Sample records for escape response integrating

  1. Integrating geographical information and augmented reality techniques for mobile escape guidelines on nuclear accident sites.

    PubMed

    Tsai, Ming-Kuan; Lee, Yung-Ching; Lu, Chung-Hsin; Chen, Mei-Hsin; Chou, Tien-Yin; Yau, Nie-Jia

    2012-07-01

    During nuclear accidents, when radioactive materials spread into the environment, the people in the affected areas should evacuate immediately. However, few information systems are available regarding escape guidelines for nuclear accidents. Therefore, this study constructs escape guidelines on mobile phones. This application is called Mobile Escape Guidelines (MEG) and adopts two techniques. One technique is the geographical information that offers multiple representations; the other is the augmented reality that provides semi-realistic information services. When this study tested the mobile escape guidelines, the results showed that this application was capable of identifying the correct locations of users, showing the escape routes, filtering geographical layers, and rapidly generating the relief reports. Users could evacuate from nuclear accident sites easily, even without relief personnel, since using slim devices to access the mobile escape guidelines is convenient. Overall, this study is a useful reference for a nuclear accident emergency response. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Direct activation of the Mauthner cell by electric field pulses drives ultrarapid escape responses

    PubMed Central

    Tabor, Kathryn M.; Bergeron, Sadie A.; Horstick, Eric J.; Jordan, Diana C.; Aho, Vilma; Porkka-Heiskanen, Tarja; Haspel, Gal

    2014-01-01

    Rapid escape swims in fish are initiated by the Mauthner cells, giant reticulospinal neurons with unique specializations for swift responses. The Mauthner cells directly activate motoneurons and facilitate predator detection by integrating acoustic, mechanosensory, and visual stimuli. In addition, larval fish show well-coordinated escape responses when exposed to electric field pulses (EFPs). Sensitization of the Mauthner cell by genetic overexpression of the voltage-gated sodium channel SCN5 increased EFP responsiveness, whereas Mauthner ablation with an engineered variant of nitroreductase with increased activity (epNTR) eliminated the response. The reaction time to EFPs is extremely short, with many responses initiated within 2 ms of the EFP. Large neurons, such as Mauthner cells, show heightened sensitivity to extracellular voltage gradients. We therefore tested whether the rapid response to EFPs was due to direct activation of the Mauthner cells, bypassing delays imposed by stimulus detection and transmission by sensory cells. Consistent with this, calcium imaging indicated that EFPs robustly activated the Mauthner cell but only rarely fired other reticulospinal neurons. Further supporting this idea, pharmacological blockade of synaptic transmission in zebrafish did not affect Mauthner cell activity in response to EFPs. Moreover, Mauthner cells transgenically expressing a tetrodotoxin (TTX)-resistant voltage-gated sodium channel retained responses to EFPs despite TTX suppression of action potentials in the rest of the brain. We propose that EFPs directly activate Mauthner cells because of their large size, thereby driving ultrarapid escape responses in fish. PMID:24848468

  3. Lesion of the Ventral Periaqueductal Gray Reduces Conditioned Fear but Does Not Change Freezing Induced by Stimulation of the Dorsal Periaqueductal Gray

    PubMed Central

    Vianna, Daniel M.L.; Graeff, Frederico G.; Landeira-Fernandez, Jesus; Brandão, Marcus L.

    2001-01-01

    Previously-reported evidence showed that freezing to a context previously associated with footshock is impaired by lesion of the ventral periaqueductal gray (vPAG). It has also been shown that stepwise increase in the intensity of the electrical stimulation of the dorsal periaqueductal gray (dPAG) produces alertness, then freezing, and finally escape. These aversive responses are mimicked by microinjections of GABA receptor antagonists, such as bicuculline, or blockers of the glutamic acid decarboxylase (GAD), such as semicarbazide, into the dPAG. In this work, we examined whether the expression of these defensive responses could be the result of activation of ventral portion of the periaqueductal gray. Sham- or vPAG electrolytic–lesioned rats were implanted with an electrode in the dPAG for the determination of the thresholds of freezing and escape responses. The vPAG electrolytic lesions were behaviorally verified through a context-conditioned fear paradigm. Results indicated that lesion of the vPAG disrupted conditioned freezing response to contextual cues associated with footshocks but did not change the dPAG electrical stimulation for freezing and escape responses. In a second experiment, lesion of the vPAG also did not change the amount of freezing and escape behavior produced by microinjections of semicarbazide into the dPAG. These findings indicate that freezing and escape defensive responses induced by dPAG stimulation do not depend on the integrity of the vPAG. A discussion on different neural circuitries that might underlie different inhibitory and active defensive behavioral patterns that animals display during threatening situations is presented. PMID:11390636

  4. Multiple sensory modalities used by squid in successful predator evasion throughout ontogeny.

    PubMed

    York, Carly A; Bartol, Ian K; Krueger, Paul S

    2016-09-15

    Squid rely on multiple sensory systems for predator detection. In this study we examine the role of two sensory systems, the lateral line analogue and vision, in successful predator evasion throughout ontogeny. Squid Doryteuthis pealeii and Lolliguncula brevis were recorded using high-speed videography in the presence of natural predators under light and dark conditions with their lateral line analogue intact or ablated via a pharmacological technique. Paralarval squid showed reduced escape responses when ablated; however, no differences were found between light and dark conditions in non-ablated paralarvae, as was previously shown in juveniles and adults, indicating that the lateral line analogue is integral for predator detection early in life. However, vision does play a role in survival because ablated squid in dark conditions had lower levels of survival than all other treatments. Throughout ontogeny, squid oriented themselves anteriorly towards the oncoming predator, maximizing sensory input to the lateral line analogue system and providing better positioning for tail-first escape jetting, the preferred escape mode. Ablated juveniles and adults had lower response times, escape velocities and peak acceleration than non-ablated individuals, indicating that the lateral line analogue enables squid to respond quicker and with more powerful jets to a predator and maximize escape success. Our findings reveal that the lateral line analogue plays a role in predator detection and successful escape response at the earliest life stages, and continues to contribute to successful evasion by aiding visual cues in juvenile and adult squid. © 2016. Published by The Company of Biologists Ltd.

  5. Noise-induced escape in an excitable system

    NASA Astrophysics Data System (ADS)

    Khovanov, I. A.; Polovinkin, A. V.; Luchinsky, D. G.; McClintock, P. V. E.

    2013-03-01

    We consider the stochastic dynamics of escape in an excitable system, the FitzHugh-Nagumo (FHN) neuronal model, for different classes of excitability. We discuss, first, the threshold structure of the FHN model as an example of a system without a saddle state. We then develop a nonlinear (nonlocal) stability approach based on the theory of large fluctuations, including a finite-noise correction, to describe noise-induced escape in the excitable regime. We show that the threshold structure is revealed via patterns of most probable (optimal) fluctuational paths. The approach allows us to estimate the escape rate and the exit location distribution. We compare the responses of a monostable resonator and monostable integrator to stochastic input signals and to a mixture of periodic and stochastic stimuli. Unlike the commonly used local analysis of the stable state, our nonlocal approach based on optimal paths yields results that are in good agreement with direct numerical simulations of the Langevin equation.

  6. Sharks modulate their escape behavior in response to predator size, speed and approach orientation.

    PubMed

    Seamone, Scott; Blaine, Tristan; Higham, Timothy E

    2014-12-01

    Escape responses are often critical for surviving predator-prey interactions. Nevertheless, little is known about how predator size, speed and approach orientation impact escape performance, especially in larger prey that are primarily viewed as predators. We used realistic shark models to examine how altering predatory behavior and morphology (size, speed and approach orientation) influences escape behavior and performance in Squalus acanthias, a shark that is preyed upon by apex marine predators. Predator models induced C-start escape responses, and increasing the size and speed of the models triggered a more intense response (increased escape turning rate and acceleration). In addition, increased predator size resulted in greater responsiveness from the sharks. Among the responses, predator approach orientation had the most significant impact on escapes, such that the head-on approach, as compared to the tail-on approach, induced greater reaction distances and increased escape turning rate, speed and acceleration. Thus, the anterior binocular vision in sharks renders them less effective at detecting predators approaching from behind. However, it appears that sharks compensate by performing high-intensity escapes, likely induced by the lateral line system, or by a sudden visual flash of the predator entering their field of view. Our study reveals key aspects of escape behavior in sharks, highlighting the modulation of performance in response to predator approach. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Time Intervals in Sequence Sampling, Not Data Modifications, Have a Major Impact on Estimates of HIV Escape Rates

    PubMed Central

    2018-01-01

    The ability of human immunodeficiency virus (HIV) to avoid recognition by humoral and cellular immunity (viral escape) is well-documented, but the strength of the immune response needed to cause such a viral escape remains poorly quantified. Several previous studies observed a more rapid escape of HIV from CD8 T cell responses in the acute phase of infection compared to chronic infection. The rate of HIV escape was estimated with the help of simple mathematical models, and results were interpreted to suggest that CD8 T cell responses causing escape in acute HIV infection may be more efficient at killing virus-infected cells than responses that cause escape in chronic infection, or alternatively, that early escapes occur in epitopes mutations in which there is minimal fitness cost to the virus. However, these conclusions were challenged on several grounds, including linkage and interference of multiple escape mutations due to a low population size and because of potential issues associated with modifying the data to estimate escape rates. Here we use a sampling method which does not require data modification to show that previous results on the decline of the viral escape rate with time since infection remain unchanged. However, using this method we also show that estimates of the escape rate are highly sensitive to the time interval between measurements, with longer intervals biasing estimates of the escape rate downwards. Our results thus suggest that data modifications for early and late escapes were not the primary reason for the observed decline in the escape rate with time since infection. However, longer sampling periods for escapes in chronic infection strongly influence estimates of the escape rate. More frequent sampling of viral sequences in chronic infection may improve our understanding of factors influencing the rate of HIV escape from CD8 T cell responses. PMID:29495443

  8. Time Intervals in Sequence Sampling, Not Data Modifications, Have a Major Impact on Estimates of HIV Escape Rates.

    PubMed

    Ganusov, Vitaly V

    2018-02-27

    The ability of human immunodeficiency virus (HIV) to avoid recognition by humoral and cellular immunity (viral escape) is well-documented, but the strength of the immune response needed to cause such a viral escape remains poorly quantified. Several previous studies observed a more rapid escape of HIV from CD8 T cell responses in the acute phase of infection compared to chronic infection. The rate of HIV escape was estimated with the help of simple mathematical models, and results were interpreted to suggest that CD8 T cell responses causing escape in acute HIV infection may be more efficient at killing virus-infected cells than responses that cause escape in chronic infection, or alternatively, that early escapes occur in epitopes mutations in which there is minimal fitness cost to the virus. However, these conclusions were challenged on several grounds, including linkage and interference of multiple escape mutations due to a low population size and because of potential issues associated with modifying the data to estimate escape rates. Here we use a sampling method which does not require data modification to show that previous results on the decline of the viral escape rate with time since infection remain unchanged. However, using this method we also show that estimates of the escape rate are highly sensitive to the time interval between measurements, with longer intervals biasing estimates of the escape rate downwards. Our results thus suggest that data modifications for early and late escapes were not the primary reason for the observed decline in the escape rate with time since infection. However, longer sampling periods for escapes in chronic infection strongly influence estimates of the escape rate. More frequent sampling of viral sequences in chronic infection may improve our understanding of factors influencing the rate of HIV escape from CD8 T cell responses.

  9. Quantifying factors determining the rate of CTL escape and reversion during acute and chronic phases of HIV infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganusov, Vitaly V; Korber, Bette M; Perelson, Alan S

    Human immunodeficiency virus (HIV) often evades cytotoxic T cell (CTL) responses by generating variants that are not recognized by CTLs. However, the importance and quantitative details of CTL escape in humans are poorly understood. In part, this is because most studies looking at escape of HIV from CTL responses are cross-sectional and are limited to early or chronic phases of the infection. We use a novel technique of single genome amplification (SGA) to identify longitudinal changes in the transmitted/founder virus from the establishment of infection to the viral set point at 1 year after the infection. We find that HIVmore » escapes from virus-specific CTL responses as early as 30-50 days since the infection, and the rates of viral escapes during acute phase of the infection are much higher than was estimated in previous studies. However, even though with time virus acquires additional escape mutations, these late mutations accumulate at a slower rate. A poor correlation between the rate of CTL escape in a particular epitope and the magnitude of the epitope-specific CTL response suggests that the lower rate of late escapes is unlikely due to a low efficacy of the HIV-specific CTL responses in the chronic phase of the infection. Instead, our results suggest that late and slow escapes are likely to arise because of high fitness cost to the viral replication associated with such CTL escapes. Targeting epitopes in which virus escapes slowly or does not escape at all by CTL responses may, therefore, be a promising direction for the development of T cell based HIV vaccines.« less

  10. Neuronal correlates of the visually elicited escape response of the crab Chasmagnathus upon seasonal variations, stimuli changes and perceptual alterations.

    PubMed

    Sztarker, Julieta; Tomsic, Daniel

    2008-06-01

    When confronted with predators, animals are forced to take crucial decisions such as the timing and manner of escape. In the case of the crab Chasmagnathus, cumulative evidence suggests that the escape response to a visual danger stimulus (VDS) can be accounted for by the response of a group of lobula giant (LG) neurons. To further investigate this hypothesis, we examined the relationship between behavioral and neuronal activities within a variety of experimental conditions that affected the level of escape. The intensity of the escape response to VDS was influenced by seasonal variations, changes in stimulus features, and whether the crab perceived stimuli monocularly or binocularly. These experimental conditions consistently affected the response of LG neurons in a way that closely matched the effects observed at the behavioral level. In other words, the intensity of the stimulus-elicited spike activity of LG neurons faithfully reflected the intensity of the escape response. These results support the idea that the LG neurons from the lobula of crabs are deeply involved in the decision for escaping from VDS.

  11. Fitness Costs and Diversity of the Cytotoxic T Lymphocyte (CTL) Response Determine the Rate of CTL Escape during Acute and Chronic Phases of HIV Infection▿†

    PubMed Central

    Ganusov, Vitaly V.; Goonetilleke, Nilu; Liu, Michael K. P.; Ferrari, Guido; Shaw, George M.; McMichael, Andrew J.; Borrow, Persephone; Korber, Bette T.; Perelson, Alan S.

    2011-01-01

    HIV-1 often evades cytotoxic T cell (CTL) responses by generating variants that are not recognized by CTLs. We used single-genome amplification and sequencing of complete HIV genomes to identify longitudinal changes in the transmitted/founder virus from the establishment of infection to the viral set point at 1 year after the infection. We found that the rate of viral escape from CTL responses in a given patient decreases dramatically from acute infection to the viral set point. Using a novel mathematical model that tracks the dynamics of viral escape at multiple epitopes, we show that a number of factors could potentially contribute to a slower escape in the chronic phase of infection, such as a decreased magnitude of epitope-specific CTL responses, an increased fitness cost of escape mutations, or an increased diversity of the CTL response. In the model, an increase in the number of epitope-specific CTL responses can reduce the rate of viral escape from a given epitope-specific CTL response, particularly if CD8+ T cells compete for killing of infected cells or control virus replication nonlytically. Our mathematical framework of viral escape from multiple CTL responses can be used to predict the breadth and magnitude of HIV-specific CTL responses that need to be induced by vaccination to reduce (or even prevent) viral escape following HIV infection. PMID:21835793

  12. Fitness costs and diversity of the cytotoxic T lymphocyte (CTL) response determine the rate of CTL escape during acute and chronic phases of HIV infection.

    PubMed

    Ganusov, Vitaly V; Goonetilleke, Nilu; Liu, Michael K P; Ferrari, Guido; Shaw, George M; McMichael, Andrew J; Borrow, Persephone; Korber, Bette T; Perelson, Alan S

    2011-10-01

    HIV-1 often evades cytotoxic T cell (CTL) responses by generating variants that are not recognized by CTLs. We used single-genome amplification and sequencing of complete HIV genomes to identify longitudinal changes in the transmitted/founder virus from the establishment of infection to the viral set point at 1 year after the infection. We found that the rate of viral escape from CTL responses in a given patient decreases dramatically from acute infection to the viral set point. Using a novel mathematical model that tracks the dynamics of viral escape at multiple epitopes, we show that a number of factors could potentially contribute to a slower escape in the chronic phase of infection, such as a decreased magnitude of epitope-specific CTL responses, an increased fitness cost of escape mutations, or an increased diversity of the CTL response. In the model, an increase in the number of epitope-specific CTL responses can reduce the rate of viral escape from a given epitope-specific CTL response, particularly if CD8+ T cells compete for killing of infected cells or control virus replication nonlytically. Our mathematical framework of viral escape from multiple CTL responses can be used to predict the breadth and magnitude of HIV-specific CTL responses that need to be induced by vaccination to reduce (or even prevent) viral escape following HIV infection.

  13. Frequent and Variable Cytotoxic-T-Lymphocyte Escape-Associated Fitness Costs in the Human Immunodeficiency Virus Type 1 Subtype B Gag Proteins

    PubMed Central

    Boutwell, Christian L.; Carlson, Jonathan M.; Lin, Tien-Ho; Seese, Aaron; Power, Karen A.; Peng, Jian; Tang, Yanhua; Brumme, Zabrina L.; Heckerman, David; Schneidewind, Arne

    2013-01-01

    Cytotoxic-T-lymphocyte (CTL) escape mutations undermine the durability of effective human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T cell responses. The rate of CTL escape from a given response is largely governed by the net of all escape-associated viral fitness costs and benefits. The observation that CTL escape mutations can carry an associated fitness cost in terms of reduced virus replication capacity (RC) suggests a fitness cost-benefit trade-off that could delay CTL escape and thereby prolong CD8 response effectiveness. However, our understanding of this potential fitness trade-off is limited by the small number of CTL escape mutations for which a fitness cost has been quantified. Here, we quantified the fitness cost of the 29 most common HIV-1B Gag CTL escape mutations using an in vitro RC assay. The majority (20/29) of mutations reduced RC by more than the benchmark M184V antiretroviral drug resistance mutation, with impacts ranging from 8% to 69%. Notably, the reduction in RC was significantly greater for CTL escape mutations associated with protective HLA class I alleles than for those associated with nonprotective alleles. To speed the future evaluation of CTL escape costs, we also developed an in silico approach for inferring the relative impact of a mutation on RC based on its computed impact on protein thermodynamic stability. These data illustrate that the magnitude of CTL escape-associated fitness costs, and thus the barrier to CTL escape, varies widely even in the conserved Gag proteins and suggest that differential escape costs may contribute to the relative efficacy of CD8 responses. PMID:23365420

  14. Damage Escape and Repair in Dried Chroococcidiopsis spp. from Hot and Cold Deserts Exposed to Simulated Space and Martian Conditions

    NASA Astrophysics Data System (ADS)

    Billi, Daniela; Viaggiu, Emanuela; Cockell, Charles S.; Rabbow, Elke; Horneck, Gerda; Onofri, Silvano

    2011-01-01

    The cyanobacterium Chroococcidiopsis, overlain by 3mm of Antarctic sandstone, was exposed as dried multilayers to simulated space and martian conditions. Ground-based experiments were conducted in the context of Lichens and Fungi Experiments (EXPOSE-E mission, European Space Agency), which were performed to evaluate, after 1.5 years on the International Space Station, the survival of cyanobacteria (Chroococcidiopsis), lichens, and fungi colonized on Antarctic rock. The survival potential and the role played by protection and repair mechanisms in the response of dried Chroococcidiopsis cells to ground-based experiments were both investigated. Different methods were employed, including evaluation of the colony-forming ability, single-cell analysis of subcellular integrities based on membrane integrity molecular and redox probes, evaluation of the photosynthetic pigment autofluorescence, and assessment of the genomic DNA integrity with a PCR-based assay. Desiccation survivors of strain CCMEE 123 (coastal desert, Chile) were better suited than CCMEE 134 (Beacon Valley, Antarctica) to withstand cellular damage imposed by simulated space and martian conditions. Exposed dried cells of strain CCMEE 123 formed colonies, maintained subcellular integrities, and, depending on the exposure conditions, also escaped DNA damage or repaired the induced damage upon rewetting.

  15. Behavioral analyses of wind-evoked escape of the cricket, Gryllodes sigillatus.

    PubMed

    Kanou, Masamichi; Konishi, Atsuko; Suenaga, Rie

    2006-04-01

    The wind-evoked escape behavior of the cricket Gryllodes sigillatus was investigated using an air puff stimulus. A high velocity air puff elicited the escape behavior in many crickets. The crickets tended to escape away from the stimulus source, but the direction was not accurately oriented 180 degrees from the stimulus. After bilateral cercal ablation, only a few crickets showed wind-evoked escape behavior, and their response rates did not increase even 19 days after ablation. Therefore, information on air motion detected by cercal filiform hairs is essential for triggering wind-evoked behavior. After unilateral cercal ablation, the 81.3% response rate of intact crickets decreased to 16.5%, that is, it decreased to almost 20% that of intact crickets. One week after unilateral cercal ablation, the response rate recovered to more than 60% that of intact crickets. However, the accuracy rate of the escape direction of G. sigillatus showed no change even immediately after the unilateral cercal ablation. Therefore, both cerci are not necessarily required to determine the escape direction. The behavioral characteristics of wind-evoked escape of G. sigillatus are compared with those of another species of cricket, Gryllus bimaculatus. The two species of cricket employ different strategies for wind-evoked escape.

  16. Thersites: a `jumping' Trojan?

    NASA Astrophysics Data System (ADS)

    Tsiganis, K.; Dvorak, R.; Pilat-Lohinger, E.

    2000-02-01

    In this paper, we examine the dynamical evolution of the asteroid (1868) Thersites, a member of the Trojan belt. Thersites is librating around the Lagrangian point L_4, following, however, a chaotic orbit. The equations of motion for Thersites as well as for a distribution of neighboring initial conditions are integrated numerically for 50 million years in the Outer Solar System model (OSS), which consists of the Sun and the four giant planets. Our results indicate that the probability that this asteroid will eventually escape from the Trojan swarm is rather high. In fact, 20% from our initial distribution escaped within the integration time. Many of the remaining ones also show characteristic `jumps' in the orbital elements, especially the inclination. Secular resonances involving the nodes of the outer planets are found to be responsible for this chaotic behavior. The width of libration and eccentricity values that lead to grossly unstable orbits are calculated and compared with previously known results on the stability of the Trojans. Finally, a very interesting behavior has been observed for one of the escaping asteroids as he `jumped' from L_4 to L_5 where he remained performing a highly inclined libration for ~ 2 Myrs before escaping from the Trojan swarm. According to Homer, Thersites was not only the ugliest of all Greeks that took part in the Trojan war, but also had the most intolerable personality. His nasty habit of making fun of everybody cost him his life, as the last person for whom he spoke ironically about was Achilles, the mightiest warrior of all Greeks, who killed Thersites with just one punch!

  17. Danger Comes from All Fronts: Predator-Dependent Escape Tactics of Túngara Frogs

    PubMed Central

    Bulbert, Matthew W.; Page, Rachel A.; Bernal, Ximena E.

    2015-01-01

    The escape response of an organism is generally its last line of defense against a predator. Because the effectiveness of an escape varies with the approach behaviour of the predator, it should be advantageous for prey to alter their escape trajectories depending on the mode of predator attack. To test this hypothesis we examined the escape responses of a single prey species, the ground-dwelling túngara frog (Engystomops pustulosus), to disparate predators approaching from different spatial planes: a terrestrial predator (snake) and an aerial predator (bat). Túngara frogs showed consistently distinct escape responses when attacked by terrestrial versus aerial predators. The frogs fled away from the snake models (Median: 131°). In stark contrast, the frogs moved toward the bat models (Median: 27°); effectively undercutting the bat’s flight path. Our results reveal that prey escape trajectories reflect the specificity of their predators’ attacks. This study emphasizes the flexibility of strategies performed by prey to outcompete predators with diverse modes of attack. PMID:25874798

  18. Contact irritant responses of Aedes aegypti Using sublethal concentration and focal application of pyrethroid chemicals.

    PubMed

    Manda, Hortance; Shah, Pankhil; Polsomboon, Suppaluck; Chareonviriyaphap, Theeraphap; Castro-Llanos, Fanny; Morrison, Amy; Burrus, Roxanne G; Grieco, John P; Achee, Nicole L

    2013-01-01

    Previous studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application. Contact irritancy (escape) behavior, knockdown and 24 hour mortality rates were quantified in populations of female Ae. aegypti under laboratory conditions and validated in the field (Thailand and Peru) using experimental huts. Evaluations were conducted using varying concentrations and treatment surface area coverage (SAC) of three pyrethroid insecticides: alphacypermethrin, lambacyhalothrin and deltamethrin. Under laboratory conditions, exposure of Ae. aegypti to alphacypermethrin using the standard field application rate (FAR) resulted in escape responses at 25% and 50% SAC that were comparable with escape responses at 100% SAC. Significant escape responses were also observed at <100% SAC using ½FAR of all test compounds. In most trials, KD and 24 hour mortality rates were higher in mosquitoes that did not escape than in those that escaped. In Thailand, field validation studies indicated an early time of exit (by four hours) and 40% increase in escape using ½FAR of alphacypermethrin at 75% SAC compared to a matched chemical-free control. In Peru, however, the maximum increase in Ae. aegypti escape from alphacypermethrin-treated huts was 11%. Results presented here suggest a potential role for sublethal and focal application of contact irritant chemicals in an Ae. aegypti push-pull strategy to reduce human-vector contact inside treated homes. However, the impact of an increase in escape response on dengue virus transmission is currently unknown and will depend on rate of biting on human hosts prior to house exiting.

  19. Effects of metamorphosis on the aquatic escape response of the two-lined salamander (Eurycea bislineata).

    PubMed

    Azizi, Emanuel; Landberg, Tobias

    2002-03-01

    Although numerous studies have described the escape kinematics of fishes, little is known about the aquatic escape responses of salamanders. We compare the escape kinematics of larval and adult Eurycea bislineata, the two-lined salamander, to examine the effects of metamorphosis on aquatic escape performance. We hypothesize that shape changes associated with resorption of the larval tail fin at metamorphosis will affect aquatic locomotor performance. Escape responses were recorded using high-speed video, and the effects of life stage and total length on escape kinematics were analyzed statistically using analysis of covariance. Our results show that both larval and adult E. bislineata use a two-stage escape response (similar to the C-starts of fishes) that consists of a preparatory (stage 1) and a propulsive (stage 2) stroke. The duration of both kinematic stages and the distance traveled during stage 2 increased with total length. Both larval and adult E. bislineata had final escape trajectories that were directed away from the stimulus. The main kinematic difference between larvae and adults is that adults exhibit significantly greater maximum curvature during stage 1. Total escape duration and the distance traveled during stage 2 did not differ significantly between larvae and adults. Despite the significantly lower tail aspect ratio of adults, we found no significant decrease in the overall escape performance of adult E. bislineata. Our results suggest that adults may compensate for the decrease in tail aspect ratio by increasing their maximum curvature. These findings do not support the hypothesis that larvae exhibit better locomotor performance than adults as a result of stronger selective pressures on early life stages.

  20. Neuroethological validation of an experimental apparatus to evaluate oriented and non-oriented escape behaviours: Comparison between the polygonal arena with a burrow and the circular enclosure of an open-field test.

    PubMed

    Biagioni, Audrey Francisco; dos Anjos-Garcia, Tayllon; Ullah, Farhad; Fisher, Isaac René; Falconi-Sobrinho, Luiz Luciano; de Freitas, Renato Leonardo; Felippotti, Tatiana Tocchini; Coimbra, Norberto Cysne

    2016-02-01

    Inhibition of GABAergic neural inputs to dorsal columns of the periaqueductal grey matter (dPAG), posterior (PH) and dorsomedial (DMH) hypothalamic nuclei elicits distinct types of escape behavioural reactions. To differentiate between the variety and intensity of panic-related behaviours, the pattern of defensive behaviours evoked by blockade of GABAA receptors in the DMH, PH and dPAG were compared in a circular open-field test and in a recently designed polygonal arena. In the circular open-field, the defensive behaviours induced by microinjection of bicuculline into DMH and PH were characterised by defensive alertness behaviour and vertical jumps preceded by rearing exploratory behaviour. On the other hand, explosive escape responses interspersed with horizontal jumps and freezing were observed after the blockade of GABAA receptors on dPAG neurons. In the polygonal arena apparatus, the escape response produced by GABAergic inhibition of DMH and PH neurons was directed towards the burrow. In contrast, the blockade of GABAA receptors in dPAG evoked non-oriented escape behaviour characterised by vigorous running and horizontal jumps in the arena. Our findings support the hypothesis that the hypothalamic nuclei organise oriented escape behavioural responses whereas non-oriented escape is elaborated by dPAG neurons. Additionally, the polygonal arena with a burrow made it easy to discriminate and characterise these two different patterns of escape behavioural responses. In this sense, the polygonal arena with a burrow can be considered a good methodological tool to discriminate between these two different patterns of escape behavioural responses and is very useful as a new experimental animal model of panic attacks. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Long-term clinical benefits and costs of an integrated rehabilitation programme compared with outpatient physiotherapy for chronic knee pain.

    PubMed

    Jessep, Sally A; Walsh, Nicola E; Ratcliffe, Julie; Hurley, Michael V

    2009-06-01

    Chronic knee pain is a major cause of disability in the elderly. Management guidelines recommend exercise and self-management interventions as effective treatments. The authors previously described a rehabilitation programme integrating exercise and self-management [Enabling Self-management and Coping with Arthritic knee Pain through Exercise (ESCAPE-knee pain)] that produced short-term improvements in pain and physical function, but sustaining these improvements is difficult. Moreover, the programme is untried in clinical environments, where it would ultimately be delivered. To establish the feasibility of ESCAPE-knee pain and compare its clinical effectiveness and costs with outpatient physiotherapy. Pragmatic, randomised controlled trial. Outpatient physiotherapy department and community centre. Sixty-four people with chronic knee pain. Outpatient physiotherapy compared with ESCAPE-knee pain. The primary outcome was physical function assessed using the Western Ontario and McMaster Universities Osteoarthritis Index. Secondary outcomes included pain, objective functional performance, anxiety, depression, exercise-related health beliefs and healthcare utilisation. All outcomes were assessed at baseline and 12 months after completing the interventions (primary endpoint). ANCOVA investigated between-group differences. Both groups demonstrated similar improvements in clinical outcomes. Outpatient physiotherapy cost pound 130 per person and the healthcare utilisation costs of participants over 1 year were pound 583. The ESCAPE-knee pain programme cost pound 64 per person and the healthcare utilisation costs of participants over 1 year were pound 320. ESCAPE-knee pain can be delivered as a community-based integrated rehabilitation programme for people with chronic knee pain. Both ESCAPE-knee pain and outpatient physiotherapy produced sustained physical and psychosocial benefits, but ESCAPE-knee pain cost less and was more cost-effective.

  2. Swimming and diving energetics in dolphins: a stroke-by-stroke analysis for predicting the cost of flight responses in wild odontocetes.

    PubMed

    Williams, Terrie M; Kendall, Traci L; Richter, Beau P; Ribeiro-French, Courtney R; John, Jason S; Odell, Kim L; Losch, Barbara A; Feuerbach, David A; Stamper, M Andrew

    2017-03-15

    Exponential increases in hydrodynamic drag and physical exertion occur when swimmers move quickly through water, and underlie the preference for relatively slow routine speeds by marine mammals regardless of body size. Because of this and the need to balance limited oxygen stores when submerged, flight (escape) responses may be especially challenging for this group. To examine this, we used open-flow respirometry to measure the energetic cost of producing a swimming stroke during different levels of exercise in bottlenose dolphins ( Tursiops truncatus ). These data were then used to model the energetic cost of high-speed escape responses by other odontocetes ranging in mass from 42 to 2738 kg. The total cost per stroke during routine swimming by dolphins, 3.31±0.20 J kg -1  stroke -1 , was doubled during maximal aerobic performance. A comparative analysis of locomotor costs (LC; in J kg -1  stroke -1 ), representing the cost of moving the flukes, revealed that LC during routine swimming increased with body mass ( M ) for odontocetes according to LC=1.46±0.0005 M ; a separate relationship described LC during high-speed stroking. Using these relationships, we found that continuous stroking coupled with reduced glide time in response to oceanic noise resulted in a 30.5% increase in metabolic rate in the beaked whale, a deep-diving odontocete considered especially sensitive to disturbance. By integrating energetics with swimming behavior and dive characteristics, this study demonstrates the physiological consequences of oceanic noise on diving mammals, and provides a powerful tool for predicting the biological significance of escape responses by cetaceans facing anthropogenic disturbances. © 2017. Published by The Company of Biologists Ltd.

  3. Behavioral regulation of gravity - Schedule effects under escape-avoidance procedures

    NASA Technical Reports Server (NTRS)

    Clark, F. C.; Lange, K. O.; Belleville, R. E.

    1973-01-01

    Squirrel monkeys were restrained in a centrifuge capsule and trained to escape and avoid increases in artificial gravity. During escape-avoidance, lever responses reduced centrifugally simulated gravity or postponed scheduled increases. The effect of variation in the interval of postponement (equal to the duration of decrease produced by escape responses) was studied under a multiple schedule of four components. Three components were gravity escape-avoidance with postponement times of 20, 40, and 60 sec. The fourth component was extinction. Each component was associated with a different auditory stimulus. Rate of responding decreased with increasing postponement time and higher mean g-levels occurred at shorter intervals of postponement. Effects of the schedule parameter on response rate and mean g-level were similar to effects of the schedule on free-operant avoidance and on titration behavior maintained by shock.

  4. Cooperation between Strain-Specific and Broadly Neutralizing Responses Limited Viral Escape and Prolonged the Exposure of the Broadly Neutralizing Epitope

    PubMed Central

    Anthony, Colin; York, Talita; Bekker, Valerie; Matten, David; Selhorst, Philippe; Ferreria, Roux-Cil; Garrett, Nigel J.; Karim, Salim S. Abdool; Morris, Lynn; Wood, Natasha T.; Moore, Penny L.

    2017-01-01

    ABSTRACT V3-glycan-targeting broadly neutralizing antibodies (bNAbs) are a focus of HIV-1 vaccine development. Understanding the viral dynamics that stimulate the development of these antibodies can provide insights for immunogen design. We used a deep-sequencing approach, together with neutralization phenotyping, to investigate the rate and complexity of escape from V3-glycan-directed bNAbs compared to overlapping early strain-specific neutralizing antibody (ssNAb) responses to the V3/C3 region in donor CAP177. Escape from the ssNAb response occurred rapidly via an N334-to-N332 glycan switch, which took just 7.5 weeks to reach >50% frequency. In contrast, escape from the bNAbs was mediated via multiple pathways and took longer, with escape first occurring through an increase in V1 loop length, which took 46 weeks to reach 50% frequency, followed by an N332-to-N334 reversion, which took 66 weeks. Importantly, bNAb escape was incomplete, with contemporaneous neutralization observed up to 3 years postinfection. Both the ssNAb response and the bNAb response were modulated by the presence/absence of the N332 glycan, indicating an overlap between the two epitopes. Thus, selective pressure by ssNAbs to maintain the N332 glycan may have constrained the bNAb escape pathway. This slower and incomplete viral escape resulted in prolonged exposure of the bNAb epitope, which may in turn have aided the maturation of the bNAb lineage. IMPORTANCE The development of an HIV-1 vaccine is of paramount importance, and broadly neutralizing antibodies are likely to be a key component of a protective vaccine. The V3-glycan-targeting bNAb responses are among the most promising vaccine targets, as they are commonly elicited during infection. Understanding the interplay between viral evolution and the development of these antibodies provides insights that may guide immunogen design. Our work contrasted the dynamics of the early strain-specific antibodies and the later broadly neutralizing responses to a common Env target (V3C3), showing slower and more complex escape from bNAbs. Constrained bNAb escape, together with evidence of contemporaneous autologous virus neutralization, supports the proposal that prolonged exposure of the bNAb epitope enabled the maturation of the bNAb lineage. PMID:28679760

  5. Behavioural responses to infrasonic particle acceleration in cuttlefish.

    PubMed

    Wilson, Maria; Haga, Jens Ådne Rekkedal; Karlsen, Hans Erik

    2018-01-11

    Attacks by aquatic predators generate frontal water disturbances characterised by low-frequency gradients in pressure and particle motion. Low-frequency hearing is highly developed in cephalopods. Thus, we examined behavioural responses in juvenile cuttlefish to infrasonic accelerations mimicking main aspects of the hydrodynamic signals created by predators. In the experimental set-up, animals and their surrounding water moved as a unit to minimise lateral line activation and to allow examination of the contribution by the inner ear. Behavioural responses were tested in light versus darkness and after food deprivation following a 'simulated' hunting opportunity. At low acceleration levels, colour change threshold at 3, 5 and 9 Hz was 0.028, 0.038 and 0.035 m s -2 , respectively. At higher stimulus levels, jet-propulsed escape responses thresholds in daylight were 0.043, 0.065 and 0.069 m s -2 at 3, 5 and 9 Hz, respectively, and not significantly different from the corresponding darkness thresholds of 0.043, 0.071 and 0.064 m s -2 In a simulated hunting mode, escape thresholds were significantly higher at 3 Hz (0.118 m s -2 ) but not at 9 Hz (0.134 m s -2 ). Escape responses were directional, and overall followed the direction of the initial particle acceleration, with mean escape angles from 313 to 33 deg for all three experiments. Thus, in the wild, particle acceleration might cause escape responses directed away from striking predators but towards suction-feeding predators. We suggest that cuttlefish jet-propulsed escape behaviour has evolved to be elicited by the early hydrodynamic disturbances generated during predator encounters, and that the inner ear plays an essential role in the acoustic escape responses. © 2018. Published by The Company of Biologists Ltd.

  6. Fitness-Balanced Escape Determines Resolution of Dynamic Founder Virus Escape Processes in HIV-1 Infection

    PubMed Central

    Sunshine, Justine E.; Larsen, Brendan B.; Maust, Brandon; Casey, Ellie; Deng, Wenje; Chen, Lennie; Westfall, Dylan H.; Kim, Moon; Zhao, Hong; Ghorai, Suvankar; Lanxon-Cookson, Erinn; Rolland, Morgane; Collier, Ann C.; Maenza, Janine; Mullins, James I.

