social media must be developed. You can follow Moon Village tweets, using #MoonVillage, and contribute to the virtual discussions. ESA is really looking forward to engage all stakeholders into the discussion, no matter of their background, nationality or interest. Just let us know your views! Highlights and recommendations can be found on https://ildwg.wordpress.com/ *Moon Village Workshops Organisers Team: Bernard Foing (ESA/ESTEC & ILEWG), Aidan Cowley, Guillermo Ortega, Linda van Hilten (ESA), Vid Beldavs, David Dunlop, Jim Crisafulli (International Lunar Decade), ESTEC Moon Village workshop 2015 WGs co-conveners: Peter Batenburg, Andrea Jaime, Abigail Calzada, Angeliki Kapoglou, Chris Welch, Susanne Pieterse, Daniel Esser, Audrey Berquand, Daniel Winter, Dmitri Ivanov, Simone Paternostro, Matias Hazadi, Oscar Kamps, Marloes Offringa
Space Station Needs, Attributes and Architectural Options. Contractor orientation briefings
NASA Technical Reports Server (NTRS)
1983-01-01
Requirements are considered for user missions involving life sciences; astrophysics, environmental observation; Earth and planetary exploration; materials processing; Spacelab payloads; technology development; and communications are analyzed. Plans to exchange data with potential cooperating nations and ESA are reviewed. The capability of the space shuttle to support space station activities are discussed. The status of the OAST space station technology study, conceptual architectures for a space station, elements of the space-based infrastructure, and the use of the shuttle external tank are also considered.
Formation and transport of the sulfonic acid metabolites of alachlor and metolachlor in soil
Aga, D.S.; Thurman, E.M.
2001-01-01
Alachlor and metolachlor are dechlorinated and transformed into their corresponding ethane sulfonic acid (ESA) metabolites in soil. In a field-disappearance study, it was shown that alachlor ESA was formed at a faster rate and at concentrations 2-4 times higher than metolachlor ESA, conforming with the observed longer disappearance half-life of metolachlor (15.5 d) in the field as compared to alachlor (8 d). Runoff data also showed higher concentrations of alachlor ESA as compared to metolachlor ESA, even though they were applied at the same levels. Data from soil cores showed transport of the ESA compounds in soil to as far down as 75-90 cm below the surface, at concentrations ranging from less than 0.5 ??g/L to about 50 ??g/L. In contrast, no parent herbicide was detected at these depths. This observation correlates with the higher log KOC values for alachlor (3.33) and metolachlor (3.01) relative to their corresponding ESA metabolites, alachlor ESA (2.26), and metolachlor ESA (2.29).
NASA Astrophysics Data System (ADS)
Ma, X.; Mahecha, M. D.; Migliavacca, M.; Luo, Y.; Urban, M.; Bohn, F. J.; Huth, A.; Reichstein, M.
2017-12-01
A key challenge for monitoring biodiversity change is the lack of consistent measures of biodiversity across space and time. This challenge may be addressed by exploring the potentials provided by novel remote sensing observations. By continuously observing broad-scale patterns of vegetation and land surface parameters, remote sensing can complement the restricted coverage afforded by field measurements. Here we develop methods to infer spatial patterns of biodiversity at ecosystem level from ESA's next-generation Sentinel sensors (Sentinel-1: C-band radar & Sentinel-2: multispectral). Both satellites offer very high spatial (10 m) and temporal resolutions (5 days) measurements with global coverage. We propose and test several ecosystem biodiversity proxies, including landscape spectral diversity, phenological diversity, and canopy structural diversity. These diversity proxies are highly related to some key aspects of essential biodiversity variables (EBVs) as defined by GEO-BON, such as habitat structure, community composition, ecosystem function and structure. We verify spaceborne retrievals of these biodiversity proxies with in situ measurements from drone (spectral diversity), phenocam (phenological diversity), and airborne LiDAR (canopy structural diversity) over multiple flux tower sites within the Mediterranean region. We further compare our remote sensing retrievals of biodiversity proxies against several biodiversity indices as derived from field measurements (incl. ⍺-/β- diversity and Shannon-index) to explore the limitations and potentials of extending the RS proxies to a greater spatial extent. We expect the new concept as to maximize the potential of remote sensing information might help to monitor key aspects of EBVs on a global scale.
Pan, Szu-Yu; Chiang, Wen-Chih; Chen, Ping-Min; Liu, Heng-Hsiu; Chou, Yu-Hsiang; Lai, Tai-Shuan; Lai, Chun-Fu; Chiu, Yen-Ling; Lin, Wan-Yu; Chen, Yung-Ming; Chu, Tzong-Shinn; Lin, Shuei-Liong
2017-01-01
The effect of erythropoiesis-stimulating agent (ESA) on dialysis initiation in advanced chronic kidney disease (CKD) patients is not clear. We retrospectively analyzed the outcome of dialysis initiation in a stage 5 CKD cohort with ESA reimbursement limited to the maximal standardized monthly ESA dose equivalent to epoetin beta 20,000 U by the National Health Insurance program. Totally 423 patients were followed up for a median of 1.37 year. A time-dependent Cox regression model, adjusted for monthly levels of estimated glomerular filtration rate (eGFR) and hemoglobin, was constructed to investigate the association between ESA and outcome. The standardized monthly ESA dose in ESA users was 16,000 ± 3,900 U of epoetin beta. Annual changes of hemoglobin were −0.29 ± 2.19 and −0.99 ± 2.46 g/dL in ESA users and ESA non-users, respectively (P = 0.038). However, annual eGFR decline rates were not different between ESA users and non-users. After adjustment, ESA use was associated with deferred dialysis initiation (hazard ratio 0.63, 95% confidence interval 0.42–0.93, P = 0.021). The protective effect remained when the monthly ESA doses were incorporated. Our data showed that restricted use of ESA was safe and associated with deferred dialysis initiation in stage 5 CKD patients. PMID:28272424
EDEN: a payload dedicated to neurovestibular research for Neurolab
NASA Technical Reports Server (NTRS)
Bellossi, F.; Clement, G.; Cohen, B.; Cork, M.
1998-01-01
The European Space Agency contributes to the Neurolab mission through the delivery of the ESA Developed Elements for Neurolab (EDEN). Those elements include one set supporting the Autonomic Nervous System experiment and one set supporting the Neurovestibular (so-called ATLAS) experiment. This second set is called the Visual and Vestibular Investigation System (VVIS). This paper describes the main characteristics of the VVIS and its various subsystems. The scientific objectives and operational constraints of the ATLAS experiment to be carried out with this equipment during Neurolab are presented to underline the correspondence between the VVIS design and the scientific requirements. Further scientific and technical perspectives for the VVIS, particularly within the scope of the International Space station, are also proposed.
NASA Astrophysics Data System (ADS)
Bowles, Neil; Calcutt, Simon; Licandro, Javier; Reyes, Marcos; Delbo, Marco; Donaldson Hanna, Kerri; Arnold, Jessica; Howe, Chris
2016-04-01
ESA's Asteroid Impact Mission (AIM) is being studied as part of the joint ESA/NASA AIDA mission for launch in 2020. AIDA's primary mission is to investigate the effect of a kinetic impactor on the secondary component of the binary asteroid 65803 Didymos in late 2022. AIM will characterise the Didymos system and monitor the response of the binary system to the impact. A multi-spectral, thermal-infrared imaging instrument (TIRI) will be an essential component of AIM's remote sensing payload, as it will provide key information on the nature of the surfaces (e.g. presence or absence of materials, degree of compaction, and rock abundance of the regolith) of both components in the Didymos system. The temperature maps provided by TIRI will be important for navigation and spacecraft health and safety for proximity/lander operations. By measuring the asteroids' diurnal thermal responses (thermal inertia) and their surface compositions via spectral signatures, TIRI will provide information on the origin and evolution of the binary system. In this presentation we will discuss possible instrument design for TIRI, exploring options that include imaging spectroscopy to broadband imaging. By using thermal models and compositional analogues of the Didymos system we will show how the performance of each design option compares to the wider scientific goals of the AIDA/AIM mission.
Troyer, Caitlin M; Gerber, Leah R
2015-10-01
The Endangered Species Act (ESA) of the United States was enacted in 1973 to prevent the extinction of species. Recovery plans, required by 1988 amendments to the ESA, play an important role in organizing these efforts to protect and recover species. To improve the use of science in the recovery planning process, the Society for Conservation Biology (SCB) commissioned an independent review of endangered species recovery planning in 1999. From these findings, the SCB made key recommendations for how management agencies could improve the recovery planning process, after which the U.S. Fish and Wildlife Service and the National Marine Fisheries Service redrafted their recovery planning guidelines. One important recommendation called for recovery plans to make threats a primary focus, including organizing and prioritizing recovery tasks for threat abatement. We sought to determine the extent to which results from the SCB study were incorporated into these new guidelines and whether the SCB recommendations regarding threats manifested in recovery plans written under the new guidelines. Recovery planning guidelines generally incorporated the SCB recommendations, including those for managing threats. However, although recent recovery plans have improved in their treatment of threats, many fail to adequately incorporate threat monitoring. This failure suggests that developing clear guidelines for monitoring should be an important priority in improving ESA recovery planning. © 2015 Society for Conservation Biology.
Space-borne polarimetric SAR sensors or the golden age of radar polarimetry
NASA Astrophysics Data System (ADS)
Pottier, E.
2010-06-01
SAR Polarimetry represents an active area of research in Active Earth Remote Sensing. This interest is clearly supported by the fact that nowadays there exists, or there will exist in a very next future, a non negligible quantity of launched Polarimetric SAR Spaceborne sensors. The ENVISAT satellite, developed by ESA, was launched on March 2002, and was the first Spaceborne sensor offering an innovative dualpolarization Advanced Synthetic Aperture Radar (ASAR) system operating at C-band. The second Polarimetric Spaceborne sensor is ALOS, a Japanese Earth-Observation satellite, developed by JAXA and was launched in January 2006. This mission includes an active L-band polarimetric radar sensor (PALSAR) whose highresolution data may be used for environmental and hazard monitoring. The third Polarimetric Spaceborne sensor is TerraSAR-X, a new German radar satellite, developed by DLR, EADS-Astrium and Infoterra GmbH, was launched on June 2007. This sensor carries a dual-polarimetric and high frequency X-Band SAR sensor that can be operated in different modes and offers features that were not available from space before. At least, the Polarimetric Spaceborne sensor, developed by CSA and MDA, and named RADARSAT-2 was launched in December 2007 The Radarsat program was born out the need for effective monitoring of Canada’s icy waters, and some Radarsat-2 capabilities that benefit sea- and river ice applications are the multi-polarization options that will improve ice-edge detection, ice-type discrimination and structure information. The many advances in these different Polarimetric Spaceborne platforms were developed to respond to specific needs for radar data in environmental monitoring applications around the world, like : sea- and river-ice monitoring, marine surveillance, disaster management, oil spill detection, snow monitoring, hydrology, mapping, geology, agriculture, soil characterisation, forestry applications (biomass, allometry, height…), urban mapping etc…. In order to promote the exploitation of Polarimetric Spaceborne data, as it is starting today to proliferate with the launch of these Polarimetric SAR sensors, the PolSARpro Software, developed under contract to ESA and that is a toolbox for the scientific exploitation of Polarimetric SAR and Polarimetric-Interferometric data and a tool for high-level education in radar polarimetry, has been expanded and refined to include all elements necessary for the demonstration of a number of key applications. The PolSARpro Software, that already was supporting an important range of airborne and spaceborne polarimetric data sources, supports now the following additional data sources: ALOS-PALSAR (Dual-Pol fine mode and Quad-Pol mode), TerraSAR-X (Dual-pol mode) and Radarsat-2 (Dual-Pol fine mode and Quad-Pol fine and standard modes), by offering a platform dedicated interface for E.O Scientific Investigator. A number of illustrations of key applications has been developed for the demonstration and the promotion of the Polarimetric Spaceborne missions, that are consistent with the activities incorporated in the GMES Services Element (GSE). The aim of this communication is to present the current state of the art in SAR Polarimetry ranging from theory to applications, with special emphasis in the analysis of data provided by the new Polarimetric Spaceborne SAR sensors, and samples of real polarimetric data will be presented for use in real-life examples of key applications.
SPICE for ESA Planetary Missions
NASA Astrophysics Data System (ADS)
Costa, M.
2018-04-01
The ESA SPICE Service leads the SPICE operations for ESA missions and is responsible for the generation of the SPICE Kernel Dataset for ESA missions. This contribution will describe the status of these datasets and outline the future developments.
The utility of the Edmonton Symptom Assessment System in screening for anxiety and depression.
Bagha, S M; Macedo, A; Jacks, L M; Lo, C; Zimmermann, C; Rodin, G; Li, M
2013-01-01
The Edmonton Symptom Assessment System (ESAS) is a common screening tool in cancer, although its validity for distress screening is unproven. Here, screening performance of the ESAS anxiety (ESAS-A) and depression (ESAS-D) items were validated against the anxiety [Generalised Anxiety Disorder-7 (GAD-7)] and depression [Patient Health Questionnaire-9 (PHQ-9)] subscales of the PHQ. A total of 1215 cancer patients completed the Distress Assessment and Response Tool (DART), a computerised distress screening instrument. Spearman's rank correlation coefficients and receiver operating characteristic curve analyses were used to evaluate the ability of ESAS-A and ESAS-D to identify moderate distress (GAD-7/PHQ-9 ≥ 10). Spearman's rank correlation coefficients comparing ESAS-A and ESAS-D with GAD-7 and PHQ-9 were 0.74 and 0.72 respectively. Areas under the receiver operating characteristic curves were 0.89 and 0.88 for anxiety and depression respectively. A cut-off of ≥3 on ESAS-A demonstrated a sensitivity of 0.91, specificity of 0.68, positive predictive value of 0.34 and negative predictive value of 0.97. A cut-off of ≥2 on the ESAS-D demonstrated a sensitivity of 0.86, specificity of 0.72, positive predictive value of 0.46 and negative predictive value of 0.95. High sensitivities of ESAS-A and ESAS-D at certain cut-offs suggest they have use in ruling-out distress. However, their low specificities indicate secondary screening is needed to rule-in anxiety or depression for case-finding. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Worms, Jean-Claude; Lammer, Helmut; Barucci, Antonella; Beebe, Reta; Bibring, Jean-Pierre; Blamont, Jacques; Blanc, Michel; Bonnet, Roger; Brucato, John R.; Chassefière, Eric; Coradini, Angioletta; Crawford, Ian; Ehrenfreund, Pascale; Falcke, Heino; Gerzer, Rupert; Grady, Monica; Grande, Manuel; Haerendel, Gerhard; Horneck, Gerda; Koch, Bernhard; Lobanov, Andreï; Lopez-Moreno, José J.; Marco, Robert; Norsk, Peter; Rothery, Dave; Swings, Jean-Pierre; Tropea, Cam; Ulamec, Stephan; Westall, Frances; Zarnecki, John
2009-02-01
In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December 2005 Ministerial Conference of ESA Member States, held in Berlin. A first interim report was presented to ESA at the second stakeholders meeting on 30 and 31 May 2005. A second draft report was made available at the time of the final science stakeholders meeting on 16 September 2005 in order for ESA to use its recommendations to prepare the Executive proposal to the Ministerial Conference. The final ESSC report on that activity came a few months after the Ministerial Conference (June 2006) and attempted to capture some elements of the new situation after Berlin, and in the context of the reduction in NASA's budget that was taking place at that time; e.g., the postponement sine die of the Mars Sample Return mission. At the time of this study, ESSC made it clear to ESA that the timeline imposed prior to the Berlin Conference had not allowed for a proper consultation of the relevant science community and that this should be corrected in the near future. In response to that recommendation, ESSC was asked again in the summer of 2006 to initiate a broad consultation to define a science-driven scenario for the Aurora Programme. This exercise ran between October 2006 and May 2007. ESA provided the funding for staff support, publication costs, and costs related to meetings of a Steering Group, two meetings of a larger ad hoc group (7 and 8 December 2006 and 8 February 2007), and a final scientific workshop on 15 and 16 May 2007 in Athens. As a result of these meetings a draft report was produced and examined by the Ad Hoc Group. Following their endorsement of the report and its approval by the plenary meeting of the ESSC, the draft report was externally refereed, as is now normal practice with all ESSC-ESF reports, and amended accordingly. The Ad Hoc Group defined overarching scientific goals for Europe's exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments," focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return as the recognized primary goal; furthermore the report clearly states that Europe should position itself as a major actor in defining and leading Mars sample return missions. The report is reproduced in this article. On 26 November 2008 the Ministers of ESA Member States decided to give a high strategic priority to the robotic exploration programme of Mars by funding the enhanced ExoMars mission component, in line therefore with the recommendations from this ESSC-ESF report.
Worms, Jean-Claude; Lammer, Helmut; Barucci, Antonella; Beebe, Reta; Bibring, Jean-Pierre; Blamont, Jacques; Blanc, Michel; Bonnet, Roger; Brucato, John R; Chassefière, Eric; Coradini, Angioletta; Crawford, Ian; Ehrenfreund, Pascale; Falcke, Heino; Gerzer, Rupert; Grady, Monica; Grande, Manuel; Haerendel, Gerhard; Horneck, Gerda; Koch, Bernhard; Lobanov, Andreï; Lopez-Moreno, José J; Marco, Roberto; Norsk, Peter; Rothery, Dave; Swings, Jean-Pierre; Tropea, Cam; Ulamec, Stephan; Westall, Frances; Zarnecki, John
2009-01-01
In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December 2005 Ministerial Conference of ESA Member States, held in Berlin. A first interim report was presented to ESA at the second stakeholders meeting on 30 and 31 May 2005. A second draft report was made available at the time of the final science stakeholders meeting on 16 September 2005 in order for ESA to use its recommendations to prepare the Executive proposal to the Ministerial Conference. The final ESSC report on that activity came a few months after the Ministerial Conference (June 2006) and attempted to capture some elements of the new situation after Berlin, and in the context of the reduction in NASA's budget that was taking place at that time; e.g., the postponement sine die of the Mars Sample Return mission. At the time of this study, ESSC made it clear to ESA that the timeline imposed prior to the Berlin Conference had not allowed for a proper consultation of the relevant science community and that this should be corrected in the near future. In response to that recommendation, ESSC was asked again in the summer of 2006 to initiate a broad consultation to define a science-driven scenario for the Aurora Programme. This exercise ran between October 2006 and May 2007. ESA provided the funding for staff support, publication costs, and costs related to meetings of a Steering Group, two meetings of a larger ad hoc group (7 and 8 December 2006 and 8 February 2007), and a final scientific workshop on 15 and 16 May 2007 in Athens. As a result of these meetings a draft report was produced and examined by the Ad Hoc Group. Following their endorsement of the report and its approval by the plenary meeting of the ESSC, the draft report was externally refereed, as is now normal practice with all ESSC-ESF reports, and amended accordingly. The Ad Hoc Group defined overarching scientific goals for Europe's exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments," focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return as the recognized primary goal; furthermore the report clearly states that Europe should position itself as a major actor in defining and leading Mars sample return missions. The report is reproduced in this article. On 26 November 2008 the Ministers of ESA Member States decided to give a high strategic priority to the robotic exploration programme of Mars by funding the enhanced ExoMars mission component, in line therefore with the recommendations from this ESSC-ESF report.
Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf
Shakhova, Natalia; Semiletov, Igor; Gustafsson, Orjan; Sergienko, Valentin; Lobkovsky, Leopold; Dudarev, Oleg; Tumskoy, Vladimir; Grigoriev, Michael; Mazurov, Alexey; Salyuk, Anatoly; Ananiev, Roman; Koshurnikov, Andrey; Kosmach, Denis; Charkin, Alexander; Dmitrevsky, Nicolay; Karnaukh, Victor; Gunar, Alexey; Meluzov, Alexander; Chernykh, Denis
2017-01-01
The rates of subsea permafrost degradation and occurrence of gas-migration pathways are key factors controlling the East Siberian Arctic Shelf (ESAS) methane (CH4) emissions, yet these factors still require assessment. It is thought that after inundation, permafrost-degradation rates would decrease over time and submerged thaw-lake taliks would freeze; therefore, no CH4 release would occur for millennia. Here we present results of the first comprehensive scientific re-drilling to show that subsea permafrost in the near-shore zone of the ESAS has a downward movement of the ice-bonded permafrost table of ∼14 cm year−1 over the past 31–32 years. Our data reveal polygonal thermokarst patterns on the seafloor and gas-migration associated with submerged taliks, ice scouring and pockmarks. Knowing the rate and mechanisms of subsea permafrost degradation is a prerequisite to meaningful predictions of near-future CH4 release in the Arctic. PMID:28639616
Lambrecht, Gunda; Petersen, Nora; Weerts, Guillaume; Pruett, Casey; Evetts, Simon; Stokes, Maria; Hides, Julie
2017-01-01
Spaceflight and exposure to microgravity have wide-ranging effects on many systems of the human body. At the European Space Agency (ESA), a physiotherapist plays a key role in the multidisciplinary ESA team responsible for astronaut health, with a focus on the neuro-musculoskeletal system. In conjunction with a sports scientist, the physiotherapist prepares the astronaut for spaceflight, monitors their exercise performance whilst on the International Space Station (ISS), and reconditions the astronaut when they return to Earth. This clinical commentary outlines the physiotherapy programme, which was developed over nine long-duration missions. Principles of physiotherapy assessment, clinical reasoning, treatment programme design (tailored to the individual) and progression of the programme are outlined. Implications for rehabilitation of terrestrial populations are discussed. Evaluation of the reconditioning programme has begun and challenges anticipated after longer missions, e.g. to Mars, are considered. Copyright © 2016 Elsevier Ltd. All rights reserved.
Turbulence Heating ObserveR: - Satellite Mission Proposal
NASA Technical Reports Server (NTRS)
Vaivads, A.; Retino, A.; Soucek, J.; Khotyaintsev, Yu V.; Valentini, F.; Escoubet, C. P.; Alexandrova, O.; Andre, M.; Bale, S. D.; Balikhin, M.;
2016-01-01
The Universe is permeated by hot, turbulent, magnetized plasmas. Turbulent plasma is a major constituent of active galactic nuclei, supernova remnants, the intergalactic and interstellar medium, the solar corona, the solar wind and the Earths magnetosphere, just to mention a few examples. Energy dissipation of turbulent fluctuations plays a key role in plasma heating and energization, yet we still do not understand the underlying physical mechanisms involved. THOR is a mission designed to answer the questions of how turbulent plasma is heated and particles accelerated, how the dissipated energy is partitioned and how dissipation operates in different regimes of turbulence. THOR is a single-spacecraft mission with an orbit tuned to maximize data return from regions in near-Earth space magnetosheath, shock, foreshock and pristine solar wind featuring different kinds of turbulence. Here we summarize the THOR proposal submitted on 15 January 2015 to the Call for a Medium-size mission opportunity in ESAs Science Programme for a launch in 2025 (M4). THOR has been selected by European Space Agency (ESA) for the study phase.
File-Based Operations and CFDP On-Board Implementation
NASA Astrophysics Data System (ADS)
Herrera Alzu, Ignacio; Peran Mazon, Francisco; Gonzalo Palomo, Alfonso
2014-08-01
Since several years ago, there is an increasing interest among the space agencies, ESA in particular, in deploying File-based Operations (FbO) for Space missions. This aims at simplifying, from the Ground Segment's perspective, the access to the Space Segment and ultimately the overall operations. This is particularly important for deep Space missions, where the Ground-Space interaction can become too complex to handle just with traditional packet-based services. The use of a robust protocol for transferring files between Ground and Space is a key for the FbO approach, and the CCSDS File Delivery Protocol (CFDP) is nowadays the main candidate for doing this job. Both Ground and Space Segments need to be adapted for FbO, being the Ground Segment naturally closer to this concept. This paper focusses on the Space Segment. The main implications related to FbO/CFDP, the possible on-board implementations and the foreseen operations are described. The case of Euclid, the first ESA mission to be file-based operated with CFDP, is also analysed.
NASA Astrophysics Data System (ADS)
Pillinger, C. T.; Pillinger, J. M.
2013-09-01
The European Space Agency (ESA)'s comet chaser mission, Rosetta, has been more than a quarter of a century in coming to fruition. Whilst it might sound a long time humankind has been interested in comets for much longer. For over a thousand years depictions of comets have been appearing in Art 1 including many humorous cartoons 2. There are numerous cometary metaphors throughout literature. With this in mind we have recognised that there is a tremendous opportunity with comets to introduce science to different non-scientific audiences who would not necessarily believe they were interested in science. A similar approach was adopted with great success for the Beagle 2 involvement in ESA's Mars Express 3,4. By exploiting the perhaps sometimes less obvious connections to the Rosetta mission we hope to capture the attention of non-scientists and introduce them to science unawares - a case of a little sugar to help the medicine go down. It is our belief that the Rosetta mission has enormous potential for bringing science to the unconverted. We give here one example of a connection between Art and the Rosetta mission. By choosing the allegorical name Rosetta for its cometary mission, ESA have immediately invited comparison with the stone tablet which provided the key to translating the languages of ancient cultures, particularly Egyptian hieroglyphics. It is well known that a scientist, Thomas Young, foreign secretary of The Royal Society, made the break through which recognised the name Ptolemy in a cartouche on the Rosetta stone which can be seen today at the British Museum. The events concerning the 'capture' of the Rosetta stone were witnessed by scientists Sir William Hamilton (a renowned geophysicist as well as husband of Horatio Nelson's notorious mistress Lady Hamilton) and Edward Daniel Clarke, a geologist who would become first Professor of Mineralogy at Cambridge and an early meteoricist. Young's inspiration allowed Jean-Francois Champollion to decipher the three language inscription on the Rosetta stone completely; that amazing piece of work can be viewed greatly magnified at Figeac in southern France. It however is less well known that the name chosen for the Rosetta lander, Philae, also has an important link to the story of interpreting hieroglyphics and it was another British scholar and adventurer, William John Bankes, who recognised the name Cleopatra on a stone obelisk sculpted as a complaint about unjustified taxation. Bankes, who was unaware of what the inscription read but recognised it could be valuable in his collection of Egyptology, had it transported to his home in Dorset where it has resided for nearly 200 years. The story of how the Philae obelisk made its way to Britain is one which is guaranteed to attract an audience's attention. It has rivalries between the British, French and Italian explorers, including a hold-up at pistol point and an element of farce as the priceless antique fell into the Nile. History has been less kind to Bankes than it was to Young and Champollion - he was forced to live out his life in exile after a scandal. Any hint of scandal immediate makes audiences prick their ears up. The Planetary and Space Sciences involvement in the Rosetta mission is very easily linked to the story the translation of hieroglyphics. The gas analysis package we have contributed to the Philae lander is called Ptolemy. The experiments it will perform have the generic name MODULUS (Young's best known contribution to science), its strength (apologies for the pun) being the use of isotopic measurements as the key to understanding the origin of cometary molecules and the processes they undergo as the comet travels through the solar system.
Countdown for the Cluster quartet
NASA Astrophysics Data System (ADS)
2000-07-01
Following the successful completion of the Cluster II Flight Readiness Review on 23 June, final launch preparations are progressing smoothly and combined operations with the Soyuz-Fregat launch vehicle are now under way. The dual launches, each involving two Cluster spacecraft built under the prime contractorship of Astrium (former Dornier Satellitensysteme GmbH, Germany), are currently scheduled for 15 July with a launch window opening at 14:40 CEST, 12:40 GMT and lasting 6 minutes, and 9 August from Baikonur Space Centre in Kazakhstan. A number of press events have been organised in various countries to coincide with both launches. The main press centre for the first launch will be located at ESA's European Space Operations Centre (ESOC) at Darmstadt in Germany. Local press centres are also being set up in the other ESA establishments: ESRIN (Italy), ESTEC (The Netherlands), and VILSPA (Spain). See attachment for more detailed information and reply form to register at the various sites. Details of the second launch press event, which will be held in London (UK), will be available at a later date. Cluster II Competition Attracts Record Entries. A highlight of the first launch event at ESOC will be the announcement of the overall winner of ESA's "Name the Cluster quartet" competition and the chosen names of the four Cluster II satellites. Last February, members of the public in all of ESA's 15 member states were asked to suggest the most suitable names for the Cluster II spacecraft. The satellites are currently known as flight models (FM) 5, 6, 7 and 8. Competitors were asked to propose a set of four names (places, people, or things from history, mythology, or fiction, but not living persons) and explain in a few sentences the reasons for their choice. After sifting through more than 5,000 entries from all over Europe and debating at length the merits of the various suggestions, the multinational jury eventually produced a list of 15 national prize winners - one from each ESA member state. These finalists and their families have all won a 3-day trip to attend a special Cluster II launch event in one of these ESA establishments: * ESRIN (near Rome, Italy): winners from France, Ireland, Belgium. * VILSPA (near Madrid, Spain): winners from The Netherlands, Norway, Sweden, Finland. * ESTEC (near Amsterdam, The Netherlands): winners from Germany, Denmark, Switzerland, Austria. * ESOC (in the Rhine Valley, Germany): winners from Italy, Spain, Portugal, United Kingdom. The Lucky 15. The lucky national winners are: Austria: VENTO, NUBO, FULMO, PLUVO entered by Andreas Rosenstingl (Vienna, A). Belgium: ALBATROS, EAGLE, FALCON, HAWK entered by André Borremans (Lembeek, B). Denmark: ORIENTÁLIS, OCCIDENTÁLIS, AQUILÓNIUS, AUSTRÁLIS entered by Mia Stampe (Copenhagen, DK). Finland: UKKO, ILMATAR, KOKKO, LOUHI entered by Ismo Hirvonen (Tampere, FI) France: ADAGIO, ALLEGRO, LARGO, VIVACE entered by Daniel Lellouch (c/o Rehovot, Israel) Germany: TRISTAN & ISOLDE, ROMEO & JULIA entered by Manuela Saal (Köln, D) Ireland: IMBOLC, BELTAINE, LUGHNASA, SAMHAIN entered by Grainne Duncan (Dublin, IR). Italy: GEA, URANO, TETI, CRONO entered by Paola Benna (Avigliana-To, I). Netherlands: KIN, UINAL, TUN, KATUN entered by Ben Jasper Fayer (Hoogeven, NL). Norway: CHLOROS, ERYTHROS, AUREUS, LUTEUS entered by Joar Vatnaland (c/o Leeds, UK). Portugal: IXCHELL, ITZAMNA, MAUINA, RAINBOW entered by Carlos Fernando Carvalhido Oliveira (Porto, P). Spain: DIVEE, BEEDY, EEROT, BROT entered by Sergi Porter (Barcelona, E). Sweden: FLUTE, VIOLIN, CELLO, PIANO entered by Ola Carlström (Huddige, SW). Switzerland: SOLÉA, LUNÉA, EOLIA, ONDÉA entered by Luciana Favre (Riddes, CH). United Kingdom: TANGO, RUMBA, SALSA, SAMBA entered by Raymond Cotton (Bristol, UK). One of these lucky finalists will go on to gain a special grand prize when the winning names for the four spacecraft are announced at the ESOC event to mark the first Cluster II launch. These names will then become the official designations of the satellites. Where to witness the first launch in Europe. On 15 July media representatives are invited to cover the launch from various sites in Europe. ESA will broadcast the launch live, with images from Baikonur and ESA's Operations Centre ESOC in Darmstadt, Germany. ESA programme officials and spokespersons will be on hand at each site for interviews. European Press Centre, Germany: Location: ESA/ ESOC Address: Robert-Bosch Strasse 5, Darmstadt, Germany Opening hours: 13:30 -17:30 Contact point: Jocelyne Landeau-Constantin Tel. + 49 6151 90 2696/ 2459 Fax. + 49 6151 90 2961 France Location: ESA Headquarters Address: 8-10 rue Mario Nikis, 75015 Paris, France Opening hours: 13:30- 17:30 Contact point: Anne-Marie Rémondin Tel. + 33 1 5369 7155 Fax. + 33 1 5369 7690 The Netherlands Location: Noordwijk Space Expo Address: Keplerlaan 3, Noordwijk, The Netherlands Opening hours: 13:30 - 17:30 Contact point: Heidi Graf Tel. (till 14/07): + 31 71 565 3006 on launch date at Noordwijk Space Expo, tel.: + 31 71 364 6446 Fax.: + 31 71 565 5728 Italy Location: ESA/ESRIN Address: Via G. Galilei, Frascati (Rome), Italy Opening hours: 13:30- 17:30 Contact point: Franca Morgia Tel. + 39 06 9418 0951 Fax. +39 06 9418 0952 Spain: Location ESA/VILSPA Satellite Station Address: Villafranca del Castillo, Madrid Opening hours: 13:30-17:30 Contact point: Fany Peña Tel + 34 91 813 1211 Fax. +34 91 813 1212 Media representatives wishing to attend the launch event from any of the sites, are kindly requested to fill out the attached reply form and fax it back to the contact point at the site they have chosen. The live launch video transmission will be available in analogue (PAL) and digital (MPEG-2) format, via satellite. There will be different language versions plus clean, international audio. The exact times of the transmission and the satellite parameters will be posted as from 10 July on the Internet at http://television.esa.int. The launch of the first pair of Clusters on 15 July will be covered live also on the Internet by ESA at http://clusterlaunch.esa.int and also by Spaceflight Now at http://spaceflightnow.com Note for editors. ESA's Cluster II mission will study the complex interaction between the Sun and Earth in unprecedented detail. For the first time, four satellites will fly in close formation above the Earth's poles, studying the magnetic field around our planet and its continual battle with the energetic particles of the solar wind. This groundbreaking mission to explore the magnetosphere and provide the first small-scale, three-dimensional 'map' of near-Earth space is one of the key Cornerstones in ESA's Horizons 2000 long term science programme. For more information on the winning entries, visit the ESA Science Website at: http://sci.esa.int/cluster/competition For interviews with the winners up to 10 July, 2000, please contact: Martine Caparros, tel:+31 71 565 3183, fax: +31 71 565 4101, E-mail: mcaparro@estec.esa.nl Further information on the Cluster II mission - including regular updates from Baikonur - can be found on the Internet at: http://sci.esa.int/cluster/ ESA Communication Department, Media Relations Office Tel: +33(0)1. 53.69.7155 Fax: +33(0)1.53.69 7690 Further information on ESA at http://www.esa.int
Hubble gets revitalised in new Servicing Mission for more and better science!
NASA Astrophysics Data System (ADS)
2002-02-01
As a unique collaboration between the European Space Agency (ESA), and NASA, Hubble has had a phenomenal scientific impact. The unsurpassed sharp images from this space observatory have penetrated into the hidden depths of space and revealed breathtaking phenomena. But Hubble's important contributions to science have only been possible through a carefully planned strategy to service and upgrade Hubble every two or three years. ESA, the European Space Agency has a particular role to play in this Servicing Mission. One of the most exciting events of this mission will come when the ESA-built solar panels are replaced by newer and more powerful ones. The new panels, developed in the US, are equipped with ESA developed drive mechanisms and were tested at the facilities at ESA's European Space Research and Technology Centre (ESTEC) in the Netherlands. This facility is the only place in the world where such tests can be performed. According to Ton Linssen, HST Project Manager at ESA, who supervised all ESA involvement in the new solar panels development including the test campaign at Estec - "a particularly tense moment occurs when the present solar panels have to be rolled up to fit into the Shuttle's cargo bay. The hard environment of space has taken its toll on the panels and it will be a very delicate operation to roll them up. Our team will be waiting and watching with bated breath. If the panels can't be rolled up they will possibly have to be left in space." "With this Servicing Mission Hubble is once again going to be brought back to the frontline of scientific technology", says Piero Benvenuti, Hubble Project Scientist at ESA. "New super-advanced instrumentation will revitalise the observatory. For example, Hubble's new digital camera - The new Advanced Camera for Surveys, or ACS - can take images of twice the area of the sky and with five times the sensitivity of Hubble's previous instruments, therefore increasing by ten times Hubble's discovery capability! The European astronomers look forward to use the new camera and perform new science building on the great breakthroughs they have already achieved." ACS is going to replace the Faint Object Camera, or FOC, built by ESA. The FOC, which has functioned perfectly since the beginning, has been a key instrument to get the best out of the unprecedented imaging capability of Hubble. The FOC was a "state-of-the art" instrument in the 80s, but the field of digital imaging has progressed so much in the past 20 years that, having fulfilled its scientific goals, this ESA flagship on Hubble is chivalrously giving way to newer technology. However, the story of FOC is not over yet: experts will still learn from it, as it will be brought back to Earth and inspected, to study the effects on the hardware of the long duration exposure in space. Hubble is expected to continue to explore the sky during the next decade, after which its work will be taken over by its successor, the powerful ESA/NASA/CSA(*) Next Generation Space Telescope. NGST's main focus will be observations of the faint infrared light from the first stars and galaxies in the Universe. Notes for editors The Hubble Space Telescope is a project of international co-operation between ESA and NASA. It was launched in 1990. The partnership agreement between ESA and NASA was signed on 7 October 1977; as a result of this agreement European astronomers have guaranteed access to more than 20% of Hubble's observing time. Astronauts have already paid visits to Hubble in 1993, '97, '99 and now, in the spring of 2002, it is time for the fourth Servicing Mission (named Servicing Mission 3B), planned for launch on 28th February. Originally planned as one mission, the third Servicing Mission was split into two parts (Servicing Mission 3A and 3B) because of the sheer number of tasks to be carried out and the urgency with which Hubble's gyroscopes had to be replaced in late '99. In addition to the new solar panels and the ACS camera, astronauts will install a very high-tech cooling system for Hubble's infrared camera, NICMOS. NICMOS has been dormant since 1999 when it ran out of coolant. The new cooling system is a mechanical cooler, and works like an advanced refrigerator. Servicing Mission 3B will also include other maintenance tasks. Altogether five extensive space walks are planned.
Development and ESCC evaluation of a monolithic silicon phototransistor array for optical encoders
NASA Astrophysics Data System (ADS)
Bregoli, M.; Ceriani, S.; Erspan, M.; Collini, A.; Ficorella, F.; Giacomini, G.; Bellutti, P.; How, L. S.; Hernandez, S.; Lundmark, K.
2017-11-01
Optoelettronica Italia Srl, better known as Optoi, is an Italian Company dealing with optoelectronics and microelectronics and focusing on back-end technologies. The growing volume of activities concerning the aerospace field has recently brought to the creation of a company unit, with collaborations with ESA, CNES and ASI. In this context, Optoi's key partner for the microelectronic front-end is Fondazione Bruno Kessler (FBK) and specifically its Micro Nano Facility (MNF).
The sensitivity of the ESA DELTA model
NASA Astrophysics Data System (ADS)
Martin, C.; Walker, R.; Klinkrad, H.
Long-term debris environment models play a vital role in furthering our understanding of the future debris environment, and in aiding the determination of a strategy to preserve the Earth orbital environment for future use. By their very nature these models have to make certain assumptions to enable informative future projections to be made. Examples of these assumptions include the projection of future traffic, including launch and explosion rates, and the methodology used to simulate break-up events. To ensure a sound basis for future projections, and consequently for assessing the effectiveness of various mitigation measures, it is essential that the sensitivity of these models to variations in key assumptions is examined. The DELTA (Debris Environment Long Term Analysis) model, developed by QinetiQ for the European Space Agency, allows the future projection of the debris environment throughout Earth orbit. Extensive analyses with this model have been performed under the auspices of the ESA Space Debris Mitigation Handbook and following the recent upgrade of the model to DELTA 3.0. This paper draws on these analyses to present the sensitivity of the DELTA model to changes in key model parameters and assumptions. Specifically the paper will address the variation in future traffic rates, including the deployment of satellite constellations, and the variation in the break-up model and criteria used to simulate future explosion and collision events.
Chen, Gou-Chun; Su, Hui-Min; Lin, Yu-Shun; Tsou, Po-Yen; Chyuan, Jong-Ho; Chao, Pei-Min
2016-07-01
α-Eleostearic acid (α-ESA), or the cis-9, trans-11, trans-13 isomer of conjugated linolenic acid, is a special fatty acid present at high levels in bitter melon seed oil. The aim of this study was to examine the effect of α-ESA on hepatic lipid metabolism. Using H4IIEC3 hepatoma cell line, we showed that α-ESA significantly lowered intracellular triglyceride accumulation compared to α-linolenic acid (LN), used as a fatty acid control, in a dose- and time-dependent manner. The effects of α-ESA on enzyme activities and mRNA profiles in H4IIEC3 cells suggested that enhanced fatty acid oxidation and lowered lipogenesis were involved in α-ESA-mediated triglyceride lowering effects. In addition, α-ESA triggered AMP-activated protein kinase (AMPK) activation without altering sirtuin 1 (SIRT1) protein levels. When cells were treated with vehicle control (VC), LN alone (LN; 100μmol/L) or in combination with α-ESA (LN+α-ESA; 75+25μmol/L) for 24h, acetylation of forkhead box protein O1 was decreased, while the NAD(+)/NADH ratio, mRNA levels of NAMPT and PTGR1 and enzyme activity of nicotinamide phosphoribosyltransferase were increased by LN+α-ESA treatment compared to treatment with LN alone, suggesting that α-ESA activates SIRT1 by increasing NAD(+) synthesis and NAD(P)H consumption. The antisteatosis effect of α-ESA was confirmed in mice treated with a high-sucrose diet supplemented with 1% α-ESA for 5weeks. We conclude that α-ESA favorably affects hepatic lipid metabolism by increasing cellular NAD(+)/NADH ratio and activating PPARα, AMPK and SIRT1 signaling pathways. Copyright © 2016 Elsevier Inc. All rights reserved.
A framework for global diurnally-resolved observations of Land Surface Temperature
NASA Astrophysics Data System (ADS)
Ghent, Darren; Remedios, John
2014-05-01
Land surface temperature (LST) is the radiative skin temperature of the land, and is one of the key parameters in the physics of land-surface processes on regional and global scales. Being a key boundary condition in land surface models, which determine the surface to atmosphere fluxes of heat, water and carbon; thus influencing cloud cover, precipitation and atmospheric chemistry predictions within Global models, the requirement for global diurnal observations of LST is well founded. Earth Observation satellites offer an opportunity to obtain global coverage of LST, with the appropriate exploitation of data from multiple instruments providing a capacity to resolve the diurnal cycle on a global scale. Here we present a framework for the production of global, diurnally resolved, data sets for LST which is a key request from users of LST data. We will show how the sampling of both geostationary and low earth orbit data sets could conceptually be employed to build combined, multi-sensor, pole-to-pole data sets. Although global averages already exist for individual instruments and merging of geostationary based LST is already being addressed operationally (Freitas, et al., 2013), there are still a number of important challenges to overcome. In this presentation, we will consider three of the issues still open in LST remote sensing: 1) the consistency amongst retrievals; 2) the clear-sky bias and its quantification; and 3) merging methods and the propagation of uncertainties. For example, the combined use of both geostationary earth orbit (GEO) and low earth orbit (LEO) data, and both infra-red and microwave data are relatively unexplored but are necessary to make the most progress. Hence this study will suggest what is state-of-the-art and how considerable advances can be made, accounting also for recent improvements in techniques and data quality. The GlobTemperature initiative under the Data User Element of ESA's 4th Earth Observation Envelope Programme (2013-2017), which aims to support the wider uptake of global-scale satellite LST by the research and operational user communities, will be a particularly important element in the development and subsequent provision of global diurnal LST. References Freitas, S.C., Trigo, I.F., Macedo, J., Barroso, C., Silva, R., & Perdigao, R., 2013, Land surface temperature from multiple geostationary satellites, International Journal of Remote Sensing, 34, 3051-3068.
NASA Astrophysics Data System (ADS)
Royer, Michel; Lorans, Dominique; Bischoff, Isabelle; Giotta, Dominique; Wolny, Michel
1994-12-01
IASI is an Infrared Atmospheric Sounding Interferometer devoted to the operational meteorology and to atmospheric studies and is to be installed on board the second ESA Polar Platform called METOP-1, planned to be launched in the year 2000. The main purpose of this high performance instrument is to record temperature and humidity profiles. The required lifetime is 4 years. This paper presents the characteristics of the LW IR detection arrays for the IASI spectrometer which consist of HgCdTe de- tectors. SAT has to develop the Engineering Model, Qualification Model and Fight Models of detectors, each having 4 pixels and AR-coated microlenses in a dedicated space housing equipped with a flexible line and a connector. An array is composed of HgCdTe photoconductive detectors. For this long wavelength the array is sensitive from 8.26 micrometers to 15.5 micrometers . The detectors, with sensitive areas of 900 x 900 micrometers 2, are 100 K operating with passive cooling. High quality HgCdTe material is a key feature for the manufacturing of high performance photoconductive detectors. Therefore epitaxial HgCdTe layers are used in this project. These epilayers are grown at CEA/LETI on lattice matched CdZnTe substrates, by Te-rich liquid phase epitaxy, based on a slider technique. The Cd content in the layer is carefully adjusted to meet the required cut off wavelength on the devices. After growth of the epilayers, the samples are annealed under Hg pressure in order to convert them into N type mate- rials. The electrical transport properties of the liquid phase epitaxied wafers are, at 100 K, mobility (mu) over 150,000 cm2/V.s and electrical concentration N of 1.5 1015 cm-3, the residual doping level being 1014 cm-3 at low temperature. On these materials the feasibility study of long wavelength HgCdTe photoconductors has been achieved with the following results: the responsivity is 330 V/W. The bias voltage is Vp=300 mV for a 4 mW limitation of power for each element. The resistance of an element is around 30 (Omega) .The detectivity is: D* at (lambda) pic (FOV, F, (Delta) F)=2x1010 cm HZ1/2W-1 and NEP=0.5 nW. Measurements are made under Earth observing flux corresponding to the conditions of the PPF sun-synchronous orbit.
NASA Technical Reports Server (NTRS)
Stebbins, Robin
2016-01-01
The Astrophysics Implementation Plan calls for a minority role in L3, planned for launch in 2034. L3 The third large mission in ESAs Cosmic Visions 2015-2025 Programme NASA and ESA have been discussing a collaboration for 2 years Gravitational Observatory Advisory Team (GOAT) ESA study evaluating and recommend scientific performance tradeoffs, detection technologies, technology development activities, data analysis capabilities, schedule and cost US representatives: Guido Mueller, Mark Kasevich, Bill Klipstein, RTS Started in October 2014, concluding with a final report in late Marchor early April 2016. ESA solicited interest from ESA Member States in November 2015 NASA is continuing technology development support. ESA is restarting technology development activities.
The Effect of 2 Hz and 100 Hz Electrical Stimulation of Acupoint on Ankle Sprain in Rats
2007-01-01
The electrical stimulation of acupoint (ESA) releases several endogenous neuropeptides, which play important roles in management of pain and inflammation. ESA with low and high frequencies has been shown to release different neuropepides, suggesting its various therapeutic effects. Pain and edema are major problems for ankle sprain. However, there have been few reports on the effects of ESA for ankle sprain. We aimed to investigate that ESA can reduce pain and edema resulting from ankle sprain, and whether there is a difference in therapeutic effects between low and high frequency ESA. To induce ankle sprain in Sprague-Dawley rats, the ankle of right hindpaw was overextended in direction of simultaneous inversion and plantar flexion. Stepping force and edema in the paw of the sprained ankle were measured by electronic balance and plethysmometer, respectively. In both 2 and 100 Hz ESA groups, stepping force was increased significantly in similar degrees (p<0.05). Only 2 Hz ESA produced the significant rapid decrease in ankle edema. This study demonstrates that ESA of 2 Hz and 100 Hz shows comparable analgesic effects, but only 2 Hz ESA can facilitate the reduction of edema caused by ankle sprain. PMID:17449948
75 FR 63379 - Technical Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
... previously resided with the Employment Standards Administration (ESA), which has now been dissolved. DATES... both programs to OWCP, one of ESA's sub-agencies. On November 8, 2009, the Secretary dissolved ESA into...-dissolved ESA and to clarify the Secretary's delegation of authority for the administration of the LHWCA and...
Ingrasciotta, Ylenia; Giorgianni, Francesco; Marcianò, Ilaria; Bolcato, Jenny; Pirolo, Roberta; Chinellato, Alessandro; Ientile, Valentina; Santoro, Domenico; Genazzani, Armando A; Alibrandi, Angela; Fontana, Andrea; Caputi, Achille P; Trifirò, Gianluca
2016-01-01
Since 2007 biosimilars of erythropoiesis-stimulating agents (ESAs) are available on the Italian market. Very limited post-marketing data exist on the comparative effectiveness of biosimilar and originator ESAs. This population-based study was aimed to compare the effects of biosimilars, reference product and other ESAs still covered by patent on hemoglobinemia in chronic kidney disease (CKD) and cancer patients in a Local Health Unit (LHU) from Northern Italy. A retrospective cohort study was conducted during the years 2009-2014 using data from Treviso LHU administrative database. Incident ESA users (no ESA dispensing within 6 months prior to treatment start, i.e. index date (ID)) with at least one hemoglobin measurement within one month prior to ID (baseline Hb value) and another measurement between 2nd and 3rd month after ID (follow-up Hb value) were identified. The strength of the consumption (as total number of defined daily dose (DDD) dispensed during the follow-up divided by days of follow-up) and the difference between follow-up and baseline Hb values [delta Hb (ΔHb)] were evaluated. Based on Hb changes, ESA users were classified as non-responders (ΔHb≤0 g/dl), responders (0<ΔHb≤2 g/dl), and highly responders (ΔHb>2 g/dl). A multivariate ordinal logistic regression model to identify predictors for responsiveness to treatment was performed. All analyses were stratified by indication for use and type of dispensed ESA at ID. Overall, 1,003 incident ESA users (reference product: 252, 25.1%; other ESAs covered by patent: 303, 30.2%; biosimilars: 448, 44.7%) with CKD or cancer were eligible for the study. No statistically significant difference in the amount of dose dispensed during the follow-up among biosimilars, reference product and other ESAs covered by patent was found in both CKD and cancer. After three months from treatment start, all ESAs increased Hb values on average by 2g/dl. No differences in ΔHb as well as in frequency of non-responders, responders and highly responders among different types of ESAs were observed in both indications of use. Overall, around 15-20% of ESA users were non-responders. Strength of treatment, but no type of dispensed ESAs was found to be predictor of responsiveness to treatment. No difference on the effects on hemoglobinemia among users of either biosimilars or reference product or ESAs covered by patent was observed in a general population from Northern Italy, despite a comparable dispensed dose of the different ESAs during the first three months of treatment.
ESA's Integral satellite ready for lift-off from Baikonur
NASA Astrophysics Data System (ADS)
2002-10-01
ESA's INTEGRAL (International Gamma Ray Astrophysics Laboratory) satellite, will be launched by a Proton launcher from Baikonur, Kazakhstan on 17 October at 06:41 CEST (Central European Summer Time). The most sensitive gamma-ray observatory ever launched, INTEGRAL is a truly international mission involving all ESA member states plus the USA and Russia. It carries four instruments from teams led by scientists in Italy, France, Germany, Denmark and Spain to gather and analyse gamma-rays, X-rays and visible light from celestial objects. INTEGRAL will give astronomers across the world their clearest views yet of the most extreme environments in the Universe. It will detect radiation from the most violent events far away and from processes that made the Universe inhabitable. Media representatives in Europe can follow the videotransmission of the launch at ESA/Darmstadt (ESOC) in Germany, which will be acting as the main European press centre, ESA/Noordwijk (ESTEC) in the Netherlands, ESA/Frascati (ESRIN) in Italy or ESA/Villafranca (VILSPA) in Spain. At each site ESA specialists will be available for interviews. Media representatives wishing to attend are requested to complete the attached reply form and fax it to the Communication Office at the establishment of their choice. The ESA TV Service will provide video news releases and live coverage of the launch between 06:15-07:00 and 08:00-08:30 CEST. Details of the transmission schedule for the various Video News Releases can be found on http://television.esa.int The launch can also be followed live on the internet at www.esa.int/integrallaunch starting at 06:15 hrs.
Centralized vs decentralized options for an European Data Relay Satellite system
NASA Astrophysics Data System (ADS)
Saint Aubert, S.; Hervieux, M.; Perbos, J. L.; Saggese, E.; Soprano, C.
1985-10-01
The European Data Relay Satellite (DRS) is now being planned to support future European missions in the nineties and in particular the various elements of the in-orbit infrastructure. Studies are being conducted to investigate the usefulness of the relay system as well as to provide the basis for issuing technical specifications for a development and launch in 1993. This paper presents the results of a study issued by ESA on possible options for a DRS System, concentrating on the comparison between a centralized and a decentralized data distribution concept. After recalling the space programs foreseen in Europe, the paper discusses the architecture and design of the various elements of the System: space segment, DRS ground segment, and user ground segment for different options of data dissemination.
Centralized vs decentralized options for a european data relay satellite system
NASA Astrophysics Data System (ADS)
Aubert, Ph. Saint; Hervieux, M.; Perbos, J. L.; Saggese, E.; Soprano, C.
The European Data Relay Satellite (DRS) is now being planned to support future European missions in the nineties and in particular the various elements of the in-orbit infrastructure. Studies are being conducted to investigate the usefulness of the Relay System as well as to provide the basis for issuing technical specifications for a development and launch in 1993. This paper presents the results of a study issued by ESA on possible options for a DRS System, concentrating on the comparison between a centralized and a decentralized data distribution concept. After recalling the space programmes foreseen in Europe, the paper discusses the architecture and design of the various elements of the System: space segment, DRS ground segment and user ground segment for different options of data dissemination.
Creation of a Radiation Hard 0.13 Micron CMOS Library at IHP
NASA Astrophysics Data System (ADS)
Jagdhold, U.
2010-08-01
To support space applications we will develop an 0.13 micron CMOS library which should be radiation hard up to 200 krad. By introducing new radiation hard design rules we will minimize IC-level leakage and single event latchup (SEL). To reduce single event upset (SEU) we will add two p-MOS transistors to all flip flops. For reliability reasons we will use double contacts in all library elements. The additional rules and the library elements will then be integrated in our Cadence mixed signal designkit, Virtuoso IC6.1 [1]. A test chip will be produced with our in house 0.13 micron BiCMOS technology, see Ref. [2].Thereafter we will doing radiation tests according the ESA specifications, see Ref. [3], [4].
Concept for A Mission to Titan, Saturn System and Enceladus
NASA Astrophysics Data System (ADS)
Reh, K.; Beauchamp, P.; Elliott, J.
2008-09-01
A mission to Titan is a high priority for exploration, as recommended by the 2007 NASA Science Plan, the 2006 Solar System Exploration Roadmap, and the 2003 National Research Council of the National Academies Solar System report on New Frontiers in the Solar System: An Integrated Exploration Strategy (aka Decadal Survey). As anticipated by the 2003 Decadal Survey, recent Cassini-Huygens discoveries have further revolutionized our understanding of the Titan system and its potential for harbouring the "ingredients" necessary for life. These discoveries reveal that Titan is rich in organics, possibly contains a vast subsurface ocean and has energy sources to drive chemical evolution. With these recent discoveries, the interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds a second target in the Saturn system for such a mission, one that is synergistic with Titan in understanding planetary evolution and in adding a potential abode in the Saturn system for life as we know it. The baseline mission concept shown in Figures 1 and 2 would consist of a chemically propelled orbiter, with accommodations for ESA contributed in situ elements, and would launch on an Atlas 551 in 2016-2018 timeframe, traveling to Saturn on a Venus-Earth-Earth gravity assist (VEEGA) trajectory, and reaching Saturn approximately 10 years later. Prior to Saturn orbit insertion (SOI) the orbiter would target and release ESA provided in situ elements; possibly a low-latitude Montgolfiere balloon system and capable polar and/or mid-latitude lander. The main engine would then place the flight system into orbit around Saturn for a tour phase lasting 18 months. This tour phase would accomplish Saturn system and Enceladus science (4 Enceladus flybys with instrumentation for plume sampling well beyond Cassini capability) while executing leveraging Titan pump down manoeuvres to minimize the required amount of propellant required for Titan orbit insertion. Following its 1.5 year Saturn system tour, the spacecraft would enter into a 950 km by 15,000 km elliptical orbit. The next phase would utilize concurrent aerosampling and aerobraking (to a depth of 600 km altitude) in Titan's upper atmosphere, gradually moving the orbit toward circular and reducing the propellant required to achieve a final circular mapping orbit. The spacecraft would execute a final periapsis raise burn to achieve a 1500 km circular, 85º polar mapping orbit that initiates in the 10 AM orbit plane and would move ~ 40º towards the 8 AM orbit plane. At completion of the mission, a disposal phase would be initiated by simply letting the spacecraft decay under the influence of Saturn perturbations and Titan's atmospheric drag. The Titan Saturn System Mission is enabled by proven flight systems, launch capabilities, and wellunderstood trajectory options. The concept relies on traditional chemical propulsion (similar to Cassini and Galileo), a power source consisting of five Multi- Mission Radioisotope Thermoelectric Generators (MMRTGs) and a robust data downlink. The Titan Saturn System Mission maps well to NASA and ESA scientific objectives. This concept builds on a considerable basis of previous work and indicates that a flagship-class Titan mission is ready to enter Phase A and could be launched in the 2016-18 timeframe, requiring no new technologies. Furthermore, this mission includes accommodations to deliver and support ESA provided in situ elements (e.g., Montgolfiere balloon system and capable lander) should they be available. Alternative concepts (abiet higher cost) have been identified that provide benefits to the mission of reduced trip time to Saturn, higher delivered mass, enhanced resources for in situ accommodation and mission flexibility. These options, taken with the baseline described herein, provide NASA and ESA with a robust trade space for implementing a Titan Saturn System Mission.
To Boldly Go Where No Man has Gone Before: Seeking Gaia's Astrometric Solution with AGIS
NASA Astrophysics Data System (ADS)
Lammers, U.; Lindegren, L.; O'Mullane, W.; Hobbs, D.
2009-09-01
Gaia is ESA's ambitious space astrometry mission with a foreseen launch date in late 2011. Its main objective is to perform a stellar census of the 1,000 million brightest objects in our galaxy (completeness to V=20 mag) from which an astrometric catalog of micro-arcsec (μas) level accuracy will be constructed. A key element in this endeavor is the Astrometric Global Iterative Solution (AGIS) - the mathematical and numerical framework for combining the ≈80 available observations per star obtained during Gaia's 5 yr lifetime into a single global astrometic solution. AGIS consists of four main algorithmic cores which improve the source astrometic parameters, satellite attitude, calibration, and global parameters in a block-iterative manner. We present and discuss this basic scheme, the algorithms themselves and the overarching system architecture. The latter is a data-driven distributed processing framework designed to achieve an overall system performance that is not I/O limited. AGIS is being developed as a pure Java system by a small number of geographically distributed European groups. We present some of the software engineering aspects of the project and show used methodologies and tools. Finally we will briefly discuss how AGIS is embedded into the overall Gaia data processing architecture.
International interface design for Space Station Freedom - Challenges and solutions
NASA Technical Reports Server (NTRS)
Mayo, Richard E.; Bolton, Gordon R.; Laurini, Daniele
1988-01-01
The definition of interfaces for the International Space Station is discussed, with a focus on negotiations between NASA and ESA. The program organization and division of responsibilities for the Space Station are outlined; the basic features of physical and functional interfaces are described; and particular attention is given to the interface management and documentation procedures, architectural control elements, interface implementation and verification, and examples of Columbus interface solutions (including mechanical, ECLSS, thermal-control, electrical, data-management, standardized user, and software interfaces). Diagrams, drawings, graphs, and tables listing interface types are provided.
Foale and Kuipers conduct ARGES experiment OPS at the MSG during EXP 8 / EXP 9
2004-04-24
ISS008-E-22127 (24 April 2004) --- Astronaut C. Michael Foale (left), Expedition 8 commander and NASA ISS science officer, and European Space Agency (ESA) astronaut Andre Kuipers of the Netherlands work with the ARGES experiment for the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station (ISS). The main objectives of ARGES are to determine which factors are critical in the onset of instabilities in High-Intensity Discharge (HID) lamps and to characterize the separation of individual gaseous elements inside.
Water vapour and wind measurements by a two micron space lidar
NASA Astrophysics Data System (ADS)
Ghibaudo, J.-B.; Labandibar, J.-Y.
2018-04-01
AEROSPATIALE presents the main results of the feasibility study under ESA contract on a coherent 2μm lidar instrument capable of measuring water vapour and wind velocity in the planetary boundary layer. The selected instrument configuration and the associated performance are provided, and the main critical subsystems identified (laser configuration, coherent receiver chain architecture, frequency locking and offsetting architecture. The second phase of this study is dedicated to breadboard the most critical elements of such an instrument in order to technologically consolidate its feasibility.
The ESA standard for telemetry and telecommand packet utilisation: PUS
NASA Technical Reports Server (NTRS)
Kaufeler, Jean-Francois
1994-01-01
ESA has developed standards for packet telemetry and telecommand, which are derived from the recommendations of the Inter-Agency Consultative Committee for Space Data Systems (CCSDS). These standards are now mandatory for future ESA programs as well as for many programs currently under development. However, while these packet standards address the end-to-end transfer of telemetry and telecommand data between applications on the ground and Application Processes on-board, they leave open the internal structure or content of the packets. This paper presents the ESA Packet Utilization Standard (PUS) which addresses this very subject and, as such, serves to extend and complement the ESA packet standards. The goal of the PUS is to be applicable to future ESA missions in all application areas (Telecommunications, Science, Earth Resources, microgravity, etc.). The production of the PUS falls under the responsibility of the ESA Committee for Operations and EGSE Standards (COES).
Environmental Politics and the Endangered Species Act.
ERIC Educational Resources Information Center
Sahr, David
2000-01-01
Explores the controversial issue of the Endangered Species Act (ESA) discussing the Act and the scope of the extinction problem. Reviews the arguments for and against the ESA, addresses the tactics that have been used in the political struggle over the ESA, and highlights the future of the ESA. Includes teaching activities. (CMK)
Balancing ESA and iron therapy in a prospective payment environment.
Aronoff, George R; Gaweda, Adam E
2014-02-01
Ever since the introduction of EPO, ESAs and iron dosing have been driven by financial incentives. When ESAs were a profit center for providers, large doses were used. With ESAs becoming a cost center, a new trend has appeared, gradually replacing their use with iron to achieve the same therapeutic effect at lower cost. This financially driven approach, treating ESAs and iron as alternatives, is not consistent with human physiology where these agents act in a complementary manner. It is likely that we are still giving unnecessarily large doses of ESAs and iron, relative to what our patients' true needs are. Although we have highlighted the economic drivers of this outcome, many other factors play a role. These include our lack of understanding of the complex interplay of the anemia of chronic disease, inflammation, poor nutrition, blood loss through dialysis, ESAs and iron deficiency. We propose that physiology-driven modeling may provide some insight into the interactions between erythropoiesis and ferrokinetics. This insight can then be used to derive new, physiologically compatible dosing guidelines for ESAs and iron.
Aspects of ESA s public outreach programme
NASA Astrophysics Data System (ADS)
Maree, H.
The Science Programme Communication Service is currently implementing a new policy to increase the overall public interest in ESA Science Programme by adopting new ways of promoting its activities, accordingly to the simple principle that "different target audiences have different needs". It is clear that the general public (i.e. "the man in the street" / "the average tax- payer") rarely has the knowledge and the background to understand what exactly a space mission is, what it does and why it does it ("Mission oriented approach"). The experience has shown that a space mission becomes "popular" amongst this target audience when the relevant communication is done by passing generic/bas ic/simple messages ("Thematic oriented approach"). The careful selection of adequate supports together with efficient distribution and promotion networks are also key parameters for success of the latter approach. One should also note that the overall objective of this new policy, is to raise people's interest in space in general. By presenting the information under the ESA brand, the public will start more and more to associate this brand and Europe to space exploration. Within the next twelve months, four scientific missions will be launched. Interestingly, tree of them (SMART-1, ROSETTA and MARS EXPRESS) offer a unique opportunity to implement the new communication policy under the single thematic : Europe is exploring the Solar System. Nevertheless, the study of the various mission profiles and their potential communication impact lead us to choose to reach out the general public primarily via the sub-thematic : Europe goes to Mars.
The Herschel mission and observing opportunities
NASA Astrophysics Data System (ADS)
Pilbratt, G. L.
Herschel is the fourth cornerstone mission in the European Space Agency (ESA) science programme. It will perform imaging photometry and spectroscopy in the far infrared and submillimetre part of the spectrum, covering approximately the 55--672 μm range and thus bridging the traditional space infrared range with the groundbased capabilities. The key science objectives emphasize fundamental issues connected to the formation and evolution of galaxies and stars and stellar systems. However, Herschel will be an observatory facility and its unique capabilities will be available to the entire astronomical community for a wide range of observations. Herschel is equipped with a passively cooled 3.5 m diameter classical Cassegrain telescope. The science payload complement two cameras/medium resolution spectrometers (PACS and SPIRE) and a very high resolution heterodyne spectrometer (HIFI) is housed in a superfluid helium cryostat. The ground segment is jointly developed by the ESA, the three instrument consortia, and NASA/IPAC. Herschel is scheduled to be launched into a transfer trajectory towards its operational orbit around the Earth-Sun L2 point by an Ariane 5 ECA (shared with the ESA cosmic background mapping mission Planck) in 2009. Once operational about half a year after launch, Herschel will offer 3 years of routine science operations. Almost 20 000 hours of observing time will nominally be made available for astronomy, 32% is guaranteed time, the remainder is open time which is offered to the worldwide general astronomical community through a standard competitive proposal procedure.
Du, Xianglin L; Zhang, Yefei; Hardy, Dale
2016-05-01
To determine the risk of venous thromboembolism (VTE), stroke, ischemic heart disease, and myelodysplastic syndrome (MDS) in association with the receipt of colony-stimulating factors (CSFs) and/or erythropoiesis-stimulating agents (ESAs) in women with breast cancer. We studied 77,233 women with breast cancer aged ≥65 in 1992-2009 from the Surveillance, Epidemiology, and End Results-Medicare linked data with up to 19 years of follow-up. Incidence of VTE increased from 9 cases in women receiving no chemotherapy and no CSFs/ESAs to 22.79 cases per 1,000 person-years in those receiving chemotherapy with CSFs and ESAs. Women with chemotherapy who received both CSFs and ESAs (adjusted hazard ratio and 95 % confidence interval 2.01, 1.80-2.25) or received ESAs without CSFs (2.03, 1.74-2.36) were twice as likely to develop VTE than those receiving no chemotherapy and no CSFs/ESAs, whereas those receiving CSF alone without ESA were 64 % more likely to have VTE (1.64, 1.45-1.85). Risk of MDS was significantly increased by fivefold in patients receiving ESA following chemotherapy. Receipts of CSFs and ESAs were significantly associated with an increased risk of VTE in women with breast cancer. Use of ESAs was significantly associated with substantially increased risks of MDS. These findings support those of previous studies.
Sato, Yuichiro; Morimoto, Kinjiro; Kubo, Takanori; Sakaguchi, Takemasa; Nishizono, Akira; Hirayama, Makoto; Hori, Kanji
2015-01-01
Lectin sensitivity of the recent pandemic influenza A virus (H1N1-2009) was screened for 12 lectins with various carbohydrate specificity by a neutral red dye uptake assay with MDCK cells. Among them, a high mannose (HM)-binding anti-HIV lectin, ESA-2 from the red alga Eucheuma serra, showed the highest inhibition against infection with an EC50 of 12.4 nM. Moreover, ESA-2 exhibited a wide range of antiviral spectrum against various influenza strains with EC50s of pico molar to low nanomolar levels. Besides ESA-2, HM-binding plant lectin ConA, fucose-binding lectins such as fungal AOL from Aspergillus oryzae and AAL from Aleuria aurantia were active against H1N1-2009, but the potency of inhibition was of less magnitude compared with ESA-2. Direct interaction between ESA-2 and a viral envelope glycoprotein, hemagglutinin (HA), was demonstrated by ELISA assay. This interaction was effectively suppressed by glycoproteins bearing HM-glycans, indicating that ESA-2 binds to the HA of influenza virus through HM-glycans. Upon treatment with ESA-2, no viral antigens were detected in the host cells, indicating that ESA-2 inhibited the initial steps of virus entry into the cells. ESA-2 would thus be useful as a novel microbicide to prevent penetration of viruses such as HIV and influenza viruses to the host cells. PMID:26035023
2013-01-01
Background In March, 2007, a black box warning was issued by the Food and Drug Administration (FDA) to use the lowest possible erythropoiesis-stimulating agents (ESA) doses for treatment of anemia associated with renal disease. The goal is to determine if a change in ESA use was observed following the warning among US dialysis patients. Methods ESA therapy was examined from September 2004 through August 2009 (thirty months before and after the FDA black box warning) among adult Medicare hemodialysis patients. An interrupted time series model assessed the impact of the warnings. Results The FDA black box warning did not appear to influence ESA prescribing among the overall dialysis population. However, significant declines in ESA therapy after the FDA warnings were observed for selected populations. Patients with a hematocrit ≥36% had a declining month-to-month trend before (−164 units/week, p = <0.0001) and after the warnings (−80 units/week, p = .001), and a large drop in ESA level immediately after the black box (−4,744 units/week, p = <.0001). Not-for-profit facilities had a declining month-to-month trend before the warnings (−90 units/week, p = .009) and a large drop in ESA dose immediately afterwards (−2,487 units/week, p = 0.015). In contrast, for-profit facilities did not have a significant change in ESA prescribing. Conclusions ESA therapy had been both profitable for providers and controversial regarding benefits for nearly two decades. The extent to which a FDA black box warning highlighting important safety concerns influenced use of ESA therapy among nephrologists and dialysis providers was unknown. Our study found no evidence of changes in ESA prescribing for the overall dialysis population resulting from a FDA black box warning. PMID:23927675
Minutolo, Roberto; Bolasco, Piergiorgio; Chiodini, Paolo; Sposini, Stefano; Borzumati, Maurizio; Abaterusso, Cataldo; Mele, Alessandra A; Santoro, Domenico; Canale, Valeria; Santoboni, Alberto; Filiberti, Oliviero; Fiorini, Fulvio; Mura, Carlo; Imperiali, Patrizio; Borrelli, Silvio; Russo, Luigi; De Nicola, Luca; Russo, Domenico
2017-10-01
In hemodialysis (HD), switching from erythropoiesis-stimulating agent (ESA) originators to biosimilars is associated with the need for doses approximately 10% higher, according to industry-driven studies. The aim of this study was to evaluate the efficacy on anemia control of switching from ESA originators to biosimilars in daily clinical practice. We retrospectively selected consecutive HD patients receiving stable intravenous ESA doses, and who had not been transfused in the previous 6 months, from 12 non-profit Italian centers. Patients switched from originators to biosimilars (n = 163) were matched with those maintained on ESA originators (n = 163) using a propensity score approach. The study duration was 24 weeks, and the primary endpoint was the mean dose difference (MDD), defined as the difference between the switch and control groups of ESA dose changes during the study (time-weighted average ESA dose minus baseline ESA dose). Age (70 ± 13 years), male sex (63%), diabetes (29%), history of cardiovascular disease (40%), body weight (68 ± 14 kg), vascular access (86% arteriovenous fistula), hemoglobin [Hb] (11.2 ± 0.9 g/dL) and ESA dose (8504 ± 6370 IU/week) were similar in the two groups. Hb remained unchanged during the study in both groups. Conversely, ESA dose remained unchanged in the control group and progressively increased in the switch group from week 8 to 24. The time-weighted average of the ESA dose was higher in the switch group than in the control group (10,503 ± 7389 vs. 7981 ± 5858 IU/week; p = 0.001), leading to a significant MDD of 2423 IU/week (95% confidence interval [CI] 1615-3321), corresponding to a 39.6% (95% CI 24.7-54.6) higher dose of biosimilars compared with originators. The time-weighted average of Hb was 0.2 g/dL lower in the switch group, with a more frequent ESA hyporesponsiveness (14.7 vs. 2.5%). Iron parameters and other resistance factors remained unchanged. In stable dialysis patients, switching from ESA originators to biosimilars requires 40% higher doses to maintain anemia control.
Thamer, Mae; Zhang, Yi; Kshirsagar, Onkar; Cotter, Dennis J; Kaufman, James S
2014-11-01
In a landmark study, TREAT (Trial to Reduce Cardiovascular Events With Aranesp Therapy) examined the use of erythropoiesis-stimulating agent (ESA) therapy to treat anemia among patients with chronic kidney disease (CKD) and found no benefit compared to placebo. A retrospective observational design was used to determine the impact of TREAT on clinical practice. A large US health plan database with more than 1.2 million claims for patients with non-dialysis-dependent CKD stages 3 and 4. ESA prescribing 2 years before and after publication of TREAT. Rate of ESA prescribing for ESA-naive and -prevalent cohorts. (1) Monthly ESA prescribing in the 2 years before and after publication of TREAT (ordinary least squares regression), (2) adjusted likelihood of prescribing ESA after TREAT (clustered logistic regression), and (3) probability of receiving ESA therapy based on anemia status (χ(2) test). For patients with CKD stage 3, the proportion prescribed ESA therapy declined from 17% pre-TREAT to 11% post-TREAT (a 38% decline), and for those with CKD stage 4, from 34% to 27% (a 22% decline). Prescribing of ESA therapy was declining even before TREAT, but the decline accelerated in the post-TREAT period (stage 3: change of slope, -0.08 [P<0.001]; stage 4: change of slope, -0.16 [P<0.001]). ESA prescribing declined after TREAT regardless of anemia status; among patients with hemoglobin levels <10g/dL, only 25% of patients with CKD stage 3 and 33% of patients with stage 4 were prescribed ESAs 2 years after TREAT, a notable 50% decline. After adjusting for all covariates, the probability of prescribing ESAs was 35% lower during the 2-year period after versus before publication of TREAT (OR, 0.65; 95% CI, 0.63-0.67). The cumulative effect of adverse safety concerns in the period before TREAT also influenced physician prescribing of ESA therapy and could not be separated from the influence of TREAT. TREAT appears to be a watershed study that was followed by a marked decline in ESA prescribing for patients with CKD. Copyright © 2014 National Kidney Foundation, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
2006-03-01
Venus Express mission controllers at the ESA Space Operations Centre (ESOC) in Darmstadt, Germany are making intensive preparations for orbit insertion. This comprises a series of telecommands, engine burns and manoeuvres designed to slow the spacecraft down from a velocity of 29000 km per hour relative to Venus, just before the first burn, to an entry velocity some 15% slower, allowing the probe to be captured into orbit around the planet. The spacecraft will have to ignite its main engine for 50 minutes in order to achieve deceleration and place itself into a highly elliptical orbit around the planet. Most of its 570 kg of onboard propellant will be used for this manoeuvre. The spacecraft’s solar arrays will be positioned so as to reduce the possibility of excessive mechanical load during engine ignition. Over the subsequent days, a series of additional burns will be done to lower the orbit apocentre and to control the pericentre. The aim is to end up in a 24-hour orbit around Venus early in May. The Venus orbit injection operations can be followed live at ESA establishments, with ESOC acting as focal point of interest (see attached programme). In all establishments, ESA specialists will be on hand for interviews. ESA TV will cover this event live from ESOC in Darmstadt. The live transmission will be carried free-to-air. For broadcasters, complete details of the various satellite feeds are listed at http://television.esa.int. The event will be covered on the web at venus.esa.int. The website will feature regular updates, including video coverage of the press conference and podcast from the control room at ESA’s Operations Centre. Media representatives wishing to follow the event at one of the ESA establishments listed below are requested to fill in the attached registration form and fax it back to the place of their choice. For further information, please contact: ESA Media Relations Division Tel : +33(0)1.53.69.7155 Fax: +33(0)1.53.69.7690 Venus Express Orbit Insertion - Tuesday 11 April 2006 ESA/ESOC, Robert Bosch Strasse, 5 - Darmstadt (Germany) PROGRAMME 07:30 - Doors open 08:45 - Start of local event, welcome addresses 09:10 - ESA TV live from Mission Control Room (MCR) starts 09:17 - Engine burn sequence starts 09:45 - Occultation of spacecraft by Venus starts 09:55 - Occultation ends 10:07 - Main engine burn ends 10:20 - Address by Jean-Jacques Dordain, ESA’s Director General, and other officials Break and buffet Interview opportunities 11:30-12:15 - Press Conference Jean-Jacques Dordain, Director General, ESA Prof. David Southwood, Director of Science, ESA Gaele Winters, Director of Operations and Infrastructure, ESA Manfred Warhaut, Flight Operations Director, ESA Håkan Svedhem, Venus Express Project Scientist, ESA Don McCoy, Venus Express Project Manager, ESA 13:15 - End of event at ESOC ACCREDITATION REQUEST FORM Venus Express Orbit Insertion - ESA/ESOC Darmstadt - 11 April 2006 First name:___________________ Surname:_____________________ Media:______________________________________________________ Address: ___________________________________________________ ____________________________________________________________ Tel:_______________________ Fax: ___________________________ Mobile :___________________ E-mail: ________________________ I will be attending the Venus Express Orbit Insertion event at the following site: [ ] Germany Location: ESA/ESOC Address: Robert Bosch Strasse 5, Darmstadt, Germany Opening hours: 07:30 - 13:00 Contact: Jocelyne Landeau-Constantin, Tel: +49.6151.902.696 - Fax: +49.6151.902.961 [ ] France Location: ESA HQ Address: 8/10, rue Mario Nikis - Paris 15, France Opening hours: 08:00 - 13:00 Contact: Anne-Marie Remondin - Tel: +33(0)1.53.69.7155 - fax: +33(0)1.53.69.7690 [ ] The Netherlands Location: Newton Room, ESA/ESTEC Address: Keplerlaan 1, Noordwijk, The Netherlands Opening hours: 08:30 - 12:30 Contact: Michel van Baal, tel. + 31 71 565 3006, fax + 31 71 565 5728 [ ] Italy Location: ESA/ESRIN Address: Via Galileo Galilei, Frascati (Rome), Italy Opening hours: 07:00 - 14:00 Contact: Franca Morgia - Tel: +39.06.9418.0951 - Fax: +39.06.9418.0952 [ ] Spain Location: ESA/ESAC Address: Urbanización Villafranca del Castillo, Villanueva de la Cañada, Madrid, Spain Opening hours: 8:30 - 13:30 Contact: Monica Oerke, Tel + 34 91 813 13 27/59 - Fax: + 34 91 813 12 19
Effective methodology to derive strategic decisions from ESA exploration technology roadmaps
NASA Astrophysics Data System (ADS)
Cresto Aleina, Sara; Viola, Nicole; Fusaro, Roberta; Saccoccia, Giorgio
2016-09-01
Top priorities in future international space exploration missions regard the achievement of the necessary maturation of enabling technologies, thereby allowing Europe to play a role commensurate with its industrial, operational and scientific capabilities. As part of the actions derived from this commitment, ESA Technology Roadmaps for Exploration represent a powerful tool to prioritise R&D activities in technologies for space exploration and support the preparation of a consistent procurement plan for space exploration technologies in Europe. The roadmaps illustrate not only the technology procurement (to TRL-8) paths for specific missions envisaged in the present timeframe, but also the achievement for Europe of technological milestones enabling operational capabilities and building blocks, essential for current and future Exploration missions. Coordination of requirements and funding sources among all European stakeholders (ESA, EU, National, and Industry) is one of the objectives of these roadmaps, that show also possible application of the technologies beyond space exploration, both at ESA and outside. The present paper describes the activity that supports the work on-going at ESA on the elaboration and update of these roadmaps and related tools, in order to criticise the followed approach and to suggest methodologies of assessment of the Roadmaps, and to derive strategic decision for the advancement of Space Exploration in Europe. After a review of Technology Areas, Missions/Programmes and related building blocks (architectures) and operational capabilities, technology applicability analyses are presented. The aim is to identify if a specific technology is required, applicable or potentially a demonstrator in the building blocks of the proposed mission concepts. In this way, for each technology it is possible to outline one or more specific plans to increase TRL up to the required level. In practice, this translates into two possible solutions: on the one hand, approved mission concepts will be complemented with the required technologies if the latter can be considered as applicable or demo; on the other, if they are neither applicable nor demo, new missions, i.e. technology demonstrators based on multidisciplinary grouping of key technologies, shall be evaluated, so as to proceed through incremental steps. Finally, techniques to determine priorities in technology procurement are identified, and methodologies to rank the required technologies are proposed. In addition, a tool that estimates the percentage of technologies required for the final destination that are implementable in each intermediate destination of the incremental approach is presented.
SAR Altimetry Processing on Demand Service for Cryosat-2 and Sentinel-3 at ESA G-Pod
NASA Astrophysics Data System (ADS)
Dinardo, Salvatore; Benveniste, Jérôme; Ambrózio, Américo; Restano, Marco
2016-07-01
The G-POD SARvatore service to users for the exploitation of CryoSat-2 data was designed and developed by the Altimetry Team at ESA-ESRIN EOP-SER (Earth Observation - Exploitation, Research and Development). The G-POD service coined SARvatore (SAR Versatile Altimetric Toolkit for Ocean Research & Exploitation) is a web platform that allows any scientist to process on-line, on-demand and with user-selectable configuration CryoSat-2 SAR/SARIN data, from L1a (FBR) data products up to SAR/SARin Level-2 geophysical data products. The Processor takes advantage of the G-POD (Grid Processing On Demand) distributed computing platform (350 CPUs in ~70 Working Nodes) to timely deliver output data products and to interface with ESA-ESRIN FBR data archive (155'000 SAR passes and 41'000 SARin passes). The output data products are generated in standard NetCDF format (using CF Convention), therefore being compatible with the Multi-Mission Radar Altimetry Toolbox (BRAT) and other NetCDF tools. By using the G-POD graphical interface, it is straightforward to select a geographical area of interest within the time-frame related to the Cryosat-2 SAR/SARin FBR data products availability in the service catalogue. The processor prototype is versatile, allowing users to customize and to adapt the processing according to their specific requirements by setting a list of configurable options. After the task submission, users can follow, in real time, the status of the processing, which can be lengthy due to the required intense number-crunching inherent to SAR processing. From the web interface, users can choose to generate experimental SAR data products as stack data and RIP (Range Integrated Power) waveforms. The processing service, initially developed to support the awarded development contracts by confronting the deliverables to ESA's prototype, is now made available to the worldwide SAR Altimetry Community for research & development experiments, for on-site demonstrations/training in training courses and workshops, for cross-comparison to third party products (e.g. CLS/CNES CPP or ESA SAR COP data products), for the preparation of the Sentinel-3 Surface Topography Mission, for producing data and graphics for publications, etc. Initially, the processing was designed and uniquely optimized for open ocean studies. It was based on the SAMOSA model developed for the Sentinel-3 Ground Segment using CryoSat data (Cotton et al., 2008; Ray et al., 2014). However, since June 2015, a new retracker (SAMOSA+) is offered within the service as a dedicated retracker for coastal zone, inland water and sea-ice/ice-sheet. In view of the Sentinel-3 launch, a new flavor of the service will be initiated, exclusively dedicated to the processing of Sentinel-3 mission data products. The scope of this new service will be to maximize the exploitation of the upcoming Sentinel-3 Surface Topography Mission's data over all surfaces. The service is open, free of charge (supported by the ESA SEOM Programme Element) for worldwide scientific applications and available at https://gpod.eo.esa.int/services/CRYOSAT_SAR/
ESA SMART-1 mission: review of results and legacy 10 years after launch
NASA Astrophysics Data System (ADS)
Foing, Bernard
2014-05-01
We review ESA's SMART-1 highlights and legacy 10 years after launch. The SMART-1 mission to the Moon achieved record firsts such as: 1) first Small Mission for Advanced Research and Technology; with spacecraft built and integrated in 2.5 years and launched 3.5 years after mission approval; 2) first mission leaving the Earth orbit using solar power alone with demonstration for future deep space missions such as BepiColombo; 3) most fuel effective mission (60 litres of Xenon) and longest travel (13 month) to the Moon!; 4) first ESA mission reaching the Moon and first European views of lunar poles; 5) first European demonstration of a wide range of new technologies: Li-Ion modular battery, deep-space communications in X- and Ka-bands, and autonomous positioning for navigation; 6) first lunar demonstration of an infrared spectrometer and of a Swept Charge Detector Lunar X-ray fluorescence spectrometer ; 7) first ESA mission with opportunity for lunar science, elemental geochemistry, surface mineralogy mapping, surface geology and precursor studies for exploration; 8) first controlled impact landing on the Moon with real time observations campaign; 9) first mission supporting goals of the ILEWG/COSPAR International Lunar Exploration Working Group in technical and scientific exchange, international collaboration, public and youth engagement; 10) first mission preparing the ground for ESA collaboration in Chandrayaan-1, Chang'E1-2-3 and near-future landers, sample return and human lunar missions. The SMART-1 technology legacy is applicable to geostationary satellites and deep space missions using solar electric propulsion. The SMART-1 archive observations have been used to support scientific research and prepare subsequent lunar missions and exploration. Most recent SMART-1 results are relevant to topics on: 1) the study of properties of the lunar dust, 2) impact craters and ejecta, 3) the study of illumination, 4) observations and science from the Moon, 5) support to future missions, 6) identifying and characterising sites for exploration and exploitation. This legacy is relevant to the preparation for future orbiters, landers, sample return, a global robotic village, human missions and international lunar bases (consistent with ILEWG, COSPAR and Global Space Exploration roadmaps). Link: http://sci.esa.int/smart-1/ References and citations: http://scholar.google.nl/scholar?&q=smart-1+moon **We acknowledge ESA, member states, industry and institutes for their contribution, and the members of SMART-1 Teams: G.Racca and SMART-1 Project Team, O. Camino and SMART-1 Operations Team, D. Frew and SMART-1 STOC, B.H. Foing and STWT, B. Grieger, D. Koschny, J.-L. Josset, S. Beauvivre, M. Ellouzi, S. Peters, A. Borst, E. Martellato, M. Almeida, J.Volp, D. Heather, M. Grande, J. Huovelin, H.U. Keller, U. Mall, A. Nathues, A. Malkki, W. Schmidt, G. Noci, Z. Sodnik, B. Kellett, P. Pinet, S. Chevrel, P. Cerroni, M.C. de Sanctis, M.A. Barucci, S. Erard, D. Despan, K. Muinonen, V. Shevchenko, Y. Shkuratov, P. McMannamon, P. Ehrenfreund, C. Veillet, M. Burchell, other Co-Investigators, associated scientists, collaborators, students and colleagues.
Cheng, Hon Wai Benjamin; Chan, Kwok Ying; Lau, Hoi To; Man, Ching Wah; Cheng, Suk Ching; Lam, Carman
2017-05-01
Normochromic normocytic anemia is a common complication in chronic kidney disease (CKD) and is associated with many adverse clinical consequences. Erythropoiesis-stimulating agents (ESAs) act to replace endogenous erythropoietin for patients with end-stage renal disease having anemia. Today, ESAs remain the main tool for treating anemia associated with CKD. In current practice, the use of ESA is not limited to the patients on renal replacement therapy but has extended to nondialysis patients under palliative care (PC). Current evidence on ESA usage in patients with CKD decided to forego dialysis often have to take reference from studies conducted in other groups of patients with CKD, including pre-dialysis patients and those on renal replacement therapy. There is paucity of studies targeting use of ESAs in renal PC patients. Small-scale retrospective study in renal PC patients had suggested clinical advantage of ESAs in terms of hemoglobin improvement, reduction in fatigue, and hospitalization rate. With the expected growth in elderly patients with CKD decided to forego dialysis and manage conservatively, there remains an urgent need to call for large-scale prospective trial in exploring efficacy of ESAs in this population, targeting on quality of life and symptoms improvement outcome. This article also reviews the mechanism of action, pharmacology, adverse effects, and clinical trial evidence for ESA in patients with CKD under renal PC.
Charytan, Chaim
2010-12-01
With the incidence of ESRD on the rise, there is a continuing need to control anemia-related treatment costs in dialysis patients receiving reimbursement through Medicare. Currently, erythropoiesis-stimulating agents (ESAs) are billed separately from dialysis services, potentially creating little financial incentive for more efficient use. The Medicare Improvement for Patients and Providers Act, passed by the U.S. Congress in July 2008, includes provisions intended to address this concern. Under this act, dialysis services will be reimbursed using a fully bundled, comprehensive payment system that includes all services currently covered in the basic composite rate, as well as certain separately billable items, including ESAs. A base rate of $229.63 per treatment has been assigned, to be individualized using case-mix adjusters. The implications of this new system for anemia management with ESAs continue to be elucidated. With fixed compensation for ESAs, management strategies that maximize efficiencies and, thereby, optimize cost savings will be favored. Select strategies may include switching from intravenous (IV) to subcutaneous routes, lowering Hb targets and ESA doses in hyporesponsive patients, increasing administration of IV iron, increasing use of home dialysis, and optimizing ESA dosing intervals. Once-monthly ESA therapy has potential advantages under this new system as an alternative to more frequently administered ESAs and may help achieve quality metrics in a cost-efficient manner.
Development of an innovative sandwich common bulkhead for cryogenic upper stage propellant tank
NASA Astrophysics Data System (ADS)
Szelinski, B.; Lange, H.; Röttger, C.; Sacher, H.; Weiland, S.; Zell, D.
2012-12-01
In the frame of the Future Launcher Preparatory Program (FLPP) investigating advancing technologies for the Next Generation of Launchers (NGL) a number of novel key technologies are presently under development for significantly improving vehicle performance in terms of payload capacity and mission versatility. As a respective ESA guided technology development program, Cryogenic Upper Stage Technologies (CUST) has been launched within FLPP that hosts among others the development of a common bulkhead to separate liquid hydrogen from the liquid oxygen compartment. In this context, MT Aerospace proposed an advanced sandwich design concept which is currently in the development phase reaching for TRL4 under MT Aerospace responsibility. Key components of this sandwich common bulkhead are a specific core material, situated in-between two thin aluminum face sheets, and an innovative thermal decoupling element at the equatorial region. The combination of these elements provides excellent thermal insulation capabilities and mechanical performance at a minimum weight, since mechanical and thermal functions are merged in the same component. This improvement is expressed by substantial performance figures of the proposed concept that include high resistance against reverse pressure, an optimized heat leak and minimized mass, involving the sandwich dome structure and the adjacent interface rings. The development of single sub-technologies, all contributing to maturate the sandwich common bulkhead towards the desired technology readiness level (TRL), is described in the context of the given design constraints as well as technical, functional and programmatic requirements, issued from the stage level. This includes the thermal and mechanical characterization of core materials, manufacturing issues as well as non-destructive testing and the thermal and structural analyses and dimensioning of the complete common bulkhead system. Dedicated TRL assessments in the Ariane 5 Mid-life Evolution (A5-ME) program track the progress of these technology developments and analyze their applicability in time for A5-ME. In order to approximate A5-ME concerned preconditions, activities are initiated aiming at harmonization of the available specifications. Hence, a look-out towards a further technology step approaching TRL6 in a subsequent phase is given, briefly addressing topics of full scale manufacture and appropriate thermo-mechanical testing of an entire sandwich common bulkhead.
Electrolyser and fuel cells, key elements for energy and life support
NASA Astrophysics Data System (ADS)
Bockstahler, Klaus; Funke, Helmut; Lucas, Joachim
Both, Electrolyser and Fuel Cells are key elements for regenerative energy and life support systems. Electrolyser technology is originally intended for oxygen production in manned space habitats and in submarines, through splitting water into hydrogen and oxygen. Fuel cells serve for energy production through the reaction, triggered in the presence of an electrolyte, between a fuel and an oxidant. Now combining both technologies i.e. electrolyser and fuel cell makes it a Regenerative Fuel Cell System (RFCS). In charge mode, i.e. with energy supplied e.g. by solar cells, the electrolyser splits water into hydrogen and oxygen being stored in tanks. In discharge mode, when power is needed but no energy is available, the stored gases are converted in the fuel cell to generate electricity under the formation of water that is stored in tanks. Rerouting the water to the electrolyser makes it a closed-loop i.e. regenerative process. Different electrolyser and fuel cell technologies are being evolved. At Astrium emphasis is put on the development of an RFCS comprised of Fixed Alkaline Electrolyser (FAE) and Fuel Cell (AFC) as such technology offers a high electrical efficiency and thus reduced system weight, which is important in space applications. With increasing power demand and increasing discharge time an RFCS proves to be superior to batteries. Since the early technology development multiple design refinements were done at Astrium, funded by the European Space Agency ESA and the German National Agency DLR as well as based on company internal R and T funding. Today a complete RFCS energy system breadboard is established and the operational behavior of the system is being tested. In parallel the electrolyser itself is subject to design refinement and testing in terms of oxygen production in manned space habitats. In addition essential features and components for process monitoring and control are being developed. The present results and achievements and the dedicated experience gained from testing will be presented, complemented by an outlook on next development steps preparatory to the application of electrolyser and fuel cell technology in human and robotic exploration building blocks.
ESA Science Archives, VO tools and remote Scientific Data reduction in Grid Architectures
NASA Astrophysics Data System (ADS)
Arviset, C.; Barbarisi, I.; de La Calle, I.; Fajersztejn, N.; Freschi, M.; Gabriel, C.; Gomez, P.; Guainazzi, M.; Ibarra, A.; Laruelo, A.; Leon, I.; Micol, A.; Parrilla, E.; Ortiz, I.; Osuna, P.; Salgado, J.; Stebe, A.; Tapiador, D.
2008-08-01
This paper presents the latest functionalities of the ESA Science Archives located at ESAC, Spain, in particular, the following archives : the ISO Data Archive (IDA {http://iso.esac.esa.int/ida}), the XMM-Newton Science Archive (XSA {http://xmm.esac.esa.int/xsa}), the Integral SOC Science Data Archive (ISDA {http://integral.esac.esa.int/isda}) and the Planetary Science Archive (PSA {http://www.rssd.esa.int/psa}), both the classical and the map-based Mars Express interfaces. Furthermore, the ESA VOSpec {http://esavo.esac.esa.int/vospecapp} spectra analysis tool is described, which allows to access and display spectral information from VO resources (both real observational and theoretical spectra), including access to Lines database and recent analysis functionalities. In addition, we detail the first implementation of RISA (Remote Interface for Science Analysis), a web service providing remote users the ability to create fully configurable XMM-Newton data analysis workflows, and to deploy and run them on the ESAC Grid. RISA makes fully use of the inter-operability provided by the SIAP (Simple Image Access Protocol) services as data input, and at the same time its VO-compatible output can directly be used by general VO-tools.
Huygens space probe ready to leave Europe
NASA Astrophysics Data System (ADS)
1997-03-01
Over the past year, the Huygens probe has been integrated and extensively tested at the facilities of Daimler Benz Aerospace Dornier Satellitensysteme in Ottobrunn near Munich. It was designed and developed for ESA by a European industrial consortium led by Aerospatiale (F) as prime contractor. The European activities have been successfully completed and this is to be formalised by the Flight Acceptance Review which will release the probe for shipment to the USA. To mark this important milestone a press briefing is scheduled for Wednesday, 26 March at 10.00 hours at Daimler-Benz Aerospace Dornier Satellitensysteme in Ottobrunn. The detailed programme of the press briefing is attached. If you wish to attend the press briefing, please complete the attached accreditation form and return it, preferably by fax, to : Daimler Benz Aerospace Dornier Satellitensysteme Mr. Mathias Pikelj, Fax. + 49 7545 8 5589, Tel. + 49 7545 8 9123 NOTE FOR THE EDITORS: Background facts about the Cassini Huygens mission Huygens is a medium-sized mission of ESA's Horizons 2000 programme for space science, and a contribution to the joint NASA ESA Cassini mission. Christiaan Huygens discovered Saturn s moon Titan in 1655, and the mission named after him aims to land a 343 kilogram probe on Titan carrying a package of scientific instruments through the atmosphere. Six sets of instruments will analyse the chemical composition of the atmosphere, observe the weather and topography of Titan, and examine the nature of its surface. Titan is larger than the planet Mercury, and its unique atmosphere, rich in nitrogen and hydrocarbons, may resemble the atmosphere of the primitive Earth, before life began. Nominal dates for the Huygens mission are as follows: * launch, 6 October 1997 * arrival at Saturn, 1 July 2004 * release of Huygens, 6 November 2004 * entry into Titan's atmosphere, 27 November 2004. The Saturn Orbiter, the other element in the Cassini mission, will relay the signals from Huygens to the Earth, before settling down to prolonged observations of Saturn and its rings and moons. European and American scientists are partners in all the experiments, both in the Orbiter and in the Huygens Probe. Farthest out for Europe Huygens will travel to a greater distance from the Sun than any previous ESA mission, out to the orbit of Saturn at 1400 million kilometres, or nearly ten times the Sun Earth distance. For comparison, the farthest ranging mission at present is Ulysses, orbiting over the poles of the Sun and out to the orbit of Jupiter, 800 million kilometres from the Sun. As no other mission planned or contemplated by ESA at present will go as far as Saturn, Huygens is likely to hold the European record for many years. HUYGENS READY TO LEAVE EUROPE PRESS BRIEFING Wednesday 26 March, 10:00 hrs. Location : Daimler-Benz Aerospace/ Dornier Satellitensysteme Gate 2, Building 5.1 Ludwig-B>lkow-Allee Ottobrunn (Munich) Programme: 10h00 Registration of press 10h15 Huygens video introduction 10h20 Welcoming addresses: Klaus Ensslin, President, Dornier Satellitensysteme Roger Bonnet, Director of Science, ESA Michel Delaye, President, Aerospatiale Espace & Defense 10h30 NASA News and Cassini status Wesly T. Huntress, Associate Administrator of Space Science, NASA Richard Spehalski, Head of Cassini Project, NASA/JPL 10h40 The Huygens Project: Hamid Hassan, Head of the Huygens Project, ESA/ESTEC Hans-Joachim Hoffman, Head of the Huygens Project, Dornier Satellitensysteme Gerard Huttin, Head of the Huygens Project, Aerospatiale 11h00 The Huygens Scientific Programme: Jean-Pierre Lebreton, Huygens Project Scientist, ESA supported by European and American scientists. 11h15 The ESA Science programme, current and future missions Roger Bonnet, Director of Science, ESA 11h25 Question and Answer session 11h55 Visit to the Huygens spacecraft (access inside the clean room limited to photographers and TV teams only). 12h45 Buffet lunch 14h00 End of activties HUYGENS READY TO LEAVE EUROPE PRESS BRIEFING Wednesday 26 March, 10:00 hrs. Location : Daimler-Benz Aerospace/ Dornier Satellitensysteme Gate 2, Building 5.1 Ludwig-B>lkow-Allee Ottobrunn (Munich)
Econo-ESA in semantic text similarity.
Rahutomo, Faisal; Aritsugi, Masayoshi
2014-01-01
Explicit semantic analysis (ESA) utilizes an immense Wikipedia index matrix in its interpreter part. This part of the analysis multiplies a large matrix by a term vector to produce a high-dimensional concept vector. A similarity measurement between two texts is performed between two concept vectors with numerous dimensions. The cost is expensive in both interpretation and similarity measurement steps. This paper proposes an economic scheme of ESA, named econo-ESA. We investigate two aspects of this proposal: dimensional reduction and experiments with various data. We use eight recycling test collections in semantic text similarity. The experimental results show that both the dimensional reduction and test collection characteristics can influence the results. They also show that an appropriate concept reduction of econo-ESA can decrease the cost with minor differences in the results from the original ESA.
New Hubble Servicing Mission to upgrade instruments
NASA Astrophysics Data System (ADS)
2006-10-01
The history of the NASA/ESA Hubble Space Telescope is dominated by the familiar sharp images and amazing discoveries that have had an unprecedented scientific impact on our view of the world and our understanding of the universe. Nevertheless, such important contributions to science and humankind have only been possible as result of regular upgrades and enhancements to Hubble’s instrumentation. Using the Space Shuttle for this fifth Servicing Mission underlines the important role that astronauts have played and continue to play in increasing the Space Telescope’s lifespan and scientific power. Since the loss of Columbia in 2003, the Shuttle has been successfully launched on three missions, confirming that improvements made to it have established the required high level of safety for the spacecraft and its crew. “There is never going to be an end to the science that we can do with a machine like Hubble”, says David Southwood, ESA’s Director of Science. “Hubble is our way of exploring our origins. Everyone should be proud that there is a European element to it and that we all are part of its success at some level.” This Servicing Mission will not just ensure that Hubble can function for perhaps as much as another ten years; it will also increase its capabilities significantly in key areas. This highly visible mission is expected to take place in 2008 and will feature several space walks. As part of the upgrade, two new scientific instruments will be installed: the Cosmic Origins Spectrograph and Wide Field Camera 3. Each has advanced technology sensors that will dramatically improve Hubble’s potential for discovery and enable it to observe faint light from the youngest stars and galaxies in the universe. With such an astounding increase in its science capabilities, this orbital observatory will continue to penetrate the most distant regions of outer space and reveal breathtaking phenomena. “Today, Hubble is producing more science than ever before in its history. Astronomers are requesting five times more observing time than that available to them” says Bob Fosbury, Head of the HST European Coordinating Facility. “The new instruments will open completely new windows on the universe. Extraordinary observations are planned over the coming years, including some of the most fascinating physical phenomena ever seen: investigation of planets around other stars, digging deeper into the ancestry of our Milky Way and above all gaining a much deeper insight into the evolution of the universe.” Around the same time that the Shuttle lifts off for the Servicing Mission, ESA will launch Herschel, the orbiting telescope with the largest mirror ever deployed in space. Herschel will complement Hubble in the infrared part of the spectrum and is an ESA mission with NASA participation. Instead of being left at the mercy of its aging instruments, the Hubble Space Telescope will now be given the new lease of life it deserves. In the hope that more discoveries from Hubble will help explain more of the mysteries of the universe, astronauts will make this fifth trip to the world’s most powerful visual light observatory and increase its lifespan and scientific power. Hubble’s direct successor, the James Webb Space Telescope - a collaborative project being undertaken by NASA, ESA and the Canadian Space Agency - is scheduled for launch in 2013. The Servicing Mission just decided on will reduce the gap between the end of the HST mission and the start of the JWST mission. Notes for editors The Hubble Space Telescope project is being carried out by ESA and NASA on the basis of international cooperation.
The Chemical Evolution of Phosphorus
NASA Astrophysics Data System (ADS)
Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Roederer, Ian U.; Cescutti, Gabriele; Matteucci, Francesca
2014-12-01
Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-Space Telescope Imaging Spectrograph spectra, we have measured P abundances in 13 stars spanning -3.3 <= [Fe/H] <= -0.2, and obtained an upper limit for a star with [Fe/H] ~ -3.8. Combined with the only other sample of P abundances in solar-type stars in the literature, which spans a range of -1 <= [Fe/H] <= +0.2, we compare the stellar data to chemical evolution models. Our results support previous indications that massive-star P yields may need to be increased by a factor of a few to match stellar data at all metallicities. Our results also show that hypernovae were important contributors to the P production in the early universe. As P is one of the key building blocks of life, we also discuss the chemical evolution of the important elements to life, C-N-O-P-S, together. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This work is supported through program AR-13246. Other portions of this work are based on data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and the McDonald Observatory of the University of Texas at Austin.
Studying the surface of Mercury with BepiColombo
NASA Astrophysics Data System (ADS)
Helbert, J.; Benkhoff, J.
2015-12-01
The payload of the ESA-JAXA mission BepiColombo had been proposed long before the NASA MESSENGER mission provided us with new insights into the innermost of the terrestrial planets. The discoveries of the MESSENGER fundamentally changed our view of Mercury. It revealed a surface that has been reshaped by volcanism over large parts of geological history. Volatile elements like sulfur have been detected with unexpectedly high abundances of up to 4%. MESSENGER imagined structures that are most likely formed by pyroclastic eruptions in recent geologic history. Among the most exciting discoveries of MESSENGER are hollows - bright irregularly shaped depressions that show sign of ongoing loss of material. BepiColombo will be building on what has been learned from the MESSENGER mission and extend the knowledge. Due to its more circular orbit BepiColombo will provide good spatial resolution for both hemispheres of Mercury. The mission will give us the first good look at the southern hemisphere of the planet. All spectral instruments are imaging and cover a wider spectral range than the instruments on MESSENGER. Some instruments will provide us datasets that have not been obtained by MESSENGER in any form. MERTIS will for example provide the first temperature map of Mercury and will map the surface composition of the planet for the first time in the thermal infrared. The telescopic imaging channel of the XRS instrument will provide elemental composition at an unprecedented spatial resolution. The MESSENGER results will be key to formulate the observation plan for the surface instruments on BepiColombo. They also have motivated a wide range of laboratory experiments that will help to better understand the results returned by the suite of instruments.
NASA Astrophysics Data System (ADS)
Epstein, J.; Lind, P.
2017-12-01
Secondary channels provide critical off-channel habitat for key life stages of aquatic species. In many systems, interruption of natural processes via anthropogenic influences have reduced the quantity of secondary channel habitat and have impaired the processes that help form and maintain them. Creation and enhancement of secondary channels is therefore a key component of stream rehabilitation, particularly in the Pacific Northwest where the focus has been on enhancement of habitat for ESA-listed salmonids. Secondary channel enhancement varies widely in scope, scale, and approach depending on species requirements, hydrology/hydraulics, geomorphologic setting, sediment dynamics, and human constraints. This presentation will review case studies from numerous secondary channel projects constructed over the last 20 years by different entities and in different settings. Lessons learned will be discussed that help to understand project performance and inform future project design. A variety of secondary channel project types will be reviewed, including mainstem flow splits, year-round flow through, seasonally activated, backwater alcove, natural groundwater-fed, and engineered groundwater-fed (i.e. groundwater collection galleries). Projects will be discussed that span a range of project construction intensities, such as full excavation of side channels, select excavation to increase flow, or utilizing mainstem structures to activate channels. Different configurations for connecting to the main channel, and their relative performance, will also be presented. A variety of connection types will be discussed including stabilized channel entrance, free-formed entrance, using bar apex jams to split flows, using `bleeder' jams to limit secondary channel flow, and obstructing the main channel to divert flows into secondary channels. The performance and longevity of projects will be discussed, particularly with respect to the response to sediment mobilizing events. Lessons learned from design, construction, and monitoring will be synthesized to share what worked and what didn't, and what key elements a practitioner should think about as part of enhancement project design.
ExoMars: ESA's mission to search for signs of life on the red planet
NASA Astrophysics Data System (ADS)
Gardini, B.; Vago, J. L.; Baglioni, P.; Kminek, G.; Gianfiglio, G.
In the framework of its Aurora Exploration Program in 2011 the European Space Agency ESA plans to launch the ExoMars mission ExoMars will deliver two science elements to the Martian surface a Rover carrying the Pasteur scientific payload and a small fixed surface station ---the Geophysics Environment Package GEP The Rover s scientific objectives are 1 To search for signs of past and present life and 2 To characterise in the shallow subsurface the vertical distribution profile for water and geochemical composition The science goals of GEP are 1 to measure geophysics parameters necessary to understand the planet s long-term internal evolution and habitability and 2 to characterise the local environment and identify hazards to future human missions Over its planned 6-month lifetime the Rover will travel a few kilometres searching for traces of past and present signs of life It will do this by collecting and analysing samples from within surface rocks and from underground ---down to 2-m depth The very powerful combination of mobility with the capability to access locations where organic molecules might be well preserved is unique to this mission ExoMars will have the right tools to try to answer the question of whether life ever arose on the red planet The ExoMars mission contains two other elements a Carrier and a Descent Module The Carrier will bring the Descent Module to Mars and release it from the hyperbolic arrival trajectory The Descent Module s objective is to safely deploy the Rover and the GEP ---developing a robust
Hubble sniffs out a brilliant star death in a “rotten egg” nebula
2017-12-08
The Calabash Nebula, pictured here — which has the technical name OH 231.8+04.2 — is a spectacular example of the death of a low-mass star like the sun. This image taken by the NASA/ESA Hubble Space Telescope shows the star going through a rapid transformation from a red giant to a planetary nebula, during which it blows its outer layers of gas and dust out into the surrounding space. The recently ejected material is spat out in opposite directions with immense speed — the gas shown in yellow is moving close to one million kilometers per hour (621,371 miles per hour). Astronomers rarely capture a star in this phase of its evolution because it occurs within the blink of an eye — in astronomical terms. Over the next thousand years the nebula is expected to evolve into a fully-fledged planetary nebula. The nebula is also known as the Rotten Egg Nebula because it contains a lot of sulphur, an element that, when combined with other elements, smells like a rotten egg — but luckily, it resides over 5,000 light-years away in the constellation of Puppis. Credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Critical decisions on Cosmic Vision
NASA Astrophysics Data System (ADS)
2003-11-01
Eddington had two aims, both remarkable and very pertinent to front-line astronomical interests. The first was to look for Earth-like planets outside our solar system - one of the key goals in the search to understand how life came to be, how it is that we live where we do in the universe and whether there are other potential life-supporting environments 'out there'. At the same time it was going to follow the path that the ESA-NASA mission SOHO had taken with the Sun of using astroseismology to look 'inside' stars. In the longer term, the loss of this one mission will not stop ESA and the scientific community pursuing the grand quests to which it would have contributed. The loss of the BepiColombo lander is also hard to take scientifically. ESA, in conjunction with the Japanese space agency, JAXA, will still put two orbiters around Mercury but the ‘ground truth’ provided by the lander is a big loss. However, to land on a planet so near the Sun is no small matter and was a bridge too far in present circumstances, and this chance for Europe to be first has probably been lost. The origins of the problems were recognised at the ESA Council meeting held in June. Several sudden demands on finance occurred in the spring, the most obvious and public being the unforeseen Ariane 5 grounding in January, delaying the launches of Rosetta and Smart-1. A temporary loan of EUR 100 million was granted, but must be paid back out of present resources by the end of 2006. ESA's SPC was therefore caught in a vice. Immediate mission starts had to be severely limited and the overall envelope of the programme contained. With this week’s decisions, the SPC has brought the scope of the Cosmic Vision programme down to a level that necessarily reflects the financial conditions rather than the ambitions of the scientific community. A long and painful discussion during the SPC meeting resulted in the conclusion that only one new mission can be started at this time, namely LISA Pathfinder, the technical precursor to the world’s first gravitational wave astronomical observatory, LISA. The LISA mission itself (to be carried out in cooperation with the United States) is scheduled for launch in 2012. ESA's Cosmic Vision, set to last until 2012, is a living programme. It has to adapt constantly to the available funding as well as respond to the expectations of the scientific community, and to technological developments. Within these boundaries, the decisions made by the SPC try to maximise the outcome of Cosmic Vision across disciplines, keeping it challenging and at the same time affordable. Nonetheless, there are many European scientists with ambitions that exceed the programme’s ability to respond.
Examining Emotional Support Animals and Role Conflicts in Professional Psychology
Younggren, Jeffrey N.; Boisvert, Jennifer A.; Boness, Cassandra L.
2016-01-01
This article examines the role conflicts that psychologists may face in their practices related to the evaluation and certification of emotional support animals (ESAs). It reviews the legal differences between ESAs and service animals (SAs), outlines ethical guidelines and legal policies/regulations regarding the use of ESAs, and examines the potential role conflicts that exist when a treating psychologist is certifying the need for an ESA. Finally, it makes recommendations to assist psychologists in staying within the standards of practice in order to avoid the ethical and legal risks associated with certifying an ESA. PMID:27909384
Examining Emotional Support Animals and Role Conflicts in Professional Psychology.
Younggren, Jeffrey N; Boisvert, Jennifer A; Boness, Cassandra L
2016-08-01
This article examines the role conflicts that psychologists may face in their practices related to the evaluation and certification of emotional support animals (ESAs). It reviews the legal differences between ESAs and service animals (SAs), outlines ethical guidelines and legal policies/regulations regarding the use of ESAs, and examines the potential role conflicts that exist when a treating psychologist is certifying the need for an ESA. Finally, it makes recommendations to assist psychologists in staying within the standards of practice in order to avoid the ethical and legal risks associated with certifying an ESA.
NASA Astrophysics Data System (ADS)
Lange, Caroline; Biele, Jens; Ulamec, Stephan; Krause, Christian; Cozzoni, Barbara; Küchemann, Oliver; Tardivel, Simon; Ho, Tra-Mi; Grimm, Christian; Grundmann, Jan Thimo; Wejmo, Elisabet; Schröder, Silvio; Lange, Michael; Reill, Josef; Hérique, Alain; Rogez, Yves; Plettemeier, Dirk; Carnelli, Ian; Galvez, Andrés; Philippe, Christian; Küppers, Michael; Grieger, Björn; Fernandez, Jesus Gil; Grygorczuk, Jerzy; Tokarz, Marta; Ziach, Christian
2018-08-01
In the frame of Near-Earth-Object exploration and planetary defence, the two-part AIDA mission is currently studied by NASA and ESA. Being composed of a kinetic impactor, DART (NASA), and by an observing spacecraft, AIM (ESA), AIDA has been designed to deliver vital data to determine the momentum transfer efficiency of a kinetic impact onto a small body and the key physical properties of the target asteroid. This will enable derivation of the impact response of the object as a function of its physical properties, a crucial quantitative point besides the qualitative proof of the deflection. In the course of the AIM mission definition, a lander has been studied as an essential element of the overall mission architecture. It was meant to be deployed on Didymoon, the secondary body of the binary NEA system 65803 Didymos and it was supposed to significantly enhance the analysis of the body's dynamical state, mass, geophysical properties, surface and subsurface structure. The mission profile and the design of the 13 kg (current best estimate) nano-lander have been derived from the MASCOT lander flying aboard Hayabusa2. Differing from its predecessor by having an increased lifetime of more than three months, a surface mobility capability including directed movement, a sensor system for localization and attitude determination on the surface and a redesigned mechanical interface to the mother spacecraft. The MASCOT2 instrument suite consists of a bi-static, low frequency radar as main instrument, supported by an accelerometer, a camera, a radiometer and a magnetometer; the latter three already flying on MASCOT. Besides the radar measurements, the camera is meant to provide high-resolution images of the landing area, and accelerometers to record the bouncing dynamics by which the top surface mechanical properties can be determined. During the DART impact, MASCOT2 was expected to be able to detect the seismic shock, providing valuable information on the internal structure of the body. MASCOT2 was supposed also to serve as a technology demonstrator for very small asteroid landing and extended operations powered by a solar generator. In this paper, we describe the science concept, mission analysis of the separation, descent and landing phase, the operational timeline, and the latest status of the lander's design. Despite the fact that AIM funding has not been fully confirmed during the ESA Ministerial conference in 2016, MASCOT2 is an instrument package of high maturity and major interest for planetary defence and NEO science. With appropriate tailoring and optimization, it can be considered and studied for future missions.