    2015-01-01

    ABSTRACT To understand the interplay between host cytotoxic T-lymphocyte (CTL) responses and the mechanisms by which HIV-1 evades them, we studied viral evolutionary patterns associated with host CTL responses in six linked transmission pairs. HIV-1 sequences corresponding to full-length p17 and p24 gag were generated by 454 pyrosequencing for all pairs near the time of transmission, and seroconverting partners were followed for a median of 847 days postinfection. T-cell responses were screened by gamma interferon/interleukin-2 (IFN-γ/IL-2) FluoroSpot using autologous peptide sets reflecting any Gag variant present in at least 5% of sequence reads in the individual's viral population. While we found little evidence for the occurrence of CTL reversions, CTL escape processes were found to be highly dynamic, with multiple epitope variants emerging simultaneously. We found a correlation between epitope entropy and the number of epitope variants per response (r = 0.43; P = 0.05). In cases in which multiple escape mutations developed within a targeted epitope, a variant with no fitness cost became fixed in the viral population. When multiple mutations within an epitope achieved fitness-balanced escape, these escape mutants were each maintained in the viral population. Additional mutations found to confer escape but undetected in viral populations incurred high fitness costs, suggesting that functional constraints limit the available sites tolerable to escape mutations. These results further our understanding of the impact of CTL escape and reversion from the founder virus in HIV infection and contribute to the identification of immunogenic Gag regions most vulnerable to a targeted T-cell attack. IMPORTANCE Rapid diversification of the viral population is a hallmark of HIV-1 infection, and understanding the selective forces driving the emergence of viral variants can provide critical insight into the interplay between host immune responses and viral evolution. We used deep sequencing to comprehensively follow viral evolution over time in six linked HIV transmission pairs. We then mapped T-cell responses to explore if mutations arose due to adaption to the host and found that escape processes were often highly dynamic, with multiple mutations arising within targeted epitopes. When we explored the impact of these mutations on replicative capacity, we found that dynamic escape processes only resolve with the selection of mutations that conferred escape with no fitness cost to the virus. These results provide further understanding of the complicated viral-host interactions that occur during early HIV-1 infection and may help inform the design of future vaccine immunogens. PMID:26223634

  7. Flowing water affects fish fast-starts: escape performance of the Hawaiian stream goby, Sicyopterus stimpsoni.

    PubMed

    Diamond, Kelly M; Schoenfuss, Heiko L; Walker, Jeffrey A; Blob, Richard W

    2016-10-01

    Experimental measurements of escape performance in fishes have typically been conducted in still water; however, many fishes inhabit environments with flow that could impact escape behavior. We examined the influences of flow and predator attack direction on the escape behavior of fish, using juveniles of the amphidromous Hawaiian goby Sicyopterus stimpsoni In nature, these fish must escape ambush predation while moving through streams with high-velocity flow. We measured the escape performance of juvenile gobies while exposing them to a range of water velocities encountered in natural streams and stimulating fish from three different directions. Frequency of response across treatments indicated strong effects of flow conditions and attack direction. Juvenile S. stimpsoni had uniformly high response rates for attacks from a caudal direction (opposite flow); however, response rates for attacks from a cranial direction (matching flow) decreased dramatically as flow speed increased. Mechanical stimuli produced by predators attacking in the same direction as flow might be masked by the flow environment, impairing the ability of prey to detect attacks. Thus, the likelihood of successful escape performance in fishes can depend critically on environmental context. © 2016. Published by The Company of Biologists Ltd.

  8. Behavioral regulation of gravity: schedule effects under escape-avoidance procedures1

    PubMed Central

    Clark, Fogle C.; Lange, Karl O.; Belleville, Richard E.

    1973-01-01

    Squirrel monkeys were restrained in a centrifuge capsule and trained to escape and avoid increases in artificial gravity. During escape-avoidance, lever responses reduced centrifugally simulated gravity or postponed scheduled increases. The effect of variation in the interval of postponement (equal to the duration of decrease produced by escape responses) was studied under a multiple schedule of four components. Three components were gravity escape-avoidance with postponement times of 20, 40, and 60 sec. The fourth component was extinction. Each component was associated with a different auditory stimulus. Rate of responding decreased with increasing postponement time and higher mean g-levels occurred at shorter intervals of postponement. Effects of the schedule parameter on response rate and mean g-level were similar to effects of the schedule on free-operant avoidance and on titration behavior maintained by shock. ImagesFig. 1. PMID:4202386

  9. Escape Performance Following Exposure to Inescapable Shock: Deficits in Motor Response Maintenance

    ERIC Educational Resources Information Center

    Anisman, Hymie; And Others

    1978-01-01

    A series of 13 experiments employing mice systematically investigated shock-elicited activity in a circular field and escape performance in a shuttle box following exposure to either escapable or inescapable shock. Results show that escape interference induced by inescapable shock may be comfortably interpreted in terms of a decreased tendency for…

  10. The kinetics and location of intra-host HIV evolution to evade cellular immunity are predictable

    NASA Astrophysics Data System (ADS)

    Barton, John; Goonetilleke, Nilu; Butler, Thomas; Walker, Bruce; McMichael, Andrew; Chakraborty, Arup

    Human immunodeficiency virus (HIV) evolves within infected persons to escape targeting and clearance by the host immune system, thereby preventing effective immune control of infection. Knowledge of the timing and pathways of escape that result in loss of control of the virus could aid in the design of effective strategies to overcome the challenge of viral diversification and immune escape. We combined methods from statistical physics and evolutionary dynamics to predict the course of in vivo viral sequence evolution in response to T cell-mediated immune pressure in a cohort of 17 persons with acute HIV infection. Our predictions agree well with both the location of documented escape mutations and the clinically observed time to escape. We also find that that the mutational pathways to escape depend on the viral sequence background due to epistatic interactions. The ability to predict escape pathways, and the duration over which control is maintained by specific immune responses prior to escape, could be exploited for the rational design of immunotherapeutic strategies that may enable long-term control of HIV infection.

  11. Response inhibition predicts painful task duration and performance in healthy individuals performing a cold pressor task in a motivational context.

    PubMed

    Karsdorp, P A; Geenen, R; Vlaeyen, J W S

    2014-01-01

    Long-term avoidance of painful activities has shown to be dysfunctional in chronic pain. Pain may elicit escape or avoidance responses automatically, particularly when pain-related fear is high. A conflict may arise between opposing short-term escape/avoidance goals to reduce pain and long-term approach goals to receive a reward. An inhibitory control system may resolve this conflict. It was hypothesized that reduced response inhibition would be associated with greater escape/avoidance during pain, particularly among subjects with higher pain-related fear. Response inhibition was measured with the stop-signal task, and pain-related fear with the Fear of Pain Questionnaire. Participants completed a tone-detection task (TDT) in which they could earn money while being exposed to cold pressor pain. Escape/avoidance was operationalized as the hand immersion time during a cold pressor task (CPT) and the performance on the TDT. Poorer response inhibition was associated with shorter CPT immersion duration and with worse TDT performance. Pain after the CPT was associated with pain-related fear, but not with response inhibition. No supportive evidence was found for the hypothesis that the relation between inhibition and escape/avoidance would be most pronounced for those with higher pain-related fear. In contrast, the relation between response inhibition and number of hits on the TDT was most pronounced for those with lower pain-related fear. The findings suggest that individuals with a stronger ability to inhibit responses in a stop-signal task are better able to inhibit escape/avoidance responses elicited by pain, in the service of a conflicting approach goal. © 2013 European Pain Federation - EFIC®

  12. European SpaceCraft for the study of Atmospheric Particle Escape (ESCAPE): a planetary mission to Earth, proposed in response to the ESA M5-call

    NASA Astrophysics Data System (ADS)

    Dandouras, I.; Yamauchi, M.; Rème, H.; De Keyser, J.; Marghitu, O.; Fazakerley, A.; Grison, B.; Kistler, L.; Milillo, A.; Nakamura, R.; Paschalidis, N.; Paschalis, A.; Pinçon, J.-L.; Sakanoi, T.; Wieser, M.; Wurz, P.; Yoshikawa, I.; Häggström, I.; Liemohn, M.; Tian, F.

    2017-09-01

    ESCAPE is a mission proposed in response to the ESA-M5 call that will quantitatively estimate the amount of escaping particles of the major atmospheric components (nitrogen and oxygen), as neutral and ionised species, escaping from the Earth as a magnetised planet. The goal is to understand the importance of each escape mechanism, its dependence on solar and geomagnetic activity, and to infer the history of the Earth's atmospheric composition over a long (geological scale) time period. Since the solar EUV and solar wind conditions during solar maximum at present are comparable to the solar minimum conditions 1-2 billion years ago, the escaping amount and the isotope and N/O ratios should be obtained as a function of external forcing (solar and geomagnetic conditions) to allow a scaling to the past. The result will be used as a reference to understand the atmospheric/ionospheric evolution of magnetised planets, which is essential for habitability.

  13. Copepods' Response to Burgers' Vortex: Deconstructing Interactions of Copepods with Turbulence.

    PubMed

    Webster, D R; Young, D L; Yen, J

    2015-10-01

    This study examined the behavioral response of two marine copepods, Acartia tonsa and Temora longicornis, to a Burgers' vortex intended to mimic the characteristics of a turbulent vortex that a copepod is likely to encounter in the coastal or near-surface zone. Behavioral assays of copepods were conducted for two vortices that correspond to turbulent conditions with mean dissipation rates of turbulence of 0.009 and 0.096 cm(2) s(-3) (denoted turbulence level 2 and level 3, respectively). In particular, the Burgers' vortex parameters (i.e., circulation and rate of axial strain rate) were specified to match a vortex corresponding to the median rate of dissipation due to viscosity for each target level of turbulence. Three-dimensional trajectories were quantified for analysis of swimming kinematics and response to hydrodynamic cues. Acartia tonsa did not significantly respond to the vortex corresponding to turbulence level 2. In contrast, A. tonsa significantly altered their swimming behavior in the turbulence-level-3 vortex, including increased relative speed of swimming, angle of alignment of the trajectory with the axis of the vortex, ratio of net-to-gross displacement, and acceleration during escape, along with decreased turn frequency (relative to stagnant control conditions). Further, the location of A. tonsa escapes was preferentially in the core of the stronger vortex, indicating that the hydrodynamic cue triggering the distinctive escape behavior was vorticity. In contrast, T. longicornis did not reveal a behavioral response to either the turbulence level 2 or the level 3 vortex. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  14. Nociception and escape behavior in planarians

    NASA Astrophysics Data System (ADS)

    Schoetz Collins, Eva-Maria

    2015-03-01

    Planarians are famous and widely studied for their regenerative capabilities. When a moving planarian is cut through the middle, the resulting head and tail pieces instantaneously retract and exhibit a characteristic escape response that differs from normal locomotion. In asexual animals, a similar reaction is observed when the planarian undergoes fission, suggesting that reproduction through self-tearing is a rather traumatic event for the animal. Using a multiscale approach, we unravel the dynamics, mechanics, and functional aspects of the planarian escape response. This musculature-driven gait was found to be a dominating response that supersedes the urge to feed or reproduce and quantitatively differs from other modes of planarian locomotion (gliding, peristalsis). We show that this escape gait constitutes the animal's pain response mediated by TRP like receptors and the neurotransmitter histamine, and that it can be induced through adverse thermal, mechanical, electrical or chemical stimuli. Ultimately, we will examine the neuronal subpopulations involved in mediating escape reflexes in planarians and how they are functionally restored during regeneration, thereby gaining mechanistic insight into the neuronal circuits required for specific behaviors. Supported by BWF CASI and Sloan Foundation.

  15. Turbulence, Temperature, and Turbidity: The Ecomechanics of Predator-Prey Interactions in Fishes.

    PubMed

    Higham, Timothy E; Stewart, William J; Wainwright, Peter C

    2015-07-01

    Successful feeding and escape behaviors in fishes emerge from precise integration of locomotion and feeding movements. Fishes inhabit a wide range of habitats, including still ponds, turbulent rivers, and wave-pounded shorelines, and these habitats vary in several physical variables that can strongly impact both predator and prey. Temperature, the conditions of ambient flow, and light regimes all have the potential to affect predator-prey encounters, yet the integration of these factors into our understanding of fish biomechanics is presently limited. We explore existing knowledge of kinematics, muscle function, hydrodynamics, and evolutionary morphology in order to generate a framework for understanding the ecomechanics of predator-prey encounters in fishes. We expect that, in the absence of behavioral compensation, a decrease in temperature below the optimum value will reduce the muscle power available both to predator and prey, thus compromising locomotor performance, suction-feeding mechanics of predators, and the escape responses of prey. Ambient flow, particularly turbulent flow, will also challenge predator and prey, perhaps resulting in faster attacks by predators to minimize mechanical instability, and a reduced responsiveness of prey to predator-generated flow. Reductions in visibility, caused by depth, turbidity, or diel fluctuations in light, will decrease distances at which either predator or prey detect each other, and generally place a greater emphasis on the role of mechanoreception both for predator and prey. We expect attack distances to be shortened when visibility is low. Ultimately, the variation in abiotic features of a fish's environment will affect locomotion and feeding performance of predators, and the ability of the prey to escape. The nature of these effects and how they impact predator-prey encounters stands as a major challenge for future students of the biomechanics of fish during feeding. Just as fishes show adaptations for capturing specific types of prey, we anticipate they are also adapted to the physical features of their preferred habitat and show a myriad of behavioral mechanisms for dealing with abiotic factors during predator-prey encounters. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  16. The uncertain response in humans and animals

    NASA Technical Reports Server (NTRS)

    Smith, J. D.; Shields, W. E.; Schull, J.; Washburn, D. A.; Rumbaugh, D. M. (Principal Investigator)

    1997-01-01

    There has been no comparative psychological study of uncertainty processes. Accordingly, the present experiments asked whether animals, like humans, escape adaptively when they are uncertain. Human and animal observers were given two primary responses in a visual discrimination task, and the opportunity to escape from some trials into easier ones. In one psychophysical task (using a threshold paradigm), humans escaped selectively the difficult trials that left them uncertain of the stimulus. Two rhesus monkeys (Macaca mulatta) also showed this pattern. In a second psychophysical task (using the method of constant stimuli), some humans showed this pattern but one escaped infrequently and nonoptimally. Monkeys showed equivalent individual differences. The data suggest that escapes by humans and monkeys are interesting cognitive analogs and may reflect controlled decisional processes prompted by the perceptual ambiguity at threshold.

  17. Mechanics of the fast-start: muscle function and the role of intramuscular pressure in the escape behavior of amia calva and polypterus palmas

    PubMed

    Westneat; Hale; Mchenry; Long

    1998-11-01

    The fast-start escape response is a rapid, powerful body motion used to generate high accelerations of the body in virtually all fishes. Although the neurobiology and behavior of the fast-start are often studied, the patterns of muscle activity and muscle force production during escape are less well understood. We studied the fast-starts of two basal actinopterygian fishes (Amia calva and Polypterus palmas) to investigate the functional morphology of the fast-start and the role of intramuscular pressure (IMP) in escape behavior. Our goals were to determine whether IMP increases during fast starts, to look for associations between muscle activity and elevated IMP, and to determine the functional role of IMP in the mechanics of the escape response. We simultaneously recorded the kinematics, muscle activity patterns and IMP of four A. calva and three P. palmas during the escape response. Both species generated high IMPs of up to 90 kPa (nearly 1 atmosphere) above ambient during the fast-start. The two species showed similar pressure magnitudes but had significantly different motor patterns and escape performance. Stage 1 of the fast-start was generated by simultaneous contraction of locomotor muscle on both sides of the body, although electromyogram amplitudes on the contralateral (convex) side of the fish were significantly lower than on the ipsilateral (concave) side. Simultaneous recordings of IMP, escape motion and muscle activity suggest that pressure change is caused by the contraction and radial swelling of cone-shaped myomeres. We develop a model of IMP production that incorporates myomere geometry, the concept of constant-volume muscular hydrostats, the relationship between fiber angle and muscle force, and the forces that muscle fibers produce. The timing profile of pressure change, behavior and muscle action indicates that elevated muscle pressure is a mechanism of stiffening the body and functions in force transmission during the escape response.

  18. Mathematical modeling of ultradeep sequencing data reveals that acute CD8+ T-lymphocyte responses exert strong selective pressure in simian immunodeficiency virus-infected macaques but still fail to clear founder epitope sequences.

    PubMed

    Love, Tanzy M T; Thurston, Sally W; Keefer, Michael C; Dewhurst, Stephen; Lee, Ha Youn

    2010-06-01

    The prominent role of antiviral cytotoxic CD8(+) T-lymphocytes (CD8-TL) in containing the acute viremia of human and simian immunodeficiency viruses (HIV-1 and SIV) has rationalized the development of T-cell-based vaccines. However, the presence of escape mutations in the acute stage of infection has raised a concern that accelerated escape from vaccine-induced CD8-TL responses might undermine vaccine efficacy. We reanalyzed previously published data of 101,822 viral genomes of three CD8-TL epitopes, Nef(103-111)RM9 (RM9), Tat(28-35)SL8 (SL8), and Gag(181-189)CM9 (CM9), sampled by ultradeep pyrosequencing from eight macaques. Multiple epitope variants appeared during the resolution of acute viremia, followed by the predominance of a single mutant epitope. By fitting a mathematical model, we estimated the first acute escape rate as 0.36 day(-1) within escape-prone epitopes, RM9 and SL8, and the chronic escape rate as 0.014 day(-1) within the CM9 epitope. Our estimate of SIV acute escape rates was found to be comparable to very early HIV-1 escape rates. The timing of the first escape was more highly correlated with the timing of the peak CD8-TL response than with the magnitude of the CD8-TL response. The transmitted epitope decayed more than 400 times faster during the acute viral decline stage than predicted by a neutral evolution model. However, the founder epitope persisted as a minor population even at the viral set point; in contrast, the majority of acute escape epitopes were completely cleared. Our results suggest that a reservoir of SIV infection is preferentially formed by virus with the transmitted epitope.

  19. Neural responses from the wind-sensitive interneuron population in four cockroach species

    PubMed Central

    McGorry, Clare A.; Newman, Caroline N.; Triblehorn, Jeffrey D.

    2014-01-01

    The wind-sensitive insect cercal sensory system is involved in important behaviors including predator detection and initiating terrestrial escape responses as well as flight maintenance. However, not all insects possessing a cercal system exhibit these behaviors. In cockroaches, wind evokes strong terrestrial escape responses in Periplaneta americana and Blattella germanica, but only weak escape responses in Blaberus craniifer and no escape responses in Gromphadorhina portentosa. Both P. americana and Blab. craniifer possesses pink flight muscles correlated with flight ability while Blat. germanica possesses white flight muscles that cannot support flight and G. portentosa lacks wings. These different behavioral combinations could correlate with differences in sensory processing of wind information by the cercal system. In this study, we focused on the wind-sensitive interneurons (WSIs) since they provide input to the premotor/motor neurons that influence terrestrial escape and flight behavior. Using extracellular recordings, we characterized the responses from the WSI population by generating stimulus-response (S-R) curves and examining spike firing rates. Using cluster analysis, we also examined the activity of individual units (four per species, though not necessarily homologous) comprising the population response in each species. Our main results were: 1) all four species possessed ascending WSIs in the abdominal connectives; 2) wind elicited the weakest WSI responses (lowest spike counts and spike rates) in G. portentosa; 3) wind elicited WSI responses in Blab. craniifer that were greater than P. americana or Blat. germanica; 4) the activity of four individual units comprising the WSI population response in each species was similar across species. PMID:24879967

  20. Escape manoeuvres in the spiny dogfish (Squalus acanthias).

    PubMed

    Domenici, Paolo; Standen, Emily M; Levine, Robert P

    2004-06-01

    The locomotor performance of dogfish during escape responses was observed by means of high-speed video. Dogfish show C-type escape responses that are comparable with those shown previously in teleosts. Dogfish show high variability of turning rates of the anterior part of the body (head to centre of mass), i.e. with peak values from 434 to 1023 deg. s(-1). We suggest that this variability may be due to the presence of two types of escape manoeuvres, i.e. responses with high and low turning rates, as previously found in a teleost species. Fast responses (i.e. with high maximum turning rates, ranging between 766 and 1023 deg. s(-1)) showed significantly higher locomotor performance than slow responses (i.e. with low maximum turning rates, ranging between 434 and 593 deg. s(-1)) in terms of distance covered, speed and acceleration, although no differences were found in the turning radius of the centre of mass during the escape manoeuvres. The existence of two types of escape responses would have implications in terms of both neural control and muscular activation patterns. When compared with literature data for the locomotor performance of bony fishes, dogfish showed relatively low speed and acceleration, comparable turning rates and a turning radius that is in the low part of the range when compared with teleosts, indicating relatively high manoeuvrability. The locomotor performance observed in dogfish is consistent with their morphological characteristics: (1) low locomotor performance associated with low thrust developed by their relatively small posterior depth of section and (2) relatively high manoeuvrability associated with their high flexibility.

  1. Effects of Serotonergic and Opioidergic Drugs on Escape Behaviors and Social Status of Male Crickets

    NASA Astrophysics Data System (ADS)

    Dyakonova, V. E.; Schürmann, F.-W.; Sakharov, D. A.

    We examined the effects of selective serotonin depletion and opioid ligands on social rank and related escape behavior of the cricket Gryllus bimaculatus. Establishment of social rank in a pair of males affected their escape reactions. Losers showed a lower and dominants a higher percentage of jumps in response to tactile cercal stimulation than before a fight. The serotonin-depleting drug α-methyltryptophan (AMTP) caused an activation of the escape reactivity in socially naive crickets. AMTP-treated animals also showed a lower ability to become dominants. With an initial 51.6+/-3.6% of wins in the AMTP group, the percentage decreased to 26+/-1.6% on day 5 after injection. The opiate receptor antagonist naloxone affected fight and escape similarly as AMTP. In contrast to naloxone, the opioid agonist [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin decreased escape responsiveness to cercal stimulation in naive and subordinate crickets. We suggest that serotonergic and opioid systems are involved in the dominance induced depression of escape behavior.

  2. Escape is a more common mechanism than avidity reduction for evasion of CD8+ T cell responses in primary human immunodeficiency virus type 1 infection

    PubMed Central

    2011-01-01

    Background CD8+ T cells play an important role in control of viral replication during acute and early human immunodeficiency virus type 1 (HIV-1) infection, contributing to containment of the acute viral burst and establishment of the prognostically-important persisting viral load. Understanding mechanisms that impair CD8+ T cell-mediated control of HIV replication in primary infection is thus of importance. This study addressed the relative extent to which HIV-specific T cell responses are impacted by viral mutational escape versus reduction in response avidity during the first year of infection. Results 18 patients presenting with symptomatic primary HIV-1 infection, most of whom subsequently established moderate-high persisting viral loads, were studied. HIV-specific T cell responses were mapped in each individual and responses to a subset of optimally-defined CD8+ T cell epitopes were followed from acute infection onwards to determine whether they were escaped or declined in avidity over time. During the first year of infection, sequence variation occurred in/around 26/33 epitopes studied (79%). In 82% of cases of intra-epitopic sequence variation, the mutation was confirmed to confer escape, although T cell responses were subsequently expanded to variant sequences in some cases. In contrast, < 10% of responses to index sequence epitopes declined in functional avidity over the same time-frame, and a similar proportion of responses actually exhibited an increase in functional avidity during this period. Conclusions Escape appears to constitute a much more important means of viral evasion of CD8+ T cell responses in acute and early HIV infection than decline in functional avidity of epitope-specific T cells. These findings support the design of vaccines to elicit T cell responses that are difficult for the virus to escape. PMID:21635736

  3. A Proposed Ascent Abort Flight Test for the Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Gilbert, Michael G.; Starr, Brett R.

    2016-01-01

    The NASA Engineering and Safety Center initiated the Max Launch Abort System (MLAS) Project to investigate alternate crew escape system concepts that eliminate the conventional launch escape tower by integrating the escape system into an aerodynamic fairing that fully encapsulates the crew capsule and smoothly integrates with the launch vehicle. This paper proposes an ascent abort flight test for an all-propulsive towerless escape system concept that is actively controlled and sized to accommodate the Orion Crew Module. The goal of the flight test is to demonstrate a high dynamic pressure escape and to characterize jet interaction effects during operation of the attitude control thrusters at transonic and supersonic conditions. The flight-test vehicle is delivered to the required test conditions by a booster configuration selected to meet cost, manufacturability, and operability objectives. Data return is augmented through judicious design of the boost trajectory, which is optimized to obtain data at a range of relevant points, rather than just a single flight condition. Secondary flight objectives are included after the escape to obtain aerodynamic damping data for the crew module and to perform a high-altitude contingency deployment of the drogue parachutes. Both 3- and 6-degree-of-freedom trajectory simulation results are presented that establish concept feasibility, and a Monte Carlo uncertainty assessment is performed to provide confidence that test objectives can be met.

  4. Animal escapology I: theoretical issues and emerging trends in escape trajectories

    PubMed Central

    Domenici, Paolo; Blagburn, Jonathan M.; Bacon, Jonathan P.

    2011-01-01

    Summary Escape responses are used by many animal species as their main defence against predator attacks. Escape success is determined by a number of variables; important are the directionality (the percentage of responses directed away from the threat) and the escape trajectories (ETs) measured relative to the threat. Although logic would suggest that animals should always turn away from a predator, work on various species shows that these away responses occur only approximately 50–90% of the time. A small proportion of towards responses may introduce some unpredictability and may be an adaptive feature of the escape system. Similar issues apply to ETs. Theoretically, an optimal ET can be modelled on the geometry of predator–prey encounters. However, unpredictability (and hence high variability) in trajectories may be necessary for preventing predators from learning a simple escape pattern. This review discusses the emerging trends in escape trajectories, as well as the modulating key factors, such as the surroundings and body design. The main ET patterns identified are: (1) high ET variability within a limited angular sector (mainly 90–180 deg away from the threat; this variability is in some cases based on multiple peaks of ETs), (2) ETs that allow sensory tracking of the threat and (3) ETs towards a shelter. These characteristic features are observed across various taxa and, therefore, their expression may be mainly related to taxon-independent animal design features and to the environmental context in which prey live – for example whether the immediate surroundings of the prey provide potential refuges. PMID:21753039

  5. Locomotion in response to shifting climate zones: not so fast.

    PubMed

    Feder, Martin E; Garland, Theodore; Marden, James H; Zera, Anthony J

    2010-01-01

    Although a species' locomotor capacity is suggestive of its ability to escape global climate change, such a suggestion is not necessarily straightforward. Species vary substantially in locomotor capacity, both ontogenetically and within/among populations, and much of this variation has a genetic basis. Accordingly, locomotor capacity can and does evolve rapidly, as selection experiments demonstrate. Importantly, even though this evolution of locomotor capacity may be rapid enough to escape changing climate, genetic correlations among traits (often due to pleiotropy) are such that successful or rapid dispersers are often limited in colonization or reproductive ability, which may be viewed as a trade-off. The nuanced assessment of this variation and evolution is reviewed for well-studied models: salmon, flying versus flightless insects, rodents undergoing experimental evolution, and metapopulations of butterflies. This work reveals how integration of physiology with population biology and functional genomics can be especially informative.

  6. Staphylococcus aureus synthesizes adenosine to escape host immune responses

    PubMed Central

    Thammavongsa, Vilasack; Kern, Justin W.; Missiakas, Dominique M.

    2009-01-01

    Staphylococcus aureus infects hospitalized or healthy individuals and represents the most frequent cause of bacteremia, treatment of which is complicated by the emergence of methicillin-resistant S. aureus. We examined the ability of S. aureus to escape phagocytic clearance in blood and identified adenosine synthase A (AdsA), a cell wall–anchored enzyme that converts adenosine monophosphate to adenosine, as a critical virulence factor. Staphylococcal synthesis of adenosine in blood, escape from phagocytic clearance, and subsequent formation of organ abscesses were all dependent on adsA and could be rescued by an exogenous supply of adenosine. An AdsA homologue was identified in the anthrax pathogen, and adenosine synthesis also enabled escape of Bacillus anthracis from phagocytic clearance. Collectively, these results suggest that staphylococci and other bacterial pathogens exploit the immunomodulatory attributes of adenosine to escape host immune responses. PMID:19808256

  7. Competing Contingencies for Escape Behavior: Effects of Negative Reinforcement Magnitude and Quality

    ERIC Educational Resources Information Center

    Hammond, Jennifer L.

    2009-01-01

    Previous research has shown that problem behavior maintained by social-negative reinforcement can be treated without escape extinction by enhancing the quality of positive reinforcement for an appropriate alternative response such as compliance. By contrast, negative reinforcement (escape) for compliance generally has been ineffective in the…

  8. Escape and surveillance asymmetries in locusts exposed to a Guinea fowl-mimicking robot predator.

    PubMed

    Romano, Donato; Benelli, Giovanni; Stefanini, Cesare

    2017-10-09

    Escape and surveillance responses to predators are lateralized in several vertebrate species. However, little is known on the laterality of escapes and predator surveillance in arthropods. In this study, we investigated the lateralization of escape and surveillance responses in young instars and adults of Locusta migratoria during biomimetic interactions with a robot-predator inspired to the Guinea fowl, Numida meleagris. Results showed individual-level lateralization in the jumping escape of locusts exposed to the robot-predator attack. The laterality of this response was higher in L. migratoria adults over young instars. Furthermore, population-level lateralization of predator surveillance was found testing both L. migratoria adults and young instars; locusts used the right compound eye to oversee the robot-predator. Right-biased individuals were more stationary over left-biased ones during surveillance of the robot-predator. Individual-level lateralization could avoid predictability during the jumping escape. Population-level lateralization may improve coordination in the swarm during specific group tasks such as predator surveillance. To the best of our knowledge, this is the first report of lateralized predator-prey interactions in insects. Our findings outline the possibility of using biomimetic robots to study predator-prey interaction, avoiding the use of real predators, thus achieving standardized experimental conditions to investigate complex and flexible behaviours.

  9. Learned helplessness: effects of response requirement and interval between treatment and testing.

    PubMed

    Hunziker, M H L; Dos Santos, C V

    2007-11-01

    Three experiments investigated learned helplessness in rats manipulating response requirements, shock duration, and intervals between treatment and testing. In Experiment 1, rats previously exposed to uncontrollable or no shocks were tested under one of four different contingencies of negative reinforcement: FR 1 or FR 2 escape contingency for running, and FR1 escape contingency for jumping (differing for the maximum shock duration of 10s or 30s). The results showed that the uncontrollable shocks produced a clear operant learning deficit (learned helplessness effect) only when the animals were tested under the jumping FR 1 escape contingency with 10-s max shock duration. Experiment 2 isolated of the effects of uncontrollability from shock exposure per se and showed that the escape deficit observed using the FR 1 escape jumping response (10-s shock duration) was produced by the uncontrollability of shock. Experiment 3 showed that using the FR 1 jumping escape contingency in the test, the learned helplessness effect was observed one, 14 or 28 days after treatment. These results suggest that running may not be an appropriate test for learned helplessness, and that many diverging results found in the literature might be accounted for by the confounding effects of respondent and operant contingencies present when running is required of rats.

  10. Investigating the Consequences of Interference between Multiple CD8+ T Cell Escape Mutations in Early HIV Infection

    PubMed Central

    Garcia, Victor; Feldman, Marcus W.; Regoes, Roland R.

    2016-01-01

    During early human immunodeficiency virus (HIV) infection multiple CD8+ T cell responses are elicited almost simultaneously. These responses exert strong selective pressures on different parts of HIV’s genome, and select for mutations that escape recognition and are thus beneficial to the virus. Some studies reveal that the later these escape mutations emerge, the more slowly they go to fixation. This pattern of escape rate decrease(ERD) can arise by distinct mechanisms. In particular, in large populations with high beneficial mutation rates interference among different escape strains –an effect that can emerge in evolution with asexual reproduction and results in delayed fixation times of beneficial mutations compared to sexual reproduction– could significantly impact the escape rates of mutations. In this paper, we investigated how interference between these concurrent escape mutations affects their escape rates in systems with multiple epitopes, and whether it could be a source of the ERD pattern. To address these issues, we developed a multilocus Wright-Fisher model of HIV dynamics with selection, mutation and recombination, serving as a null-model for interference. We also derived an interference-free null model assuming initial neutral evolution before immune response elicitation. We found that interference between several equally selectively advantageous mutations can generate the observed ERD pattern. We also found that the number of loci, as well as recombination rates substantially affect ERD. These effects can be explained by the underexponential decline of escape rates over time. Lastly, we found that the observed ERD pattern in HIV infected individuals is consistent with both independent, interference-free mutations as well as interference effects. Our results confirm that interference effects should be considered when analyzing HIV escape mutations. The challenge in estimating escape rates and mutation-associated selective coefficients posed by interference effects cannot simply be overcome by improved sampling frequencies or sizes. This problem is a consequence of the fundamental shortcomings of current estimation techniques under interference regimes. Hence, accounting for the stochastic nature of competition between mutations demands novel estimation methodologies based on the analysis of HIV strains, rather than mutation frequencies. PMID:26829720

  11. Escape strategies for turboprop aircraft in microburst windshear

    NASA Technical Reports Server (NTRS)

    Bobbitt, Richard B.; Howard, Richard M.

    1991-01-01

    The dynamic reponse of a P-3 aircraft and a light twin-engine turboprop to a low-level microburst encounter is modeled. The response to the microburst is depicted for various escape maneuvers. Plots of altitude, velocity, and specific energy are shown for all cases. Takeoff escape strategies are discussed. The optimal escape procedure is found to be flying a constant value of pitch angle. Constant angle of attack maneuvers sometimes result in superior performance.

  12. Flight Performance Feasibility Studies for the Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Tarabini, Paul V.; Gilbert, Michael G.; Beaty, James R.

    2013-01-01

    In 2007, the NASA Engineering and Safety Center (NESC) initiated the Max Launch Abort System Project to explore crew escape system concepts designed to be fully encapsulated within an aerodynamic fairing and smoothly integrated onto a launch vehicle. One objective of this design was to develop a more compact launch escape vehicle that eliminated the need for an escape tower, as was used in the Mercury and Apollo escape systems and what is planned for the Orion Multi-Purpose Crew Vehicle (MPCV). The benefits for the launch vehicle of eliminating a tower from the escape vehicle design include lower structural weights, reduced bending moments during atmospheric flight, and a decrease in induced aero-acoustic loads. This paper discusses the development of encapsulated, towerless launch escape vehicle concepts, especially as it pertains to the flight performance and systems analysis trade studies conducted to establish mission feasibility and assess system-level performance. Two different towerless escape vehicle designs are discussed in depth: one with allpropulsive control using liquid attitude control thrusters, and a second employing deployable aft swept grid fins to provide passive stability during coast. Simulation results are presented for a range of nominal and off-nominal escape conditions.

  13. Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators.

    PubMed

    Marchese, Andrew D; Onal, Cagdas D; Rus, Daniela

    2014-03-01

    In this work we describe an autonomous soft-bodied robot that is both self-contained and capable of rapid, continuum-body motion. We detail the design, modeling, fabrication, and control of the soft fish, focusing on enabling the robot to perform rapid escape responses. The robot employs a compliant body with embedded actuators emulating the slender anatomical form of a fish. In addition, the robot has a novel fluidic actuation system that drives body motion and has all the subsystems of a traditional robot onboard: power, actuation, processing, and control. At the core of the fish's soft body is an array of fluidic elastomer actuators. We design the fish to emulate escape responses in addition to forward swimming because such maneuvers require rapid body accelerations and continuum-body motion. These maneuvers showcase the performance capabilities of this self-contained robot. The kinematics and controllability of the robot during simulated escape response maneuvers are analyzed and compared with studies on biological fish. We show that during escape responses, the soft-bodied robot has similar input-output relationships to those observed in biological fish. The major implication of this work is that we show soft robots can be both self-contained and capable of rapid body motion.

  14. Assessment of a New Procedure to Prevent Timeout Escape in Preschoolers.

    ERIC Educational Resources Information Center

    McNeil, Cheryl Bodiford; And Others

    1994-01-01

    Many agencies provide parent training to groups for whom spanking as a response to timeout escape is not an option. An alternative was developed, the "two-chair hold" technique, which showed some success in decreasing timeout escape and improving overall behavior. Discusses clinical issues regarding use of this technique. (LKS)

  15. Immune Escape Mutations Detected within HIV-1 Epitopes Associated with Viral Control During Treatment Interruption

    PubMed Central

    Schweighardt, Becky; Wrin, Terri; Meiklejohn, Duncan A.; Spotts, Gerald; Petropoulos, Christos J.; Nixon, Douglas F.; Hecht, Frederick M.

    2010-01-01

    We analyzed immune responses in chronically HIV-infected individuals who took part in a treatment interruption (TI) trial designed for patients who initiated anti-retroviral therapy within 6 months of seroconversion. In the two subjects that exhibited the best viral control, we detected CD8+ T cell responses against 1-2 Gag epitopes during the early weeks of TI and a subsequent increase in the number of epitopes recognized by the later time points. Each of these subjects developed mutations within the epitopes targeted by the highest magnitude responses. In the subject with the worst viral control, we detected responses against two Gag epitopes throughout the entire TI and no Gag mutations. The magnitude of these responses increased dramatically with time, greatly exceeding those detected in the virologic controllers. The highest levels of contemporaneous autologous neutralizing antibody activity were detected in the virologic controllers, and a subsequent escape mutation developed within the envelope gene of one controller that abrogated the response. These data suggest that immune escape mutations are a sign of viral control during TI, and that the absence of immune escape mutations in the presence of high-levels of viral replication indicates the lack of an effective host immune response. PMID:19910798

  16. Transmitted/Founder Viruses Rapidly Escape from CD8+ T Cell Responses in Acute Hepatitis C Virus Infection.

    PubMed

    Bull, Rowena A; Leung, Preston; Gaudieri, Silvana; Deshpande, Pooja; Cameron, Barbara; Walker, Melanie; Chopra, Abha; Lloyd, Andrew R; Luciani, Fabio

    2015-05-01

    The interaction between hepatitis C virus (HCV) and cellular immune responses during very early infection is critical for disease outcome. To date, the impact of antigen-specific cellular immune responses on the evolution of the viral population establishing infection and on potential escape has not been studied. Understanding these early host-virus dynamics is important for the development of a preventative vaccine. Three subjects who were followed longitudinally from the detection of viremia preseroconversion until disease outcome were analyzed. The evolution of transmitted/founder (T/F) viruses was undertaken using deep sequencing. CD8(+) T cell responses were measured via enzyme-linked immunosorbent spot (ELISpot) assay using HLA class I-restricted T/F epitopes. T/F viruses were rapidly extinguished in all subjects associated with either viral clearance (n = 1) or replacement with viral variants leading to establishment of chronic infection (n = 2). CD8(+) T cell responses against 11 T/F epitopes were detectable by 33 to 44 days postinfection, and 5 of these epitopes had not previously been reported. These responses declined rapidly in those who became chronically infected and were maintained in the subject who cleared infection. Higher-magnitude CD8(+) T cell responses were associated with rapid development of immune escape variants at a rate of up to 0.1 per day. Rapid escape from CD8(+) T cell responses has been quantified for the first time in the early phase of primary HCV infection. These rapid escape dynamics were associated with higher-magnitude CD8(+) T cell responses. These findings raise questions regarding optimal selection of immunogens for HCV vaccine development and suggest that detailed analysis of individual epitopes may be required. A major limitation in our detailed understanding of the role of immune response in HCV clearance has been the lack of data on very early primary infection when the transmitted viral variants successfully establish the acute infection. This study was made possible through the availability of specimens from a unique cohort of asymptomatic primary infection cases in whom the first available viremic samples were collected approximately 3 weeks postinfection and at regular intervals thereafter. The study included detailed examination of both the evolution of the viral population and the host cellular immune responses against the T/F viruses. The findings here provide the first evidence of host cellular responses targeting T/F variants and imposing a strong selective force toward viral escape. The results of this study provide useful insight on how virus escapes the host response and consequently on future analysis of vaccine-induced immunity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. A sublethal dose of a neonicotinoid insecticide disrupts visual processing and collision avoidance behaviour in Locusta migratoria.

    PubMed

    Parkinson, Rachel H; Little, Jacelyn M; Gray, John R

    2017-04-20

    Neonicotinoids are known to affect insect navigation and vision, however the mechanisms of these effects are not fully understood. A visual motion sensitive neuron in the locust, the Descending Contralateral Movement Detector (DCMD), integrates visual information and is involved in eliciting escape behaviours. The DCMD receives coded input from the compound eyes and monosynaptically excites motorneurons involved in flight and jumping. We show that imidacloprid (IMD) impairs neural responses to visual stimuli at sublethal concentrations, and these effects are sustained two and twenty-four hours after treatment. Most significantly, IMD disrupted bursting, a coding property important for motion detection. Specifically, IMD reduced the DCMD peak firing rate within bursts at ecologically relevant doses of 10 ng/g (ng IMD per g locust body weight). Effects on DCMD firing translate to deficits in collision avoidance behaviours: exposure to 10 ng/g IMD attenuates escape manoeuvers while 100 ng/g IMD prevents the ability to fly and walk. We show that, at ecologically-relevant doses, IMD causes significant and lasting impairment of an important pathway involved with visual sensory coding and escape behaviours. These results show, for the first time, that a neonicotinoid pesticide directly impairs an important, taxonomically conserved, motion-sensitive visual network.

  18. The effects of variable-time delivery of food items and praise on problem behavior reinforced by escape.

    PubMed

    Lomas, Joanna E; Fisher, Wayne W; Kelley, Michael E

    2010-01-01

    Prior research indicates that reinforcement of an appropriate response (e.g., compliance) can produce concomitant reductions in problem behavior reinforced by escape when problem behavior continues to produce negative reinforcement (e.g., Lalli et al., 1999). These effects may be due to a preference for positive over negative reinforcement or to positive reinforcement acting as an abolishing operation, rendering demands less aversive and escape from demands less effective as negative reinforcement. In the current investigation, we delivered a preferred food item and praise on a variable-time 15-s schedule while providing escape for problem behavior on a fixed-ratio 1 schedule in a demand condition for 3 participants with problem behavior maintained by negative reinforcement. Results for all 3 participants showed that variable-time delivery of preferred edible items reduced problem behavior even though escape continued to be available for these responses. These findings are discussed in the context of motivating operations.

  19. A riddled basin escaping crisis and the universality in an integrate-and-fire circuit

    NASA Astrophysics Data System (ADS)

    Dai, Jun; He, Da-Ren; Xu, Xiu-Lian; Hu, Chin-Kun

    2018-06-01

    We investigate an integrate-and-fire model of an electronic relaxation oscillator, which can be described by the discontinuous and non-invertible composition of two mapping functions f1 and f2, with f1 being dissipative. Depending on a control parameter d, f2 can be conservative (for d =dc = 1) or dissipative (for d >dc). We find a kind of crisis, which is induced by the escape from a riddled-like attraction basin sea in the phase space. The averaged crisis transient lifetime (〈 τ 〉), the relative measure of the fat fractal forbidden network (η), and the measure of the escaping hole (Δ) show clear scaling behaviors: 〈 τ 〉 ∝(d -dc) - γ, η ∝(d -dc) σ, and Δ ∝(d -dc) α. Extending an argument by Jiang et al. (2004), we derive γ = σ + α, which agrees well with numerical simulation data.

  20. Light weight escape capsule for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Robert, James A.

    1988-01-01

    Emergency crew escape capabilities have been less than adequate for fighter aircraft since before WW II. From the over-the-side bailout of those days through the current ejection seat with a rocket catapult, escaping from a disabled aircraft has been risky at best. Current efforts are underway toward developing a high-tech, smart ejection seat that will give fighter pilots more room to live in the sky, but an escape capsule is needed to meet current and future fighter envelopes. Escape capsules have a bad reputation due to past examples of high weight, poor performance and great complexity. However, the advantages available demand that a capsule be developed. This capsule concept will minimize the inherent disavantages and incorporate the benefits while integrating all aspects of crew station design. The resulting design is appropriate for a crew station of the year 2010 and includes improved combat acceleration protection, chemical or biological combat capability, improved aircraft to escape system interaction, and the highest level of escape performance achievable. The capsule is compact, which can allow a reduced aircraft size and weighs only 1200 lb. The escape system weight penalty is only 120 lb higher than that for the next ejection seat and the capsule has a corresponding increase in performance.

  1. DR-induced escape of O and C from early Mars

    NASA Astrophysics Data System (ADS)

    Zhao, Jinjin; Tian, Feng; Ni, Yufang; Huang, Xiaomeng

    2017-03-01

    Energetic particles produced in Dissociative recombination (DR) reactions could escape planets with low gravity, such as Mars, if they could overcome collisions with the surrounding background gases. In this work, a 3-D Monte Carlo model is developed to study these photochemical escape processes on early Mars. Although the DR reaction rates of O2+, CO2+, and CO+ increase monotonically with solar soft X-ray and extreme ultraviolet (XUV) flux, the peak of the calculated DR-induced escape rates of O is near 3 × XUV, and the DR-induced escape rates of C increase with XUV until 10 × XUV. The non-monotonic behavior can be explained by the increased column densities of background species in high XUV conditions, which can deflect energetic particles through collisions more efficiently. At 20 × XUV, CO+ DR is the main source of escaping O and C, and the escape of secondary particles could contribute to 30∼40% and 10% of the total escape of O and C respectively. The time-integrated DR-induced escape of O and C is equivalent to 1 m of H2O and 20 mbar of CO2 escaping early Mars since 4.5 billion years ago. The accumulated CO2 loss is much lower than what's needed to explain the carbon isotopic ratios on Mars and much lower than the total CO2 needed to warm up early Mars. If more vigorous escape mechanisms were absent on early Mars, substantial inventories of volatiles have not been detected yet.

  2. European SpaceCraft for the study of Atmospheric Particle Escape (ESCAPE): a mission proposed in response to the ESA M5-call

    NASA Astrophysics Data System (ADS)

    Dandouras, Iannis; Yamauchi, Masatoshi; Rème, Henri; De Keyser, Johan; Marghitu, Octav; Fazakerley, Andrew; Grison, Benjamin; Kistler, Lynn; Milillo, Anna; Nakamura, Rumi; Paschalidis, Nikolaos; Paschalis, Antonis; Pinçon, Jean-Louis; Sakanoi, Takeshi; Wieser, Martin; Wurz, Peter; Yoshikawa, Ichiro; Häggström, Ingemar; Liemohn, Mike; Tian, Feng

    2017-04-01

    ESCAPE is a mission proposed in response to the ESA-M5 call that will quantitatively estimate the amount of escaping particles of the major atmospheric components (nitrogen and oxygen), as neutral and ionised species, escaping from the Earth as a magnetised planet. The spatial distribution and temporal variability of the flux of these species and their isotopic composition will be for the first time systematically investigated in an extended altitude range, from the exobase/upper ionosphere (500 km altitude) up to the magnetosphere. The goal is to understand the importance of each escape mechanism, its dependence on solar and geomagnetic activity, and to infer the history of the Earth's atmosphere over a long (geological scale) time period. Since the solar EUV and solar wind conditions during solar maximum at present are comparable to the solar minimum conditions 1-2 billion years ago, the escaping amount and the isotope and N/O ratios should be obtained as a function of external forcing (solar and geomagnetic conditions) to allow a scaling to the past. The result will be used as a reference to understand the atmospheric/ionospheric evolution of magnetised planets. To achieve this goal, a slowly spinning spacecraft is proposed equipped with a suite of instruments developed and supplied by an international consortium. These instruments will detect the upper atmosphere and magnetosphere escaping populations by a combination of in-situ measurements and of remote-sensing observations.

  3. Assessing Preferences for Positive and Negative Reinforcement during Treatment of Destructive Behavior with Functional Communication Training

    ERIC Educational Resources Information Center

    Fisher, Wayne W.; Adelinis, John D.; Volkert, Valerie M.; Keeney, Kris M.; Neidert, Pamela L.; Hovanetz, Alyson

    2005-01-01

    Results of prior studies (e.g. [J. Appl. Behav. Anal. 32 (1999) 285]) showing that participants chose alternative behavior (compliance) over escape-reinforced destructive behavior when this latter response produced escape and the former response produced positive reinforcement may have been due to (a) the value of the positive reinforcer…

  4. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles.

    PubMed

    Wang, Ming; Zuris, John A; Meng, Fantao; Rees, Holly; Sun, Shuo; Deng, Pu; Han, Yong; Gao, Xue; Pouli, Dimitra; Wu, Qi; Georgakoudi, Irene; Liu, David R; Xu, Qiaobing

    2016-03-15

    A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane, including escape from endosomes. Here we report that combining bioreducible lipid nanoparticles with negatively supercharged Cre recombinase or anionic Cas9:single-guide (sg)RNA complexes drives the electrostatic assembly of nanoparticles that mediate potent protein delivery and genome editing. These bioreducible lipids efficiently deliver protein cargo into cells, facilitate the escape of protein from endosomes in response to the reductive intracellular environment, and direct protein to its intracellular target sites. The delivery of supercharged Cre protein and Cas9:sgRNA complexed with bioreducible lipids into cultured human cells enables gene recombination and genome editing with efficiencies greater than 70%. In addition, we demonstrate that these lipids are effective for functional protein delivery into mouse brain for gene recombination in vivo. Therefore, the integration of this bioreducible lipid platform with protein engineering has the potential to advance the therapeutic relevance of protein-based genome editing.

  5. Photochemical escape of oxygen from Mars: constraints from MAVEN in situ measurements

    NASA Astrophysics Data System (ADS)

    Lillis, R. J.; Deighan, J.; Fox, J. L.; Bougher, S. W.; Lee, Y.; Cravens, T.; Rahmati, A.; Mahaffy, P. R.; Andersson, L.; Combi, M. R.; Benna, M.; Jakosky, B. M.; Gröller, H.

    2016-12-01

    One of the primary goals of the MAVEN mission is to characterize rates of atmospheric escape from Mars at the present epoch and relate those escape rates to solar drivers. Photochemical escape of oxygen is expected to be a significant channel for atmospheric loss, particularly in the early solar system when extreme ultraviolet (EUV) fluxes were much higher. We use near-periapsis (<400 km altitude) data from three instruments. The Langmuir Probe and Waves (LPW) instrument measures electron density and temperature, the Suprathermal And Thermal Ion Composition (STATIC) experiment measures ion temperature and the Neutral Gas and Ion Mass Spectrometer (NGIMS) measures neutral and ion densities. For each profile of in situ measurements, we make a series of calculations, each as a function of altitude. The first uses electron and ion temperatures to calculate the probability distribution for initial energies of hot O atoms. The second calculates the probability that a hot atom born at that altitude will escape. The third takes calculates the production rate of the hot O atoms. We then multiply together the profiles of hot atom production and escape probability to get profiles of the production rate of escaping atoms. We integrate with respect to altitude to give us the escape flux of hot oxygen atoms for that periapsis pass. We will present escape fluxes and derived escape rates from the first Mars year of data collected. Total photochemical loss over time is not very useful to calculate from such escape fluxes derived from current conditions because a thicker atmosphere and much higher solar EUV in the past may change the dynamics of escape dramatically. In the future, we intend to use 3-D Monte Carlo models of global atmospheric escape, in concert with our in situ and remote measurements, to fully characterize photochemical escape under current conditions and carefully extrapolate back in time using further simulations with new boundary conditions.

  6. Postnatal LPS Challenge Impacts Escape Learning and Expression of Plasticity Factors Mmp9 and Timp1 in Rats: Effects of Repeated Training.

    PubMed

    Trofimov, Alexander; Strekalova, Tatyana; Mortimer, Niall; Zubareva, Olga; Schwarz, Alexander; Svirin, Evgeniy; Umriukhin, Aleksei; Svistunov, Andrei; Lesch, Klaus-Peter; Klimenko, Victor

    2017-08-01

    Bacterial intoxication associated with inflammatory conditions during development can impair brain functions, in particular evolutionarily novel forms of memory, such as explicit learning. Little is known about the dangers of early-life inflammation on more basic forms of learning, for example, the acquisition of motor escape abilities, which are generally better preserved under pathological conditions. To address this limitation in knowledge, an inflammatory response was elicited in Wistar pups by lipopolysaccharide (LPS) injections (25 μg/kg) on postnatal days P15, P18 and P21. The acquisition of escape behaviour was tested from P77 by active avoidance footshock model and water maze. Open-field behaviour and blood corticosterone levels were also measured. Rat brain tissue was collected from pups 2 h post-injection and from adult rats which either underwent escape training on P77-P81 or remained untrained. mRNA levels of developmental brain plasticity factors MMP-9 and TIMP-1 were investigated in the medial prefrontal cortex and ventral/dorsal hippocampus. LPS-challenged rats displayed moderately deficient escape responses in both memory tests, increased freezing behaviour and, surprisingly, reduced blood cortisol levels. Mmp9 and Timp1, and their ratio to one another, were differentially altered in pups versus adult untrained rats but remained unchanged overall in rats trained in either learning task. Together, our data indicate that systemic pro-inflammatory response during early postnatal development has long-lasting effects, including on the acquisition of motor escape abilities and plasticity factor expression, into adulthood. Our data suggest that altered stress response could possibly mediate these deviations and repeated training might generate positive effects on plasticity under the employed conditions.

  7. A convergent and essential interneuron pathway for Mauthner-cell-mediated escapes.

    PubMed

    Lacoste, Alix M B; Schoppik, David; Robson, Drew N; Haesemeyer, Martin; Portugues, Ruben; Li, Jennifer M; Randlett, Owen; Wee, Caroline L; Engert, Florian; Schier, Alexander F

    2015-06-01

    The Mauthner cell (M-cell) is a command-like neuron in teleost fish whose firing in response to aversive stimuli is correlated with short-latency escapes [1-3]. M-cells have been proposed as evolutionary ancestors of startle response neurons of the mammalian reticular formation [4], and studies of this circuit have uncovered important principles in neurobiology that generalize to more complex vertebrate models [3]. The main excitatory input was thought to originate from multisensory afferents synapsing directly onto the M-cell dendrites [3]. Here, we describe an additional, convergent pathway that is essential for the M-cell-mediated startle behavior in larval zebrafish. It is composed of excitatory interneurons called spiral fiber neurons, which project to the M-cell axon hillock. By in vivo calcium imaging, we found that spiral fiber neurons are active in response to aversive stimuli capable of eliciting escapes. Like M-cell ablations, bilateral ablations of spiral fiber neurons largely eliminate short-latency escapes. Unilateral spiral fiber neuron ablations shift the directionality of escapes and indicate that spiral fiber neurons excite the M-cell in a lateralized manner. Their optogenetic activation increases the probability of short-latency escapes, supporting the notion that spiral fiber neurons help activate M-cell-mediated startle behavior. These results reveal that spiral fiber neurons are essential for the function of the M-cell in response to sensory cues and suggest that convergent excitatory inputs that differ in their input location and timing ensure reliable activation of the M-cell, a feedforward excitatory motif that may extend to other neural circuits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Recording Field Potentials From Zebrafish Larvae During Escape Responses

    PubMed Central

    Monesson-Olson, Bryan D.; Troconis, Eileen L.; Trapani, Josef G.

    2014-01-01

    Among vertebrates, startle responses are a ubiquitous method for alerting, and avoiding or escaping from alarming or dangerous stimuli. In zebrafish larvae, fast escape behavior is easily evoked through either acoustic or tactile stimuli. For example, a light touch to the head will excite trigeminal neurons that in turn excite a large reticulospinal neuron in the hindbrain called the Mauthner cell (M-cell). The M-cell action potential then travels down the contralateral trunk of the larva exciting motoneurons, which subsequently excite the entire axial musculature, producing a large amplitude body bend away from the source of the stimulus. This body conformation is known as the “C-bend” due to the shape of the larva during the behavior. As a result of the semi-synchronized activation of the M-cell, the population of motor neurons, and the axial trunk muscles, a large field potential is generated and can be recorded from free-swimming or fixed-position larvae. Undergraduate laboratories that record field potentials during escape responses in larval zebrafish are relatively simple to setup and allow students to observe and study the escape reflex circuit. Furthermore, by testing hypotheses, analyzing data and writing journal-style laboratory reports, students have multiple opportunities to learn about many neuroscience topics including vertebrate reflexes; sensory transduction; synaptic-, neuro-, and muscle-physiology; the M-cell mediated escape response; and the zebrafish as a model organism. Here, we detail the equipment, software, and recording setup necessary to observe field potentials in an undergraduate teaching lab. Additionally, we discuss potential advanced laboratory exercises and pedagogical outcomes. Finally, we note possible low-cost alternatives for recording field potentials. PMID:25565920

  9. Speed kills: ineffective avian escape responses to oncoming vehicles

    PubMed Central

    DeVault, Travis L.; Blackwell, Bradley F.; Seamans, Thomas W.; Lima, Steven L.; Fernández-Juricic, Esteban

    2015-01-01

    Animal–vehicle collisions cause high levels of vertebrate mortality worldwide, and what goes wrong when animals fail to escape and ultimately collide with vehicles is not well understood. We investigated alert and escape behaviours of captive brown-headed cowbirds (Molothrus ater) in response to virtual vehicle approaches of different sizes and at speeds ranging from 60 to 360 km h−1. Alert and flight initiation distances remained similar across vehicle speeds, and accordingly, alert and flight initiation times decreased at higher vehicle speeds. Thus, avoidance behaviours in cowbirds appeared to be based on distance rather than time available for escape, particularly at 60–150 km h−1; however, at higher speeds (more than or equal to 180 km h−1) no trend in response behaviour was discernible. As vehicle speed increased, cowbirds did not have enough time to assess the approaching vehicle, and cowbirds generally did not initiate flight with enough time to avoid collision when vehicle speed exceeded 120 km h−1. Although potentially effective for evading predators, the decision-making process used by cowbirds in our study appears maladaptive in the context of avoiding fast-moving vehicles. Our methodological approach and findings provide a framework to assess how novel management strategies could affect escape rules, and the sensory and cognitive abilities animals use to avoid vehicle collisions. PMID:25567648

  10. Chronic predation risk reduces escape speed by increasing oxidative damage: a deadly cost of an adaptive antipredator response.

    PubMed

    Janssens, Lizanne; Stoks, Robby

    2014-01-01

    Prey organisms evolved a multitude of plastic responses to avoid being eaten by predators. Besides the evolution of plastic morphological responses to escape predation, prey also evolved a set of physiological stress responses to avoid dying because of chronic predator stress per se due to disruption of cellular homeostasis. As physiological stress theory predicts increased energy consumption and the inhibition of essential nonemergency body functions, we tested whether chronic predation risk may increase oxidative damage thereby generating negative effects on escape performance. Specifically, we evaluated whether predation risk reduces escape swimming speed in damselfly larvae and whether this operates through stress-associated increases in oxidative damage. Counterintuitively and in contrast with many empirical studies, chronic predation risk decreased escape performance. This is however entirely consistent with the expectation of it being a long-term cost of responding to predation risk (e.g. by increasing respiration or upregulating the stress protein levels). The decreased swimming speed could be explained by an increased oxidative damage to proteins, thereby providing one of the poorly studied ecological links between oxidative damage and whole-animal performance. This likely widespread, understudied cost of chronic predation risk may provide an important pathway of non-consumptive predator effects on prey population dynamics. Moreover, it could play an evolutionary role by acting as a selective force causing prey organisms to adjust the magnitude of the physiological stress response and should be considered when evaluating life history trade-offs thought to be mediated by oxidative damage.

  11. Chronic Predation Risk Reduces Escape Speed by Increasing Oxidative Damage: A Deadly Cost of an Adaptive Antipredator Response

    PubMed Central

    Janssens, Lizanne; Stoks, Robby

    2014-01-01

    Prey organisms evolved a multitude of plastic responses to avoid being eaten by predators. Besides the evolution of plastic morphological responses to escape predation, prey also evolved a set of physiological stress responses to avoid dying because of chronic predator stress per se due to disruption of cellular homeostasis. As physiological stress theory predicts increased energy consumption and the inhibition of essential nonemergency body functions, we tested whether chronic predation risk may increase oxidative damage thereby generating negative effects on escape performance. Specifically, we evaluated whether predation risk reduces escape swimming speed in damselfly larvae and whether this operates through stress-associated increases in oxidative damage. Counterintuitively and in contrast with many empirical studies, chronic predation risk decreased escape performance. This is however entirely consistent with the expectation of it being a long-term cost of responding to predation risk (e.g. by increasing respiration or upregulating the stress protein levels). The decreased swimming speed could be explained by an increased oxidative damage to proteins, thereby providing one of the poorly studied ecological links between oxidative damage and whole-animal performance. This likely widespread, understudied cost of chronic predation risk may provide an important pathway of non-consumptive predator effects on prey population dynamics. Moreover, it could play an evolutionary role by acting as a selective force causing prey organisms to adjust the magnitude of the physiological stress response and should be considered when evaluating life history trade-offs thought to be mediated by oxidative damage. PMID:24968142

  12. Local adaptation and the potential effects of a contaminant on predator avoidance and antipredator responses under global warming: a space-for-time substitution approach.

    PubMed

    Janssens, Lizanne; Dinh Van, Khuong; Debecker, Sara; Bervoets, Lieven; Stoks, Robby

    2014-03-01

    The ability to deal with temperature-induced changes in interactions with contaminants and predators under global warming is one of the outstanding, applied evolutionary questions. For this, it is crucial to understand how contaminants will affect activity levels, predator avoidance and antipredator responses under global warming and to what extent gradual thermal evolution may mitigate these effects. Using a space-for-time substitution approach, we assessed the potential for gradual thermal evolution shaping activity (mobility and foraging), predator avoidance and antipredator responses when Ischnura elegans damselfly larvae were exposed to zinc in a common-garden warming experiment at the mean summer water temperatures of shallow water bodies at southern and northern latitudes (24 and 20°C, respectively). Zinc reduced mobility and foraging, predator avoidance and escape swimming speed. Importantly, high-latitude populations showed stronger zinc-induced reductions in escape swimming speed at both temperatures, and in activity levels at the high temperature. The latter indicates that local thermal adaptation may strongly change the ecological impact of contaminants under global warming. Our study underscores the critical importance of considering local adaptation along natural gradients when integrating biotic interactions in ecological risk assessment, and the potential of gradual thermal evolution mitigating the effects of warming on the vulnerability to contaminants.

  13. Fast-starting after a breath: air-breathing motions are kinematically similar to escape responses in the catfish Hoplosternum littorale

    PubMed Central

    Domenici, Paolo; Norin, Tommy; Bushnell, Peter G.; Johansen, Jacob L.; Skov, Peter Vilhelm; Svendsen, Morten B. S.; Steffensen, John F.; Abe, Augusto S.

    2015-01-01

    ABSTRACT Fast-starts are brief accelerations commonly observed in fish within the context of predator–prey interactions. In typical C-start escape responses, fish react to a threatening stimulus by bending their body into a C-shape during the first muscle contraction (i.e. stage 1) which provides a sudden acceleration away from the stimulus. Recently, similar C-starts have been recorded in fish aiming at a prey. Little is known about C-starts outside the context of predator–prey interactions, though recent work has shown that escape response can also be induced by high temperature. Here, we test the hypothesis that air-breathing fish may use C-starts in the context of gulping air at the surface. Hoplosternum littorale is an air-breathing freshwater catfish found in South America. Field video observations reveal that their air-breathing behaviour consists of air-gulping at the surface, followed by a fast turn which re-directs the fish towards the bottom. Using high-speed video in the laboratory, we compared the kinematics of the turn immediately following air-gulping performed by H. littorale in normoxia with those of mechanically-triggered C-start escape responses and with routine (i.e. spontaneous) turns. Our results show that air-breathing events overlap considerably with escape responses with a large stage 1 angle in terms of turning rates, distance covered and the relationship between these rates. Therefore, these two behaviours can be considered kinematically comparable, suggesting that air-breathing in this species is followed by escape-like C-start motions, presumably to minimise time at the surface and exposure to avian predators. These findings show that C-starts can occur in a variety of contexts in which fish may need to get away from areas of potential danger. PMID:25527644

  14. Seasonal variability of Martian ion escape through the plume and tail from MAVEN observations

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Fang, X.; Brain, D. A.; McFadden, J. P.; Halekas, J. S.; Connerney, J. E. P.; Eparvier, F.; Andersson, L.; Mitchell, D.; Jakosky, B. M.

    2017-04-01

    We study the Mars Atmosphere and Volatile Evolution spacecraft observations of Martian planetary ion escape during two time periods: 11 November 2014 to 19 March 2015 and 4 June 2015 to 24 October 2015, with the focus on understanding the seasonal variability of Martian ion escape in response to the solar extreme ultraviolet (EUV) flux. We organize the >6 eV O+ ion data by the upstream electric field direction to estimate the escape rates through the plume and tail. To investigate the ion escape dependence on the solar EUV flux, we constrain the solar wind dynamic pressure and interplanetary magnetic filed strength and compare the ion escape rates through the plume and tail in different energy ranges under high and low EUV conditions. We found that the total >6 eV O+ escape rate increases from 2 to 3 × 1024 s-1 as the EUV irradiance increases by almost the same factor, mostly on the <1 keV tailward escape. The plume escape rate does not vary significantly with EUV. The relative contribution from the plume to the total escape varies between 30% and 20% from low to high EUV. Our results suggest that the Martian ion escape is sensitive to the seasonal EUV variation, and the contribution from plume escape becomes more important under low EUV conditions.

  15. Diversity of the Lyman continuum escape fractions of high-z galaxies and its origins

    NASA Astrophysics Data System (ADS)

    Sumida, Takumi; Kashino, Daichi; Hasegawa, Kenji

    2018-04-01

    The Lyman continuum (LyC) escape fraction is a key quantity to determine the contribution of galaxies to cosmic reionization. It has been known that the escape fractions estimated by observations and numerical simulations show a large diversity. However, the origins of the diversity are still uncertain. In this work, to understand what quantities of galaxies are responsible for controlling the escape fraction, we numerically evaluate the escape fraction by performing ray-tracing calculation with simplified disc galaxy models. With a smooth disc model, we explore the dependence of the escape fraction on the disposition of ionizing sources and find that the escape fraction varies up to ˜3 orders of magnitude. It is also found that the halo mass dependence of disc scale height determines whether the escape fraction increases or decreases with halo mass. With a clumpy disc model, it turns out that the escape fraction increases as the clump mass fraction increases because the density in the inter-clump region decreases. In addition, we find that clumpiness regulates the escape fraction via two ways when the total clump mass dominates the total gas mass; the escape fraction is controlled by the covering factor of clumps if the clumps are dense sufficient to block LyC photons, otherwise the clumpiness works to reduce the escape fraction by increasing the total number of recombination events in a galaxy.

  16. HIV evolution in early infection: selection pressures, patterns of insertion and deletion, and the impact of APOBEC.

    PubMed

    Wood, Natasha; Bhattacharya, Tanmoy; Keele, Brandon F; Giorgi, Elena; Liu, Michael; Gaschen, Brian; Daniels, Marcus; Ferrari, Guido; Haynes, Barton F; McMichael, Andrew; Shaw, George M; Hahn, Beatrice H; Korber, Bette; Seoighe, Cathal

    2009-05-01

    The pattern of viral diversification in newly infected individuals provides information about the host environment and immune responses typically experienced by the newly transmitted virus. For example, sites that tend to evolve rapidly across multiple early-infection patients could be involved in enabling escape from common early immune responses, could represent adaptation for rapid growth in a newly infected host, or could represent reversion from less fit forms of the virus that were selected for immune escape in previous hosts. Here we investigated the diversification of HIV-1 env coding sequences in 81 very early B subtype infections previously shown to have resulted from transmission or expansion of single viruses (n = 78) or two closely related viruses (n = 3). In these cases, the sequence of the infecting virus can be estimated accurately, enabling inference of both the direction of substitutions as well as distinction between insertion and deletion events. By integrating information across multiple acutely infected hosts, we find evidence of adaptive evolution of HIV-1 env and identify a subset of codon sites that diversified more rapidly than can be explained by a model of neutral evolution. Of 24 such rapidly diversifying sites, 14 were either i) clustered and embedded in CTL epitopes that were verified experimentally or predicted based on the individual's HLA or ii) in a nucleotide context indicative of APOBEC-mediated G-to-A substitutions, despite having excluded heavily hypermutated sequences prior to the analysis. In several cases, a rapidly evolving site was embedded both in an APOBEC motif and in a CTL epitope, suggesting that APOBEC may facilitate early immune escape. Ten rapidly diversifying sites could not be explained by CTL escape or APOBEC hypermutation, including the most frequently mutated site, in the fusion peptide of gp41. We also examined the distribution, extent, and sequence context of insertions and deletions, and we provide evidence that the length variation seen in hypervariable loop regions of the envelope glycoprotein is a consequence of selection and not of mutational hotspots. Our results provide a detailed view of the process of diversification of HIV-1 following transmission, highlighting the role of CTL escape and hypermutation in shaping viral evolution during the establishment of new infections.

  17. HIV Evolution in Early Infection: Selection Pressures, Patterns of Insertion and Deletion, and the Impact of APOBEC

    PubMed Central

    Wood, Natasha; Bhattacharya, Tanmoy; Keele, Brandon F.; Giorgi, Elena; Liu, Michael; Gaschen, Brian; Daniels, Marcus; Ferrari, Guido; Haynes, Barton F.; McMichael, Andrew; Shaw, George M.; Hahn, Beatrice H.; Korber, Bette; Seoighe, Cathal

    2009-01-01

    The pattern of viral diversification in newly infected individuals provides information about the host environment and immune responses typically experienced by the newly transmitted virus. For example, sites that tend to evolve rapidly across multiple early-infection patients could be involved in enabling escape from common early immune responses, could represent adaptation for rapid growth in a newly infected host, or could represent reversion from less fit forms of the virus that were selected for immune escape in previous hosts. Here we investigated the diversification of HIV-1 env coding sequences in 81 very early B subtype infections previously shown to have resulted from transmission or expansion of single viruses (n = 78) or two closely related viruses (n = 3). In these cases, the sequence of the infecting virus can be estimated accurately, enabling inference of both the direction of substitutions as well as distinction between insertion and deletion events. By integrating information across multiple acutely infected hosts, we find evidence of adaptive evolution of HIV-1 env and identify a subset of codon sites that diversified more rapidly than can be explained by a model of neutral evolution. Of 24 such rapidly diversifying sites, 14 were either i) clustered and embedded in CTL epitopes that were verified experimentally or predicted based on the individual's HLA or ii) in a nucleotide context indicative of APOBEC-mediated G-to-A substitutions, despite having excluded heavily hypermutated sequences prior to the analysis. In several cases, a rapidly evolving site was embedded both in an APOBEC motif and in a CTL epitope, suggesting that APOBEC may facilitate early immune escape. Ten rapidly diversifying sites could not be explained by CTL escape or APOBEC hypermutation, including the most frequently mutated site, in the fusion peptide of gp41. We also examined the distribution, extent, and sequence context of insertions and deletions, and we provide evidence that the length variation seen in hypervariable loop regions of the envelope glycoprotein is a consequence of selection and not of mutational hotspots. Our results provide a detailed view of the process of diversification of HIV-1 following transmission, highlighting the role of CTL escape and hypermutation in shaping viral evolution during the establishment of new infections. PMID:19424423

  18. Stop or move: Defensive strategies in humans.

    PubMed

    Bastos, Aline F; Vieira, Andre S; Oliveira, Jose M; Oliveira, Leticia; Pereira, Mirtes G; Figueira, Ivan; Erthal, Fatima S; Volchan, Eliane

    2016-04-01

    Threatening cues and surrounding contexts trigger specific defensive response patterns. Potential threat evokes attentive immobility; attack evokes flight when escape is available and immobility when escape is blocked. Tonic immobility installs when threat is overwhelming and life-risky. In humans, reduced body sway characterizes attentive and tonic immobility, the former with bradycardia, and the later with expressive tachycardia. Here, we investigate human defensive strategies in the presence or absence of an escape route. We employed pictures depicting a man carrying a gun and worked with participants exposed to urban violence. In pictures simulating more possibility of escape, the gun was directed away from the observer; in those simulating higher risk and less chance of escape, the gun was directed toward the observer. Matched control pictures depicted similar layouts, but a non-lethal object substituted the gun. Posturographic and electrocardiographic recordings were collected. Amplitude of sway and heart rate were higher for gun directed-away and lower for gun direct-toward. Compared to their respective matched controls, there was a general increase in the amplitude of sway for the gun directed-away pictures; and a reduction in back-and-forth sway and in heart rate for gun directed-toward pictures. Taken together, those measures suggest that, when exposed to threat invading their margin of safety in a context indicating possible escape route, humans, as non-human species, engage in active escape, resembling the flight stage of the defensive cascade. When facing threat indicating less possibility of escape, humans present an immobile response with bradycardia. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2

    NASA Image and Video Library

    1996-10-30

    S96-18547 (30 Oct. 1996) --- Astronaut Kenneth D. Bowersox, STS-82 mission commander, chats with a crewmate (out of frame) prior to an emergency bailout training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, Bowersox and his crew simulated an emergency ejection, using the escape pole system on the middeck.

  20. Antidepressants at environmentally relevant concentrations affect predator avoidance behavior of larval fathead minnows (Pimephales promelas).

    USGS Publications Warehouse

    Furlong, Edward T.; Barber, Larry B.; Meghan R. McGee,; Megan A. Buerkley,; Matthew L. Julius,; Vajda, Alan M.; Heiko L. Schoenfuss,; Schultz, Melissa M.; Norris, David O.

    2009-01-01

    The effects of embryonic and larval exposure to environmentally relevant (ng/L) concentrations of common antidepressants, fluoxetine, sertraline, venlafaxine, and bupropion (singularly and in mixture) on C-start escape behavior were evaluated in fathead minnows (Pimephales promelas). Embryos (postfertilization until hatching) were exposed for 5 d and, after hatching, were allowed to grow in control well water until 12 d old. Similarly, posthatch fathead minnows were exposed for 12 d to these compounds. High-speed (1,000 frames/s) video recordings of escape behavior were collected and transferred to National Institutes of Health Image for frame-by- frame analysis of latency periods, escape velocities, and total escape response (combination of latency period and escape velocity). When tested 12 d posthatch, fluoxetine and venlafaxine adversely affected C-start performance of larvae exposed as embryos. Conversely, larvae exposed for 12 d posthatch did not exhibit altered escape responses when exposed to fluoxetine but were affected by venlafaxine and bupropion exposure. Mixtures of these four antidepressant pharmaceuticals slowed predator avoidance behaviors in larval fathead minnows regardless of the exposure window. The direct impact of reduced C-start performance on survival and, ultimately, reproductive fitness provides an avenue to assess the ecological relevance of exposure in an assay of relatively short duration.

  1. Antidepressants at environmentally relevant concentrations affect predator avoidance behavior of larval fathead minnows (Pimephales promelas)

    USGS Publications Warehouse

    Painter, M.M.; Buerkley, M.A.; Julius, M.L.; Vajda, A.M.; Norris, D.O.; Barber, L.B.; Furlong, E.T.; Schultz, M.M.; Schoenfuss, H.L.

    2009-01-01

    The effects of embryonic and larval exposure to environmentally relevant (ng/L) concentrations of common antidepressants, fluoxetine, sertraline, venlafaxine, and bupropion (singularly and in mixture) on C-start escape behavior were evaluated in fathead minnows (Pimephales promelas). Embryos (postfertilization until hatching) were exposed for 5 d and, after hatching, were allowed to grow in control well water until 12 d old. Similarly, posthatch fathead minnows were exposed for 12 d to these compounds. High-speed (1,000 frames/s) video recordings of escape behavior were collected and transferred to National Institutes of Health Image for frame-by-frame analysis of latency periods, escape velocities, and total escape response (combination of latency period and escape velocity). When tested 12 d posthatch, fluoxetine and venlafaxine adversely affected C-start performance of larvae exposed as embryos. Conversely, larvae exposed for 12 d posthatch did not exhibit altered escape responses when exposed to fluoxetine but were affected by venlafaxine and bupropion exposure. Mixtures of these four antidepressant pharmaceuticals slowed predator avoidance behaviors in larval fathead minnows regardless of the exposure window. The direct impact of reduced C-start performance on survival and, ultimately, reproductive fitness provides an avenue to assess the ecological relevance of exposure in an assay of relatively short duration. ?? 2009 SETAC.

  2. Rapid selection of escape mutants by the first CD8 T cell responses in acute HIV-1 infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korber, Bette Tina Marie

    2008-01-01

    The recent failure of a vaccine that primes T cell responses to control primary HIV-1 infection has raised doubts about the role of CD8+ T cells in early HIV-1 infection. We studied four patients who were identified shortly after HIV-1 infection and before seroconversion. In each patient there was very rapid selection of multiple HIV-1 escape mutants in the transmitted virus by CD8 T cells, including examples of complete fixation of non-synonymous substitutions within 2 weeks. Sequencing by single genome amplification suggested that the high rate of virus replication in acute infection gave a selective advantage to virus molecules thatmore » contained simultaneous and gained sequential T cell escape mutations. These observations show that whilst early HIV-1 specific CD8 T cells can act against virus, rapid escape means that these T cell responses are unlikely to benefit the patient and may in part explain why current HIV-1 T cell vaccines may not be protective.« less

  3. Strain, Sex, and Open-Field Behavior: Factors Underlying the Genetic Susceptibility to Helplessness

    PubMed Central

    Padilla, Eimeira; Barrett, Douglas W.; Shumake, Jason D.; Gonzalez-Lima, F.

    2009-01-01

    Learned helplessness represents a failure to escape after exposure to inescapable stress and may model human psychiatric disorders related to stress. Previous work has demonstrated individual differences in susceptibility to learned helplessness. In this study, we assessed different factors associated with this susceptibility, including strain, sex, and open-field behavior. Testing of three rat strains (Holtzman, Long-Evans, and Sprague-Dawley) revealed that Holtzman rats were the most susceptible to helplessness. Holtzman rats not only had the longest escape latencies following inescapable shock, but also showed spontaneous escape deficits in the absence of prior shock when tested with a fixed-ratio 2 (FR2) running response. Moreover, when tested with fixed-ratio 1 (FR1) running—an easy response normally unaffected by helplessness training in rats—inescapable shock significantly increased the escape latencies of Holtzman rats. Within the Holtzman strain, we confirmed recent findings that females showed superior escape performance and therefore appeared more resistant to helplessness than males. However, regression and covariance analyses suggest that this sex difference may be explained by more baseline ambulatory activity among females. In addition, some indices of novelty reactivity (greater exploration of novel vs. familiar open-field) predicted subsequent helpless behavior. In conclusion, Holtzman rats, and especially male Holtzman rats, have a strong predisposition to become immobile when stressed which interferes with their ability to learn active escape responses. The Holtzman strain therefore appears to be a commercially available model for studying susceptibility to helplessness in males, and novelty-seeking may be a marker of this susceptibility. PMID:19428642

  4. The Cell's Sophisticated Army to Defend Against Assaults on DNAThe Cell's Sophisticated Army to Defend Against Assaults on DNA | Center for Cancer Research

    Cancer.gov

    The maintenance of genome integrity and function is essen-tial for the survival of cells and organisms. Any damage to our genetic material must be immediately sensed and repaired to preserve a cell’s func-tional integrity. Cells are constantly faced with the challenge of protecting their DNA from assaults by damaging chemicals and ultraviolet light. DNA damage that escapes repair can lead to a variety of genetic disorders and diseases, particularly cancer. To avoid this catastrophe, the cell employs an army of DNA repair factors that “rush to the scene” and initiate a cascade of events to repair the damage. Exactly how different repair factors sense DNA damage and orchestrate their concert-ed response is not well understood.