NASA Astrophysics Data System (ADS)
Bazalgette Courrèges-Lacoste, G.; Sallusti, M.; Bulsa, G.; Bagnasco, G.; Veihelmann, Ben; Riedl, S.; Smith, D. J.; Maurer, R.
2017-09-01
Sentinel-4 is an imaging UVN (UV-VIS-NIR) spectrometer, developed by Airbus Defence and Space under ESA contract in the frame of the joint EU/ESA COPERNICUS program. The mission objective is the operational monitoring of trace gas concentrations for atmospheric chemistry and climate applications - hence the motto of Sentinel-4 "Knowing what we breathe". Sentinel-4 will provide accurate measurements of key atmospheric constituents such as ozone, nitrogen dioxide, sulfur dioxide, methane, and aerosol properties over Europe and adjacent regions from a geostationary orbit (see Fig. 1). In the family of already flown UVN spectrometers (SCIAMACHY, OMI, GOME and GOME 2) and of those spectrometers currently under development (Sentinel-5p and Sentinel-5), Sentinel-4 is unique in being the first geostationary UVN mission. Furthermore, thanks to its 60-minutes repeat cycle measurements and high spatial resolution (8x8 km2), Sentinel-4 will increase the frequency of cloud-free observations, which is necessary to assess troposphere variability. Two identical Sentinel-4 instruments (PFM and FM-2) will be embarked, as Customer Furnished Item (CFI), fully verified, qualified and calibrated respectively onto two EUMETSAT satellites: Meteosat Third Generation-Sounder 1 and 2 (MTG-S1 and MTG-S2), whose Flight Acceptance Reviews are presently planned respectively in Q4 2021 and Q1 2030. This paper gives an overview of the Sentinel-4 system1 architecture, its design and development status, current performances and the key technological challenges.
NASA Astrophysics Data System (ADS)
Randol, B. M.; Ebert, R. W.; Allegrini, F.; McComas, D. J.; Schwadron, N. A.
2010-11-01
Electrostatic analyzers (ESAs), in various forms, are used to measure plasma in a range of applications. In this article, we describe how ions reflect from the interior surfaces of an ESA, the detection of which constitutes a fundamentally nonideal response of ESAs. We demonstrate this effect by comparing laboratory data from a real ESA-based space instrument, the Solar Wind Around Pluto (SWAP) instrument, aboard the NASA New Horizons spacecraft, to results from a model based on quantum mechanical simulations of particles reflected from the instrument's surfaces combined with simulations of particle trajectories through the instrument's applied electrostatic fields. Thus, we show, for the first time, how reflected ions in ESAs lead to nonideal effects that have important implications for understanding the data returned by these instruments, as well as for designing new low-background ESA-based instruments. Specifically, we show that the response of SWAP widens considerably below a level of 10-3 of the peak response. Thus, a direct measurement of a plasma distribution with SWAP will have an energy-dependent background on the order of <=10-3 of the peak of the signal due to that distribution. We predict that this order of magnitude estimate for the background applies to a large number of ESA-based instruments because ESAs operate using a common principle. However, the exact shape of the energy-dependent response will be different for different instruments. The principle of operation is that ions outside the ideal range of energy-per-charge are deflected into the walls of the ESA. Therefore, we propose that a new design paradigm is necessary to mitigate the effect of ion reflections and thus accurately and directly measure the energy spectrum of a plasma using ESAs. In this article, we build a framework for minimizing the effect of ion reflections in the design of new ESAs. Through the use of existing computer simulation software, a design team can use our method to quantify the amount of reflections in their instrument and iteratively change design parameters before fabrication, conserving resources. A possible direction for the new design paradigm is having nonsolid walls of the ESA, already used in some applications.
ESA SSA Programme in support of Space Weather forecasting
NASA Astrophysics Data System (ADS)
Luntama, J.; Glover, A.; Hilgers, A. M.
2010-12-01
In 2009 European Space Agency (ESA) started a new programme called Space Situational Awareness (SSA) Preparatory Programme. The objective of the programme is to support the European independent utilisation of and access to space research or services. This will be performed through providing timely and quality data, information, services and knowledge regarding the environment, the threats and the sustainable exploitation of the outer space surrounding the planet Earth. SSA serves the implementation of the strategic missions of the European Space Policy based on the peaceful uses of the outer space by all states, by supporting the autonomous capacity to securely and safely operate the critical European space infrastructures. The SSA Preparatory Program will establish the initial elements that will eventually lead into the full deployment of the European SSA services. The SWE Segment of the SSA will provide user services related to the monitoring of the Sun, the solar wind, the radiation belts, the magnetosphere and the ionosphere. These services will include near real time information and forecasts about the characteristics of the space environment and predictions of space weather impacts on sensitive spaceborne and ground based infrastructure. The SSA SWE system will also include establishment of a permanent database for analysis, model development and scientific research. These services are will support a wide variety of user domains including spacecraft designers, spacecraft operators, human space flights, users and operators of transionospheric radio links, and space weather research community. The precursor SWE services to be established starting in 2010 will include a selected subset of these services based on pre-existing space weather applications and services in Europe. This paper will present the key characteristics of the SSA SWE system that is currently being designed. The presentation will focus on the system characteristics that support space weather forecasting and the related services. The presentation will show results from the analysis of the existing European assets and the identified development needs in the mid and long term future to ensure forecasting capability for the services requested the by SSA SWE users. The analysis covers the future SSA SWE space segment and the service development needs for the ground segment.
NASA Astrophysics Data System (ADS)
Morin, Nicolas
The MELGEN activity (MELiSSA Genetic Stability Study) mainly covers the molecular aspects of the regenerative life-support system MELiSSA (Micro-Ecological Life Support System Alternative) of the European Space Agency (ESA). The general objective of MELGEN is to establish and validate methods and the related hardware in order to detect genetic instability and microbial contaminants in the MELISSA compartments. This includes (1) a genetic description of the MELISSA strains, (2) studies of microbial behavior and genetic stability in bioreactors and (3) the detection of chemical, genetical and biological contamination and their effect on microbial metabolism. Selected as oxygen producer and complementary food source, the cyanobacterium Arthrospira sp. PCC8005 plays a major role within the MELiSSA loop. As the genomic information on this organism was insufficient, sequencing of its genome was proposed at the French National Sequencing Center, Genoscope, as a joint effort between ESA and different laboratories. So far, a preliminary assembly of 16 contigs representing circa 6.3 million basepairs was obtained. Even though the finishing of the genome is on its way, automatic annotation of the contigs has already been performed on the MaGe annotation platform, and curation of the sequence is currently being carried out, with a special focus on biosynthesis pathways, photosynthesis, and maintenance processes of the cell. According to the index of repetitiveness described by Haubold and Wiehe (2006), we discovered that the genome of Arthrospira sp. is among the 50 most repeated bacterial genomes sequenced to date. Thanks to the sequencing project, we have identified and catalogued mobile genetics elements (MGEs) dispersed throughout the unique chromosome of this cyanobacterium. They represent a quite large proportion of the genome, as genes identified as putative transposases are indeed found in circa 5 Results : We currently have a first draft of the complete genome of Arthrospira sp. PCC 8005, fully annotated. This genomic information opens the gates to a better understanding of the biology of this cyanobacterium and will be a key to the development of appropriate derivatives that provide enhanced performances (e.g. radiation resistance, genetic stability, photosynthesis and nutritive properties).
NASA Technical Reports Server (NTRS)
Goelz, G.; Sommer, B.
1992-01-01
With nearly forty percent of the funding, Germany is the main contributor to the European COLUMBUS Programme, followed by Italy, France and further ESA member states. The COLUMBUS elements are the Attached Laboratory (APM) to be permanently attached to the Space Station FREEDOM, the polar platform (PPF) and the Man Tended Free Flyer (MTFF). The latter element is regarded to be of special interest for the German micro-g community. Until now the implementation of A&R Technologies has not been included as part of the system concept for the COLUMBUS laboratory modules. Yet especially for the Free Flyer, a high degree of A&R will be indispensible. An A&R system concept and implementation options for A&R are given to make the COLUMBUS labs 'intelligent' laboratories in orbit.
Tracks for Eastern/Western European Future Launch Vehicles Cooperation
NASA Astrophysics Data System (ADS)
Eymar, Patrick; Bertschi, Markus
2002-01-01
exclusively upon Western European elements indigenously produced. Yet some private initiatives took place successfully in the second half of the nineties (Eurockot and Starsem) bringing together companies from Western and Eastern Europe. Evolution of these JV's are already envisioned. But these ventures relied mostly on already existing vehicles. broadening the bases in order to enlarge the reachable world market appears attractive, even if structural difficulties are complicating the process. had recently started to analyze, with KSRC counterparts how mixing Russian and Western European based elements would provide potential competitive edges. and RKA in the frame of the new ESA's Future Launch Preparatory Programme (FLPP). main technical which have been considered as the most promising (reusable LOx/Hydrocarbon engine, experimental reentry vehicles or demonstrators and reusable launch vehicle first stage or booster. international approach. 1 patrick.eymar@lanceurs.aeromatra.com 2
Rasch analysis of the Edmonton Symptom Assessment System and research implications.
Cheifetz, O; Packham, T L; Macdermid, J C
2014-04-01
Reliable and valid assessment of the disease burden across all forms of cancer is critical to the evaluation of treatment effectiveness and patient progress. The Edmonton Symptom Assessment System (esas) is used for routine evaluation of people attending for cancer care. In the present study, we used Rasch analysis to explore the measurement properties of the esas and to determine the effect of using Rasch-proposed interval-level esas scoring compared with traditional scoring when evaluating the effects of an exercise program for cancer survivors. Polytomous Rasch analysis (Andrich's rating-scale model) was applied to data from 26,645 esas questionnaires completed at the Juravinski Cancer Centre. The fit of the esas to the polytomous Rasch model was investigated, including evaluations of differential item functioning for sex, age, and disease group. The research implication was investigated by comparing the results of an observational research study previously analysed using a traditional approach with the results obtained by Rasch-proposed interval-level esas scoring. The Rasch reliability index was 0.73, falling short of the desired 0.80-0.90 level. However, the esas was found to fit the Rasch model, including the criteria for uni-dimensional data. The analysis suggests that the current esas scoring system of 0-10 could be collapsed to a 6-point scale. Use of the Rasch-proposed interval-level scoring yielded results that were different from those calculated using summarized ordinal-level esas scores. Differential item functioning was not found for sex, age, or diagnosis groups. The esas is a moderately reliable uni-dimensional measure of cancer disease burden and can provide interval-level scaling with Rasch-based scoring. Further, our study indicates that, compared with the traditional scoring metric, Rasch-based scoring could result in substantive changes to conclusions.
Follow the Mars Express launch from one of ESA's establishments
NASA Astrophysics Data System (ADS)
2003-05-01
Europe’s first mission to the Red Planet will reach its target in December, after a six-month journey. Mars Express will help scientists answer questions about the Martian landscape, atmosphere and the origin of life that remain open, although a wealth of information is already available. Media representatives in Europe can follow the launch and initial orbital operations at ESA/Darmstadt (ESOC) in Germany, which will be acting as the main European press centre, or ESA/Noordwijk (ESTEC) in the Netherlands. ESA/Frascati (ESRIN) in Italy and the Italian Space Agency, ASI, are organising a joint event at the University of Rome. ESA/Villafranca (VILSPA) and the CDTI, the Spanish institution in charge of space issues, are organising a joint event in Spain at the Museo Principe Felipe de la Ciudad de las Artes y las Ciencias in Valencia. At each site ESA specialists will be available for interviews. Media representatives wishing to attend are requested to complete the attached reply form and fax it to the Communication Office at the establishment of their choice. The ESA TV Service will provide live televised coverage of the launch and initial orbital operations with English commentary, between 19:15 and 22:00 CEST. Satellite: Astra 2C at 19 degrees East Reception frequency: 10832 MHz Polarisation: Horizontal Symbol rate: 22 Msymb/s FEC: 5/6 Service ID: 61950 Service name: ESA TXT: none Details of the transmission schedule and satellite details for the various pre-launch Video News Releases can be found on http://television.esa.int. The launch can also be followed live on the internet at www.esa.int/marsexpresslaunch starting at 19:15 hrs. Here you can also find the launch diary, news, press releases, videos, images and more.
Turbulence Heating ObserveR – satellite mission proposal
Vaivads, A.; Retinò, A.; Soucek, J.; ...
2016-09-22
The Universe is permeated by hot, turbulent, magnetized plasmas. Turbulent plasma is a major constituent of active galactic nuclei, supernova remnants, the intergalactic and interstellar medium, the solar corona, the solar wind and the Earth’s magnetosphere, just to mention a few examples. Furthermore, energy dissipation of turbulent fluctuations plays a key role in plasma heating and energization, yet we still do not understand the underlying physical mechanisms involved.THOR is a mission designed to answer the questions of how turbulent plasma is heated and particles accelerated, how the dissipated energy is partitioned and how dissipation operates in different regimes of turbulence.THOR is amore » single-spacecraft mission with an orbit tuned to maximize data return from regions in near-Earth space – magnetosheath, shock, foreshock and pristine solar wind – featuring different kinds of turbulence. We summarize theTHOR proposal submitted on 15 January 2015 to the ‘Call for a Medium-size mission opportunity in ESAs Science Programme for a launch in 2025 (M4)’.THOR has been selected by European Space Agency (ESA) for the study phase.« less
Turbulence Heating ObserveR – satellite mission proposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaivads, A.; Retinò, A.; Soucek, J.
The Universe is permeated by hot, turbulent, magnetized plasmas. Turbulent plasma is a major constituent of active galactic nuclei, supernova remnants, the intergalactic and interstellar medium, the solar corona, the solar wind and the Earth’s magnetosphere, just to mention a few examples. Furthermore, energy dissipation of turbulent fluctuations plays a key role in plasma heating and energization, yet we still do not understand the underlying physical mechanisms involved.THOR is a mission designed to answer the questions of how turbulent plasma is heated and particles accelerated, how the dissipated energy is partitioned and how dissipation operates in different regimes of turbulence.THOR is amore » single-spacecraft mission with an orbit tuned to maximize data return from regions in near-Earth space – magnetosheath, shock, foreshock and pristine solar wind – featuring different kinds of turbulence. We summarize theTHOR proposal submitted on 15 January 2015 to the ‘Call for a Medium-size mission opportunity in ESAs Science Programme for a launch in 2025 (M4)’.THOR has been selected by European Space Agency (ESA) for the study phase.« less
Aga, D.S.; Thurman, E.M.; Pomes, M.L.
1994-01-01
Solid-phase extraction (SPE) and enzyme-linked immunosorbent assay (ELISA) were combined for the trace analysis of the herbicide alachlor and its major soil metabolite, ethanesulfonic acid (ESA). The anti-alachlor antibody cross-reacted with ESA, which produced false-positive detections of alachlor in water samples by immunoassay screens. Alachlor and ESA were isolated from water by SPE on a C18 resin and eluted sequentially with ethyl acetate and methanol. Alachlor is soluble in ethyl acetate while the anionic ESA is not. Thus ESA remained adsorbed on the C18 resin and was eluted later with methanol. The combination of SPE with ELISA effectivety separated and quantified both alachlor and ESA using the same antibody for two ELISA methods. The general method may have applicability for the separation of other herbicides and their ionic metabolites. The SPE-ELISA method has a, detection limit of 0.01 ??g/L for alachlor and 0.05 ??g/L for ESA, with a precision of ?? 10%. Analyses of surface and ground water samples were confirmed by gas chromatography/mass spectrometry and high-performance liquid chromatography with photodiode-array detection. Results showed widespread occurrence of ESA in surface and ground water of the midwestern United States, with concentrations ranging from 10 ??g/L.
Setting objectives for managing Key deer
Diefenbach, Duane R.; Wagner, Tyler; Stauffer, Glenn E.
2014-01-01
The U.S. Fish and Wildlife Service (FWS) is responsible for the protection and management of Key deer (Odocoileus virginianus clavium) because the species is listed as Endangered under the Endangered Species Act (ESA). The purpose of the ESA is to protect and recover imperiled species and the ecosystems upon which they depend. There are a host of actions that could possibly be undertaken to recover the Key deer population, but without a clearly defined problem and stated objectives it can be difficult to compare and evaluate alternative actions. In addition, management goals and the acceptability of alternative management actions are inherently linked to stakeholders, who should be engaged throughout the process of developing a decision framework. The purpose of this project was to engage a representative group of stakeholders to develop a problem statement that captured the management problem the FWS must address with Key deer and identify objectives that, if met, would help solve the problem. In addition, the objectives were organized in a hierarchical manner (i.e., an objectives network) to show how they are linked, and measurable attributes were identified for each objective. We organized a group of people who represented stakeholders interested in and potentially affected by the management of Key deer. These stakeholders included individuals who represented local, state, and federal governments, non-governmental organizations, the general public, and local businesses. This stakeholder group met five full days over the course of an eight-week period to identify objectives that would address the following problem:“As recovery and removal from the Endangered Species list is the purpose of the Endangered Species Act, the U.S. Fish and Wildlife Service needs a management approach that will ensure a sustainable, viable, and healthy Key deer population. Urbanization has affected the behavior and population dynamics of the Key deer and the amount and characteristics of available habitat. The identified management approach must balance relevant social and economic concerns, Federal (e.g., Endangered Species Act, Wilderness Act, Refuge Act) and state regulations, and the conservation of biodiversity (e.g., Endangered/Threatened species, native habitat) in the Lower Keys.”The stakeholder group identified four fundamental objectives that are essential to addressing the problem: 1) Maximize a sustainable, viable, and healthy Key deer population, 2) Maximize value of Key deer to the People, 3) Minimize deer-related negative impacts to biodiversity, and 4) Minimize costs. In addition, the group identified 25 additional objectives that, if met, would help meet the fundamental objectives. The objectives network and measurable attributes identified by the stakeholder group can be used in the future to develop and evaluate potential management alternatives.
Personifying space: how the public learned to care for Rosetta and Philae
NASA Astrophysics Data System (ADS)
Mignone, Claudia; Baldwin, Emily; O'Flaherty, Karen; Homfeld, Anne-Mareike; Bauer, Markus; McCaughrean, Mark
2015-04-01
One of the aspects in the communications campaign promoted by the European Space Agency (ESA) and its partner institutions throughout 2014 to raise awareness about the comet-chasing mission, Rosetta, was the development of two anthropomorphic characters depicting the Rosetta probe and the lander Philae. The two characters were featured in a series of short cartoons with a fairy-tale flair that were distributed on the internet with the aim of breaking into new audience groups. The cartoon series, named "Once upon a time", tells the adventures of Rosetta and Philae, depicted as two bold and friendly explorers on a pioneering journey across the Solar System. The episodes cover the mission milestones, from Rosetta's wake-up from deep-space hibernation to its rendezvous with the comet and Philae's landing. They were promoted through the mission's dedicated social media accounts (mainly Twitter and Facebook) and through ESA's existing social media channels as part of the broader Rosetta communications campaign. We discuss how visual storytelling was used to make the mission's scientific goals more accessible, allowing the audience to share both its excitement and risks. We describe the development of the cartoon series and the level of engagement it generated, using estimates based on the response received through our social media channels. Other tools were also used to help the public identify with the two space probes. In particular, the Twitter accounts @ESA_Rosetta (managed by ESA) and @philae2014 (managed by DLR) were run in first person, as to give the impression that the probes were writing the tweets themselves, and even interacting with one another - as is often done in the case of spacecraft Twitter accounts. All these elements added a personal feel to the comet landing, with members of the public empathising with the two space probes and caring for their well-being. This wave of interest culminated in the last few hours of Philae's operations on the comet, before it entered hibernation. We also discuss issues that we encountered using this approach, including pitfalls and lessons learnt, and how the choice of anthropomorphising spacecraft was received by different publics.
SMART-1 technology, scientific results and heritage for future space missions
NASA Astrophysics Data System (ADS)
Foing, B. H.; Racca, G.; Marini, A.; Koschny, D.; Frew, D.; Grieger, B.; Camino-Ramos, O.; Josset, J. L.; Grande, M.; Smart-1 Science; Technology Working Team
2018-02-01
ESA's SMART-1 mission to the Moon achieved record firsts such as: 1) first Small Mission for Advanced Research and Technology; with spacecraft built and integrated in 2.5 years and launched 3.5 years after mission approval; 2) first mission leaving the Earth orbit using solar power alone; 3) most fuel effective mission (60 L of Xenon) and longest travel (13 months) to the Moon!; 4) first ESA mission reaching the Moon and first European views of lunar poles; 5) first European demonstration of a wide range of new technologies: Li-Ion modular battery, deep-space communications in X- and Ka-bands, and autonomous positioning for navigation; 6) first lunar demonstration of an infrared spectrometer and of a Swept Charge Detector Lunar X-ray fluorescence spectrometer; 7) first ESA mission with opportunity for lunar science, elemental geochemistry, surface mineralogy mapping, surface geology and precursor studies for exploration; 8) first controlled impact landing on the Moon with real time observations campaign; 9) first mission supporting goals of the International Lunar Exploration Working Group (ILEWG) in technical and scientific exchange, international collaboration, public and youth engagement; 10) first mission preparing the ground for ESA collaboration in Chandrayaan-1, Chang' E1 and future international lunar exploration. We review SMART-1 highlights and new results that are relevant to the preparation for future lunar exploration. The technology and methods had impact on space research and applications. Recent SMART-1 results are relevant to topics on: 1) the study of properties of the lunar dust, 2) impact craters and ejecta, 3) the study of illumination, 4) radio observations and science from the Moon, 5) support to future missions, 6) identifying and characterising sites for exploration and exploitation. On these respective topics, we discuss recent SMART-1 results and challenges. We also discuss the use of SMART-1 publications library. The SMART-1 archive observations have been used to support the goals of ILEWG. SMART-1 has been useful to prepare for Kaguya, Chandrayaan-1, Chang'E 1, the US Lunar Reconnaissance Orbiter, the LCROSS impact, future lunar landers and upcoming missions, and to contribute towards objectives of the Moon Village and future exploration.
1998-01-30
CAPE CANAVERAL, Fla. -- In the International Space Station Processing Facility at NASA's Kennedy Space Center in Florida, senior government officials from 15 countries participating in the space station program signed agreements in Washington D.C. on Jan. 29 to establish the framework of cooperation among the partners on the design, development, operation and utilization of the space station. Acting Secretary of State Strobe Talbott signed the 1998 Intergovernmental Agreement on Space Station Cooperation with representatives of Russia, Japan, Canada, and participating countries of the European Space Agency ESA -- Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. Some of these officials then toured Kennedy's Space Station Processing Facility SSPF with NASA Administrator Daniel Goldin, at front, sixth from the left. They are, left to right, front to back: Hidetoshi Murayama, National Space Development Agency of Japan NASDA Louis Laurent, Embassy of France Haakon Blankenborg, Norwegian Parliament Standing Committee on Foreign Affairs His Excellency Joris Vos, ambassador of the Netherlands His Excellency Tom Vraalsen, ambassador of Norway Goldin Luigi Berlinguer, Italian minister for education, scientific, and technological research Antonio Rodota, director general, ESA Yvan Ylieff, Belgian minister of science and chairman of the ESA Ministerial Council Jacqueline Ylieff Masaaki Komatsu, Kennedy local NASDA representative and interpreter Serge Ivanets, space attache, Embassy of Russia Hiroshi Fujita, Science and Technology Agency of Japan Akira Mizutani, Japanese Ministry of Foreign Affairs Peter Grognard, science attache', Royal Embassy of Belgium Michelangelo Pipan, Italian diplomatic counselor to the minister His Excellency Gerhard Fulda, German Federal Foreign Office Jorg Feustel-Buechl, ESA director of manned space flight and microgravity A. Yakovenko, Russian Ministry of Foreign Affairs JoAnn Morgan, Kennedy associate director for Advanced Development and Shuttle Upgrades Steve Francois, director, International Space Station and Shuttle Processing Roy Tharpe, Boeing launch site manager Jon Cowart, ISS elements manager John Schumacher, NASA associate administrator for external relations Didier Kechemair, space advistor to the French minister for education, research, and technology Yoshinori Yoshimura, NASDA and Loren Shriver, Kennedy deputy director for launch and payload processing. Node 1 of the ISS is in the background. Photo Credit: NASA
Representatives of countries participating in the International Space Station toured KSC's Space Sta
NASA Technical Reports Server (NTRS)
1998-01-01
Senior government officials from 15 countries participating in the International Space Station (ISS) signed agreements in Washington D.C. on Jan. 29 to establish the framework of cooperation among the partners on the design, development, operation and utilization of the Space Station. Acting Secretary of State Strobe Talbott signed the 1998 Intergovernmental Agreement on Space Station Cooperation with representatives of Russia, Japan, Canada, and participating countries of the European Space Agency (ESA), including Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. Some of these officials then toured KSC's Space Station Processing Facility (SSPF) with NASA Administrator Daniel Goldin, at front, sixth from the left. They are, left to right, front to back: Hidetoshi Murayama, National Space Development Agency of Japan (NASDA); Louis Laurent, Embassy of France; Haakon Blankenborg, Norwegian Parliament Standing Committee on Foreign Affairs; His Excellency Joris Vos, ambassador of the Netherlands; His Excellency Tom Vraalsen, ambassador of Norway; Daniel Goldin; Luigi Berlinguer, Italian minister for education, scientific, and technological research; Antonio Rodota, director general, European Space Agency (ESA); Yvan Ylieff, Belgian minister of science and chairman of the ESA Ministerial Council; Jacqueline Ylieff; Masaaki Komatsu, KSC local NASDA representative and interpreter; Serge Ivanets, space attache, Embassy of Russia; Hiroshi Fujita, Science and Technology Agency of Japan; Akira Mizutani, Japanese Ministry of Foreign Affairs; Peter Grognard, science attache, Royal Embassy of Belgium; Michelangelo Pipan, Italian diplomatic counselor to the minister; His Excellency Gerhard Fulda, German Federal Foreign Office; Jorg Feustel-Buechl, ESA director of manned space flight and microgravity; A. Yakovenko, Russian Ministry of Foreign Affairs; JoAnn Morgan, KSC associate director for Advanced Development and Shuttle Upgrades; Steve Francois, director, International Space Station and Shuttle Processing; Roy Tharpe, Boeing launch site manager; Jon Cowart, ISS elements manager; John Schumacher, NASA associate administrator for external relations; Didier Kechemair, space advistor to the French minister for education, research, and technology; Yoshinori Yoshimura, NASDA; and Loren Shriver, KSC deputy director for launch and payload processing. Node 1 of the ISS is in the background.
Forbes, Valery E; Galic, Nika; Schmolke, Amelie; Vavra, Janna; Pastorok, Rob; Thorbek, Pernille
2016-08-01
United States legislation requires the US Environmental Protection Agency to ensure that pesticide use does not cause unreasonable adverse effects on the environment, including species listed under the Endangered Species Act (ESA; hereafter referred to as listed species). Despite a long history of population models used in conservation biology and resource management and a 2013 report from the US National Research Council recommending their use, application of population models for pesticide risk assessments under the ESA has been minimal. The pertinent literature published from 2004 to 2014 was reviewed to explore the availability of population models and their frequency of use in listed species risk assessments. The models were categorized in terms of structure, taxonomic coverage, purpose, inputs and outputs, and whether the models included density dependence, stochasticity, or risk estimates, or were spatially explicit. Despite the widespread availability of models and an extensive literature documenting their use in other management contexts, only 2 of the approximately 400 studies reviewed used population models to assess the risks of pesticides to listed species. This result suggests that there is an untapped potential to adapt existing models for pesticide risk assessments under the ESA, but also that there are some challenges to do so for listed species. Key conclusions from the analysis are summarized, and priorities are recommended for future work to increase the usefulness of population models as tools for pesticide risk assessments. Environ Toxicol Chem 2016;35:1904-1913. © 2016 SETAC. © 2016 SETAC.
NASA Astrophysics Data System (ADS)
Hirata, K.; Fujiwara, H.; Nakamura, H.; Osada, M.; Morikawa, N.; Kawai, S.; Ohsumi, T.; Aoi, S.; Yamamoto, N.; Matsuyama, H.; Toyama, N.; Kito, T.; Murashima, Y.; Murata, Y.; Inoue, T.; Saito, R.; Takayama, J.; Akiyama, S.; Korenaga, M.; Abe, Y.; Hashimoto, N.
2016-12-01
For the forthcoming Nankai earthquake with M8 to M9 class, the Earthquake Research Committee(ERC)/Headquarters for Earthquake Research Promotion, Japanese government (2013) showed 15 examples of earthquake source areas (ESAs) as possible combinations of 18 sub-regions (6 segments along trough and 3 segments normal to trough) and assessed the occurrence probability within the next 30 years (from Jan. 1, 2013) was 60% to 70%. Hirata et al.(2015, AGU) presented Probabilistic Tsunami Hazard Assessment (PTHA) along Nankai Trough in the case where diversity of the next event's ESA is modeled by only the 15 ESAs. In this study, we newly set 70 ESAs in addition of the previous 15 ESAs so that total of 85 ESAs are considered. By producing tens of faults models, with various slip distribution patterns, for each of 85 ESAs, we obtain 2500 fault models in addition of previous 1400 fault models so that total of 3900 fault models are considered to model the diversity of the next Nankai earthquake rupture (Toyama et al.,2015, JpGU). For PTHA, the occurrence probability of the next Nankai earthquake is distributed to possible 3900 fault models in the viewpoint of similarity to the 15 ESAs' extents (Abe et al.,2015, JpGU). A major concept of the occurrence probability distribution is; (i) earthquakes rupturing on any of 15 ESAs that ERC(2013) showed most likely occur, (ii) earthquakes rupturing on any of ESAs whose along-trench extent is the same as any of 15 ESAs but trough-normal extent differs from it second likely occur, (iii) earthquakes rupturing on any of ESAs whose both of along-trough and trough-normal extents differ from any of 15 ESAs rarely occur. Procedures for tsunami simulation and probabilistic tsunami hazard synthesis are the same as Hirata et al (2015). A tsunami hazard map, synthesized under an assumption that the Nankai earthquakes can be modeled as a renewal process based on BPT distribution with a mean recurrence interval of 88.2 years (ERC, 2013) and an aperiodicity of 0.22, as the median of the values (0.20 to 0.24)that ERC (2013) recommended, suggests that several coastal segments along the southwest coast of Shikoku Island, the southeast coast of Kii Peninsula, and the west coast of Izu Peninsula show over 26 % in exceedance probability that maximum water rise exceeds 10 meters at any coastal point within the next 30 years.
Du, Xianglin L; Zhang, Yefei
2015-12-01
To determine the relationship between the receipt of colony-stimulating factors (CSFs) with erythropoiesis-stimulating agents (ESAs) and the risk of developing venous thromboembolism (VTE), stroke, heart disease, and myelodysplastic syndrome (MDS) in patients with colorectal cancer. We studied 80,925 patients diagnosed with colorectal cancer at age ≥ 65 years in 1992-2009 from the nationwide 16 areas of the Surveillance, Epidemiology, and End Results (SEER)-Medicare linked data. Cumulative incidence and the time to events Cox hazard regressions were used to explore the risks of outcomes in association with the receipt of CSFs and ESAs. Patients who received chemotherapy (CT) with both CSF and ESA were 58% more likely to develop VTE than those who received CT without CSF and ESA (hazard ratio, 1.58; 95% confidence interval, 1.43-1.76). The risk of stroke appeared to be not associated with the use of CSF and ESA, whereas the risk of heart disease was only significantly elevated in those patients who did not receive CT but received ESA. The risk of acute myeloid leukemia or MDS was significantly increased 4- to 9-fold in patients who received ESA, regardless of receipt of CT or CSF. The use of ESAs was significantly associated with a substantially increased risk of MDS in patients with colorectal cancer. The use of CSFs and ESAs was also significantly associated with a moderately increased risk of VTE and a slightly elevated risk of heart disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Goesmann, Fred; Brinckerhoff, William B.; Raulin, François; Danell, Ryan M.; Getty, Stephanie A.; Siljeström, Sandra; Mißbach, Helge; Steininger, Harald; Arevalo, Ricardo D.; Buch, Arnaud; Freissinet, Caroline; Grubisic, Andrej; Meierhenrich, Uwe J.; Pinnick, Veronica T.; Stalport, Fabien; Szopa, Cyril; Vago, Jorge L.; Lindner, Robert; Schulte, Mitchell D.; Brucato, John Robert; Glavin, Daniel P.; Grand, Noel; Li, Xiang; van Amerom, Friso H. W.
2017-01-01
Abstract The Mars Organic Molecule Analyzer (MOMA) instrument onboard the ESA/Roscosmos ExoMars rover (to launch in July, 2020) will analyze volatile and refractory organic compounds in martian surface and subsurface sediments. In this study, we describe the design, current status of development, and analytical capabilities of the instrument. Data acquired on preliminary MOMA flight-like hardware and experimental setups are also presented, illustrating their contribution to the overall science return of the mission. Key Words: Mars—Mass spectrometry—Life detection—Planetary instrumentation. Astrobiology 17, 655–685.
Possible LISA Technology Applications for Other Missions
NASA Technical Reports Server (NTRS)
Livas, Jeffrey
2018-01-01
The Laser Interferometer Space Antenna (LISA) has been selected as the third large class mission launch opportunity of the Cosmic Visions Program by the European Space Agency (ESA). LISA science will explore a rich spectrum of astrophysical gravitational-wave sources expected at frequencies between 0.0001 and 0.1 Hz and complement the work of other observatories and missions, both space and ground-based, electromagnetic and non-electromagnetic. Similarly, LISA technology may find applications for other missions. This paper will describe the capabilities of some of the key technologies and discuss possible contributions to other missions.
Research at a European Planetary Simulation Facility
NASA Astrophysics Data System (ADS)
Merrison, J.; Iversen, J. J.; Alois, S.; Rasmussen, K. R.
2015-10-01
This unique environmental simulation facility is capable of re-creating extreme terrestrial, Martian and other planetary environments. It is supported by EU activities including Europlanet RI and a volcanology network VERTIGO. It is also used as a test facility by ESA for the forthcoming ExoMars 2018 mission. Specifically it is capable of recreating the key physical parameters such as temperature, pressure (gas composition), wind flow and importantly the suspension/transport of dust or sand particulates. This facility is available both to the scientific and Industrial community. The latest research and networking activities will be presented.
Key Elements of a Good Mathematics Lesson as Seen by Japanese Junior High School Teachers
ERIC Educational Resources Information Center
Ebaeguin, Marlon; Stephens, Max
2016-01-01
This study makes a comparison between what literature on Japanese Lesson Study suggests are key elements of a good mathematics lesson and what junior high school mathematics teachers in Japan value in planning their lessons. The teachers' strong consensus in their endorsements of these key elements explains why Japanese teachers strongly support…
Predictors of Hyporesponsiveness to Erythropoiesis-Stimulating Agents in Hemodialysis Patients
Kalantar-Zadeh, Kamyar; Lee, Grace H; Miller, Jessica E.; Streja, Elani; Jing, Jennie; Robertson, John A; Kovesdy, Csaba P.
2009-01-01
Background Identification of predictors of hyporesponsiveness to erythropoietin-stimulating agents (ESA) in hemodialysis (HD) patients may help improve anemia management and reduce hemoglobin variability. Study Design We conducted repeated measure and logistic regression analyses in a retrospective cohort of long-term HD patients to examine the association of iron markers and measures of renal osteodystrophy with ESA-responsiveness. The ESA-response coefficient at the individual level, i.e., the least-confounded dose-response association, was separated from the population level, assumed to represent confounding by medical indication. Setting/Participants The national database of a large dialysis organization (DaVita) with 38,328 surviving prevalent HD patients over 12 months, who received ESA for at least 3 consecutive calendar quarters, was examined. Predictors Serum levels of ferritin, iron saturation ratio (ISAT), intact parathyroid hormone (PTH) and alkaline phosphatase levels. Outcomes/Other Measurements The main outcome was case-mix adjusted hemoglobin response to quarterly averaged ESA dose at individual level. The odds ratio (OR) of the greatest vs. poorest ESA-response quartile at patient level was calculated. OR<1.0 indicated ESA hyporesponsiveness and OR>1.0 enhanced responsiveness. Results The mean (±SD) ESA-response coefficients of the least to most responsive quartiles were 0.301±0.033, 0.344±0.004, 0.357±0.004, and 0.389±0.026 g/dL higher hemoglobin per 1,000 units/week higher ESA dose in each quarter, respectively. The ORs of the greatest vs. poorest ESA-responsiveness at patient level were the following: Serum ferritin<200 ng/ml: 0.77 [95% confidence interval: 0.70–0.86] (reference: 200–500 ng/ml), ISAT<20%: 0.54 [0.49–0.59] (reference: 20–30%), intact PTH≥600 pg/ml: 0.54 [0.49–0.60] (reference: 150–300 pg/ml), and alkaline phosphatase ≥160 IU/L: 0.64 [0.58–0.70] (reference: 80–120 IU/L). Lower estimated dietary protein intake and serum levels of nutritional markers were also associated with higher risk of ESA-hyporesponsiveness. Limitations Our results may incorporate uncontrolled confounding. Achieved hemoglobin may have different associations than targeted hemoglobin. Conclusions In long-term HD patients, low iron stores, hyperparathyroidism and high turnover bone disease are associated with significant ESA-hyporesponsiveness. Prospective studies are needed to verify these associations. PMID:19339087
Randol, B M; Ebert, R W; Allegrini, F; McComas, D J; Schwadron, N A
2010-11-01
Electrostatic analyzers (ESAs), in various forms, are used to measure plasma in a range of applications. In this article, we describe how ions reflect from the interior surfaces of an ESA, the detection of which constitutes a fundamentally nonideal response of ESAs. We demonstrate this effect by comparing laboratory data from a real ESA-based space instrument, the Solar Wind Around Pluto (SWAP) instrument, aboard the NASA New Horizons spacecraft, to results from a model based on quantum mechanical simulations of particles reflected from the instrument's surfaces combined with simulations of particle trajectories through the instrument's applied electrostatic fields. Thus, we show, for the first time, how reflected ions in ESAs lead to nonideal effects that have important implications for understanding the data returned by these instruments, as well as for designing new low-background ESA-based instruments. Specifically, we show that the response of SWAP widens considerably below a level of 10(-3) of the peak response. Thus, a direct measurement of a plasma distribution with SWAP will have an energy-dependent background on the order of ≤10(-3) of the peak of the signal due to that distribution. We predict that this order of magnitude estimate for the background applies to a large number of ESA-based instruments because ESAs operate using a common principle. However, the exact shape of the energy-dependent response will be different for different instruments. The principle of operation is that ions outside the ideal range of energy-per-charge are deflected into the walls of the ESA. Therefore, we propose that a new design paradigm is necessary to mitigate the effect of ion reflections and thus accurately and directly measure the energy spectrum of a plasma using ESAs. In this article, we build a framework for minimizing the effect of ion reflections in the design of new ESAs. Through the use of existing computer simulation software, a design team can use our method to quantify the amount of reflections in their instrument and iteratively change design parameters before fabrication, conserving resources. A possible direction for the new design paradigm is having nonsolid walls of the ESA, already used in some applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randol, B. M.; Ebert, R. W.; Space Science and Engineering Division, Southwest Research Institute, San Antonio, Texas 78228
Electrostatic analyzers (ESAs), in various forms, are used to measure plasma in a range of applications. In this article, we describe how ions reflect from the interior surfaces of an ESA, the detection of which constitutes a fundamentally nonideal response of ESAs. We demonstrate this effect by comparing laboratory data from a real ESA-based space instrument, the Solar Wind Around Pluto (SWAP) instrument, aboard the NASA New Horizons spacecraft, to results from a model based on quantum mechanical simulations of particles reflected from the instrument's surfaces combined with simulations of particle trajectories through the instrument's applied electrostatic fields. Thus, wemore » show, for the first time, how reflected ions in ESAs lead to nonideal effects that have important implications for understanding the data returned by these instruments, as well as for designing new low-background ESA-based instruments. Specifically, we show that the response of SWAP widens considerably below a level of 10{sup -3} of the peak response. Thus, a direct measurement of a plasma distribution with SWAP will have an energy-dependent background on the order of {<=}10{sup -3} of the peak of the signal due to that distribution. We predict that this order of magnitude estimate for the background applies to a large number of ESA-based instruments because ESAs operate using a common principle. However, the exact shape of the energy-dependent response will be different for different instruments. The principle of operation is that ions outside the ideal range of energy-per-charge are deflected into the walls of the ESA. Therefore, we propose that a new design paradigm is necessary to mitigate the effect of ion reflections and thus accurately and directly measure the energy spectrum of a plasma using ESAs. In this article, we build a framework for minimizing the effect of ion reflections in the design of new ESAs. Through the use of existing computer simulation software, a design team can use our method to quantify the amount of reflections in their instrument and iteratively change design parameters before fabrication, conserving resources. A possible direction for the new design paradigm is having nonsolid walls of the ESA, already used in some applications.« less
Nikolaidi, Eleftheria; Hatzikou, Magdalini; Geitona, Mary
2013-07-16
Chemotherapy-induced anaemia is a common and significant complication of chemotherapy treatment. Blood transfusion and administration of Erythropoiesis-Stimulating Agents (ESAs) either alone or in combination with iron are the most widely used therapeutic options. In Greece, ESAs are among the top ten therapeutic groups with the highest pharmaceutical expenditure, since they are fully reimbursed by social security funds. The objective of the study is to determine potential cost savings related with the use of biosimilar over originator ESAs for the management of the newly diagnosed chemotherapy-induced anemic patients. A budget impact analysis has been carried through the elaboration of national epidemiological, clinical and economic data. Epidemiological data derived from WHO (GLOBOCAN) and the European Cancer Anaemia Survey. Clinical data reflect oncology patients' disease management. ESAs consumption was based on data from the biggest social security fund (IKA). The administration of ESAs under different dosing schemes and time periods has been estimated by separating them in originators and biosimilars as well as by classifying anaemic patients in responders and non-responders. Cost analysis is based on newly diagnosed patients' alternative treatment scenarios. Treatment costs and prices are used in 2012 values. The Social Security Funds's perspective was undertaken. Based on the annual incidence rates, 2.551 newly diagnosed chemotherapy-induced anemic patients are expected to be treated with ESAs. Average cost of treatment on originators ESAs for responders is €2.887 for the 15-week ESAs treatment and €5.019 for non-responders, while on biosimilars €2.623 and €4.009 respectively. Treatment cost on biosimilars is 10.1% lower than originators for responders and 25.2% for non-responders. Budget impact estimates show that treating anemic patients with originator ESAs was estimated at €10.084.800 compared to €8.460.119 when biosimilar ESAs were used, leading to an overall 19,20% cost reduction favoring biosimilars. In Greece, the treatment on biosimilar ESAs seems to be a cost saving option over originators for the newly diagnosed chemotherapy-induced anemic patients, since it corresponds to 5% of the annual overall consumption and expands patients' access to ESAs treatment. Health care decision making should rely on evidence based treatments in order to achieve social funds' sustainability in an era of economic recession.
Advances in SELEX ES infrared detectors for space and astronomy
NASA Astrophysics Data System (ADS)
Knowles, P.; Hipwood, L.; Baker, I.; Weller, H.
2017-11-01
Selex ES produces a wide range of infrared detectors from mercury cadmium telluride (MCT) and triglycine sulfate (TGS), and has supplied both materials into space programmes spanning a period of over 40 years. Current development activities that underpin potential future space missions include large format arrays for near- and short-wave infrared (NIR and SWIR) incorporating radiation-hard designs and suppression of glow. Improved heterostructures are aimed at the reduction of dark currents and avalanche photodiodes (APDs), and parallel studies have been undertaken for low-stress MCT array mounts. Much of this development work has been supported by ESA, UK Space, and ESO, and some has been performed in collaboration with the UK Astronomy Technology Centre and E2V. This paper focuses on MCT heterostructure developments and novel design elements in silicon read-out chips (ROICs). The 2048 x 2048 element, 17um pitch ROIC for ESA's SWIR array development forms the basis for the largest cooled infrared detector manufactured in Europe. Selex ES MCT is grown by metal organic vapour phase epitaxy (MOVPE), currently on 75mm diameter GaAs substrates. The MCT die size of the SWIR array is 35mm square and only a single array can be printed on the 75mm diameter wafer, utilising only 28% of the wafer area. The situation for 100mm substrates is little better, allowing only 2 arrays and 31% utilisation. However, low cost GaAs substrates are readily available in 150mm diameter and the MCT growth is scalable to this size, offering the real possibility of 6 arrays per wafer with 42% utilisation. A similar 2k x 2k ROIC is the goal of ESA's NIR programme, which is currently in phase 2 with a 1k x 1k demonstrator, and a smaller 320 x 256 ROIC (SAPHIRA) has been designed for ESO for the adaptive optics application in the VLT Gravity instrument. All 3 chips have low noise source-follower architecture and are enabled for MCT APD arrays, which have been demonstrated by ESO to be capable of single photon detection. The possibility therefore exists in the near future of demonstrating a photon counting, 2k x 2k SWIR MCT detector manufactured on an affordable wafer scale of 6 arrays per wafer.
Earth Science Instruction Using Brownfields in the Virtual Classroom
NASA Astrophysics Data System (ADS)
Bower, P. M.; Liddicoat, J. C.
2008-05-01
Geophysical methods of defining contaminant plumes from brownfields are taught in lecture and laboratory using Brownfield Action (BA) that is a network-based, interactive, digital space and simulation in which undergraduate students explore and solve problems in geohydrology. In the U.S., BA is recognized nationally as an innovative curriculum and simulation that has been developed by Peter Bower at Barnard College in collaboration with Columbia University's Center for New Media Teaching and Learning. Brownfields are former industrial sites that have potential as recreational, residential, and commercial real estate sites when reclaimed. As part of assessing the value of such a site, an environmental site assessment (ESA) is required to determine the nature and extent of any contamination. To reach that objective, BA contains a narrative element that is embedded and to be discovered in simulation; it is a story of groundwater contamination complete with underground contaminant plumes in a fictitious town with buildings, roads, wells, water tower, homes, and businesses as well as a municipal government with relevant historical documents. Student companies work collaboratively in teams of two, sign a contract with a development corporation to conduct a Phase One ESA, receive a realistic budget, and compete with other teams to fulfill the contract while maximizing profit. To reach a valid conclusion in the form of a professional-level ESA and 3-D maps of the physical site, teams must construct a detailed narrative from diverse forms of information, including socio-historical and a scientific dataset comprised of over 2,000,000 data points. BA forces the students to act on their perceptions of the interlocking realms of knowledge, theory and practical experience, providing an opportunity for them to gain valuable practice at tackling the complexity and ambiguity of a large-scale, interdisciplinary investigation of groundwater contamination and environmental forensics.
Engineering a Solution to Jupiter Exploration
NASA Technical Reports Server (NTRS)
Clark, Karla; Magner, Thomas; Lisano, Michael; Pappalardo, Robert
2010-01-01
The Europa Jupiter System Mission (EJSM) would be an international mission with the overall theme of investigating the emergence of habitable worlds around gas giants. Its goals are to (1) explore Europa to investigate its habitability, (2) characterize Ganymede as a planetary object including its potential habitability and (3) explore the Jupiter system as an archetype for gas giants. NASA and ESA have concluded a detailed joint study of a mission to Europa, Ganymede, and the Jupiter system with conceptual orbiters developed by NASA and ESA. The baseline EJSM architecture consists of two primary elements operating simultaneously in the Jovian system: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). JEO and JGO would execute an intricately choreographed exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. EJSM would directly address themes concerning the origin and evolution of satellite systems and water-rich environments in icy satellites. The potential habitability of the ocean-bearing moons Europa and Ganymede would be investigated, by characterizing the geophysical, compositional, geological, and external processes that affect these icy worlds. EJSM would also investigate Io and Callisto, Jupiter's atmosphere, and the Jovian magnetosphere. By understanding the Jupiter system and unraveling its history, the formation and evolution of gas giant planets and their satellites would be better known. Most importantly, EJSM would shed new light on the potential for the emergence of life in the celestial neighborhood and beyond. The EJSM baseline architecture would provide opportunities for coordinated synergistic observations by JEO and JGO of the Jupiter and Ganymede magnetospheres, the volcanoes and torus of Io, the atmosphere of Jupiter, and comparative planetology of icy satellites. Each spacecraft would conduct both synergistic dual-spacecraft investigations and stand-alone measurements toward the overall mission theme and goals.
NASA Astrophysics Data System (ADS)
Benveniste, J.; Cotton, D.; Moreau, T.; Raynal, M.; Varona, E.; Cipollini, P.; Cancet, M.; Martin, F.; Fenoglio-Marc, L.; Naeije, M.; Fernandes, J.; Lazaro, C.; Restano, M.; Ambrózio, A.
2017-12-01
The ESA Sentinel-3 satellite, launched in February 2016 as a part of the Copernicus programme, is the second satellite to operate a SAR mode altimeter. The Sentinel 3 Synthetic Aperture Radar Altimeter (SRAL) is based on the heritage from Cryosat-2, but this time complemented by a Microwave Radiometer (MWR) to provide a wet troposphere correction, and operating at Ku and C-Bands to provide an accurate along-track ionospheric correction. The SRAL is operated in SAR mode over the whole ocean and promises increased performance w.r.t. conventional altimetry. SCOOP (SAR Altimetry Coastal & Open Ocean Performance) is a project funded under the ESA SEOM (Scientific Exploitation of Operational Missions) Programme Element, started in September 2015, to characterise the expected performance of Sentinel-3 SRAL SAR mode altimeter products, in the coastal zone and open-ocean, and then to develop and evaluate enhancements to the baseline processing scheme in terms of improvements to ocean measurements. There is also a work package to develop and evaluate an improved Wet Troposphere correction for Sentinel-3, based on the measurements from the on-board MWR, further enhanced mostly in the coastal and polar regions using third party data, and provide recommendations for use. In this presentation we present results from the SCOOP project that demonstrate the excellent performance of SRAL in terms of measurement precision, and we illustrate the development and testing of new processing approaches designed specifically to improve performance close to the coast. The SCOOP test data sets and relevant documentation are available to external researchers on application to the project team. At the end of the project recommendations for further developments and implementations will be provided through a scientific roadmap.
Fiber Optic High Temperature Sensors for Re-Entry Vehicles
NASA Astrophysics Data System (ADS)
Haddad, E.; Kruzelecky, R.; Zou, J.; Wong, B.; Jamroz, W.; Sayeed, F.; Muylaert, J.-M.; McKenzie, I.
2009-01-01
MPB, within an ESA contract, is developing high temperature Fiber sensors (up to 1100°C) for re- ntry experiments, with direct application to the Thermo Protection Surface (TPS) of SHEFEX II. It addresses the challenges of obtaining high reflectivity FBG sensors, and integrating the fiber sensors within the selected TPS host material (C/SiC). Feasibility was demonstrated using free fiber sensors that showed the formation of the Chemical Composition Grating (CCG), with 80 % reflection at temperatures >750°C. The CCG grating was stable at high temperature (1000°C) for more than 50 hours, as well as after cycling between room temperature and 1000°C, with better than 0.5 % temperature accuracy (FBG central wavelength). Small FBG sensor packages were prepared and attached to C/SiC tiles. The calibration of the packaged fibers showed similar response to temperature as the free fiber sensor. The fiber sensor package was designed to maximize contact with the C/SiC surface to provide fast response to transients. Three- imension modeling with Ansys finite element analysis shows a time constant of 15-20 ms to reach 1200°C. A modular design will be implemented where a dedicated fiber line with 3 sensors and its own connector is used for each C/SiC tile. Small coupons of packaged sensors attached to C/SiC tiles will be tested in a re-entry environment at Von Karman Institute (Belgium) In a recently completed project with ESA, MPB developed and ground qualified a fiber sensor network, the "Fiber Sensor Demonstrator", that was successfully integrated as a payload with ESA's Proba-2. The system includes a central interrogation system that can be used to measure multiple parameters including a high temperature sensor for the Proba-2 thruster (up to 500°C).
NASA Astrophysics Data System (ADS)
Benveniste, J.; Cotton, D.; Andersen, O. B.; Boy, F.; Cancet, M.; Dinardo, S.; Gommenginger, C.; Egido, A.; Fernandes, J.; Garcia, P. N.; Lucas, B.; Moreau, T.; Naeije, M.; Scharroo, R.; Stenseng, L.
2014-12-01
The ESA CryoSat mission is the first space mission to carry a radar altimeter that can operate in Synthetic Aperture Radar (SAR) mode. It thus provides the first opportunity to test and evaluate, using real data, the significant potential benefits of SAR altimetry for ocean applications. The objective of the CryoSat Plus for Oceans (CP4O) project is to develop and evaluate new ocean products from CryoSat data and so maximize the scientific return of CryoSat over oceans. The main focus of CP4O has been on the additional measurement capabilities that are offered by the SAR mode of the SIRAL altimeter, with further work in developing improved geophysical corrections. CP4O has developed SAR based ocean products for application in four themes: Open Oceans, Coastal Oceans, Polar Oceans and Sea Floor Topography. The team has developed a number of new processing schemes and compared and evaluated the resultant data products. This work has clearly demonstrated the improved ocean measuring capability offered by SAR mode altimetry and has also added significantly to our understanding of the issues around the processing and interpretation of SAR altimeter echoes. The project finishes in the summer of 2014, so this paper presents an overview of the major results and outlines a proposed roadmap for the further development and exploitation of these results in operational and scientific applications. The results are of course also highly relevant to support the planning for future missions, including Sentinel-3 and Jason-CS. The "CryoSat Plus for Oceans" (CP4O) project has been supported by ESA (Support To Science Element) and CNES.
NASA Capability Roadmaps Executive Summary
NASA Technical Reports Server (NTRS)
Willcoxon, Rita; Thronson, Harley; Varsi, Guilio; Mueller, Robert; Regenie, Victoria; Inman, Tom; Crooke, Julie; Coulter, Dan
2005-01-01
This document is the result of eight months of hard work and dedication from NASA, industry, other government agencies, and academic experts from across the nation. It provides a summary of the capabilities necessary to execute the Vision for Space Exploration and the key architecture decisions that drive the direction for those capabilities. This report is being provided to the Exploration Systems Architecture Study (ESAS) team for consideration in development of an architecture approach and investment strategy to support NASA future mission, programs and budget requests. In addition, it will be an excellent reference for NASA's strategic planning. A more detailed set of roadmaps at the technology and sub-capability levels are available on CD. These detailed products include key driving assumptions, capability maturation assessments, and technology and capability development roadmaps.
SPICE for ESA Planetary Missions
NASA Astrophysics Data System (ADS)
Costa, M.
2017-09-01
SPICE is an information system that provides the geometry needed to plan scientific observations and to analyze the obtained. The ESA SPICE Service generates the SPICE Kernel datasets for missions in all the active ESA Missions. This contribution describes the current status of the datasets, the extended services and the SPICE support provided to the ESA Planetary Missions (Mars-Express, ExoMars2016, BepiColombo, JUICE, Rosetta, Venus-Express and SMART-1) for the benefit of the science community.
ESA SMART-1 mission: results and lessons for future lunar exploration
NASA Astrophysics Data System (ADS)
Foing, Bernard H.