  5. STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2

    NASA Image and Video Library

    1996-10-30

    S96-18563 (30 Oct. 1996) --- Astronaut Steven L. Smith, mission specialist, participates in a training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, Smith and his crewmates simulated an emergency ejection, using the escape pole (left center in hatchway) on the mid deck, as well as other phases of their scheduled February mission.

  6. Effects of alprazolam and cannabinoid-related compounds in an animal model of panic attack.

    PubMed

    Batista, Luara A; Haibara, Andrea S; Schenberg, Luiz C; Moreira, Fabricio A

    2017-01-15

    Selective stimulation of carotid chemoreceptors by intravenous infusion of low doses of potassium cyanide (KCN) produces short-lasting escape responses that have been proposed as a model of panic attack. In turn, preclinical studies suggest that facilitation of the endocannabinoid system attenuate panic-like responses. Here, we compared the effects of cannabinoid-related compounds to those of alprazolam, a clinically effective panicolytic, on the duration of the escape reaction induced by intravenous infusion of KCN (80μg) in rats. Alprazolam (1, 2, 4mg/kg) decreased escape duration at doses that did not alter basal locomotor activity. URB597 (0.1, 0.3, 1mg/kg; inhibitor of anandamide hydrolysis), WIN55,212-2 (0.1, 0.3, 1mg/kg; synthetic cannabinoid), arachidonoyl-serotonin (1, 2.5, 5mg/kg; dual TRPV1 and anandamide hydrolysis inhibitor), and cannabidiol (5, 10, 20, 40mg/kg; a phytocannabinoid) did not decrease escape duration. Alprazolam also prevented the increase in arterial pressure evoked by KCN, while bradycardia was unchanged. This study reinforces the validity of the KCN-evoked escape as a model of panic attack. However, it does not support a role for the endocannabinoid system in this behavioral response. These results might have implications for the screening of novel treatments for panic disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Visual stimuli induced by self-motion and object-motion modify odour-guided flight of male moths (Manduca sexta L.).

    PubMed

    Verspui, Remko; Gray, John R

    2009-10-01

    Animals rely on multimodal sensory integration for proper orientation within their environment. For example, odour-guided behaviours often require appropriate integration of concurrent visual cues. To gain a further understanding of mechanisms underlying sensory integration in odour-guided behaviour, our study examined the effects of visual stimuli induced by self-motion and object-motion on odour-guided flight in male M. sexta. By placing stationary objects (pillars) on either side of a female pheromone plume, moths produced self-induced visual motion during odour-guided flight. These flights showed a reduction in both ground and flight speeds and inter-turn interval when compared with flight tracks without stationary objects. Presentation of an approaching 20 cm disc, to simulate object-motion, resulted in interrupted odour-guided flight and changes in flight direction away from the pheromone source. Modifications of odour-guided flight behaviour in the presence of stationary objects suggest that visual information, in conjunction with olfactory cues, can be used to control the rate of counter-turning. We suggest that the behavioural responses to visual stimuli induced by object-motion indicate the presence of a neural circuit that relays visual information to initiate escape responses. These behavioural responses also suggest the presence of a sensory conflict requiring a trade-off between olfactory and visually driven behaviours. The mechanisms underlying olfactory and visual integration are discussed in the context of these behavioural responses.

  8. Predator avoidance performance of larval fathead minnows (Pimephales promelas) following short-term exposure to estrogen mixtures

    USGS Publications Warehouse

    McGee, M.R.; Julius, M.L.; Vajda, A.M.; Norris, D.O.; Barber, L.B.; Schoenfuss, H.L.

    2009-01-01

    Aquatic organisms exposed to endocrine disrupting compounds (EDCs) at early life-stages may have reduced reproductive fitness via disruption of reproductive and non-reproductive behavioral and physiological pathways. Survival to reproductive age relies upon optimal non-reproductive trait expression, such as adequate predator avoidance responses, which may be impacted through EDC exposure. During a predator–prey confrontation, larval fish use an innate C-start escape behavior to rapidly move away from an approaching threat. We tested the hypotheses that (1) larval fathead minnows exposed to estrogens, a primary class of EDCs, singularly or in mixture, suffer a reduced ability to perform an innate C-start behavior when faced with a threat stimulus; (2) additive effects will cause greater reductions in C-start behavior; and (3) effects will differ among developmental stages. In this study, embryos (post-fertilization until hatching) were exposed for 5 days to environmentally relevant concentrations of estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2) singularly and in mixture. Exposed embryos were allowed to hatch and grow in control well water until 12 days old. Similarly, post-hatch fathead minnows were exposed for 12 days to these compounds. High-speed (1000 frames/s) video recordings of escape behavior were collected and transferred to National Institutes of Health Image for frame-by-frame analysis of latency period, escape velocity, and total escape response (combination of latency period and escape velocity). When tested 12 days post-hatch, only E1 adversely affected C-start performance of larvae exposed as embryos. Conversely, larvae exposed for 12 days post-hatch did not exhibit altered escape responses when exposed to E1, while adverse responses were seen in E2 and the estrogen mixture. Ethinylestradiol exposure did not elicit changes in escape behaviors at either developmental stage. The direct impact of reduced C-start performance on survival, and ultimately, reproductive fitness provides an avenue to assess the ecological relevance of exposure in an assay of relatively short duration.

  9. Escape conditioning and low-frequency whole-body vibration - The effects of frequency, amplitude, and controls for noise and activation.

    NASA Technical Reports Server (NTRS)

    Wike, E. L.; Wike, S. S.

    1972-01-01

    Seven experiments are reported on low-frequency whole-body vibration and rats' escape conditioning in a modified Skinner box. In the first three studies, conditioning was observed but was independent of frequency. In experiment four, the number of escape responses was directly related to vibration amplitude. Experiment five was a control for vibration noise and noise termination; experiments six and seven studied vibration-induced activation. Noise termination did not produce conditioning. In experiment six, subjects made more responses when responding led to termination than when it did not. In experiment seven, subjects preferred a bar which terminated vibration to one which did not.

  10. Relationship between Functional Profile of HIV-1 Specific CD8 T Cells and Epitope Variability with the Selection of Escape Mutants in Acute HIV-1 Infection

    PubMed Central

    Goonetilleke, Nilu; Liu, Michael K. P.; Turnbull, Emma L.; Salazar-Gonzalez, Jesus F.; Hawkins, Natalie; Self, Steve; Watson, Sydeaka; Betts, Michael R.; Gay, Cynthia; McGhee, Kara; Pellegrino, Pierre; Williams, Ian; Tomaras, Georgia D.; Haynes, Barton F.; Gray, Clive M.; Borrow, Persephone; Roederer, Mario; McMichael, Andrew J.; Weinhold, Kent J.

    2011-01-01

    In the present study, we analyzed the functional profile of CD8+ T-cell responses directed against autologous transmitted/founder HIV-1 isolates during acute and early infection, and examined whether multifunctionality is required for selection of virus escape mutations. Seven anti-retroviral therapy-naïve subjects were studied in detail between 1 and 87 weeks following onset of symptoms of acute HIV-1 infection. Synthetic peptides representing the autologous transmitted/founder HIV-1 sequences were used in multiparameter flow cytometry assays to determine the functionality of HIV-1-specific CD8+ T memory cells. In all seven patients, the earliest T cell responses were predominantly oligofunctional, although the relative contribution of multifunctional cell responses increased significantly with time from infection. Interestingly, only the magnitude of the total and not of the poly-functional T-cell responses was significantly associated with the selection of escape mutants. However, the high contribution of MIP-1β-producing CD8+ T-cells to the total response suggests that mechanisms not limited to cytotoxicity could be exerting immune pressure during acute infection. Lastly, we show that epitope entropy, reflecting the capacity of the epitope to tolerate mutational change and defined as the diversity of epitope sequences at the population level, was also correlated with rate of emergence of escape mutants. PMID:21347345

  11. Flexible body dynamics of the goldfish C-start: implications for reticulospinal command mechanisms.

    PubMed

    Eaton, R C; DiDomenico, R; Nissanov, J

    1988-08-01

    As a model for learning how reticulospinal networks coordinate movement, we have analyzed the function of the Mauthner (M-) neurons in the escape response of the goldfish. We used water displacements of 3-6 micron to elicit C-start escape responses. These responses consist of 2 fundamental movements that grade into each other: Stage 1 lasts 15-40 msec and rotates the body 30 degrees-100 degrees about the center of mass; stage 2 is an axial acceleration that moves the center of mass 2-6 cm. Combined, the 2 stages result in trajectory turns ranging from 15 degrees to 135 degrees. Thus, these data show that M-initiated C-starts are not fixed movement patterns. The durations of stage 1 body muscle EMGs were correlated with turn angles achieved during stage 1. Since variable stage 1 EMGs are not seen when the M-cell is triggered by itself, other circuits, independent of the M-cell, must control the extent of the initial turn, and consequently escape trajectory. Furthermore, turning angles of stages 1 and 2 were correlated, allowing escape trajectory to be predicted, on average, 26 msec after movement started. This suggests that the commands for escape trajectory should be organized by the end of stage 1. In concert with this, the time of onset of the stage 2 EMG preceded the stage 2 onset by a range with a mean of 28.4 msec, typically putting the stage 2 command at the beginning of stage 1 movement. Thus, stage 2 initiation does not require motion-dependent feedback. Our findings indicate that the Mauthner cell initiates the first of a series of motor commands that establish the initial left-right decision of the escape sequence from the side of the stimulus, whereas parallel circuits simultaneously organize the command controlling the escape angle.

  12. Distinct Escape Pathway by Hepatitis C Virus Genotype 1a from a Dominant CD8+ T Cell Response by Selection of Altered Epitope Processing.

    PubMed

    Walker, Andreas; Skibbe, Kathrin; Steinmann, Eike; Pfaender, Stephanie; Kuntzen, Thomas; Megger, Dominik A; Groten, Svenja; Sitek, Barbara; Lauer, Georg M; Kim, Arthur Y; Pietschmann, Thomas; Allen, Todd M; Timm, Joerg

    2016-01-01

    Antiviral CD8(+) T cells are a key component of the adaptive immune response against HCV, but their impact on viral control is influenced by preexisting viral variants in important target epitopes and the development of viral escape mutations. Immunodominant epitopes highly conserved across genotypes therefore are attractive for T cell based prophylactic vaccines. Here, we characterized the CD8(+) T cell response against the highly conserved HLA-B*51-restricted epitope IPFYGKAI1373-1380 located in the helicase domain of NS3 in people who inject drugs (PWID) exposed predominantly to HCV genotypes 1a and 3a. Despite this epitope being conserved in both genotypes, the corresponding CD8(+) T cell response was detected only in PWID infected with genotype 3a and HCV-RNA negative PWID, but not in PWID infected with genotype 1a. In genotype 3a, the detection of strong CD8(+) T cell responses was associated with epitope variants in the autologous virus consistent with immune escape. Analysis of viral sequences from multiple cohorts confirmed HLA-B*51-associated escape mutations inside the epitope in genotype 3a, but not in genotype 1a. Here, a distinct substitution in the N-terminal flanking region located 5 residues upstream of the epitope (S1368P; P = 0.00002) was selected in HLA-B*51-positive individuals. Functional assays revealed that the S1368P substitution impaired recognition of target cells presenting the endogenously processed epitope. The results highlight that, despite an epitope being highly conserved between two genotypes, there are major differences in the selected viral escape pathways and the corresponding T cell responses. HCV is able to evolutionary adapt to CD8(+) T cell immune pressure in multiple ways. Beyond selection of mutations inside targeted epitopes, this study demonstrates that HCV inhibits epitope processing by modification of the epitope flanking region under T cell immune pressure. Selection of a substitution five amino acids upstream of the epitope underlines that efficient antigen presentation strongly depends on its larger sequence context and that blocking of the multistep process of antigen processing by mutation is exploited also by HCV. The pathways to mutational escape of HCV are to some extent predictable but are distinct in different genotypes. Importantly, the selected escape pathway of HCV may have consequences for the destiny of antigen-specific CD8(+) T cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Memory monitoring by animals and humans

    NASA Technical Reports Server (NTRS)

    Smith, J. D.; Shields, W. E.; Allendoerfer, K. R.; Washburn, D. A.; Rumbaugh, D. M. (Principal Investigator)

    1998-01-01

    The authors asked whether animals and humans would use similarly an uncertain response to escape indeterminate memories. Monkeys and humans performed serial probe recognition tasks that produced differential memory difficulty across serial positions (e.g., primacy and recency effects). Participants were given an escape option that let them avoid any trials they wished and receive a hint to the trial's answer. Across species, across tasks, and even across conspecifics with sharper or duller memories, monkeys and humans used the escape option selectively when more indeterminate memory traces were probed. Their pattern of escaping always mirrored the pattern of their primary memory performance across serial positions. Signal-detection analyses confirm the similarity of the animals' and humans' performances. Optimality analyses assess their efficiency. Several aspects of monkeys' performance suggest the cognitive sophistication of their decisions to escape.

  14. Mechanical Conflict System: A Novel Operant Method for the Assessment of Nociceptive Behavior

    PubMed Central

    Harte, Steven E.; Meyers, Jessica B.; Donahue, Renee R.; Taylor, Bradley K.; Morrow, Thomas J.

    2016-01-01

    A new operant test for preclinical pain research, termed the Mechanical Conflict System (MCS), is presented. Rats were given a choice either to remain in a brightly lit compartment or to escape to a dark compartment by crossing an array of height-adjustable nociceptive probes. Latency to escape the light compartment was evaluated with varying probe heights (0, .5, 1, 2, 3, and 4 mm above compartment floor) in rats with neuropathic pain induced by constriction nerve injury (CCI) and in naive control rats. Escape responses in CCI rats were assessed following intraperitoneal administration of pregabalin (10 and 30 mg/kg), morphine (2.5 and 5 mg/kg), and the tachykinin NK1 receptor antagonist, RP 67580 (1 and 10 mg/kg). Results indicate that escape latency increased as a function of probe height in both naive and CCI rats. Pregabalin (10 and 30 mg/kg) and morphine (5 mg/kg), but not RP 67580, decreased latency to escape in CCI rats suggesting an antinociceptive effect. In contrast, morphine (10 mg/kg) but not pregabalin (30 mg/kg) increased escape latency in naive rats suggesting a possible anxiolytic action of morphine in response to light-induced fear. No order effects following multiple test sessions were observed. We conclude that the MCS is a valid method to assess behavioral signs of affective pain in rodents. PMID:26915030

  15. Interaction between μ-opioid and 5-HT1A receptors in the regulation of panic-related defensive responses in the rat dorsal periaqueductal grey.

    PubMed

    Rangel, Marcel P; Zangrossi, Hélio; Roncon, Camila M; Graeff, Frederico G; Audi, Elisabeth A

    2014-12-01

    A wealth of evidence indicates that the activation of 5-HT1A and 5-HT2A receptors in the dorsal periaqueductal grey matter (dPAG) inhibits escape, a panic-related defensive behaviour. Results that were previously obtained with the elevated T-maze test of anxiety/panic suggest that 5-HT1A and μ-opioid receptors in this midbrain area work together to regulate this response. To investigate the generality of this finding, we assessed whether the same cooperative mechanism is engaged when escape is evoked by a different aversive stimulus electrical stimulation of the dPAG. Administration of the μ-receptor blocker CTOP into the dPAG did not change the escape threshold, but microinjection of the μ-receptor agonist DAMGO (0.3 and 0.5 nmol) or the 5-HT1A receptor agonist 8-OHDPAT (1.6 nmol) increased this index, indicating a panicolytic-like effect. Pretreatment with CTOP antagonised the anti-escape effect of 8-OHDPAT. Additionally, combined administration of subeffective doses of DAMGO and 8-OHDPAT increased the escape threshold, indicating drug synergism. Therefore, regardless of the aversive nature of the stimulus, μ-opioid and 5-HT1A receptors cooperatively act to regulate escape behaviour. A better comprehension of this mechanism might allow for new therapeutic strategies for panic disorder. © The Author(s) 2014.

  16. Role of the ionosphere for the atmospheric evolution of planets.

    PubMed

    Yamauchi, Masatoshi; Wahlund, Jan-Erik

    2007-10-01

    We have synthesized current understanding, mainly observations, with regard to ion escape mechanisms to space from the ionosphere and exosphere of Titan and Earth-type planets, with the intent to provide an improved input for models of atmospheric evolution on early Earth and Earth-type planets and exoplanets. We focus on the role of the ionosphere and its non-linear response to solar parameters, all of which have been underestimated in current models of ancient atmospheric escape (4 billion years ago). Factors that have been overlooked include the following: (1) Much larger variation of O(+) outflow than H(+) outflow from the terrestrial ionosphere, depending on solar and geomagnetic activities (an important consideration when attempting to determine the oxidized state of the atmosphere of early Earth); (2) magnetization of the ionopause, which keeps ionospheric ions from escaping and controls many other escape processes; (3) extra ionization by, for example, the critical ionization velocity mechanism, which expands the ionosphere to greater altitudes than current models predict; and (4) the large escape of cold ions from the dense, expanded ionosphere of Titan. Here we offer, as a guideline for quantitative simulations, a qualitative diagnosis of increases or decreases of non-thermal escape related to the ionosphere for magnetized and unmagnetized planets in response to changes in solar parameters (i.e., solar EUV/FUV flux, solar wind dynamic pressure, and interplanetary magnetic field).

  17. Increasingly successful highly active antiretroviral therapy delays the emergence of new HLA class I-associated escape mutations in HIV-1.

    PubMed

    Knapp, David J H F; Brumme, Zabrina L; Huang, Sheng Yuan; Wynhoven, Brian; Dong, Winnie W Y; Mo, Theresa; Harrigan, P Richard; Brumme, Chanson J

    2012-06-01

    HLA class I-restricted cytotoxic T lymphocytes and highly active antiretroviral therapy (HAART) exert strong selective pressures on human immunodeficiency virus type 1 (HIV-1), leading to escape mutations compromising virologic control. Immune responses continue to shape HIV-1 evolution after HAART initiation, but the extent and rate at which this occurs remain incompletely quantified. Here, we characterize the incidence and clinical correlates of HLA-associated evolution in HIV-1 Pol after HAART initiation in a large, population-based observational cohort. British Columbia HAART Observational, Medical Evaluation and Research cohort participants with available HLA class I types and longitudinal posttherapy protease/reverse transcriptase sequences were studied (n = 619; median, 5 samples per patient and 5.2 years of follow-up). HLA-associated polymorphisms were defined according to published reference lists. Rates and correlates of immune-mediated HIV-1 evolution were investigated using multivariate Cox proportional hazard models incorporating baseline and time-dependent plasma viral load and CD4 response data. New HLA-associated escape events were observed in 269 (43%) patients during HAART and occurred at 49 of 63 (78%) investigated immune-associated sites in Pol. In time-dependent analyses adjusting for baseline factors, poorer virologic, but not immunologic, response to HAART was associated with increased risk of immune escape of 1.9-fold per log(10) viral load increment (P < .0001). Reversion of escape mutations following HAART initiation was extremely rare. HLA-associated HIV-1 evolution continues during HAART to an extent that is inversely related to the virologic success of therapy. Minimizing the degree of immune escape could represent a secondary benefit of effective HAART.

  18. STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2

    NASA Image and Video Library

    1996-10-30

    S96-18557 (30 Oct. 1996) --- Astronauts Steven A. Hawley (left) and Gregory J. Harbaugh participate in a training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, the two STS-82 mission specialists and their crewmates simulated an emergency ejection, using an escape pole on the mid deck, as well as other phases of their scheduled February mission.

  19. Learned helplessness at fifty: Insights from neuroscience.

    PubMed

    Maier, Steven F; Seligman, Martin E P

    2016-07-01

    Learned helplessness, the failure to escape shock induced by uncontrollable aversive events, was discovered half a century ago. Seligman and Maier (1967) theorized that animals learned that outcomes were independent of their responses-that nothing they did mattered-and that this learning undermined trying to escape. The mechanism of learned helplessness is now very well-charted biologically, and the original theory got it backward. Passivity in response to shock is not learned. It is the default, unlearned response to prolonged aversive events and it is mediated by the serotonergic activity of the dorsal raphe nucleus, which in turn inhibits escape. This passivity can be overcome by learning control, with the activity of the medial prefrontal cortex, which subserves the detection of control leading to the automatic inhibition of the dorsal raphe nucleus. So animals learn that they can control aversive events, but the passive failure to learn to escape is an unlearned reaction to prolonged aversive stimulation. In addition, alterations of the ventromedial prefrontal cortex-dorsal raphe pathway can come to subserve the expectation of control. We speculate that default passivity and the compensating detection and expectation of control may have substantial implications for how to treat depression. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Ventilation and oxygen uptake during escape from a civil aircraft.

    PubMed

    Ross, J A; Watt, S J; Henderson, G D; Vant, J H

    1990-01-01

    To help develop a specification for equipment providing personal respiratory protection in the event of aircraft fire a study was carried out to quantify ventilation and oxygen consumption during escape from a Trident aircraft. Data were gathered using the P.K. Morgan 'Oxylog' apparatus after its response time to rapid changes in inspired to expired oxygen concentration difference was assessed using a bench test. The 'Oxylog' had a lag time of 30-32 s and a 5-95% response typified by a half time of 20 s. The data gathered were corrected in the light of these findings. Fourteen male subjects aged 17-38 years were studied under two conditions. Four mass evacuations each involving 40 people; a total of nine subjects escaping from the front rank over eight seats being monitored. Six evacuations each involving only two people escaping from the rear of the cabin; a total of 11 subjects escaping over 14 seats being monitored. Escape was made over the seat backs, down an escape chute to a position 12 m from the base of the chute. Resting minute ventilation (mean 16.7 1 STPD) and oxygen consumption (mean 0.41 min-1 STPD) were similar before both evacuations. There were no significant differences between the two conditions either during, or up to 180 s after escape. Ventilation and oxygen consumption were greatest in the recovery period. The highest oxygen consumption seen was 2.08 l min-1 and maximum minute ventilation was 641. Mean total oxygen consumption for the escape and a 150 s recovery period was 2.41 l (s.d. 0.64, max. 3.11) for the mass evacuation and 2.97 l (s.d. 0.68, max. 4.09) for the two person evacuation. The mean total amount of gas inhaled during the same time period was 89.3 l (s.d. 25.6, max. 121.3) for the mass evacuation and 99.01 (s.d. 26.2, max. 137.3) for the other. These was no correlation between ventilation or oxygen consumption and either escape time, body weight, height or age.

  1. Hairworm anti-predator strategy: a study of causes and consequences.

    PubMed

    Ponton, F; Lebarbenchon, C; Lefèvre, T; Thomas, F; Duneau, D; Marché, L; Renault, L; Hughes, D P; Biron, D G

    2006-11-01

    One of the most fascinating anti-predator responses displayed by parasites is that of hairworms (Nematomorpha). Following the ingestion of the insect host by fish or frogs, the parasitic worm is able to actively exit both its host and the gut of the predator. Using as a model the hairworm, Paragordius tricuspidatus, (parasitizing the cricket Nemobius sylvestris) and the fish predator Micropterus salmoïdes, we explored, with proteomics tools, the physiological basis of this anti-predator response. By examining the proteome of the parasitic worm, we detected a differential expression of 27 protein spots in those worms able to escape the predator. Peptide Mass Fingerprints of candidate protein spots suggest the existence of an intense muscular activity in escaping worms, which functions in parallel with their distinctive biology. In a second step, we attempted to determine whether the energy expended by worms to escape the predator is traded off against its reproductive potential. Remarkably, the number of offspring produced by worms having escaped a predator was not reduced compared with controls.

  2. An Integrated Approach to Modeling Solar Electric Propulsion Vehicles During Long Duration, Near-Earth Orbit Transfers

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Hojnicki, Jeffrey S.; Sjauw, Waldy K.

    2014-01-01

    Recent NASA interest in utilizing solar electronic propulsion (SEP) technology to transfer payloads, e.g. from low-Earth orbit (LEO) to higher energy geostationary-Earth orbit (GEO) or to Earth escape, has necessitated the development of high fidelity SEP vehicle models and simulations. These models and simulations need to be capable of capturing vehicle dynamics and sub-system interactions experienced during the transfer trajectories which are typically accomplished with continuous-burn (potentially interrupted by solar eclipse), long duration "spiral out" maneuvers taking several months or more to complete. This paper presents details of an integrated simulation approach achieved by combining a high fidelity vehicle simulation code with a detailed solar array model. The combined simulation tool gives researchers the functionality to study the integrated effects of various vehicle sub-systems (e.g. vehicle guidance, navigation and control (GN&C), electric propulsion system (EP)) with time varying power production. Results from a simulation model of a vehicle with a 50 kW class SEP system using the integrated tool are presented and compared to the results from another simulation model employing a 50 kW end-of-life (EOL) fixed power level assumption. These models simulate a vehicle under three degree of freedom dynamics (i.e. translational dynamics only) and include the effects of a targeting guidance algorithm (providing a "near optimal" transfer) during a LEO to near Earth escape (C (sub 3) = -2.0 km (sup 2) / sec (sup -2) spiral trajectory. The presented results include the impact of the fully integrated, time-varying solar array model (e.g. cumulative array degradation from traversing the Van Allen belts, impact of solar eclipses on the vehicle and the related temperature responses in the solar arrays due to operating in the Earth's thermal environment, high fidelity array power module, etc.); these are used to assess the impact on vehicle performance (i.e. propellant consumption) and transit times.

  3. Effects of Mutations on Replicative Fitness and Major Histocompatibility Complex Class I Binding Affinity Are Among the Determinants Underlying Cytotoxic-T-Lymphocyte Escape of HIV-1 Gag Epitopes.

    PubMed

    Du, Yushen; Zhang, Tian-Hao; Dai, Lei; Zheng, Xiaojuan; Gorin, Aleksandr M; Oishi, John; Wu, Ting-Ting; Yoshizawa, Janice M; Li, Xinmin; Yang, Otto O; Martinez-Maza, Otoniel; Detels, Roger; Sun, Ren

    2017-11-28

    Certain "protective" major histocompatibility complex class I (MHC-I) alleles, such as B*57 and B*27, are associated with long-term control of HIV-1 in vivo mediated by the CD8 + cytotoxic-T-lymphocyte (CTL) response. However, the mechanism of such superior protection is not fully understood. Here we combined high-throughput fitness profiling of mutations in HIV-1 Gag, in silico prediction of MHC-peptide binding affinity, and analysis of intraperson virus evolution to systematically compare differences with respect to CTL escape mutations between epitopes targeted by protective MHC-I alleles and those targeted by nonprotective MHC-I alleles. We observed that the effects of mutations on both viral replication and MHC-I binding affinity are among the determinants of CTL escape. Mutations in Gag epitopes presented by protective MHC-I alleles are associated with significantly higher fitness cost and lower reductions in binding affinity with respect to MHC-I. A linear regression model accounting for the effect of mutations on both viral replicative capacity and MHC-I binding can explain the protective efficacy of MHC-I alleles. Finally, we found a consistent pattern in the evolution of Gag epitopes in long-term nonprogressors versus progressors. Overall, our results suggest that certain protective MHC-I alleles allow superior control of HIV-1 by targeting epitopes where mutations typically incur high fitness costs and small reductions in MHC-I binding affinity. IMPORTANCE Understanding the mechanism of viral control achieved in long-term nonprogressors with protective HLA alleles provides insights for developing functional cure of HIV infection. Through the characterization of CTL escape mutations in infected persons, previous researchers hypothesized that protective alleles target epitopes where escape mutations significantly reduce viral replicative capacity. However, these studies were usually limited to a few mutations observed in vivo Here we utilized our recently developed high-throughput fitness profiling method to quantitatively measure the fitness of mutations across the entirety of HIV-1 Gag. The data enabled us to integrate the results with in silico prediction of MHC-peptide binding affinity and analysis of intraperson virus evolution to systematically determine the differences in CTL escape mutations between epitopes targeted by protective HLA alleles and those targeted by nonprotective HLA alleles. We observed that the effects of Gag epitope mutations on HIV replicative fitness and MHC-I binding affinity are among the major determinants of CTL escape. Copyright © 2017 Du et al.

  4. Cerebrospinal Fluid HIV Escape from Antiretroviral Therapy.

    PubMed

    Ferretti, Francesca; Gisslen, Magnus; Cinque, Paola; Price, Richard W

    2015-06-01

    CNS infection is a nearly constant facet of systemic CNS infection and is generally well controlled by suppressive systemic antiretroviral therapy (ART). However, there are instances when HIV can be detected in the cerebrospinal fluid (CSF) despite suppression of plasma viruses below the clinical limits of measurement. We review three types of CSF viral escape: asymptomatic, neuro-symptomatic, and secondary. The first, asymptomatic CSF escape, is seemingly benign and characterized by lack of discernable neurological deterioration or subsequent CNS disease progression. Neuro-symptomatic CSF escape is an uncommon, but important, entity characterized by new or progressive CNS disease that is critical to recognize clinically because of its management implications. Finally, secondary CSF escape, which may be even more uncommon, is defined by an increase of CSF HIV replication in association with a concomitant non-HIV infection, as a consequence of the local inflammatory response. Understanding these CSF escape settings not only is important for clinical diagnosis and management but also may provide insight into the CNS HIV reservoir.

  5. Split-second escape decisions in blue tits (Parus caeruleus)

    NASA Astrophysics Data System (ADS)

    Lind, Johan; Kaby, Ulrika; Jakobsson, Sven

    2002-07-01

    Bird mortality is heavily affected by birds of prey. Under attack, take-off is crucial for survival and even minor mistakes in initial escape response can have devastating consequences. Birds may respond differently depending on the character of the predator's attack and these split-second decisions were studied using a model merlin (Falco columbarius) that attacked feeding blue tits (Parus caeruleus) from two different attack angles in two different speeds. When attacked from a low attack angle they took off more steeply than when attacked from a high angle. This is the first study to show that escape behaviour also depends on predator attack speed. The blue tits responded to a high-speed attack by dodging sideways more often than when attacked at a low speed. Escape speed was not significantly affected by the different treatments. Although they have only a split-second before escaping an attack, blue tits do adjust their escape strategy to the prevailing attack conditions.

  6. Inferring HIV Escape Rates from Multi-Locus Genotype Data

    DOE PAGES

    Kessinger, Taylor A.; Perelson, Alan S.; Neher, Richard A.

    2013-09-03

    Cytotoxic T-lymphocytes (CTLs) recognize viral protein fragments displayed by major histocompatibility complex molecules on the surface of virally infected cells and generate an anti-viral response that can kill the infected cells. Virus variants whose protein fragments are not efficiently presented on infected cells or whose fragments are presented but not recognized by CTLs therefore have a competitive advantage and spread rapidly through the population. We present a method that allows a more robust estimation of these escape rates from serially sampled sequence data. The proposed method accounts for competition between multiple escapes by explicitly modeling the accumulation of escape mutationsmore » and the stochastic effects of rare multiple mutants. Applying our method to serially sampled HIV sequence data, we estimate rates of HIV escape that are substantially larger than those previously reported. The method can be extended to complex escapes that require compensatory mutations. We expect our method to be applicable in other contexts such as cancer evolution where time series data is also available.« less

  7. Analyzing Systems Integration Best Practices and Assessment in DoD Space Systems Acquisition

    DTIC Science & Technology

    2009-12-01

    satellite  Insufficient stress relief and insulation caused abrasion of wiring harness. C Product–Product: stress relief and insulation – wiring...delaminated during firing . This problem escaped qualification since slow heating rates (0.1–deg F/sec) used in the lab test provided time for the gas...to escape. Faster rates would have revealed the issue. E Product–Process: material – replace, firing ; rate – test B Process–Process: replace

  8. STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2

    NASA Image and Video Library

    1996-10-30

    S96-18556 (30 Oct. 1996) --- Astronauts Scott J. Horowitz (standing) and Kenneth D. Bowersox wind up suit donning for a training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, the STS-82 pilot and mission commander joined their crewmates in simulating an emergency ejection, using an escape pole on the mid deck, as well as other phases of their scheduled February mission.

  9. STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2

    NASA Image and Video Library

    1996-10-30

    S96-18552 (30 Oct. 1996) --- Astronaut Kenneth D. Bowersox (left), STS-82 mission commander, chats with astronaut Scott J. Horowitz prior to an emergency bailout training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, Bowersox and his crew simulated an emergency ejection, using the escape pole system on the mid deck, as well as other phases of their scheduled February mission.

  10. STS-82 Suit-up for Post Insertion Training in Crew Compartment Trainer 2

    NASA Image and Video Library

    1996-10-30

    S96-18553 (30 Oct. 1996) --- Astronaut Scott J. Horowitz, pilot, gets help with his launch and entry suit prior to a training session in JSC's systems integration facility. Wearing training versions of the partial pressure launch and entry escape suit, Horowitz and his crewmates went on to simulate an emergency ejection, using the escape pole system on the mid deck, as well as other phases of their scheduled February mission.

  11. Do orangutans (Pongo pygmaeus) know when they do not remember?

    PubMed

    Suda-King, Chikako

    2008-01-01

    Metacognition refers to the ability to monitor and control one's own cognitive activities such as memory. Although recent studies have raised an interesting possibility that some species of nonhuman animals might possess such skills, subjects often required a numerous number of training trials to acquire the effective use of metacognitive responses. Here, five orangutans (Pongo pygmaeus) were tested whether they were able to escape spatial memory tests when they did not remember the location of preferred reward in a relatively small number of trials. The apes were presented with two identical cups, under one of which the experimenter hid a preferred reward (e.g., two grapes). The subjects were then presented with a third container, "escape response", with which they could receive a less preferred but secure reward (e.g., one grape). The orangutans as a group significantly more likely selected the escape response when the baiting of the preferred reward was invisible (as compared to when it was visible) and when the hiding locations of the preferred reward were switched (as compared to when they remained unchanged). Even when the escape response was presented before the final presentation of the memory test, one orangutan successfully avoided the test in which she would likely err. These findings indicate that some orangutans appear to tell when they do not remember correct answers in memory tests.

  12. NASA's first Orion full-scale abort flight test crew module was placed in NASA Dryden's Abort Flight Test integration area for equipment installation.

    NASA Image and Video Library

    2008-04-01

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  13. Surface studies of solids using integral x-ray-induced photoemission yield

    DOE PAGES

    Stoupin, Stanislav; Zhernenkov, Mikhail; Shi, Bing

    2016-11-22

    X-ray induced photoemission yield contains structural information complementary to that provided by X-ray Fresnel reflectivity, which presents an advantage to a wide variety of surface studies if this information is made easily accessible. Photoemission in materials research is commonly acknowledged as a method with a probing depth limited by the escape depth of the photoelectrons. Here we show that the integral hard-X-ray-induced photoemission yield is modulated by the Fresnel reflectivity of a multilayer structure and carries structural information that extends well beyond the photoelectron escape depth. A simple electric self-detection of the integral photoemission yield and Fourier data analysis permitmore » extraction of thicknesses of individual layers. The approach does not require detection of the reflected radiation and can be considered as a framework for non-invasive evaluation of buried layers with hard X-rays under grazing incidence.« less

  14. Surface studies of solids using integral X-ray-induced photoemission yield

    PubMed Central

    Stoupin, Stanislav; Zhernenkov, Mikhail; Shi, Bing

    2016-01-01

    X-ray induced photoemission yield contains structural information complementary to that provided by X-ray Fresnel reflectivity, which presents an advantage to a wide variety of surface studies if this information is made easily accessible. Photoemission in materials research is commonly acknowledged as a method with a probing depth limited by the escape depth of the photoelectrons. Here we show that the integral hard-X-ray-induced photoemission yield is modulated by the Fresnel reflectivity of a multilayer structure and carries structural information that extends well beyond the photoelectron escape depth. A simple electric self-detection of the integral photoemission yield and Fourier data analysis permit extraction of thicknesses of individual layers. The approach does not require detection of the reflected radiation and can be considered as a framework for non-invasive evaluation of buried layers with hard X-rays under grazing incidence. PMID:27874041

  15. Predation risk modifies behaviour by shaping the response of identified brain neurons.

    PubMed

    Magani, Fiorella; Luppi, Tomas; Nuñez, Jesus; Tomsic, Daniel

    2016-04-15

    Interpopulation comparisons in species that show behavioural variations associated with particular ecological disparities offer good opportunities for assessing how environmental factors may foster specific functional adaptations in the brain. Yet, studies on the neural substrate that can account for interpopulation behavioural adaptations are scarce. Predation is one of the strongest driving forces for behavioural evolvability and, consequently, for shaping structural and functional brain adaptations. We analysed the escape response of crabs ITALIC! Neohelice granulatafrom two isolated populations exposed to different risks of avian predation. Individuals from the high-risk area proved to be more reactive to visual danger stimuli (VDS) than those from an area where predators are rare. Control experiments indicate that the response difference was specific for impending visual threats. Subsequently, we analysed the response to VDS of a group of giant brain neurons that are thought to play a main role in the visually guided escape response of the crab. Neurons from animals of the population with the stronger escape response were more responsive to VDS than neurons from animals of the less reactive population. Our results suggest a robust linkage between the pressure imposed by the predation risk, the response of identified neurons and the behavioural outcome. © 2016. Published by The Company of Biologists Ltd.

  16. Compensatory escape mechanism at low Reynolds number

    PubMed Central

    Gemmell, Brad J.; Sheng, Jian; Buskey, Edward J.

    2013-01-01

    Despite high predation pressure, planktonic copepods remain one of the most abundant groups on the planet. Their escape response provides one of most effective mechanisms to maximize evolutionary fitness. Owing to their small size (100 µm) compared with their predators (>1 mm), increasing viscosity is believed to have detrimental effects on copepods’ fitness at lower temperature. Using high-speed digital holography we acquire 3D kinematics of the nauplius escape including both location and detailed appendage motion. By independently varying temperature and viscosity we demonstrate that at natural thermal extremes, contrary to conventional views, nauplii achieve equivalent escape distance while maintaining optimal velocity. Using experimental results and kinematic simulations from a resistive force theory propulsion model, we demonstrate that a shift in appendage timing creates an increase in power stroke duration relative to recovery stroke duration. This change allows the nauplius to limit losses in velocity and maintain distance during escapes at the lower bound of its natural thermal range. The shift in power stroke duration relative to recovery stroke duration is found to be regulated by the temperature dependence of swimming appendage muscle groups, not a dynamic response to viscosity change. These results show that copepod nauplii have natural adaptive mechanisms to compensate for viscosity variations with temperature but not in situations in which viscosity varies independent of temperature, such as in some phytoplankton blooms. Understanding the robustness of escapes in the wake of environmental changes such as temperature and viscosity has implications in assessing the future health of performance compensation. PMID:23487740

  17. Infrasound initiates directional fast-start escape responses in juvenile roach Rutilus rutilus.

    PubMed

    Karlsen, Hans E; Piddington, Robert W; Enger, Per S; Sand, Olav

    2004-11-01

    Acoustic stimuli within the sonic range are effective triggers of C-type escape behaviours in fish. We have previously shown that fish have an acute sensitivity to infrasound also, with acceleration thresholds in the range of 10(-5) m s(-2). In addition, infrasound at high intensities around 10(-2) m s(-2) elicits strong and sustained avoidance responses in several fish species. In the present study, the possible triggering of C-escapes by infrasonic single-cycle vibrations was examined in juvenile roach Rutilus rutilus. The fish were accelerated in a controlled and quantifiable manner using a swing system. The applied stimuli simulated essential components of the accelerations that a small fish would encounter in the hydrodynamic flow field produced by a predatory fish. Typical C- and S-type escape responses were induced by accelerations within the infrasonic range with a threshold of 0.023 m s(-2) for an initial acceleration at 6.7 Hz. Response trajectories were on average in the same direction as the initial acceleration. Unexpectedly, startle behaviours mainly occurred in the trailing half of the test chamber, in which the fish were subjected to linear acceleration in combination with compression, i.e. the expected stimuli produced by an approaching predator. Very few responses were observed in the leading half of the test chamber, where the fish were subjected to acceleration and rarefaction, i.e. the stimuli expected from a suction type of predator. We conclude that particle acceleration is essential for the directionality of the startle response to infrasound, and that the response is triggered by the synergistic effects of acceleration and compression.

  18. A novel escapable social interaction test reveals that social behavior and mPFC activation during an escapable social encounter are altered by post-weaning social isolation and are dependent on the aggressiveness of the stimulus rat.

    PubMed

    Goodell, Dayton J; Ahern, Megan A; Baynard, Jessica; Wall, Vanessa L; Bland, Sondra T

    2017-01-15

    Post-weaning social isolation (PSI) has been shown to increase aggressive behavior and alter medial prefrontal cortex (mPFC) function in social species such as rats. Here we developed a novel escapable social interaction test (ESIT) allowing for the quantification of escape and social behaviors in addition to mPFC activation in response to an aggressive or nonaggressive stimulus rat. Male rats were exposed to 3 weeks of PSI (ISO) or group (GRP) housing, and exposed to 3 trials, with either no trial, all trials, or the last trial only with a stimulus rat. Analysis of social behaviors indicated that ISO rats spent less time in the escape chamber and more time engaged in social interaction, aggressive grooming, and boxing than did GRP rats. Interestingly, during the third trial all rats engaged in more of the quantified social behaviors and spent less time escaping in response to aggressive but not nonaggressive stimulus rats. Rats exposed to nonaggressive stimulus rats on the third trial had greater c-fos and ARC immunoreactivity in the mPFC than those exposed to an aggressive stimulus rat. Conversely, a social encounter produced an increase in large PSD-95 punctae in the mPFC independently of trial number, but only in ISO rats exposed to an aggressive stimulus rat. The results presented here demonstrate that PSI increases interaction time and aggressive behaviors during escapable social interaction, and that the aggressiveness of the stimulus rat in a social encounter is an important component of behavioral and neural outcomes for both isolation and group-reared rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A novel escapable social interaction test reveals that social behavior and mPFC activation during an escapable social encounter are altered by post-weaning social isolation and are dependent on the aggressiveness of the stimulus rat

    PubMed Central

    Goodell, Dayton J.; Ahern, Megan A.; Baynard, Jessica; Wall, Vanessa L.; Bland, Sondra T.

    2016-01-01

    Post-weaning social isolation (PSI) has been shown to increase aggressive behavior and alter medial prefrontal cortex (mPFC) function in social species such as rats. Here we developed a novel escapable social interaction test (ESIT) allowing for the quantification of escape and social behaviors in addition to mPFC activation in response to an aggressive or nonaggressive stimulus rat. Male rats were exposed to 3 weeks of PSI (ISO) or group (GRP) housing, and exposed to 3 trials, with either no trial, all trials, or the last trial only with a stimulus rat. Analysis of social behaviors indicated that ISO rats spent less time in the escape chamber and more time engaged in social interaction, aggressive grooming, and boxing than did GRP rats. Interestingly, during the third trial all rats engaged in more of the quantified social behaviors and spent less time escaping in response to aggressive but not nonaggressive stimulus rats. Rats exposed to nonaggressive stimulus rats on the third trial had greater c-fos and ARC immunoreactivity in the mPFC than those exposed to an aggressive stimulus rat. Conversely, a social encounter produced an increase in large PSD-95 punctae in the mPFC independently of trial number, but only in ISO rats exposed to an aggressive stimulus rat. The results presented here demonstrate that PSI increases interaction time and aggressive behaviors during escapable social interaction, and that the aggressiveness of the stimulus rat in a social encounter is an important component of behavioral and neural outcomes for both isolation and group-reared rats. PMID:27633556

  20. Effect of an overhead shield on gamma-ray skyshine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stedry, M.H.; Shultis, J.K.; Faw, R.E.

    1996-06-01

    A hybrid Monte Carlo and integral line-beam method is used to determine the effect of a horizontal slab shield above a gamma-ray source on the resulting skyshine doses. A simplified Monte Carlo procedure is used to determine the energy and angular distribution of photons escaping the source shield into the atmosphere. The escaping photons are then treated as a bare, point, skyshine source, and the integral line-beam method is used to estimate the skyshine dose at various distances from the source. From results for arbitrarily collimated and shielded sources, the skyshine dose is found to depend primarily on the mean-free-pathmore » thickness of the shield and only very weakly on the shield material.« less

  1. MAVEN in situ measurements of photochemical escape of oxygen from Mars

    NASA Astrophysics Data System (ADS)

    Lillis, Robert; Deighan, Justin; Fox, Jane; Bougher, Stephen; Lee, Yuni; Cravens, Thomas; Rahmati, Ali; Mahaffy, Paul; Benna, Mehdi; Groller, Hannes; Jakosky, Bruce

    2016-04-01

    One of the primary goals of the MAVEN mission is to characterize rates of atmospheric escape from Mars at the present epoch and relate those escape rates to solar drivers. One of the known escape processes is photochemical escape, where a) an exothermic chemical reaction in the atmosphere results in an upward-traveling neutral particle whose velocity exceeds planetary escape velocity and b) the particle is not prevented from escaping through subsequent collisions. At Mars, photochemical escape of oxygen is expected to be a significant channel for atmospheric escape, particularly in the early solar system when extreme ultraviolet (EUV) fluxes were much higher. Thus characterizing this escape process and its variability with solar drivers is central to understanding the role escape to space has played in Mars' climate evolution. We use near-periapsis (<400 km altitude) data from three MAVEN instruments: the Langmuir Probe and Waves (LPW) instrument measures electron density and temperature, the Suprathermal And Thermal Ion Composition (STATIC) experiment measures ion temperature and the Neutral Gas and Ion Mass Spectrometer (NGIMS) measures neutral and ion densities. For each profile of in situ measurements, we make several calculations, each as a function of altitude. The first uses electron and temperatures and simulates the dissociative recombination of both O2+ and CO2+ to calculate the probability distribution for the initial energies of the resulting hot oxygen atoms. The second is a Monte Carlo hot atom transport model that takes that distribution of initial O energies and the measured neutral density profiles and calculates the probability that a hot atom born at that altitude will escape. The third takes the measured electron and ion densities and electron temperatures and calculates the production rate of hot O atoms. We then multiply together the profiles of hot atom production and escape probability to get profiles of the production rate of escaping atoms. We integrate with respect to altitude to give us the escape flux of hot oxygen atoms for that periapsis pass. We have sufficient coverage in solar zenith angle (SZA) to estimate total escape rates for two intervals with the obvious assumption that escape rates are the same at all points with the same SZA. We estimate total escape rates of 3.5-5.8 x 1025 s-1 for Ls = 289° to 319° and 1.6-2.6 x 1025 s-1 for Ls = 326° to 348°. The latter is the most directly comparable to previous model-based estimates and is roughly in line with several of them. Total photochemical loss over Mars history is not very useful to calculate from such escape fluxes derived over a limited area and under limited conditions. A thicker atmosphere and much higher solar EUV in the past may change the dynamics of escape dramatically. In the future, we intend to use 3-D Monte Carlo models of global atmospheric escape, in concert with our in situ and remote measurements, to fully characterize photochemical escape under current conditions and carefully extrapolate back in time using further simulations with new boundary conditions.

  2. Modulation of terrestrial ion escape flux composition /by low-altitude acceleration and charge exchange chemistry/

    NASA Technical Reports Server (NTRS)

    Moore, T. E.

    1980-01-01

    Motivated by recent observations of highly variable hot plasma composition in the magnetosphere, control of the ionospheric escape flux composition by low-altitude particle dynamics and ion chemistry has been investigated for an e(-), H(+), O(+) ionosphere. It is found that the fraction of the steady state escape flux which is O(+) can be controlled very sensitively by the occurrence of parallel or transverse ion acceleration at altitudes below the altitude where the neutral oxygen density falls rapidly below the neutral hydrogen density and the ionospheric source of O(+) tends to be rapidly converted by charge exchange to H(+). The acceleration is required both to overcome the gravitational confinement of O(+) and to violate charge exchange equilibrium so that the neutral hydrogen atmosphere appears 'optically' thin to escaping O(+). Constraints are placed on the acceleration processes, and it is shown that O(+) escape is facilitated by observed ionospheric responses to magnetic activity.

  3. Escape from rich-to-lean transitions: Stimulus change and timeout.

    PubMed

    Retzlaff, Billie J; Parthum, Elizabeth T P; Pitts, Raymond C; Hughes, Christine E

    2017-01-01

    Extended pausing during discriminable transitions from rich-to-lean conditions can be viewed as escape (i.e., rich-to-lean transitions function aversively). In the current experiments, pigeons' key pecking was maintained by a multiple fixed-ratio fixed-ratio schedule of rich or lean reinforcers. Pigeons then were provided with another, explicit, mechanism of escape by changing the stimulus from the transition-specific stimulus used in the multiple schedule to a mixed-schedule stimulus (Experiment 1) or by producing a period of timeout in which the stimulus was turned off and the schedule was suspended (Experiment 2). Overall, escape was under joint control of past and upcoming reinforcer magnitudes, such that responses on the escape key were most likely during rich-to-lean transitions, and second-most likely during lean-to-lean transitions. Even though pigeons pecked the escape key, they paused before doing so, and the latency to begin the fixed ratio (i.e., the pause) remained extended during rich-to-lean transitions. These findings suggest that although the stimulus associated with rich-to-lean transitions functioned aversively, pausing is more than simply escape responding from the stimulus. © 2017 Society for the Experimental Analysis of Behavior.

  4. Constraint-Driven Software Design: An Escape from the Waterfall Model.

    ERIC Educational Resources Information Center

    de Hoog, Robert; And Others

    1994-01-01

    Presents the principles of a development methodology for software design based on a nonlinear, product-driven approach that integrates quality aspects. Two examples are given to show that the flexibility needed for building high quality systems leads to integrated development environments in which methodology, product, and tools are closely…

  5. Viral CTL escape mutants are generated in lymph nodes and subsequently become fixed in plasma and rectal mucosa during acute SIV infection of macaques.

    PubMed

    Vanderford, Thomas H; Bleckwehl, Chelsea; Engram, Jessica C; Dunham, Richard M; Klatt, Nichole R; Feinberg, Mark B; Garber, David A; Betts, Michael R; Silvestri, Guido

    2011-05-01

    SIV(mac239) infection of rhesus macaques (RMs) results in AIDS despite the generation of a strong antiviral cytotoxic T lymphocyte (CTL) response, possibly due to the emergence of viral escape mutants that prevent recognition of infected cells by CTLs. To determine the anatomic origin of these SIV mutants, we longitudinally assessed the presence of CTL escape variants in two MamuA*01-restricted immunodominant epitopes (Tat-SL8 and Gag-CM9) in the plasma, PBMCs, lymph nodes (LN), and rectal biopsies (RB) of fifteen SIV(mac239)-infected RMs. As expected, Gag-CM9 did not exhibit signs of escape before day 84 post infection. In contrast, Tat-SL8 escape mutants were apparent in all tissues by day 14 post infection. Interestingly LNs and plasma exhibited the highest level of escape at day 14 and day 28 post infection, respectively, with the rate of escape in the RB remaining lower throughout the acute infection. The possibility that CTL escape occurs in LNs before RBs is confirmed by the observation that the specific mutants found at high frequency in LNs at day 14 post infection became dominant at day 28 post infection in plasma, PBMC, and RB. Finally, the frequency of escape mutants in plasma at day 28 post infection correlated strongly with the level Tat-SL8-specific CD8 T cells in the LN and PBMC at day 14 post infection. These results indicate that LNs represent the primary source of CTL escape mutants during the acute phase of SIV(mac239) infection, suggesting that LNs are the main anatomic sites of virus replication and/or the tissues in which CTL pressure is most effective in selecting SIV escape variants.

  6. Viral CTL Escape Mutants Are Generated in Lymph Nodes and Subsequently Become Fixed in Plasma and Rectal Mucosa during Acute SIV Infection of Macaques

    PubMed Central

    Vanderford, Thomas H.; Bleckwehl, Chelsea; Engram, Jessica C.; Dunham, Richard M.; Klatt, Nichole R.; Feinberg, Mark B.; Garber, David A.; Betts, Michael R.; Silvestri, Guido

    2011-01-01

    SIVmac239 infection of rhesus macaques (RMs) results in AIDS despite the generation of a strong antiviral cytotoxic T lymphocyte (CTL) response, possibly due to the emergence of viral escape mutants that prevent recognition of infected cells by CTLs. To determine the anatomic origin of these SIV mutants, we longitudinally assessed the presence of CTL escape variants in two MamuA*01-restricted immunodominant epitopes (Tat-SL8 and Gag-CM9) in the plasma, PBMCs, lymph nodes (LN), and rectal biopsies (RB) of fifteen SIVmac239-infected RMs. As expected, Gag-CM9 did not exhibit signs of escape before day 84 post infection. In contrast, Tat-SL8 escape mutants were apparent in all tissues by day 14 post infection. Interestingly LNs and plasma exhibited the highest level of escape at day 14 and day 28 post infection, respectively, with the rate of escape in the RB remaining lower throughout the acute infection. The possibility that CTL escape occurs in LNs before RBs is confirmed by the observation that the specific mutants found at high frequency in LNs at day 14 post infection became dominant at day 28 post infection in plasma, PBMC, and RB. Finally, the frequency of escape mutants in plasma at day 28 post infection correlated strongly with the level Tat-SL8-specific CD8 T cells in the LN and PBMC at day 14 post infection. These results indicate that LNs represent the primary source of CTL escape mutants during the acute phase of SIVmac239 infection, suggesting that LNs are the main anatomic sites of virus replication and/or the tissues in which CTL pressure is most effective in selecting SIV escape variants. PMID:21625590

  7. Nuclear reactor pressure vessel support system

    DOEpatents

    Sepelak, George R.

    1978-01-01

    A support system for nuclear reactor pressure vessels which can withstand all possible combinations of stresses caused by a postulated core disrupting accident during reactor operation. The nuclear reactor pressure vessel is provided with a flange around the upper periphery thereof, and the flange includes an annular vertical extension formed integral therewith. A support ring is positioned atop of the support ledge and the flange vertical extension, and is bolted to both members. The plug riser is secured to the flange vertical extension and to the top of a radially outwardly extension of the rotatable plug. This system eliminates one joint through which fluids contained in the vessel could escape by making the fluid flow path through the joint between the flange and the support ring follow the same path through which fluid could escape through the plug risers. In this manner, the sealing means to prohibit the escape of contained fluids through the plug risers can also prohibit the escape of contained fluid through the securing joint.

  8. Role of HIV-specific CD8+ T cells in pediatric HIV cure strategies after widespread early viral escape.

    PubMed

    Leitman, Ellen M; Thobakgale, Christina F; Adland, Emily; Ansari, M Azim; Raghwani, Jayna; Prendergast, Andrew J; Tudor-Williams, Gareth; Kiepiela, Photini; Hemelaar, Joris; Brener, Jacqui; Tsai, Ming-Han; Mori, Masahiko; Riddell, Lynn; Luzzi, Graz; Jooste, Pieter; Ndung'u, Thumbi; Walker, Bruce D; Pybus, Oliver G; Kellam, Paul; Naranbhai, Vivek; Matthews, Philippa C; Gall, Astrid; Goulder, Philip J R

    2017-11-06

    Recent studies have suggested greater HIV cure potential among infected children than adults. A major obstacle to HIV eradication in adults is that the viral reservoir is largely comprised of HIV-specific cytotoxic T lymphocyte (CTL) escape variants. We here evaluate the potential for CTL in HIV-infected slow-progressor children to play an effective role in "shock-and-kill" cure strategies. Two distinct subgroups of children were identified on the basis of viral load. Unexpectedly, in both groups, as in adults, HIV-specific CTL drove the selection of escape variants across a range of epitopes within the first weeks of infection. However, in HIV-infected children, but not adults, de novo autologous variant-specific CTL responses were generated, enabling the pediatric immune system to "corner" the virus. Thus, even when escape variants are selected in early infection, the capacity in children to generate variant-specific anti-HIV CTL responses maintains the potential for CTL to contribute to effective shock-and-kill cure strategies in pediatric HIV infection. © 2017 Leitman et al.

  9. Development of survival skills in captive-raised Siberian polecats (Mustela eversmanni) II: predator avoidance

    USGS Publications Warehouse

    Miller, Brian; Biggins, Dean; Wemmer, Chris; Powell, Roger; Calvo, Lorena; Hanebury, Lou; Wharton, Tracy

    1990-01-01

    We exposed naive Siberain polecats (Mustela eversmanni) (aged 2, 3, and 4 months) to a swooping stuffed great horned owl (Buho virginianus) and a stuffed badger (Taxidae taxus) mounted on a remote control toy automobile frame. The first introduction to each was harmless, the second was accompanied by a mild aversive stimulus, the third (1 day after attack) was harmless, and the fourth (30 days after attack) was harmless. Alert behavior increased after a single attack by either predator model. Escape responses of naive polecats did not differ between ages when exposed to the badger, but 4 month old polecats reduced their escape times after a single badger attack. When exposed to the swooping owl, naive 4 month old polecats redponded more quickly than the other two age groups, and 3 and 4 month old polecats reduced escape times after a single owl attack. This indicates an innate escape response to the owl model at 4 months of age, and a short-tert ability to remember a single mild aversive encounter with the badger and owl models at 3 or 4 months of age.

  10. The Art of Being Flexible: How to Escape from Shade, Salt, and Drought1

    PubMed Central

    Pierik, Ronald; Testerink, Christa

    2014-01-01

    Environmental stresses, such as shading of the shoot, drought, and soil salinity, threaten plant growth, yield, and survival. Plants can alleviate the impact of these stresses through various modes of phenotypic plasticity, such as shade avoidance and halotropism. Here, we review the current state of knowledge regarding the mechanisms that control plant developmental responses to shade, salt, and drought stress. We discuss plant hormones and cellular signaling pathways that control shoot branching and elongation responses to shade and root architecture modulation in response to drought and salinity. Because belowground stresses also result in aboveground changes and vice versa, we then outline how a wider palette of plant phenotypic traits is affected by the individual stresses. Consequently, we argue for a research agenda that integrates multiple plant organs, responses, and stresses. This will generate the scientific understanding needed for future crop improvement programs aiming at crops that can maintain yields under variable and suboptimal conditions. PMID:24972713

  11. Neural circuit activity in freely behaving zebrafish (Danio rerio).

    PubMed

    Issa, Fadi A; O'Brien, Georgeann; Kettunen, Petronella; Sagasti, Alvaro; Glanzman, David L; Papazian, Diane M

    2011-03-15

    Examining neuronal network activity in freely behaving animals is advantageous for probing the function of the vertebrate central nervous system. Here, we describe a simple, robust technique for monitoring the activity of neural circuits in unfettered, freely behaving zebrafish (Danio rerio). Zebrafish respond to unexpected tactile stimuli with short- or long-latency escape behaviors, which are mediated by distinct neural circuits. Using dipole electrodes immersed in the aquarium, we measured electric field potentials generated in muscle during short- and long-latency escapes. We found that activation of the underlying neural circuits produced unique field potential signatures that are easily recognized and can be repeatedly monitored. In conjunction with behavioral analysis, we used this technique to track changes in the pattern of circuit activation during the first week of development in animals whose trigeminal sensory neurons were unilaterally ablated. One day post-ablation, the frequency of short- and long-latency responses was significantly lower on the ablated side than on the intact side. Three days post-ablation, a significant fraction of escapes evoked by stimuli on the ablated side was improperly executed, with the animal turning towards rather than away from the stimulus. However, the overall response rate remained low. Seven days post-ablation, the frequency of escapes increased dramatically and the percentage of improperly executed escapes declined. Our results demonstrate that trigeminal ablation results in rapid reconfiguration of the escape circuitry, with reinnervation by new sensory neurons and adaptive changes in behavior. This technique is valuable for probing the activity, development, plasticity and regeneration of neural circuits under natural conditions.

  12. Neural circuit activity in freely behaving zebrafish (Danio rerio)

    PubMed Central

    Issa, Fadi A.; O'Brien, Georgeann; Kettunen, Petronella; Sagasti, Alvaro; Glanzman, David L.; Papazian, Diane M.

    2011-01-01

    Examining neuronal network activity in freely behaving animals is advantageous for probing the function of the vertebrate central nervous system. Here, we describe a simple, robust technique for monitoring the activity of neural circuits in unfettered, freely behaving zebrafish (Danio rerio). Zebrafish respond to unexpected tactile stimuli with short- or long-latency escape behaviors, which are mediated by distinct neural circuits. Using dipole electrodes immersed in the aquarium, we measured electric field potentials generated in muscle during short- and long-latency escapes. We found that activation of the underlying neural circuits produced unique field potential signatures that are easily recognized and can be repeatedly monitored. In conjunction with behavioral analysis, we used this technique to track changes in the pattern of circuit activation during the first week of development in animals whose trigeminal sensory neurons were unilaterally ablated. One day post-ablation, the frequency of short- and long-latency responses was significantly lower on the ablated side than on the intact side. Three days post-ablation, a significant fraction of escapes evoked by stimuli on the ablated side was improperly executed, with the animal turning towards rather than away from the stimulus. However, the overall response rate remained low. Seven days post-ablation, the frequency of escapes increased dramatically and the percentage of improperly executed escapes declined. Our results demonstrate that trigeminal ablation results in rapid reconfiguration of the escape circuitry, with reinnervation by new sensory neurons and adaptive changes in behavior. This technique is valuable for probing the activity, development, plasticity and regeneration of neural circuits under natural conditions. PMID:21346131

  13. Modelling the Evolution and Spread of HIV Immune Escape Mutants

    PubMed Central

    Fryer, Helen R.; Frater, John; Duda, Anna; Roberts, Mick G.; Phillips, Rodney E.; McLean, Angela R.

    2010-01-01

    During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level. PMID:21124991

  14. Results of Bayesian methods depend on details of implementation: An example of estimating salmon escapement goals

    USGS Publications Warehouse

    Adkison, Milo D.; Peterman, R.M.

    1996-01-01

    Bayesian methods have been proposed to estimate optimal escapement goals, using both knowledge about physical determinants of salmon productivity and stock-recruitment data. The Bayesian approach has several advantages over many traditional methods for estimating stock productivity: it allows integration of information from diverse sources and provides a framework for decision-making that takes into account uncertainty reflected in the data. However, results can be critically dependent on details of implementation of this approach. For instance, unintended and unwarranted confidence about stock-recruitment relationships can arise if the range of relationships examined is too narrow, if too few discrete alternatives are considered, or if data are contradictory. This unfounded confidence can result in a suboptimal choice of a spawning escapement goal.

  15. Auditory modulation of wind-elicited walking behavior in the cricket Gryllus bimaculatus.

    PubMed

    Fukutomi, Matasaburo; Someya, Makoto; Ogawa, Hiroto

    2015-12-01

    Animals flexibly change their locomotion triggered by an identical stimulus depending on the environmental context and behavioral state. This indicates that additional sensory inputs in different modality from the stimulus triggering the escape response affect the neuronal circuit governing that behavior. However, how the spatio-temporal relationships between these two stimuli effect a behavioral change remains unknown. We studied this question, using crickets, which respond to a short air-puff by oriented walking activity mediated by the cercal sensory system. In addition, an acoustic stimulus, such as conspecific 'song' received by the tympanal organ, elicits a distinct oriented locomotion termed phonotaxis. In this study, we examined the cross-modal effects on wind-elicited walking when an acoustic stimulus was preceded by an air-puff and tested whether the auditory modulation depends on the coincidence of the direction of both stimuli. A preceding 10 kHz pure tone biased the wind-elicited walking in a backward direction and elevated a threshold of the wind-elicited response, whereas other movement parameters, including turn angle, reaction time, walking speed and distance were unaffected. The auditory modulations, however, did not depend on the coincidence of the stimulus directions. A preceding sound consistently altered the wind-elicited walking direction and response probability throughout the experimental sessions, meaning that the auditory modulation did not result from previous experience or associative learning. These results suggest that the cricket nervous system is able to integrate auditory and air-puff stimuli, and modulate the wind-elicited escape behavior depending on the acoustic context. © 2015. Published by The Company of Biologists Ltd.

  16. The behavioural effects of predator-induced stress responses in the cricket (Gryllus texensis): the upside of the stress response.

    PubMed

    Adamo, Shelley A; Kovalko, Ilya; Mosher, Brianna

    2013-12-15

    Predator-induced stress responses are thought to reduce an animal's risk of being eaten. Therefore, these stress responses should enhance anti-predator behaviour. We found that individual insects (the cricket Gryllus texensis) show reliable behavioural responses (i.e. behavioural types) in a plus-shaped maze. An individual's behaviour in the plus maze remained consistent for at least 1/2 of its adult life. However, after exposure to a model predator, both male and female crickets showed a reduced period of immobility and an increased amount of time spent under shelter compared with controls. These changes could be mimicked by injections of the insect stress neurohormone octopamine. These behavioural changes probably aid crickets in evading predators. Exposure to a model predator increased the ability of crickets to escape a live predator (a bearded dragon, Pogona vitticeps). An injection of octopamine had the same effect, showing that stress hormones can reduce predation. Using crickets to study the fitness consequences of predator-induced stress responses will help integrate ecological and biomedical concepts of 'stress'.

  17. A Comparison of Sensory Integrative and Behavioral Therapies as Treatment for Pediatric Feeding Disorders

    ERIC Educational Resources Information Center

    Addison, Laura R.; Piazza, Cathleen C.; Patel, Meeta R.; Bachmeyer, Melanie H.; Rivas, Kristi M.; Milnes, Suzanne M.; Oddo, Jackie

    2012-01-01

    We compared the effects of escape extinction (EE) plus noncontingent reinforcement (NCR) with sensory integration therapy as treatment for the feeding problems of 2 children. Results indicated that EE plus NCR was more effective in increasing acceptance, decreasing inappropriate behavior, and increasing amount consumed relative to sensory…

  18. Ontogeny of flight initiation in the fly Drosophila melanogaster: implications for the giant fibre system.

    PubMed

    Hammond, Sarah; O'Shea, Michael

    2007-11-01

    There are two modes of flight initiation in Drosophila melanogaster-escape and voluntary. Although the circuitry underlying escape is accounted for by the Giant fibre (GF) system, the system underlying voluntary flight initiation is unknown. The GF system is functionally complete before the adult fly ecloses, but immature adults initially fail to react to a stimulus known to reliably evoke escape in mature adults. This suggests that escape in early adulthood, approximately 2-h post-eclosion, is not automatically triggered by the hard-wired GF system. Indeed, we reveal that escape behaviour displays a staged emergence during the first hour post-eclosion, suggesting that the GF system is subject to declining levels of suppression. Voluntary flight initiations are not observed at all during the period when the GF system is released from its suppression, nor indeed for some time after. We addressed the question whether voluntary flight initiation requires the GF system by observing take-off in Shak-B ( 2 ) mutant flies, in which the GF system is defunct. While the escape response is severely impaired in these mutants, they displayed normal voluntary flight initiation. Thus, the escape mechanism is subject to developmental modulation following eclosion and the GF system does not underlie voluntary flight.

  19. Measuring behaviours for escaping from house fires: use of latent variable models to summarise multiple behaviours.

    PubMed

    Ploubidis, G B; Edwards, P; Kendrick, D

    2015-12-15

    This paper reports the development and testing of a construct measuring parental fire safety behaviours for planning escape from a house fire. Latent variable modelling of data on parental-reported fire safety behaviours and plans for escaping from a house fire and multivariable logistic regression to quantify the association between groups defined by the latent variable modelling and parental-report of having a plan for escaping from a house fire. Data comes from 1112 participants in a cluster randomised controlled trial set in children's centres in 4 study centres in the UK. A two class model provided the best fit to the data, combining responses to five fire safety planning behaviours. The first group ('more behaviours for escaping from a house fire') comprised 86% of participants who were most likely to have a torch, be aware of how their smoke alarm sounds, to have external door and window keys accessible, and exits clear. The second group ('fewer behaviours for escaping from a house fire') comprised 14% of participants who were less likely to report these five behaviours. After adjusting for potential confounders, participants allocated to the 'more behaviours for escaping from a house fire group were 2.5 times more likely to report having an escape plan (OR 2.48; 95% CI 1.59-3.86) than those in the "fewer behaviours for escaping from a house fire" group. Multiple fire safety behaviour questions can be combined into a single binary summary measure of fire safety behaviours for escaping from a house fire. Our findings will be useful to future studies wishing to use a single measure of fire safety planning behaviour as measures of outcome or exposure. NCT 01452191. Date of registration 13/10/2011.

  20. Managing work, family, and school roles: disengagement strategies can help and hinder.

    PubMed

    Cheng, Bonnie Hayden; McCarthy, Julie M

    2013-07-01

    The extent to which individuals manage multiple role domains has yet to be fully understood. We advance past research by examining the effect of interrole conflict among three very common and critically important life roles-work, family, and school-on three corresponding types of satisfaction. Further, we examine individual-based techniques that can empower people to manage multiple roles. In doing so, we integrate the disengagement strategies from the work recovery and coping literatures. These strategies focus on taking your mind off the problems at hand and include cognitive disengagement (psychological detachment, cognitive avoidance coping), as well as cognitive distortion (escape avoidance coping). We examine these strategies in a two-wave study of 178 individuals faced with the challenge of managing work, family, and school responsibilities. Findings demonstrated a joint offsetting effect of psychological detachment and cognitive avoidance coping on the relationship between work conflict and work satisfaction. Findings also indicated an exacerbating effect of escape avoidance coping on the relationship between work conflict and work satisfaction, school conflict and school satisfaction, and between family conflict and family satisfaction. Implications for theory and practice are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  1. Computational design of hepatitis C vaccines using empirical fitness landscapes and population dynamics

    NASA Astrophysics Data System (ADS)

    Hart, Gregory; Ferguson, Andrew

    Hepatitis C virus (HCV) afflicts 170 million people and kills 350,000 annually. Vaccination offers the most realistic and cost effective hope of controlling this epidemic. Despite 25 years of research, no vaccine is available. A major obstacle is the virus' extreme genetic variability and rapid mutational escape from immune pressure. Improvements in the vaccine design process are urgently needed. Coupling data mining and maximum entropy inference, we have developed a computational approach to translate sequence databases into empirical fitness landscapes. These landscapes explicitly connect viral genotype to phenotypic fitness and reveal vulnerable targets that can be exploited to rationally design vaccines. These landscapes represent the mutational ''playing field'' over which the virus evolves. We have integrated them with agent-based models of the viral mutational and host immune response, establishing a data-driven multi-scale immune simulator. We have used this simulator to perform in silico screening of HCV immunogens to rationally design vaccines to both cripple viral fitness and block escape. By systematically identifying a small number of promising vaccine candidates, these models can accelerate the search for a vaccine by massively reducing the experimental search space.

  2. Intranasal administration of dopamine attenuates unconditioned fear in that it reduces restraint-induced ultrasound vocalizations and escape from bright light.

    PubMed

    Talbot, Teddy; Mattern, Claudia; de Souza Silva, Maria Angelica; Brandão, Marcus Lira

    2017-06-01

    Although substantial evidence suggests that dopamine (DA) enhances conditioned fear responses, few studies have examined the role of DA in unconditioned fear states. Whereas DA does not cross the blood-brain barrier, intranasally-applied dopamine reaches the brain directly via the nose-brain pathways in rodents, providing an alternative means of targeting DA receptors. Intranasal dopamine (IN-DA) has been demonstrated to bind to DA transporters and to increase extracellular DA in the striatum as well as having memory-promoting effects in rats. The purpose of this study was to examine the influence of IN-DA in three tests of fear/anxiety. The three doses of DA hydrochloride (0.03, 0.3, or 1 mg/kg) were applied in a viscous castor oil gel in a volume of 5 µl to each of both nostrils of adult Wistar rats prior to testing of (a) escape from a bright light, using a two-chamber procedure, (b) restraint-induced 22 kHz ultrasound vocalizations (USVs), and (c) exploratory behavior in the elevated plus-maze (EPM). IN-DA dose-dependently reduced escape from bright light and the number of USV responses to restraint. It had no influence on the exploratory behavior in the EPM. IN-DA application reduced escape behavior in two tests of unconditioned fear (escape from bright light and USV response to immobilization). These findings may be interpreted in light of the known antidepressant action of IN-DA and DA reuptake blockers. The results also confirm the promise of the nasal route as an alternative means for targeting the brain's dopaminergic receptors with DA.

  3. GABA(A) receptor blockade in dorsomedial and ventromedial nuclei of the hypothalamus evokes panic-like elaborated defensive behaviour followed by innate fear-induced antinociception.

    PubMed

    Freitas, Renato Leonardo; Uribe-Mariño, Andrés; Castiblanco-Urbina, Maria Angélica; Elias-Filho, Daoud Hibraim; Coimbra, Norberto Cysne

    2009-12-11

    Dysfunction in the hypothalamic GABAergic system has been implicated in panic syndrome in humans. Furthermore, several studies have implicated the hypothalamus in the elaboration of pain modulation. Panic-prone states are able to be experimentally induced in laboratory animals to study this phenomenon. The aim of the present work was to investigate the involvement of medial hypothalamic nuclei in the organization of panic-like behaviour and the innate fear-induced oscillations of nociceptive thresholds. The blockade of GABA(A) receptors in the neuronal substrates of the ventromedial or dorsomedial hypothalamus was followed by elaborated defensive panic-like reactions. Moreover, innate fear-induced antinociception was consistently elicited after the escape behaviour. The escape responses organized by the dorsomedial and ventromedial hypothalamic nuclei were characteristically more elaborated, and a remarkable exploratory behaviour was recorded during GABA(A) receptor blockade in the medial hypothalamus. The motor characteristic of the elaborated defensive escape behaviour and the patterns of defensive alertness and defensive immobility induced by microinjection of the bicuculline either into the dorsomedial or into the ventromedial hypothalamus were very similar. This was followed by the same pattern of innate fear-induced antinociceptive response that lasted approximately 40 min after the elaborated defensive escape reaction in both cases. These findings suggest that dysfunction of the GABA-mediated neuronal system in the medial hypothalamus causes panic-like responses in laboratory animals, and that the elaborated escape behaviour organized in both dorsomedial and ventromedial hypothalamic nuclei are followed by significant innate-fear-induced antinociception. Our findings indicate that the GABA(A) receptor of dorsomedial and ventromedial hypothalamic nuclei are critically involved in the modulation of panic-like behaviour.

  4. Teens With Heavy Prenatal Cocaine Exposure Respond to Experimental Social Provocation with Escape Not Aggression

    PubMed Central

    Greenwald, M.K.; Chiodo, L.M.; Hannigan, J.H.; Sokol, R.J.; Janisse, J.; Delaney-Black, V.

    2010-01-01

    Preclinical data show that, compared to no exposure, prenatal cocaine exposure (PCE) has age-dependent effects on social interaction and aggression. The aim of this clinical study was to determine how heavy/persistent PCE – after controlling for other prenatal drug exposures, sex and postnatal factors – predicts behavioral sensitivity to provocation (i.e., reactive aggression) using a well-validated human laboratory model of aggression. African American teens (mean = 14.2 yrs old) with histories of heavy/persistent PCE (maternal cocaine use ≥ 2 times/week during pregnancy, or positive maternal or infant urine/meconium test at delivery; n = 86) or none/some exposure (NON: maternal cocaine use < 2 times/week during pregnancy; n = 330) completed the Point Subtraction Aggression Paradigm. In this task, teens competed in a computer game against a fictitious opponent. There were three possible responses: (a) earn points, to exchange for money later; or (b) “aggress” against the fictitious opponent by subtracting their points; or (c) escape temporarily from point subtraction perpetrated by the fictitious opponent. The PCE group responded significantly more frequently on the escape option than the NON group, but did not differ in aggressive or money-earning responses. These data indicate that PCE-teens provoked with a social stressor exhibit a behavioral preference for escape (negative reinforcement) more than for aggressive (retaliatory) or appetitive (point- or money-reinforced) responses. These findings are consistent with preclinical data showing that social provocation of adolescent or young adult offspring after PCE is associated with greater escape behavior, inferring greater submission, social withdrawal, or anxiety, as opposed to aggressive behavior. PMID:20600841

  5. Evidence for the involvement of extinction-associated inhibitory learning in the forced swimming test.

    PubMed

    Campus, P; Colelli, V; Orsini, C; Sarra, D; Cabib, S

    2015-02-01

    The forced swimming test (FST) remains one of the most used tools for screening antidepressants in rodent models. Nonetheless, the nature of immobility, its main behavioral measure, is still a matter of debate. The present study took advantage of our recent finding that mice of the inbred DBA/2J strain require a functioning left dorsolateral striatum (DLS) to consolidate long-term memory of FST to test whether immobility is the outcome of stress-related learning. Infusion of the GABA-A agonist muscimol in the left DLS immediately after a single experience of FST prevented and infusion in the left or the right amygdala impaired recall of the acquired levels of immobility in a probe test performed 24h later. Post-training left DLS infusion of muscimol, at a dose capable of preventing retention of FST-induced immobility, did not influence 24h retention of inhibitory avoidance training or of the escape response acquired in a water T-maze. However, this same treatment prevented 24h retention of the extinction training of the consolidated escape response. These results indicate that a left DLS-centered memory system selectively mediates memory consolidation of FST and of escape extinction and support the hypothesis that immobility is the result of extinction-like inhibitory learning involving all available escape responses due to the inescapable/unavoidable nature of FST experience. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Transmission of HIV-1 CTL Escape Variants Provides HLA-Mismatched Recipients with a Survival Advantage

    PubMed Central

    Chopera, Denis R.; Woodman, Zenda; Mlisana, Koleka; Mlotshwa, Mandla; Martin, Darren P.; Seoighe, Cathal; Treurnicht, Florette; de Rosa, Debra Assis; Hide, Winston; Karim, Salim Abdool; Gray, Clive M.; Williamson, Carolyn

    2008-01-01

    One of the most important genetic factors known to affect the rate of disease progression in HIV-infected individuals is the genotype at the Class I Human Leukocyte Antigen (HLA) locus, which determines the HIV peptides targeted by cytotoxic T-lymphocytes (CTLs). Individuals with HLA-B*57 or B*5801 alleles, for example, target functionally important parts of the Gag protein. Mutants that escape these CTL responses may have lower fitness than the wild-type and can be associated with slower disease progression. Transmission of the escape variant to individuals without these HLA alleles is associated with rapid reversion to wild-type. However, the question of whether infection with an escape mutant offers an advantage to newly infected hosts has not been addressed. Here we investigate the relationship between the genotypes of transmitted viruses and prognostic markers of disease progression and show that infection with HLA-B*57/B*5801 escape mutants is associated with lower viral load and higher CD4+ counts. PMID:18369479

  7. Evolution of brains and behavior for optimal foraging: A tale of two predators

    PubMed Central

    Catania, Kenneth C.