We review ESA’s SMART-1 highlights and legacy 10 years after launch. We discuss lessons for future lunar exploration and upcoming missions. The SMART-1 mission to the Moon achieved record firsts such as: 1) first Small Mission for Advanced Research and Technology; with spacecraft built and integrated in 2.5 years and launched 3.5 years after mission approval; 2) first mission leaving the Earth orbit using solar power alone with demonstration for future deep space missions such as BepiColombo; 3) most fuel effective mission (60 litres of Xenon) and longest travel (13 month) to the Moon!; 4) first ESA mission reaching the Moon and first European views of lunar poles; 5) first European demonstration of a wide range of new technologies: Li-Ion modular battery, deep-space communications in X- and Ka-bands, and autonomous positioning for navigation; 6) first lunar demonstration of an infrared spectrometer and of a Swept Charge Detector Lunar X-ray fluorescence spectrometer ; 7) first ESA mission with opportunity for lunar science, elemental geochemistry, surface mineralogy mapping, surface geology and precursor studies for exploration; 8) first controlled impact landing on the Moon with real time observations campaign; 9) first mission supporting goals of the ILEWG/COSPAR International Lunar Exploration Working Group in technical and scientific exchange, international collaboration, public and youth engagement; 10) first mission preparing the ground for ESA collaboration in Chandrayaan-1, Chang’ E1-2-3 and near-future landers, sample return and human lunar missions. The SMART-1 technology legacy is applicable to application geostationary missions and deep space missions using solar electric propulsion. The SMART-1 archive observations have been used to support scientific research and prepare subsequent lunar missions. Most recent SMART-1 results are relevant to topics on: 1) the study of properties of the lunar dust, 2) impact craters and ejecta, 3) the study of illumination, 4) observations and science from the Moon, 5) support to future missions, 6) identifying and characterising sites for exploration and exploitation. These results and legacy are relevant to the preparation for future missions, in particular in the frame of collaboration between Russia and ESA on upcoming landers and on a polar sample return. Also the results contribute to the preparation for a global robotic village and international lunar bases (consistent with ILEWG, COSPAR and Global Space Exploration roadmaps). Link: http://sci.esa.int/smart-1/ References and citations: http://scholar.google.nl/scholar?&q=smart-1+moon *We acknowledge ESA, member states, industry and institutes for their contribution, and the members of SMART-1 Teams: G.Racca and SMART-1 Project Team, O. Camino and SMART-1 Operations Team, D. Frew and SMART-1 STOC, B.H. Foing and STWT, B. Grieger, D. Koschny, J.-L. Josset, S. Beauvivre, M. Ellouzi, S. Peters, A. Borst, E. Martellato, M. Almeida, J.Volp, D. Heather, M. Grande, J. Huovelin, H.U. Keller, U. Mall, A. Nathues, A. Malkki, W. Schmidt, G. Noci, Z. Sodnik, B. Kellett, P. Pinet, S. Chevrel, P. Cerroni, M.C. de Sanctis, M.A. Barucci, S. Erard, D. Despan, K. Muinonen, V. Shevchenko, Y. Shkuratov, P. McMannamon, P. Ehrenfreund, C. Veillet, M. Burchell, other Co-Investigators, associated scientists, collaborators, students and colleagues
Leclair, Tatsiana; Carret, Anne-Sophie; Samson, Yvan; Sultan, Serge
2016-01-01
Parents report psychological distress in association with their child's cancer. Reliable tools are needed to screen parental distress over the cancer trajectory. This study aimed to estimate the stability and repeatability of the Distress Thermometer (DT) and the Depression and Anxiety items of the Edmonton Symptom Assessment System-revised (ESAS-r-D; -A) in parents of children diagnosed with cancer. Fifty parents (28 mothers, median age = 44) of clinically stable survivors of childhood solid and brain tumours completed questionnaires about their own distress (DT, ESAS-r-D; -A, Brief Symptom Inventory-18: BSI-18, Patient Health Questionnaire-9: PHQ-9, Generalized Anxiety Disorder-7: GAD-7) and their children's quality of life (QoL; Peds Quality of Life: PedsQL) twice, with a month interval between the two assessments. At retest, parents also evaluated life events that occurred between the two time points. Hierarchical regressions explored moderators for the temporal stability of test measures. Stability estimates were ICC = .78 for the DT, .55 for the ESAS-r-D, and .47 for the ESAS-r-A. Caseness agreement between test and retest was substantial for the DT, fair for the ESAS-r-D, and slight for the ESAS-r-A. Repeatability analyses indicated that the error range for the DT was more than 2 pts below/above actual measurement, whereas it was more than 3 pts for the ESAS-r-A, and 2.5 for the ESAS-r-D. Instability of the DT could be explained by changes in children's physical QoL, but not by other components of QoL or life events. No moderators of stability could be identified for the ESAS-r items. The DT appears to be a fairly stable measure when the respondent's condition is stable yet with a relatively wide error range. Fluctuations in distress-related constructs may affect the temporal stability of the DT. The lower stability of ESAS-r items may result from shorter time-lapse instructions resulting in a greater sensitivity to change. Findings support future research on the DT as a reliable instrument in caregivers.
Carret, Anne-Sophie; Samson, Yvan; Sultan, Serge
2016-01-01
Objective Parents report psychological distress in association with their child's cancer. Reliable tools are needed to screen parental distress over the cancer trajectory. This study aimed to estimate the stability and repeatability of the Distress Thermometer (DT) and the Depression and Anxiety items of the Edmonton Symptom Assessment System-revised (ESAS-r-D; -A) in parents of children diagnosed with cancer. Methods Fifty parents (28 mothers, median age = 44) of clinically stable survivors of childhood solid and brain tumours completed questionnaires about their own distress (DT, ESAS-r-D; -A, Brief Symptom Inventory-18: BSI-18, Patient Health Questionnaire-9: PHQ-9, Generalized Anxiety Disorder-7: GAD-7) and their children’s quality of life (QoL; Peds Quality of Life: PedsQL) twice, with a month interval between the two assessments. At retest, parents also evaluated life events that occurred between the two time points. Hierarchical regressions explored moderators for the temporal stability of test measures. Results Stability estimates were ICC = .78 for the DT, .55 for the ESAS-r-D, and .47 for the ESAS-r-A. Caseness agreement between test and retest was substantial for the DT, fair for the ESAS-r-D, and slight for the ESAS-r-A. Repeatability analyses indicated that the error range for the DT was more than 2 pts below/above actual measurement, whereas it was more than 3 pts for the ESAS-r-A, and 2.5 for the ESAS-r-D. Instability of the DT could be explained by changes in children’s physical QoL, but not by other components of QoL or life events. No moderators of stability could be identified for the ESAS-r items. Conclusions The DT appears to be a fairly stable measure when the respondent's condition is stable yet with a relatively wide error range. Fluctuations in distress-related constructs may affect the temporal stability of the DT. The lower stability of ESAS-r items may result from shorter time-lapse instructions resulting in a greater sensitivity to change. Findings support future research on the DT as a reliable instrument in caregivers. PMID:27454432
Method and apparatus for staking optical elements
Woods, Robert O.
1988-01-01
A method and apparatus for staking two optical elements together in order to retain their alignment is disclosed. The apparatus includes a removable adaptor made up of first and second adaptor bodies each having a lateral slot in their front and side faces. The adaptor also includes a system for releasably attaching each adaptor body to a respective optical element such that when the two optical elements are positioned relative to one another the adaptor bodies are adjacent and the lateral slots therein are aligned to form key slots. The adaptor includes keys which are adapted to fit into the key slots. A curable filler material is employed to retain the keys in the key slots and thereby join the first and second adaptor bodies to form the adaptor. Also disclosed is a method for staking together two optical elements employing the adaptor of the present invention.
Method and apparatus for staking optical elements
Woods, Robert O.
1988-10-04
A method and apparatus for staking two optical elements together in order to retain their alignment is disclosed. The apparatus includes a removable adaptor made up of first and second adaptor bodies each having a lateral slot in their front and side faces. The adaptor also includes a system for releasably attaching each adaptor body to a respective optical element such that when the two optical elements are positioned relative to one another the adaptor bodies are adjacent and the lateral slots therein are aligned to form key slots. The adaptor includes keys which are adapted to fit into the key slots. A curable filler material is employed to retain the keys in the key slots and thereby join the first and second adaptor bodies to form the adaptor. Also disclosed is a method for staking together two optical elements employing the adaptor of the present invention.
A framework for global diurnally-resolved observations of Land Surface Temperature
NASA Astrophysics Data System (ADS)
Ghent, D.; Remedios, J.; Pinnock, S.
2013-12-01
Land surface temperature (LST) is the radiative skin temperature of the land, and is one of the key parameters in the physics of land-surface processes on regional and global scales. Being a key boundary condition in land surface models, which determine the surface to atmosphere fluxes of heat, water and carbon; thus influencing cloud cover, precipitation and atmospheric chemistry predictions within Global models, the requirement for global diurnal observations of LST is well founded. Earth Observation satellites offer an opportunity to obtain global coverage of LST, with the appropriate exploitation of data from multiple instruments providing a capacity to resolve the diurnal cycle on a global scale. Here we present a framework for the production of global, diurnally resolved, data sets for LST which is a key request from users of LST data. We will show how the sampling of both geostationary and low earth orbit data sets could conceptually be employed to build combined, multi-sensor, pole-to-pole data sets. Although global averages already exist for individual instruments and merging of geostationary based LST is already being addressed operationally (Freitas, et al., 2013), there are still a number of important challenges to overcome. In this presentation, we will consider three of the issues still open in LST remote sensing: 1) the consistency amongst retrievals; 2) the clear-sky bias and its quantification; and 3) merging methods and the propagation of uncertainties. For example, the combined use of both geostationary earth orbit (GEO) and low earth orbit (LEO) data, and both infra-red and microwave data are relatively unexplored but are necessary to make the most progress. Hence this study will suggest what is state-of-the-art and how considerable advances can be made, accounting also for recent improvements in techniques and data quality. The GlobTemperature initiative under the Data User Element of ESA's 4th Earth Observation Envelope Programme (2013-2017), which aims to support the wider uptake of global-scale satellite LST by the research and operational user communities, will be a particularly important element in the development and subsequent provision of global diurnal LST. This new project, with its emphasis on promoting the coherence and openness of interactions within the LST and user communities, will be well placed to deliver appropriate data, engage a wide audience and hence be a key promoter of LST research and development for the LST community. References Freitas, S.C., Trigo, I.F., Macedo, J., Barroso, C., Silva, R., & Perdigao, R., 2013, Land surface temperature from multiple geostationary satellites, International Journal of Remote Sensing, 34, 3051-3068.
Rasch analysis of the Edmonton Symptom Assessment System and research implications
Cheifetz, O.; Packham, T.L.; MacDermid, J.C.
2014-01-01
Background Reliable and valid assessment of the disease burden across all forms of cancer is critical to the evaluation of treatment effectiveness and patient progress. The Edmonton Symptom Assessment System (esas) is used for routine evaluation of people attending for cancer care. In the present study, we used Rasch analysis to explore the measurement properties of the esas and to determine the effect of using Rasch-proposed interval-level esas scoring compared with traditional scoring when evaluating the effects of an exercise program for cancer survivors. Methods Polytomous Rasch analysis (Andrich’s rating-scale model) was applied to data from 26,645 esas questionnaires completed at the Juravinski Cancer Centre. The fit of the esas to the polytomous Rasch model was investigated, including evaluations of differential item functioning for sex, age, and disease group. The research implication was investigated by comparing the results of an observational research study previously analysed using a traditional approach with the results obtained by Rasch-proposed interval-level esas scoring. Results The Rasch reliability index was 0.73, falling short of the desired 0.80–0.90 level. However, the esas was found to fit the Rasch model, including the criteria for uni-dimensional data. The analysis suggests that the current esas scoring system of 0–10 could be collapsed to a 6-point scale. Use of the Rasch-proposed interval-level scoring yielded results that were different from those calculated using summarized ordinal-level esas scores. Differential item functioning was not found for sex, age, or diagnosis groups. Conclusions The esas is a moderately reliable uni-dimensional measure of cancer disease burden and can provide interval-level scaling with Rasch-based scoring. Further, our study indicates that, compared with the traditional scoring metric, Rasch-based scoring could result in substantive changes to conclusions. PMID:24764703
Palmer, Suetonia C; Saglimbene, Valeria; Mavridis, Dimitris; Salanti, Georgia; Craig, Jonathan C; Tonelli, Marcello; Wiebe, Natasha; Strippoli, Giovanni F M
2014-12-08
Several erythropoiesis-stimulating agents (ESAs) are available for treating anaemia in people with chronic kidney disease (CKD). Their relative efficacy (preventing blood transfusions and reducing fatigue and breathlessness) and safety (mortality and cardiovascular events) are unclear due to the limited power of head-to-head studies. To compare the efficacy and safety of ESAs (epoetin alfa, epoetin beta, darbepoetin alfa, or methoxy polyethylene glycol-epoetin beta, and biosimilar ESAs, against each other, placebo, or no treatment) to treat anaemia in adults with CKD. We searched the Cochrane Renal Group's Specialised Register to 11 February 2014 through contact with the Trials' Search Co-ordinator using search terms relevant to this review. Randomised controlled trials (RCTs) that included a comparison of an ESA (epoetin alfa, epoetin beta, darbepoetin alfa, methoxy polyethylene glycol-epoetin beta, or biosimilar ESA) with another ESA, placebo or no treatment in adults with CKD and that reported prespecified patient-relevant outcomes were considered for inclusion. Two independent authors screened the search results and extracted data. Data synthesis was performed by random-effects pairwise meta-analysis and network meta-analysis. We assessed for heterogeneity and inconsistency within meta-analyses using standard techniques and planned subgroup and meta-regression to explore for sources of heterogeneity or inconsistency. We assessed our confidence in treatment estimates for the primary outcomes within network meta-analysis (preventing blood transfusions and all-cause mortality) according to adapted GRADE methodology as very low, low, moderate, or high. We identified 56 eligible studies involving 15,596 adults with CKD. Risks of bias in the included studies was generally high or unclear for more than half of studies in all of the risk of bias domains we assessed; no study was low risk for allocation concealment, blinding of outcome assessment and attrition from follow-up. In network analyses, there was moderate to low confidence that epoetin alfa (OR 0.18, 95% CI 0.05 to 0.59), epoetin beta (OR 0.09, 95% CI 0.02 to 0.38), darbepoetin alfa (OR 0.17, 95% CI 0.05 to 0.57), and methoxy polyethylene glycol-epoetin beta (OR 0.15, 95% CI 0.03 to 0.70) prevented blood transfusions compared to placebo. In very low quality evidence, biosimilar ESA therapy was possibly no better than placebo for preventing blood transfusions (OR 0.27, 95% CI 0.05 to 1.47) with considerable imprecision in estimated effects. We could not discern whether all ESAs were similar or different in their effects on preventing blood transfusions and our confidence in the comparative effectiveness of different ESAs was generally very low. Similarly, the comparative effects of ESAs compared with another ESA, placebo or no treatment on all-cause mortality were imprecise.All proprietary ESAs increased the odds of hypertension compared to placebo (epoetin alfa OR 2.31, 95% CI 1.27 to 4.23; epoetin beta OR 2.57, 95% CI 1.23 to 5.39; darbepoetin alfa OR 1.83, 95% CI 1.05 to 3.21; methoxy polyethylene glycol-epoetin beta OR 1.96, 95% CI 0.98 to 3.92), while the effect of biosimilar ESAs on developing hypertension was less certain (OR 1.18, 95% CI 0.47 to 2.99). Our confidence in the comparative effects of ESAs on hypertension was low due to considerable imprecision in treatment estimates. The comparative effects of all ESAs on cardiovascular mortality, myocardial infarction (MI), stroke, and vascular access thrombosis were uncertain and network analyses for major cardiovascular events, end-stage kidney disease (ESKD), fatigue and breathlessness were not possible. Effects of ESAs on fatigue were described heterogeneously in the available studies in ways that were not useable for analyses. In the CKD setting, there is currently insufficient evidence to suggest the superiority of any ESA formulation based on available safety and efficacy data. Directly comparative data for the effectiveness of different ESA formulations based on patient-centred outcomes (such as quality of life, fatigue, and functional status) are sparse and poorly reported and current research studies are unable to inform care. All proprietary ESAs (epoetin alfa, epoetin beta, darbepoetin alfa, and methoxy polyethylene glycol-epoetin beta) prevent blood transfusions but information for biosimilar ESAs is less conclusive. Comparative treatment effects of different ESA formulations on other patient-important outcomes such as survival, MI, stroke, breathlessness and fatigue are very uncertain.For consumers, clinicians and funders, considerations such as drug cost and availability and preferences for dosing frequency might be considered as the basis for individualising anaemia care due to lack of data for comparative differences in clinical benefits and harms.
Motor programming when sequencing multiple elements of the same duration.
Magnuson, Curt E; Robin, Donald A; Wright, David L
2008-11-01
Motor programming at the self-select paradigm was adopted in 2 experiments to examine the processing demands of independent processes. One process (INT) is responsible for organizing the internal features of the individual elements in a movement (e.g., response duration). The 2nd process (SEQ) is responsible for placing the elements into the proper serial order before execution. Participants in Experiment 1 performed tasks involving 1 key press or sequences of 4 key presses of the same duration. Implementing INT and SEQ was more time consuming for key-pressing sequences than for single key-press tasks. Experiment 2 examined whether the INT costs resulting from the increase in sequence length observed in Experiment 1 resulted from independent planning of each sequence element or via a separate "multiplier" process that handled repetitions of elements of the same duration. Findings from Experiment 2, in which participants performed single key presses or double or triple key sequences of the same duration, suggested that INT is involved with the independent organization of each element contained in the sequence. Researchers offer an elaboration of the 2-process account of motor programming to incorporate the present findings and the findings from other recent sequence-learning research.
NASA Astrophysics Data System (ADS)
de Angelis, E.; di Lellis, A. M.; Orsini, S.; Zanza, V.; Maggi, M.; Vertolli, N.; D'Amicis, R.; Tilia, B.; Sibio, A.
2003-04-01
An Energetic Neutral Atoms facility to test and calibrate Neutral Atoms Analyzers has been developed in the Scientific Technical Unit of Fusion at the ENEA Research Center in Frascati (Rome-Italy). In the last years a collaboration with IFSI (Interplanetary Space and Physics Institute, CNR-Rome-Italy) has allowed to use this facility for space sensors and for characterization of crucial instruments elements. The ENA beam is realized with an ion source and a neutralization cell, and allows to test any instrument in the energy range 300eV-110keV with the available masses of Hydrogen, Deuterium or Helium. At the moment, the critical elements of ELENA (Emitted Low Energy Neutral Atoms) instrument proposed for BepiColombo ESA cornerstone mission to Mercury is under development testing. The facility, its potentiality and the instrument characterization progresses are presented.
Radiation Hard 0.13 Micron CMOS Library at IHP
NASA Astrophysics Data System (ADS)
Jagdhold, U.
2013-08-01
To support space applications we have developed an 0.13 micron CMOS library which should be radiation hard up to 200 krad. The article describes the concept to come to a radiation hard digital circuit and was introduces in 2010 [1]. By introducing new radiation hard design rules we will minimize IC-level leakage and single event latch-up (SEL). To reduce single event upset (SEU) we add two p-MOS transistors to all flip flops. For reliability reasons we use double contacts in all library elements. The additional rules and the library elements are integrated in our Cadence mixed signal design kit, “Virtuoso” IC6.1 [2]. A test chip is produced with our in house 0.13 micron BiCMOS technology, see Ref. [3]. As next step we will doing radiation tests according the european space agency (ESA) specifications, see Ref. [4], [5].
Rizzo, J Douglas; Somerfield, Mark R; Hagerty, Karen L; Seidenfeld, Jerome; Bohlius, Julia; Bennett, Charles L; Cella, David F; Djulbegovic, Benjamin; Goode, Matthew J; Jakubowski, Ann A; Rarick, Mark U; Regan, David H; Lichtin, Alan E
2008-01-01
To update the American Society of Clinical Oncology/American Society of Hematology (ASCO/ASH) recommendations for the use of epoetin. The guideline was expanded to address use of darbepoetin and thromboembolic risk associated with these agents. An Update Committee ("Committee") reviewed and analyzed data published since 2002 through July 2007. MEDLINE and the Cochrane Collaboration Library databases were searched. For patients with chemotherapy-associated anemia, the Committee continues to recommend initiating an erythropoiesis-stimulating agent (ESA) as hemoglobin (Hb) approaches, or falls below, 10 g/dL, to increase Hb and decrease transfusions. ESA treatment continues to be recommended for patients with low-risk myelodysplasia for similar reasons. There is no evidence showing increased survival as a result of ESA treatment. Conclusive evidence is lacking that, absent clinical circumstances necessitating earlier treatment, initiating ESAs at Hb levels greater than 10 g/dL either spares more patients from transfusion or substantially improves their quality of life. Starting doses and dose modifications based on response or lack thereof should follow the package insert. Continuing ESAs beyond 6 to 8 weeks in the absence of response, assuming appropriate dose increase has been attempted in nonresponders as per US Food and Drug Administration-approved labeling, does not seem to be beneficial, and ESA therapy should be discontinued. The Committee recommends monitoring iron stores and supplementing iron intake for ESA-treated patients. ESAs should be used cautiously with chemotherapy, or in clinical states, associated with elevated risk for thromboembolic complications. The Committee also cautions against ESA use for patients with cancer who are not receiving chemotherapy, since recent trials report increased thromboembolic risks and decreased survival under these circumstances.
Rizzo, J Douglas; Somerfield, Mark R; Hagerty, Karen L; Seidenfeld, Jerome; Bohlius, Julia; Bennett, Charles L; Cella, David F; Djulbegovic, Benjamin; Goode, Matthew J; Jakubowski, Ann A; Rarick, Mark U; Regan, David H; Lichtin, Alan E
2008-01-01
To update the American Society of Clinical Oncology/American Society of Hematology (ASCO/ASH) recommendations for the use of epoetin. The guideline was expanded to address use of darbepoetin and thromboembolic risk associated with these agents. An Update Committee ("Committee") reviewed and analyzed data published since 2002 through July 2007. MEDLINE and the Cochrane Collaboration Library databases were searched. For patients with chemotherapy-associated anemia, the Committee continues to recommend initiating an erythropoiesis-stimulating agent (ESA) as hemoglobin (Hb) approaches, or falls below, 10 g/dL, to increase Hb and decrease transfusions. ESA treatment continues to be recommended for patients with low-risk myelodysplasia for similar reasons. There is no evidence showing increased survival as a result of ESA treatment. Conclusive evidence is lacking that, absent clinical circumstances necessitating earlier treatment, initiating ESAs at Hb levels greater than 10 g/dL either spares more patients from transfusion or substantially improves their quality of life. Starting doses and dose modifications based on response or lack thereof should follow the package insert. Continuing ESAs beyond 6 to 8 weeks in the absence of response, assuming appropriate dose increase has been attempted in nonresponders as per US Food and Drug Administration-approved label, does not seem to be beneficial, and ESA therapy should be discontinued. The Committee recommends monitoring iron stores and supplementing iron intake for ESA-treated patients. ESAs should be used cautiously with chemotherapy, or in clinical states, associated with elevated risk for thromo-embolic complications. The Committee also cautions against ESA use for patients with cancer who are not receiving chemotherapy, since recent trials report increased thromboembolic risks and decreased survival under these circumstances.
Meininger, D; Bück, M; Bohlmann, S; Weber, C F; Strouhal, U; Ihlow, K; Zacharowski, K; Byhahn, C
2011-02-01
The goal of the present study was to evaluate the publication rate of abstracts presented during the German Anesthesia Congress (Deutscher Anästhesiecongress, DAC) and the meeting of the European Society of Anesthesiologists (ESA) in the years 2000 and 2005 in Medline listed journals (http://www.ncbi.nlm.nih.gov/pubmed). In addition, the respective impact factors of the journals in which the articles were published were evaluated (http://www.isiknowledge.com). All abstracts of free papers and posters presented at the DAC and ESA from the years 2000 and 2005 were included into the study. The presence of authors and the topics of abstracts in the literature were analyzed by a Medline based inquiry over a time period of 5 years. The search was based on the last name and initials of authors and when these could not be identified in Medline the search was extended by keywords of relevant topics of the abstract. Umlauts "ä/ö/ü" were replaced by "ae/oe/ue" and "ß" was replaced by "ss". Only original papers were included in this analysis. Once an original paper was found the impact factor of the journal in that year was identified. A total of 465 abstracts from the DAC 2000, 378 abstracts from the DAC 2005, 644 abstracts from the ESA 2000 and 720 abstracts from the ESA 2005 were included. Of the abstracts from the DAC 2000, 183 (39%) were published in Medline listed journals, 179 (47%) from DAC 2005, 218 (34%) from ESA 2000 and 233 (32%) from ESA 2005. The ESA abstracts were published in English more often than the DAC abstracts (ESA 2000: 95%; ESA 2005: 95%; DAC 2000: 78%; DAC 2005: 86%). While the publication rate after the ESA remained nearly unchanged between 2000 and 2005, the publication rate after the DAC increased by about 7%. The average impact factors of the publications were 1.777 (DAC 2000), 2.836 (DAC 2005), 1.825 (ESA 2000) and 2.36 (ESA 2005). Independent of the congress (DAC or ESA) where the abstract was presented, most articles were published in the journal Anesthesia & Analgesia. In the year 2005 more abstracts of the DAC were published in Medline listed papers than in 2000. When comparing the number of abstracts published in Medline listed journals, more abstracts of the DAC were published compared to abstracts of the ESA. The increase in papers written in English after abstract presentation on the DAC is mostly due to the wider readership which can be reached with manuscripts in the English language. Besides a larger readership, English journals often also have a higher ranked impact factor. This analysis does not claim to be a complete registration of all published abstracts due to the limitation on Medline listed journals and publications in other journals were not rated. Medline was selected because of the widespread and international use of this database.
NASA and ESA Collaboration on Hexavalent Chrome Alternatives Pretreatments Only Interim Test Report
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2015-01-01
NASA and ESA continue to search for an alternative to hexavalent chromium in coatings applications that meet their performance requirements in corrosion protection, cost, operability, and health and safety, while typically specifying that performance must be equal to or greater than existing systems. The overall objective of the collaborative effort between NASA TEERM and ESA is to test and evaluate coating systems (pretreatments, pretreatments with primer, and pretreatments with primer and topcoat) as replacements for hexavalent chrome coatings in aerospace applications. This objective will be accomplished by testing promising coatings identified from previous NASA, ESA, Department of Defense (DOD), and other project experience. Additionally, several new materials will be analyzed according to ESA-identified specifications.
Research-grade CMOS image sensors for remote sensing applications
NASA Astrophysics Data System (ADS)
Saint-Pe, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Martin-Gonthier, Philippe; Corbiere, Franck; Belliot, Pierre; Estribeau, Magali
2004-11-01
Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding space applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this paper will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments and performances of CIS prototypes built using an imaging CMOS process will be presented in the corresponding section.
NASA Astrophysics Data System (ADS)
Ott, S.
2010-12-01
The Herschel Space Observatory is the fourth cornerstone mission in the ESA science programme and performs photometry and spectroscopy in the 55 - 672 micron range. The development of the Herschel Data Processing System started in 2002 to support the data analysis for Instrument Level Tests. The Herschel Data Processing System was used for the pre-flight characterisation of the instruments, and during various ground segment test campaigns. Following the successful launch of Herschel 14th of May 2009 the Herschel Data Processing System demonstrated its maturity when the first PACS preview observation of M51 was processed within 30 minutes of reception of the first science data after launch. Also the first HIFI observations on DR21 were successfully reduced to high quality spectra, followed by SPIRE observations on M66 and M74. A fast turn-around cycle between data retrieval and the production of science-ready products was demonstrated during the Herschel Science Demonstration Phase Initial Results Workshop held 7 months after launch, which is a clear proof that the system has reached a good level of maturity. We will summarise the scope, the management and development methodology of the Herschel Data Processing system, present some key software elements and give an overview about the current status and future development milestones.
Dobson space telescope: development of an optical payload of the next generation
NASA Astrophysics Data System (ADS)
Segert, Tom; Danziger, Björn; Gork, Daniel; Lieder, Matthias
2017-11-01
The Dobson Space Telescope (DST) is a research project of the Department of Astronautics at the TUBerlin. For Development and commercialisation there is a close cooperation with the network of the Berlin Space Industry (RIBB). Major Partner is the Astro- und Feinwerktechnik Adlershof GmbH a specialist for space structures and head of the industry consortia which built the DLR BIRD micro satellite. The aim of the project is to develop a new type of deployable telescope that can overcome the mass and volume limitations of small satellites. With the DST payload micro satellites of the 100kg class will be able to carry 50cm main mirror diameter optics (→ 1m GSD). Basis of this technology is the fact that a telescope is mainly empty space between the optical elements. To fold down the telescope during launch and to undfold it after the satellite reached its orbit can save 70% of payload volume and 50% of payload mass. Since these advantages continue along the value added chain DST is of highest priority for the next generation of commercial EO micro satellites. Since 2002 the key technologies for DST have been developed in test benches in Labs of TU-Berlin and were tested on board a ESA parabolic flight campaign in 2005. The development team at TU-Berlin currently prepares the foundation of a start-up company for further development and commercialisation of DST.
NASA Astrophysics Data System (ADS)
Ulrich, Uta; Fohrer, Nicola
2016-04-01
INTRODUCTION Based on the European Directive 2009/128/EC (2009), all member states were obliged to set up National Action Plans for the sustainable use of pesticides. In the German National Action Plan (GNAP), the status of small water bodies (swb) defined as water bodies with a catchment <10km² was stressed among other issues. Since the GNAP stated that knowledge and data base of pesticide contamination of swbs is insufficient, a monitoring of 10 swbs in the catchment of the lowland river Kielstau was carried out in summer and autumn 2015 for selected herbicides and their transformation products (TP). METHODS Grab samples of the water phase were collected once at the end of the spring/summer application period and a screening was carried out for 102 pesticides and 6 TPs. During autumn application, the rape herbicide metazachlor and the winter grain herbicide flufenacet as well as their TPs oxalic acid (OA) and sulfonic acid (ESA) were in the focus of the study. The sampling was carried out event based after the first and second relevant rainfall events after application. The third sample was collected four weeks after the second sampling to observe the occurrence of the TPs. The target compounds were quantified by LC-MSMSMS. RESULTS For all swbs, the pesticide screening after the spring application showed pesticide/TP concentrations below the quantification limits (0.01-0.05 μg L-1) except of the corn herbicdes metolachlor, terbuthylazine and its TP desethylterbuthylazine. These findings were independent from the time elapsed since the last application of these compounds took place which was partly 4 years ago. After autumn application, the samples were analyzed for the herbicides metazachlor, flufenacet and their TPs which were sprayed on the fields where the swb are located in. These results showed that TPs of both herbicides remained from the year before and reached concentrations up to 1.9 μg L-1 for metazachlor ESA, 0.55 μg L-1 for metazachlor OA, 0.16 μg L-1 for flufenacet OA and 0.04 μg L-1 for flufenacet ESA. After autumn application, maximum concentrations of the mother compounds were 0.62 μg L-1 for metazachlor after the second and 0.5 μg L-1 for flufenacet after the first relevant rainfall event. The TP concentrations after autumn application were up to 200 times higher than the mother compound (metazachlor and -ESA). Key words: small water bodies, transformation products, metazachlor, flufenacet, -OA, -ESA
Packet utilisation definitions for the ESA XMM mission
NASA Technical Reports Server (NTRS)
Nye, H. R.
1994-01-01
XMM, ESA's X-Ray Multi-Mirror satellite, due for launch at the end of 1999 will be the first ESA scientific spacecraft to implement the ESA packet telecommand and telemetry standards and will be the first ESOC-controlled science mission to take advantage of the new flight control system infrastructure development (based on object-oriented design and distributed-system architecture) due for deployment in 1995. The implementation of the packet standards is well defined at packet transport level. However, the standard relevant to the application level (the ESA Packet Utilization Standard) covers a wide range of on-board 'services' applicable in varying degrees to the needs of XMM. In defining which parts of the ESA PUS to implement, the XMM project first considered the mission objectives and the derived operations concept and went on to identify a minimum set of packet definitions compatible with these aspects. This paper sets the scene as above and then describes the services needed for XMM and the telecommand and telemetry packet types necessary to support each service.
NASA Astrophysics Data System (ADS)
Sandal, Gro Mjeldheim; Manzey, Dietrich
2009-12-01
Today's space operations involve co-working of people with different ethnical, professional and organisational backgrounds. The aim of this study was to examine the implications of cultural diversity for efficient collaboration within the European Space Agency (ESA), and between ESA employees and representatives from other agencies. ESA employees from European countries ( N=576) answered to the CULT Ground Survey. The results showed that differences in relation to leadership and decision making were the most important issues thought to interfere with efficient co-working within ESA, and between ESA employees and colleagues from other agencies. Employees who collaborated with more than three nationalities within ESA indicated most challenges in co-working due to differences in compliance, behavioural norms and competitiveness. Challenges in co-working differed between agencies, and these differences were consistent with value differences in the national populations. The results may have applied value for training of European employees working in international space program teams.
Hubble View of a Nitrogen-Rich Nebula
2015-06-26
This NASA/ESA Hubble Space Telescope image shows a planetary nebula named NGC 6153, located about 4,000 light-years away in the southern constellation of Scorpius (The Scorpion). The faint blue haze across the frame shows what remains of a star like the sun after it has depleted most of its fuel. When this happens, the outer layers of the star are ejected, and get excited and ionized by the energetic ultraviolet light emitted by the bright hot core of the star, forming the nebula. NGC 6153 is a planetary nebula that is elliptical in shape, with an extremely rich network of loops and filaments, shown clearly in this Hubble image. However, this is not what makes this planetary nebula so interesting for astronomers. Measurements show that NGC 6153 contains large amounts of neon, argon, oxygen, carbon and chlorine — up to three times more than can be found in the solar system. The nebula contains a whopping five times more nitrogen than our sun! Although it may be that the star developed higher levels of these elements as it grew and evolved, it is more likely that the star originally formed from a cloud of material that already contained a lot more of these elements. Text credit: European Space Agency Image credit: ESA/Hubble & NASA, Acknowledgement: Matej Novak NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Salvadó, Joan A.; Bröder, Lisa; Andersson, August; Semiletov, Igor P.; Gustafsson, Örjan
2017-10-01
Black carbon (BC) plays an important role in carbon burial in marine sediments globally. Yet the sequestration of BC in the Arctic Ocean is poorly understood. Here we assess the concentrations, fluxes, and sources of soot BC (SBC)—the most refractory component of BC—in sediments from the East Siberian Arctic Shelf (ESAS), the World's largest shelf sea system. SBC concentrations in the contemporary shelf sediments range from 0.1 to 2.1 mg g-1 dw, corresponding to 2-12% of total organic carbon. The 210Pb-derived fluxes of SBC (0.42-11 g m-2 yr-1) are higher or in the same range as fluxes reported for marine surface sediments closer to anthropogenic emissions. The total burial flux of SBC in the ESAS ( 4,000 Gg yr-1) illustrates the great importance of this Arctic shelf in marine sequestration of SBC. The radiocarbon signal of the SBC shows more depleted yet also more uniform signatures (-721 to -896‰; average of -774 ± 62‰) than of the non-SBC pool (-304 to -728‰; average of -491 ± 163‰), suggesting that SBC is coming from an, on average, 5,900 ± 300 years older and more specific source than the non-SBC pool. We estimate that the atmospheric BC input to the ESAS is negligible ( 0.6% of the SBC burial flux). Statistical source apportionment modeling suggests that the ESAS sedimentary SBC is remobilized by thawing of two permafrost carbon (PF/C) systems: surface soil permafrost (topsoil/PF; 25 ± 8%) and Pleistocene ice complex deposits (ICD/PF; 75 ± 8%). The SBC contribution to the total mobilized permafrost carbon (PF/C) increases with increasing distance from the coast (from 5 to 14%), indicating that the SBC is more recalcitrant than other forms of translocated PF/C. These results elucidate for the first time the key role of permafrost thaw in the transport of SBC to the Arctic Ocean. With ongoing global warming, these findings have implications for the biogeochemical carbon cycle, increasing the size of this refractory carbon pool in the Arctic Ocean.
SMART-1 Technology and Science Experiments in Preparation of Future Missions and ESA Cornerstones
NASA Astrophysics Data System (ADS)
Marini, A. E.; Racca, G. D.; Foing, B. H.; SMART-1 Project
1999-12-01
SMART-1 is the first ESA Small Mission for Advanced Research in Technology, aimed at the demonstration of enabling technologies for future scientific missions. SMART-1's prime technology objective is the demonstration of the solar primary electric propulsion, a key for future interplanetary missions. SMART-1 will use a Stationary Plasma Thruster engine, cruising 15 months to capture a Moon polar orbit. A gallery of images of the spacecraft is available at the web site: http://www.estec.esa.nl/spdwww/smart1/html/11742.html SMART-1 payload aims at monitoring the electric propulsion and its spacecraft environment and to test novel instrument technologies. The Diagnostic Instruments include SPEDE, a spacecraft potential plasma and charged particles detector, to characterise both spacecraft and planetary environment, together with EPDP, a suite of sensors monitoring secondary thrust-ions, charging and deposition effects. Innovative spacecraft technologies will be tested on SMART-1 : Lithium batteries and KATE, an experimental X/Ka-band deep-space transponder, to support radio-science, to monitor the accelerations of the electric propulsion and to test turbo-code technique, enhancing the return of scientific data. The scientific instruments for imaging and spectrometry are: \\begin{itemize} D-CIXS, a compact X-ray spectrometer based on novel SCD detectors and micro-structure optics, to observe X-ray celectial objects and to perform lunar chemistry measurements. SIR, a miniaturised quasi-monolithic point-spectrometer, operating in the Near-IR (0.9 ÷ 2.4 micron), to survey the lunar crust in previously uncovered optical regions. AMIE, a miniature camera based on 3-D integrated electronics, imaging the Moon, and other bodies and supporting LASER-LINK and RSIS. RSIS and LASER-LINK are investigations performed with the SMART-1 Payload: \\begin{itemize} RSIS: A radio-science Experiment to validate in-orbit determination of the libration of the celestial target, based on high-accuracy tracking in Ka-band and imaging of a surface landmark LASER-LINK: a demonstration of acquisition of a deep-space laser-link from the ESA Optical Ground Station at Tenerife, validating also the novel sub-apertured telescope designed for the mitigation of atmospheric scintillation disturbances.
Gardiner, Roisin; Roshan, Davood; Brennan, Ann; Connolly, Denise; Murray, Susan; Reddan, Donal
2018-04-27
Anaemia among haemodialysis patients is treated with iron and erythropoietin-stimulating agents (ESAs). ESAs reduce requirements for blood transfusions but are also expensive and overzealous use may be associated with adverse outcomes. Recent international trends have been characterised by reduced ESA doses and a greater reliance on intravenous (IV) iron. We determined trends in prescribing patterns of ESAs and IV iron for the treatment of anaemia in two representative Irish dialysis centres and correlated with current guidelines and international trends. Patient data was accessed from the Kidney Disease Clinical Patient Management System (KDCPMS) for the period 2012 to 2014. We generated reports on ESA and iron doses, lab data (haemoglobin (Hb), transferrin saturation (TSAT) and ferritin) and patient population characteristics. We mapped the trends in ESA, iron dosing and lab parameters achieved. A linear mixed model determined the significance of these trends over time. ESA dosing became lower in the second, third and fourth quarters of 2014. Dosing of iron increased throughout but a large increase was seen in the third and fourth quarters of 2014. Ferritin levels decreased and TSAT and haemoglobin levels increased. Changes in iron dosing were significant with p value of < 0.05. Our findings are consistent with recent global trends toward increasing iron use. Such trends may have economic implications given the high cost of ESAs and the relative affordability of iron. In addition, the potential harm of excessive iron dosing may need to be considered.
Pharmacovigilance in practice: erythropoiesis-stimulating agents.
Hedenus, Michael; Ludwig, Heinz; Henry, David H; Gasal, Eduard
2014-10-01
Pharmacovigilance (PV) is the science and activities relating to the detection, assessment, understanding, and prevention of adverse effects or other problems related to medical products after they have been licensed for marketing. The purpose of PV is to advance the safe use of marketed medical products. Regulatory agencies and license holders collaborate to collect data reported by health care providers, patients, and the public as well as data from systematic reviews, meta-analyses, and individual clinical and nonclinical studies. They validate and analyze the data to determine whether safety signals exist, and if warranted, develop an action plan to mitigate the identified risk. Erythropoiesis-stimulating agents (ESAs) provide an example of how PV is applied in reality. Among other approved indications, ESAs may be used to treat anemia in patients with chemotherapy-induced anemia. ESAs increase hemoglobin levels and reduce the need for transfusions; they are also associated with a known increased risk of thromboembolic events. Starting in 2003, emerging data suggested that ESAs might reduce survival. As a result of PV activities by regulatory agencies and license holders, labeling for ESAs addresses these risks. Meta-analyses and individual clinical studies have confirmed that ESAs increase the risk of thromboembolic events, but when used as indicated, ESAs have not been shown to have a significant effect on survival or disease progression. Ongoing safety studies will provide additional data in the coming years to further clarify the risks and benefits of ESAs. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Tang, Wenfu; Arellano, Avelino. F.; Raman, Aishwarya
2015-04-01
Tropical forest fires significantly impact atmospheric composition and regional and global climate. In particular, fires in Equatorial Southern Africa (ESA) and Amazon comprise the two largest contributors to fire emissions of chemically and radiatively-active atmospheric constituents (such as CO, BC, CO2) across the globe. Here, we investigate the spatiotemporal trends in fire characteristics between these regions using combustion signatures observed from space. Our main goals are: 1) To identify key relationships between the trends in co-emitted constituents across these regions, and, 2) To explore linkages of the observed trends in fire characteristics with the main drivers of change such as meteorology, fire practice, development patterns, and ecosystem feedbacks. We take advantage of the similarity in latitude and land area between these regions in understanding some of these drivers. Our approach begins with a multi-species analysis of trends in the observed abundance of CO, NO2, and aerosols over these regions and across the time period 2004 to 2014. We use multi-spectral retrievals of CO from Measurements Of Pollution In The Troposphere (MOPITT), tropospheric column retrievals of NO2 from Ozone Monitoring Instrument (OMI), and aerosol optical depth retrievals from Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The long records from these retrievals provide a unique opportunity to study atmospheric composition across the most recent decade. While several studies in the past have reported trends over these regions, most of these studies have focused on a particular constituent. A unique aspect of this work involves understanding covariations in co-emitted constituents to provide a more comprehensive look at fire characteristics and behavior, which are yet to be fully understood. Our initial results show that the annual average of CO for ESA (~115 ppbv) is greater than that of Amazon (110 ppbv). This pattern is also seen in NO2 (ESA : ~215 pptv ; Amazon : ~155 pptv). The standard deviation of CO is higher in Amazon (50 ppbv) when compared to ESA (35 ppbv) whereas NO2 shows similar standard deviation in Amazon and ESA (70-90 pptv). We also find changes in the timing patterns of the large fire events across these regions. Since this has important implications to changes in fire behavior (smoldering and flaming phase), we also investigated retrievals of fire radiative power (FRP) from MODIS and information on land cover change and deforestation. We find FRP patterns consistent with our results. Finally, we will explore other measurements available during this period (aircraft field campaigns and in-situ observations) and compare with current fire emission models, such as the Global Fire Emission Database (GFED) to test the robustness of our findings. We note that this exploratory work provides a unique perspective of fire characteristics that will be useful to improve predictive capability of fire emission and atmospheric models for the Amazon and ESA.
29 CFR 42.20 - Regional Farm Labor Coordinated Enforcement Committee.
Code of Federal Regulations, 2010 CFR
2010-07-01
... representatives of ESA, OSHA, ETA (the Regional MSFW Monitor Advocate), and the Office of the Regional Solicitor... is reviewed by the National Committee and appropriately revised, the regional offices of ESA, ETA... level working group in each region consisting of regional staff representatives from ESA, ETA, OSHA, the...
NASA Astrophysics Data System (ADS)
Besse, S.; Vallat, C.; Geiger, B.; Grieger, B.; Costa, M.; Barbarisi, I.
2017-06-01
The Planetary Science Archive (PSA) is the European Space Agency’s (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int.
1989-09-01
Itterconnection wiring diagram for the ESA ............................... 34 3-13 Typical gain versus total count curve for CEM...42 3-16 Calibration curve for energy bin 12 of the ion ESA ....................... 43 3-17 Flight ESA S/N001...Calibration curves for SPM S/N001 ......................................... 67 4-11 Calibration curves for SPM S/N002
NASA and ESA Collaboration on Hexavalent Chrome Free Coatings
NASA Technical Reports Server (NTRS)
Greene, Brian
2017-01-01
Presentation on the NASA and ESA Collaboration on Hexavalent Chrome Free Coatings project. Project is in response to a Memorandum of Understanding between NASA and ESA Concerning Cooperation in the Field of Space Transportation - signed September 11, 2009. The National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) have expressed mutual interest in pursuing cooperation in the areas of evaluating hexavalent chrome-free coatings, environmentally-preferable coatings for maintenance of launch facilities and ground support equipment, citric acid as an alternative to nitric acid for passivation of stainless steel alloys.
Report from the Gravitational Observatory Advisory Team
NASA Astrophysics Data System (ADS)
Mueller, Guido; Gravitational Observatory Advisory Team
2016-03-01
As a response to the selection of the Gravitational Universe as the science theme for ESA's L3 mission, ESA formed the Gravitational-Wave Observatory Advisory Team (GOAT) to advise ESA on the scientific and technological approach for a gravitational wave observatory. NASA is participating with three US scientists and one NASA observer; JAXA was also invited and participates with one observer. The GOAT looked at a range of mission technologies and designs, discussed their technical readiness with respect to the ESA schedule, recommended technology development activities for selected technologies, and worked with the wider gravitational-wave community to analyze the impact on the science of the various mission designs. The final report is expected to be submitted to ESA early March and I plan to summarize its content.
Community engagement as conflict prevention: Understanding the social license to operate
NASA Astrophysics Data System (ADS)
Knih, Dejana
This thesis examines community engagement as a form of conflict prevention in order to obtain the social license to operate (SLO) in Alberta's oil and gas industry. It does this by answering the question: what are the key elements of the Social License to Operate and how can these elements be applied to community engagement/consultation in a way that prevents conflicts in Alberta's oil and gas industry? The underlying assumption of this thesis is that building good relationships and working collaboratively functions as a form of conflict prevention and that this in turn leads to the SLO. This thesis outlines the key features of both successful community engagement and of the SLO, to provide a guideline for what is needed to obtain the SLO. Data was collected from semi-structured interviews and through a literature review. The data analysis concluded that there are direct parallels between the key elements of effective community engagement and the key elements of the SLO as identified in the interviews. These parallels are: knowing the community, addressing community needs, corporate social responsibility, relationship building, follow through and evidence for what has been done, executive buy-in, excellent communication, and open dialogue, all within a process which is principled (there is trust, understanding, transparency and respect), inclusive, dynamic, flexible, ongoing, and long-term. Moreover, the key elements of effective community engagement and of the SLO identified in the interviews also overlapped with those found in the literature review, with only one exception. The literature review explicitly named early involvement as a key element of both effective community engagement and the SLO, whereas the interview participants only explicitly indicated it as a key factor of community engagement and implied it to be a key element of the SLO.
East Meets West on "Double Star", a Joint Mission to Explore Earth's Magnetic Field
NASA Astrophysics Data System (ADS)
2001-07-01
ESA Director General Antonio Rodotà and Luan Enjie, Administrator of the CNSA, signed an official agreement that will enable European experiments to be flown on Chinese satellites for the first time. "This agreement marks a significant advance for international cooperation in the exploration and peaceful use of outer space," said Mr. Rodotà. "It is one of the most important landmarks in scientific collaboration since ESA and the People's Republic of China first agreed to exchange scientific information more than 20 years ago." "The Double Star programme will be just the first step in substantial cooperation between the Chinese National Space Administration and ESA" said Mr Luan Enjie. "The signing of today's agreement paves the way not only for reciprocal cooperation between scientists, but for the establishment of comprehensive cooperation between the two agencies". Double Star will follow in the footsteps of ESA's groundbreaking Cluster mission by studying the effects of the Sun on the Earth's environment. Conducting joint studies with Cluster and Double Star should increase the overall scientific return from both missions. A key aspect of ESA's participation in the Double Star project is the inclusion of 10 instruments that are identical to those currently flying on the four Cluster spacecraft. A further eight experiments will be provided by Chinese institutes. "We hope it will be possible to make coordinated measurements with both Cluster and Double Star." said Cluster Project Scientist Philippe Escoubet. "For example, we would hope to carry out a joint exploration of the magnetotail, a region where storms of high energy particles are generated. When these particles reach Earth, they can cause power cuts, damage satellites and disrupt communications." Six of the eleven Cluster principal investigators have agreed to provide flight spares or duplicates of the experiments that are currently revolutionising our understanding of near-Earth space. This reuse of Cluster instruments has a number of advantages for both European and Chinese scientists. "By flying experiments identical to those on Cluster, we can reduce costs and development time," explained Alberto Gianolio, ESA Project Manager for Double Star. "This will minimise risk and help us to ensure that we are able to meet the spacecraft development schedule." ESA has agreed to contribute 8 million euros to the Double Star programme. This funding will be used for refurbishment and pre-integration of the European instruments, acquisition of data for 4 hours per day and coordination of scientific operations. Notes for Editors: Double Star will be the first mission launched by China to explore the Earth's magnetosphere - the magnetic bubble that surrounds our planet. As its name suggests, Double Star will involve two satellites - each designed, developed, launched and operated by the CNSA - flying in complementary orbits around the Earth. This orbital configuration will enable scientists to obtain simultaneous data on the changing magnetic field and population of electrified particles in different regions of the magnetosphere. The duo is expected to be launched by Chinese Long March 2C rockets in December 2002 and March 2003. This schedule may enable them to operate alongside ESA's Cluster mission - a mini-flotilla of four identical spacecraft launched into elliptical orbits around the Earth last summer. The "equatorial" spacecraft (DSP-1) will be launched into an elliptical orbit of 550 x 60,000 km, inclined at 28.5 degrees to the equator. This will enable it to investigate the Earth's huge magnetic tail, the region where particles are accelerated towards the planet's magnetic poles by a process known as reconnection. The "polar" satellite (DSP-2) will concentrate on physical processes taking place over the magnetic poles and the development of aurorae. It will have a 350 x 25,000 km orbit taking it round the Earth once every 7.3 hours.
Montada-Atin, Tess; Choi, Diana; Woo, Minna; Retnakaran, Ravi; Huang, Michael; Prasad, G V Ramesh; Zaltzman, Jeffrey S
2016-01-01
Studies have shown that erythropoietin-stimulating agents (ESAs) protect mice against the development of diabetes through direct effects on pancreatic ß cells. However, the effect of ESAs on the incidence of diabetes in humans has not been well studied. It is unknown whether exposure to ESAs is associated with a reduced incidence of new-onset diabetes after transplant (NODAT). The objective of this study is to examine the relationship between ESA exposure post-renal transplant and the development of NODAT. We performed a single center, retrospective cohort analysis. We compared patients who received a first live or deceased donor renal allograft, with any exposure to an ESA vs. those without such exposure and who developed NODAT and who did not. Patients with a prior history of diabetes mellitus or multi-organ transplant, including a second renal transplant were excluded. NODAT was defined based on the 2008 Canadian Diabetes Association criteria. Multivariate logistic regression analysis was performed to determine factors independently associated with NODAT. One hundred thirty-two (29 %) patients were exposed to an ESA, four of which developed NODAT compared to 128 who did not develop NODAT (p < 0.0001). Of those not exposed to an ESA, 15 % (48/319) developed NODAT. By Fisher's exact test, exposure to an ESA at any time post-transplant reduced the risk of developing NODAT; odds ratio (OR) = 0.08, 95 % confidence interval (CI) (0.018-0.352), p = 0.0008. Older age; OR = 1.41, 95 % CI (1.036-1.933), p < 0.02, higher random blood sugar at discharge; OR = 1.30, 95 % CI (1.077-1.57), p < 0.006 and deceased donor; OR 2.18 CI (1.009-4.729), p = 0.04 were associated with an increased risk of NODAT. The limitations of this study include its retrospective nature, single center, and homogenous population; thus, generalizability of the results must be approached with caution. ESA exposure may be associated with a reduced incidence of NODAT in the post-renal transplant population. The role of ESA in preventing NODAT requires further investigation.
Gudjonsson, Thorarinn; Villadsen, René; Nielsen, Helga Lind; Rønnov-Jessen, Lone; Bissell, Mina J.; Petersen, Ole William
2002-01-01
The epithelial compartment of the human breast comprises two distinct lineages: the luminal epithelial and the myoepithelial lineage. We have shown previously that a subset of the luminal epithelial cells could convert to myoepithelial cells in culture signifying the possible existence of a progenitor cell. We therefore set out to identify and isolate the putative precursor in the luminal epithelial compartment. Using cell surface markers and immunomagnetic sorting, we isolated two luminal epithelial cell populations from primary cultures of reduction mammoplasties. The major population coexpresses sialomucin (MUC+) and epithelial-specific antigen (ESA+) whereas the minor population has a suprabasal position and expresses epithelial specific antigen but no sialomucin (MUC−/ESA+). Two cell lines were further established by transduction of the E6/E7 genes from human papilloma virus type 16. Both cell lines maintained a luminal epithelial phenotype as evidenced by expression of the tight junction proteins, claudin-1 and occludin, and by generation of a high transepithelial electrical resistance on semipermeable filters. Whereas in clonal cultures, the MUC+/ESA+ epithelial cell line was luminal epithelial restricted in its differentiation repertoire, the suprabasal-derived MUC−/ESA+ epithelial cell line was able to generate itself as well as MUC+/ESA+ epithelial cells and Thy-1+/α-smooth muscle actin+ (ASMA+) myoepithelial cells. The MUC−/ESA+ epithelial cell line further differed from the MUC+/ESA+ epithelial cell line by the expression of keratin K19, a feature of a subpopulation of epithelial cells in terminal duct lobular units in vivo. Within a reconstituted basement membrane, the MUC+/ESA+ epithelial cell line formed acinus-like spheres. In contrast, the MUC−/ESA+ epithelial cell line formed elaborate branching structures resembling uncultured terminal duct lobular units both by morphology and marker expression. Similar structures were obtained by inoculating the extracellular matrix-embedded cells subcutaneously in nude mice. Thus, MUC−/ESA+ epithelial cells within the luminal epithelial lineage may function as precursor cells of terminal duct lobular units in the human breast. PMID:11914275
Vucetich, John A; Nelson, Michael P; Phillips, Michael K
2006-10-01
The ethical, legal, and social significance of the U.S. Endangered Species Act of 1973 (ESA) is widely appreciated. Much of the significance of the act arises from the legal definitions that the act provides for the terms threatened species and endangered species. The meanings of these terms are important because they give legal meaning to the concept of a recovered species. Unfortunately, the meanings of these terms are often misapprehended and rarely subjected to formal analysis. We analyzed the legal meaning of recovered species and illustrate key points with details from "recovery" efforts for the gray wolf (Canis lupus). We focused on interpreting the phrase "significant portion of its range," which is part of the legal definition of endangered species. We argue that recovery and endangerment entail a fundamentally normative dimension (i.e., specifying conditions of endangerment) and a fundamentally scientific dimension (i.e., determining whether a species meets the conditions of endangerment). Specifying conditions for endangerment is largely normative because it judges risks of extinction to be either acceptable or unacceptable. Like many other laws that specify what is unacceptable, the ESA largely specifies the conditions that constitute unacceptable extinction risk. The ESA specifies unacceptable risks of extinction by defining endangered species in terms of the portion of a species' range over which a species is "in danger of extinction." Our analysis indicated that (1) legal recovery entails much more than the scientific notion of population viability, (2) most efforts to recover endangered species are grossly inadequate, and (3) many unlisted species meet the legal definition of an endangered or threatened species.
Duvall, Alison L; Metcalf, Alexander L.; Coates, Peter S.
2016-01-01
The Endangered Species Act (ESA) continues to serve as one of the most powerful and contested federal legislative mandates for conservation. In the midst of heated debates, researchers, policy makers, and conservation practitioners champion the importance of cooperative conservation and social-ecological systems approaches, which forge partnerships at multiple levels and scales to address complex ecosystem challenges. However, few real-world examples exist to demonstrate how multifaceted collaborations among stakeholders who share a common goal of conserving at-risk species may be nested within a systems framework to achieve social and ecological goals. Here, we present a case study of Greater Sage-grouse (Centrocercus urophasianus) conservation efforts in the “Bi-State” region of California and Nevada, United States. Using key-informant interviews, we explored dimensions and drivers of this landscape-scale conservation effort. Three themes emerged from the interviews, including 1) ESA action was transformed into opportunity for system-wide conservation; 2) a diverse, locally based partnership anchored collaboration and engagement across multiple levels and scales; and 3) best-available science combined with local knowledge led to “certainty of effectiveness and implementation”—the criteria used by the US Fish and Wildlife Service to evaluate conservation efforts when making listing decisions. Ultimately, collaborative conservation through multistakeholder engagement at various levels and scales led to proactive planning and implementation of conservation measures and precluded the need for an ESA listing of the Bi-State population of Greater Sage-grouse. This article presents a potent example of how a systems approach integrating policy, management, and learning can be used to successfully overcome the conflict-laden and “wicked” challenges that surround at-risk species conservation.
NASA Astrophysics Data System (ADS)
Li, Xin; Menenti, Massimo
2010-10-01
The general objective of project 5322 in the Dragon 2 programme is to quantitatively retrieve some key eco- hydrological parameters by using remote sensed data, especially from ESA, Chinese, and the Third Party Mission (TPM). To achieve this goal, a comprehensive observation experiment, Watershed Allied Telemetry Experimental Research (WATER) was carried out. WARER is a simultaneously airborne, satellite-borne, and ground-based remote sensing experiment took place in the Heihe River Basin, a typical inland river basin in the northwest of China. This paper introduces the background and implementation of WATER. Data have been obtained so far are described in details. After a period of data analysis for two years, numerous results have also been achieved. This paper presents some early results of WATER as well.
Hubble Eyes Galactic Refurbishment
2015-04-30
The smudge of stars at the center of this NASA/ESA Hubble Space Telescope image is a galaxy known as UGC 5797. UGC 5797 is an emission line galaxy, meaning that it is currently undergoing active star formation. The result is a stellar population that is constantly being refurbished as massive bright blue stars form. Galaxies with prolific star formation are not only veiled in a blue tint, but are key to the continuation of a stellar cycle. In this image UGC 5797 appears in front of a background of spiral galaxies. Spiral galaxies have copious amounts of dust and gas — the main ingredient for stars — and therefore often also belong to the class of emission line galaxies. Spiral galaxies have disk-like shapes that drastically vary in appearance depending on the angle at which they are observed. The collection of spiral galaxies in this frame exhibits this attribute acutely: Some are viewed face-on, revealing the structure of the spiral arms, while the two in the bottom left are seen edge-on, appearing as plain streaks in the sky. There are many spiral galaxies, with varying colors and at different angles, sprinkled across this image — just take a look. Credit: ESA/Hubble & NASA, Acknowledgement: Luca Limatola
50 CFR 23.35 - What are the requirements for an import permit?
Code of Federal Regulations, 2014 CFR
2014-10-01
... IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD... Elephant, and Namibian Southern White Rhinoceros Sport-hunted Trophies Appendix-I Plants Appendix-I... CITES:ESA Plants ESA Sport-hunted Trophies ESA Wildlife 3-200-36 3-200-20 3-200-37 (3) Marine Mammal...