    2012-01-01

    Star-nosed moles and tentacled snakes have exceptional mechanosensory systems that illustrate a number of general features of nervous system organization and evolution. Star-nosed moles use the star for active touch—rapidly scanning the environment with the nasal rays. The star has the densest concentration of mechanoreceptors described for any mammal, with a central tactile fovea magnified in anatomically visible neocortical modules. The somatosensory system parallels visual system organization, illustrating general features of high-resolution sensory representations. Star-nosed moles are the fastest mammalian foragers, able to identify and eat small prey in 120 ms. Optimal foraging theory suggests that the star evolved for profitably exploiting small invertebrates in a competitive wetland environment. The tentacled snake’s facial appendages are superficially similar to the mole’s nasal rays, but they have a very different function. These snakes are fully aquatic and use tentacles for passive detection of nearby fish. Trigeminal afferents respond to water movements and project tentacle information to the tectum in alignment with vision, illustrating a general theme for the integration of different sensory modalities. Tentacled snakes act as rare enemies, taking advantage of fish C-start escape responses by startling fish toward their strike—often aiming for the future location of escaping fish. By turning fish escapes to their advantage, snakes increase strike success and reduce handling time with head-first captures. The latter may, in turn, prevent snakes from becoming prey when feeding. Findings in these two unusual predators emphasize the importance of a multidisciplinary approach for understanding the evolution of brains and behavior. PMID:22723352

  8. Social Status-Dependent Shift in Neural Circuit Activation Affects Decision Making.

    PubMed

    Miller, Thomas H; Clements, Katie; Ahn, Sungwoo; Park, Choongseok; Hye Ji, Eoon; Issa, Fadi A

    2017-02-22

    In a social group, animals make behavioral decisions that fit their social ranks. These behavioral choices are dependent on the various social cues experienced during social interactions. In vertebrates, little is known of how social status affects the underlying neural mechanisms regulating decision-making circuits that drive competing behaviors. Here, we demonstrate that social status in zebrafish ( Danio rerio ) influences behavioral decisions by shifting the balance in neural circuit activation between two competing networks (escape and swim). We show that socially dominant animals enhance activation of the swim circuit. Conversely, social subordinates display a decreased activation of the swim circuit, but an enhanced activation of the escape circuit. In an effort to understand how social status mediates these effects, we constructed a neurocomputational model of the escape and swim circuits. The model replicates our findings and suggests that social status-related shift in circuit dynamics could be mediated by changes in the relative excitability of the escape and swim networks. Together, our results reveal that changes in the excitabilities of the Mauthner command neuron for escape and the inhibitory interneurons that regulate swimming provide a cellular mechanism for the nervous system to adapt to changes in social conditions by permitting the animal to select a socially appropriate behavioral response. SIGNIFICANCE STATEMENT Understanding how social factors influence nervous system function is of great importance. Using zebrafish as a model system, we demonstrate how social experience affects decision making to enable animals to produce socially appropriate behavior. Based on experimental evidence and computational modeling, we show that behavioral decisions reflect the interplay between competing neural circuits whose activation thresholds shift in accordance with social status. We demonstrate this through analysis of the behavior and neural circuit responses that drive escape and swim behaviors in fish. We show that socially subordinate animals favor escape over swimming, while socially dominants favor swimming over escape. We propose that these differences are mediated by shifts in relative circuit excitability. Copyright © 2017 the authors 0270-6474/17/372137-12$15.00/0.

  9. Connexions between the dorsomedial division of the ventromedial hypothalamus and the dorsal periaqueductal grey matter are critical in the elaboration of hypothalamically mediated panic-like behaviour.

    PubMed

    Ullah, Farhad; Dos Anjos-Garcia, Tayllon; Mendes-Gomes, Joyce; Elias-Filho, Daoud Hibrahim; Falconi-Sobrinho, Luiz Luciano; Freitas, Renato Leonardo de; Khan, Asmat Ullah; Oliveira, Ricardo de; Coimbra, Norberto Cysne

    2017-02-15

    The electrical and chemical stimulation of the dorsal periaqueductal grey matter (dPAG) elicits panic-like explosive escape behaviour. Although neurons of the ventromedial hypothalamus (VMH) seem to organise oriented escape behaviour, when stimulated with excitatory amino acids at higher doses, non-oriented/explosive escape reactions can also be displayed. The aim of this work was to examine the importance of reciprocal projections between the VMH and the dPAG for the organisation of this panic-like behaviour. The chemical stimulation of the VMH with 9nmol of N-methyl-d-aspartic acid (NMDA) elicited oriented and non-oriented escape behaviours. The pretreatment of the dPAG with a non-selective blocker of synaptic contacts, cobalt chloride (CoCl 2 ), followed by stimulation of the dorsomedial part of the ventromedial hypothalamus (dmVMH) with 9nmol of NMDA, abolished the non-oriented/explosive escape and freezing responses elicited by the stimulation of the dmVMH. Nonetheless, the rats still showed oriented escape to the burrow. On the other hand, when the blockade of the dmVMH with CoCl 2 was followed by stimulation of the dPAG with 6nmol of NMDA, no effect was observed either on the non-oriented/explosive escape or on the freezing behaviour organised by the dPAG. Furthermore, Fos protein-labelled neurons were observed in the dPAG after the stimulation of the dmVMH with 9nmol of NMDA. Additionally, when the anterograde neurotracer biotinylated dextran amine (BDA) was deposited in the dmVMH subsequent stimulation of the dmVMH produced BDA-labelled neural fibres with terminal boutons surrounding Fos-labelled neurons in the dPAG, suggesting synaptic contacts between dmVMH and dPAG neurons for eliciting panic-like behavioural responses. The current data suggest that the dPAG is the key structure that organises non-oriented/explosive escape reactions associated with panic attack-like behaviours. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Anti-Tumor Immunity in Head and Neck Cancer: Understanding the Evidence, How Tumors Escape and Immunotherapeutic Approaches

    PubMed Central

    Allen, Clint T.; Clavijo, Paul E.; Van Waes, Carter; Chen, Zhong

    2015-01-01

    Many carcinogen- and human papilloma virus (HPV)-associated head and neck cancers (HNSCC) display a hematopoietic cell infiltrate indicative of a T-cell inflamed phenotype and an underlying anti-tumor immune response. However, by definition, these tumors have escaped immune elimination and formed a clinically significant malignancy. A number of both genetic and environmental mechanisms may allow such immune escape, including selection of poorly antigenic cancer cell subsets, tumor produced proinflammatory and immunosuppressive cytokines, recruitment of immunosuppressive immune cell subsets into the tumor and expression of checkpoint pathway components that limit T-cell responses. Here, we explore concepts of antigenicity and immunogenicity in solid tumors, summarize the scientific and clinical data that supports the use of immunotherapeutic approaches in patients with head and neck cancer, and discuss immune-based treatment approaches currently in clinical trials. PMID:26690220

  11. Platelet Activation by Streptococcus pyogenes Leads to Entrapment in Platelet Aggregates, from Which Bacteria Subsequently Escape

    PubMed Central

    Svensson, Lisbeth; Baumgarten, Maria; Mörgelin, Matthias

    2014-01-01

    Platelet activation and aggregation have been reported to occur in response to a number of Gram-positive pathogens. Here, we show that platelet aggregates induced by Streptococcus pyogenes were unstable and that viable bacteria escaped from the aggregates over time. This was not due to differential activation in response to the bacteria compared with physiological activators. All the bacterial isolates induced significant platelet activation, including integrin activation and alpha and dense-granule release, at levels equivalent to those induced by potent physiological platelet activators that induced stable aggregates. The ability to escape the aggregates and to resist the antibacterial effects of platelets was dependent on active protein synthesis by the bacteria within the aggregate. We conclude that S. pyogenes bacteria can temporarily cover themselves with activated platelets, and we propose that this may facilitate survival of the bacteria in the presence of platelets. PMID:25069984

  12. Lionfish misidentification circumvents an optimized escape response by prey

    PubMed Central

    McCormick, Mark I.; Allan, Bridie J. M.

    2016-01-01

    Invasive lionfish represent an unprecedented problem in the Caribbean basin, where they are causing major changes to foodwebs and habitats through their generalized predation on fishes and invertebrates. To ascertain what makes the red lionfish (Pterois volitans) such a formidable predator, we examined the reaction of a native damselfish prey, the whitetail damsel (Pomacentrus chrysurus), to a repeatable startle stimulus once they had been forewarned of the sight or smell of lionfish. Fast-start responses were compared with prey forewarned of a predatory rockcod (Cephalopholis microprion), a corallivorous butterflyfish (Chaetodon trifasctiatus) and experimental controls. Forewarning of the sight, smell or a combination of the two cues from a rockcod led to reduced escape latencies and higher response distances, speed and maximal speed compared with controls, suggesting that forewarning primed the prey and enabled a more effective escape response. In contrast, forewarning of lionfish did not affect the fast-start kinematics measured, which were the same as in the control and non-predatory butterflyfish treatments. Lionfish appear to be able to circumvent mechanisms commonly used by prey to identify predators and were misclassified as non-predatory, and this is likely to contribute to their success as predators. PMID:27990292

  13. Lionfish misidentification circumvents an optimized escape response by prey.

    PubMed

    McCormick, Mark I; Allan, Bridie J M

    2016-01-01

    Invasive lionfish represent an unprecedented problem in the Caribbean basin, where they are causing major changes to foodwebs and habitats through their generalized predation on fishes and invertebrates. To ascertain what makes the red lionfish ( Pterois volitans ) such a formidable predator, we examined the reaction of a native damselfish prey, the whitetail damsel ( Pomacentrus chrysurus ), to a repeatable startle stimulus once they had been forewarned of the sight or smell of lionfish. Fast-start responses were compared with prey forewarned of a predatory rockcod ( Cephalopholis microprion ), a corallivorous butterflyfish ( Chaetodon trifasctiatus ) and experimental controls. Forewarning of the sight, smell or a combination of the two cues from a rockcod led to reduced escape latencies and higher response distances, speed and maximal speed compared with controls, suggesting that forewarning primed the prey and enabled a more effective escape response. In contrast, forewarning of lionfish did not affect the fast-start kinematics measured, which were the same as in the control and non-predatory butterflyfish treatments. Lionfish appear to be able to circumvent mechanisms commonly used by prey to identify predators and were misclassified as non-predatory, and this is likely to contribute to their success as predators.

  14. Mutations within the HBc gene of the hepatitis B virus: a study on Iranian patients.

    PubMed

    Zare-Bidaki, Mohammad; Ayoobi, Fatemeh; Hassanshahi, Gholamhossein; Arababadi, Mohammad Kazemi; Mirzaei, Tayebeh; Darehdori, Ahmad Shebanizade; Kennedy, Derek

    2014-01-01

    Hepatitis B virus (HBV) is a serious risk factor for several severe liver diseases such as cirrhosis and hepatocellular carcinoma. HBV, like other viruses, uses several mechanisms to escape from specific immune responses including the use of mutations in the genome which lead to epitope variations. There are several immune responses, including T helper cells, cytotoxic T lymphocytes, and B cells, against the core antigen of HBV (HBcAg) that can lead to HBV eradication. Therefore, mutations within the HBc gene can lead to escape from immune responses by HBV and, hence, understanding the prevalence of HBc mutations among a specific population can be helpful for future treatment and vaccination. This review addresses the recent information regarding the prevalence of mutations within the HBc gene among Iranian HBV infected patients. The data presented here was collected gene sequences reported from Iran to the NCBI nucleotide Gen Bank. Results showed that the prevalence of HBc gene mutations is frequent in Iranian HBV infected patients. Based on our searches it seems that escape from immune responses is a plausible reason for the high prevalence of HBc gene mutations among Iranian HBV infected patients.

  15. The Effects of Variable-Time Delivery of Food Items and Praise on Problem Behavior Reinforced by Escape

    ERIC Educational Resources Information Center

    Lomas, Joanna E.; Fisher, Wayne W.; Kelley, Michael E.

    2010-01-01

    Prior research indicates that reinforcement of an appropriate response (e.g., compliance) can produce concomitant reductions in problem behavior reinforced by escape when problem behavior continues to produce negative reinforcement (e.g., Lalli et al., 1999). These effects may be due to a preference for positive over negative reinforcement or to…

  16. The effects of CO and HCN on pole-jump avoidance-escape behavior

    NASA Technical Reports Server (NTRS)

    Winslow, W.

    1981-01-01

    The effects of carbon monoxide and mixtures of carbon monoxide and hydrogen cyanide at different concentrations and times of exposure were studied in a pole-jump apparatus. The time to loose the avoidance and escape response for mice exposed to these atmospheres was obtained. Correlations to predict the loss as a function of dosage are presented.

  17. Yersinia pestis IS1541 transposition provides for escape from plague immunity.

    PubMed

    Cornelius, Claire A; Quenee, Lauriane E; Elli, Derek; Ciletti, Nancy A; Schneewind, Olaf

    2009-05-01

    Yersinia pestis is perhaps the most feared infectious agent due to its ability to cause epidemic outbreaks of plague disease in animals and humans with high mortality. Plague infections elicit strong humoral immune responses against the capsular antigen (fraction 1 [F1]) of Y. pestis, and F1-specific antibodies provide protective immunity. Here we asked whether Y. pestis generates mutations that enable bacterial escape from protective immunity and isolated a variant with an IS1541 insertion in caf1A encoding the F1 outer membrane usher. The caf1A::IS1541 insertion prevented assembly of F1 pili and provided escape from plague immunity via F1-specific antibodies without a reduction in virulence in mouse models of bubonic or pneumonic plague. F1-specific antibodies interfere with Y. pestis type III transport of effector proteins into host cells, an inhibitory effect that was overcome by the caf1A::IS1541 insertion. These findings suggest a model in which IS1541 insertion into caf1A provides for reversible changes in envelope structure, enabling Y. pestis to escape from adaptive immune responses and plague immunity.

  18. INDUCTION OF IMMUNOLOGIC TOLERANCE IN OLDER NEW ZEALAND MICE REPOPULATED WITH YOUNG SPLEEN, BONE MARROW, OR THYMUS

    PubMed Central

    Staples, Parker J.; Steinberg, Alfred D.; Talal, Norman

    1970-01-01

    Newborn, 7–9 day, and 16–18 day old NZB and B/W mice were, unlike older New Zealand mice, rendered tolerant to single doses of 8–10 mg of soluble BGG. After challenge, this tolerance was of short duration and escape occurred rapidly. Age-matched and similarly treated C3H, Balb/c and C57Bl mice did not escape from tolerance. Partial tolerance could be maintained by repeated injections of BGG. Biofiltration ruled out hyperphagocytosis as an explanation for this resistance to tolerance. Tolerance could be induced in older B/W mice if they were thymectomized, irradiated, and repopulated with young (12–15 day), but not old (2–3 month), spleen or bone marrow cells. Old bone marrow cells gave a non-tolerant response even when combined with young thymic grafts. Young bone marrow gave a tolerant response which was followed by the expected rapid escape only if a young thymus graft was also present. Escape was retarded if old thymus, or old irradiated thymus, was combined with young bone marrow. These results are best explained by abnormalities of both lymphoid precursors and thymic regulation. PMID:4192570

  19. Therapeutics targeting tumor immune escape: towards the development of new generation anticancer vaccines.

    PubMed

    Mocellin, Simone; Nitti, Donato

    2008-05-01

    Despite the evidence that immune effectors can play a significant role in controlling tumor growth under natural conditions or in response to therapeutic manipulation, it is clear that malignant cells evade immune surveillance in most cases. Considering that anticancer vaccination has reached a plateau of results and currently no vaccination regimen is indicated as a standard anticancer therapy, the dissection of the molecular events underlying tumor immune escape is the necessary condition to make anticancer vaccines a therapeutic weapon effective enough to be implemented in the routine clinical setting. Recent years have witnessed significant advances in our understanding of the molecular mechanisms underlying tumor immune escape. These mechanistic insights are fostering the development of rationally designed therapeutics aimed at reverting the immunosuppressive circuits that undermine an effective antitumor immune response. In this review, the best characterized mechanisms that allow cancer cells to evade immune surveillance are overviewed and the most debated controversies constellating this complex field are highlighted. In addition, the latest therapeutic strategies devised to overcome tumor immune escape are described, with special regard to those entering clinical phase investigation. Copyright (c) 2007 Wiley-Periodicals, Inc.

  20. Learned Helplessness at Fifty: Insights from Neuroscience

    PubMed Central

    Maier, Steven F.; Seligman, Martin E. P.

    2016-01-01

    Learned helplessness, the failure to escape shock induced by uncontrollable aversive events, was discovered half a century ago. Seligman and Maier (1967) theorized that animals learned that outcomes were independent of their responses—that nothing they did mattered – and that this learning undermined trying to escape. The mechanism of learned helplessness is now very well-charted biologically and the original theory got it backwards. Passivity in response to shock is not learned. It is the default, unlearned response to prolonged aversive events and it is mediated by the serotonergic activity of the dorsal raphe nucleus, which in turn inhibits escape. This passivity can be overcome by learning control, with the activity of the medial prefrontal cortex, which subserves the detection of control leading to the automatic inhibition of the dorsal raphe nucleus. So animals learn that they can control aversive events, but the passive failure to learn to escape is an unlearned reaction to prolonged aversive stimulation. In addition, alterations of the ventromedial prefrontal cortex-dorsal raphe pathway can come to subserve the expectation of control. We speculate that default passivity and the compensating detection and expectation of control may have substantial implications for how to treat depression. PMID:27337390

  1. Opioid modulation of reflex versus operant responses following stress in the rat.

    PubMed

    King, C D; Devine, D P; Vierck, C J; Mauderli, A; Yezierski, R P

    2007-06-15

    In pre-clinical models intended to evaluate nociceptive processing, acute stress suppresses reflex responses to thermal stimulation, an effect previously described as stress-induced "analgesia." Suggestions that endogenous opioids mediate this effect are based on demonstrations that stress-induced hyporeflexia is enhanced by high dose morphine (>5 mg/kg) and is reversed by naloxone. However, reflexes and pain sensations can be modulated differentially. Therefore, in the present study direct comparisons were made of opioid agonist and antagonist actions, independently and in combination with acute restraint stress in Long Evans rats, on reflex lick-guard (L/G) and operant escape responses to nociceptive thermal stimulation (44.5 degrees C). A high dose of morphine (>8 mg/kg) was required to reduce reflex responding, but a moderate dose of morphine (1 mg/kg) significantly reduced escape responding. The same moderate dose (and also 5 mg/kg) of morphine significantly enhanced reflex responding. Naloxone (3 mg/kg) significantly enhanced escape responding but did not affect L/G responding. Restraint stress significantly suppressed L/G reflexes (hyporeflexia) but enhanced escape responses (hyperalgesia). Stress-induced hyperalgesia was significantly reduced by morphine and enhanced by naloxone. In contrast, stress-induced hyporeflexia was blocked by both naloxone and 1 mg/kg of morphine. Thus, stress-induced hyperalgesia was opposed by endogenous opioid release and by administration of morphine. Stress-induced hyporeflexia was dependent upon endogenous opioid release but was counteracted by a moderate dose of morphine. These data demonstrate a differential modulation of reflex and operant outcome measures by stress and by separate or combined opioid antagonism or administration of morphine.

  2. Projected near-future CO2 levels increase activity and alter defensive behaviours in the tropical squid Idiosepius pygmaeus

    PubMed Central

    Spady, Blake L.; Watson, Sue-Ann; Chase, Tory J.; Munday, Philip L.

    2014-01-01

    ABSTRACT Carbon dioxide (CO2) levels projected to occur in the oceans by the end of this century cause a range of behavioural effects in fish, but whether other highly active marine organisms, such as cephalopods, are similarly affected is unknown. We tested the effects of projected future CO2 levels (626 and 956 µatm) on the behaviour of male two-toned pygmy squid, Idiosepius pygmaeus. Exposure to elevated CO2 increased the number of active individuals by 19–25% and increased movement (number of line-crosses) by nearly 3 times compared to squid at present-day CO2. Squid vigilance and defensive behaviours were also altered by elevated CO2 with >80% of individuals choosing jet escape responses over defensive arm postures in response to a visual startle stimulus, compared with 50% choosing jet escape responses at control CO2. In addition, more escape responses were chosen over threat behaviours in body pattern displays at elevated CO2 and individuals were more than twice as likely to use ink as a defence strategy at 956 µatm CO2, compared with controls. Increased activity could lead to adverse effects on energy budgets as well as increasing visibility to predators. A tendency to respond to a stimulus with escape behaviours could increase survival, but may also be energetically costly and could potentially lead to more chases by predators compared with individuals that use defensive postures. These results demonstrate that projected future ocean acidification affects the behaviours of a tropical squid species. PMID:25326517

  3. Escaping and repairing behaviors of the termite Odontotermes formosanus (Blattodea: Termitidae) in response to disturbance

    PubMed Central

    Wen, Yuzhen; Layne, Michael; Sun, Zhaohui; Ma, Tao

    2018-01-01

    The escaping behavior of termites has been documented under laboratory conditions; however, no study has been conducted in a field setting due to the difficulty of observing natural behaviors inside wood or structures (e.g., nests, tunnels, etc.). The black-winged termite, Odontotermes formosanus (Shiraki), is a subterranean macrotermitine species which builds extensive mud tubes on tree trunks. In the present study, 41 videos (totaling ∼2,700 min) were taken on 22 colonies/subcolonies of O. formosanus after their mud tubes were partially damaged by hand. In general, termites consistently demonstrated three phases of escape, including initiation (wandering near the mud-tube breach), individual escaping (single termites moving downward), and massive, unidirectional escaping flows (groups of termites moving downward). Downward moving and repairing were the dominant behavioral activities of individuals and were significantly more frequent than upward moving, turning/backward moving, or wandering. Interestingly, termites in escaping flows moved significantly faster than escaping individuals. Repairing behavior was observed shortly after the disturbance, and new mud tubes were preferentially constructed from the bottom up. When predators (i.e., ants) were present, however, termites stopped moving and quickly sealed the mud-tube openings by capping the broken ends. Our study provides an interesting example that documents an animal (besides humans) simultaneously carrying out pathway repairs and emergency evacuation without congestion. PMID:29576978

  4. Escaping and repairing behaviors of the termite Odontotermes formosanus (Blattodea: Termitidae) in response to disturbance.

    PubMed

    Xiong, Hongpeng; Chen, Xuan; Wen, Yuzhen; Layne, Michael; Sun, Zhaohui; Ma, Tao; Wen, Xiujun; Wang, Cai

    2018-01-01

    The escaping behavior of termites has been documented under laboratory conditions; however, no study has been conducted in a field setting due to the difficulty of observing natural behaviors inside wood or structures (e.g., nests, tunnels, etc.). The black-winged termite, Odontotermes formosanus (Shiraki), is a subterranean macrotermitine species which builds extensive mud tubes on tree trunks. In the present study, 41 videos (totaling ∼2,700 min) were taken on 22 colonies/subcolonies of O. formosanus after their mud tubes were partially damaged by hand. In general, termites consistently demonstrated three phases of escape, including initiation (wandering near the mud-tube breach), individual escaping (single termites moving downward), and massive, unidirectional escaping flows (groups of termites moving downward). Downward moving and repairing were the dominant behavioral activities of individuals and were significantly more frequent than upward moving, turning/backward moving, or wandering. Interestingly, termites in escaping flows moved significantly faster than escaping individuals. Repairing behavior was observed shortly after the disturbance, and new mud tubes were preferentially constructed from the bottom up. When predators (i.e., ants) were present, however, termites stopped moving and quickly sealed the mud-tube openings by capping the broken ends. Our study provides an interesting example that documents an animal (besides humans) simultaneously carrying out pathway repairs and emergency evacuation without congestion.

  5. A COMPARISON OF SENSORY INTEGRATIVE AND BEHAVIORAL THERAPIES AS TREATMENT FOR PEDIATRIC FEEDING DISORDERS

    PubMed Central

    Addison, Laura R; Piazza, Cathleen C; Patel, Meeta R; Bachmeyer, Melanie H; Rivas, Kristi M; Milnes, Suzanne M; Oddo, Jackie

    2012-01-01

    We compared the effects of escape extinction (EE) plus noncontingent reinforcement (NCR) with sensory integration therapy as treatment for the feeding problems of 2 children. Results indicated that EE plus NCR was more effective in increasing acceptance, decreasing inappropriate behavior, and increasing amount consumed relative to sensory integration for both children. The results are discussed in terms of the challenges of evaluating sensory-integration-based treatments, and the reasons why component analyses of multicomponent treatments like sensory integration are important. PMID:23060661

  6. Environmental effects on the ontogeny of exploratory and escape behaviors of Mongolian gerbils.

    PubMed

    Clark, M M; Galet, B G

    1982-03-01

    Mongolian gerbils reared in standard laboratory cages and gerbils reared in cages containing a burrowlike shelter did not differ in their rate of development of escape responses to sudden visual stimulation. The presence of shelter in the rearing environment did, however, markedly slow the development of adult-like patterns of exploration. Reduced exposure to illumination, experienced by shelter-reared subjects, proved responsible for this retardation of development. The effect of shelter-rearing on the development of exploratory behavior is interpreted as demonstrating an environmentally induced maintenance of an adaptive juvenile pattern of behavior.

  7. Drainage Evolution during the Uplift of the Central Anatolia Plateau

    NASA Astrophysics Data System (ADS)

    Brocard, G. Y.; Meijers, M. J.; Willenbring, J. K.; Kaymakci, N.; Whitney, D. L.

    2015-12-01

    The Central Anatolian plateau formed in the past 8-6 Myrs, associated to a change in tectonic regime, from contraction to extensional escape tectonics. We have examined the response of the river drainage of Central Anatolia to the rise of the plateau uplift and to the formation of the Anatolian microplate, tracking changes in drainage organization. Anatolia experienced widespread rock uplift and erosion in the Late Oligocene, generating a narrow, steep, and quickly eroding mountain range above the future southern plateau margin. A regionally widespread marine transgression resulted from wholesale foundering of this orogen in Early Miocene time. Widespread planation surfaces overlapped by Miocene marine carbonates bevel this topography, indicating that relief had been reduced to a low elevation pedimented landscape by the end of the Middle Miocene. Plateau uplift initiated around 11 My ago in Eastern Anatolia; it was echoed in Central Anatolia by a short-lived phase of contraction and localized uplifts that predate escape tectonics and mark the beginning of the current topographic differentiation of the southern plateau margin. The through-going drainage network inherited disintegrated, and a vast zone of inward drainage formed at the location of the future plateau interior. Between 8 and 6 My, the southern plateau margin (i.e. the Tauride Mountains) emerged. δ18O analyses on lacustrine and pedogenic carbonates show that the southern plateau margin, if not the plateau interior, had experienced enough uplift by 5 My to generate a substantial rain shadow over the plateau interior. Being disconnected from the regional base level from the start, the plateau interior was able to rise without experiencing substantial dissection. It reconnected to all surrounding sediment sinks (Mediterranean Sea, Black Sea and Persian Gulf) over the past 5 My. We discuss the mechanisms that have driven this reconnection. Bottom-up processes of integration such as drainage divide retreat did not produce any major changes. Top-down processes such as lake overflow and avulsion achieved most of the re-integration. They result from more positive precipitation/evaporation balances, either due to elevation change during plateau uplift or due to tectonic fragmentation of depocenters during the development of escape tectonics.

  8. Neural circuits underlying visually evoked escapes in larval zebrafish

    PubMed Central

    Dunn, Timothy W.; Gebhardt, Christoph; Naumann, Eva A.; Riegler, Clemens; Ahrens, Misha B.; Engert, Florian; Del Bene, Filippo

    2015-01-01

    SUMMARY Escape behaviors deliver organisms away from imminent catastrophe. Here, we characterize behavioral responses of freely swimming larval zebrafish to looming visual stimuli simulating predators. We report that the visual system alone can recruit lateralized, rapid escape motor programs, similar to those elicited by mechanosensory modalities. Two-photon calcium imaging of retino-recipient midbrain regions isolated the optic tectum as an important center processing looming stimuli, with ensemble activity encoding the critical image size determining escape latency. Furthermore, we describe activity in retinal ganglion cell terminals and superficial inhibitory interneurons in the tectum during looming and propose a model for how temporal dynamics in tectal periventricular neurons might arise from computations between these two fundamental constituents. Finally, laser ablations of hindbrain circuitry confirmed that visual and mechanosensory modalities share the same premotor output network. Together, we establish a circuit for the processing of aversive stimuli in the context of an innate visual behavior. PMID:26804997

  9. Analysis of aircraft performance during lateral maneuvering for microburst avoidance

    NASA Technical Reports Server (NTRS)

    Avila De Melo, Denise; Hansman, R. John, Jr.

    1990-01-01

    Aircraft response to a severe and a moderate three-dimensional microburst model using nonlinear numerical simulations of a Boeing 737-100 is studied. The relative performance loss is compared for microburst escape procedures with and without lateral maneuvering. The results show that the hazards caused by the penetration of a microburst in the landing phase are attenuated if lateral escape maneuvers are applied in order to turn the aircraft away from the microburst core rather than flying straight through. If the lateral escape maneuver is initiated close to the microburst core, high bank angles tend to deteriorate aircraft performance. Lateral maneuvering is also found to reduce the advanced warning required to escape from microburst hazards but requires that information of the existence and location of the microburst is available (i.e., remote detection) in order to avoid an incorrect turn toward the microburst core.

  10. Using behavioral science to improve fire escape behaviors in response to a smoke alarm.

    PubMed

    Thompson, N J; Waterman, M B; Sleet, D A

    2004-01-01

    Although the likelihood of fire-related death in homes with smoke alarms is about one-half that in homes without alarms, alarm effectiveness is limited by behavior. Only 16% of residents of homes with alarms have developed and practiced plans for escape when the alarm sounds. We reviewed literature to identify behavioral constructs that influence smoke alarm use. We then convened experts in the behavioral aspects of smoke alarms who reviewed the constructs and determined that the appropriate areas for behavioral focus were formulating, practicing, and implementing escape plans should an alarm sound. They subsequently identified important behaviors to be addressed by burn-prevention programs and incorporated the constructs into a behavioral model for use in such programs. Finally, we organized the available literature to support this model and make programmatic recommendations. Many gaps remain in behavioral research to improve fire escape planning and practice. Future research must select the target behavior, apply behavioral theories, and distinguish between initiation and maintenance of behaviors associated with planning, practicing, and implementing home fire escape plans.

  11. Escape behaviour elicited by a visual stimulus. A comparison between lateralised and non-lateralised female topminnows.

    PubMed

    Agrillo, Christian; Dadda, Marco; Bisazza, Angelo

    2009-05-01

    Studies over the past 30 years suggest that functional lateralisation occurs in many animal species. Preferential eye use is ubiquitous among fish, and recently some advantages of being lateralised have been reported in the golden topminnow, Girardinus falcatus, using fish from lines selected for high or low degrees of behavioural lateralisation. In the present paper we investigated whether non-lateralised fish differed from lateralised fish in escape behaviour elicited by a potentially dangerous stimulus. A total of 56 female topminnows were observed when swimming in an unknown environment in which the shape of a predator was presented on either the right or the left side of the visual field. We found no side differences in latency and efficiency of escape reaction and on the whole non-lateralised fish escaped as quickly as lateralised individuals. We discuss our results in the light of recent findings suggesting that the development of lateralisation in the fast escape response in fish may be controlled by a mechanism distinct from that controlling the asymmetric placement of most other cognitive functions.

  12. Sigma-1 receptor ligands control a switch between passive and active threat responses

    PubMed Central

    Rennekamp, Andrew J.; Huang, Xi-Ping; Wang, You; Patel, Samir; Lorello, Paul J.; Cade, Lindsay; Gonzales, Andrew P. W.; Yeh, Jing-Ruey Joanna; Caldarone, Barbara J.; Roth, Bryan L.; Kokel, David; Peterson, Randall T.

    2016-01-01

    Humans and many animals exhibit freezing behavior in response to threatening stimuli. In humans, inappropriate threat responses are fundamental characteristics of several mental illnesses. To identify small molecules that modulate threat responses, we developed a high-throughput behavioral assay in zebrafish (Danio rerio) and characterized the effects of 10,000 compounds on freezing behavior. We found three classes of compounds that switch the threat response from freezing to escape-like behavior. We then screened these for binding activity across 45 candidate targets. Using target profile clustering we implicated the sigma-1 receptor in the mechanism of behavioral switching and confirmed that known sigma-1 ligands also disrupt freezing behavior. Furthermore, mutation of the sigma-1 gene prevented the behavioral effect of escape-inducing compounds. The compound ‘finazine’ potently bound mammalian sigma-1 and altered rodent threat response behavior. Thus, pharmacological and genetic interrogation of the freezing response revealed sigma-1 as a mediator of vertebrate threat responses. PMID:27239788

  13. Stress and aversive learning in a wild vertebrate: the role of corticosterone in mediating escape from a novel stressor.

    PubMed

    Thaker, Maria; Vanak, Abi T; Lima, Steven L; Hews, Diana K

    2010-01-01

    Elevated plasma corticosterone during stressful events is linked to rapid changes in behavior in vertebrates and can mediate learning and memory consolidation. We tested the importance of acute corticosterone elevation in aversive learning of a novel stressor by wild male eastern fence lizards (Sceloporus undulatus). We found that inhibiting corticosterone elevation (using metyrapone, a corticosterone synthesis blocker) during an encounter with a novel attacker impaired immediate escape responses and limited learning and recall during future encounters. In the wild and in outdoor enclosures, lizards whose acute corticosterone response was blocked by an earlier metyrapone injection did not alter their escape behavior during repeated encounters with the attacker. Control-injected (unblocked) lizards, however, progressively increased flight initiation distance and decreased hiding duration during subsequent encounters. Aversive responses were also initially higher for control lizards exposed to a higher intensity first attack. Further, we demonstrate a role of corticosterone elevation in recollection, since unblocked lizards had heightened antipredator responses 24-28 h later. Exogenously restoring corticosterone levels in metyrapone-injected lizards maintained aversive behaviors and learning at control (unblocked) levels. We suggest that the corticosterone mediation of antipredator behaviors and aversive learning is a critical and general mechanism for the behavioral flexibility of vertebrate prey.

  14. Setback Distances as a Conservation Tool in Wildlife-Human Interactions: Testing Their Efficacy for Birds Affected by Vehicles on Open-Coast Sandy Beaches

    PubMed Central

    Schlacher, Thomas A.; Weston, Michael A.; Lynn, David; Connolly, Rod M.

    2013-01-01

    In some wilderness areas, wildlife encounter vehicles disrupt their behaviour and habitat use. Changing driver behaviour has been proposed where bans on vehicle use are politically unpalatable, but the efficacy of vehicle setbacks and reduced speeds remains largely untested. We characterised bird-vehicle encounters in terms of driver behaviour and the disturbance caused to birds, and tested whether spatial buffers or lower speeds reduced bird escape responses on open beaches. Focal observations showed that: i) most drivers did not create sizeable buffers between their vehicles and birds; ii) bird disturbance was frequent; and iii) predictors of probability of flushing (escape) were setback distance and vehicle type (buses flushed birds at higher rates than cars). Experiments demonstrated that substantial reductions in bird escape responses required buffers to be wide (> 25 m) and vehicle speeds to be slow (< 30 km h-1). Setback distances can reduce impacts on wildlife, provided that they are carefully designed and derived from empirical evidence. No speed or distance combination we tested, however, eliminated bird responses. Thus, while buffers reduce response rates, they are likely to be much less effective than vehicle-free zones (i.e. beach closures), and rely on changes to current driver behaviour. PMID:24039711

  15. Analytical response function for planar Ge detectors

    NASA Astrophysics Data System (ADS)

    García-Alvarez, Juan A.; Maidana, Nora L.; Vanin, Vito R.; Fernández-Varea, José M.

    2016-04-01

    We model the response function (RF) of planar HPGe x-ray spectrometers for photon energies between around 10 keV and 100 keV. The RF is based on the proposal of Seltzer [1981. Nucl. Instrum. Methods 188, 133-151] and takes into account the full-energy absorption in the Ge active volume, the escape of Ge Kα and Kβ x-rays and the escape of photons after one Compton interaction. The relativistic impulse approximation is employed instead of the Klein-Nishina formula to describe incoherent photon scattering in the Ge crystal. We also incorporate a simple model for the continuous component of the spectrum produced by the escape of photo-electrons from the active volume. In our calculations we include external interaction contributions to the RF: (i) the incoherent scattering effects caused by the detector's Be window and (ii) the spectrum produced by photo-electrons emitted in the Ge dead layer that reach the active volume. The analytical RF model is compared with pulse-height spectra simulated using the PENELOPE Monte Carlo code.

  16. Multiplexing of Motor Information in the Discharge of a Collision Detecting Neuron during Escape Behaviors

    PubMed Central

    Fotowat, Haleh; Harrison, Reid R; Gabbiani, Fabrizio

    2010-01-01

    Locusts possess an identified neuron, the descending contralateral movement detector (DCMD), conveying visual information about impending collision from the brain to thoracic motor centers. We built a telemetry system to simultaneously record, in freely behaving animals, the activity of the DCMD and of motoneurons involved in jump execution. Co-contraction of antagonistic leg muscles, a required preparatory phase, was triggered after the DCMD firing rate crossed a threshold. Thereafter, the number of DCMD spikes predicted precisely motoneuron activity and jump occurrence. Additionally, the time of DCMD peak firing rate predicted that of jump. Ablation experiments suggest that the DCMD, together with a nearly identical ipsilateral descending neuron, is responsible for the timely execution of the escape. Thus, three distinct features that are multiplexed in a single neuron’s sensory response to impending collision – firing rate threshold, peak firing time, and spike count – likely control three distinct motor aspects of escape behaviors. PMID:21220105

  17. Path integrals and large deviations in stochastic hybrid systems.

    PubMed

    Bressloff, Paul C; Newby, Jay M

    2014-04-01

    We construct a path-integral representation of solutions to a stochastic hybrid system, consisting of one or more continuous variables evolving according to a piecewise-deterministic dynamics. The differential equations for the continuous variables are coupled to a set of discrete variables that satisfy a continuous-time Markov process, which means that the differential equations are only valid between jumps in the discrete variables. Examples of stochastic hybrid systems arise in biophysical models of stochastic ion channels, motor-driven intracellular transport, gene networks, and stochastic neural networks. We use the path-integral representation to derive a large deviation action principle for a stochastic hybrid system. Minimizing the associated action functional with respect to the set of all trajectories emanating from a metastable state (assuming that such a minimization scheme exists) then determines the most probable paths of escape. Moreover, evaluating the action functional along a most probable path generates the so-called quasipotential used in the calculation of mean first passage times. We illustrate the theory by considering the optimal paths of escape from a metastable state in a bistable neural network.