50 CFR 23.35 - What are the requirements for an import permit?
Code of Federal Regulations, 2013 CFR
2013-10-01
... IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD... Elephant, and Namibian Southern White Rhinoceros Sport-hunted Trophies Appendix-I Plants Appendix-I... CITES:ESA Plants ESA Sport-hunted Trophies ESA Wildlife 3-200-36 3-200-20 3-200-37 (3) Marine Mammal...
50 CFR 23.35 - What are the requirements for an import permit?
Code of Federal Regulations, 2010 CFR
2010-10-01
... IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD... Elephant, and Namibian Southern White Rhinoceros Sport-hunted Trophies Appendix-I Plants Appendix-I... CITES:ESA Plants ESA Sport-hunted Trophies ESA Wildlife 3-200-36 3-200-20 3-200-37 (3) Marine Mammal...
50 CFR 23.35 - What are the requirements for an import permit?
Code of Federal Regulations, 2012 CFR
2012-10-01
... IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD... Elephant, and Namibian Southern White Rhinoceros Sport-hunted Trophies Appendix-I Plants Appendix-I... CITES:ESA Plants ESA Sport-hunted Trophies ESA Wildlife 3-200-36 3-200-20 3-200-37 (3) Marine Mammal...
50 CFR 23.35 - What are the requirements for an import permit?
Code of Federal Regulations, 2011 CFR
2011-10-01
... IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD... Elephant, and Namibian Southern White Rhinoceros Sport-hunted Trophies Appendix-I Plants Appendix-I... CITES:ESA Plants ESA Sport-hunted Trophies ESA Wildlife 3-200-36 3-200-20 3-200-37 (3) Marine Mammal...
Should Reformers Support Education Savings Accounts?
ERIC Educational Resources Information Center
Ladner, Matthew; Smith, Nelson
2016-01-01
In this article, "Education Next" talks with Matthew Ladner and Nelson Smith on the topic of Education Savings Accounts (ESAs). ESAs apply the logic of school choice to the ever-expanding realm of education offerings. Rather than simply empowering families to select the school of their choice, ESAs provide families with most or all of…
The challenges and opportunities of a commercial human spaceflight mission to the ISS.
Belingheri, M; Mirra, C
2003-01-01
ESA astronauts' ISS flight opportunities are considered as a vital source to meet the utilisation, operation and political objectives that Europe has established for participating in the International Space Station programme. Recent internal ESA assessments have demonstrated that a rate of three flights per year for European Astronauts should be maintained as a minimum objective. The current flight rate is lower than this. In order to improve this situation, in the context of the activation of the ESA ISS Commercialisation programme, ESA is developing the conditions for the establishment of commercially based human spaceflights with the financial support of both ESA and the private sector or, in the future, only the latter. ESA is working in a Partnership with the space industry to facilitate the implementation of such projects and support customers with a range of end-to-end commercial services. The opportunities and challenges of a "commercial human spaceflight", involving a member of the European Astronaut Corps, or a privately employed flight participant, are discussed here. c2003 Elsevier Science Ltd. All rights reserved.
Messina, Piero; Vennemann, Dietrich
2005-01-01
After a large consultation with the scientific and industrial communities in Europe, the Aurora Space Exploration Programme was unanimously approved at the European Space Agency (ESA) Council at ministerial level in Edinburgh in 2001. This marked the start of the programme's preparation phase that was due to finish by the end of 2004. Aurora features technology development robotic and crewed rehearsal missions aimed at preparing a human mission to Mars by 2033. Due to the evolving context, both international and European, ESA has undertaken a review of the goals and approach of its exploration programme. While maintaining the main robotic missions that had been conceived during Aurora, the European Space Exploration Programme that is currently being proposed to the Aurora participating states and other ESA Member States has a reviewed approach and will feature a greater synergy with other ESA programmes. The paper will present the process that led to the revision of ESA's plans in the field of exploration and will give the current status of the programme. c2005 Published by Elsevier Ltd.
Del Vecchio, Lucia; Locatelli, Francesco
2012-11-01
Erythropoiesis-stimulating agents (ESAs) have been the main therapy for anemia in CKD patients since the late eighties. Since then, treatment indications have progressively changed, together with a progressive increase in therapeutic targets, in terms of hemoglobin levels. This paper discusses possible concerns about ESA use and increased cardiovascular risk (in particular stroke), hypertension, cancer progression and the development of pure red cell aplasia. A literature search was done on PubMed to obtain studies about the adverse effects of ESA in the CKD population. The publication of the TREAT study has largely contributed to the concerns about ESA use, indicating that complete anemia correction may not be safe in the CKD population. This may be particularly true in high-risk patients, especially if hyporesponsive to ESA treatment. However, there is a gray area of no evidence either way for intermediate levels (11.5 - 13 g/dl), in comparison with higher or lower levels. New recommendations about ESA use in the CKD population by the Food and Drug Administration seem to move toward treatment individualization.
Mission Techniques for Exploring Saturn's icy moons Titan and Enceladus
NASA Astrophysics Data System (ADS)
Reh, Kim; Coustenis, Athena; Lunine, Jonathan; Matson, Dennis; Lebreton, Jean-Pierre; Vargas, Andre; Beauchamp, Pat; Spilker, Tom; Strange, Nathan; Elliott, John
2010-05-01
The future exploration of Titan is of high priority for the solar system exploration community as recommended by the 2003 National Research Council (NRC) Decadal Survey [1] and ESA's Cosmic Vision Program themes. Cassini-Huygens discoveries continue to emphasize that Titan is a complex world with very many Earth-like features. Titan has a dense, nitrogen atmosphere, an active climate and meteorological cycles where conditions are such that the working fluid, methane, plays the role that water does on Earth. Titan's surface, with lakes and seas, broad river valleys, sand dunes and mountains was formed by processes like those that have shaped the Earth. Supporting this panoply of Earth-like processes is an ice crust that floats atop what might be a liquid water ocean. Furthermore, Titan is rich in very many different organic compounds—more so than any place in the solar system, except Earth. The Titan Saturn System Mission (TSSM) concept that followed the 2007 TandEM ESA CV proposal [2] and the 2007 Titan Explorer NASA Flagship study [3], was examined [4,5] and prioritized by NASA and ESA in February 2009 as a mission to follow the Europa Jupiter System Mission. The TSSM study, like others before it, again concluded that an orbiter, a montgolfiѐre hot-air balloon and a surface package (e.g. lake lander, Geosaucer (instrumented heat shield), …) are very high priority elements for any future mission to Titan. Such missions could be conceived as Flagship/Cosmic Vision L-Class or as individual smaller missions that could possibly fit within NASA's New Frontiers or ESA's Cosmic Vision M-Class budgets. As a result of a multitude of Titan mission studies, several mission concepts have been developed that potentially fit within various cost classes. Also, a clear blueprint has been laid out for early efforts critical toward reducing the risks inherent in such missions. The purpose of this paper is to provide a brief overview of potential Titan (and Enceladus) mission techniques and to describe risk reduction efforts and recent advances toward enabling such future missions. References [1] NRC Space Studies Board (2003), New Frontiers in the Solar System: An Integrated Exploration Strategy (first Decadal Survey Report), National Academic Press, Washington, DC. [2] Coustenis et al. (2008). Experimental Astronomy, DOI: 10.1007/s10686-008-9103-z. [3] J. Leary, R. Strain, R. Lorenz, J. H. Waite, 2008. Titan Explorer Flagship Mission Study, http://www.lpi.usra.edu/opag/Titan_Explorer_Public_Report.pdf. [4] TSSM Final Report, 3 November 2008, NASA Task Order NMO710851 [5] TSSM NASA/ESA Joint Summary Report, 15 November 2008, NASA Task Order NMO710851
The ESA Planetary Science Archive User Group (PSA-UG)
NASA Astrophysics Data System (ADS)
Pio Rossi, Angelo; Cecconi, Baptiste; Fraenz, Markus; Hagermann, Axel; Heather, David; Rosenblatt, Pascal; Svedhem, Hakan; Widemann, Thomas
2014-05-01
ESA has established a Planetary Science Archive User Group (PSA-UG), with the task of offering independent advice to ESA's Planetary Science Archive (e.g. Heather et al., 2013). The PSA-UG is an official and independent body that continuously evaluates services and tools provided by the PSA to the community of planetary data scientific users. The group has been tasked with the following top level objectives: a) Advise ESA on future development of the PSA. b) Act as a focus for the interests of the scientific community. c) Act as an advocate for the PSA. d) Monitor the PSA activities. Based on this, the PSA-UG will report through the official ESA channels. Disciplines and subjects represented by PSA-UG members include: Remote Sensing of both Atmosphere and Solid Surfaces, Magnetospheres, Plasmas, Radio Science and Auxilliary data. The composition of the group covers ESA missions populating the PSA both now and in the near future. The first members of the PSA-UG were selected in 2013 and will serve for 3 years, until 2016. The PSA-UG will address the community through workshops, conferences and the internet. Written recommendations will be made to the PSA coordinator, and an annual report on PSA and the PSA-UG activities will be sent to the Solar System Exploration Working Group (SSEWG). Any member of the community and planetary data user can get in touch with individual members of the PSA-UG or with the group as a whole via the contacts provided on the official PSA-UG web-page: http://archives.esac.esa.int/psa/psa-ug. The PSA is accessible via: http://archives.esac.esa.int/psa References: Heather, D., Barthelemy, M., Manaud, N., Martinez, S., Szumlas, M., Vazquez, J. L., Osuna, P. and the PSA Development Team (2013) ESA's Planetary Science Archive: Status, Activities and Plans. EuroPlanet Sci. Congr. #EPSC2013-626
The ESA Initiatives towards European Technical Universities
NASA Astrophysics Data System (ADS)
Messina, P.
2002-01-01
Education is one of the ESA mandatory activities and a renewed commitment has been shown by the reinforcement of the ESA Education Office and by the launching new initiatives in addition to those already in place. The new structure of the Office includes, next to units dealing with primary and secondary schools and with other Educational projects, a service dedicated to, among other things, foster the relations with European Universities and their students. In line with the overall objectives and strategy of Education policy at ESA, the fostering of co- operation between ESA and European Universities is aimed at creating a coherent and effective framework for the two parties to mutually benefit from an enhanced collaboration. ESA has a long and successful tradition of working together Academia, especially in the field of research and development. This new initiative wants to leverage on the past and present collaboration and reinforce the links from an educational point of view. The paper will give on overview how these links are being created, the impact on the ESA offer in terms of traineeship and opportunities for young people and will draw the first conclusions from the initial experiences gathered. Also it will address the impact of the on-going europeanisation process of higher education on the relations with European Universities and on the ESA programmes offered to them. Examples of on-going co-operation will be given (e.g. Aurora Programme) with an analysis of the lesson learned. The wider European context and how ESA's efforts contribute to the creation of a European Research Area (ERA) and to the achievement of the objectives set forth by the Lisbon summit will also be touched upon. The conclusions will address the next steps in this initiative and the feedback from the various partners and how this is being taken into account to steer the it to respond to the real needs of higher education.
NASA Astrophysics Data System (ADS)
Lawrence, G.; Reid, S.; Tranquille, C.; Evans, H.
2013-12-01
Space Weather is a multi-disciplinary and cross-domain system defined as, 'The physical and phenomenological state of natural space environments. The associated discipline aims, through observation, monitoring, analysis and modelling, at understanding and predicting the state of the Sun, the interplanetary and planetary environments, and the solar and non-solar driven perturbations that affect them, and also at forecasting and nowcasting the potential impacts on biological and technological systems'. National and Agency-level efforts to provide services addressing the myriad problems, such as ESA's SSA programme are therefore typically complex and ambitious undertakings to introduce a comprehensive suite of services aimed at a large number and broad range of end users. We focus on some of the particular threats and risks that Space Weather events pose to the Spacecraft Operations community, and the resulting implications in terms of User Requirements. We describe some of the highest-priority service elements identified as being needed by the Operations community, and outline some service components that are presently available, or under development. The particular threats and risks often vary according to orbit, so the particular User Needs for Operators at LEO, MEO and GEO are elaborated. The inter-relationship between these needed service elements and existing service components within the broader Space Weather domain is explored. Some high-priority service elements and potential correlation with Space Weather drivers include: solar array degradation and energetic proton storms; single event upsets at GEO and solar proton events and galactic cosmic rays; surface charging and deep dielectric charging at MEO and radiation belt dynamics; SEUs at LEO and the South Atlantic Anomaly and its variability. We examine the current capability to provide operational services addressing such threats and identify some advances that the Operations community can expect to benefit from in the short- and medium-term, such as: enhanced forecasting eg. using Bayesian statistics; optimization and standardization of effects tools; operations-ready real-time data tools, with customization options tailored around the operator's views; next-generation SWE-specific sensors and provision of key data to Operators.
The Athena X-ray Integral Field Unit (X-IFU)
NASA Astrophysics Data System (ADS)
Pajot, F.; Barret, D.; Lam-Trong, T.; den Herder, J.-W.; Piro, L.; Cappi, M.; Huovelin, J.; Kelley, R.; Mas-Hesse, J. M.; Mitsuda, K.; Paltani, S.; Rauw, G.; Rozanska, A.; Wilms, J.; Barbera, M.; Douchin, F.; Geoffray, H.; den Hartog, R.; Kilbourne, C.; Le Du, M.; Macculi, C.; Mesnager, J.-M.; Peille, P.
2018-04-01
The X-ray Integral Field Unit (X-IFU) of the Advanced Telescope for High-ENergy Astrophysics (Athena) large-scale mission of ESA will provide spatially resolved high-resolution X-ray spectroscopy from 0.2 to 12 keV, with 5^' ' } pixels over a field of view of 5 arc minute equivalent diameter and a spectral resolution of 2.5 eV (FWHM) up to 7 keV. The core scientific objectives of Athena drive the main performance parameters of the X-IFU. We present the current reference configuration of the X-IFU, and the key issues driving the design of the instrument.
Innovations at a European Planetary Simulation Facility
NASA Astrophysics Data System (ADS)
Merrison, J.; Iversen, J. J.; Alois, S.; Rasmussen, K. R.
2017-09-01
This unique and recently improved planetary simulation facility is capable of re-creating extreme terrestrial, Martian and other planetary environments. It is supported by EU activities including Europlanet 2020 RI and a volcanology network VERTIGO. It is also used as a test facility by ESA for the forthcoming ExoMars 2020 mission. Specifically it is capable of recreating the key physical parameters such as temperature, pressure (gas composition), wind flow and importantly the suspension/transport of dust or sand particulates. This facility is available both to the scientific and Industrial community. The latest research and networking activities will be presented.
The Cluster Science Archive: from Time Period to Physics Based Search
NASA Astrophysics Data System (ADS)
Masson, A.; Escoubet, C. P.; Laakso, H. E.; Perry, C. H.
2015-12-01
Since 2000, the Cluster spacecraft relay the most detailed information on how the solar wind affects our geospace in three dimensions. Science output from Cluster is a leap forward in our knowledge of space plasma physics: the science behind space weather. It has been key in improving the modeling of the magnetosphere and understanding its various physical processes. Cluster data have enabled the publication of more than 2000 refereed papers and counting. This substantial scientific return is often attributed to the online availability of the Cluster data archive, now called the Cluster Science Archive (CSA). It is being developed by the ESAC Science Data Center (ESDC) team and maintained alongside other science ESA archives at ESAC (ESA Space Astronomy Center, Madrid, Spain). CSA is a public archive, which contains the entire set of Cluster high-resolution data, and other related products in a standard format and with a complete set of metadata. Since May 2015, it also contains data from the CNSA/ESA Double Star mission (2003-2008), a mission operated in conjunction with Cluster. The total amount of data format now exceeds 100 TB. Accessing CSA requires to be registered to enable user profiles and CSA accounts more than 1,500 users. CSA provides unique tools for visualizing its data including - on-demand particle distribution functions visualization - fast data browsing with more than 15TB of pre-generated plots - inventory plots It also offers command line capabilities (e.g. data access via Matlab or IDL softwares, data streaming). Despite its reliability, users can only request data for a specific time period while scientists often focus on specific regions or data signatures. For these reasons, a data-mining tool is being developed to do just that. It offers an interface to select data based not only on a time period but on various criteria including: key physical parameters, regions of space and spacecraft constellation geometry. The output of this tool is a list of time periods that fits the criteria imposed by the user. Such a list enables to download any bunch of datasets for all these time periods in one go. We propose to present the state of development of this tool and interact with the scientific community to better fit its needs.
NASA Astrophysics Data System (ADS)
Wasowski, Janusz; Bovenga, Fabio; Nitti, Davide Oscar; Tijani, Khalid; Morea, Alberto; Nutricato, Raffaele; Chiaradia, Maria Teresa
2017-04-01
The shorter repeat cycle (6 days since October 2016) and regularity of acquisitions of Sentinel-1A/B with respect to earlier European Space Agency (ESA) satellites with C-band sensors (ERS1/2, ENVISAT) represent the key advantages for the research-oriented and practical applications of multi-temporal interferometry (MTI). The applicability of the Interferometric Wide Swath acquisition mode of Sentinel-1 (images covering a 250 km swath on the ground) to regional scale slope instability detection through MTI has already been demonstrated, e.g., via studies of landslide-prone areas in Italy. Here we focus on the potential of Sentinel-1 data for local (site-specific), MTI-based monitoring and capturing pre-failure signs of slope instability, by exploiting the Persistent and Distributed Scatterers processing capability of the SPINUA algorithm. In particular, we present an example of a retrospective study of a large (over 2 km long) landslide, which took place in 2016 in an active open-cast coal mine in central Europe. This seemingly sudden failure caused destruction of the mining equipment, blocked the mining operations thereby resulting in significant economic losses. For the study, we exploited over 60 Sentinel-1A/B images acquired since November 2014. The MTI results furnished a valuable overview of the ground instability/stability conditions within and around the active mine, even though considerable spatial gaps in information were encountered due to surface disturbance by mining operations. Significantly, the ground surface displacement time series revealed that the 2016 slope failure was preceded by very slow (generally 1-3 cm/yr) creep-like deformations, already present in 2014. The MTI results also indicated that the slope experienced a phase of accelerated movement several weeks prior to the landslide event. Furthermore, the spatio-temporal analysis of interferometric coherence changes in the unstable area (mapped on Sentinel-2 Bottom Of Atmosphere reflectance images processed by using the ESA Sen2Cor processor), indicated a sharp coherence loss in the last few weeks before the slope collapse. The availability of more frequent measurements represents a key improvement for MTI-based ground surface displacement monitoring and this will better support research on slope destabilization processes over time and, ultimately, on slope failure forecasting. Acknowledgments We thank ESA for Sentinel-1 & Sentinel-2 images.
ESA Sentinel-1 Mission and Products
NASA Astrophysics Data System (ADS)
Floury, Nicolas; Attema, Evert; Davidson, Malcolm; Levrini, Guido; Rommen, Björn; Rosich, Betlem; Snoeij, Paul
The global Monitoring for Environment and Security (GMES) space component relies on existing and planned space assets by European States, the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the European Space Agency (ESA), as well as new complementary developments by ESA. The new developments are implemented in terms of five families of satellites called Sentinels. The Sentinel-1 mission is an imaging synthetic aperture radar (SAR) mission at C-band designed to supply all-weather day-and-night imagery to a number of operational Earth observation based services. Three priorities (fasttrack services) for the mission have been identified by user consultation working groups of the European Union: Marine Core Services, Land Monitoring and Emergency Services. These cover applications such as: - monitoring sea ice zones and the arctic environment, - surveillance of marine environment, - monitoring land surface motion risks, - mapping of land surfaces: forest, water and soil, agriculture, - mapping in support of humanitarian aid in crisis situations. Sentinel-1 has been designed to address medium resolution applications. It includes a main mode of operation that features a wide swath (250 km) and a medium resolution (5 m x 20 m). The two-satellite constellation offers six days exact repeat and the conflict-free operations based on the main operational mode allow exploiting every single data take. This paper describes the Sentinel-1 mission, provides an overview of the mission requirements, and presents some of the key user driven information products, the crucial requirements for operational sustainable services being continuity of data supply, frequent revisit, geographical coverage and timeliness. As data products from the Agency‘s successful ERS-1, ERS-2 and Envisat missions form the basis for many of the pilot GMES services, Sentinel-1 data products need to maintain and in some ways to improve data quality levels of the Agency‘s previous SAR missions. Based on mission analysis work in preparation of Sentinel-1, this paper presents the results of investigations on the impact of some of the new mission and system requirements (such as spatial and radiometric resolution, calibration accuracy, revisit, . . . ) on the accuracy of key information products (wind speed measurement, ship detection, flood mapping, rice crop monitoring, soil moisture measurement, forest mapping, land surface movement measurement, . . . ).
"Europe lands on Mars" - Media event at ESA/ESOC
NASA Astrophysics Data System (ADS)
2003-11-01
Launched on 2 June 2003 from Baikonur (Kazakhstan) on board a Russian Soyuz operated by Starsem, the European probe - built for ESA by a European team of industrial companies led by Astrium - carries seven scientific instruments that will perform a series of remote-sensing experiments designed to shed new light on the Martian atmosphere, the planet's structure and its geology. In particular, the British-made Beagle 2 lander will contribute to the search for traces of life on Mars through exobiology experiments and geochemistry research. On board Mars Express tests have been run to check that the instruments are functioning correctly. Mars Express has successfully come through its first power test on the whole spacecraft after the gigantic solar flare on 28 October. Since 17 November the onboard software has been 'frozen' after several updates and the spacecraft is now quietly proceeding to its destination. Before even entering into Martian orbit to perform its mission, Mars Express has to face another challenge: safely delivering the Beagle 2 lander to its destination. This task, starting on 19 December, will not be without risk. First of all, to deliver the lander where planned, Mars Express has been put on a collision course with Mars, since Beagle 2 does not have a propulsion system of its own and must therefore be 'carried' precisely to its destination. This means that after separation, Mars Express has to veer away quickly to avoid crashing onto the planet. During the cruise Beagle 2 will take its power from the mother spacecraft, Mars Express. After separation and until its solar arrays are fully deployed on the surface, Beagle 2 must rely on its own battery, which cannot last beyond 6 days. So, like a caring parent, Mars Express must release Beagle 2 at the last possible moment to ensure that the lander has enough power for the rest of its journey to the surface. Only then can Mars Express change its orientation and rapidly fire the thrusters to get away from the collision course and enter into orbit around Mars. This will be the first time that an orbiter delivers a lander without its own propulsion onto a planet and attempts orbit insertion immediately afterwards. Since all these manoeuvres are time-critical and allow little margin of error, the ground control team has had to simulate all possible scenarios (including glitches and problems, on board and on the ground) to make sure that nothing is left to chance. The team has been training since September in a very realistic setting, using the same computers and equipment that will be employed during this mission phase. Although the real spacecraft cannot be directly involved, its behaviour is simulated via a sophisticated computer programme, using the actual flight software. These rehearsals, each lasting a day or more, cover all possible situations from the failure of an onboard instrument to the outbreak of a fire in the control room. One of these simulations will take place during the press conference on 3 December. ESA's ground control team at ESOC, on the other hand, are having a very busy time. They are actively rehearsing responses to any situation that might arise when Mars Express releases Beagle 2 and enters into orbit around Mars. "The Mars Express mission is pushing the operations staff to extremes. Over the years, the experience acquired with experimental missions has provided a solid basis on which to prepare for the unexpected. The satellite controllers will rise to this new challenge", Gaele Winters, ESA Director of Technical and Operational Support, said. Four media events have been scheduled relating to the arrival of Mars Express at its destination (see our press release N° 74-2003). The next event is scheduled on Wednesday 3 December at ESA/ESOC, Darmstadt, Germany and will possibly include the presentation of the first HRSC image and further information about scientific expectations of the mission. Several Principal Investigators will present their instruments and early results of testing and operations (see programme attached). A videoconference of this ESA media briefing will be organised at ESA/Headquarters, Paris (F), ESA/ESTEC, Noordwijk (NL) and ESA/ESRIN, Frascati (I). Media wishing to attend are asked to complete the attached reply form and fax it to the Communication Office at the establishment of their choice. Throughout December you can follow daily the countdown to arrival at Mars on the web at : http://mars.esa.int Here you will find live streaming of key events, news, features, images, videos and more.
34 CFR 300.2 - Applicability of this part to State and local agencies.
Code of Federal Regulations, 2010 CFR
2010-07-01
... educational agencies (LEAs), educational service agencies (ESAs), and public charter schools that are not otherwise included as LEAs or ESAs and are not a school of an LEA or ESA. (iii) Other State agencies and schools (such as Departments of Mental Health and Welfare and State schools for children with deafness or...
Venera-D: Technology Implications
NASA Technical Reports Server (NTRS)
Kremic, Tibor
2016-01-01
The Venera-D concept mission being developed by the Joint Russian US Science Definition Team (JSDT) is an exciting concept for exploring Venus and is based largely successful approach of heritage Soviet Veneras and VEGA missions. The desired science of Venera-D seeks to build on the results on these missions and also missions by other nations such as the American Mariners, Pioneer Venus, and Magellan missions, ESAs Venus Express, and the current Japanese Akatsuki mission. A number of elements comprise the potential full mission concept. Core elements of the mission include a long lived orbiter (3 years) and a short duration ( 2 hour) but powerful lander. Several other mission elements are possible depending on mission constraints which include cost limitations. Other possible elements include some form of mobile aerial platform, such as a balloon, long lived dropsonde(s), and sub-satellite. One can image the diverse maturity of technologies that will be needed to support the various elements of the Venera-D mission concept. Given the long heritage and recent orbiting missions, little technology challenges are expected for the orbiter. However it has been several decades since humanity has placed a functioning lander on the Venus surface or spent time floating in the Venus atmosphere so the technology challenges will be of greater concern. This briefing presents some of the results of the Venera-D technology sub-group.
Crathorne, Louise; Huxley, Nicola; Haasova, Marcela; Snowsill, Tristan; Jones-Hughes, Tracey; Hoyle, Martin; Briscoe, Simon; Coelho, Helen; Long, Linda; Medina-Lara, Antonieta; Mujica-Mota, Ruben; Napier, Mark; Hyde, Chris
2016-02-01
Anaemia is a common side effect of cancer treatments and can lead to a reduction in quality of life. Erythropoiesis-stimulating agents (ESAs) are licensed for use in conjunction with red blood cell transfusions to improve cancer treatment-induced anaemia (CIA). To investigate the effectiveness and cost-effectiveness of ESAs in anaemia associated with cancer treatment (specifically chemotherapy). The following databases were searched from 2004 to 2013: The Cochrane Library, MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE, Web of Science, Cumulative Index to Nursing and Allied Health Literature, British Nursing Index, Health Management Information Consortium, Current Controlled Trials and ClinicalTrials.gov. The US Food and Drug Administration and European Medicines Agency websites were also searched. Bibliographies of included papers were scrutinised for further potentially includable studies. The clinical effectiveness review followed principles published by the NHS Centre for Reviews and Dissemination. Randomised controlled trials (RCTs), or systematic reviews of RCTs, of ESAs (epoetin or darbepoetin) for treating people with CIA were eligible for inclusion in the review. Comparators were best supportive care, placebo or other ESAs. Anaemia- and malignancy-related outcomes, health-related quality of life (HRQoL) and adverse events (AEs) were evaluated. When appropriate, data were pooled using meta-analysis. An empirical health economic model was developed comparing ESA treatment with no ESA treatment. The model comprised two components: one evaluating short-term costs and quality-adjusted life-years (QALYs) (while patients are anaemic) and one evaluating long-term QALYs. Costs and benefits were discounted at 3.5% per annum. Probabilistic and univariate deterministic sensitivity analyses were performed. Of 1457 titles and abstracts screened, 23 studies assessing ESAs within their licensed indication (based on start dose administered) were included in the review. None of the RCTs were completely aligned with current European Union licenses. The results suggest a clinical benefit from ESAs for anaemia-related outcomes and an improvement in HRQoL scores. The impact of ESAs on AEs and survival remains highly uncertain, although point estimates are lower, confidence intervals are wide and not statistically significant. Base-case incremental cost-effectiveness ratios (ICERs) for ESA treatment compared with no ESA treatment ranged from £ 19,429 to £ 35,018 per QALY gained, but sensitivity and scenario analyses demonstrate considerable uncertainty in these ICERs, including the possibility of overall health disbenefit. All ICERs were sensitive to survival and cost. The relative effectiveness of ESAs was not addressed; all ESAs were assumed to have equivalent efficacy. No studies were completely aligned with their European labelling beyond the starting dose evaluated. There is questionable generalisability given that the included trials were published >20 years ago and there have been many changes to chemotherapy as well as to the quality of supportive treatment. Trial quality was moderate or poor and there was considerable unexplained heterogeneity for a number of outcomes, particularly survival, and evidence of publication bias. Adjustments were not made to account for multiple testing. ESAs could be cost-effective when used closer to licence, but there is considerable uncertainty, mainly because of unknown impacts on overall survival. This study is registered as PROSPERO CRD42013005812. The National Institute for Health Research Health Technology Assessment programme.
Bataille, Stanislas; Pelletier, Marion; Sallée, Marion; Berland, Yvon; McKay, Nathalie; Duval, Ariane; Gentile, Stéphanie; Mouelhi, Yosra; Brunet, Philippe; Burtey, Stéphane
2017-07-26
The main reason for anemia in renal failure patients is the insufficient erythropoietin production by the kidneys. Beside erythropoietin deficiency, in vitro studies have incriminated uremic toxins in the pathophysiology of anemia but clinical data are sparse. In order to assess if indole 3-acetic acid (IAA), indoxyl sulfate (IS), and paracresyl sulfate (PCS) -three protein bound uremic toxins- are clinically implicated in end-stage renal disease anemia we studied the correlation between IAA, IS and PCS plasmatic concentrations with hemoglobin and Erythropoietin Stimulating Agents (ESA) use in hemodialysis patients. Between June and July 2014, we conducted an observational cross sectional study in two hemodialysis center. Three statistical approaches were conducted. First, we compared patients treated with ESA and those not treated. Second, we performed linear regression models between IAA, IS, and PCS plasma concentrations and hemoglobin, the ESA dose over hemoglobin ratio (ESA/Hemoglobin) or the ESA resistance index (ERI). Third, we used a polytomous logistic regression model to compare groups of patients with no/low/high ESA dose and low/high hemoglobin statuses. Overall, 240 patients were included in the study. Mean age ± SD was 67.6 ± 16.0 years, 55.4% were men and 42.5% had diabetes mellitus. When compared with ESA treated patients, patients with no ESA had higher hemoglobin (mean 11.4 ± 1.1 versus 10.6 ± 1.2 g/dL; p <0.001), higher transferrin saturation (TSAT, 31.1 ± 16.3% versus 23.1 ± 11.5%; p < 0.001), less frequently an IV iron prescription (52.1 versus 65.7%, p = 0.04) and were more frequently treated with hemodiafiltration (53.5 versus 36.7%). In univariate analysis, IAA, IS or PCS plasma concentrations did not differ between the two groups. In the linear model, IAA plasma concentration was not associated with hemoglobin, but was negatively associated with ESA/Hb (p = 0.02; R = 0.18) and with the ERI (p = 0.03; R = 0.17). IS was associated with none of the three anemia parameters. PCS was positively associated with hemoglobin (p = 0.03; R = 0.14), but negatively with ESA/Hb (p = 0.03; R = 0.17) and the ERI (p = 0.02; R = 0.19). In multivariate analysis, the association of IAA concentration with ESA/Hb or ERI was not statistically significant, neither was the association of PCS with ESA/Hb or ERI. Identically, in the subgroup of 76 patients with no inflammation (CRP <5 mg/L) and no iron deficiency (TSAT >20%) linear regression between IAA, IS or PCS and any anemia parameter did not reach significance. In the third model, univariate analysis showed no intergroup significant differences for IAA and IS. Regarding PCS, the Low Hb/High ESA group had lower concentrations. However, when we compared PCS with the other significant characteristics of the five groups to the Low Hb/high ESA (our reference group), the polytomous logistic regression model didn't show any significant difference for PCS. In our study, using three different statistical models, we were unable to show any correlation between IAA, IS and PCS plasmatic concentrations and any anemia parameter in hemodialysis patients. Indolic uremic toxins and PCS have no or a very low effect on anemia parameters.
1981-01-01
Spacelab was a versatile laboratory carried in the Space Shuttle's cargo bay for special research flights. Its various elements could be combined to accommodate the many types of scientific research that could best be performed in space. Spacelab consisted of an enclosed, pressurized laboratory module and open U-shaped pallets located at the rear of the laboratory module. The laboratory module contained utilities, computers, work benches, and instrument racks to conduct scientific experiments in astronomy, physics, chemistry, biology, medicine, and engineering. Equipment, such as telescopes, anternas, and sensors, was mounted on pallets for direct exposure to space. A 1-meter (3.3-ft.) diameter aluminum tunnel, resembling a z-shaped tube, connected the crew compartment (mid deck) to the module. The reusable Spacelab allowed scientists to bring experiment samples back to Earth for post-flight analysis. Spacelab was a cooperative venture of the European Space Agency (ESA) and NASA. ESA was responsible for funding, developing, and building of Spacelab, while NASA was responsible for the launch and operational use of Spacelab. Spacelab missions were cooperative efforts between scientists and engineers from around the world. Teams from NASA centers, universities, private industry, government agencies and international space organizations designed the experiments. The Marshall Space Flight Center was NASA's lead center for monitoring the development of Spacelab and managing the program.
SDMS: A scientific data management system
NASA Technical Reports Server (NTRS)
Massena, W. A.
1978-01-01
SDMS is a data base management system developed specifically to support scientific programming applications. It consists of a data definition program to define the forms of data bases, and FORTRAN-compatible subroutine calls to create and access data within them. Each SDMS data base contains one or more data sets. A data set has the form of a relation. Each column of a data set is defined to be either a key or data element. Key elements must be scalar. Data elements may also be vectors or matrices. The data elements in each row of the relation form an element set. SDMS permits direct storage and retrieval of an element set by specifying the corresponding key element values. To support the scientific environment, SDMS allows the dynamic creation of data bases via subroutine calls. It also allows intermediate or scratch data to be stored in temporary data bases which vanish at job end.
The ESA Planetary Science Archive User Group (PSA-UG)
NASA Astrophysics Data System (ADS)
Rossi, A. P.; Cecconi, B.; Fraenz, M.; Hagermann, A.; Heather, D.; Rosenblatt, P.; Svedhem, H.; Widemann, T.
2014-04-01
ESA has established a Planetary Science Archive User Group (PSA-UG), with the task of offering independent advice to ESA's Planetary Science Archive (e.g. Heather et al., 2013). The PSA-UG is an official and independent body that continuously evaluates services and tools provided by the PSA to the community of planetary data scientific users. The group has been tasked with the following top level objectives: a) Advise ESA on future development of the PSA. b) Act as a focus for the interests of the scientific community. c) Act as an advocate for the PSA. d) Monitor the PSA activities. Based on this, the PSA-UG will report through the official ESA channels. Disciplines and subjects represented by PSA-UG members include: Remote Sensing of both Atmosphere and Solid Surfaces, Magnetospheres, Plasmas, Radio Science and Auxilliary data. The composition of the group covers ESA missions populating the PSA both now and in the near future. The first members of the PSA-UG were selected in 2013 and will serve for 3 years, until 2016. The PSA-UG will address the community through workshops, conferences and the internet. Written recommendations will be made to the PSA coordinator, and an annual report on PSA and the PSA-UG activities will be sent to the Solar System Exploration Working Group (SSEWG). Any member of the community and planetary data user can get in touch with individual members of the PSA-UG or with the group as a whole via the contacts provided on the official PSA-UG web-page: http://archives.esac.esa.int/psa/psa-ug The PSA is accessible via: http://archives.esac.esa.int/psa
Activities on space debris in Europe
NASA Astrophysics Data System (ADS)
Flury, W.
2001-10-01
Activities on space debris in Europe are carried out by ESA, by national space agencies such as ASI (Italy), BNSC (United Kingdom), CNES (France) and DLR (Germany) and by various research groups. The objectives of ESA's activities in the field of space debris have been defined by the Council of ESA in 1989, and were updated in 2000 with the adoption of the Resolution for a European policy on the protection of the space environment from debris. ESA's debris-related activities comprise research, application of debris mitigation measures and international cooperation. The research activities address the knowledge of the terrestrial particulate environment, risk assessment, hypervelocity impacts and protection, and preventative measures. In all these areas substantial progress has been achieved. Examples are the MASTER 99 model, the DISCOS database, beam-park experiments with the FGAN radar, the discovery of a small-size debris population in GEO with the Space Debris telescope at the Teide observatory, and the GORID dust detector in the geostationary orbit. The ESA Space Debris Mitigation Handbook was issued, and in a joint effort of ESA and the national agencies ASI, BNSC, CNES and DLR the European Space Debris Safety and Mitigation Standard (draft) was established. This standard will be harmonized with standards of other agencies through the deliberations in the Inter-Agency Space Debris Coordination Committee (IADC). In order to strengthen the European cooperation, the pilot network of centers - Working Group on Space Debris was created in 2000. The members are ESA, ASI, BNSC, CNES and DLR. An integrated work plan has been established for the period 2001-2003. Global cooperation among the space-faring nations is achieved through the IADC. ESA and its Member States strongly support the deliberations on space debris within the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS).
Rizzo, J Douglas; Brouwers, Melissa; Hurley, Patricia; Seidenfeld, Jerome; Arcasoy, Murat O; Spivak, Jerry L; Bennett, Charles L; Bohlius, Julia; Evanchuk, Darren; Goode, Matthew J; Jakubowski, Ann A; Regan, David H; Somerfield, Mark R
2010-11-18
To update American Society of Hematology/American Society of Clinical Oncology recommendations for use of erythropoiesis-stimulating agents (ESAs) in patients with cancer. An Update Committee reviewed data published between January 2007 and January 2010. MEDLINE and the Cochrane Library were searched. The literature search yielded one new individual patient data analysis and four literature-based meta-analyses, two systematic reviews, and 13 publications reporting new results from randomized controlled trials not included in prior or new reviews. For patients undergoing myelosuppressive chemotherapy who have a hemoglobin (Hb) level less than 10 g/dL, the Update Committee recommends that clinicians discuss potential harms (eg, thromboembolism, shorter survival) and benefits (eg, decreased transfusions) of ESAs and compare these with potential harms (eg, serious infections, immune-mediated adverse reactions) and benefits (eg, rapid Hb improvement) of RBC transfusions. Individual preferences for assumed risk should contribute to shared decisions on managing chemotherapy-induced anemia. The Committee cautions against ESA use under other circumstances. If used, ESAs should be administered at the lowest dose possible and should increase Hb to the lowest concentration possible to avoid transfusions. Available evidence does not identify Hb levels ≥ 10 g/dL either as thresholds for initiating treatment or as targets for ESA therapy. Starting doses and dose modifications after response or nonresponse should follow US Food and Drug Administration-approved labeling. ESAs should be discontinued after 6 to 8 weeks in nonresponders. ESAs should be avoided in patients with cancer not receiving concurrent chemotherapy, except for those with lower risk myelodysplastic syndromes. Caution should be exercised when using ESAs with chemotherapeutic agents in diseases associated with increased risk of thromboembolic complications. Table 1 lists detailed recommendations.
Rizzo, J Douglas; Brouwers, Melissa; Hurley, Patricia; Seidenfeld, Jerome; Arcasoy, Murat O; Spivak, Jerry L; Bennett, Charles L; Bohlius, Julia; Evanchuk, Darren; Goode, Matthew J; Jakubowski, Ann A; Regan, David H; Somerfield, Mark R
2010-11-20
To update American Society of Clinical Oncology/American Society of Hematology recommendations for use of erythropoiesis-stimulating agents (ESAs) in patients with cancer. An Update Committee reviewed data published between January 2007 and January 2010. MEDLINE and the Cochrane Library were searched. The literature search yielded one new individual patient data analysis and four literature-based meta-analyses, two systematic reviews, and 13 publications reporting new results from randomized controlled trials not included in prior or new reviews. For patients undergoing myelosuppressive chemotherapy who have a hemoglobin (Hb) level less than 10 g/dL, the Update Committee recommends that clinicians discuss potential harms (eg, thromboembolism, shorter survival) and benefits (eg, decreased transfusions) of ESAs and compare these with potential harms (eg, serious infections, immune-mediated adverse reactions) and benefits (eg, rapid Hb improvement) of RBC transfusions. Individual preferences for assumed risk should contribute to shared decisions on managing chemotherapy-induced anemia. The Committee cautions against ESA use under other circumstances. If used, ESAs should be administered at the lowest dose possible and should increase Hb to the lowest concentration possible to avoid transfusions. Available evidence does not identify Hb levels ≥ 10 g/dL either as thresholds for initiating treatment or as targets for ESA therapy. Starting doses and dose modifications after response or nonresponse should follow US Food and Drug Administration-approved labeling. ESAs should be discontinued after 6 to 8 weeks in nonresponders. ESAs should be avoided in patients with cancer not receiving concurrent chemotherapy, except for those with lower risk myelodysplastic syndromes. Caution should be exercised when using ESAs with chemotherapeutic agents in diseases associated with increased risk of thromboembolic complications. Table 1 lists detailed recommendations.
Ordered versus Unordered Map for Primitive Data Types
2015-09-01
mapped to some element. C++ provides two types of map containers within the standard template library, the std ::map and the std ::unordered_map...classes. As the name implies, the containers main functional difference is that the elements in the std ::map are ordered by the key, and the std ...unordered_map are not ordered based on their key. The std ::unordered_map elements are placed into “buckets” based on a hash value computed for their key
Bioeconomic analysis supports the endangered species act.
Salau, Kehinde R; Fenichel, Eli P
2015-10-01
The United States Endangered Species Act (ESA) was enacted to protect and restore declining fish, wildlife, and plant populations. The ESA mandates endangered species protection irrespective of costs. This translates to the restriction of activities that harm endangered populations. We discuss criticisms of the ESA in the context of public land management and examine under what circumstance banning non-conservation activity on multiple use federal lands can be socially optimal. We develop a bioeconomic model to frame the species management problem under the ESA and identify scenarios where ESA-imposed regulations emerge as optimal strategies. Results suggest that banning harmful activities is a preferred strategy when valued endangered species are in decline or exposed to poor habitat quality. However, it is not optimal to sustain such a strategy in perpetuity. An optimal plan involves a switch to land-use practices characteristic of habitat conservation plans.
The role of the pharmacist in optimizing the use of erythropoietin stimulating agents.
Gebara, Shereen Nabhani; Moubayed, Hiba
2010-03-01
With the emerging new warnings surrounding the use of erythropoiesis-stimulating agents (ESAs), the pharmacist's role as health educator and risk communicator expands further to include patient scrutiny to check for eligibility and patient monitoring to check for response or toxicity. This review explores the benefits and risks linked to ESAs use, and the proposed role. ESAs have been increasingly used for the treatment of chemotherapy-induced anemia because of its documented effect on decreasing transfusion dependency. However, their use has been associated with thromboembolic complications, tumor progression, and decreased overall survival. This review covers current recommendations and guidelines that surround ESAs use in the supportive care of cancer patients. To minimize or prevent the complications associated with ESAs use, cancer patients should be adequately monitored and counseled. This highlights the importance of the pharmacist's involvement to optimize patient care.
Topographic evolution of a continental indenter: The eastern Southern Alps
NASA Astrophysics Data System (ADS)
Robl, Jörg; Heberer, Bianca; Prasicek, Günther; Neubauer, Franz; Hergarten, Stefan
2017-04-01
The topographic evolution of the eastern Southern Alps (ESA) is controlled by the Late Oligocene - Early Miocene indentation of the Adriatic microplate into an overthickened orogenic wedge emplaced on top of the European plate. Rivers follow topographic gradients that evolve during continental collision and in turn incise into bedrock counteracting the formation of topography. In principle, erosional surface processes tend to establish a topographic steady state so that an interpretation of topographic metrics in terms of the latest tectonic history should be straightforward. However, a series of complications impede deciphering the topographic record of the ESA. The Pleistocene glaciations locally excavated alpine valleys and perturbed fluvial drainages. The Late Miocene desiccation of the Mediterranean Sea and the uplift of the northern Molasse Basin led to significant base level changes in the far field of the ESA and the Eastern Alps (EA), respectively. Among this multitude of mechanisms, the processes that dominate the current topographic evolution of the ESA and the ESA-EA drainage divide have not been identified and a number of questions regarding the interaction of crustal deformation, erosion and climate in shaping the present-day topography remain. We demonstrate the expected topographic effects of each mechanism in a 1-dimensional model and compare them with observed channel metrics. Modern uplift rates are largely consistent with long-term exhumation in the ESA and with variations in the normalized steepness index (ksn) indicating a stable uplift and erosion pattern since Miocene times. We find that ksn increases with uplift rate and declines from the indenter tip in the northwest to the foreland basin in the southeast. The number and magnitude of knickpoints and the distortion in longitudinal channel profiles similarly decrease towards the east. Most knickpoints probably evolved during Pleistocene glaciation cycles, but may represent the incrementally reactivated, buried incision signal triggered by the Messinian desiccation of the Mediterranean Sea. Changes in slope of χ-transformed channel profiles coincide spatially with the Valsugana - Fella fault linking crustal stacking and uplift induced by indenter tectonics with topographic evolution. Gradients in χ across the ESA-EA drainage divide imply an ongoing, north-directed shift of the Danube-ESA watershed. This implies that ESA streams spread to the domain of the EA by drainage divide migration and river capture events. As already observed in the Adige catchment, the Periadriatic fault system loses its significance for the morphological evolution of the EA-ESA. The observed northward migration of the ESA-EA drainage divide is most likely driven by a base level rise in the northern Molasse basin, which leads to a growth of the ESA and Rhine catchments at the expense of the Danube drainage area. We conclude that the regional uplift pattern controls the geometry of ESA-EA channels, while base level changes in the far field control the overall architecture of the orogen by drainage divide migration (Robl et al., 2016). Robl, J., B. Heberer, G. Prasicek, F. Neubauer, and S. Hergarten (2016), The topography of a continental indenter: The interplay between crustal deformation, erosion and base level changes in the eastern Southern Alps, J. Geophys. Res. Earth Surf., 121, doi:10.1002/2016JF003884.
Challenges for Children and Women in the 1990s: Eastern and Southern Africa in Profile.
ERIC Educational Resources Information Center
United Nations Children's Fund, Nairobi (Kenya). Eastern and Southern Africa Regional Office.
This report profiles conditions in the lives of children and women in Eastern and Southern Africa (ESA), and attempts to identify and analyze trends and issues which are emerging in ESA and which have particular significance for UNICEF activities. During the 1980s, ESA experienced unprecedented economic decline due to falling commodity prices and…
Sentinel-1 - the radar mission for GMES operational land and sea services
NASA Astrophysics Data System (ADS)
Attema, Evert; Bargellini, Pierre; Edwards, Peter; Levrini, Guido; Lokas, Svein; Moeller, Ludwig; Rosich-Tell, Betlem; Secchi, Patrizia; Torres, Ramon; Davidson, Malcolm; Snoeij, Paul
2007-08-01
The ESA Sentinels will be the first series of operational satellites to meet the Earth observation needs of the European Union - ESA Global Monitoring for Environment and Security (GMES) programme. Existing and planned space assets will be complemented by new developments from ESA. The first is Sentinel-1, a pair of synthetic aperture radar (SAR) imaging satellites.
Technology developments under consideration for future ground systems
NASA Astrophysics Data System (ADS)
Drewes, G. W. J.
A review is conducted of those areas of ground-system related technology which require for their appropriate development funding provided by ESA. ESA will, in this connection, financially support the development of a coaxial S and X band feed horn for use with its 15-m antenna for Villafranca and Carnarvon. With respect to RF techology, it is found that the required RF components and subsystems will be available, and, consequently, ESA will not provide any funds for developments in this area. Other sectors examined with respect to possible developments requiring ESA funding are related to modulation/demodulation, spacecraft position, data handling, timing, and development and standardization.
Nam, Joon; Kim, Wooseong; Lee, Sunyoung; Jeong, Seongkeun; Yoo, Jin-Wook; Kim, Min-Soo; Jung, Yunjin
2016-01-01
Local anesthetics have beneficial effects on colitis. Dextran-5-(4-ethoxycarbonylphenylazo)salicylic acid ester (Dex-5-ESA), designed as a polymeric colon-specific prodrug liberating 5-ASA and benzocaine in the large intestine, was prepared and its therapeutic activity against colitis was evaluated using a TNBS-induced rat colitis model. Dex-5-ESA liberated 5-ASA and benzocaine in the cecal contents while (bio)chemically stable in the small intestinal contents and mucosa. Oral administration of Dex-5-ESA (equivalent to 10 mg 5-ASA/kg, twice a day) alleviated colonic injury and reduced MPO activity in the inflamed colon. In parallel, pro-inflammatory mediators, COX-2, iNOS and CINC-3, elevated by TNBS-induced colitis, were substantially diminished in the inflamed colon. Dex-5-ESA was much more effective for the treatment of colitis than 5-(4-ethoxycarbonylphenylazo)salicylic acid (5-ESA) that may not deliver benzocaine to the large intestine. Our data suggest that Dex-5-ESA is a polymeric colon-specific prodrug, liberating 5-ASA and benzocaine in the target site (large intestine), probably exerting anti-colitic effects by combined action of 5-ASA and benzocaine.
Effect of Fasciola gigantica excretory secretory antigen on rat hematological indices
Ganga, G.; Sharma, R. L.
2006-01-01
The present study was undertaken to investigate the effect of Fasciola gigantica excretory secretory antigen (Fg-ESA) on rat hematological indices. Fg-ESA was prepared by keeping thoroughly washed 40 F. gigantica flukes in 100 ml phosphate buffer saline (PBS) for 2 h at 37℃, and centrifuging the supernatant at 12,000 g at 4℃ for 30 min. The protein content of Fg-ESA was adjusted to 1.8 mg/ml. The rats were randomly divided into two groups of six rats each. Rats in group A received 0.5 ml of Fg-ESA intraperitoneally (i.p.) for 7 days, whereas control rats in group B received 0.5 ml of PBS i.p. for 7 days. Hemograms of both groups were studied initially and on days 0, 2, 4, 14 and 21 after the final injection of Fg-ESA or PBS. Progressive and significant (p < 0.01) declines in the values of hemoglobin, hematocrit, and total erythrocyte count were observed without significant (p > 0.05) changes in the values of mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, or mean corpuscular volume in group A. Thus, we conclude that Fg-ESA induces normocytic normochromic anemia in rats. PMID:16645335
Performance of external and internal coil configurations for prostate investigations at 7 Tesla
Metzger, Gregory J.; van de Moortele, Pierre-Francois; Akgun, Can; Snyder, Carl J.; Moeller, Steen; Strupp, John; Andersen, Peter; Shrivastava, Devashish; Vaughan, Tommy; Ugurbil, Kamil; Adriany, Gregor
2010-01-01
Three different coil configurations were evaluated through simulation and experimentally to determine safe operating limits and evaluate subject size dependent performance for prostate imaging at 7 Tesla. The coils included a transceiver endorectal coil (trERC), a 16 channel transceiver external surface array (trESA) and a trESA combined with a receive-only ERC (trESA+roERC). While the transmit B1 (B1+) homogeneity was far superior for the trESA, the maximum achievable B1+ is subject size dependent and limited by transmit chain losses and amplifier performance. For the trERC, limitations in transmit homogeneity greatly compromised image quality and limited coverage of the prostate. Despite these challenges, the high peak B1+ close to the trERC and subject size independent performance provides potential advantages especially for spectroscopic localization where high bandwidth RF pulses are required. On the receive side, the combined trESA+roERC provided the highest SNR and improved homogeneity over the trERC resulting in better visualization of the prostate and surrounding anatomy. In addition, the parallel imaging performance of the trESA+roERC holds strong promise for diffusion weighted imaging and dynamic contrast enhanced MRI. PMID:20740657
Paul, Debjyoti; Mukherjee, Sayani; Chakraborty, Rajarshi; Mallick, Sanjaya K; Dhar, Pubali
2015-02-01
The objective of the present study was to fabricate and monitor real-time, impact of a stable conjugated linolenic acid, α-eleostearic acid (ESA) rich nanoemulsion (NE) formulation (d < 200 nm) vis-à-vis ESA conventional emulsion (CE) system in ex vivo systems against both endogenous and exogenous reactive oxygen species (ROS). Accordingly, stable nanoemulsion formulation of ESA was engineered with the aid of bitter melon seed oil and non-toxic excipients. Morphology and particle size of the emulsion formulations were studied to validate stability. The real-time rapid uptake of the ESA NE and its increased prophylactic efficacy against induced endogenous and exogenous ROS in terms of cell viability and membrane integrity was evaluated flow-cytometrically and with fluorescence microscopic analysis of different primary cells. It was found that the fabricated non-toxic ESA NE had stable parameters (hydrodynamic mean diameter, particle size distribution and zeta potential) for over 12 weeks. Further, ESA NE at a concentration of ∼ 70 μM exhibited maximum efficacy in protecting cells from oxidative damage against both endogenous and exogenous ROS in lymphocytes and hepatocytes as compared to its corresponding presence in the CE formulation. This study provides a real-time empirical evidence on the influence of nano formulation in enhancing bioavailability and antioxidative properties of ESA. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Swaczyna, Paweł; Bzowski, Maciej; Kubiak, Marzena A.; Sokół, Justyna M.; Fuselier, Stephen A.; Galli, André; Heirtzler, David; Kucharek, Harald; McComas, David J.; Möbius, Eberhard; Schwadron, Nathan A.; Wurz, P.
2018-02-01
Direct-sampling observations of interstellar neutral (ISN) He by the Interstellar Boundary Explorer (IBEX) provide valuable insight into the physical state of and processes operating in the interstellar medium ahead of the heliosphere. The ISN He atom signals are observed at the four lowest ESA steps of the IBEX-Lo sensor. The observed signal is a mixture of the primary and secondary components of ISN He and H. Previously, only data from one of the ESA steps have been used. Here, we extend the analysis to data collected in the three lowest ESA steps with the strongest ISN He signal, for the observation seasons 2009–2015. The instrument sensitivity is modeled as a linear function of the atom impact speed onto the sensor’s conversion surface separately for each ESA step of the instrument. We find that the sensitivity increases from lower to higher ESA steps, but within each of the ESA steps it is a decreasing function of the atom impact speed. This result may be influenced by the hydrogen contribution, which was not included in the adopted model, but seems to exist in the signal. We conclude that the currently accepted temperature of ISN He and velocity of the Sun through the interstellar medium do not need a revision, and we sketch a plan of further data analysis aiming at investigating ISN H and a better understanding of the population of ISN He originating in the outer heliosheath.
NASA Astrophysics Data System (ADS)
1998-03-01
The first step in this ESA initiated programme is a unique project called 'Euromoon 2000' which is currently being studied by ESA engineers/ scientists and key European Space Industries. The project is intended to celebrate Europe's entry into the New Millennium; and to promote public awareness and interest in science, technology and space exploration. Euromoon 2000 has an innovative and ambitious implementation plan. This includes a 'partnership with industry' and a financing scheme based on raising part of the mission's budget from sponsorship through a dynamic public relations strategy and marketing programme. The mission begins in earnest with the small (approx. 100 kg) LunarSat orbiter satellite, to be designed and built by 50 young scientists and engineers from across Europe. Scheduled for launch in 2000 as a secondary payload on a European Ariane 5 rocket, it will then orbit the Moon, mapping the planned landing area in greater detail in preparation of the EuroMoon Lander in 2001. The Lander's 40 kg payload allocation will accommodate amongst others scientific instrumentation for in-situ investigation of the unique site. Elements of specific support to the publicity and fund-raising campaign will also be considered. The Lander will aim for the 'Peak of Eternal Light' on the rim of the 20 km-diameter, 3 km-deep Shackleton South Pole crater - a site uniquely suited for establishing a future outpost. This location enjoys almost continuous sunlight thus missions can rely on solar power instead of bulky batteries or costly and potentially hazardous nuclear power generation. As a consequence of the undulating South Pole terrain there are also permanently shadowed areas - amongst the coldest in the Solar System resulting in conditions highly favourable for the formation of frozen volatiles (as suggested by the Clementine mission in 1994). Earlier this year (7th January 1998), NASA launched its Lunar Prospector satellite which is currently performing polar lunar orbits surveying areas of the moon's surface rarely documented in previous missions. The data now being received back from Prospector strongly suggests the presence of the suspected volatiles (water ice?). Understandably the presence of billions-of-years-old frozen water in proximity to Euromoon's planned landing site would provide a tremendous boost for the implementation of the EuroMoon project now in its 10th month of study. The in-situ analysis of such rare substances will provide an invaluable scientific window back in time (the Moon is believed to have been formed over 3.5 billion years ago from elements of the earth's mantel). The water's constituent elements of hydrogen and oxygen have also the possibility of offering an essentially free supply of rocket propellant and oxygen for exploitation during future activities. EuroMoon is the only mission being studied that can investigate this ice in-situ, while the US satellite will remain in a orbit. The mission is particularly challenging because of the required landing precision (within 100 m2) in terrain varying between +6 km and -5 km in altitude. Achieving the required pinpoint touchdown capability would allow the future exploitation of other interesting sites. One such site is the 6 km-high Malapert Mountain, 120 km from the pole from which the Earth can always be seen thus allowing continuous communications with the home planet for any future outpost in the region. The 'Peak of Eternal Light' (described above) is in direct view of Malapert, the twin peaks offer the tantalising possibility of both of uninterrupted power and communications. Euromoon can be seen as be the initial step in founding the first extraterrestrial outpost, founding the infrastructure for a 'robotic village' controlled by a 'virtual community' of Earth-based operators using telescience. This would indeed mark the beginning of an expansion of the human domain beyond Earth without the risk or cost of manned space travel. This concept also forms an essential element of the fund-raising campaign which will create an exciting media opportunity involving all levels of society. Mission costs will be minimized by using existing hardware and a rapid schedule. Industrial partners would share risk and responsibility of realising the mission by forming the EuroMoon Company. A new marketing and advertising consortium has been formed with the specific task of raising funds through diverse commercial activities. EuroMoon 2000 was chosen by ESA's Long-term Space Policy Committee as the candidate for the Millennium Celebration and presented to the Agency's Council in December 1997. A progress report, as well as a programme proposal will be presented to the March Council and a final decision is expected in June next.