  18. Post-molting development of wind-elicited escape behavior in the cricket.

    PubMed

    Sato, Nodoka; Shidara, Hisashi; Ogawa, Hiroto

    2017-11-01

    Arthropods including insects grow through several developmental stages by molting. The abrupt changes in their body size and morphology accompanying the molting are responsible for the developmental changes in behavior. While in holometabolous insects, larval behaviors are transformed into adult-specific behaviors with drastic changes in nervous system during the pupal stage, hemimetabolous insects preserve most innate behaviors whole life long, which allow us to trace the maturation process of preserved behaviors after the changes in body. Wind-elicited escape behavior is one of these behaviors and mediated by cercal system, which is a mechanosensory organ equipped by all stages of nymph in orthopteran insects like crickets. However, the maturation process of the escape behavior after the molt is unclear. In this study, we examined time-series of changes in the wind-elicited escape behavior just after the imaginal molt in the cricket. The locomotor activities are developed over the elapsed time, and matured 24h after the molt. In contrast, a stimulus-angle dependency of moving direction was unchanged over time, meaning that the cercal sensory system detecting airflow direction was workable immediately after the molt, independent from the behavioral maturation. The post-molting development of the wind-elicited behavior was considered to result not simply from maturation of the exoskeleton or musculature because the escape response to heat-shock stimulus did not change after the molt. No effect of a temporal immobilization after the imaginal molt on the maturation of the wind-elicited behavior also implies that the maturation may be innately programmed without experience of locomotion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A good time to leave?: the sunk time effect in pigeons.

    PubMed

    Magalhães, Paula; White, K Geoffrey

    2014-06-01

    Persistence in a losing course of action due to prior investments of time, known as the sunk time effect, has seldom been studied in nonhuman animals. On every trial in the present study, pigeons were required to choose between two response keys. Responses on one key produced food after a short fixed interval (FI) of time on some trials, or on other trials, no food (Extinction) after a longer time. FI and Extinction trials were not differently signaled, were equiprobable, and alternated randomly. Responses on a second Escape key allowed the pigeon to terminate the current trial and start a new one. The optimal behavior was for pigeons to peck the escape key once the duration equivalent to the short FI had elapsed without reward. Durations of the short FI and the longer Extinction schedules were varied over conditions. In some conditions, the pigeons suboptimally responded through the Extinction interval, thus committing the sunk time effect. The absolute duration of the short FI had no effect on the choice between persisting and escaping. Instead, the ratio of FI and Extinction durations determined the likelihood of persistence during extinction. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Anomalous barrier escape: The roles of noise distribution and correlation.

    PubMed

    Hu, Meng; Zhang, Jia-Ming; Bao, Jing-Dong

    2017-05-28

    We study numerically and analytically the barrier escape dynamics of a particle driven by an underlying correlated Lévy noise for a smooth metastable potential. A "quasi-monochrome-color" Lévy noise, i.e., the first-order derivative variable of a linear second-order differential equation subjected to a symmetric α-stable white Lévy noise, also called the harmonic velocity Lévy noise, is proposed. Note that the time-integral of the noise Green function of this kind is equal to zero. This leads to the existence of underlying negative time correlation and implies that a step in one direction is likely followed by a step in the other direction. By using the noise of this kind as a driving source, we discuss the competition between long flights and underlying negative correlations in the metastable dynamics. The quite rich behaviors in the parameter space including an optimum α for the stationary escape rate have been found. Remarkably, slow diffusion does not decrease the stationary rate while a negative correlation increases net escape. An approximate expression for the Lévy-Kramers rate is obtained to support the numerically observed dependencies.

  1. Anomalous barrier escape: The roles of noise distribution and correlation

    NASA Astrophysics Data System (ADS)

    Hu, Meng; Zhang, Jia-Ming; Bao, Jing-Dong

    2017-05-01

    We study numerically and analytically the barrier escape dynamics of a particle driven by an underlying correlated Lévy noise for a smooth metastable potential. A "quasi-monochrome-color" Lévy noise, i.e., the first-order derivative variable of a linear second-order differential equation subjected to a symmetric α-stable white Lévy noise, also called the harmonic velocity Lévy noise, is proposed. Note that the time-integral of the noise Green function of this kind is equal to zero. This leads to the existence of underlying negative time correlation and implies that a step in one direction is likely followed by a step in the other direction. By using the noise of this kind as a driving source, we discuss the competition between long flights and underlying negative correlations in the metastable dynamics. The quite rich behaviors in the parameter space including an optimum α for the stationary escape rate have been found. Remarkably, slow diffusion does not decrease the stationary rate while a negative correlation increases net escape. An approximate expression for the Lévy-Kramers rate is obtained to support the numerically observed dependencies.

  2. Spacecraft Escape Capsule

    NASA Technical Reports Server (NTRS)

    Robertson, Edward A.; Charles, Dingell W.; Bufkin, Ann L.; Rodriggs, Liana M.; Peterson, Wayne; Cuthbert, Peter; Lee, David E.; Westhelle, Carlos

    2006-01-01

    A report discusses the Gumdrop capsule a conceptual spacecraft that would enable the crew to escape safely in the event of a major equipment failure at any time from launch through atmospheric re-entry. The scaleable Gumdrop capsule would comprise a command module (CM), a service module (SM), and a crew escape system (CES). The CM would contain a pressurized crew environment that would include avionic, life-support, thermal control, propulsive attitude control, and recovery systems. The SM would provide the primary propulsion and would also supply electrical power, life-support resources, and active thermal control to the CM. The CES would include a solid rocket motor, embedded within the SM, for pushing the CM away from the SM in the event of a critical thermal-protection-system failure or loss of control. The CM and SM would normally remain integrated with each other from launch through recovery, but could be separated using the CES, if necessary, to enable the safe recovery of the crew in the CM. The crew escape motor could be used, alternatively, as a redundant means of de-orbit propulsion for the CM in the event of a major system failure in the SM.

  3. Replication-Competent Simian Immunodeficiency Virus (SIV) Gag Escape Mutations Archived in Latent Reservoirs during Antiretroviral Treatment of SIV-Infected Macaques▿

    PubMed Central

    Queen, Suzanne E.; Mears, Brian M.; Kelly, Kathleen M.; Dorsey, Jamie L.; Liao, Zhaohao; Dinoso, Jason B.; Gama, Lucio; Adams, Robert J.; Zink, M. Christine; Clements, Janice E.; Kent, Stephen J.; Mankowski, Joseph L.

    2011-01-01

    In response to pressure exerted by major histocompatibility complex (MHC) class I-mediated CD8+ T cell control, human immunodeficiency virus (HIV) escape mutations often arise in immunodominant epitopes recognized by MHC class I alleles. While the current standard of care for HIV-infected patients is treatment with highly active antiretroviral therapy (HAART), suppression of viral replication in these patients is not absolute and latently infected cells persist as lifelong reservoirs. To determine whether HIV escape from MHC class I-restricted CD8+ T cell control develops during HAART treatment and then enters latent reservoirs in the periphery and central nervous system (CNS), with the potential to emerge as replication-competent virus, we tracked the longitudinal development of the simian immunodeficiency virus (SIV) Gag escape mutation K165R in HAART-treated SIV-infected pigtailed macaques. Key findings of these studies included: (i) SIV Gag K165R escape mutations emerged in both plasma and cerebrospinal fluid (CSF) during the decaying phase of viremia after HAART initiation before suppression of viral replication, (ii) SIV K165R Gag escape mutations were archived in latent proviral DNA reservoirs, including the brain in animals receiving HAART that suppressed viral replication, and (iii) replication-competent SIV Gag K165R escape mutations were present in the resting CD4+ T cell reservoir in HAART-treated SIV-infected macaques. Despite early administration of aggressive antiretroviral treatment, HIV immune escape from CD8+ T cell control can still develop during the decaying phases of viremia and then persist in latent reservoirs, including the brain, with the potential to emerge if HAART therapy is interrupted. PMID:21715484

  4. Behavioral Responses to DDT and Pyrethroids Between Anopheles Minimus Species A and C Malaria Vectors in Thailand

    DTIC Science & Technology

    2005-01-01

    and lambdacyhalothrin in contact and noncontact trials* Condition Population Chemical (No. of tests) Number escaped (%) % mortality Escaped Remained...bioassays. Figures 2–5 show the proportions of mosquitoes remaining in the exposure and control chambers under different test conditions and chemical...minimus. Genetica 82: 63–72. 33. van Bortel W, Trung HD, Roelants P, Harbach RE, Backeljau T, Coosemans M, 2000. Molecular identification of Anopheles

  5. A cGMP-Dependent Protein Kinase Gene, foraging, Modifies Habituation-Like Response Decrement of the Giant Fiber Escape Circuit in Drosophila

    PubMed Central

    Engel, Jeff E.; Xie, Xian-Jin; Sokolowski, Marla B.; Wu, Chun-Fang

    2000-01-01

    The Drosophila giant fiber jump-and-flight escape response is a model for genetic analysis of both the physiology and the plasticity of a sensorimotor behavioral pathway. We previously established the electrically induced giant fiber response in intact tethered flies as a model for habituation, a form of nonassociative learning. Here, we show that the rate of stimulus-dependent response decrement of this neural pathway in a habituation protocol is correlated with PKG (cGMP-Dependent Protein Kinase) activity and foraging behavior. We assayed response decrement for natural and mutant rover and sitter alleles of the foraging (for) gene that encodes a Drosophila PKG. Rover larvae and adults, which have higher PKG activities, travel significantly farther while foraging than sitters with lower PKG activities. Response decrement was most rapid in genotypes previously shown to have low PKG activities and sitter-like foraging behavior. We also found differences in spontaneous recovery (the reversal of response decrement during a rest from stimulation) and a dishabituation-like phenomenon (the reversal of response decrement evoked by a novel stimulus). This electrophysiological study in an intact animal preparation provides one of the first direct demonstrations that PKG can affect plasticity in a simple learning paradigm. It increases our understanding of the complex interplay of factors that can modulate the sensitivity of the giant fiber escape response, and it defines a new adult-stage phenotype of the foraging locus. Finally, these results show that behaviorally relevant neural plasticity in an identified circuit can be influenced by a single-locus genetic polymorphism existing in a natural population of Drosophila. PMID:11040266

  6. A cGMP-dependent protein kinase gene, foraging, modifies habituation-like response decrement of the giant fiber escape circuit in Drosophila.

    PubMed

    Engel, J E; Xie, X J; Sokolowski, M B; Wu, C F

    2000-01-01

    The Drosophila giant fiber jump-and-flight escape response is a model for genetic analysis of both the physiology and the plasticity of a sensorimotor behavioral pathway. We previously established the electrically induced giant fiber response in intact tethered flies as a model for habituation, a form of nonassociative learning. Here, we show that the rate of stimulus-dependent response decrement of this neural pathway in a habituation protocol is correlated with PKG (cGMP-Dependent Protein Kinase) activity and foraging behavior. We assayed response decrement for natural and mutant rover and sitter alleles of the foraging (for) gene that encodes a Drosophila PKG. Rover larvae and adults, which have higher PKG activities, travel significantly farther while foraging than sitters with lower PKG activities. Response decrement was most rapid in genotypes previously shown to have low PKG activities and sitter-like foraging behavior. We also found differences in spontaneous recovery (the reversal of response decrement during a rest from stimulation) and a dishabituation-like phenomenon (the reversal of response decrement evoked by a novel stimulus). This electrophysiological study in an intact animal preparation provides one of the first direct demonstrations that PKG can affect plasticity in a simple learning paradigm. It increases our understanding of the complex interplay of factors that can modulate the sensitivity of the giant fiber escape response, and it defines a new adult-stage phenotype of the foraging locus. Finally, these results show that behaviorally relevant neural plasticity in an identified circuit can be influenced by a single-locus genetic polymorphism existing in a natural population of Drosophila.

  7. Vaccine development: From concept to early clinical testing.

    PubMed

    Cunningham, Anthony L; Garçon, Nathalie; Leo, Oberdan; Friedland, Leonard R; Strugnell, Richard; Laupèze, Béatrice; Doherty, Mark; Stern, Peter

    2016-12-20

    In the 21st century, an array of microbiological and molecular allow antigens for new vaccines to be specifically identified, designed, produced and delivered with the aim of optimising the induction of a protective immune response against a well-defined immunogen. New knowledge about the functioning of the immune system and host pathogen interactions has stimulated the rational design of vaccines. The design toolbox includes vaccines made from whole pathogens, protein subunits, polysaccharides, pathogen-like particles, use of viral/bacterial vectors, plus adjuvants and conjugation technology to increase and broaden the immune response. Processes such as recombinant DNA technology can simplify the complexity of manufacturing and facilitate consistent production of large quantities of antigen. Any new vaccine development is greatly enhanced by, and requires integration of information concerning: 1. Pathogen life-cycle & epidemiology. Knowledge of pathogen structure, route of entry, interaction with cellular receptors, subsequent replication sites and disease-causing mechanisms are all important to identify antigens suitable for disease prevention. The demographics of infection, specific risk groups and age-specific infection rates determine which population to immunise, and at what age. 2. Immune control & escape. Interactions between the host and pathogen are explored, with determination of the relative importance of antibodies, T-cells of different types and innate immunity, immune escape strategies during infection, and possible immune correlates of protection. This information guides identification and selection of antigen and the specific immune response required for protection. 3. Antigen selection & vaccine formulation. The selected antigen is formulated to remain suitably immunogenic and stable over time, induce an immune response that is likely to be protective, plus be amenable to eventual scale-up to commercial production. 4. Vaccine preclinical & clinical testing. The candidate vaccine must be tested for immunogenicity, safety and efficacy in preclinical and appropriately designed clinical trials. This review considers these processes using examples of differing pathogenic challenges, including human papillomavirus, malaria, and ebola. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Developing a Web-Based Version of An Exercise-Based Rehabilitation Program for People With Chronic Knee and Hip Pain: A Mixed Methods Study

    PubMed Central

    2016-01-01

    Background Osteoarthritis is highly prevalent and has enormous personal and socioeconomic impact. Enabling Self-management and Coping with Arthritic Pain through Exercise (ESCAPE-pain) is an integrated rehabilitation program that helps people understand how exercise can improve physical and psychosocial well-being. Unfortunately, its availability is limited. A Web-based version of the program could increase access for more people. Many Web-based resources are developed without end-user input and result in over-complex, unwanted, ineffective products with limited uptake. Objective The objective of this study was to codesign a Web-based version of ESCAPE-pain that people with chronic joint pain find engaging, informative, and useful. Methods To establish older persons' Internet use we conducted a postal survey of 200 people. To establish their opinions, likes or dislikes, and requirements for a Web-based version of the ESCAPE-pain program, we conducted two focus groups with 11 people who had participated in a program based on ESCAPE-pain and two with 13 people who had not. Information from the postal survey and focus groups was used to develop an online prototype website. People's opinions of the prototype website were gauged from thematic analysis of eight semistructured “think aloud” interviews. Results The survey response rate was 42% (83/200), of whom 67% (56/83) were female and mean age was 67 years. Eighty-three percent of the people had used the Internet, 69% described themselves as either very confident or confident Internet users, and 77% had looked online for health information. With regard to participating online, 34% had read a commentary or watched a video of someone else’s experience of a health problem and 23% had tracked a health issue. Key qualitative themes emerged that included engagement, acceptability and usability, and structure and content of the program. Conclusions Older people use the Internet as a source of health information but have concerns about safe use and quality of information. Users require a credible website that provides personalized information, support, monitoring, and feedback. PMID:27197702

  9. Direct Detection of The Lyman Continuum of Star-forming Galaxies at z~3

    NASA Astrophysics Data System (ADS)

    Vasei, Kaveh; Siana, Brian; Shapley, Alice; Alavi, Anahita; Rafelski, Marc

    2018-01-01

    Star-forming galaxies are widely believed to be responsible for the reionization of the Universe and much of the ionizing background at z>3. Therefore, there has been much interest in quantifying the escape fraction of the Lyman continuum (LyC) radiation of the star-forming galaxies. Yet direct detection of LyC has proven to be exceptionally challenging. Despite numerous efforts only 7 galaxies at z<2 (all with escape fractions less than 0.04) and 3 galaxies at z>2 have been robustly confirmed as LyC leakers. To avoid these challenges many studies use indirect methods to infer the LyC escape fraction. We tested these indirect methods by attempting to detect escaping LyC with a 10-orbit Hubble near-UV (F275W) image that is just below the Lyman limit at the redshift of the Cosmic Horseshoe (a lensed galaxy at z=2.4). We concluded that the measured escape fraction is lower, by more than a factor of five, than the expected escape fraction based on the indirect methods. This emphasizes that indirect determinations should only be interpreted as upper-limits. We also investigated the deepest near-UV Hubble images of the SSA22 field to detect LyC leakage from a large sample of candidate star-forming galaxies at z~3.1, whose redshift was obtained by deep Keck/LRIS spectroscopy and for which Keck narrow-band imaging was showing possible LyC leakage. The high spatial resolution of Hubble images is crucial to confirm our detections are clean from foreground contaminating galaxies, and also to ascertain the escape fraction of our final candidates. We identify five clean LyC emitting star-forming galaxies. The follow up investigation of these galaxies will significantly increase our knowledge of the LyC escape fraction and the mechanisms allowing for LyC escape.

  10. Astronaut Kenneth Reightler, STS-60 pilot, during egress training

    NASA Image and Video Library

    1993-12-10

    Astronaut Kenneth S. Reightler, pilot for the STS-60 mission, prepares to simulate egress from a troubled Space Shuttle using Crew Escape System (CES) pole. The action came during emergency egress training in JSC's Shuttle mockup and integration laboratory.

  11. Role of immune system in tumor progression and carcinogenesis.

    PubMed

    Upadhyay, Shishir; Sharma, Nidhi; Gupta, Kunj Bihari; Dhiman, Monisha

    2018-07-01

    Tumor micro-environment has potential to customize the behavior of the immune cell according to their need. In immune-eliminating phase, immune cells eliminate transformed cells but after tumor establishment innate and adaptive immune cells synergistically provide shelter as well as fulfill their requirement that helps in progression. In between eliminating and establishment phase, equilibrium and escaping phase regulate the immune cells response. During immune-escaping, (1) the antigenic response generated is either inadequate, or focused entirely on tolerance, and (2) immune response generated is specific and effective, but the tumor skips immune recognition. In this review, we are discussing the critical role of immune cells and their cytokines before and after the establishment of tumor which might play a critical role during immunotherapy. © 2018 Wiley Periodicals, Inc.

  12. Photoexcited escape probability, optical gain, and noise in quantum well infrared photodetectors

    NASA Technical Reports Server (NTRS)

    Levine, B. F.; Zussman, A.; Gunapala, S. D.; Asom, M. T.; Kuo, J. M.; Hobson, W. S.

    1992-01-01

    We present a detailed and thorough study of a wide variety of quantum well infrared photodetectors (QWIPs), which were chosen to have large differences in their optical and transport properties. Both n- and p-doped QWIPs, as well as intersubband transitions based on photoexcitation from bound-to-bound, bound-to-quasi-continuum, and bound-to-continuum quantum well states were investigated. The measurements and theoretical analysis included optical absorption, responsivity, dark current, current noise, optical gain, hot carrier mean free path; net quantum efficiency, quantum well escape probability, quantum well escape time, as well as detectivity. These results allow a better understanding of the optical and transport physics and thus a better optimization of the QWIP performance.

  13. Generalized Jeans' Escape of Pick-Up Ions in Quasi-Linear Relaxation

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Khazanov, G. V.

    2011-01-01

    Jeans escape is a well-validated formulation of upper atmospheric escape that we have generalized to estimate plasma escape from ionospheres. It involves the computation of the parts of particle velocity space that are unbound by the gravitational potential at the exobase, followed by a calculation of the flux carried by such unbound particles as they escape from the potential well. To generalize this approach for ions, we superposed an electrostatic ambipolar potential and a centrifugal potential, for motions across and along a divergent magnetic field. We then considered how the presence of superthermal electrons, produced by precipitating auroral primary electrons, controls the ambipolar potential. We also showed that the centrifugal potential plays a small role in controlling the mass escape flux from the terrestrial ionosphere. We then applied the transverse ion velocity distribution produced when ions, picked up by supersonic (i.e., auroral) ionospheric convection, relax via quasi-linear diffusion, as estimated for cometary comas [1]. The results provide a theoretical basis for observed ion escape response to electromagnetic and kinetic energy sources. They also suggest that super-sonic but sub-Alfvenic flow, with ion pick-up, is a unique and important regime of ion-neutral coupling, in which plasma wave-particle interactions are driven by ion-neutral collisions at densities for which the collision frequency falls near or below the gyro-frequency. As another possible illustration of this process, the heliopause ribbon discovered by the IBEX mission involves interactions between the solar wind ions and the interstellar neutral gas, in a regime that may be analogous [2].

  14. Non-thermal escape rates of atmospheric H and D from Mars using MAVEN data

    NASA Astrophysics Data System (ADS)

    Gacesa, M.; Zahnle, K. J.

    2017-12-01

    Geological evidence suggests that an ocean of liquid water existed on Mars until at least middle to late Noachian era (4.1 to 3.8 Ga) and possibly, at least episodically, as late as Hesperian. Between 67% and 87% of the total primordial amount of water, equal to about 70 to 110 meters equivalent (spread over the entire Mars' surface), is believed to have escape to space, while about 35 meters remains on or beneath the surface as water ice. Establishing better constraints on these numbers and identifying the responsible atmospheric loss processes remains the major objective of NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. The ratio of atmospheric Deuterium and Hydrogen (D/H) on Mars is one of the best indicators of water loss to space. While majority of H and D escape through thermal Jeans escape, up to 10% of D can escape to space via non-thermal mechanisms, such as collisions with superthermal neutral atoms. In this study, we present new estimates of non-thermal escape rates of light molecules of interest to the water evolution, including H2, HD, OH, and OD, based on recent measurements of atmospheric density and temperature profiles by MAVEN. The escape mechanisms considered include photochemical sources of hot O, as well as collisions with energetic neutral atoms produced in charge-exchange of solar wind ions with atmospheric gases1,2. Energy transport and escape rates are modeled using quantum reactive scattering formalism3 and seasonal variations are illustrated. Finally, a simple estimate of the role of the non-thermal escape mechanisms in previous eras is given. We conclude that D escape rates can be affected by the non-thermal processes with consequences on the estimates of primordial water inventory based on the D/H ratio. [1] N. Lewkow and V. Kharchenko, Astroph. J., 790, 98 (2014) [2] M. Gacesa, N. Lewkow, V. Kharchenko, Icarus 284, 90 (2017) [3] M. Gacesa and V. Kharchenko, Geophys. Res. Lett., 39, L10203 (2012)

  15. Learned helplessness or learned inactivity after inescapable stress? Interpretation depends on coping styles.

    PubMed

    Zhukov, D A; Vinogradova, K P

    2002-01-01

    Researches on uncontrollable events in the post-soviet states are overviewed. In our research, susceptibility to learned helplessness is studied in rats with active (KHA strain) versus passive (KLA strain) coping styles. Inescapable footshocks, but not escapable footshocks, applied to KHA rats induced escape failures, diminished locomotion and coping, reduced measures of anxiety, and resulted in dexamethasone nonsuppression of the brain-hypothalamus-pituitary-adrenal axis--all characteristic of learned helplessness. In contrast, KLA rats demonstrated the same responses upon exposure to both escapable and inescapable stresses. While learned helplessness occurred in KHA rats, it appears that KLA rats exposed to inescapable stress demonstrated learned inactivity based upon the nondifference between effects of escapable and inescapable shocks. Relationships between coping styles and social ranks are discussed. Our and other's results with genetically selected strains suggest active coping in dominant and subordinate subjects, and passive coping in subdominant animals confirm the importance of coping style and its relation to health under stress.

  16. Antipredator behaviours of a spider mite in response to cues of dangerous and harmless predators.

    PubMed

    Dias, Cleide Rosa; Bernardo, Ana Maria Guimarães; Mencalha, Jussara; Freitas, Caelum Woods Carvalho; Sarmento, Renato Almeida; Pallini, Angelo; Janssen, Arne

    2016-07-01

    Prey are known to invest in costly antipredator behaviour when perceiving cues of dangerous, but not of relatively harmless predators. Whereas most studies investigate one type of antipredator behaviour, we studied several types (changes in oviposition, in escape and avoidance behaviour) in the spider mite Tetranychus evansi in response to cues from two predatory mites. The predator Phytoseiulus longipes is considered a dangerous predator for T. evansi, whereas Phytoseiulus macropilis has a low predation rate on this prey, thus is a much less dangerous predator. Spider mite females oviposited less on leaf disc halves with predator cues than on clean disc halves, independent of the predator species. On entire leaf discs, they laid fewer eggs in the presence of cues of the dangerous predator than on clean discs, but not in the presence of cues of the harmless predator. Furthermore, the spider mites escaped more often from discs with cues of the dangerous predator than from discs without predator cues, but they did not escape more from discs with cues of the harmless predator. The spider mites did not avoid plants with conspecifics and predators. We conclude that the spider mites displayed several different antipredator responses to the same predator species, and that some of these antipredator responses were stronger with cues of dangerous predators than with cues of harmless predators.

  17. Worm Grunting, Fiddling, and Charming—Humans Unknowingly Mimic a Predator to Harvest Bait

    PubMed Central

    Catania, Kenneth C.

    2008-01-01

    Background For generations many families in and around Florida's Apalachicola National Forest have supported themselves by collecting the large endemic earthworms (Diplocardia mississippiensis). This is accomplished by vibrating a wooden stake driven into the soil, a practice called “worm grunting”. In response to the vibrations, worms emerge to the surface where thousands can be gathered in a few hours. Why do these earthworms suddenly exit their burrows in response to vibrations, exposing themselves to predation? Principal Findings Here it is shown that a population of eastern American moles (Scalopus aquaticus) inhabits the area where worms are collected and that earthworms have a pronounced escape response from moles consisting of rapidly exiting their burrows to flee across the soil surface. Recordings of vibrations generated by bait collectors and moles suggest that “worm grunters” unknowingly mimic digging moles. An alternative possibility, that worms interpret vibrations as rain and surface to avoid drowning is not supported. Conclusions Previous investigations have revealed that both wood turtles and herring gulls vibrate the ground to elicit earthworm escapes, indicating that a range of predators may exploit the predator-prey relationship between earthworms and moles. In addition to revealing a novel escape response that may be widespread among soil fauna, the results show that humans have played the role of “rare predators” in exploiting the consequences of a sensory arms race. PMID:18852902

  18. Swarming and pattern formation due to selective attraction and repulsion.

    PubMed

    Romanczuk, Pawel; Schimansky-Geier, Lutz

    2012-12-06

    We discuss the collective dynamics of self-propelled particles with selective attraction and repulsion interactions. Each particle, or individual, may respond differently to its neighbours depending on the sign of their relative velocity. Thus, it is able to distinguish approaching (coming closer) and retreating (moving away) individuals. This differentiation of the social response is motivated by the response to looming visual stimuli and may be seen as a generalization of the previously proposed escape and pursuit interactions motivated by empirical evidence for cannibalism as a driving force of collective migration in locusts and Mormon crickets. The model can account for different types of behaviour such as pure attraction, pure repulsion or escape and pursuit, depending on the values (signs) of the different response strengths. It provides, in the light of recent experimental results, an interesting alternative to previously proposed models of collective motion with an explicit velocity-alignment interaction. We discuss the derivation of a coarse-grained description of the system dynamics, which allows us to derive analytically the necessary condition for emergence of collective motion. Furthermore, we analyse systematically the onset of collective motion and clustering in numerical simulations of the model for varying interaction strengths. We show that collective motion arises only in a subregion of the parameter space, which is consistent with the analytical prediction and corresponds to an effective escape and/or pursuit response.

  19. Effects of underwater escape training--a psychophysiological study.

    PubMed

    Hytten, K; Jensen, A; Vaernes, R

    1989-05-01

    The effect of underwater escape training was analysed among 78 participants at the Norwegian Underwater Technological Center (NUTEC), Bergen, in a psychophysiological study. The training caused significant physiological activation. Perceived training effect was found to be inversely related to anxiety during training. Most of the participants developed a positive response outcome expectancy and increased confidence in flying. The learning aspects were versatile and partly dependent on personality factors. A more individualized approach to training is recommended.

  20. Differential response to gepirone but not to chlordiazepoxide in malnourished rats subjected to learned helplessness.

    PubMed

    Camargo, L M M; Nascimento, A B; Almeida, S S

    2008-01-01

    The learned helplessness (LH) paradigm is characterized by learning deficits resulting from inescapable events. The aims of the present study were to determine if protein-calorie malnutrition (PCM) alters learning deficits induced by LH and if the neurochemical changes induced by malnutrition alter the reactivity to treatment with GABA-ergic and serotonergic drugs during LH. Well-nourished (W) and PCM Wistar rats (61 days old) were exposed or not to inescapable shocks (IS) and treated with gepirone (GEP, 0.0-7.5 mg/kg, intraperitoneally, N = 128) or chlordiazepoxide (0.0-7.5 mg/kg, intraperitoneally, N = 128) 72 h later, 30 min before the test session (30 trials of escape learning). The results showed that rats exposed to IS had higher escape latency than non-exposed rats (12.6 +/- 2.2 vs 4.4 +/- 0.8 s) and that malnutrition increased learning impairment produced by LH. GEP increased the escape latency of W animals exposed or non-exposed to IS, but did not affect the response of PCM animals, while chlordiazepoxide reduced the escape deficit of both W and PCM rats. The data suggest that PCM animals were more sensitive to the impairment produced by LH and that PCM led to neurochemical changes in the serotonergic system, resulting in hyporeactivity to the anxiogenic effects of GEP in the LH paradigm.

  1. Excito-repellency of essential oils against an Aedes aegypti (L.) field population in Thailand.

    PubMed

    Boonyuan, Wasana; Grieco, John P; Bangs, Michael J; Prabaripai, Atchariya; Tantakom, Siripun; Chareonviriyaphap, Theeraphap

    2014-06-01

    An investigation of the behavioral responses of Aedes aegypti (= Stegomyia aegypti) to various concentrations of essential oils (2.5, 5, and 10%) extracted from hairy basil (Ocimum americanum Linn), ginger (Zingiber officinale Roscoe), lemongrass (Cymbopogon citratus Stapf), citronella grass (Cymbopogon nardus Rendle), and plai (Zingiber cassumunar Roxb) were performed using an excito-repellency test chamber. Results showed that Ae. aegypti exhibited varying levels of escape response in both the contact and noncontact chambers in response to different essential oils. The magnitude of the behaviors changed in a dose-response fashion depending on the percent volume to volume concentration of oil used. A 2.5% concentration of hairy basil oil produced a significantly greater escape response compared to the other extracts at the same concentration (P< 0.05). Oils of ginger, lemongrass, and citronella produced stronger irritant and repellent responses at the median 5% concentration compared to the lowest and highest concentrations. There was marked suppression of escape for both contact and noncontact tests using 10% concentrations of hairy basil, lemongrass, and citronella, with high knockdown for all three oils after 30 min. Hairy basil and lemongrass had the highest insecticidal activity to Ae. aegypti, with LC50 values of 6.3 and 6.7 percent, respectively. We conclude that the essential oils from native plants tested, and likely many other extracts found in plants, have inherent repellent and irritant qualities that should to be screened and optimized for their behavior-modifying properties against Ae. aegypti and other biting arthropods of public health and pest importance. © 2014 The Society for Vector Ecology.

  2. Targeting of >1.5 Mb of Human DNA into the Mouse X Chromosome Reveals Presence of cis-Acting Regulators of Epigenetic Silencing

    PubMed Central

    Yang, Christine; McLeod, Andrea J.; Cotton, Allison M.; de Leeuw, Charles N.; Laprise, Stéphanie; Banks, Kathleen G.; Simpson, Elizabeth M.; Brown, Carolyn J.

    2012-01-01

    Regulatory sequences can influence the expression of flanking genes over long distances, and X chromosome inactivation is a classic example of cis-acting epigenetic gene regulation. Knock-ins directed to the Mus musculus Hprt locus offer a unique opportunity to analyze the spread of silencing into different human DNA sequences in the identical genomic environment. X chromosome inactivation of four knock-in constructs, including bacterial artificial chromosome (BAC) integrations of over 195 kb, was demonstrated by both the lack of expression from the inactive X chromosome in females with nonrandom X chromosome inactivation and promoter DNA methylation of the human transgene in females. We further utilized promoter DNA methylation to assess the inactivation status of 74 human reporter constructs comprising >1.5 Mb of DNA. Of the 47 genes examined, only the PHB gene showed female DNA hypomethylation approaching the level seen in males, and escape from X chromosome inactivation was verified by demonstration of expression from the inactive X chromosome. Integration of PHB resulted in lower DNA methylation of the flanking HPRT promoter in females, suggesting the action of a dominant cis-acting escape element. Female-specific DNA hypermethylation of CpG islands not associated with promoters implies a widespread imposition of DNA methylation during X chromosome inactivation; yet transgenes demonstrated differential capacities to accumulate DNA methylation when integrated into the identical location on the inactive X chromosome, suggesting additional cis-acting sequence effects. As only one of the human transgenes analyzed escaped X chromosome inactivation, we conclude that elements permitting ongoing expression from the inactive X are rare in the human genome. PMID:23023002

  3. A NASA technician paints NASA's first Orion full-scale abort flight test crew module.

    NASA Image and Video Library

    2008-03-31

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  4. Sporting a fresh paint job, NASA's first Orion full-scale abort flight test crew module awaits avionics and other equipment installation.

    NASA Image and Video Library

    2008-04-01

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  5. Short-term desensitization of fast escape behavior associated with suppression of Mauthner cell activity in larval zebrafish.

    PubMed

    Takahashi, Megumi; Inoue, Maya; Tanimoto, Masashi; Kohashi, Tsunehiko; Oda, Yoichi

    2017-08-01

    Escape is among the simplest animal behaviors employed to study the neural mechanisms underlying learning. Teleost fishes exhibit behavioral learning of fast escape initiated with a C-shaped body bend (C-start). C-starts are subdivided into short-latency (SLC) and long-latency (LLC) types in larval zebrafish. Whether these two can be separately modified, and the neural correlates of this modification, however, remains undetermined. We thus performed Ca 2+ imaging of Mauthner (M-) cells, a pair of giant hindbrain neurons constituting a core element of SLC circuit, during behavioral learning in larval zebrafish. The Ca 2+ response corresponding to a single spiking of the M-cells was coupled with SLCs but not LLCs. Conditioning with a repeated weak sound at subthreshold intensity to elicit C-starts selectively suppressed SLC occurrence for 10min without affecting LLC responsiveness. The short-term desensitization of SLC was associated with the suppression of M-cell activity, suggesting that changes in single neuron responsiveness mediate behavioral learning. The conditioning did not affect the acoustically evoked mechanotransduction of inner ear hair cells, further suggesting plastic change in transmission efficacy within the auditory input circuit between the hair cells and the M-cell. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  6. Nanoscale Mechanical Stimulation Method for Quantifying C. elegans Mechanosensory Behavior and Memory.

    PubMed

    Sugi, Takuma; Okumura, Etsuko; Kiso, Kaori; Igarashi, Ryuji

    2016-01-01

    Withdrawal escape response of C. elegans to nonlocalized vibration is a useful behavioral paradigm to examine mechanisms underlying mechanosensory behavior and its memory-dependent change. However, there are very few methods for investigating the degree of vibration frequency, amplitude and duration needed to induce behavior and memory. Here, we establish a new system to quantify C. elegans mechanosensory behavior and memory using a piezoelectric sheet speaker. In the system, we can flexibly change the vibration properties at a nanoscale displacement level and quantify behavioral responses under each vibration property. This system is an economic setup and easily replicated in other laboratories. By using the system, we clearly detected withdrawal escape responses and confirmed habituation memory. This system will facilitate the understanding of physiological aspects of C. elegans mechanosensory behavior in the future.

  7. Uncertain responses by humans and rhesus monkeys (Macaca mulatta) in a psychophysical same-different task

    NASA Technical Reports Server (NTRS)

    Shields, W. E.; Smith, J. D.; Washburn, D. A.; Rumbaugh, D. M. (Principal Investigator)

    1997-01-01

    The authors asked whether animals, like humans, use an uncertain response adaptively to escape indeterminate stimulus relations. Humans and monkeys were placed in a same-different task, known to be challenging for animals. Its difficulty was increased further by reducing the size of the stimulus differences, thereby making many same and different trials difficult to tell apart. Monkeys do escape selectively from these threshold trials, even while coping with 7 absolute stimulus levels concurrently. Monkeys even adjust their response strategies on short time scales according to the local task conditions. Signal-detection and optimality analyses confirm the similarity of humans' and animals' performances. Whereas associative interpretations account poorly for these results, an intuitive uncertainty construct does so easily. The authors discuss the cognitive processes that allow uncertainty's adaptive use and recommend further comparative studies of metacognition.

  8. Interactions between brown bears and chum salmon at McNeil River, Alaska

    USGS Publications Warehouse

    Peirce, Joshua M.; Otis, Edward O.; Wipfli, Mark S.; Follmann, Erich H.

    2013-01-01

    Predation on returning runs of adult salmon (Oncorhynchus spp.) can have a large influence on their spawning success. At McNeil River State Game Sanctuary (MRSGS), Alaska, brown bears (Ursus arctos) congregate in high numbers annually along the lower McNeil River to prey upon returning adult chum salmon (O. keta). Low chum salmon escapements into McNeil River since the late 1990s have been proposed as a potential factor contributing to concurrent declines in bear numbers. The objective of this study was to determine the extent of bear predation on chum salmon in McNeil River, especially on pre-spawning fish, and use those data to adjust the escapement goal for the river. In 2005 and 2006, 105 chum salmon were radiotagged at the river mouth and tracked to determine cause and location of death. Below the falls, predators consumed 99% of tagged fish, killing 59% of them before they spawned. Subsequently, the escapement goal was nearly doubled to account for this pre-spawning mortality and to ensure enough salmon to sustain both predators and prey. This approach to integrated fish and wildlife management at MRSGS can serve as a model for other systems where current salmon escapement goals may not account for pre-spawning mortality.

  9. MOLECULAR ALTERATIONS IN GLIOBLASTOMA: POTENTIAL TARGETS FOR IMMUNOTHERAPY

    PubMed Central

    Haque, Azizul; Banik, Naren L.; Ray, Swapan K.

    2015-01-01

    Glioblastoma is the most common and deadly brain tumor, possibly arising from genetic and epigenetic alterations in normal astroglial cells. Multiple cytogenetic, chromosomal, and genetic alterations have been identified in glioblastoma, with distinct expression of antigens (Ags) and biomarkers that may alter therapeutic potential of this aggressive cancer. Current therapy consists of surgical resection, followed by radiation therapy and chemotherapy. In spite of these treatments, the prognosis for glioblastoma patients is poor. Although recent studies have focused on the development of novel immunotherapeutics against glioblastoma, little is known about glioblastoma specific immune responses. A better understanding of the molecular interactions among glioblastoma tumors, host immune cells, and the tumor microenvironment may give rise to novel integrated approaches for the simultaneous control of tumor escape pathways and the activation of antitumor immune responses. This review provides a detailed overview concerning genetic alterations in glioblastoma, their effects on Ag and biomarker expression and the future design of chemoimmunotherapeutics against glioblastoma. PMID:21199773

  10. Effects of sediment burial on tropical ruderal seagrasses are moderated by clonal integration

    NASA Astrophysics Data System (ADS)

    Ooi, Jillian Lean Sim; Kendrick, Gary A.; Van Niel, Kimberly P.