Urey onboard Exomars: Searching for life on Mars
NASA Astrophysics Data System (ADS)
Bada, J.; Ehrenfreund, P.; Grunthaner, F.; Sephton, M.; Urey Team
2009-04-01
Exomars is currently under development as the flagship mission of ESA's exploration program Aurora. A fundamental challenge ahead for the Exomars mission is to search for extinct and extant life. The Urey instrument (Mars Organic and Oxidant Detector) has been selected for the Pasteur payload and is considered a key instrument to achieve the mission's scientific objectives. Urey can detect organic compounds at unprecedented sensitivity of part-per-trillions in the Martian regolith. The instrument will target several key classes of organic molecules such as amino acids, nucleobases, amines and amino sugars and polycyclic aromatic hydrocrabon (PAHs) using state-of-the-art analytical methods. Chemoresistor oxidant sensors will provide complementary measurements by simultaneously evaluating the survival potential of organic compounds in the environment. The Urey instrument concept has tremendous future applications in Mars and Moon exploration in the framework of life detection and planetary protection.
NASA Astrophysics Data System (ADS)
Smith, C. L.; Rumsey, M. S.; Manick, K.; Gill, S.-J.; Mavris, C.; Schroeven-Deceuninck, H.; Duvet, L.
2017-09-01
The ESA2C will support current and future technology development activities that are required for human and robotic exploration of Mars, Phobos, Deimos, C-Type Asteroids and the Moon.The long-term goal of this work is to produce a useful, useable and sustainable resource for engineers and scientists developing technologies for ESA space exploration missions.
Green, Esther; Yuen, Dora; Chasen, Martin; Amernic, Heidi; Shabestari, Omid; Brundage, Michael; Krzyzanowska, Monika K; Klinger, Christopher; Ismail, Zahra; Pereira, José
2017-01-01
To examine oncology nurses' attitudes toward and reported use of the Edmonton Symptom Assessment System (ESAS) and to determine whether the length of work experience and presence of oncology certification are associated with their attitudes and reported usage. . Exploratory, mixed-methods study employing a questionnaire approach. . 14 regional cancer centers (RCCs) in Ontario, Canada. . Oncology nurses who took part in a larger province-wide study that surveyed 960 interdisciplinary providers in oncology care settings at all of Ontario's 14 RCCs. . Oncology nurses' attitudes and use of ESAS were measured using a 21-item investigator-developed questionnaire. Descriptive statistics and Kendall's tau-b or tau-c test were used for data analyses. Qualitative responses were analyzed using content analysis. . Attitudes toward and self-reported use of standardized symptom screening and ESAS. . More than half of the participants agreed that ESAS improves symptom screening, most said they would encourage their patients to complete ESAS, and most felt that managing symptoms is within their scope of practice and clinical responsibilities. Qualitative comments provided additional information elucidating the quantitative responses. Statistical analyses revealed that oncology nurses who have 10 years or less of work experience were more likely to agree that the use of standardized, valid instruments to screen for and assess symptoms should be considered best practice, ESAS improves symptom screening, and ESAS enables them to better manage patients' symptoms. No statistically significant difference was found between oncology-certified RNs and noncertified RNs on attitudes or reported use of ESAS. . Implementing a population-based symptom screening approach is a major undertaking. The current study found that oncology nurses recognize the value of standardized screening, as demonstrated by their attitudes toward ESAS. . Oncology nurses are integral to providing high-quality person-centered care. Using standardized approaches that enable patients to self-report symptoms and understanding barriers and enablers to optimal use of patient-reported outcome tools can improve the quality of patient care.
Latest processing status and quality assessment of the GOMOS, MIPAS and SCIAMACHY ESA dataset
NASA Astrophysics Data System (ADS)
Niro, F.; Brizzi, G.; Saavedra de Miguel, L.; Scarpino, G.; Dehn, A.; Fehr, T.; von Kuhlmann, R.
2011-12-01
GOMOS, MIPAS and SCIAMACHY instruments are successfully observing the changing Earth's atmosphere since the launch of the ENVISAT-ESA platform on March 2002. The measurements recorded by these instruments are relevant for the Atmospheric-Chemistry community both in terms of time extent and variety of observing geometry and techniques. In order to fully exploit these measurements, it is crucial to maintain a good reliability in the data processing and distribution and to continuously improving the scientific output. The goal is to meet the evolving needs of both the near-real-time and research applications. Within this frame, the ESA operational processor remains the reference code, although many scientific algorithms are nowadays available to the users. In fact, the ESA algorithm has a well-established calibration and validation scheme, a certified quality assessment process and the possibility to reach a wide users' community. Moreover, the ESA algorithm upgrade procedures and the re-processing performances have much improved during last two years, thanks to the recent updates of the Ground Segment infrastructure and overall organization. The aim of this paper is to promote the usage and stress the quality of the ESA operational dataset for the GOMOS, MIPAS and SCIAMACHY missions. The recent upgrades in the ESA processor (GOMOS V6, MIPAS V5 and SCIAMACHY V5) will be presented, with detailed information on improvements in the scientific output and preliminary validation results. The planned algorithm evolution and on-going re-processing campaigns will be mentioned that involves the adoption of advanced set-up, such as the MIPAS V6 re-processing on a clouds-computing system. Finally, the quality control process will be illustrated that allows to guarantee a standard of quality to the users. In fact, the operational ESA algorithm is carefully tested before switching into operations and the near-real time and off-line production is thoughtfully verified via the implementation of automatic quality control procedures. The scientific validity of the ESA dataset will be additionally illustrated with examples of applications that can be supported, such as ozone-hole monitoring, volcanic ash detection and analysis of atmospheric composition changes during the past years.
Inayah, A'man Talal; Anwer, Lucman A; Shareef, Mohammad Abrar; Nurhussen, Akram; Alkabbani, Haifa Mazen; Alzahrani, Alhanouf A; Obad, Adam Subait; Zafar, Muhammad; Afsar, Nasir Ali
2017-05-09
The qualitative subjective assessment has been exercised either by self-reflection (self-assessment (SA)) or by an observer (peer assessment (PA)) and is considered to play an important role in students' development. The objectivity of PA and SA by students as well as those by faculty examiners has remained debated. This matters most when it comes to a high-stakes examination. We explored the degree of objectivity in PA, SA, as well as the global rating by examiners being Examiners' Subjective Assessment (ESA) compared with Objective Structured Clinical Examinations (OSCE). Prospective cohort study. Undergraduate medical students at Alfaisal University, Riyadh. All second-year medical students (n=164) of genders, taking a course to learn clinical history taking and general physical examination. A Likert scale questionnaire was distributed among the participants during selected clinical skills sessions. Each student was evaluated randomly by peers (PA) as well as by himself/herself (SA). Two OSCEs were conducted where students were assessed by an examiner objectively as well as subjectively (ESA) for a global rating of confidence and well-preparedness. OSCE-1 had fewer topics and stations, whereas OSCE-2 was terminal and full scale. OSCE-1 (B=0.10) and ESA (B=8.16) predicted OSCE-2 scores. 'No nervousness' in PA (r=0.185, p=0.018) and 'confidence' in SA (r=0.207, p=0.008) correlated with 'confidence' in ESA. In 'well-preparedness', SA correlated with ESA (r=0.234, p=0.003). OSCE-1 and ESA predicted students' performance in the OSCE-2, a high-stakes evaluation, indicating practical 'objectivity' in ESA, whereas SA and PA had minimal predictive role. Certain components of SA and PA correlated with ESA, suggesting partial objectivity given the limited objectiveness of ESA. Such difference in 'qualitative' objectivity probably reflects experience. Thus, subjective assessment can be used with some degree of objectivity for continuous assessment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Communicating Herschel Key Programs in Solar System Studies to the Public
NASA Astrophysics Data System (ADS)
Rengel, M.; Hartogh, P.; Müller, T.
2011-10-01
The Herschel Space Observatory, one of the cornerstone missions of the European Space Agency (ESA) with participation from NASA, is delivering a wealth of far-infrared and sub-millimeter observations of the cold Universe. A considerable part of the observing time for the nominal three year mission lifetime has been awarded in the form of Key Programs. Between the 42 key programs (guaranteed and open times), only two key programs are dedicated to study the Solar System: "Water and Related Chemistry in the Solar System", also known as Herschel Solar System Observations (HssO) project [1], and "TNOs are Cool: A Survey of the Transneptunian Region" [2]. In the framework of these Programs, a serie of public outreach activities and efforts of its results are being carried out. We present some of the outreach strategies developed (e.g. press releases, web pages, logos, public lectures, exhibitions, interviews, reports, etc.) and some plans in this direction. Our activities introduce people to knowledge and beauty of solar system research and wider the opportunities for the public to become more involved in topics like solar system studies, specially in the times of frequent exo-planet discoveries.
BepiColombo mission to be presented to the media
NASA Astrophysics Data System (ADS)
2008-01-01
After a competitive phase started in 2001, ESA has awarded Astrium the prime contract to build BepiColombo. The contract signature ceremony will take place in presence of the Prime Minister of Baden Württemberg (Germany), Dr. Guenther Oettinger, and will mark the kick-off of the industrial development of the spacecraft. BepiColombo will be launched in 2013. It consists of two spacecraft - an orbiter for planetary investigation, led by ESA, and one for magnetospheric studies, led by the Japan Aerospace Exploration Agency (JAXA). The satellite duo will reach Mercury in 2019 after a six-year journey towards the inner Solar System, to make the most extensive and detailed study of Mercury ever attempted. The press event will feature a thorough presentation of the mission and its objectives, as well as the technical challenges that Astrium will have to address. Such challenges derive from the difficulty of reaching, surviving and operating in the harsh environment of a planet so close to Sun, making of BepiColombo one of the most complex long-term planetary projects undertaken by ESA so far. Media interested to attend are invited to register by the reply form attached below. Visit of Prime Minister Guenther Oettinger and BepiColombo Contract Signature Event programme 18 January 2008, h 10:30 Astrium Friedrichshafen, Germany Claude-Dornier-Straße, 88090 Immenstaad Building 8, Room "Meersburg" 10:30 Check-in 11:00 Welcome and introduction, Uwe Minne, Astrium, Director of Earth Observation and Science, Head of Friedrichshafen Site 11:05 BepiColombo in the context of the ESA Science Programme, Jacques Louet, ESA Head of Science Projects Departments 11:10 BepiColombo's scientific objectives, Johannes Benkhoff, ESA, BepiColombo Project Scientist 11:20 The BepiColombo mission, Jan van Casteren, ESA, BepiColombo Project Manager 11:30 BepiColombo's technical challenges, Rainer Best, Astrium, BepiColombo Project Manager 11:40 Q&A 12:00 Buffet lunch 13:00 Arrival of Prime Minister Guenther Oettinger, welcomed by Evert Dudok, CEO Astrium Satellites, Uwe Minne and Dr. Johannes v. Thadden, Astrium, Head of Political Affairs 13:05 Astrium at Friedrichshafen and its experience and heritage in scientific satellites, Uwe Minne, Head of Friedrichshafen Site 13:15 Astrium in Baden-Württemberg, and the importance of satellite Manufacturing, Evert Dudok, CEO Astrium Satellites 13:25 The ESA Science Programme and Germany’s involvement,David Southwood, ESA Director of Science 13:35 Contract Signature of BepiColombo, D. Southwood, ESA / E. Dudok,Astrium - J. Louet, ESA / U. Minne, Astrium 13:45 Speech of Guenther Oettinger, Prime Minister of Federal State of Baden-Württemberg: “Baden-Württemberg: a high-tech Country” 14:05 Transfer to Satellite Cleanroom 14:10 Visit Satellite Manufacturing 14:30 End of event
Malherbe, C; Hutchinson, I B; Ingley, R; Boom, A; Carr, A S; Edwards, H; Vertruyen, B; Gilbert, B; Eppe, G
2017-11-01
In 2020, the ESA ExoMars and NASA Mars 2020 missions will be launched to Mars to search for evidence of past and present life. In preparation for these missions, terrestrial analog samples of rock formations on Mars are studied in detail in order to optimize the scientific information that the analytical instrumentation will return. Desert varnishes are thin mineral coatings found on rocks in arid and semi-arid environments on Earth that are recognized as analog samples. During the formation of desert varnishes (which takes many hundreds of years), organic matter is incorporated, and microorganisms may also play an active role in the formation process. During this study, four complementary analytical techniques proposed for Mars missions (X-ray diffraction [XRD], Raman spectroscopy, elemental analysis, and pyrolysis-gas chromatography-mass spectrometry [Py-GC-MS]) were used to interrogate samples of desert varnish and describe their capacity to sustain life under extreme scenarios. For the first time, both the geochemistry and the organic compounds associated with desert varnish are described with the use of identical sets of samples. XRD and Raman spectroscopy measurements were used to nondestructively interrogate the mineralogy of the samples. In addition, the use of Raman spectroscopy instruments enabled the detection of β-carotene, a highly Raman-active biomarker. The content and the nature of the organic material in the samples were further investigated with elemental analysis and methylated Py-GC-MS, and a bacterial origin was determined to be likely. In the context of planetary exploration, we describe the habitable nature of desert varnish based on the biogeochemical composition of the samples. Possible interference of the geological substrate on the detectability of pyrolysis products is also suggested. Key Words: Desert varnish-Habitability-Raman spectroscopy-Py-GC-MS-XRD-ExoMars-Planetary science. Astrobiology 17, 1123-1137.
High Voltage Insulation Technology
NASA Astrophysics Data System (ADS)
Scherb, V.; Rogalla, K.; Gollor, M.
2008-09-01
In preparation of new Electronic Power Conditioners (EPC's) for Travelling Wave Tub Amplifiers (TWTA's) on telecom satellites a study for the development of new high voltage insulation technology is performed. The initiative is mandatory to allow compact designs and to enable higher operating voltages. In a first task a market analysis was performed, comparing different materials with respect to their properties and processes. A hierarchy of selection criteria was established and finally five material candidates (4 Epoxy resins and 1 Polyurethane resin) were selected to be further investigated in the test program. Samples for the test program were designed to represent core elements of an EPC, the high voltage transformer and Printed Circuit Boards of the high voltage section. All five materials were assessed in the practical work flow of the potting process and electrical, mechanical, thermal and lifetime testing was performed. Although the lifetime tests results were overlayed by a larges scatter, finally two candidates have been identified for use in a subsequent qualification program. This activity forms part of element 5 of the ESA ARTES Programme.
Analysis of the effects of simulated synergistic LEO environment on solar panels
NASA Astrophysics Data System (ADS)
Allegri, G.; Corradi, S.; Marchetti, M.; Scaglione, S.
2007-02-01
The effects due to the LEO environment exposure of a solar array primary structure are here presented and discussed in detail. The synergistic damaging components featuring LEO environment are high vacuum, thermal cycling, neutral gas, ultraviolet (UV) radiation and cold plasma. The synergistic effects due to these environmental elements are simulated by "on ground" tests, performed in the Space Environment Simulator (SAS) at the University of Rome "La Sapienza"; numerical simulations are performed by the Space Environment Information System (SPENVIS), developed by the European Space Agency (ESA). A "safe life" design for a solar array primary structure is developed, taking into consideration the combined damaging action of the LEO environment components; therefore results from both numerical and experimental simulations are coupled within the framework of a standard finite element method (FEM) based design. The expected durability of the solar array primary structure, made of laminated sandwich composite, is evaluated assuming that the loads exerted on the structure itself are essentially dependent on thermo-elastic stresses. The optical degradation of surface materials and the stiffness and strength degradation of structural elements are taken into account to assess the global structural durability of the solar array under characteristic operative conditions in LEO environment.
E-GRASP/Eratosthenes: GRGS numerical simulations and millimetric TRF realization
NASA Astrophysics Data System (ADS)
Pollet, A.; Coulot, D.; Biancale, R.; Mandea, M.
2017-12-01
To accurately measuring and understanding changes in sea level, ice sheets and other elements of the dynamic Earth system, a stable Terrestrial Reference Frame (TRF) is needed. To reach the goals for the TRF realization of 1 mm accuracy and 0.1 mm/year stability (GGOS, Meeting the Requirements of a Global Society on a Changing Planet in 2020, Plag and Pearlman, 2009), The European - Geodetic Reference Antenna in Space (E-GRASP) has been recently proposed to the ESA EE9 call. This space mission is designed to build an enduring and stable TRF, by carrying very precise sensor systems for all the key geodetic techniques used to define and monitor the TRF (DORIS, GNSS, SLR and VLBI).In this study, we present the numerical simulations carried out by the French Groupe de Recherche en Géodésie Spatiale (GRGS). We simulated the measurements of the four geodetic techniques (DORIS and SLR measurements to E-GRASP, VLBI interferometric measurements on E-GRASP and GPS measurements from ground stations and from E-GRASP) over five years. Next, we have evaluated the expected exactitude and stability of the TRF provided by the processing of these measurements. In addition, we show the expected impact of the on-board instrument calibration on the TRF. Finally, we simulated the measurements of the two LAGEOS and four DORIS satellites, quasars for VLBI and we computed two multi-technique combinations, one with E-GRASP measurements and one without, to evaluate the contribution of this satellite to a combination.
Research-grade CMOS image sensors for demanding space applications
NASA Astrophysics Data System (ADS)
Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre
2004-06-01
Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.
Research-grade CMOS image sensors for demanding space applications
NASA Astrophysics Data System (ADS)
Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre
2017-11-01
Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid- 90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.
AIDA: The Asteroid Impact & Deflection Assessment Mission
NASA Astrophysics Data System (ADS)
Galvez, A.; Carnelli, I.; Michel, P.; Cheng, A. F.; Reed, C.; Ulamec, S.; Biele, J.; Abell, P.; Landis, R.
2013-09-01
The Asteroid Impact and Deflection Assessment (AIDA) mission, a joint effort of ESA, JHU/APL, NASA, OCA, and DLR, is the first demonstration of asteroid deflection and assessment via kinetic impact. AIDA consists of two independent but mutually supporting mission elements, one of which is the asteroid kinetic impactor and the other is the characterization spacecraft. These two missions are, respectively, JHU/APL's Double Asteroid Redirection Test (DART) and the European Space Agency's Asteroid Investigation Mission (AIM) missions. As in the separate DART and AIM studies, the target of this mission is the binary asteroid [65803] Didymos in October, 2022. For a successful joint mission, one spacecraft, DART, would impact the secondary of the Didymos system while AIM would observe and measure any change in the relative orbit. AIM will be the first probe to characterise a binary asteroid, especially from the dynamical point of view, but also considering its interior and subsurface composition. The mission concept focuses on the monitoring aspects i.e., the capability to determine in-situ the key physical properties of a binary asteroid playing a role in the system's dynamic behavior. DART will be the first ever space mission to deflect the trajectory of an asteroid in a measurable way.- It is expected that the deflection can be measured as a change in the relative orbit period with a precision better than 10%. The joint AIDA mission will return vital data to determine the momentum transfer efficiency of the kinetic impact [1,2].
ISRU 3D printing for habitats and structures on the Moon
NASA Astrophysics Data System (ADS)
Cowley, Aidan
2016-07-01
In-situ-resource utilisation (ISRU) in combination with 3D printing may evolve into a key technology for future exploration. Setting up a lunar facility could be made much simpler by using additive manufacturing techniques to build elements from local materials - this would drastically reduce mission mass requirements and act as an excellent demonstrator for ISRU on other planetary bodies. Fabricating structures and components using Lunar regolith is an area of interest for ESA, as evidenced by past successful General Studies Program (GSP) and ongoing technology development studies. In this talk we detail a number of projects looking into the behavior of Lunar regolith simulants, their compositional variants and approaches to sintering such material that are under-way involving EAC, ESTEC and DLR. We report on early studies into utilizing conventional thermal sintering approaches of simulants as well as microwave sintering of these compositions. Both techniques are candidates for developing a 3D printing methodology using Lunar regolith. It is known that the differences in microwave effects between the actual lunar soil and lunar simulants can be readily ascribed to the presence of nanophase metallic Fe, native to Lunar regolith but lacking in simulants. In compostions of simulant with increased Illmenite (FeTiO3) concentrations, we observe improved regolith response to microwave heating, and the readily achieved formation of a glassy melt in ambient atmosphere. The improved response relative to untreated simulant is likely owing to the increased Fe content in the powder mix.
Thurman, E.M.; Goolsby, D.A.; Aga, D.S.; Pomes, M.L.; Meyer, M.T.
1996-01-01
Alachlor and its metabolite, 2-[(2',6'-diethylphenyl)- (methoxymethyl)amino]-2-oxoethanesulfonate (ESA), were identified in 76 reservoirs in the midwestern United States using immunoassay, liquid chromatography, and gas chromatography/mass spectrometry. The median concentration of ESA (0.48 ??g/L) exceeded the median concentration of alachlor (<0.05 ??g/L), with highest values in the upper Midwest. ESA also was detected in the Mississippi River from the mouth to the headwaters at concentrations of 0.2-1.5 ??g/L, exceeding the concentration of alachlor. In a field runoff study, alachlor rapidly formed ESA. It is hypothesized that a glutathione conjugate forms, which later oxidizes in soil to ESA. The removal of the chlorine atom lessens the toxicity of the parent compound and increases runoff potential. It is hypothesized further that sulfonic acid metabolites of other chloroacetanilides, including acetochlor, butachlor, metolachlor, and propachlor, also occur in surface water.
Norouzpour Deilami, Kiumars; Daryani, Ahmad; Ahmadpour, Ehsan; Sharif, Mehdi; Dadimoghaddam, Yousef; Sarvi, Shahabeddin; Alizadeh, Ahad
2014-12-01
Toxoplasmosis, responsible for ocular impairment, is caused by Toxoplasma gondii. We investigated the effect of Toxoplasma excretory-secretory antigens (ESA) on parasite load and distribution in the eye tissue of a murine model. Case and control groups were immunized with ESA and PBS, respectively. Two weeks after the second immunization, the mice were challenged intraperitoneally with virulent RH strain of Toxoplasma; eye tissue samples of both groups were collected daily (days 1, 2, 3, and the last day before death). Parasite load was determined using real-time quantitative PCR targeted at the B1 gene. Compared to the control group, infected mice that received ESA vaccine presented a considerable decrease in parasite load in the eye tissue, demonstrating the effect of ESA on parasite load and distribution. Diminution of parasite load in mouse eye tissue indicated that ESA might help control disease-related complications and could be a valuable immunization candidate against ocular toxoplasmosis. Copyright © 2014 Elsevier Ltd. All rights reserved.
The ESA contribution to the European Satellite Navigation Programme
NASA Astrophysics Data System (ADS)
Lucas, R.; Lo Galbo, P.; de Mateo, M. L.; Steciw, A.; Ashford, E.
1996-02-01
This paper describes the ESA ARTES-9 programme on Global Navigation Satellite Systems (GNSS). This programme will be the ESA contribution to the wider European Satellite Navigation Programme which is to be implemented as a joint effort of the European Union, Eurocontrol and ESA with the support of other European bodies such as telecommunication operators, national civil aviation authorities, national space agencies, industry, universities and R&D institutes in general. In fact, in view of the geographical area concerned, the large number of parties interested, the experience required and the global nature of GNSS, the proposed initiative can only be successful if based on a strong cooperation at a European and international scale. The ESA ARTES-9 programme will consist on one side, of the design, development and validation of the European complement to the GPS and GLONASS systems (GNSS1), and on the other side of the study, design and pre-development of the European contribution to follow-on systems: GNSS2.
NASA Astrophysics Data System (ADS)
Hoersch, Bianca; Colin, Olivier; Gascon, Ferran; Arino, Olivier; Spoto, Francois; Marchese, Franco; Krassenburg, Mike; Koetz, Benjamin
2016-04-01
Copernicus is a joint initiative of the European Commission (EC) and the European Space Agency (ESA), designed to establish a European capacity for the provision and use of operational monitoring information for environment and security applications. Within the Copernicus programme, ESA is responsible for the development of the Space Component, a fully operational space-based capability to supply earth-observation data to sustain environmental information Services in Europe. The Sentinel missions are Copernicus dedicated Earth Observation missions composing the essential elements of the Space Component. In the global Copernicus framework, they are complemented by other satellites made available by third-parties or by ESA and coordinated in the synergistic system through the Copernicus Data-Access system versus the Copernicus Services. The Copernicus Sentinel-2 mission provides continuity to services relying on multi-spectral high-resolution optical observations over global terrestrial surfaces. Sentinel-2 capitalizes on the technology and the vast experience acquired in Europe and the US to sustain the operational supply of data for services such as forest monitoring, land cover changes detection or natural disasters management. The Sentinel-2 mission offers an unprecedented combination of the following capabilities: ○ Systematic global coverage of land surfaces: from 56°South to 84°North, coastal waters and Mediterranean sea; ○ High revisit: every 5 days at equator under the same viewing conditions with 2 satellites; ○ High spatial resolution: 10m, 20m and 60m; ○ Multi-spectral information with 13 bands in the visible, near infra-red and short wave infra-red part of the spectrum; ○ Wide field of view: 290 km. The data from the Sentinel-2 mission are available openly and freely for all users with online easy access since December 2015. The presentation will give a status report on the Sentinel-2 mission, and outlook for the remaining ramp-up Phase, the completion of the constellation and a view to ongoing evolutions, together with a view on data exploitation.
ESA's new mission to search for signs of life on Mars: ExoMars and its Pasteur scientific payload
NASA Astrophysics Data System (ADS)
Vago, J. L.; Gardini, B.; Kminek, G.; Exomars Study Team
2003-04-01
ESA has recently completed a study for an exobiology mission to be launched in 2009. Its scientific objective is to search for signs of past and present life on Mars. Life as we know it relies, above all else, upon water. However, the present low ambient temperature and pressure conditions preclude the widespread existence of water on the Martian surface; except, maybe, in very localised environments, and then only episodically. Still, water/ice may lie at some depth underground. Additionally, because of the sterilizing/degrading effect of the Martian UV radiation spectrum, the search for life indicators, whether for present or for extinct life, should best be conducted below the surface. ESA's mission will consist of two main elements: a dedicated communications satellite, and a 200-kg rover. The rover will carry the Pasteur scientific payload. The Pasteur Model Payload used for the study is equipped with a multispectral, stereoscopic camera; an electromagnetic subsurface sounder to identify water/ice deposits; a drill capable of reaching a depth of 2 m, and also of collecting specimens from within surface rocks; a sample preparation unit, an optical microscope; an oxidation sensor; and a variety of spectroscopic instruments. For the characterisation of organic substances, Pasteur also houses a gas chromatographer/mass spectrometer, and a novel device based on protein assay chip technology. Latitudinal bands between 10 and 45 deg, both N and S can be targeted for landing. Over its envisioned lifetime of 180 sols, the rover is designed to cover 30-50 km of ground track over typical Martian terrain. Operations beyond this period will depend on the amount of dust deposited on the rover's solar panels. This paper summarises the present ExoMars concept. Particular attention is devoted to mission-imposed constraints having an influence on the science output: i.e. for instrument selection and operations, power generation, and landing sites.
Laser metrology and optic active control system for GAIA
NASA Astrophysics Data System (ADS)
D'Angelo, F.; Bonino, L.; Cesare, S.; Castorina, G.; Mottini, S.; Bertinetto, F.; Bisi, M.; Canuto, E.; Musso, F.
2017-11-01
The Laser Metrology and Optic Active Control (LM&OAC) program has been carried out under ESA contract with the purpose to design and validate a laser metrology system and an actuation mechanism to monitor and control at microarcsec level the stability of the Basic Angle (angle between the lines of sight of the two telescopes) of GAIA satellite. As part of the program, a breadboard (including some EQM elements) of the laser metrology and control system has been built and submitted to functional, performance and environmental tests. In the followings we describe the mission requirements, the system architecture, the breadboard design, and finally the performed validation tests. Conclusion and appraisals from this experience are also reported.
Challenge '95 - The Ariane 5 Development Programme
NASA Astrophysics Data System (ADS)
Vedrenne, M.; van Gaver, M.
1987-10-01
The Ariane-5 launcher has been assigned to the following types of missions: (1) launching geostationary and sun-synchronous commercial satellites, and scientific and trial applications satellites; (2) launching the Hermes spaceplane, and (3) launching elements of the Columbus system such as the man-tended free-flyer module, and the polar platform. A new launch complex, the ELA-3, is being built for the Ariane-5 launcher close to ESA's ELA-1 and ELA-2 launch complexes at Kourou. After two qualification flights in the automatic version in 1995 (501 and 502), it is expected that Ariane-5 will be declared operational with its first commercial flight planned for early 1996 to put an automatic payload into orbit.
Multi-Objective Scheduling for the Cluster II Constellation
NASA Technical Reports Server (NTRS)
Johnston, Mark D.; Giuliano, Mark
2011-01-01
This paper describes the application of the MUSE multiobjecctive scheduling framework to the Cluster II WBD scheduling domain. Cluster II is an ESA four-spacecraft constellation designed to study the plasma environment of the Earth and it's magnetosphere. One of the instruments on each of the four spacecraft is the Wide Band Data (WBD) plasma wave experiment. We have applied the MUSE evolutionary algorithm to the scheduling problem represented by this instrument, and the result has been adopted and utilized by the WBD schedulers for nearly a year. This paper describes the WBD scheduling problem, its representation in MUSE, and some of the visualization elements that provide insight into objective value tradeoffs.
An Overview of the Jupiter Europa Orbiter Concept's Europa Science Phase Orbit Design
NASA Technical Reports Server (NTRS)
Lock, Robert E.; Ludwinski, Jan M.; Petropoulos, Anastassios E.; Clark, Karla B.; Pappalardo, Robert T.
2009-01-01
Jupiter Europa Orbiter (JEO), the proposed NASA element of the proposed joint NASA-ESA Europa Jupiter System Mission (EJSM), could launch in February 2020 and conceivably arrive at Jupiter in December of 2025. The concept is to perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months. This paper provides an overview of the JEO concept and describes the Europa Science phase orbit design and the related science priorities, model pay-load and operations scenarios needed to conduct the Europa Science phase. This overview is for planning and discussion purposes only.
NASA Astrophysics Data System (ADS)
Levelt, P.; Veefkind, P.
2009-04-01
Dedicated atmospheric chemistry observations from space have been made for over 30 years now, starting with the SBUV and TOMS measurements of the ozone layer. Since then huge progress has been made, improving the accuracy of the measurements, extending the amount of constituents, and by sensing not only the stratosphere, but the last five to ten years also the troposphere. The potential to operational monitor the atmosphere, following the meteorological community, came within reach. At the same time, the importance for society of regular operational environmental measurements, related to the ozone layer, air quality and climate change, became apparent, amongst others resulting in the EU initiative Global Monitoring for Environment and Security (GMES) In order to prepare the operational missions in the context of the GMES, ESA took the initiative to further study the user requirements for the Sentinel 4 and 5 (precursor) missions. The Sentinel 4 and 5 (precursor) missions are dedicated operational missions to monitor the atmospheric composition in the 2013-2020 timeframe and onward. The user requirements for the sentinel missions focus on monitoring the atmosphere from an environmental point of view (ozone layer, air quality and climate). ESA's CAMELOT (Composition of the Atmospheric Mission concEpts and SentineL Observation Techniques) study is the follow-on study to ESA's CAPACITY study finished in 2005. The general objective of the CAMELOT study is to further contribute to the definition of the air quality and climate protocol monitoring parts of the GMES Sentinel 4 and 5 missions. Key issues in the CAMELOT study are: • trade-offs between different observation strategies (spectral ranges, polarisation, direction etc) for aerosols and several trace gases • a quantitative assessment of the requirements for spatio-temporal sampling taking into account the contamination of nadir-viewing observations by cloud • optimising several orbit scenario's (leo, inclined leo, geo or any combination) and a contribution from the user's perspective to the trade-off between different orbits. In order to address these issues a large European consortium, lead by KNMI, has been formed by 9 European institutes (KNMI, RAL, U.Leicester, SRON, FMI, BIRA-IASB, CNR-IFAC,NOVELTIS and RIU-U.Koeln). In the presentation an overview will be given of the CAMELOT study, including specific results for combined retrievals, cloud statistics for different orbit geometries and retrievals for several orbit scenarios.
The Space Infrared Telescope for Cosmology and Astrophysics (SPICA) in the New Framework
NASA Astrophysics Data System (ADS)
Bradford, Charles; SPICA Consortium, the SAFARI Consortium
2016-01-01
SPICA is a cryogenic space-borne observatory designed for optimal sensitivity in the mid-infrared through submillimeter range: 17-230 microns. The mission is an ESA / JAXA collaboration, now considered for the ESA Cosmic Visions M5 opportunity. SPICA will feature a 2.5-meter telescope cooled to below 8K, this offers the potential for 100-1000-fold advances in sensitivity beyond that obtained with Herschel and SOFIA in the far-IR. With a line sensitivity of ~5x10^-20 W/m^2 (1 h, 5 sigma), SPICA will be a complement to JWST and ALMA for deep spectroscopic observations. Integrated over cosmic history, star formation has occurred predominantly in dust-obscured regions which are inaccessible in the rest-frame UV and optical. Both the luminosity history and the detailed physics that govern it can only be directly measured in the mid-IR-submillimeter. Similarly, forming stars and planetary systems cool primarily through the far-IR. By taking advantage of the low-background platform, the SPICA instruments are designed for these topics. The SPICA mid-IR instrument (SMI) will provide R~50 imaging spectroscopy and R~1,000 full-band slit-fed spectroscopy from 17 to 36 microns, with a high-resolution (R=25,000) capability from 12-18 microns. The SPICA far-IR instrument (SAFARI) will cover 34 to at least 230 microns with multiple R~300 wide-band grating spectrometer modules coupling to high-sensitivity far-IR detectors. A R~3,000 scanned-etalon module will also be available for Galactic targets with bright continua and/or dense line spectra. SPICA has emerged with a new ESA-JAXA collaborative framework. In the current division of responsibilities, ESA will take the lead role, provide the telescope, the fine-attitude sensor, and the spacecraft bus. JAXA will provide the cryogenic system, the SMI instrument, integrate the telescope and instruments, and provide the launch vehicle. The SAFARI instrument will be provided by a consortium funded by the European national agencies led by SRON. Key detector and spectrometer contributions to SAFARI are under consideration in the US. The mission timeline is set by the Cosmic Visions M5 schedule, which has final approval in 2018-19, and launch in the late 2020s.
Future lunar exploration activities in ESA
NASA Astrophysics Data System (ADS)
Houdou, B.; Carpenter, J. D.; Fisackerly, R.; Koschny, D.; Pradier, A.; di Pippo, S.; Gardini, B.
2009-04-01
Introduction Recent years have seen a resurgence of interest in the Moon and various recent and coming orbital missions including Smart-1, Kaguya, Chandrayaan-1and Lunar Reconnaissance Orbiter are advancing our understanding. In 2004 the US announced a new Vision for Space Exploration [1], whose objectives are focused towards human missions to the Moon and Mars. The European Space Agency has established similar objectives for Europe, described in [2] and approved at the ESA ministerial council (2009). There is considerable potential for international cooperation in these activities, as formulated in the recently agreed Global Exploration Strategy [3]. Present lunar exploration activities at ESA emphasise the development of European technologies and capabilities, to enable European participation in future international human exploration of the Moon. A major element in this contribution has been identified as a large lunar cargo lander, which would fulfill an ATV-like function, providing logistical support to human activities on the Moon, extending the duration of sorties and the capabilities of human explorers. To meet this ultimate goal, ESA is currently considering various possible development approaches, involving lunar landers of different sizes. Lunar Lander Mission Options A high capacity cargo lander able to deliver consumables, equipment and small infrastructure, in both sortie and outpost mission scenarios, would use a full Ariane 5 launch and is foreseen in the 2020-2025 timeframe. ESA is also considering an intermediate, smaller-scale mission beforehand, to mature the necessary landing technologies, to demonstrate human-related capabilities in preparation of human presence on the Moon and in general to gain experience in landing and operating on the lunar surface. Within this frame, ESA is currently leading several feasibility studies of a small lunar lander mission, also called "MoonNEXT". This mission is foreseen to be to be launched from Kourou with a Soyuz in the 2015-2018 timeframe. The mission would be a first step to-wards mastering the automated precision landing with hazard avoidance required for a future cargo lander and essential for landing at the South Pole Aitken basin (SPA), the provisional MoonNEXT landing site. In addition the mission carries a strawman payload with several technology demonstration and testing packages, which will investigate advanced fuel cell and life sup-port technologies. A small MoonNEXT-like lander (Soyuz-launched) constitutes one of several possible mission types for a first landing on the Moon. The coming year will see additional investigations into other possibilities, including a medium-size lander, launched in a shared Ariane 5 configuration, which could provide a better level of validation of the landing technologies with respect to the targeted large lunar lander, as well as a more significant payload mass. Ultimately, the candidate intermediate mission options will be traded off to find the best balance of cost, mission implementation timeframe, development effort and representability. The reference intermediate lunar lander mission will be established so as to proceed with industrial Phase B1 activities in late 2009. It is also planned to study the large lunar lander based on a full Ariane 5 launch, in order to elaborate the design and to enter in more detailed discussion with the international partners. Possible Payload Packages: Multiple domains can be covered, depending also on the available pay-load mass (thus on the lander size): • Environmental characterization and monitoring: radiation, dust, micrometeorite impacts, temperature etc. (medium TRL) • Technology experiments for exploration preparation: e.g. life support and life sciences, small-scale or subsystem for ISRU, fuel cell etc. (low TRL) • Mobility • Payload transportation and manipulation • Logistics: infrastructure, equipment, consumables etc. The primary objective of any European Moon lander will be to enhance European capabilities for human exploration. It is expected that there will be provision for a significant inclusion of scientific interests. References: [1] National Aeronautics and Space Administration (NASA), The Vision for Space Exploration, NP-2004-01-334-HQ, NASA, Washington D.C, (2004). [2] ESA declaration on Transporation and Human Exploration (2008). [3] The Global Exploration Strategy, available at http://www.esa.int/SPECIALS/Space_Exploration_Strategy/SEMDAM0YUFF_0.html.
Posttest analysis of LOFT LOCE L2-3 using the ESA RELAP4 blowdown model. [PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perryman, J.L.; Samuels, T.K.; Cooper, C.H.
A posttest analysis of the blowdown portion of Loss-of-Coolant Experiment (LOCE) L2-3, which was conducted in the Loss-of-Fluid Test (LOFT) facility, was performed using the experiment safety analysis (ESA) RELAP4/MOD5 computer model. Measured experimental parameters were compared with the calculations in order to assess the conservatisms in the ESA RELAP4/MOD5 model.
Portrait view of ESA Spacelab Specialists
NASA Technical Reports Server (NTRS)
1978-01-01
Portrait view of European Space Agency (ESA) Spacelab Specialist Byron K. Lichtenberg in civilian clothes standing in front of a display case. The photo was taken at the Marshall Space Flight Center (MSFC), Huntsville, Alabama (31779); portrait view of ESA Spacelab Specialist Michael L. Lampton, also in civilian clothes in front of display at MSFC (31780); portrait view of Wubbo Ockels, also in civilian clothes in front of display at MSFC (31781).
EOforge: Generic Open Framework for Earth Observation Data Processing Systems
2006-09-01
Allow the use of existing interfaces, i.e. MUIS: ESA multimission catalogue for EO products. • Support last EO systems technologies, i.e. MASS ...5. Extensibility and configurability to allow customisation and the inclusion of new functionality. 6. Multi-instrument and multi-mission processing...such as: • MUIS: ESA multimission catalogue for EO products. • MASS (Multi-Application Support Service System): ESA web services technology standard
The definition of ESA's scientific programme for the 1980's.
NASA Astrophysics Data System (ADS)
Russo, A.
1997-09-01
The following topics were dealt with: discussing a long-term strategy for ESA's scientific activities; the SAC's (Science Advisory Committee) vision of European space science in the 1980s; the role of Spacelab (and Ariane); more money for science?; studying future scientific projects (the comets and the Moon); the selection of ESA's next scientific mission (the comet and the stars, the SPC decision, Giotto and Hipparcos adopted).
NASA Astrophysics Data System (ADS)
Nogueira, Alessandro Oliveira de Moraes; de Sousa, Robson Simplício; Pereira, Luiza Silveira; Mallmann, Christian; da Silva Ferreira, Ailton; Clementin, Rosilene Maria; de Lima, Vânia Rodrigues
2018-02-01
In this study, α-eleostearic acid-loaded (α-ESA-loaded) dimyristoylphosphatidylcholine (DMPC) liposomes had their physicochemical properties characterized by horizontal attenuated total reflectance Fourier transform infrared (HATR-FTIR) spectroscopy, nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). In vitro thiobarbituric acid reactive substance (TBARS) assays were performed to obtain preliminary information on the oxidative potential of the system. An α-ESA-promoted ordering effect in the lipid phosphate region was observed. It was associated with a rotation restriction due to an increase in the amount of lipid group hydrogen bonds. The fatty acid was responsible for the reduction in the degree of hydration of carbonyl groups located in the interfacial region of lipids. α-ESA disordered the DMPC methylene acyl chains by trans-gauche isomerization and increased its rotation rate. TBARS results showed pro-oxidant behavior on liposomes, induced by α-ESA. The discussion about the responses considered the degree of saturation of phosphatidylcholines and suggested that the α-ESA oxidative effects may be modulated by the liposome lipid composition. The versatility of liposomal carriers may be promising for the development of efficacious α-ESA-based drug delivery systems. Results described in this study contribute to the selection of adequate material to produce them.
NASA Astrophysics Data System (ADS)
Bastedo, Jamie D.; Nelson, J. Gordon; Theberge, John B.
1984-03-01
A resource survey and planning method for parks, reserves, and other environmentally significant areas (ESAs) is presented in the context of a holistic balanced approach to land use and environmental management. This method provides a framework for the acquisition, analysis, presentation, and application of diverse ecological data pertinent to land use planning and resource management within ESAs. Through the independent analysis and subsequent integration of abiotic, biotic, and cultural or ABC information, land areas within an ESA are identified in terms of their relative environmental significance and environmental constraints. The former term encompasses wildlife, historic, and other resource values, while the latter term reflects biophysical hazards and sensitivities, and land use conflicts. The method thus calls for a matching of an ESA's distinctive attributes with appropriate land use and institutional arrancements through an analysis of available acts, regulations, agencies, and other conservation and land use management mechanisms. The method culminates with a management proposal showing proposed park or reserve allocations, buffer areas, or other land use controls aimed at preserving an ESA's special ecological qualities, while providing for resource development. The authors suggest that all resource management decisions affecting ESA's should be governed by a philosophical stance that recognizes a spectrum of broad land use types, ranging from preservation to extractive use and rehabilitation.
Robl, J; Heberer, B; Prasicek, G; Neubauer, F; Hergarten, S
2017-01-01
The topography of the eastern Southern Alps (ESA) reflects indenter tectonics causing crustal shortening, surface uplift, and erosional response. Fluvial drainages were perturbed by Pleistocene glaciations that locally excavated alpine valleys. The Late Miocene desiccation of the Mediterranean Sea and the uplift of the northern Molasse Basin led to significant base level changes in the far field of the ESA and the Eastern Alps (EA), respectively. Among this multitude of mechanisms, the processes that dominate the current topographic evolution of the ESA and the ESA-EA drainage divide have not been identified. We demonstrate the expected topographic effects of each mechanism in a one-dimensional model and compare them with observed channel metrics. We find that the normalized steepness index increases with uplift rate and declines from the indenter tip in the northwest to the foreland basin in the southeast. The number and amplitude of knickpoints and the distortion in longitudinal channel profiles similarly decrease toward the east. Changes in slope of χ -transformed channel profiles coincide spatially with the Valsugana-Fella fault linking crustal stacking and uplift induced by indenter tectonics with topographic evolution. Gradients in χ across the ESA-EA drainage divide imply an ongoing, north directed shift of the Danube-ESA watershed that is most likely driven by a base level rise in the northern Molasse basin. We conclude that the regional uplift pattern controls the geometry of ESA-EA channels, while base level changes in the far field control the overall architecture of the orogen by drainage divide migration.
Rebich, R.A.; Coupe, R.H.; Thurman, E.M.
2004-01-01
The proportion of chloroacetanilide herbicide degradates, specifically the ethane sulfonic (ESA) and oxanilic (OA) acids, averaged 70% of the total herbicide concentration in samples from the Upper Mississippi River. In samples from the Missouri River and the Ohio River, the proportion of chloroacetanilide degradates in the total herbicide concentration was much less, 24% and 41%, respectively. The amount of tile drainage throughout the Mississippi River Basin appeared to be related to the occurrence and distribution of chloroacetanilide degradates in water samples. Pesticide concentrations in streams of the Mississippi River Basin have been well characterized. However, recent research demonstrates that in order to more fully understand the fate and transport of pesticides, the major pesticide degradates need to be included in the analysis. From March 1999 through May 2001, water samples from four major junctures of the Mississippi River Basin were collected and analyzed for a suite of herbicides and their degradate compounds. Each sampling site was selected to represent a major part of the Mississippi River: upper and lower Mississippi, Missouri and Ohio Rivers. Each basin has unique landscape variables, geology, hydrology, precipitation, and land use, which is reflected in the pesticide content at the most downstream sample site near the mouth of the Mississippi River. Atrazine was the most frequently detected herbicide (detected in 97% of the samples), followed by metolachlor (60%), and acetochlor (31%). The most frequently detected degradates were metolachlor ESA (69%), followed by deethylatrazine (62%), metolachlor OA (37%), and alachlor ESA (37%). Metolachlor ESA was detected more frequently than its parent compound (69 vs. 60%), as was alachlor ESA (37 vs. 9%). After an improvement was made in the analytical method, metolachlor ESA was detected in every sample, metolachlor OA in 89% of the samples, alachlor ESA in 84%, acetochlor ESA in 71%, and acetochlor OA in 66%. ?? 2003 Elsevier B.V. All rights reserved.
Busch, D Shallin; Greene, Correigh M; Good, Thomas P
2013-12-01
Marine hydrokinetic power projects will operate as marine environments change in response to increased atmospheric carbon dioxide concentrations. We considered how tidal power development and stressors resulting from climate change may affect Puget Sound species listed under the U.S. Endangered Species Act (ESA) and their food web. We used risk tables to assess the singular and combined effects of tidal power development and climate change. Tidal power development and climate change posed risks to ESA-listed species, and risk increased with incorporation of the effects of these stressors on predators and prey of ESA-listed species. In contrast, results of a model of strikes on ESA-listed species from turbine blades suggested that few ESA-listed species are likely to be killed by a commercial-scale tidal turbine array. We applied scenarios to a food web model of Puget Sound to explore the effects of tidal power and climate change on ESA-listed species using more quantitative analytical techniques. To simulate development of tidal power, we applied results of the blade strike model. To simulate environmental changes over the next 50 years, we applied scenarios of change in primary production, plankton community structure, dissolved oxygen, ocean acidification, and freshwater flooding events. No effects of tidal power development on ESA-listed species were detected from the food web model output, but the effects of climate change on them and other members of the food web were large. Our analyses exemplify how natural resource managers might assess environmental effects of marine technologies in ways that explicitly incorporate climate change and consider multiple ESA-listed species in the context of their ecological community. Estimación de los Efectos de Proyectos de Energía de las Mareas y el Cambio Climático sobre Especies Marinas Amenazadas y en Peligro y su Red Alimentaria. © 2013 Society for Conservation Biology No claim to original US government works.
Galle, Jan-Christoph; Addison, Janet; Suranyi, Michael G.; Claes, Kathleen; Di Giulio, Salvatore; Guerin, Alain; Herlitz, Hans; Kiss, István; Farouk, Mourad; Manamley, Nick; Wirnsberger, Gerhard; Winearls, Christopher
2016-01-01
Background Extended dosing of the erythropoiesis-stimulating agent (ESA) darbepoetin alfa (DA) once biweekly or monthly reduces anaemia treatment burden. This observational study assessed outcomes and dosing patterns in patients with chronic kidney disease not on dialysis (CKD-NoD) commencing extended dosing of DA. Methods Adult CKD-NoD patients starting extended dosing of DA in Europe or Australia in June 2006 or later were followed up until December 2012. Outcomes included haemoglobin (Hb) concentration, ESA dosing, mortality rates and receipt of dialysis and renal transplantation. Subgroup analyses were conducted for selected outcomes. Results Of 6035 enrolled subjects, 5723 (94.8%) met analysis criteria; 1795 (29.7%) received dialysis and 238 (3.9%) underwent renal transplantation. Mean (standard deviation) Hb concentration at commencement of extended dosing was 11.0 (1.5) g/dL. Mean [95% confidence interval (CI)] Hb 12 months after commencement of extended dosing (primary outcome) was 11.6 g/dL (11.5, 11.6) overall and was similar across countries, with no differences between subjects previously treated with an ESA versus ESA-naïve subjects, subjects with versus without prior renal transplant or diabetics versus non-diabetics. Weekly ESA dose gradually decreased following commencement of extended DA dosing and was similar across subgroups. The decrease in weekly DA dose was accompanied by an increase in the proportion of patients receiving iron therapy. Hb concentrations declined following changes in ESA labels and treatment guidelines. The mortality rate (95% CI) was 7.06 (6.68, 7.46) deaths per 100 years of follow-up. Subjects alive at study end had stable Hb concentrations in the preceding year, while those who died had lower and declining Hb concentrations in their last year. Conclusions Long-term, extended dosing of DA maintained Hb concentrations in patients already treated with an ESA and corrected and maintained Hb in ESA-naïve patients. PMID:27190334
Metolachlor and its metabolites in tile drain and stream runoff in the canajoharie creek watershed
Phillips, P.J.; Wall, G.R.; Thurman, E.M.; Eckhardt, D.A.; Vanhoesen, J.
1999-01-01
Water samples collected during April-November 1997 from tile drains beneath cultivated fields in central New York indicate that two metabolites of the herbicide metolachlor-metolachlor ESA (ethanesulfonic acid) and OA (oxanilic acid) can persist in agricultural soils for 4 or more years after application and that fine-grained soils favor the transport of metolachlor ESA over metolachlor and metolachlor OA. Concentrations of metolachlor ESA from the tile drains ranged from 3.27 to 23.4 ??g/L (200 1800 times higher than those of metolachlor), metolachlor OA concentrations ranged from 1.14 to 13.5 ??g/L, and metolachlor concentrations ranged from less than 0.01 to 0.1 ??g/L. In the receiving stream, concentrations of metolachlor ESA were always below 0.6 ??g/L except during a November storm, when concentrations reached 0.85 ??g/L. Concentrations of metolachlor ESA in the stream were 2 45 times higher than those of metolachlor, reflecting the greater relative concentrations of metolachlor in surface water runoff than in tile drain runoff. These results are consistent with findings in other studies that acetanilide herbicide degredates are found in much higher concentrations than parent compounds in both surface water and groundwater.Water samples collected during April-November 1997 from tile drains beneath cultivated fields in central New York indicate that two metabolites of the herbicide metolachlor-metolachlor ESA (ethanesulfonic acid) and OA (oxanilic acid)-can persist in agricultural soils for 4 or more years after application and that fine-grained soils favor the transport of metolachlor ESA over metolachlor and metolachlor OA. Concentrations of metolachlor ESA from the tile drains ranged from 3.27 to 23.4 ??g/L (200-1800 times higher than those of metolachlor), metolachlor OA concentrations ranged from 1.14 to 13.5 ??g/L, and metolachlor concentrations ranged from less than 0.01 to 0.1 ??g/L. In the receiving stream, concentrations of metolachlor ESA were always below 0.6 ??g/L except during a November storm, when concentrations reached 0.85 ??g/L. Concentrations of metolachlor ESA in the stream were 2-45 times higher than those of metolachlor, reflecting the greater relative concentrations of metolachlor in surface water runoff than in tile drain runoff. These results are consistent with findings in other studies that acetanilide herbicide degredates are found in much higher concentrations than parent compounds in both surface water and groundwater.
Programmable wide field spectrograph for earth observation
NASA Astrophysics Data System (ADS)
Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean
2017-11-01
In Earth Observation, Universe Observation and Planet Exploration, scientific return of the instruments must be optimized in future missions. Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. These devices are based on the mature micro-electronics technology and in addition to their compactness, scalability, and specific task customization, they could generate new functions not available with current technologies. French and European space agencies, the Centre National d'Etudes Spatiales (CNES) and the European Space Agency (ESA) have initiated several studies with LAM and TAS for listing the new functions associated with several types of MEMS, and developing new ideas of instruments.
Fiber optic sensing subsystem for temperature monitoring in space in-flight applications
NASA Astrophysics Data System (ADS)
Abad, S.; Araujo, F.; Pinto, F.; González Torres, J.; Rodriguez, R.; Moreno, M. A.
2017-11-01
Fiber Optic Sensor (FOS) technology presents long recognized advantages which enable to mitigate deficient performance of conventional technology in hazard-environments common in spacecraft monitoring applications, such as: multiplexing capability, immunity to EMI/RFI, remote monitoring, small size and weight, electrical insulation, intrinsically safe operation, high sensibility and long term reliability. A key advantage is also the potential reduction of Assembly Integration and Testing (AIT) time achieved by the multiplexing capability and associated reduced harness. In the frame of the ESA's ARTES5.2 and FLPP-Phase 3 programs, Airbus DS-Crisa and FiberSensing are developing a Fiber Bragg Grating (FBG) - based temperature monitoring system for application in space telecommunication platforms and launchers. The development encompasses both the interrogation unit and the FBG temperature sensors and associated fiber harness. In parallel Airbus DS - Crisa is developing a modular RTU (RTU2015) to provide maximum flexibility and mission-customization capability for RTUs maintaining the ESA's standards at I/O interface level [1]. In this context, the FBG interrogation unit is designed as a module to be compatible, in both physical dimensions and electrical interfaces aspects, with the Electrical Internal Interface Bus of the RTU2015, thus providing the capability for a hybrid electrical and optical monitoring system.
NASA Astrophysics Data System (ADS)
Barrado, David; Gallego, Jesús
2009-12-01
The answers to the present astrophysical questions require the development of highly sophisticated instrumentation, which needs long-term scheduling and large assets of human and material resources, managed by consortia of several institutions. Spain has carried in the last years serious efforts in this direction (GTC, ESO, ESA), but there is still a notable offset between astronomical research at the theoretical and observational levels and the development of instrumentation. Now, the incorporation of new countries to ESO (in particular Spain) to ESO and several future big projects (ALMA, E-ELT, Cosmic Vision), raise the level of exigency. The goal of this workshop is to gather the scientific teams and the industries of the sector to expose their needs and projects, and share experiences. The workshop is aimed as well at serving as an echo to convince financing agencies and the astronomical community in general of the need to promote with decision the development of astrophysical instrumentation and the tools for the analysis of related data. The formation and acknowledgement of instrumentation astronomers will be a key factor for Spain to meet the requirements of its position in Astronomy in the next decades. Here, we present the contributions most closely related to the development of E-ELT, ALMA and ESA missions.
Preparing Our Schools for the 21st Century. 1999 ASCD Yearbook.
ERIC Educational Resources Information Center
Marsh, David D., Ed.
This yearbook offers a view of the key elements of schooling in the 21st century, outlining the nature of the change process that will be needed to create such schools. These key elements are drawn from the experience of educational reform in several countries and reflect a growing consensus about which elements will help all schools achieve both…
EPA Region 1 Environmentally Sensitive Areas
This coverage represents polygon equivalents of environmentally sensitive areas (ESA) in EPA Region I. ESAs were developed as part of an EPA headquarters initiative based on reviews of various regulatory and guidance documents, as well as phone interviews with federal/state/local government agencies and private organizations. ESAs include, but are not limited to, wetlands, biological resources, habitats, national parks, archaeological/historic sites, natural heritage areas, tribal lands, drinking water intakes, marinas/boat ramps, wildlife areas, etc.
NASA Astrophysics Data System (ADS)
Oliveira, Eliezer Fernando; Shi, Junqing; Lavarda, Francisco Carlos; Lüer, Larry; Milián-Medina, Begoña; Gierschner, Johannes
2017-07-01
A time-dependent density functional theory study is performed to reveal the excited state absorption (ESA) features of distyrylbenzene (DSB), a prototype π-conjugated organic oligomer. Starting with a didactic insight to ESA based on simple molecular orbital and configuration considerations, the performance of various density functional theory functionals is tested to reveal the full vibronic ESA features of DSB at short and long probe delay times.
NASA Technical Reports Server (NTRS)
Logalbo, P.; Benedicto, J.; Viola, R.
1993-01-01
Personal Communications and Digital Audio Broadcasting are two new services that the European Space Agency (ESA) is investigating for future European and Global Mobile Satellite systems. ESA is active in promoting these services in their various mission options including non-geostationary and geostationary satellite systems. A Medium Altitude Global Satellite System (MAGSS) for global personal communications at L and S-band, and a Multiregional Highly inclined Elliptical Orbit (M-HEO) system for multiregional digital audio broadcasting at L-band are described. Both systems are being investigated by ESA in the context of future programs, such as Archimedes, which are intended to demonstrate the new services and to develop the technology for future non-geostationary mobile communication and broadcasting satellites.
Ulysses - An ESA/NASA cooperative programme
NASA Technical Reports Server (NTRS)
Meeks, W.; Eaton, D.
1990-01-01
Cooperation between ESA and NASA is discussed, noting that the Memorandum of Understanding lays the framework for this relationship, defining the responsibilities of ESA and NASA and providing for appointment of leadership and managers for the project. Members of NASA's Jet Propulsion Laboratory and ESA's ESTEC staff have been appointed to leadership positions within the project and ultimate control of the project rests with the Joint Working Group consisting of two project managers and two project scientists, equally representing both organizations. Coordination of time scales and overall mission design is discussed, including launch cooperation, public relations, and funding of scientific investigations such as Ulysses. Practical difficulties of managing an international project are discussed such as differing documentation requirements and communication techniques, and assurance of equality on projects.
A quantitative metric to identify critical elements within seafood supply networks.
Plagányi, Éva E; van Putten, Ingrid; Thébaud, Olivier; Hobday, Alistair J; Innes, James; Lim-Camacho, Lilly; Norman-López, Ana; Bustamante, Rodrigo H; Farmery, Anna; Fleming, Aysha; Frusher, Stewart; Green, Bridget; Hoshino, Eriko; Jennings, Sarah; Pecl, Gretta; Pascoe, Sean; Schrobback, Peggy; Thomas, Linda
2014-01-01
A theoretical basis is required for comparing key features and critical elements in wild fisheries and aquaculture supply chains under a changing climate. Here we develop a new quantitative metric that is analogous to indices used to analyse food-webs and identify key species. The Supply Chain Index (SCI) identifies critical elements as those elements with large throughput rates, as well as greater connectivity. The sum of the scores for a supply chain provides a single metric that roughly captures both the resilience and connectedness of a supply chain. Standardised scores can facilitate cross-comparisons both under current conditions as well as under a changing climate. Identification of key elements along the supply chain may assist in informing adaptation strategies to reduce anticipated future risks posed by climate change. The SCI also provides information on the relative stability of different supply chains based on whether there is a fairly even spread in the individual scores of the top few key elements, compared with a more critical dependence on a few key individual supply chain elements. We use as a case study the Australian southern rock lobster Jasus edwardsii fishery, which is challenged by a number of climate change drivers such as impacts on recruitment and growth due to changes in large-scale and local oceanographic features. The SCI identifies airports, processors and Chinese consumers as the key elements in the lobster supply chain that merit attention to enhance stability and potentially enable growth. We also apply the index to an additional four real-world Australian commercial fishery and two aquaculture industry supply chains to highlight the utility of a systematic method for describing supply chains. Overall, our simple methodological approach to empirically-based supply chain research provides an objective method for comparing the resilience of supply chains and highlighting components that may be critical.
A Quantitative Metric to Identify Critical Elements within Seafood Supply Networks
Plagányi, Éva E.; van Putten, Ingrid; Thébaud, Olivier; Hobday, Alistair J.; Innes, James; Lim-Camacho, Lilly; Norman-López, Ana; Bustamante, Rodrigo H.; Farmery, Anna; Fleming, Aysha; Frusher, Stewart; Green, Bridget; Hoshino, Eriko; Jennings, Sarah; Pecl, Gretta; Pascoe, Sean; Schrobback, Peggy; Thomas, Linda
2014-01-01
A theoretical basis is required for comparing key features and critical elements in wild fisheries and aquaculture supply chains under a changing climate. Here we develop a new quantitative metric that is analogous to indices used to analyse food-webs and identify key species. The Supply Chain Index (SCI) identifies critical elements as those elements with large throughput rates, as well as greater connectivity. The sum of the scores for a supply chain provides a single metric that roughly captures both the resilience and connectedness of a supply chain. Standardised scores can facilitate cross-comparisons both under current conditions as well as under a changing climate. Identification of key elements along the supply chain may assist in informing adaptation strategies to reduce anticipated future risks posed by climate change. The SCI also provides information on the relative stability of different supply chains based on whether there is a fairly even spread in the individual scores of the top few key elements, compared with a more critical dependence on a few key individual supply chain elements. We use as a case study the Australian southern rock lobster Jasus edwardsii fishery, which is challenged by a number of climate change drivers such as impacts on recruitment and growth due to changes in large-scale and local oceanographic features. The SCI identifies airports, processors and Chinese consumers as the key elements in the lobster supply chain that merit attention to enhance stability and potentially enable growth. We also apply the index to an additional four real-world Australian commercial fishery and two aquaculture industry supply chains to highlight the utility of a systematic method for describing supply chains. Overall, our simple methodological approach to empirically-based supply chain research provides an objective method for comparing the resilience of supply chains and highlighting components that may be critical. PMID:24633147
Safari: instrument design of the far-infrared imaging spectrometer for spica
NASA Astrophysics Data System (ADS)
Jellema, W.; Pastor, C.; Naylor, D.; Jackson, B.; Sibthorpe, B.; Roelfsema, P.
2017-11-01
The next great leap forward in space-based far-infrared astronomy will be made by the Japanese-led SPICA mission, which is anticipated to be launched late 2020's as the next large astrophysics mission of JAXA, in partnership with ESA and with key European contributions. Filling in the gap between JWST and ALMA, the SPICA mission will study the evolution of galaxies, stars and planetary systems. SPICA will utilize a deeply cooled 3m-class telescope, provided by European industry, to realize zodiacal background limited performance, high spatial resolution and large collecting area. Making full advantage of the deeply cooled telescope (<6K), the SAFARI instrument on SPICA is a highly sensitive wide-field imaging photometer and spectrometer operating in the 34-210 μm wavelength range. Utilizing Nyquist-sampled focal-plane arrays of very sensitive Transition Edge Sensors (TES), SAFARI will offer a photometric imaging (R ≍ 2), and a low (R = 100) and medium resolution (R = 2000 at 100 μm) imaging spectroscopy mode in three photometric bands within a 2'x2' instantaneous FoV by means of a cryogenic Mach-Zehnder Fourier Transform Spectrometer. In this paper we will provide an overview of the SAFARI instrument design and system architecture. We will describe the reference design of the SAFARI focal- plane unit, the implementation of the various optical instrument functions designed around the central large-stroke FTS system, the photometric band definition and out-of-band filtering by quasioptical elements, the control of straylight, diffraction and thermal emission in the long-wavelength limit, and how we interface to the large-format FPA arrays at one end and the SPICA telescope assembly at the other end. We will briefly discuss the key performance drivers with special emphasis on the optical techniques adopted to overcome issues related to very low background operation of SAFARI. A summary and discussion of the expected instrument performance and an overview of the astronomical capabilities finally conclude the paper.
Korenevsky, Artyom; Vaillancourt, Régis; Pouliot, Annie; Revol, Marine; Steed, Evan; Besançon, Luc; Wahrendorf, Marit-Saskia; Patel, Jaimisha R
2013-07-01
Communicating health-related instructions with pictograms is useful, but such graphics can be interpreted in different ways. It is crucial to understand which pictogram components are best for accurate communication. To catalogue pictograms used to label drugs in clinical practice; to identify the common graphic elements for defined categories of pictograms, by performing a semiotic analysis (studying how signs are perceived and how they should be designed); to identify the key graphic elements common to pictograms preferred by users; and to develop suggestions for future pictogram design on the basis of users' input. Literature and Internet searches were performed to identify pictograms and pictogram categories. A call for pictograms was also circulated through the International Pharmaceutical Federation (FIP). Youth at a Canadian pediatric hospital were asked to rate pictograms (including storyboards and prescription labels generated by FIP pictogram software) in terms of how best they represented their intended meanings. Pictograms for which at least 80% of participants "somewhat agreed", "agreed", or "strongly agreed" that the graphic conveyed the intended meaning were designated as "preferred" and were selected for analysis. Elements appearing in at least 50% of these preferred pictograms were highlighted as key graphic elements for design of future pictograms. In total, 21 categories were identified for pictograms used in clinical practice, and a total of 204 pictograms were analyzed. Eighty-six participants took part in the survey. For each pictogram category, certain elements were identified as "preferred" and as "key graphic elements", whereas other elements met neither designation. For all 21 pictogram categories, at least 80% of survey respondents agreed that the FIP storyboard conveyed the intended meaning. Certain key, preferred graphic elements are required for pharmaceutical pictograms to convey their intended meaning. The overlap between preferred and key pictogram elements indicates that both must be considered in development of future pictograms. Redesign of existing pictograms with consideration of the best semiotic elements is in progress.
NASA Astrophysics Data System (ADS)
Volonte, S.
2018-04-01
The Space Science Programme of ESA encompasses three broad areas of investigation, namely solar system science (the Sun, the planets and space plasmas), fundamental physics and space astronomy and astrophysics.
NASA Astrophysics Data System (ADS)
Jenkins, Edward B.; Wallerstein, George
2017-04-01
We present data on the gas-phase abundances for 9 different elements in the interstellar medium of the Small Magellanic Cloud (SMC), based on the strengths of ultraviolet absorption features over relevant velocities in the spectra of 18 stars within the SMC. From this information and the total abundances defined by the element fractions in young stars in the SMC, we construct a general interpretation on how these elements condense into solid form onto dust grains. As a group, the elements Si, S, Cr, Fe, Ni, and Zn exhibit depletion sequences similar to those in the local part of our Galaxy defined by Jenkins. The elements Mg and Ti deplete less rapidly in the SMC than in the Milky Way, and Mn depletes more rapidly. We speculate that these differences might be explained by the different chemical affinities to different existing grain substrates. For instance, there is evidence that the mass fractions of polycyclic aromatic hydrocarbons in the SMC are significantly lower than those in the Milky Way. We propose that the depletion sequences that we observed for the SMC may provide a better model for interpreting the element abundances in low-metallicity Damped Lyman Alpha (DLA) and sub-DLA absorption systems that are recorded in the spectra of distant quasars and gamma-ray burst afterglows. Based on observations with the NASA/ESA Hubble Space Telescope and additional data obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Associations of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. These observations are associated with program nr. 13778.
Ulysses, the end of an extraordinary mission
NASA Astrophysics Data System (ADS)
2008-06-01
Ulysses, a pioneering ESA/NASA mission, was launched in October 1990 to explore uncharted territories - the regions above and below the Sun’s poles - and study our star’s sphere of influence, or heliosphere, in the four dimensions of space and time. Originally designed for a lifetime of five years, the mission has surpassed all expectations. The reams of data Ulysses has returned have forever changed the way scientists view the Sun and its effect on the space surrounding it. Media representatives interested in attending the press conference are invited to register using the attached form. Those not able to attend will have the opportunity to follow the press conference using the following phone number: +33 1 56785733 (listening-mode only). The programme of the event is as follows: The Ulysses Legacy Press Conference 12 June 2008, 15:30, Room 137, ESA Headquarters, 8-10 rue Mario-Nikis, Paris Event programme 15:30 Welcome, by David Southwood, ESA Director of Science and Robotic Exploration (with a joint ESA/NASA statement) 15:40 Ulysses: a modern-day Odyssey, by Richard Marsden, ESA Ulysses Project Scientist and Mission Manager 15:50 The Ulysses scientific legacy: Inside the heliosphere, by Richard Marsden,ESA Ulysses Project Scientist and Mission Manager 16:00 The Ulysses scientific legacy: Outside the heliosphere, by Ed Smith, NASA Ulysses Project Scientist 16:10 Ulysses, the over-achiever: challenges and successes of a 17-year-old mission, by Nigel Angold, ESA Ulysses Mission Operations Manager 16:20 Questions and Answers, Panelists: David Southwood, Richard Marsden, Ed Smith, Nigel Angold and Ed Massey (NASA Ulysses Project Manager) 16:40 Interview opportunities 17:30 End of event
ESA on RAINEWS24: A Case Study of Television Communication
NASA Astrophysics Data System (ADS)
Sandrelli, S.
2005-12-01
In May 2000, ESRIN, the Italian establishment of the European Space Agency (ESA), started a collaboration with the television channel Rainews24. Rainews24 is the "allnews" channel of Italian public television (RAI) and is now about 10 years old. It transmits 24 hours a day and is the most watched all-news satellite channel in Italy. Each Thursday an ESA representative (Stefano Sandrelli) is interviewed by a professional RAI journalist in a 5-6 minute long slot that follows the 5 pm news bulletin. The broadcast is repeated late at night or in the early hours of Thursday and Friday. Interviews are strictly linked to the weekly news and are prepared on the morning of the same day by the ESA representative in collaboration with a RAI journalist. The subject is chosen from the most topical news items of the week: video, images and animations are provided by the ESA television service and by press agencies (Reuters etc.). The interviews are largely informal and resemble a dialogue rather than an academic discussion "from space". Even though they focus on ESA activities, they are not advertisements: space science and research is dealt with as a human activity, so both the positive and negative aspects of space exploration and exploitation may emerge. Although this outreach activity began as an experiment, the ESA interviews have become a fixed feature. As a result of five years of uninterrupted collaboration, over 200 interviews have been recorded, with about 30% of the interviews dedicated to pure astronomy. A welcome positive feature is that the interviews are seen by Rainews24 as an open source of daily news.
Liu, Ying; Cheng, Yajun; Li, Jinwei; Wang, Yuanpeng; Liu, Yuanfa
2018-05-23
In the present study, effects of cis-9,10-epoxy stearic acid (ESA) generated by the thermal oxidation of oleic acid on HepG2 cells, including cytotoxicity, apoptosis, and oxidative stress, were investigated. Our results revealed that ESA decreased the cell viability and induced cell death. Cell cycle analysis with propidium iodide staining showed that ESA induced cell cycle arrest at the G0/G1 phase in HepG2 cells. Cell apoptosis analysis with annexin V and propidium iodide staining demonstrated that ESA induced HepG2 cell apoptotic events in a dose- and time-dependent manner; the apoptosis of cells after treated with 500 μM ESA for 12, 24, and 48 h was 32.16, 38.70, and 65.80%, respectively. Furthermore, ESA treatment to HepG2 cells resulted in an increase in reactive oxygen species and malondialdehyde (from 0.84 ± 0.02 to 8.90 ± 0.50 nmol/mg of protein) levels and a reduction in antioxidant enzyme activity, including superoxide dismutase (from 1.34 ± 0.27 to 0.10 ± 0.007 units/mg of protein), catalase (from 100.04 ± 5.05 to 20.09 ± 3.00 units/mg of protein), and glutathione peroxidase (from 120.44 ± 7.62 to 35.84 ± 5.99 milliunits/mg of protein). These findings provide critical information on the effects of ESA on HepG2 cells, particularly cytotoxicity and oxidative stress, which is important for the evaluation of the biosafety of the oxidative product of oleic acid.
Can Bradyrhizobium strains inoculation reduce water deficit effects on peanuts?
Barbosa, D D; Brito, S L; Fernandes, P D; Fernandes-Júnior, P I; Lima, L M
2018-06-09
Drought is one of the environmental factors that most affects peanut cultivation in semi-arid regions, resulting in economic losses to growers. However, growth promoting bacteria are able to reduce water deficit damage in some plant species. In this context, this study aimed to evaluate the interaction of Bradyrhizobium strains reducing water stress effects on peanut genotypes by antioxidant enzymes activities, leaf gas exchanges and vegetative growth, as well as to determine the taxonomic positioning of strain ESA 123. The 16S rRNA gene of ESA 123 was amplified by PCR and sequenced by dideoxy Sanger sequencing method. An experiment was performed in greenhouse with three peanut genotypes (BRS Havana, CNPA 76 AM and 2012-4), two Bradyrhizobium strains (SEMIA 6144 and ESA 123), a mineral source of N and an absolute control (without N) under two water regimes (with and without irrigation). Seeds of peanut were sown and the plants were grown until 30 days after emergence. On the 20th day, the water deficit plants group had their irrigation suspended for 10 days. At in silico analyzes, ESA 123 presented 98.97% similarity with the type strain of B. kavangense. Leaf gas exchange was affected by water deficit; as well as alteration of antioxidant activities and reduction of vegetative growth variables. However, some plants inoculated with SEMIA 6144 and ESA 123 strains presented lower reductions and increment of some evaluated variables, mainly the ones inoculated with the ESA 123 strain, Bradyrhizobium sp. from the semi-arid region of Northeast Brazil. This data suggests beneficial effects of the peanut-Bradyrhizobium interaction in a water stress condition, specially with the ESA 123 strain.
The side-to-side fashion for individual distal coronary anastomosis using venous conduit.
Kato, Takayoshi; Tsunekawa, Tomohiro; Motoji, Yusuke; Hirakawa, Akihiro; Okawa, Yasuhide; Tomita, Shinji
2017-04-01
Regarding to coronary artery bypass grafting (CABG), the end-to-side anastomosis (ESA) has been performed as a gold standard. Recently, the effectiveness of the distal side-to-side anastomosis (SSA) in CABG using internal mammary artery has been reported. The benefit of SSA comparing to ESA also has been disclosed by computing simulation. However, use of SSA by venous conduit for individual CABG has not been reported. In this study, we investigated feasibility of SSA. From January 2013 to October 2014, we conducted 114 CABGs. There were 92 venous distal anastomoses without sequential anastomotic site (61 SSA and 31 ESA). The anastomosis was evaluated before discharge and at 1 year after the procedure by angiography or multi-detector row computed tomographic coronary angiography. The median values for time to anastomosis were 13 min in the two group (p = 0.89). There was no revision of anastomosis in both groups. Additional stitches for hemostasis were required significantly less in SSA than ESA (18.0 vs 45.2 %, respectively, p < 0.05). Early angiographic patency; 96.6 % for SSA vs 93.5 % for ESA (p = 0.50), and percentage of good anastomotic figure; 91.2 % for SSA vs 87.1 % for ESA (p = 0.54) were similar in both groups. The angiographic patency at 1 year were 92.9 % for SSA and 81.0 % for ESA (p = 0.16). There was no predictive factor for early and late graft failure. Our study showed feasibility of SSA using venous conduit in individual CABG based on early and mid-term angiographic results. This anastomotic fashion is easy to perform and maybe beneficial in blood flow pattern.
Astronomy helps advance medical diagnosis techniques
NASA Astrophysics Data System (ADS)
2001-11-01
Effective treatment of cancer relies on the early detection and removal of cancerous cells. Unfortunately, this is when they are hardest to spot. In the case of breast cancer, now the most prevalent form of cancer in the United Kingdom, cancer cells tend to congregate in the lymph nodes, from where they can rapidly spread throughout the rest of the body. Current medical equipment can give doctors only limited information on tissue health. A surgeon must then perform an exploratory operation to try to identify the diseased tissue. If that is possible, the diseased tissue will be removed. If identification is not possible, the doctor may be forced to take away the whole of the lymphatic system. Such drastic treatment can then cause side effects, such as excessive weight gain, because it throws the patient's hormones out of balance. Now, members of the Science Payloads Technology Division of the Research and Science Support Department, at ESA's science, technology and engineering research centre (ESTEC) in the Netherlands, have developed a new X-ray camera that could make on-the-spot diagnoses and pinpoint cancerous areas to guide surgeons. Importantly, it would be a small device that could be used continuously during operations. "There is no photography involved in the camera we envisage. It will be completely digital, so the surgeon will study the whole lymphatic system and the potentially cancerous parts on his monitor. He then decides which parts he removes," says Dr. Tone Peacock, Head of the Science Payloads Technology Division. The ESA team were trying to find a way to make images using high-energy X-rays because some celestial objects give out large quantities of X-rays but little visible light. To see these, astronomers need to use X-ray cameras. Traditionally, this has been a bit of a blind spot for astronomers. ESA's current X-ray telescope, XMM-Newton, is in orbit now, observing low energy, so-called 'soft' X-rays. European scientists have always wanted to follow up XMM-Newton's success with a satellite called XEUS. It would be capable of taking images of the high-energy 'hard' X-rays but a reliable camera has eluded them - until now. For the first time, the ESTEC researchers have produced a microchip, similar to that found in a household video camera but capable of detecting hard X-rays instead of visible light. The key is that, instead of silicon, the new chip is made from a chemical compound called epitaxial gallium arsenide. This new material was developed under the ESA leadership of Dr Marcos Bavdaz to the very demanding requirements of such hard X-ray sensors. The prototype sensor has now successfully completed its extensive tests at a German X-ray test facility (HASYLAB). It may seem surprising that medical imaging is similar to observing high energy X-rays from space. However, hard X-rays are the only type that will pass through the human body. Dr Alan Owens, who is closely involved in the research at ESA, explains: "For the lymphatic system a radioactive tracer which emits X-rays is injected into or near the breast tumour. The tracer focuses on those parts of the system which are cancerous. With a small camera it is therefore possible to image this cancerous tissue during surgery." The ESA team were aware, from an early stage, that the work they were doing could lead to better medical equipment and sought expert advice. "We are talking to the people at Leiden University Medical Centre," explains Owens. "Also they can test and evaluate what we produce." A small lightweight X-ray camera would be a very important addition to the set of tools available to the surgeon. Having made the basic camera sensor, the next stage in this work is to develop a system to send the images to television screens in real time. "We are developing that now with our industrial partners, such as Metorex, a research and development company in Finland," says Peacock. Once ESA, which is a non-profit organisation, has developed the technology to make this X-ray camera work, its task is done. The industrial partners will take over, producing a camera for medical use. ESA will adapt its design to provide European astronomers with a new view of the Universe.
A Challenging Trio in Space 'Routine' Operations of the Swarm Satellite Constellation
NASA Astrophysics Data System (ADS)
Diekmann, Frank-Jurgen; Clerigo, Ignacio; Albini, Giuseppe; Maleville, Laurent; Neto, Alessandro; Patterson, David; Nino, Ana Piris; Sieg, Detlef
2016-08-01
Swarm is the first ESA Earth Observation Mission with three satellites flying in a semi-controlled constellation. The trio is operated from ESA's satellite control centre ESOC in Darmstadt, Germany. The Swarm Flight Operations Segment consists of the typical elements of a satellite control system at ESOC, but had to be carefully tailored for this innovative mission. The main challenge was the multi-satellite system of Swarm, which necessitated the development of a Mission Control System with a multi-domain functionality, both in hardware and software and covering real-time and backup domains. This was driven by the need for extreme flexibility for constellation operations and parallel activities.The three months of commissioning in 2014 were characterized by a very tight and dynamically changing schedule of activities. All operational issues could be solved during that time, including the challenging orbit acquisition phase to achieve the final constellation.Although the formal spacecraft commissioning phase was concluded in spring 2014, the investigations for some payload instruments continue even today. The Electrical Field Instruments are for instance still being tested in order to characterize and improve science data quality. Various test phases also became necessary for the Accelerometers on the Swarm satellites. In order to improve the performance of the GPS Receivers for better scientific exploitation and to minimize the failures due to loss of synchronization, a number of parameter changes were commanded via on-board patches.Finally, to minimize the impact on operations, a new strategy had to be implemented to handle single/multi bit errors in the on-board mass Memories, defining when to ignore and when to restore the memory via a re-initialisation.The poster presentation summarizes the Swarm specific ground segment elements of the FOS and explains some of the extended payload commissioning operations, turning Swarm into a most demanding and challenging mission for the Flight Control Team at ESOC.
Gamma-ray emission from SN2014J near maximum optical light
NASA Astrophysics Data System (ADS)
Isern, J.; Jean, P.; Bravo, E.; Knödlseder, J.; Lebrun, F.; Churazov, E.; Sunyaev, R.; Domingo, A.; Badenes, C.; Hartmann, D. H.; Hoeflich, P.; Renaud, M.; Soldi, S.; Elias-Rosa, N.; Hernanz, M.; Domínguez, I.; García-Senz, D.; Lichti, G. G.; Vedrenne, G.; Von Ballmoos, P.
2016-04-01
Context. The optical light curve of Type Ia supernovae (SNIa) is powered by thermalized gamma-rays produced by the decay of 56Ni and 56Co, the main radioactive isotopes synthesized by the thermonuclear explosion of a C/O white dwarf. Aims: Gamma-rays escaping the ejecta can be used as a diagnostic tool for studying the characteristics of the explosion. In particular, it is expected that the analysis of the early gamma emission, near the maximum of the optical light curve, could provide information about the distribution of the radioactive elements in the debris. Methods: The gamma data obtained from SN2014J in M 82 by the instruments on board INTEGRAL were analysed paying special attention to the effect that the detailed spectral response has on the measurements of the intensity of the lines. Results: The 158 keV emission of 56Ni has been detected in SN2014J at ~5σ at low energy with both ISGRI and SPI around the maximum of the optical light curve. After correcting the spectral response of the detector, the fluxes in the lines suggest that, in addition to the bulk of radioactive elements buried in the central layers of the debris, there is a plume of 56Ni, with a significance of ~3σ, moving at high velocity and receding from the observer. The mass of the plume is in the range of ~0.03-0.08 M⊙. Conclusions: No SNIa explosion model has ever predicted the mass and geometrical distribution of 56Ni suggested here. According to its optical properties, SN2014J looks like a normal SNIa, so it is extremely important to discern whether it is also representative in the gamma-ray band. Based on observations with INTEGRAL, an ESA project with instruments and the science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, and Spain), the Czech Republic, and Poland and with the participation of Russia and USA.
The Challenges and Opportunities of a Commercial Astronaut Mission to the ISS
NASA Astrophysics Data System (ADS)
Mirra, C.; Carl, S.
2002-01-01
ISS flight opportunities for ESA astronauts are considered as a vital source to meet the objectives (utilisation, operation and political), which Europe has established in participating to the International Space Station programme. Recent internal ESA assessments have demonstrated that, in order to satisfy the objectives drawn in the ESA ISS Exploitation programme, a rate of three flights per year for European Astronauts should be maintained as minimum objective. Since the establishment of a single European Astronaut Corps and having regard of the ISS flight opportunities provided through national space agencies, the current European astronauts flight rate is rather lower than the above three flights per year. In order to improve this situation, in the context of the activation of the ESA ISS Commercialisation programme, the Agency contracted Intospace to develop the conditions for the establishment of ESA astronaut missions with the financial support of both ESA and the private sector or, in future, the latter only. The study led to the definition of a "commercial astronaut", as a member of the European Astronaut Corp that will be assigned the responsibility to perform research and commercial space projects in a given ISS mission scenario. This paper will present the recent outcomes of a detailed study phase, including highlights on possible implementation of a private sector-supported astronaut mission to the ISS.
Farewell to a legendary mission : ESA to hand over the IUE archive to the world scientific community
NASA Astrophysics Data System (ADS)
2000-03-01
The IUE Archive, storing two decades of ultraviolet astronomy, has become a historical reference. It contains more than 110 000 spectra from observations that in most cases cannot be repeated, and is an excellent source for studying variable phenomena. The long time-lapse covered and the stability of the instrument have enabled astronomers to witness events they never thought they would, such as the metamorphosis of a very old star into a beautiful planetary nebula: a hot central star surrounded by glowing gas and dust. The IUE archive was the first astronomical archive accessible online -- back in 1985, when the World Wide Web did not even exist-- and has been a key catalyst for science: it has triggered the publication of 3 600 articles in refereed journals so far, and a whole generation of astrophysicists have used IUE data at some stage. During IUE's lifetime the archive was managed by ESA, from the Villafranca Satellite Tracking Station near Madrid (Spain). But not any longer. The IUE archive will now belong to the world scientific community. ESA has created INES (IUE Newly Extracted Spectra), a distribution system that allows IUE data to be accessed faster and more easily from non-ESA national hosts throughout the world, managed entirely by local experts. INES maintenance costs are minimal, and the system is designed for ready incorporation of whatever innovations might come in the future. "The INES system and its data guarantee that future generations of astronomers will be able to use IUE data as much as they want, regardless of whether they know about the technicalities of the mission or whether there is an improvement in archive technology. And the distributed structure is better adapted to changes in user needs than a single archive centre", says Antonio Talavera from the Laboratory for Space Astrophysics and Theoretical Physics (LAEFF), based at Villafranca. "ESA has created INES using a minimalist engineering approach for the world scientific community, and has made it to last. INES is easy to use and easy to upgrade, and LAEFF in Spain is proud to serve as the hub for the whole world". The INES Principal Centre is at the LAEFF, owned by INTA, the Spanish National Institute for Aerospace Technology. This centre, with a data mirror at the CADC in Victoria (Canada), holds the complete database and provides information not available from national hosts. So far 17 national hosts (listed below) have come online. Together they form with the Principal Centre an efficient and highly reliable distribution system for the community. The whole process of data retrieval is fully automated and totally transparent to the end user. This distributed structure avoids localised connectivity problems and guarantees availability of data. The release of INES will be celebrated on 21 March with a ceremony at the ESA/VILSPA Satellite Tracking Station in Villafranca near Madrid (see attached agenda and accreditation form). At various other national hosts the release of the INES system will also be celebrated by local academic and demonstration events on different dates. FOOTNOTE ON IUE SATELLITE The ESA/NASA/UK IUE spacecraft, launched in January 1978, became the first space observatory facility available to the whole astronomical community. It marked the beginning of UV astronomy, a field for which space telescopes are essential because UV light does not reach the Earth's surface. By the time IUE was switched off, in September 1996 --14 years later than originally planned -- IUE had changed the view astronomers had of the universe. Among many other findings, IUE discovered the auroras in Jupiter; detected for the first time the halo in our galaxy --a large amount of very hot matter in the outskirts of the Milky Way (the halo); and measured the size of a black hole in the core of an active galaxy.
Astronauts Working in Spacelab
NASA Technical Reports Server (NTRS)
1999-01-01
This Quick Time movie captures astronaut Jan Davis and her fellow crew members working in the Spacelab, a versatile laboratory carried in the Space Shuttle's cargo bay for special research flights. Its various elements can be combined to accommodate the many types of scientific research that can best be performed in space. Spacelab consisted of an enclosed, pressurized laboratory module and open U-shaped pallets located at the rear of the laboratory module. The laboratory module contained utilities, computers, work benches, and instrument racks to conduct scientific experiments in astronomy, physics, chemistry, biology, medicine, and engineering. Equipment, such as telescopes, antennas, and sensors, is mounted on pallets for direct exposure to space. A 1-meter (3.3-ft.) diameter aluminum tunnel, resembling a z-shaped tube, connected the crew compartment (mid deck) to the module. The reusable Spacelab allowed scientists to bring experiment samples back to Earth for post-flight analysis. Spacelab was a cooperative venture of the European Space Agency (ESA) and NASA. ESA was responsible for funding, developing, and building Spacelab, while NASA was responsible for the launch and operational use of Spacelab. Spacelab missions were cooperative efforts between scientists and engineers from around the world. Teams from NASA centers, universities, private industry, government agencies and international space organizations designed the experiments. The Marshall Space Flight Center was NASA's lead center for monitoring the development of Spacelab and managing the program.
Overview of GPM Missions's Ground Validation Program
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Mugnai, Alberto; Nakamura, Kenji
2004-01-01
An important element of the internationally structured Global Precipitation Measurement (GPM) mission will be its ground validation research program. Within the last year, the initial architecture of this program has taken shape. This talk will describe that architecture, both in terms of the international program and in terms of the separate regional programs of the principle participating space agencies, i.e., ESA, JAXA, and NASA. There are three overriding goals being addressed in the planning of this program; (1) establishing various new, challenging and important scientific research goals vis-a-vis current ground validation programs supporting satellite retrieval of precipitation; (2) designing the program as an international partnership which operates, out of necessity, heterogeneous sites in terms of their respective observational foci and science thrusts, but anneals itself in terms of achieving a few overarching scientific objectives; and (3) developing a well-designed protocol that allows specific sites or site networks, at their choosing, to operate in a 'supersite' mode - defined as the capability to routinely transmit GV information at low latency to GPM's Precipitation Processing System (PPS). (The PPS is being designed as GPM's data information system, a distributed data system with main centers at the Goddard Space Flight Center (GSFC) within NASA, the Earth Observation Research Center (EORC) within JAXA, and a TBD facility to be identified by the ESA s ESTEC facility in Noordwijk.)
Detectability of molecular signatures in the atmospheres of Giant and Terrestrial Exoplanets
NASA Astrophysics Data System (ADS)
Tinetti, G. T.; Vidal-Madjar, A.; Lecavelier Des Etangs, A.; Ehrenreich, D.; Liang, M. C.; Yung, Y.
In the past decade over 160 planets orbiting other stars extrasolar planets were discovered using indirect detection techniques The known sample is constrained by the currently achievable detection techniques which are more sensitive to larger worlds To extend the detection ability down to Earth-sized planets both the European Space Agency ESA and National Aeronautics and Space Administration NASA are developing large and technologically challenging space-borne observatories The first of these missions is due for launch as early as 2015 and will provide our first opportunity to spectroscopically study the global characteristics of Earth-like planets beyond our solar system to search for signs of habitability and life Almost a decade in advance to the launch of ESA-Darwin or NASA-Terrestrial Planet Finders most recent observations of primary and secondary eclipses with Hubble Space Telescope and Spitzer of transiting extrasolar giant planets EGPs Charbonneau et al 2002 2005 Vidal-Madjar et al 2003 2004 Deming et al 2005 suggest that emitted and transmission spectra of EGPs can be used to infer many properties of their atmospheres and internal structure including chemical element abundances hydrodynamic escape cloud heights temperature-pressure profiles density composition and evolution The next generation of space telescopes James Webb Space Telescope JWST will have the capability of acquiring more precise spectra in the visible and infrared of these extrasolar worlds The ultimate extension of such searches will be to
CanOpen on RASTA: The Integration of the CanOpen IP Core in the Avionics Testbed
NASA Astrophysics Data System (ADS)
Furano, Gianluca; Guettache, Farid; Magistrati, Giorgio; Tiotto, Gabriele; Ortega, Carlos Urbina; Valverde, Alberto
2013-08-01
This paper presents the work done within the ESA Estec Data Systems Division, targeting the integration of the CanOpen IP Core with the existing Reference Architecture Test-bed for Avionics (RASTA). RASTA is the reference testbed system of the ESA Avionics Lab, designed to integrate the main elements of a typical Data Handling system. It aims at simulating a scenario where a Mission Control Center communicates with on-board computers and systems through a TM/TC link, thus providing the data management through qualified processors and interfaces such as Leon2 core processors, CAN bus controllers, MIL-STD-1553 and SpaceWire. This activity aims at the extension of the RASTA with two boards equipped with HurriCANe controller, acting as CANOpen slaves. CANOpen software modules have been ported on the RASTA system I/O boards equipped with Gaisler GR-CAN controller and acts as master communicating with the CCIPC boards. CanOpen serves as upper application layer for based on CAN defined within the CAN-in-Automation standard and can be regarded as the definitive standard for the implementation of CAN-based systems solutions. The development and integration of CCIPC performed by SITAEL S.p.A., is the first application that aims to bring the CANOpen standard for space applications. The definition of CANOpen within the European Cooperation for Space Standardization (ECSS) is under development.
Oser, H
1989-08-01
International cooperation in life sciences, as in any other of the space research fields, takes place at two distinct levels: scientist to scientist, or agency to agency. This article is more concerned with the agency to agency level, which involves the arrangements made between two partners for the flying of experiments and/or hardware on space missions. International cooperation is inherent to the European Space Agency (ESA), since it consists of 13 member states (Austria, Belgium, Denmark, France, Ireland, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, United Kingdom, and West Germany) and one associated member, Finland. ESA also has special cooperative arrangements with Canada. Life sciences research in ESA is carried out within the Microgravity Research Program, an optional program to which member states (in this case all but Austria and Ireland) contribute "a la carte," and receive their "share" accordingly. Therefore, many of the activities are naturally linked to international arrangements within the member states, and also to arrangements between the agencies, with life sciences being the dominant activity between NASA and ESA.
Pletser, Vladimir
2004-11-01
Aircraft parabolic flights provide repetitively up to 20 s of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences, to test instrumentation and to train astronauts before a space flight. The European Space Agency (ESA) has organized since 1984 thirty parabolic flight campaigns for microgravity research experiments utilizing six different airplanes. More than 360 experiments were successfully conducted during more than 2800 parabolas, representing a cumulated weightlessness time of 15 h 30 m. This paper presents the short duration microgravity research programme of ESA. The experiments conducted during these campaigns are summarized, and the different airplanes used by ESA are shortly presented. The technical capabilities of the Airbus A300 'Zero-G' are addressed. Some Physical Science, Technology and Life Science experiments performed during the last ESA campaigns with the Airbus A300 are presented to show the interest of this unique microgravity research tool to complement, support and prepare orbital microgravity investigations. c2004 Elsevier Ltd. All rights reserved.
Binder-free carbon nanotube electrode for electrochemical removal of chromium.
Wang, Haitao; Na, Chongzheng
2014-11-26
Electrochemical treatment of chromium-containing wastewater has the advantage of simultaneously reducing hexavalent chromium (CrVI) and reversibly adsorbing the trivalent product (CrIII), thereby minimizing the generation of waste for disposal and providing an opportunity for resource reuse. The application of electrochemical treatment of chromium is often limited by the available electrochemical surface area (ESA) of conventional electrodes with flat surfaces. Here, we report the preparation and evaluation of carbon nanotube (CNT) electrodes consisting of vertically aligned CNT arrays directly grown on stainless steel mesh (SSM). We show that the 3-D organization of CNT arrays increases ESA up to 13 times compared to SSM. The increase of ESA is correlated with the length of CNTs, consistent with a mechanism of roughness-induced ESA enhancement. The increase of ESA directly benefits CrVI reduction by proportionally accelerating reduction without compromising the electrode's ability to adsorb CrIII. Our results suggest that the rational design of electrodes with hierarchical structures represents a feasible approach to improve the performance of electrochemical treatment of contaminated water.
Thurman, E.M.; Ferrer, I.; Parry, R.
2002-01-01
Degradates of acetochlor and alachlor (ethanesulfonic acids, ESAs) were analyzed in both standards and in a groundwater sample using high-performance liquid chromatography-time-of-flight mass spectrometry with electrospray ionization. The negative pseudomolecular ion of the secondary amide of acetochlor ESA and alachlor ESA gave average masses of 256.0750??0.0049 amu and 270.0786??0.0064 amu respectively. Acetochlor and alachlor ESA gave similar masses of 314.1098??0.0061 amu and 314.1153??0.0048 amu; however, they could not be distinguished by accurate mass because they have the same empirical formula. On the other hand, they may be distinguished using positive-ion electrospray because of different fragmentation spectra, which did not occur using negative-ion electrospray.
Thurman, E.M.; Ferrer, Imma; Parry, R.
2002-01-01
Degradates of acetochlor and alachlor (ethanesulfonic acids, ESAs) were analyzed in both standards and in a groundwater sample using high-performance liquid chromatography-time-of-flight mass spectrometry with electrospray ionization. The negative pseudomolecular ion of the secondary amide of acetochlor ESA and alachlor ESA gave average masses of 256.0750+/-0.0049 amu and 270.0786+/-0.0064 amu respectively. Acetochlor and alachlor ESA gave similar masses of 314.1098+/-0.0061 amu and 314.1153+/-0.0048 amu; however, they could not be distinguished by accurate mass because they have the same empirical formula. On the other hand, they may be distinguished using positive-ion electrospray because of different fragmentation spectra, which did not occur using negative-ion electrospray.
NASA Astrophysics Data System (ADS)
Stengel, Martin; Stapelberg, Stefan; Sus, Oliver; Schlundt, Cornelia; Poulsen, Caroline; Thomas, Gareth; Christensen, Matthew; Carbajal Henken, Cintia; Preusker, Rene; Fischer, Jürgen; Devasthale, Abhay; Willén, Ulrika; Karlsson, Karl-Göran; McGarragh, Gregory R.; Proud, Simon; Povey, Adam C.; Grainger, Roy G.; Fokke Meirink, Jan; Feofilov, Artem; Bennartz, Ralf; Bojanowski, Jedrzej S.; Hollmann, Rainer
2017-11-01
New cloud property datasets based on measurements from the passive imaging satellite sensors AVHRR, MODIS, ATSR2, AATSR and MERIS are presented. Two retrieval systems were developed that include components for cloud detection and cloud typing followed by cloud property retrievals based on the optimal estimation (OE) technique. The OE-based retrievals are applied to simultaneously retrieve cloud-top pressure, cloud particle effective radius and cloud optical thickness using measurements at visible, near-infrared and thermal infrared wavelengths, which ensures spectral consistency. The retrieved cloud properties are further processed to derive cloud-top height, cloud-top temperature, cloud liquid water path, cloud ice water path and spectral cloud albedo. The Cloud_cci products are pixel-based retrievals, daily composites of those on a global equal-angle latitude-longitude grid, and monthly cloud properties such as averages, standard deviations and histograms, also on a global grid. All products include rigorous propagation of the retrieval and sampling uncertainties. Grouping the orbital properties of the sensor families, six datasets have been defined, which are named AVHRR-AM, AVHRR-PM, MODIS-Terra, MODIS-Aqua, ATSR2-AATSR and MERIS+AATSR, each comprising a specific subset of all available sensors. The individual characteristics of the datasets are presented together with a summary of the retrieval systems and measurement records on which the dataset generation were based. Example validation results are given, based on comparisons to well-established reference observations, which demonstrate the good quality of the data. In particular the ensured spectral consistency and the rigorous uncertainty propagation through all processing levels can be considered as new features of the Cloud_cci datasets compared to existing datasets. In addition, the consistency among the individual datasets allows for a potential combination of them as well as facilitates studies on the impact of temporal sampling and spatial resolution on cloud climatologies.
For each dataset a digital object identifier has been issued:
Cloud_cci AVHRR-AM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-AM/V002
Cloud_cci AVHRR-PM: https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V002
Cloud_cci MODIS-Terra: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Terra/V002
Cloud_cci MODIS-Aqua: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Aqua/V002
Cloud_cci ATSR2-AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/ATSR2-AATSR/V002
Cloud_cci MERIS+AATSR: https://doi.org/10.5676/DWD/ESA_Cloud_cci/MERIS+AATSR/V002
TSSM: The in situ exploration of Titan
NASA Astrophysics Data System (ADS)
Coustenis, A.; Lunine, J. I.; Lebreton, J. P.; Matson, D.; Reh, K.; Beauchamp, P.; Erd, C.
2008-09-01
The Titan Saturn System Mission (TSSM) mission was born when NASA and ESA decided to collaborate on two missions independently selected by each agency: the Titan and Enceladus mission (TandEM), and Titan Explorer, a 2007 Flagship study. TandEM, the Titan and Enceladus mission, was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call. The mission concept is to perform remote and in situ investigations of Titan primarily, but also of Enceladus and Saturn's magentosphere. The two satellites are tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TSSM will study Titan as a system, including its upper atmosphere, the interactions with the magnetosphere, the neutral atmosphere, surface, interior, origin and evolution, as well as the astrobiological potential of Titan. It is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini- Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time for Titan, several close flybys of Enceladus). One overarching goal of the TSSM mission is to explore in situ the atmosphere and surface of Titan. In the current mission architecture, TSSM consists of an orbiter (under NASA's responsibility) with a large host of instruments which would perform several Enceladus and Titan flybys before stabilizing in an orbit around Titan alone, therein delivering in situ elements (a Montgolfière, or hot air balloon, and a probe/lander). The latter are being studied by ESA. The balloon will circumnavigate Titan above the equator at an altitude of about 10 km for several months. The probe will descend through Titan's atmosphere and land on a liquid surface (at the North pole, in a lake according to the current design). The currently envisaged strawman payload for these elements will be presented. Instruments aboard the balloon would provide high resolution vistas of the surface of Titan as the balloon cruises at 10 km altitude, as well as make compositional measurements of the surface, detailed sounding of crustal layering, and chemical measurements of aerosols. A magnetometer, unimpeded by Titan's ionosphere, would permit sensitive detection of induced or intrinsic fields. The short-lived probe would splash into a large northern sea and spend several hours floating during which direct chemical and physical sampling of the liquid—a carrier for many dissolved organic species— would be undertaken. During its descent the Mare Explorer would provide the first in situ profiling of the winter northern hemispheric atmosphere, which is distinctly different from the equatorial atmosphere where Huygens descended and the balloon will arrive. Coordinated radio science experiments aboard the orbiter and in situ elements would be capable of providing detailed information on Titan's tidal response, and hence its crustal rigidity and thickness.
Why we need asteroid sample return mission?
NASA Astrophysics Data System (ADS)
Barucci, Maria Antonietta
2016-07-01
Small bodies retain evidence of the primordial solar nebula and the earliest solar system processes that shaped their evolution. They may also contain pre-solar material as well as complex organic molecules, which could have a major role to the development of life on Earth. For these reasons, asteroids and comets have been targets of interest for missions for over three decades. However, our knowledge of these bodies is still very limited, and each asteroid or comet visited by space mission has revealed unexpected scientific results, e.g. the structure and nature of comet 67P/Churyumov-Gerasimenko (67P/C-G) visited by the Rosetta mission. Only in the laboratory can instruments with the necessary precision and sensitivity be applied to individual components of the complex mixture of materials that forms a small body regolith, to determine their precise chemical and isotopic composition. Such measurements are vital for revealing the evidence of stellar, interstellar medium, pre-solar nebula and parent body processes that are retained in primitive material, unaltered by atmospheric entry or terrestrial contamination. For those reasons, sample return missions are considered a high priority by a number of the leading space agencies. Abundant within the inner Solar System and the main impactors on terrestrial planets, small bodies may have been the principal contributors of the water and organic material essential to create life on Earth. Small bodies can therefore be considered to be equivalent to DNA for unravelling our solar system's history, offering us a unique window to investigate both the formation of planets and the origin of life. A sample return mission to a primitive Near-Earth Asteroid (NEA) has been study at ESA from 2008 in the framework of ESA's Cosmic Vision (CV) programme, with the objective to answer to the fundamental CV questions "How does the Solar System work?" and "What are the conditions for life and planetary formations?". The returned material will allow us to study in terrestrial laboratories some of the most primitive materials available to investigate early solar system formation processes, to explore initial stages of habitable planet formation, to identify and characterize the organics and volatiles in a primitive asteroid. The ideal easy target body for such mission is a D type NEA. D types are the most abundant asteroids beyond the outer edge of the main belt. It is likely that they formed much further out in the Solar System, possibly as far as the transneptunian objects, and were subsequently captured in their present locations following the migration of the gas giants. Spectral features indicate that these bodies are organic rich, contain fine anhydrous minerals but also may be volatile rich and appear to be the most primitive rocky material present in the solar system. In addition to addressing the major science goals, sample return mission from a NEA also involved innovative European technologies. The key sample return capabilities, i.e. asteroid navigation, touch and go, sampling mechanism and the re-entry capsule have reached at ESA a validation status to enter implementation phase. The development of sample return technology represents in Europe a crucial element for planetary science and for the space technology development.
NASA Technical Reports Server (NTRS)
Greene, Brian
2011-01-01
The C3P &. NASA International Workshop on Environment and Alternative Energy was held on November 15-18, 2011 at the European Space Agency (ESA)'s Research and Technology Centre (ESTEC) in Noordwijk, The Netherlands. The theme of the workshop was "Global Collaboration in Environmental and Alternative Energy Strategies". The workshop was held at ESTEC's conference center. More than 110 individuals from eleven countries attended the workshop. For the first time since the inception of NASA-C3P workshops, a full day was dedicated to a student session. Fifteen students from around the globe gave oral presentations along with poster displays relating to the latest technologies in environmental and alternative energy strategies. Judges from NASA, C3P and ESA awarded plaques to the top three students. In addition to the students, thirty eight U.S. and international subject matter experts presented on the following general environmental-related topics: (1) Hazardous materials management and substitution in support of space operations (2) Emerging renewable and alternative energy technologies (3) Sustainable development and redevelopment (4) Remediation technologies and strategies The workshop also included a panel discussion on the topic of the challenges of operating installations across borders. Throughout the workshop, attendees heard about the scope of environmental and energy challenges that industry and governments face. They heard about technologies for increasing energy efficiency and increasing use of renewable energy. They learned about ways companies and government agencies are using materials, processes, goods and services in a manner more respectful with the environment and in compliance with health and safety rules. The concept of partnerships and their inherent benefits was evidenced throughout the workshop. Partnering is a key aspect of sustainability because sustainable development is complicated. Through formal presentations and side discussions, attendees commented on the need for continued exploration of joint projects of mutual interest.
NASA Astrophysics Data System (ADS)
Majasalmi, Titta; Eisner, Stephanie; Astrup, Rasmus; Fridman, Jonas; Bright, Ryan M.
2018-01-01
Forest management affects the distribution of tree species and the age class of a forest, shaping its overall structure and functioning and in turn the surface-atmosphere exchanges of mass, energy, and momentum. In order to attribute climate effects to anthropogenic activities like forest management, good accounts of forest structure are necessary. Here, using Fennoscandia as a case study, we make use of Fennoscandic National Forest Inventory (NFI) data to systematically classify forest cover into groups of similar aboveground forest structure. An enhanced forest classification scheme and related lookup table (LUT) of key forest structural attributes (i.e., maximum growing season leaf area index (LAImax), basal-area-weighted mean tree height, tree crown length, and total stem volume) was developed, and the classification was applied for multisource NFI (MS-NFI) maps from Norway, Sweden, and Finland. To provide a complete surface representation, our product was integrated with the European Space Agency Climate Change Initiative Land Cover (ESA CCI LC) map of present day land cover (v.2.0.7). Comparison of the ESA LC and our enhanced LC products (https://doi.org/10.21350/7zZEy5w3) showed that forest extent notably (κ = 0.55, accuracy 0.64) differed between the two products. To demonstrate the potential of our enhanced LC product to improve the description of the maximum growing season LAI (LAImax) of managed forests in Fennoscandia, we compared our LAImax map with reference LAImax maps created using the ESA LC product (and related cross-walking table) and PFT-dependent LAImax values used in three leading land models. Comparison of the LAImax maps showed that our product provides a spatially more realistic description of LAImax in managed Fennoscandian forests compared to reference maps. This study presents an approach to account for the transient nature of forest structural attributes due to human intervention in different land models.
Comparison of ORSAT and SCARAB Reentry Analysis Tools for a Generic Satellite Test Case
NASA Technical Reports Server (NTRS)
Kelley, Robert L.; Hill, Nicole M.; Rochelle, W. C.; Johnson, Nicholas L.; Lips, T.
2010-01-01
Reentry analysis is essential to understanding the consequences of the full life cycle of a spacecraft. Since reentry is a key factor in spacecraft development, NASA and ESA have separately developed tools to assess the survivability of objects during reentry. Criteria such as debris casualty area and impact energy are particularly important to understanding the risks posed to people on Earth. Therefore, NASA and ESA have undertaken a series of comparison studies of their respective reentry codes for verification and improvements in accuracy. The NASA Object Reentry Survival Analysis Tool (ORSAT) and the ESA Spacecraft Atmospheric Reentry and Aerothermal Breakup (SCARAB) reentry analysis tools serve as standard codes for reentry survivability assessment of satellites. These programs predict whether an object will demise during reentry and calculate the debris casualty area of objects determined to survive, establishing the reentry risk posed to the Earth's population by surviving debris. A series of test cases have been studied for comparison and the most recent uses "Testsat," a conceptual satellite composed of generic parts, defined to use numerous simple shapes and various materials for a better comparison of the predictions of these two codes. This study is an improvement on the others in this series because of increased consistency in modeling techniques and variables. The overall comparison demonstrated that the two codes arrive at similar results. Either most objects modeled resulted in close agreement between the two codes, or if the difference was significant, the variance could be explained as a case of semantics in the model definitions. This paper presents the main results of ORSAT and SCARAB for the Testsat case and discusses the sources of any discovered differences. Discussion of the results of previous comparisons is made for a summary of differences between the codes and lessons learned from this series of tests.
ESA confirms ROSETTA and FIRST in its long-term science programme
NASA Astrophysics Data System (ADS)
1993-11-01
ROSETTA was originally conceived as a comet-nucleus sample-return mission that should have brought back cometary material to Earth to be able to study it with the most advanced laboratory analysis techniques available. The original mission could not be implemented as it was too ambitious and too complex. Therefore in 1992 the concept had to be revised. The mission was reconsidered as being performed by ESA alone on the basis of European technology and the Ariane 5 launch capability. However, the opportunity for other agencies to join and augment the scientific return was left open, and international partners have already indicated to ESA their interest to join. The new baseline mission is a rendezvous with a comet and at least one (most probably two) flybys of asteroids. After gravity-assist manoeuvres at the Earth and Mars or Venus to acquire the necessary energy to reach the comet at its aphelion (the part of the orbit farthest from the Sun), the spacecraft will stay with the comet along its trajectory into the inner solar system through perihelion (the orbital point nearest to the Sun) to study the material that constitutes the comet, and the cometary processes that evolve with the decreasing distance from the Sun. A Surface Science Station will be deployed onto the comets' nucleus surface to provide the means for in-situ studies of the nucleus. The mission retains as far as possible the objectives of the original comet-nucleus sample-return mission and concentrates on the in-situ investigations of cometary matter and the structure of the nucleus. "As we cannot bring the cometary material into our terrestrial laboratories, we will take our laboratories to the comet" said Dr. Roger Bonnet, ESA Director of Science. Potential target comets are Schwassmann- Wachmann 3, Wirtanen, Finlay and Brooks 2 for a launch in the time interval 2002-2004. "Both teams for ROSETTA and FIRST" added Dr. Bonnet, "defined excellent missions with exciting prospects for the science to be achieved. For programmatic reasons ROSETTA will be implemented as Cornerstone 3, following Cluster and SOHO and XMM". "However", he continued, "the work on FIRST will proceed at a very high level to further develop the critical technologies, like for instance the 3 m telescope mirror, the coolers and the detectors. The major elements of the Horizon 2000 science programme are now under way and we will start the process to define the 'post-Horizon 2000' programme".
2009-01-31
was the DG from 1997 until 2003. Jean - Jacque Dordain became the DG in July 2003 and was reappointed in 2007.10 The official Galileo program...July 2003) ESA Director General Jean - Jacque Dordain produced an internal position paper which explicitly stated that ESA now interpreted “peaceful...countries outside Europe. 121 This section relies heavily on reporting of a January 17, 2007 press conference by ESA Director General Jean - Jacques
Karaboyas, Angelo; Zee, Jarcy; Morgenstern, Hal; Nolen, Jacqueline G; Hakim, Raymond; Kalantar-Zadeh, Kamyar; Zager, Philip; Pisoni, Ronald L; Port, Friedrich K; Robinson, Bruce M
2015-10-07
Anemia management changed substantially among dialysis patients in the United States around the time of implementation of the new Centers for Medicare & Medicaid Services bundled payment system and erythropoiesis-stimulating agent (ESA) label change in 2011. Among these, average ferritin levels increased dramatically and have remained high since; this study sought to gain understanding of this sustained rise in ferritin levels. Trends in mean ferritin, hemoglobin, IV iron dose, and ESA dose from 2009 to 2013 were examined in 9735 patients from 91 United States Dialysis Outcomes and Practice Patterns Study facilities. Linear mixed models were used to assess the extent to which intravenous (IV) iron and ESA dose accounted for patients' changes in ferritin over time. Mean ESA dose and hemoglobin levels declined throughout the study. Mean IV iron dose increased from 210 mg/mo in 2009-2010 to a peak of 280 mg/mo in 2011, then declined back to 200 mg/mo and remained stable from 2012 to 2013. Mean ferritin increased from 601 ng/ml in the third quarter of 2009 to 887 ng/ml in the first quarter of 2012; models suggest that higher IV iron dosing was a primary determinant during 2011, but lower ESA doses contributed to the sustained high ferritin levels thereafter. In a subset of 17 facilities that decreased IV iron dose in 2011, mean ferritin rose by 120 ng/ml to 764 ng/ml, which appeared to be primarily due to ESA reduction. Together, changes in IV iron and ESA doses accounted for 46% of the increase in ferritin over the study period. In contrast to expectations, the rise in average IV iron dose did not persist beyond 2011. The sustained rise in ferritin levels in United States dialysis patients after policy changes in 2011, to average levels well in excess of 800 ng/ml, appeared to be partly due to reductions in ESA dosing and not solely IV iron dosing practices. The effect of these changes in ferritin on health outcomes requires further investigation. Copyright © 2015 by the American Society of Nephrology.
Zee, Jarcy; Morgenstern, Hal; Nolen, Jacqueline G.; Hakim, Raymond; Kalantar-Zadeh, Kamyar; Zager, Philip; Pisoni, Ronald L.; Port, Friedrich K.; Robinson, Bruce M.
2015-01-01
Background and objectives Anemia management changed substantially among dialysis patients in the United States around the time of implementation of the new Centers for Medicare & Medicaid Services bundled payment system and erythropoiesis-stimulating agent (ESA) label change in 2011. Among these, average ferritin levels increased dramatically and have remained high since; this study sought to gain understanding of this sustained rise in ferritin levels. Design, setting, participants, & measurements Trends in mean ferritin, hemoglobin, IV iron dose, and ESA dose from 2009 to 2013 were examined in 9735 patients from 91 United States Dialysis Outcomes and Practice Patterns Study facilities. Linear mixed models were used to assess the extent to which intravenous (IV) iron and ESA dose accounted for patients’ changes in ferritin over time. Results Mean ESA dose and hemoglobin levels declined throughout the study. Mean IV iron dose increased from 210 mg/mo in 2009–2010 to a peak of 280 mg/mo in 2011, then declined back to 200 mg/mo and remained stable from 2012 to 2013. Mean ferritin increased from 601 ng/ml in the third quarter of 2009 to 887 ng/ml in the first quarter of 2012; models suggest that higher IV iron dosing was a primary determinant during 2011, but lower ESA doses contributed to the sustained high ferritin levels thereafter. In a subset of 17 facilities that decreased IV iron dose in 2011, mean ferritin rose by 120 ng/ml to 764 ng/ml, which appeared to be primarily due to ESA reduction. Together, changes in IV iron and ESA doses accounted for 46% of the increase in ferritin over the study period. Conclusions In contrast to expectations, the rise in average IV iron dose did not persist beyond 2011. The sustained rise in ferritin levels in United States dialysis patients after policy changes in 2011, to average levels well in excess of 800 ng/ml, appeared to be partly due to reductions in ESA dosing and not solely IV iron dosing practices. The effect of these changes in ferritin on health outcomes requires further investigation. PMID:26286925
Cosmic Vision 2015-2025 media briefing - 19 April 2005
NASA Astrophysics Data System (ADS)
2005-04-01
On 19 April over 150 scientists from all ESA member states will convene at the European Space Research and Technology Centre in Noordwijk, the Netherlands, for a three-day symposium entitled "Trends in Space Science and Cosmic Vision 2015-2025". The conference will include a number of invited talks giving an overview of the scientific themes that will form the basis of future ESA missions. Topics to be addressed now will keep space scientists busy over the next 15-20 years. Amongst them are: the nature of planets beyond our solar system; a possible mission to Jupiter and its moon Europa, or perhaps back to Titan; spotting the first black holes; an interstellar probe powered by a solar sail; and many others. Open questions include the priority ESA should give to near-Earth objects and the threat they pose, or whether and when we should return to a comet after Rosetta. Members of the media are invited to a press conference at 10.00 CET on 19 April, at ESA's Visitor Centre (Space Expo) in Noordwijk, the Netherlands. The press briefing will provide an overview of the current ideas for new missions, the expected results and their implications for the advancement of science and human knowledge. Programme 09.30 - Arrival/Registration/Coffee in the Mars Corner at Space Expo 10.00 - Welcome 10.00 - Present and future of ESA's Science Programme - Prof. David Southwood (ESA Director of Science) 10.15 - Hubble: Fifteen years of discovery - Dr Duccio Macchetto (Head of ESA Space Telescope Division) 10.30 - Europe's space science in fifteen years’ time - Prof. Giovanni Bignami (Chairman of ESA Space Science Advisory Committee) 10.45 - Question and answer time 11.00 - End Members of the media interested in attending the briefing or listening to it via telephone should complete the form below and return it as soon as possible by fax as indicated. Instructions on how to listen in via the telephone line will be given to those that register. The presentation material will be made available to registered participants via the worldwide web shortly before the briefing.
Nembo, Erastus Nembu; Atsamo, Albert Donatien; Nguelefack, Télesphore Benoît; Kamanyi, Albert; Hescheler, Jürgen; Nguemo, Filomain
2015-05-13
Erythrina senegalensis DC (Fabaceae) bark is commonly used in sub-Saharan traditional medicine for the treatment of many diseases including gastrointestinal disorders and cardiovascular diseases. In this study, we investigated the effect of the aqueous extract of the stem bark of Erythrina senegalensis on the contractile properties of mouse ventricular slices and human induced pluripotent stem (hiPS) cell-derived cardiomyocytes. We also investigated the cytotoxic effect of the extract on mouse embryonic stem (ES) cells differentiating into cardiomyocytes (CMs). We used well-established electrophysiological technologies to assess the effect of Erythrina senegalensis aqueous extract (ESAE) on the beating activity of mouse ventricular slices, mouse ES and hiPS cell-derived CMs. To study the cytotoxic effect of our extract, differentiating mouse ES cells were exposed to different concentrations of ESAE. EB morphology was assessed by microscopy at different stages of differentiation whereas cell viability was measured by flow cytometry, fluorometry and immunocytochemistry. The electrical activity of CMs and heart slices were respectively captured by the patch clamp technique and microelectrode array (MEA) method following ESAE acute exposure. Our findings revealed that ESAE exhibits a biphasic chronotropic activity on mouse ventricular slices with an initial low dose (0.001 and 0.01 µg/mL) decrease in beating activity followed by a corresponding significant increase in chronotropic activity at higher doses above 10 µg/mL. The muscarinic receptor blocker, atropine abolished the negative chronotropic activity of ESAE, while propranolol successfully blocked its positive chronotropic activity. ESAE showed a significant dose-dependent positive chronotropic activity on hiPS cell-derived CMs. Also, though not significantly, ESAE decreased cell viability and increased total caspase-3/7 activity of mouse ES cells in a concentration-dependent manner. Erythrina senegalensis aqueous extract exhibits a biphasic chronotropic effect on mouse heart and a positive chronotropic activity on hiPS cell-derived CMs, suggesting a possible mechanism through muscarinic and β-adrenergic receptor pathways. Also, ESAE is not cytotoxic on mouse ES cells at concentrations up to 100 µg/mL. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Galle, Jan-Christoph; Addison, Janet; Suranyi, Michael G; Claes, Kathleen; Di Giulio, Salvatore; Guerin, Alain; Herlitz, Hans; Kiss, István; Farouk, Mourad; Manamley, Nick; Wirnsberger, Gerhard; Winearls, Christopher
2016-12-01
Extended dosing of the erythropoiesis-stimulating agent (ESA) darbepoetin alfa (DA) once biweekly or monthly reduces anaemia treatment burden. This observational study assessed outcomes and dosing patterns in patients with chronic kidney disease not on dialysis (CKD-NoD) commencing extended dosing of DA. Adult CKD-NoD patients starting extended dosing of DA in Europe or Australia in June 2006 or later were followed up until December 2012. Outcomes included haemoglobin (Hb) concentration, ESA dosing, mortality rates and receipt of dialysis and renal transplantation. Subgroup analyses were conducted for selected outcomes. Of 6035 enrolled subjects, 5723 (94.8%) met analysis criteria; 1795 (29.7%) received dialysis and 238 (3.9%) underwent renal transplantation. Mean (standard deviation) Hb concentration at commencement of extended dosing was 11.0 (1.5) g/dL. Mean [95% confidence interval (CI)] Hb 12 months after commencement of extended dosing (primary outcome) was 11.6 g/dL (11.5, 11.6) overall and was similar across countries, with no differences between subjects previously treated with an ESA versus ESA-naïve subjects, subjects with versus without prior renal transplant or diabetics versus non-diabetics. Weekly ESA dose gradually decreased following commencement of extended DA dosing and was similar across subgroups. The decrease in weekly DA dose was accompanied by an increase in the proportion of patients receiving iron therapy. Hb concentrations declined following changes in ESA labels and treatment guidelines. The mortality rate (95% CI) was 7.06 (6.68, 7.46) deaths per 100 years of follow-up. Subjects alive at study end had stable Hb concentrations in the preceding year, while those who died had lower and declining Hb concentrations in their last year. Long-term, extended dosing of DA maintained Hb concentrations in patients already treated with an ESA and corrected and maintained Hb in ESA-naïve patients. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA.
NASA Astrophysics Data System (ADS)
Silalahi, R. L. R.; Mustaniroh, S. A.; Ikasari, D. M.; Sriulina, R. P.
2018-03-01
UD. Bunda Foods is an SME located in the district of Sidoarjo. UD. Bunda Foods has problems of maintaining its milkfish’s quality assurance and developing marketing strategies. Improving those problems enables UD. Bunda Foods to compete with other similar SMEs and to market its product for further expansion of their business. The objectives of this study were to determine the model of the institutional structure of the milkfish supply chain, to determine the elements, the sub-elements, and the relationship among each element. The method used in this research was Interpretive Structural Modeling (ISM), involving 5 experts as respondents consisting of 1 practitioner, 1 academician, and 3 government organisation employees. The results showed that there were two key elements include requirement and goals elements. Based on the Drive Power-Dependence (DP-D) matrix, the key sub-elements of requirement element, consisted of raw material continuity, appropriate marketing strategy, and production capital, were positioned in the Linkage sector quadrant. The DP-D matrix for the key sub-elements of the goal element also showed a similar position. The findings suggested several managerial implications to be carried out by UD. Bunda Foods include establishing good relationships with all involved institutions, obtaining capital assistance, and attending the marketing training provided by the government.
The fresnel interferometric imager
NASA Astrophysics Data System (ADS)
Koechlin, Laurent; Serre, Denis; Deba, Paul; Pelló, Roser; Peillon, Christelle; Duchon, Paul; Gomez de Castro, Ana Ines; Karovska, Margarita; Désert, Jean-Michel; Ehrenreich, David; Hebrard, Guillaume; Lecavelier Des Etangs, Alain; Ferlet, Roger; Sing, David; Vidal-Madjar, Alfred
2009-03-01
The Fresnel Interferometric Imager has been proposed to the European Space Agency (ESA) Cosmic Vision plan as a class L mission. This mission addresses several themes of the CV Plan: Exoplanet study, Matter in extreme conditions, and The Universe taking shape. This paper is an abridged version of the original ESA proposal. We have removed most of the technical and financial issues, to concentrate on the instrumental design and astrophysical missions. The instrument proposed is an ultra-lightweight telescope, featuring a novel optical concept based on diffraction focussing. It yields high dynamic range images, while releasing constraints on positioning and manufacturing of the main optical elements. This concept should open the way to very large apertures in space. In this two spacecraft formation-flying instrument, one spacecraft holds the focussing element: the Fresnel interferometric array; the other spacecraft holds the field optics, focal instrumentation, and detectors. The Fresnel array proposed here is a 3.6 ×3.6 m square opaque foil punched with 105 to 106 void “subapertures”. Focusing is achieved with no other optical element: the shape and positioning of the subapertures (holes in the foil) is responsible for beam combining by diffraction, and 5% to 10% of the total incident light ends up into a sharp focus. The consequence of this high number of subapertures is high dynamic range images. In addition, as it uses only a combination of vacuum and opaque material, this focussing method is potentially efficient over a very broad wavelength domain. The focal length of such diffractive focussing devices is wavelength dependent. However, this can be corrected. We have tested optically the efficiency of the chromatism correction on artificial sources (500 < λ < 750 nm): the images are diffraction limited, and the dynamic range measured on an artificial double source reaches 6.2 10 - 6. We have also validated numerical simulation algorithms for larger Fresnel interferometric arrays. These simulations yield a dynamic range (rejection factor) close to 10 - 8 for arrays such as the 3.6 m one we propose. A dynamic range of 10 - 8 allows detection of objects at contrasts as high as than 10 - 9 in most of the field. The astrophysical applications cover many objects in the IR, visible an UV domains. Examples are presented, taking advantage of the high angular resolution and dynamic range capabilities of this concept.
78 FR 77430 - Endangered and Threatened Species; Recovery Plans
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-23
... Plan identifies substantive recovery actions needed to achieve recovery by addressing the systemic... consistent approach to section 7 consultations under the ESA and to other ESA decisions. For example, the...
Designing berthing mechanisms for international compatibility
NASA Technical Reports Server (NTRS)
Winch, John; Gonzalez-Vallejo, Juan J.
1991-01-01
The paper examines the technological issues regarding common berthing interfaces for the Space Station Freedom and pressurized modules from U.S., European, and Japanese space programs. The development of the common berthing mechanism (CBM) is based on common requirements concerning specifications, launch environments, and the unique requirements of ESA's Man-Tended Free Flyer. The berthing mechanism is composed of an active and a passive half, a remote manipulator system, 4 capture-latch assemblies, 16 structural bolts, and a pressure gage to verify equalization. Extensive graphic and verbal descriptions of each element are presented emphasizing the capture-latch motion and powered-bolt operation. The support systems to complete the interface are listed, and the manufacturing requirements for consistent fabrication are discussed to ensure effective international development.
Planetary protection issues for sample return missions.
DeVincenzi, D L; Klein, H P
1989-01-01
Sample return missions from a comet nucleus and the Mars surface are currently under study in the US, USSR, and by ESA. Guidance on Planetary Protection (PP) issues is needed by mission scientists and engineers for incorporation into various elements of mission design studies. Although COSPAR has promulgated international policy on PP for various classes of solar system exploration missions, the applicability of this policy to sample return missions, in particular, remains vague. In this paper, we propose a set of implementing procedures to maintain the scientific integrity of these samples. We also propose that these same procedures will automatically assure that COSPAR-derived PP guidelines are achieved. The recommendations discussed here are the first step toward development of official COSPAR implementation requirements for sample return missions.
Image processing for flight crew enhanced situation awareness
NASA Technical Reports Server (NTRS)
Roberts, Barry
1993-01-01
This presentation describes the image processing work that is being performed for the Enhanced Situational Awareness System (ESAS) application. Specifically, the presented work supports the Enhanced Vision System (EVS) component of ESAS.
Portrait view of ESA Spacelab Specialists
NASA Technical Reports Server (NTRS)
1978-01-01
Portrait view of European Space Agency (ESA) Spacelab Specialist Ulf Merbold in civilian clothes standing in front of a display case. The photo was taken at the Marshall Space Flight Center (MSFC), Huntsville, Alabama.
2014-09-08
PHOTO DATE: 09-08-14 LOCATION: Building 16N/1040 - SES Alpha-Cupola SUBJECT: ESA Astronaut Timothy Peake on behalf of ESA prior to FF RNDZ ADV 3 training with Kopra and Wilmore. PHOTOGRAPHER: BILL STAFFORD
2014-09-08
PHOTO DATE: 09-08-14 LOCATION: Building 16N/1040 - SES Alpha-Cupola SUBJECT: ESA Astronaut Timothy Peake on behalf of ESA prior to FF RNDZ ADV 3 training with Kopra and Wilmore. PHOTOGRAPHER: BILL STAFFORD
2012-05-15
ISS031-E-157790 (15 May 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 31 flight engineer, floats freely in ESA?s "Edoardo Amaldi" Automated Transfer Vehicle-3 (ATV-3) currently docked with the International Space Station.
2013-06-20
CAPE CANAVERAL, Fla. – Representatives from the European Space Agency, or ESA, toured the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. From the left, are Nico Dettman, ESA Space Transportation Department director Bernardo Patti, ESA manager of International Space Station Operations Philippe Deloo, ESA European Service Module study manager and Mark Geyer, Orion Production Operations manager. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann
2013-06-20
CAPE CANAVERAL, Fla. – Representatives from the European Space Agency, or ESA, toured the Operations and Checkout Building high bay and viewed the Orion crew module at NASA’s Kennedy Space Center in Florida. Among the group were Nico Dettman, ESA Space Transportation Department director Bernardo Patti, ESA International Space Station Operations manager and Philippe Deloo, ESA European Service Module Study manager. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann
Cost considerations in database selection - A comparison of DIALOG and ESA/IRS
NASA Technical Reports Server (NTRS)
Jack, R. F.
1984-01-01
It is pointed out that there are many factors which affect the decision-making process in determining which databases should be selected for conducting the online search on a given topic. In many cases, however, the major consideration will be related to cost. The present investigation is concerned with a comparison of the costs involved in making use of DIALOG and the European Space Agency's Information Retrieval Service (ESA/IRS). The two services are very comparable in many respects. Attention is given to pricing structure, telecommunications, the number of databases, prints, time requirements, a table listing online costs for DIALOG and ESA/IRS, and differences in mounting databases. It is found that ESA/IRS is competitively priced when compared to DIALOG, and, despite occasionally higher telecommunications costs, may be even more economical to use in some cases.
Space strategy and governance of ESA small member states
NASA Astrophysics Data System (ADS)
Sagath, Daniel; Papadimitriou, Angeliki; Adriaensen, Maarten; Giannopapa, Christina
2018-01-01
The European Space Agency (ESA) has twenty-two Member States with a variety of governance structures and strategic priorities regarding their space activities. The objective of this paper is to provide an up-to date overview and a holistic assessment of the national space governance structures and strategic priorities of the eleven smaller Member States (based on annual ESA contributions). A link is made between the governance structure and the main strategic objectives. The specific needs and interests of small and new Member States in the frame of European Space Integration are addressed. The first part of the paper focuses on the national space governance structures in the eleven smaller ESA Member States. The governance models of these Member States are identified including the responsible ministries and the entities entrusted with the implementation of space strategy/policy and programmes of the country. The second part of this paper focuses on the content and analysis of the national space strategies and indicates the main priorities and trends in the eleven smaller ESA Member States. The priorities are categorised with regards to technology domains, the role of space in the areas of sustainability and the motivators for space investments. In a third and final part, attention is given to the specific needs and interests of the smaller Member States in the frame of European space integration. ESA instruments are tailored to facilitate the needs and interests of the eleven smaller and/or new Member States.
Anemia in conventional hemodialysis: Finding the optimal treatment balance.
Hasegawa, Takeshi; Koiwa, Fumihiko; Akizawa, Tadao
2018-06-17
Renal anemia is a serious and common complication in hemodialysis (HD) patients. The introduction of erythropoiesis-stimulating agents (ESAs) has dramatically improved hemoglobin levels and outcomes. Several interventional studies reported that excessive correction of anemia and the massive use of ESA can trigger cardiovascular disease (CVD), and consequently may worsen the prognosis of patients undergoing HD. Therefore, it has been widely recognized that large doses of ESA should be used with caution. An effective use of iron preparations is required to yield the optimal effect of ESA. It is well-known that iron utilization is inhibited under pathological conditions, such as chronic inflammation, resulting in ESA resistance. It is postulated that a new class of therapeutic agents for renal anemia, hypoxia inducible factor prolyl hydroxylase (HIF-PH) inhibitors, will have beneficial treatment effects in patients on HD. HIF is induced by hypoxia and promotes erythropoietin production. In the absence of a hypoxic state, HIF is decomposed by the HIF catabolic enzyme. HIF-PH inhibitors inhibit this degrading enzyme and stimulate endogenous erythropoietin production via HIF induction. Additionally, HIF-PH inhibitors promote effective utilization of iron and raise erythropoietin to physiological concentrations. Accordingly, HIF-PH inhibitors improve anemia and iron metabolism. It appears that this effect persists irrespective of chronic inflammatory conditions. HIF-PH inhibitors do not overshoot erythropoietin above physiological concentrations like ESAs. Therefore, it is hypothesized that HIF-PH inhibitors would not increase the risk of CVD in patients undergoing HD. © 2018 Wiley Periodicals, Inc.
Security Concepts for Satellite Links
NASA Astrophysics Data System (ADS)
Tobehn, C.; Penné, B.; Rathje, R.; Weigl, A.; Gorecki, Ch.; Michalik, H.
2008-08-01
The high costs to develop, launch and maintain a satellite network makes protecting the assets imperative. Attacks may be passive such as eavesdropping on the payload data. More serious threat are active attacks that try to gain control of the satellite, which may lead to the total lost of the satellite asset. To counter these threats, new satellite and ground systems are using cryptographic technologies to provide a range of services: confidentiality, entity & message authentication, and data integrity. Additionally, key management cryptographic services are required to support these services. This paper describes the key points of current satellite control and operations, that are authentication of the access to the satellite TMTC link and encryption of security relevant TM/TC data. For payload data management the key points are multi-user ground station access and high data rates both requiring frequent updates and uploads of keys with the corresponding key management methods. For secure satellite management authentication & key negotiation algorithms as HMAC-RIPEMD160, EC- DSA and EC-DH are used. Encryption of data uses algorithms as IDEA, AES, Triple-DES, or other. A channel coding and encryption unit for payload data provides download data rates up to Nx250 Mbps. The presented concepts are based on our experience and heritage of the security systems for all German MOD satellite projects (SATCOMBw2, SAR-Lupe multi- satellite system and German-French SAR-Lupe-Helios- II systems inter-operability) as well as for further international (KOMPSAT-II Payload data link system) and ESA activities (TMTC security and GMES).
NASA Astrophysics Data System (ADS)
Blanc, Michel; Jones, Geraint H.; Prieto-Ballesteros, Olga; Sterken, Veerle J.
2016-04-01
The assessment of the habitability of Jupiter's icy moons is considered of high priority in the roadmaps of the main space agencies, including the decadal survey and esa's cosmic vision plan. the voyager and galileo missions indicated that europa and ganymede may meet the requirements of habitability, including deep liquid aqueous reservoirs in their interiors. indeed, they constitute different end-terms of ocean worlds, which deserve further characterization in the next decade. esa and nasa are now both planning to explore these ice moons through exciting and ambitious missions. esa selected in 2012 the juice mission mainly focused on ganymede and the jupiter system, while nasa is currently studying and implementing the europa mission. in 2015, nasa invited esa to provide a junior spacecraft to be carried on board its europa mission, opening a collaboration scheme similar to the very successful cassini-huygens approach. in order to define the best contribution that can be made to nasa's europa mission, a europa initiative has emerged in europe. its objective is to elaborate a community-based strategy for the proposition of the best possible esa contribution(s) to nasa's europa mission, as a candidate for the upcoming selection of esa's 5th medium-class mission . the science returns of the different potential contributions are analysed by six international working groups covering complementary science themes: a) magnetospheric interactions; b) exosphere, including neutrals, dust and plumes; c) geochemistry; d) geology, including expressions of exchanges between layers; e) geophysics, including characterization of liquid water distribution; f) astrobiology. each group is considering different spacecraft options in the contexts of their main scientific merits and limitations, their technical feasibility, and of their interest for the development of esa-nasa collaborations. there are five options under consideration: (1) an augmented payload to the europa mission main spacecraft itself. (2) a free-flyer released from the main craft and staying on a jupiter orbit. (3) a small autonomous satellite injected into europan orbit. (4) a penetrator of europa's surface (including instrumentation on the descent module). (5) contributions to a soft lander, if developed by nasa in an increased europa mission scenario. in this talk we will report on the conclusions of the crossed analysis between science themes and spacecraft options performed during a dedicated project workshop held in madrid on feb. 29 and march 1st, which will be the scientific and technical base for any relevant europa-related response to the upcoming esa call.
Impact analysis of the transponder time delay on radio-tracking observables
NASA Astrophysics Data System (ADS)
Bertone, Stefano; Le Poncin-Lafitte, Christophe; Rosenblatt, Pascal; Lainey, Valéry; Marty, Jean-Charles; Angonin, Marie-Christine
2018-01-01
Accurate tracking of probes is one of the key points of space exploration. Range and Doppler techniques are the most commonly used. In this paper we analyze the impact of the transponder delay, i . e . the processing time between reception and re-emission of a two-way tracking link at the satellite, on tracking observables and on spacecraft orbits. We show that this term, only partially accounted for in the standard formulation of computed space observables, can actually be relevant for future missions with high nominal tracking accuracies or for the re-processing of old missions. We present several applications of our formulation to Earth flybys, the NASA GRAIL and the ESA BepiColombo missions.
The Gaia mission a rich resource for outreach activities
NASA Astrophysics Data System (ADS)
O'Flaherty, K. S.; Douglas, J.; Prusti, T.
2008-07-01
Space science missions, and astronomy missions in particular, capture the public imagination at all levels. ESA's Gaia mission is no exception to this. In addition to its key scientific goal of providing new insight into the origin, formation, and evolution of the Milky Way, Gaia also touches on many other scientific topics of broad appeal, for example, solar system objects, stars (including rare and exotic ones), dark matter, gravitational light bending. The mission naturally provides a rich resource for outreach possibilities whether it be to the general public, or to specific interest groups, such as scientists from other fields or educators. We present some examples of possible outreach activities for Gaia.
NASA Technical Reports Server (NTRS)
Pinnick, Veronica; Buch, Arnaud; VanAmerom, Friso H. W.; Danell, Ryan M.; Brinckerhoff, William; Mahaffy, Paul; Cotter, Robert J.
2011-01-01
The Mars Organic Molecule Analyzer (MOMA) is a joint venture by NASA and the European Space Agency (ESA) to develop a sensitive, light-weight, low-power mass spectrometer for chemical analysis on Mars. MOMA is a key analytical instrument aboard the 2018 ExoMars rover mission seeking signs of past or present life. The current prototype was built to demonstrate operation of gas chromatography (OC) and laser desorption (LD) mass spectrometry under martian ambient conditions (5-7 Torr of CO2-rich atmosphere). Recent reports have discussed the MO MA concept, design and performance. Here, we update the current prototype performance, focusing specifically on the GCMS mode.
Patient preference to use a questionnaire varies according to attributes.
Kim, Na Yae; Richardson, Lyndsay; He, Weilin; Jones, Glenn
2011-08-01
Health care professionals may assume questionnaires are burdensome to patients, and this limits their use in clinical settings and promotes simplification. However, patient adherence may improve by optimizing questionnaire attributes and contexts. This cross-sectional survey used Contingent Valuation methods to directly elicit patient preference for conventional monitoring of symptoms, versus adding a tool to monitoring. Under explicit consideration was the 10-question Edmonton Symptom Assessment System (ESAS). In the questionnaire, attributes of ESAS were sequentially altered to try and force preference reversal. A separate group of participants completed both questionnaire and interviews to explore questionnaire reliability, and extend validity. Overall, 24 of 43 participants preferred using ESAS. Most important attributes to preference were frequency, specificity, and complexity. Where preference is initially against ESAS, it may reverse by simplifying the tool and its administrative processes. Interviews in 10 additional participants supported reproducibility and validity of the questionnaire method. Preference for using tools increases when tools are made relevant and used more appropriately. Questionnaires completed by patients as screening tools or aids to communication may be under-utilized. Optimization of ESAS and similar tools may be guided by empirical findings, including those obtained from Contingent Valuation methodologies. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Del Vecchio, Lucia; Locatelli, Francesco
2016-08-01
Erythropoiesis stimulating agents (ESA) are effective drugs, which have been used for decades in patients with chronic kidney disease (CKD) with few side effects. More recently, concern has been raised around their safety, from higher cardiovascular and thrombosis risk to cancer progression and increased mortality. We made a literature search on PubMed looking for adverse effects of ESA in CKD patients. The topics covered are cardiovascular adverse events, thrombosis, increased mortality, hypertension, cancer progression, diabetic retinopathy, pure red cell aplasia and anaphylactic reactions. Concerns around ESA therapy have questioned treatment indications in high-risk CKD patients (those with cancer, diabetes and cardiovascular comorbidities). A more cautious approach has then prevailed. In our opinion, intermediate Hb values (Hb 10-12 g/dl) should be aimed with ESA therapy, being more cautious in high-risk patients. As a consequence, IV iron is administered more frequently. However, excessive iron use may cause iron overload and in rare cases severe anaphylactic reactions. There are expectations of new erythropoietic agents, such as those manipulating the hypoxia-inducible transcription factors (HIF) system. Differing from ESAs, they stimulate the production of endogenous EPO, avoiding over-physiological plasmatic levels.
Excited-state absorption in Er: BaY2F8 and Cs3Er2Br9 and comparison with Er: LiYF4
NASA Astrophysics Data System (ADS)
Pollnau, M.; Lüthy, W.; Weber, H. P.; Krämer, K.; Güdel, H. U.; McFarlane, R. A.
1996-04-01
The influence of Excited-State Absorption (ESA) on the green laser transition and the overlap of Ground-State Absorption (GSA) and ESA for 970 nm upconversion pumping in erbium is investigated in Er3+ : BaY2F8 and Cs3Er2Br9. Results are compared to Er3+ : LiYF4. In Er3+: BaY2F8, a good overlap between GSA and ESA is found at 969 nm in one polarization direction. The emission cross section at 550 nm is a factor of two smaller than in LiYF4. In Cs3Er2Br9, the smaller Stark splitting of the levels shifts the wavelengths of the green emission and ESA from4 I 1 3/2 off resonance. It enhances, however, ground-state reabsorption. The emission cross section at 550 nm is comparable to LiYF4. Upconversion leads to significant green fluorescence from2 H 9/2. A significant population of the4 I 11/2 level and ESA at 970 nm are not present under 800 nm pumping.
Hayyan, Adeeb; Mjalli, Farouq S; Hashim, Mohd Ali; Hayyan, Maan; AlNashef, Inas M; Al-Zahrani, Saeed M; Al-Saadi, Mohammed A
2011-10-01
An industrial grade acidic crude palm oil (ACPO) pre-treatment process was carried out using ethanesulfonic acid (ESA) as a catalyst in the esterification reaction. ESA was used in different dosages to reduce free fatty acid (FFA) to a minimum level for the second stage of biodiesel production via alkaline transesterification reaction. Different process operating conditions were optimized such as ESA dosage (0.25-3.5% wt/wt), methanol to ACPO molar ratio (1:1-20:1), reaction temperature (40-70 °C), and reaction time (3-150 min). This study revealed the potential use of abundant quantities of ACPO from oil palm mills for biodiesel production. The lab scale results showed the effectiveness of the pre-treatment process using ESA catalyst. Three consecutive catalyst recycling runs were achieved without significant degradation in its performance. Second and third reuse runs needed more reaction time to achieve the target level of FFA content. Esterification and transesterification using ESA and KOH respectively is proposed for biodiesel industrial scale production. The produced biodiesel meets the international standards specifications for biodiesel fuel (EN 14214 and ASTM D6751). Copyright © 2011 Elsevier Ltd. All rights reserved.
ESA seeks gravitational-wave proposals
NASA Astrophysics Data System (ADS)
Banks, Michael
2016-12-01
The European Space Agency (ESA) has put out a call for European scientists to submit proposals for the first space mission to observe gravitational waves - ripples in the fabric of space-time created by accelerating massive objects.
On stellar encounters and their effect on cometary orbits in the Oort cloud
NASA Astrophysics Data System (ADS)
Serafin, R. A.; Grothues, H.-G.
2002-03-01
We systematically investigate the encounters between the Sun and neighbouring stars and their effects on cometary orbits in the Oort cloud, including the intrinsic one with the star Gl 710 (HIP 89 825), with some implications to stellar and cometary dynamics. Our approach is principally based on the combination of a Keplerian-rectilinear model of stellar passages and the Hipparcos Catalogue (ESA 1997). Beyond the parameters of encounter, we pay particular attention to the observational errors in parallaxes and stellar velocities, and their propagation in time. Moreover, as a special case of this problem, we consider the collision probability of a star passing very closely to the Sun, taking also into account the mutual gravitational attraction between the stars. In the part dealing with the influence of stellar encounters on the orbital elements of Oort cloud comets, we derive new simple formulae calculating the changes in the cometary orbital elements, expressed as functions of the Jeans impulse formula. These expressions are then applied to calculate numerical values of the element changes caused by close encounters of neighbouring stars with some model comets in the Oort cloud. Moreover, the general condition for an ejection of comets from the cloud effected by a single encounter is derived and discussed.
Performance of the rebuilt SUERC single-stage accelerator mass spectrometer
NASA Astrophysics Data System (ADS)
Shanks, Richard P.; Ascough, Philippa L.; Dougans, Andrew; Gallacher, Paul; Gulliver, Pauline; Rood, Dylan H.; Xu, Sheng; Freeman, Stewart P. H. T.
2015-10-01
The SUERC bipolar single-stage accelerator mass spectrometer (SSAMS) has been dismantled and rebuilt to accommodate an additional rotatable pre-accelerator electrostatic spherical analyser (ESA) and a second ion source injector. This is for the attachment of an experimental positive-ion electron cyclotron resonance (ECR) ion source in addition to a Cs-sputter source. The ESA significantly suppresses oxygen interference to radiocarbon detection, and remaining measurement interference is now thought to be from 13C injected as 13CH molecule scattering off the plates of a second original pre-detector ESA.
Darbepoetin Administration in Term and Preterm Neonates.
Patel, Shrena; Ohls, Robin K
2015-09-01
Erythropoiesis-stimulating agents (ESAs) such as erythropoietin have been studied as red cell growth factors in preterm and term infants for more than 20 years. Recent studies have evaluated darbepoetin (Darbe, a long-acting ESA) for both erythropoietic effects and potential neuroprotection. We review clinical trials of Darbe in term and preterm infants, which have reported significant erythropoietic uses and neuroprotective effects. ESAs show great promise in decreasing or eliminating transfusions, and in preventing and treating brain injury in term and preterm infants. Copyright © 2015 Elsevier Inc. All rights reserved.
DISCOS- Current Status and Future Developments
NASA Astrophysics Data System (ADS)
Flohrer, T.; Lemmens, S.; Bastida Virgili, B.; Krag, H.; Klinkrad, H.; Parrilla, E.; Sanchez, N.; Oliveira, J.; Pina, F.
2013-08-01
We present ESA's Database and Information System Characterizing Objects in Space (DISCOS). DISCOS not only plays an essential role in the collision avoidance and re-entry prediction services provided by ESA's Space Debris Office, it is also providing input to numerous and very differently scoped engineering activities, within ESA and throughout industry. We introduce the central functionalities of DISCOS, present the available reporting capabilities, and describe selected data modelling features. Finally, we revisit the developments of the recent years and take a sneak preview of the on-going replacement of DISCOS web front-end.
2011-02-16
JSC2011-E-017489 (16 Feb. 2011) --- The Ariane 5 rocket is pictured just after lift off from Europe?s Spaceport in Kourou, French Guiana. ESA?s second Automated Transfer Vehicle, Johannes Kepler, was just a short time earlier (21:50 GMT or 18:50 Kourou time on Feb. 16, 2011) launched toward its targeted low orbit and eventual link-up with the ISS. The unmanned supply ship is planned to deliver critical supplies and reboost the space station during its almost four-month mission. Photo courtesy of ESA/Stephane Corvaja and P. Baudon
AIDS and HIV Training and Education in Criminal Justice Agencies. AIDS Bulletin.
ERIC Educational Resources Information Center
Hammett, Theodore M.
This bulletin summarizes key elements of an effective AIDS training and education program for law enforcement and corrections personnel. First, these key elements of training and education for criminal justice personnel are discussed: staff participation in materials development; timely and frequent training; mandatory training; live training by…
Zhang, Yang; Shen, Jing; Li, Yu
2018-01-01
Assessing and quantifying atmospheric vulnerability is a key issue in urban environmental protection and management. This paper integrated the Analytical hierarchy process (AHP), fuzzy synthesis evaluation and Geographic Information System (GIS) spatial analysis into an Exposure-Sensitivity-Adaptive capacity (ESA) framework to quantitatively assess atmospheric environment vulnerability in the Beijing-Tianjin-Hebei (BTH) region with spatial and temporal comparisons. The elaboration of the relationships between atmospheric environment vulnerability and indices of exposure, sensitivity, and adaptive capacity supports enable analysis of the atmospheric environment vulnerability. Our findings indicate that the atmospheric environment vulnerability of 13 cities in the BTH region exhibits obvious spatial heterogeneity, which is caused by regional diversity in exposure, sensitivity, and adaptive capacity indices. The results of atmospheric environment vulnerability assessment and the cause analysis can provide guidance to pick out key control regions and recognize vulnerable indicators for study sites. The framework developed in this paper can also be replicated at different spatial and temporal scales using context-specific datasets to support environmental management. PMID:29342852
Zhang, Yang; Shen, Jing; Li, Yu
2018-01-13
Assessing and quantifying atmospheric vulnerability is a key issue in urban environmental protection and management. This paper integrated the Analytical hierarchy process (AHP), fuzzy synthesis evaluation and Geographic Information System (GIS) spatial analysis into an Exposure-Sensitivity-Adaptive capacity (ESA) framework to quantitatively assess atmospheric environment vulnerability in the Beijing-Tianjin-Hebei (BTH) region with spatial and temporal comparisons. The elaboration of the relationships between atmospheric environment vulnerability and indices of exposure, sensitivity, and adaptive capacity supports enable analysis of the atmospheric environment vulnerability. Our findings indicate that the atmospheric environment vulnerability of 13 cities in the BTH region exhibits obvious spatial heterogeneity, which is caused by regional diversity in exposure, sensitivity, and adaptive capacity indices. The results of atmospheric environment vulnerability assessment and the cause analysis can provide guidance to pick out key control regions and recognize vulnerable indicators for study sites. The framework developed in this paper can also be replicated at different spatial and temporal scales using context-specific datasets to support environmental management.
Naci, Huseyin; de Lissovoy, Gregory; Hollenbeak, Christopher; Custer, Brian; Hofmann, Axel; McClellan, William; Gitlin, Matthew
2012-01-01
To determine whether Medicare's decision to cover routine administration of erythropoietin stimulating agents (ESAs) to treat anemia of end-stage renal disease (ESRD) has been a cost-effective policy relative to standard of care at the time. The authors used summary statistics from the actual cohort of ESRD patients receiving ESAs between 1995 and 2004 to create a simulated patient cohort, which was compared with a comparable simulated cohort assumed to rely solely on blood transfusions. Outcomes modeled from the Medicare perspective included estimated treatment costs, life-years gained, and quality-adjusted life-years (QALYs). Incremental cost-effectiveness ratio (ICER) was calculated relative to the hypothetical reference case of no ESA use in the transfusion cohort. Sensitivity of the results to model assumptions was tested using one-way and probabilistic sensitivity analyses. Estimated total costs incurred by the ESRD population were $155.47B for the cohort receiving ESAs and $155.22B for the cohort receiving routine blood transfusions. Estimated QALYs were 2.56M and 2.29M, respectively, for the two groups. The ICER of ESAs compared to routine blood transfusions was estimated as $873 per QALY gained. The model was sensitive to a number of parameters according to one-way and probabilistic sensitivity analyses. This model was counter-factual as the actual comparison group, whose anemia was managed via transfusion and iron supplements, rapidly disappeared following introduction of ESAs. In addition, a large number of model parameters were obtained from observational studies due to the lack of randomized trial evidence in the literature. This study indicates that Medicare's coverage of ESAs appears to have been cost effective based on commonly accepted levels of willingness-to-pay. The ESRD population achieved substantial clinical benefit at a reasonable cost to society.
Schiller, Brigitte; Besarab, Anatole
2011-08-01
To review issues and challenges in caring for hemodialysis patients with anemia of chronic kidney disease, specifically focusing on the effects of longer erythropoiesis-stimulating agent (ESA) dosing intervals on processes of care. PubMed searches were performed limited to the last 10 years to February 2011, focusing on articles in English that were 'clinical trials,' assessed processes of care, measured associations of hemoglobin (Hb) with outcomes, and explored/analyzed extended dosing intervals of ESAs in hemodialysis patients and recommendations for increasing the quality of care of these patients. Some limitations included the fact that a meta-analysis was not conducted; many studies were associative and therefore unable to prove causality; and none of the clinical trials directly compared the impact of more frequent or less frequent ESA dosing strategies on patient care and outcomes. Progress over the past several decades has been substantial; however, unmet needs remain and there is room for improvement in efficiencies of care. Many patients fail to meet Hb targets, and nephrology professionals' time is consumed with preparing, administering, and monitoring therapy. Direct interaction between patients and care providers has been lost as attention has shifted to 'cost-effective' (not necessarily patient-centered) ways to deliver care. Use of ESAs at longer dosage intervals represents one opportunity to improve efficiency of care. Newer ESAs have been developed for less frequent dosing. Once-monthly dosing decreases time spent administering/monitoring therapy and allows nephrology professionals to provide comprehensive renal care, wherein the patient rather than task-oriented processes becomes the primary focus. A fragmented, uncoordinated care-delivery model heightens the urgency to systematically address issues related to delivery of care and improve efficiencies in anemia management as part of the patient-centered approach. ESAs designed for administration at longer intervals may effectively and reliably achieve Hb targets with once-monthly dosing, thereby decreasing time spent administering/monitoring therapy.
Nekolaichuk, Cheryl; Huot, Ann; Gratton, Valérie; Bush, Shirley H; Tarumi, Yoko; Watanabe, Sharon M
2017-09-01
The Edmonton Symptom Assessment System-revised (ESAS-r) is a nine-item self-report symptom intensity tool developed for palliative care patients, with the option of adding a 10th patient-specific symptom. Due to growing international uptake, the ESAS-r has been translated into different languages. There has not been agreement, however, regarding a standard process for translation into multiple languages, which also includes patients' perspectives. The purpose of this study was to develop a French version of the ESAS-r, using a standardized translation protocol, and to obtain palliative care patients' perspectives regarding this translated tool. We developed a French version of the ESAS-r, using a standard translation method, involving both professional translators (n = 2) and bilingual palliative care experts (n = 3). Fifteen Francophone participants recruited from palliative care sites in two urban centers in Canada completed the ESAS-r and provided feedback on the translation, in the presence of a trained interviewer. Descriptive statistics and thematic analysis were used to analyze the quantitative and qualitative data, respectively. Fifteen Francophone participants were recruited from palliative care sites in two urban centers in Canada. Participants completed the ESAS-r and provided feedback on the translation in the presence of a trained interviewer. Descriptive statistics and thematic analysis were used to analyze the quantitative and qualitative data, respectively. Based on participants' concerns, translations for four of the nine symptoms were revised: drowsiness, nausea, lack of appetite, and shortness of breath. Concerns expressed for three additional symptoms (depression, anxiety, and well-being) were related to overall difficulty rating these symptoms, not specific to the translation. The French version of the ESAS-r is a credible tool for symptom assessment in Francophone patients. The study findings provide a vital step in the development of a standardized translation protocol, including patients' perspectives, which can be applied to other languages.
Energy Savings Performance Contract Energy Sales Agreement Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
FEMP developed the Energy Savings Performance Contracting Energy Sales Agreement (ESPC ESA) Toolkit to provide federal agency contracting officers and other acquisition team members with information that will facilitate the timely execution of ESPC ESA projects.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-11
... Plan identifies substantive recovery actions needed to achieve recovery by addressing the systemic... consistent approach to section 7 consultations under the ESA and to other ESA decisions. For example, the...
ESA study of XEUS, a potential follow-on to XMM-Newton
NASA Astrophysics Data System (ADS)
Rando, N.; Lyngvi, A.; Gondoin, P.; Lumb, D.; Bavdaz, M.; Verhoeve, P.; de Wilde, D.; Parmar, A.; Peacock, A.
2017-11-01
In October 2005, based on a massive response by the Science Community to ESA's call for themes in space science, a large aperture X-ray Observatory (XRO) was identified as a candidate project for Europe within the frame of the 2015-2025 Cosmic Vision program. Such a mission would represent the natural follow-on to XMM Newton, providing a large aperture X-ray telescope combined with high spectral and time resolution instruments, capable of investigating matter under extreme conditions and the evolution of the early universe. The paper summarises the results of the most recent ESA internal study activities, leading to an updated mission configuration, with a mirror and a detector spacecraft flying in formation around L2 and a consolidated scientific payload design. The paper also describes the ongoing technology development activities for the payload and for the spacecraft that will play a crucial role in case ESA would decide to develop such a mission.
Large format array controller (aLFA-C): tests and characterisation at ESA
NASA Astrophysics Data System (ADS)
Lemmel, Frédéric; ter Haar, Jörg; van der Biezen, John; Duvet, Ludovic; Nelms, Nick; Blommaert, Sander; Butler, Bart; van der Luijt, Cornelis; Heijnen, Jerko; Smit, Hans; Visser, Ivo
2016-08-01
For future near infrared astronomy missions, ESA is developing a complete detection and conversion chain (photon to SpaceWire chain system): Large Format Array (aLFA-N) based on MCT type detectors. aLFA-C (Astronomy Large Format Array Controller): a versatile cryogenic detector controller. An aLFA-C prototype was developed by Caeleste (Belgium) under ESA contract (400106260400). To validate independently the performances of the aLFA-C prototype and consolidate the definition of the follow-on activity, a dedicated test bench has been designed and developed in ESTEC/ESA within the Payload Technology Validation group. This paper presents the test setup and the performance validation of the first prototype of this controller at room and cryogenic temperature. Test setup and software needed to test the HAWAII-2RG and aLFA-N detectors with the aLFA-C prototype at cryogenic temperature will be also presented.
Understanding the features in the ultrafast transient absorption spectra of CdSe quantum dots
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Do, Thanh Nhut; Ong, Xuanwei; Chan, Yinthai; Tan, Howe-Siang
2016-12-01
We describe a model to explain the features of the ultrafast transient absorption (TA) spectra of CdSe core type quantum dots (QDs). The measured TA spectrum consists of contributions by the ground state bleach (GSB), stimulated emission (SE) and excited state absorption (ESA) processes associated with the three lowest energy transition of the QDs. We model the shapes of the GSB, SE and ESA spectral components after fits to the linear absorption. The spectral positions of the ESA components take into account the biexcitonic binding energy. In order to obtain the correct weightage of the GSB, SE and ESA components to the TA spectrum, we enumerate the set of coherence transfer pathways associated with these processes. From our fits of the experimental TA spectra of 65 Å diameter QDs, biexcitonic binding energies for the three lowest energy transitions are obtained.
First Prototype of a Web Map Interface for ESA's Planetary Science Archive (PSA)
NASA Astrophysics Data System (ADS)
Manaud, N.; Gonzalez, J.
2014-04-01
We present a first prototype of a Web Map Interface that will serve as a proof of concept and design for ESA's future fully web-based Planetary Science Archive (PSA) User Interface. The PSA is ESA's planetary science archiving authority and central repository for all scientific and engineering data returned by ESA's Solar System missions [1]. All data are compliant with NASA's Planetary Data System (PDS) Standards and are accessible through several interfaces [2]: in addition to serving all public data via FTP and the Planetary Data Access Protocol (PDAP), a Java-based User Interface provides advanced search, preview, download, notification and delivery-basket functionality. It allows the user to query and visualise instrument observations footprints using a map-based interface (currently only available for Mars Express HRSC and OMEGA instruments). During the last decade, the planetary mapping science community has increasingly been adopting Geographic Information System (GIS) tools and standards, originally developed for and used in Earth science. There is an ongoing effort to produce and share cartographic products through Open Geospatial Consortium (OGC) Web Services, or as standalone data sets, so that they can be readily used in existing GIS applications [3,4,5]. Previous studies conducted at ESAC [6,7] have helped identify the needs of Planetary GIS users, and define key areas of improvement for the future Web PSA User Interface. Its web map interface shall will provide access to the full geospatial content of the PSA, including (1) observation geometry footprints of all remote sensing instruments, and (2) all georeferenced cartographic products, such as HRSC map-projected data or OMEGA global maps from Mars Express. It shall aim to provide a rich user experience for search and visualisation of this content using modern and interactive web mapping technology. A comprehensive set of built-in context maps from external sources, such as MOLA topography, TES infrared maps or planetary surface nomenclature, provided in both simple cylindrical and polar stereographic projections, shall enhance this user experience. In addition, users should be able to import and export data in commonly used open- GIS formats. It is also intended to serve all PSA geospatial data through OGC-compliant Web Services so that they can be captured, visualised and analysed directly from GIS software, along with data from other sources. The following figure illustrates how the PSA web map interface and services shall fit in a typical Planetary GIS user working environment.
Schumacher, Yorck Olaf; Saugy, Martial; Pottgiesser, Torben; Robinson, Neil
2012-11-01
The increase of the body's capacity to transport oxygen is a prime target for doping athletes in all endurance sports. For this pupose, blood transfusions or erythropoiesis stimulating agents (ESA), such as erythropoietin, NESP, and CERA are used. As direct detection of such manipulations is difficult, biomarkers that are connected to the haematopoietic system (haemoglobin concentration, reticulocytes) are monitored over time (Athlete Biological Passport (ABP)) and analyzed using mathematical models to identify patterns suspicious of doping. With this information, athletes can either be sanctioned directly based on their profile or targeted with conventional doping tests. Key issues for the appropriate use of the ABP are correct targeting and use of all available information (e.g. whereabouts, cross sectional population data) in a forensic manner. Future developments of the passport include the correction of all concentration-based variables for shifts in plasma volume, which might considerably increase sensitivity. New passport markers from the genomic, proteomic, and metabolomic level might add further information, but need to be validated before integration into the passport procedure. A first assessment of blood data of federations that have implemented the passport show encouraging signs of a decreased blood-doping prevalence in their athletes, which adds scientific credibility to this innovative concept in the fight against ESA- and blood doping. Copyright © 2012 John Wiley & Sons, Ltd.
Silicon Carbide Telescope Investigations for the LISA Mission
NASA Technical Reports Server (NTRS)
Sanjuan, J.; Spannagel, R.; Braxmaier, C.; Korytov, D.; Mueller, G.; Preston, A.; Livas, J.
2013-01-01
Space-based gravitational wave (GW) detectors are conceived to detect GWs in the low frequency range (mili-Hertz) by measuring the distance between free-falling proof masses in spacecraft (SC) separated by 5 Gm. The reference in the last decade has been the joint ESA-NASA mission LISA. One of the key elements of LISA is the telescope since it simultaneously gathers the light coming from the far SC (approximately or equal to 100 pW) and expands, collimates and sends the outgoing beam (2 W) to the far SC. Demanding requirements have been imposed on the telescope structure: the dimensional stability of the telescope must be approximately or equal to 1pm Hz(exp-1/2) at 3 mHz and the distance between the primary and the secondary mirrors must change by less than 2.5 micrometer over the mission lifetime to prevent defocussing. In addition the telescope structure must be light, strong and stiff. For this reason a potential on-axis telescope structure for LISA consisting of a silicon carbide (SiC) quadpod structure has been designed, constructed and tested. The coefficient of thermal expansion (CTE) in the LISA expected temperature range has been measured with a 1% accuracy which allows us to predict the shrinkage/expansion of the telescope due to temperature changes, and pico-meter dimensional stability has been measured at room temperature and at the expected operating temperature for the LISA telescope (around -6[deg]C). This work is supported by NASA Grants NNX10AJ38G and NX11AO26G,
Can We Power Future Mars Missions?
NASA Technical Reports Server (NTRS)
Balint, Tibor S.; Sturm, Erick J., II; Woolley, Ryan C.; Jordan, James F.
2006-01-01
The Vision for Space Exploration identified the exploration of Mars as one of the key pathways. In response, NASAs Mars Program Office is developing a detailed mission lineup for the next decade that would lead to future explorations. Mission architectures for the next decade include both orbiters and landers. Existing power technologies, which could include solar panels, batteries, radioisotope power systems, and in the future fission power, could support these missions. Second and third decade explorations could target human precursor and human in-situ missions, building on increasingly complex architectures. Some of these could use potential feed forward from earlier Constellation missions to the Moon, discussed in the ESAS study. From a potential Mars Sample Return mission to human missions the complexity of the architectures increases, and with it the delivered mass and power requirements also amplify. The delivered mass at Mars mostly depends on the launch vehicle, while the landed mass might be further limited by EDL technologies, including the aeroshell, parachutes, landing platform, and pinpoint landing. The resulting in-situ mass could be further divided into payload elements and suitable supporting power systems. These power systems can range from tens of watts to multi-kilowatts, influenced by mission type, mission configuration, landing location, mission duration, and season. Regardless, the power system design should match the power needs of these surface assets within a given architecture. Consequently, in this paper we will identify potential needs and bounds of delivered mass and architecture dependent power requirements to surface assets that would enable future in-situ exploration of Mars.
UVMag: Space UV and visible spectropolarimetry
NASA Astrophysics Data System (ADS)
Pertenais, Martin; Neiner, Coralie; Parès, Laurent P.; Petit, Pascal; Snik, Frans; van Harten, Gerard
2014-07-01
UVMag is a project of a space mission equipped with a high-resolution spectropolarimeter working in the UV and visible range. This M-size mission will be proposed to ESA at its M4 call. The main goal of UVMag is to measure the magnetic fields, winds and environment of all types of stars to reach a better understanding of stellar formation and evolution and of the impact of stellar environment on the surrounding planets. The groundbreaking combination of UV and visible spectropolarimetric observations will allow the scientists to study the stellar surface and its environment simultaneously. The instrumental challenge for this mission is to design a high-resolution space spectropolarimeter measuring the full- Stokes vector of the observed star in a huge spectral domain from 117 nm to 870 nm. This spectral range is the main difficulty because of the dispersion of the optical elements and of birefringence issues in the FUV. As the instrument will be launched into space, the polarimetric module has to be robust and therefore use if possible only static elements. This article presents the different design possibilities for the polarimeter at this point of the project.
Hyperspectral imager for components identification in the atmosphere
NASA Astrophysics Data System (ADS)
Dewandel, Jean-Luc; Beghuin, Didier; Dubois, Xavier; Antoine, Philippe
2017-11-01
Several applications require the identification of chemical elements during re-entry of material in the atmosphere. The materials can be from human origin or meteorites. The Automated Transfer Vehicle (ATV) re-entry has been filmed with conventional camera from airborne manual operation. In order to permit the identification of the separate elements from their glow, spectral analysis needs to be added to the video data. In a LET-SME contract with ESA, Lambda-X has built a Fourier Transform Imaging Spectrometer to permit, in a future work, to bring the technology to the readiness level required for the application. In this paper, the principles of the Fourier Transform Imaging spectroscopy are recalled, the different interferometers suitable for supporting the technique are reviewed and the selection process is explained. The final selection of the interferometer corresponds to a birefringent prism based common path shear interferometer. The design of the breadboard and its performances are presented in terms of spatial resolution, aperture, and spectral resolution. A discussion is open regarding perspective of the technique for other remote sensing applications compared to more usual push broom configurations.
Validation of the Daily Passive Microwave Snow Depth Products Over Northern China
NASA Astrophysics Data System (ADS)
Qiao, D.; Li, Z.; Wang, N.; Zhou, J.; Zhang, P.; Gao, S.
2018-04-01
Passive microwave sensors have the capability to provide information on snow depth (SD), which is critically important for hydrological modeling and water resource management. However, the different algorithms used to produce SD products lead to discrepancies in the data. To determine which products might be most suitable for Northern China, this paper assesses the accuracy of the existing snow depth products in the period of 2002-2011. By comparing three daily snow depth products, including NSIDC, WESTDC and ESA Globsnow, with snow cover product and meteorological stations data, the accuracies of the different SD products are analyzed for different snow class and forest cover fraction. The results show that comparison between snow cover derived from snow depth of NSIDC, ESA GlobSnow and WESTDC with snow cover product shows that accuracy of WESTDC and ESA GlobSnow in snow cover detecting can reach 0.70. Compared to meteorological stations data below 20 cm, NSIDC consistently overestimate, WESTDC and ESA Globsnow underestimate, furthermore the product from WESTDC is superior to the others. The three products have the same tendency of significant undervaluation over 20 cm. The WESTDC is superior to the ESA Globsnow and NSIDC in non-forest regions, whereas the ESA GlobSnow estimate is superior to the WESTDC and NSIDC in forest regions. As for the prairie and alpine snow, WESTDC has smaller bias and RMSE, meanwhile Globsnow has advantages in the snow depth retrieval in tundra and taiga snow. Therefore, we should choose the more suitable snow depth products according to different needs.
Cannesson, Maxime; Pestel, Gunther; Ricks, Cameron; Hoeft, Andreas; Perel, Azriel
2011-08-15
Several studies have demonstrated that perioperative hemodynamic optimization has the ability to improve postoperative outcome in high-risk surgical patients. All of these studies aimed at optimizing cardiac output and/or oxygen delivery in the perioperative period. We conducted a survey with the American Society of Anesthesiologists (ASA) and the European Society of Anaesthesiology (ESA) to assess current hemodynamic management practices in patients undergoing high-risk surgery in Europe and in the United States. A survey including 33 specific questions was emailed to 2,500 randomly selected active members of the ASA and to active ESA members. Overall, 368 questionnaires were completed, 57.1% from ASA and 42.9% from ESA members. Cardiac output is monitored by only 34% of ASA and ESA respondents (P = 0.49) while central venous pressure is monitored by 73% of ASA respondents and 84% of ESA respondents (P < 0.01). Specifically, the pulmonary artery catheter is being used much more frequently in the US than in Europe in the setup of high-risk surgery (85.1% vs. 55.3% respectively, P < 0.001). Clinical experience, blood pressure, central venous pressure, and urine output are the most widely indicators of volume expansion. Finally, 86.5% of ASA respondents and 98.1% of ESA respondents believe that their current hemodynamic management could be improved. In conclusion, these results point to a considerable gap between the accumulating evidence about the benefits of perioperative hemodynamic optimization and the available technologies that may facilitate its clinical implementation, and clinical practices in both Europe and the United States.