    2011-12-01

    Seagrasses are clonal plants that grow submerged in dynamic sedimentary environments where burial is a common occurrence. Clonal organisms may respond to burial in very different ways depending on how strongly integrated they are through horizontal rhizomes, but the effect of clonal integration under conditions of stress such as burial is poorly studied for seagrasses. We test the effect of burial on tropical seagrasses that occur in multispecific meadows by subjecting plants in mixed stands to burial of 0, 2, 4, 8 and 16 cm for 27 days. Treatments were divided into those where rhizomes were severed and those where rhizomes were left intact. We hypothesize that species withstand burial better if clonal integration is maintained (intact rhizomes). Results showed that all species tolerated burial of up to 4 cm without adverse effects but significant reductions in shoot density and biomass become evident at 8 cm of burial. Furthermore, Cymodocea serrulata and Syringodium isoetifolium were strong integrators, i.e. they provide support for buried shoots, whereas Halophila ovalis and Halodule uninervis were weak integrators that did not show evidence of subsidizing buried shoots. Vertical elongation was observed for C. serrulata and H. uninervis as a response to burial only when rhizomes were severed, leading us to speculate on whether species rely on vertical elongation as an escape strategy only in the absence of resource translocation. Our distinction between the responses of treatments with intact rhizomes from those with severed rhizomes may be extended to an interpretation of burial scale (intact rhizomes=broad spatial-scale burial; severed rhizomes=fine spatial-scale burial). We concluded that broad spatial-scale burial exceeding 4 cm leads to rapid loss or reduction of all species. However, fine spatial-scale burial exceeding 4 cm, such as those caused by shrimp mounds (bioturbation), is expected to favor C. serrulata and S. isoetifolium, while H. ovalis and H. uninervis are disadvantaged. Clonal integration is an important trait in moderating the response of seagrasses to sediment burial and in this way, helps them to cope in high-stress habitats.

  11. ESCAPE: database for integrating high-content published data collected from human and mouse embryonic stem cells.

    PubMed

    Xu, Huilei; Baroukh, Caroline; Dannenfelser, Ruth; Chen, Edward Y; Tan, Christopher M; Kou, Yan; Kim, Yujin E; Lemischka, Ihor R; Ma'ayan, Avi

    2013-01-01

    High content studies that profile mouse and human embryonic stem cells (m/hESCs) using various genome-wide technologies such as transcriptomics and proteomics are constantly being published. However, efforts to integrate such data to obtain a global view of the molecular circuitry in m/hESCs are lagging behind. Here, we present an m/hESC-centered database called Embryonic Stem Cell Atlas from Pluripotency Evidence integrating data from many recent diverse high-throughput studies including chromatin immunoprecipitation followed by deep sequencing, genome-wide inhibitory RNA screens, gene expression microarrays or RNA-seq after knockdown (KD) or overexpression of critical factors, immunoprecipitation followed by mass spectrometry proteomics and phosphoproteomics. The database provides web-based interactive search and visualization tools that can be used to build subnetworks and to identify known and novel regulatory interactions across various regulatory layers. The web-interface also includes tools to predict the effects of combinatorial KDs by additive effects controlled by sliders, or through simulation software implemented in MATLAB. Overall, the Embryonic Stem Cell Atlas from Pluripotency Evidence database is a comprehensive resource for the stem cell systems biology community. Database URL: http://www.maayanlab.net/ESCAPE

  12. Positive human contact on the first day of life alters the piglet's behavioural response to humans and husbandry practices.

    PubMed

    Muns, Ramon; Rault, Jean-Loup; Hemsworth, Paul

    2015-11-01

    This experiment examined the effects of positive human contact at suckling on the first day of life on the behavioural and physiological responses of piglets to both humans and routine husbandry procedures. Forty litters from multiparous sows were randomly allocated to one of two treatments: Control (CC, minimal human interaction with day-old piglets) or Positive Contact (PC, human talking and caressing piglets during 6 suckling bouts on their first day of life, day 1). In each litter, 2 males and 2 females were randomly selected and their behavioural responses to tail docking (day 2), and to an experimenter (day 35) were studied. Escape behaviour at tail docking was assessed according to intensity (on a scale from 0 to 4 representing no movement to high intensity movement) and duration (on a scale from 0 to 3 representing no movement to continuous movement). At day 15 of age, a human approach and avoidance test was performed on focal piglets and at day 15, escape behaviour to capture before and after testing was recorded again. Blood samples for cortisol analysis were obtained from the focal piglets 30 min after tail docking and 1 h after weaning. Escape behaviour to tail docking of the PC piglets was of shorter duration than that of the CC piglets (P = 0.05). There was a tendency for the escape behaviour both before and after testing at day 15 to be of a lower intensity (P = 0.11 and P = 0.06, respectively) and a shorter duration (P = 0.06 and P = 0.08, respectively) in the PC piglets. There was a tendency for PC piglets to have higher cortisol concentrations after tail docking than the CC piglets (P = 0.07). Male piglets had higher cortisol concentrations after tail docking and after weaning than female piglets (P = 0.02 and P = 0.03). The results indicate that Positive Contact treatment reduced the duration of escape behaviour of piglets to tail docking. The role of classical conditioning, habituation and developmental changes in the observed effects of the Positive Contact treatment is unclear. Nonetheless, this experiment demonstrated that brief positive human contacts early in life can alter the behavioural responses of piglets to subsequent stressful events.

  13. The Cell's Sophisticated Army to Defend Against Assaults on DNAThe Cell's Sophisticated Army to Defend Against Assaults on DNA | Center for Cancer Research

    Cancer.gov

    The maintenance of genome integrity and function is essen-tial for the survival of cells and organisms. Any damage to our genetic material must be immediately sensed and repaired to preserve a cell’s func-tional integrity. Cells are constantly faced with the challenge of protecting their DNA from assaults by damaging chemicals and ultraviolet light. DNA damage that escapes

  14. Females do not express learned helplessness like males do.

    PubMed

    Dalla, Christina; Edgecomb, Carol; Whetstone, Abigail S; Shors, Tracey J

    2008-06-01

    Women are more likely than men to suffer from stress-related mental disorders, such as depression. In the present experiments, we identified sex differences in one of the most common animal models of depression, that of learned helplessness. Male and female rats were trained to escape a mild footshock each day for 7 days (controllable stress). Each rat was yoked to another rat that could not escape (uncontrollable stress), but was exposed to the same amount of shock. One day later, all stressed rats and unstressed controls were tested on a more difficult escape task in a different context. Most males exposed to uncontrollable stress did not learn to escape and were therefore helpless. In contrast, most females did learn to escape on the more difficult escape task, irrespective of whether they had been exposed to controllable or uncontrollable stress. The sex differences in helplessness behavior were not dependent on the presence of sex hormones in adulthood, because neither ovariectomy of females nor castration of males abolished them. The absence of helplessness in females was neither dependent on organizational effects of testosterone during the day of birth, because masculinized females did not express helplessness as adults. Thus, sex differences in helplessness behavior are independent of gonadal hormones in adulthood and testosterone exposure during perinatal development. Learned helplessness may not constitute a valid model for depressive behavior in women, at least as reflected by the response of female rats to operant conditioning procedures after stressful experience.

  15. Verification Failures: What to Do When Things Go Wrong

    NASA Astrophysics Data System (ADS)

    Bertacco, Valeria

    Every integrated circuit is released with latent bugs. The damage and risk implied by an escaped bug ranges from almost imperceptible to potential tragedy; unfortunately it is impossible to discern within this range before a bug has been exposed and analyzed. While the past few decades have witnessed significant efforts to improve verification methodology for hardware systems, these efforts have been far outstripped by the massive complexity of modern digital designs, leading to product releases for which an always smaller fraction of system's states has been verified. The news of escaped bugs in large market designs and/or safety critical domains is alarming because of safety and cost implications (due to replacements, lawsuits, etc.).

  16. HLA-Driven Convergence of HIV-1 Viral Subtypes B and F Toward the Adaptation to Immune Responses in Human Populations

    PubMed Central

    Dilernia, Dario Alberto; Jones, Leandro; Rodriguez, Sabrina; Turk, Gabriela; Rubio, Andrea E.; Pampuro, Sandra; Gomez-Carrillo, Manuel; Bautista, Christian; Deluchi, Gabriel; Benetucci, Jorge; Lasala, María Beatriz; Lourtau, Leonardo; Losso, Marcelo Horacio; Perez, Héctor; Cahn, Pedro; Salomón, Horacio

    2008-01-01

    Background Cytotoxic T-Lymphocyte (CTL) response drives the evolution of HIV-1 at a host-level by selecting HLA-restricted escape mutations. Dissecting the dynamics of these escape mutations at a population-level would help to understand how HLA-mediated selection drives the evolution of HIV-1. Methodology/Principal Findings We undertook a study of the dynamics of HIV-1 CTL-escape mutations by analyzing through statistical approaches and phylogenetic methods the viral gene gag sequenced in plasma samples collected between the years 1987 and 2006 from 302 drug-naïve HIV-positive patients. By applying logistic regression models and after performing correction for multiple test, we identified 22 potential CTL-escape mutations (p-value<0.05; q-value<0.2); 10 of these associations were confirmed in samples biologically independent by a Bayesian Markov Chain Monte-Carlo method. Analyzing their prevalence back in time we found that escape mutations that are the consensus residue in samples collected after 2003 have actually significantly increased in time in one of either B or F subtype until becoming the most frequent residue, while dominating the other viral subtype. Their estimated prevalence in the viral subtype they did not dominate was lower than 30% for the majority of samples collected at the end of the 80's. In addition, when screening the entire viral region, we found that the 75% of positions significantly changing in time (p<0.05) were located within known CTL epitopes. Conclusions Across HIV Gag protein, the rise of polymorphisms from independent origin during the last twenty years of epidemic in our setting was related to an association with an HLA allele. The fact that these mutations accumulated in one of either B or F subtypes have also dominated the other subtype shows how this selection might be causing a convergence of viral subtypes to variants which are more likely to evade the immune response of the population where they circulate. PMID:18941505

  17. Fluidity of HIV-1-Specific T-Cell Responses during Acute and Early Subtype C HIV-1 Infection and Associations with Early Disease Progression ▿

    PubMed Central

    Mlotshwa, Mandla; Riou, Catherine; Chopera, Denis; de Assis Rosa, Debra; Ntale, Roman; Treunicht, Florette; Woodman, Zenda; Werner, Lise; van Loggerenberg, Francois; Mlisana, Koleka; Abdool Karim, Salim; Williamson, Carolyn; Gray, Clive M.

    2010-01-01

    Deciphering immune events during early stages of human immunodeficiency virus type 1 (HIV-1) infection is critical for understanding the course of disease. We characterized the hierarchy of HIV-1-specific T-cell gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay responses during acute subtype C infection in 53 individuals and associated temporal patterns of responses with disease progression in the first 12 months. There was a diverse pattern of T-cell recognition across the proteome, with the recognition of Nef being immunodominant as early as 3 weeks postinfection. Over the first 6 months, we found that there was a 23% chance of an increased response to Nef for every week postinfection (P = 0.0024), followed by a nonsignificant increase to Pol (4.6%) and Gag (3.2%). Responses to Env and regulatory proteins appeared to remain stable. Three temporal patterns of HIV-specific T-cell responses could be distinguished: persistent, lost, or new. The proportion of persistent T-cell responses was significantly lower (P = 0.0037) in individuals defined as rapid progressors than in those progressing slowly and who controlled viremia. Almost 90% of lost T-cell responses were coincidental with autologous viral epitope escape. Regression analysis between the time to fixed viral escape and lost T-cell responses (r = 0.61; P = 0.019) showed a mean delay of 14 weeks after viral escape. Collectively, T-cell epitope recognition is not a static event, and temporal patterns of IFN-γ-based responses exist. This is due partly to viral sequence variation but also to the recognition of invariant viral epitopes that leads to waves of persistent T-cell immunity, which appears to associate with slower disease progression in the first year of infection. PMID:20826686

  18. An automatic recording system for the study of escape from fear in rats.

    PubMed

    Li, Ming; He, Wei

    2013-11-01

    Escape from fear (EFF) is an active response to a conditioned stimulus (CS) previously paired with an unconditioned fearful stimulus (US), which typically leads to the termination of the CS. In this paradigm, animals acquire two distinct associations: S-S [CS-US] and R-O [response-outcome] through Pavlovian and instrumental conditioning, respectively. The present study describes a computer controlled automatic recording system that captures the development of EFF and allows the determination of the respective roles of S-S and R-O associations in this process. We validated this system by showing that only rats subjected to a simultaneous CS-US conditioning (i.e., CS and US occur together at the beginning of each trial) acquired EFF, not those subjected to an unpaired CS-US conditioning. Paired rats had a progressively increased number of EFF and significantly shorter escape latencies than unpaired rats across the 5-trial blocks on the test day. However, during the conditioning phase, the unpaired rats emitted more 22kHz ultrasonic vocalizations, a validated measure of conditioned reactive fear responses. Our results demonstrate that the acquisition of EFF is contingent upon pairing of the CS with the US, not simply the consequence of a high level of generalized fear. Because this commercially available system is capable of examining both conditioned active and reactive fear responses in a single setup, it could be used to determine the relative roles of S-S and R-O associations in EFF, the neurobiology of conditioned active fear response and neuropharmacology of psychotherapeutic drugs. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Ocean Acidification and Increased Temperature Have Both Positive and Negative Effects on Early Ontogenetic Traits of a Rocky Shore Keystone Predator Species

    PubMed Central

    Manríquez, Patricio H.; Jara, María Elisa; Seguel, Mylene E.; Torres, Rodrigo; Alarcon, Emilio; Lee, Matthew R.

    2016-01-01

    The combined effect of ocean acidification and warming is expected to have significant effects on several traits of marine organisms. The gastropod Concholepas concholepas is a rocky shore keystone predator characteristic of the south-eastern Pacific coast of South America and an important natural resource exploited by small-scale artisanal fishermen along the coast of Chile and Peru. In this study, we used small juveniles of C. concholepas collected from the rocky intertidal habitats of southern Chile (39°S) to evaluate under laboratory conditions the potential consequences of projected near-future levels of ocean acidification and warming for important early ontogenetic traits. The individuals were exposed long-term (5.8 months) to contrasting pCO2 (ca. 500 and 1400 μatm) and temperature (15 and 19°C) levels. After this period we compared body growth traits, dislodgement resistance, predator-escape response, self-righting and metabolic rates. With respect to these traits there was no evidence of a synergistic interaction between pCO2 and temperature. Shell growth was negatively affected by high pCO2 levels only at 15°C. High pCO2 levels also had a negative effect on the predator-escape response. Conversely, dislodgement resistance and self-righting were positively affected by high pCO2 levels at both temperatures. High tenacity and fast self-righting would reduce predation risk in nature and might compensate for the negative effects of high pCO2 levels on other important defensive traits such as shell size and escape behaviour. We conclude that climate change might produce in C. concholepas positive and negative effects in physiology and behaviour. In fact, some of the behavioural responses might be a consequence of physiological effects, such as changes in chemosensory capacity (e.g. predator-escape response) or secretion of adhesive mucous (e.g. dislodgement resistance). Moreover, we conclude that positive behavioural responses may assist in the adaptation to negative physiological impacts, and that this may also be the case for other benthic organisms. PMID:27028118

  20. Ocean Acidification and Increased Temperature Have Both Positive and Negative Effects on Early Ontogenetic Traits of a Rocky Shore Keystone Predator Species.

    PubMed

    Manríquez, Patricio H; Jara, María Elisa; Seguel, Mylene E; Torres, Rodrigo; Alarcon, Emilio; Lee, Matthew R

    2016-01-01

    The combined effect of ocean acidification and warming is expected to have significant effects on several traits of marine organisms. The gastropod Concholepas concholepas is a rocky shore keystone predator characteristic of the south-eastern Pacific coast of South America and an important natural resource exploited by small-scale artisanal fishermen along the coast of Chile and Peru. In this study, we used small juveniles of C. concholepas collected from the rocky intertidal habitats of southern Chile (39 °S) to evaluate under laboratory conditions the potential consequences of projected near-future levels of ocean acidification and warming for important early ontogenetic traits. The individuals were exposed long-term (5.8 months) to contrasting pCO2 (ca. 500 and 1400 μatm) and temperature (15 and 19 °C) levels. After this period we compared body growth traits, dislodgement resistance, predator-escape response, self-righting and metabolic rates. With respect to these traits there was no evidence of a synergistic interaction between pCO2 and temperature. Shell growth was negatively affected by high pCO2 levels only at 15 °C. High pCO2 levels also had a negative effect on the predator-escape response. Conversely, dislodgement resistance and self-righting were positively affected by high pCO2 levels at both temperatures. High tenacity and fast self-righting would reduce predation risk in nature and might compensate for the negative effects of high pCO2 levels on other important defensive traits such as shell size and escape behaviour. We conclude that climate change might produce in C. concholepas positive and negative effects in physiology and behaviour. In fact, some of the behavioural responses might be a consequence of physiological effects, such as changes in chemosensory capacity (e.g. predator-escape response) or secretion of adhesive mucous (e.g. dislodgement resistance). Moreover, we conclude that positive behavioural responses may assist in the adaptation to negative physiological impacts, and that this may also be the case for other benthic organisms.

  1. Opiorphin causes a panicolytic-like effect in rat panic models mediated by μ-opioid receptors in the dorsal periaqueductal gray.

    PubMed

    Maraschin, Jhonatan Christian; Rangel, Marcel Pereira; Bonfim, Antonio Joaquim; Kitayama, Mariana; Graeff, Frederico Guilherme; Zangrossi, Hélio; Audi, Elisabeth Aparecida

    2016-02-01

    Reported evidence indicates that endogenous opioid peptides regulate the expression of escape behavior in rats, a panic-related defensive response, through μ-opioid receptors (MORs) in the dorsal periaqueductal gray (dPAG). These peptides are rapidly catabolized by degrading enzymes, including neutral endopeptidase (NEP) and aminopeptidase N (APN). Opiorphin is a peptide inhibitor of both NEP and APN and potentiates the action of endogenous enkephalins. This study evaluated the effects of intravenous and intra-dPAG administration of opiorphin on escape responses in the elevated T-maze and in a dPAG electrical stimulation test in rats. We also evaluated the involvement of MORs in the effects of opiorphin using the selective MOR antagonist CTOP. A dose of 2.0 mg/kg, i.v., of opiorphin impaired escape performance in both tests. Similar effects were observed with intra-dPAG administration of 5.0 nmol of opiorphin. Local pretreatment with 1.0 nmol CTOP antagonized the anti-escape effects of intra-dPAG opiorphin in both tests, as well as the effect of systemically administered opiorphin (2.0 mg/kg, i.v.) in the electrical stimulation test. These results indicate that opiorphin has an antipanic-like effect that is mediated by MORs in the dPAG. They may open new perspectives for the development of opiorphin analogues with greater bioavailability and physicochemical characteristics in the pursuit of new medications for the treatment of panic disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Digestive and respiratory tract motor responses associated with eructation

    PubMed Central

    Medda, Bidyut K.; Shaker, Reza

    2013-01-01

    We studied the digestive and respiratory tract motor responses in 10 chronically instrumented dogs during eructation activated after feeding. Muscles were recorded from the cervical area, thorax, and abdomen. The striated muscles were recorded using EMG and the smooth muscles using strain gauges. We found eructation in three distinct functional phases that were composed of different sets of motor responses: gas escape, barrier elimination, and gas transport. The gas escape phase, activated by gastric distension, consists of relaxation of the lower esophageal sphincter and diaphragmatic hiatus and contraction of the longitudinal muscle of the thoracic esophagus and rectus abdominis. All these motor events promote gas escape from the stomach. The barrier elimination phase, probably activated by rapid gas distension of the thoracic esophagus, consists of relaxation of the pharyngeal constrictors and excitation of dorsal and ventral upper esophageal sphincter distracting muscles, as well as rapid contraction of the diaphragmatic dome fibers. These motor events allow esophagopharyngeal air movement by promoting retrograde airflow and opening of the upper esophageal sphincter. The transport phase, possibly activated secondary to diaphragmatic contraction, consists of a retrograde contraction of the striated muscle esophagus that transports the air from the thoracic esophagus to the pharynx. We hypothesize that the esophageal reverse peristalsis is mediated by elementary reflexes, rather than a coordinated peristaltic response like secondary peristalsis. The phases of eructation can be activated independently of one another or in a different manner to participate in physiological events other than eructation that cause gastroesophageal or esophagogastric reflux. PMID:23578784

  3. Extinction Correction Significantly Influences the Estimate of the Lyα Escape Fraction

    NASA Astrophysics Data System (ADS)

    An, Fang Xia; Zheng, Xian Zhong; Hao, Cai-Na; Huang, Jia-Sheng; Xia, Xiao-Yang

    2017-02-01

    The Lyα escape fraction is a key measure to constrain the neutral state of the intergalactic medium and then to understand how the universe was fully reionized. We combine deep narrowband imaging data from the custom-made filter NB393 and the {{{H}}}2S1 filter centered at 2.14 μm to examine the Lyα emitters and Hα emitters at the same redshift z = 2.24. The combination of these two populations allows us to determine the Lyα escape fraction at z = 2.24. Over an area of 383 arcmin2 in the Extended Chandra Deep Field South (ECDFS), 124 Lyα emitters are detected down to NB393 = 26.4 mag at the 5σ level, and 56 Hα emitters come from An et al. Of these, four have both Lyα and Hα emissions (LAHAEs). We also collect the Lyα emitters and Hα emitters at z = 2.24 in the COSMOS field from the literature, and increase the number of LAHAEs to 15 in total. About one-third of them are AGNs. We measure the individual/volumetric Lyα escape fraction by comparing the observed Lyα luminosity/luminosity density to the extinction-corrected Hα luminosity/luminosity density. We revisit the extinction correction for Hα emitters using the Galactic extinction law with color excess for nebular emission. We also adopt the Calzetti extinction law together with an identical color excess for stellar and nebular regions to explore how the uncertainties in extinction correction affect the estimate of individual and global Lyα escape fractions. In both cases, an anti-correlation between the Lyα escape fraction and dust attenuation is found among the LAHAEs, suggesting that dust absorption is responsible for the suppression of the escaping Lyα photons. However, the estimated Lyα escape fraction of individual LAHAEs varies by up to ˜3 percentage points between the two methods of extinction correction. We find the global Lyα escape fraction at z = 2.24 to be (3.7 ± 1.4)% in the ECDFS. The variation in the color excess of the extinction causes a discrepancy of ˜1 percentage point in the global Lyα escape fraction.

  4. Energy transfer in O collisions with He isotopes and helium escape from Mars

    NASA Astrophysics Data System (ADS)

    Bovino, S.; Zhang, P.; Kharchenko, V.; Dalgarno, A.

    2010-12-01

    Helium is one of the dominant constituents in the upper atmosphere of Mars [1]. Thermal (Jeans’) escape of He is negligible on Mars [2] and major mechanism of escape is related to the collisional ejection of He atoms by energetic oxygen. Collisional ejection dominates over ion-related mechanisms [3] and evaluation of the escape flux of neutral He becomes an important issue. The dissociative recombination of O2+ is considered to be the major source of energetic oxygen atoms [4]. We report accurate data on energy-transfer collisions between hot oxygen atoms and the atmospheric helium gas. Angular dependent scattering cross sections for elastic collisions of O(3P) and O(1D) atoms with helium gas have been calculated quantum mechanically and found to be surprisingly similar. Cross sections, computed for collisions with both helium isotopes, 3He and 4He, have been used to construct the kernel of the Boltzmann equation, describing the energy relaxation of hot oxygen atoms. Computed rates of energy transfer in O + He collisions have been used to evaluate the flux of He atoms escaping from the Mars atmosphere at different solar conditions. We have identified atmospheric layers mostly responsible for production of the He escape flux. Our results are consistent with recent data from Monte Carlo simulations of the escape of O atoms: strong angular anisotropy of atomic cross sections leads to an increased transparency of the upper atmosphere for escaping O flux [5] and stimulate the collisional ejection of He atoms. References [1] Krasnopolsky, V. A., and G. R. Gladstone (2005), Helium on Mars and Venus: EUVE observations and modeling, Icarus, 176, 395. [2] Chassefiere E. and F. Leblanc (2004), Mars atmospheric escape and evolution; interaction with the solar wind, Planetary and Space Science, 52, 1039 [3] Krasnopolsky, V. (2010), Solar activity variations of thermospheric temperatures on Mars and a problem of CO in the lower atmoshpere, Icarus, 207, 638. [4] Fox, J. L. (1995), On the escape of oxygen and hydrogen from Mars, Geophy. Rev. Lett., 20, 1847. [5] Krestyanikova, M. A. and V. I. Shematovich (2006), Stochastic models of hot planetary and satellite coronas: a hot oxygen corona of Mars, Solar System Research, 40, 384.

  5. Complex regulation of GH autofeedback under dual-peptide drive: studies under a pharmacological GH and sex steroid clamp

    PubMed Central

    Erickson, Dana; Miles, John M.; Bowers, Cyril Y.

    2011-01-01

    To test the postulate that sex difference, sex steroids, and peptidyl secretagogues control GH autofeedback, 11 healthy postmenopausal women and 14 older men were each given 1) a single iv pulse of GH to enforce negative feedback and 2) continuous iv infusion of saline vs. combined GHRH/GHRP-2 to drive feedback escape during pharmacological estradiol (E2; women) or testosterone (T; men) supplementation vs. placebo in a double-blind, prospectively randomized crossover design. By three-way ANCOVA, sex difference, sex hormone treatment, peptide stimulation, and placebo/saline responses (covariate) controlled total (integrated) GH recovery during feedback (each P < 0.001). Both sex steroid milieu (P = 0.019) and dual-peptide stimulation (P < 0.001) determined nadir (maximally feedback-suppressed) GH concentrations. E2/T exposure elevated nadir GH concentrations during saline infusion (P = 0.003), whereas dual-peptide infusion did so independently of T/E2 and sex difference (P = 0.001). All three of sex difference (P = 0.001), sex steroid treatment (P = 0.005), and double-peptide stimulation (P < 0.001) augmented recovery of peak (maximally feedback-escaped) GH concentrations. Peak GH responses to dual-peptidyl agonists were greater in women than in men (P = 0.016). E2/T augmented peak GH recovery during saline infusion (P < 0.001). Approximate entropy analysis corroborated independent effects of sex steroid treatment (P = 0.012) and peptide infusion (P < 0.001) on GH regularity. In summary, sex difference, sex steroid supplementation, and combined peptide drive influence nadir, peak, and entropic measurements of GH release under controlled negative feedback. To the degree that the pharmacological sex steroid, GH, and dual-peptide clamps provide prephysiological regulatory insights, these outcomes suggest major determinants of pulsatile GH secretion in the feedback domain. PMID:21467302

  6. Behavioural ecotoxicology, an “early warning” signal to assess environmental quality

    PubMed Central

    2010-01-01

    Background In this review, the position of behavioural ecotoxicology within the available means to assess the status of marine environments is described as filling the gap for the needed “early warning” signals. A few examples of studies performed since the 1960s are discussed to highlight the sensitivity of these approaches in investigating the effects of chemicals, including priority pollutants and emerging contaminants, relative to conventional toxicity tests measuring survival. Discussion The advantage of the behavioural response is due to the integration of biochemical and physiological processes that reflect changes at higher levels of organisation with ecological relevance. Avoidance often represents a behavioural symptom easily detected in many animals exposed to contaminants and would be a useful test to explore more widely. This rapid response would reflect a defence mechanism protective against further exposure and the potential development of more pronounced deleterious effects, whilst in some cases, escape could lead to the relocation of a species with negative consequences. An investigation of the avoidance behaviour of mud shrimp, Corophium volutator, along with the chemical analyses of sediments and amphipods to assess the quality of harbour sediments is summarised. The body burden of the amphipods was 1,000 times lower than the one associated with narcosis, emphasizing the sensitivity of this endpoint. The application of this acute toxicity test is briefly compared to additional work that involved intertidal mussels collected in the field. Conclusions Recent research undertaken with mud snails, Ilyanassa obsoleta, and harbour sediments confirmed the usefulness of the escape behaviour as an assessment tool. However, the limits of the state of knowledge regarding the fate of contaminants in species with the ability to metabolise contaminants is further discussed along with directions to be pursued to address questions arising from the reviewed literature. PMID:20614196

  7. Anxiogenic effects of brief swim stress are sensitive to stress history.

    PubMed

    Christianson, John P; Drugan, Robert C; Flyer, Johanna G; Watkins, Linda R; Maier, Steven F

    2013-07-01

    Stressors that are controllable not only protect an individual from the acute consequences of the stressor, but also the consequences of stressors that occur later. This phenomenon, termed "behavioral immunization", is studied in the rat by first administering tailshocks each of which can be terminated (escapable tailshock) by an instrumental wheel-turn response prior to exposure to a second stressor. Previous research has shown that exposure to escapable tailshock blocks the neurochemical and behavioral consequences of later inescapable tailshock or social defeat stress. Here we explored the generality of behavioral immunization by examining the impact of prior escapable tailshock on the behavioral consequences of cold swim stress. Exposure to a 5min cold-water (19°C) swim caused an anxiety-like reduction in social interaction that was dependent upon 5-HT2C receptor activation. Rats with prior exposure to escapable tailshock did not develop the swim-induced anxiety. Plasticity in the medial prefrontal cortex, a hypothetical neural mechanism underlying behavioral immunization, is discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Extrusion of Contracaecum osculatum nematode larvae from the liver of cod (Gadus morhua).

    PubMed

    Zuo, S; Barlaup, L; Mohammadkarami, A; Al-Jubury, A; Chen, D; Kania, P W; Buchmann, K

    2017-10-01

    Baltic cod livers have during recent years been found increasingly and heavily infected with third-stage larvae of Contracaecum osculatum. The infections are associated with an increasing population of grey seals which are final hosts for the parasite. Heavy worm burdens challenge utilization and safety of the fish liver products, and technological solutions for removal of worms are highly needed. We investigated the attachment of the worm larvae in liver tissue by use of histochemical techniques and found that the cod host encapsulates the worm larvae in layers of host cells (macrophages, fibroblasts) supported by enclosures of collagen and calcium. A series of incubation techniques, applying compounds targeting molecules in the capsule, were then tested for their effect to induce worm escape/release reactions. Full digestion solutions comprising pepsin, NaCl, HCl and water induced a fast escape of more than 60% of the worm larvae within 20 min and gave full release within 65 min but the liver tissue became highly dispersed. HCl alone, in concentrations of 48 and 72 mM, triggered a corresponding release of worm larvae with minor effect on liver integrity. A lower HCl concentration of 24 mM resulted in 80% release within 35 min. Water and physiological saline had no effect on worm release, and 1% pepsin in water elicited merely a weak escape reaction. In addition to the direct effect of acid on worm behaviour it is hypothesised that the acid effect on calcium carbonate in the encapsulation, with subsequent release of reaction products, may contribute to activation of C. osculatum larvae and induce escape reactions. Short-term pretreatment of infected cod liver and possibly other infected fish products, using low acid concentrations is suggested as part of a technological solution for worm clearance as low acid concentrations had limited macroscopic effect on liver integrity within 35 min.

  9. ACCURATE ORBITAL INTEGRATION OF THE GENERAL THREE-BODY PROBLEM BASED ON THE D'ALEMBERT-TYPE SCHEME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minesaki, Yukitaka

    2013-03-15

    We propose an accurate orbital integration scheme for the general three-body problem that retains all conserved quantities except angular momentum. The scheme is provided by an extension of the d'Alembert-type scheme for constrained autonomous Hamiltonian systems. Although the proposed scheme is merely second-order accurate, it can precisely reproduce some periodic, quasiperiodic, and escape orbits. The Levi-Civita transformation plays a role in designing the scheme.

  10. Escape of asteroids from the main belt

    NASA Astrophysics Data System (ADS)

    Granvik, Mikael; Morbidelli, Alessandro; Vokrouhlický, David; Bottke, William F.; Nesvorný, David; Jedicke, Robert

    2017-02-01

    Aims: We locate escape routes from the main asteroid belt, particularly into the near-Earth-object (NEO) region, and estimate the relative fluxes for different escape routes as a function of object size under the influence of the Yarkovsky semimajor-axis drift. Methods: We integrated the orbits of 78 355 known and 14 094 cloned main-belt objects and Cybele and Hilda asteroids (hereafter collectively called MBOs) for 100 Myr and recorded the characteristics of the escaping objects. The selected sample of MBOs with perihelion distance q > 1.3 au and semimajor axis a < 4.1 au is essentially complete, with an absolute magnitude limit ranging from HV < 15.9 in the inner belt (a < 2.5 au) to HV < 14.4 in the outer belt (2.5 au < a < 4.1 au). We modeled the semimajor-axis drift caused by the Yarkovsky force and assigned four different sizes (diameters of 0.1, 0.3, 1.0, and 3.0 km) and random spin obliquities (either 0 deg or 180 deg) for each test asteroid. Results: We find more than ten obvious escape routes from the asteroid belt to the NEO region, and they typically coincide with low-order mean-motion resonances with Jupiter and secular resonances. The locations of the escape routes are independent of the semimajor-axis drift rate and thus are also independent of the asteroid diameter. The locations of the escape routes are likewise unaffected when we added a model for Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) cycles coupled with secular evolution of the rotation pole as a result of the solar gravitational torque. A Yarkovsky-only model predicts a flux of asteroids entering the NEO region that is too high compared to the observationally constrained flux, and the discrepancy grows larger for smaller asteroids. A combined Yarkovsky and YORP model predicts a flux of small NEOs that is approximately a factor of 5 too low compared to an observationally constrained estimate. This suggests that the characteristic timescale of the YORP cycle is longer than our canonical YORP model predicts.

  11. An integrated approach to salt cedar control and rehabilitation

    USDA-ARS?s Scientific Manuscript database

    Salt cedar (Tamarix spp.), a small tree native to Central Asia has invaded more than 4.7 million acres in the western United States. Planted in the early 1800s as an ornamental and later for windbreaks and soil stabilization, it escaped cultivation, infesting riparian and adjacent communities. Thre...

  12. Long-term outcomes and costs of an integrated rehabilitation program for chronic knee pain: a pragmatic, cluster randomized, controlled trial.

    PubMed

    Hurley, M V; Walsh, N E; Mitchell, H; Nicholas, J; Patel, A

    2012-02-01

    Chronic joint pain is a major cause of pain and disability. Exercise and self-management have short-term benefits, but few studies follow participants for more than 6 months. We investigated the long-term (up to 30 months) clinical and cost effectiveness of a rehabilitation program combining self-management and exercise: Enabling Self-Management and Coping of Arthritic Knee Pain Through Exercise (ESCAPE-knee pain). In this pragmatic, cluster randomized, controlled trial, 418 people with chronic knee pain (recruited from 54 primary care surgeries) were randomized to usual care (pragmatic control) or the ESCAPE-knee pain program. The primary outcome was physical function (Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC] function), with a clinically meaningful improvement in physical function defined as a ≥15% change from baseline. Secondary outcomes included pain, psychosocial and physiologic variables, costs, and cost effectiveness. Compared to usual care, ESCAPE-knee pain participants had large initial improvements in function (mean difference in WOMAC function -5.5; 95% confidence interval [95% CI] -7.8, -3.2). These improvements declined over time, but 30 months after completing the program, ESCAPE-knee pain participants still had better physical function (difference in WOMAC function -2.8; 95% CI -5.3, -0.2); lower community-based health care costs (£-47; 95% CI £-94, £-7), medication costs (£-16; 95% CI £-29, £-3), and total health and social care costs (£-1,118; 95% CI £-2,566, £-221); and a high probability (80-100%) of being cost effective. Clinical and cost benefits of ESCAPE-knee pain were still evident 30 months after completing the program. ESCAPE-knee pain is a more effective and efficient model of care that could substantially improve the health, well-being, and independence of many people, while reducing health care costs. Copyright © 2012 by the American College of Rheumatology.

  13. Behavioral consequences of predator stress in the rat elevated T-maze.

    PubMed

    Bulos, Erika Mondin; Pobbe, Roger Luis Henschel; Zangrossi, Helio

    2015-07-01

    Analyses of the behavioral reactions of rodents to predators have greatly contributed to the understanding of defense-related human psychopathologies such as anxiety and panic.We here investigated the behavioral consequences of exposing male Wistar rats to a live cat using the elevated T-maze test of anxiety. This test allows the measurement of two defensive responses: inhibitory avoidance and escape, which in terms of pathology have been associated with generalized anxiety and panic disorders, respectively. For comparative reasons, the effects of exposure to the cat were also assessed in the elevated plus-maze. The results showed that a 5-min exposure to the cat selectively facilitated inhibitory avoidance acquisition, an anxiogenic effect, without affecting escape expression in the elevated T-maze. This was seen immediately but not 30 min after contact with the predator. This short-lived anxiogenic effect was also detected in the elevated plus-maze. Previous administration of the benzodiazepine anxiolytic diazepam (2 mg/kg) decreased the immediate avoidance response to the predator and the neophobic reaction to a dummy cat used as a control stimulus. The drug also impaired inhibitory avoidance acquisition in the elevated T-maze, indicating an anxiolytic effect, without affecting escape performance. The results indicate that the state of anxiety evoked during contact with the predator generalizes to both elevated plus- and T-mazes, impacting on defensive responses associated with generalized anxiety disorder.

  14. Asymmetry of flight and escape turning responses in horses.

    PubMed

    Austin, N P; Rogers, L J

    2007-09-01

    We investigated whether horses display greater reactivity to a novel stimulus presented in the left compared to the right monocular visual field, and whether a population bias exists for escape turning when the same stimulus was presented binocularly. Domestic horses (N=30) were tested on three occasions by a person opening an umbrella five metres away and then approaching. The distance each horse moved away before stopping was measured. Distance was greatest for approach on the left side, indicating right hemisphere control of flight behaviour, and thus followed the same pattern found previously in other species. When order of monocular presentation was considered, an asymmetry was detected. Horses tested initially on the left side exhibited greater reactivity for left approach, whereas horses tested on the right side first displayed no side difference in reactivity. Perhaps left hemisphere inhibition of flight response allowed horses to learn that the stimulus posed no threat and this information was transferred to the right hemisphere. No population bias existed for the direction of escape turning, but horses that turned to the right when approached from the front were found to exhibit longer flight distances than those that turned to the left.

  15. Centering Single Cells in Microgels via Delayed Crosslinking Supports Long-Term 3D Culture by Preventing Cell Escape.

    PubMed

    Kamperman, Tom; Henke, Sieger; Visser, Claas Willem; Karperien, Marcel; Leijten, Jeroen

    2017-06-01

    Single-cell-laden microgels support physiological 3D culture conditions while enabling straightforward handling and high-resolution readouts of individual cells. However, their widespread adoption for long-term cultures is limited by cell escape. In this work, it is demonstrated that cell escape is predisposed to off-center encapsulated cells. High-speed microscopy reveals that cells are positioned at the microgel precursor droplets' oil/water interface within milliseconds after droplet formation. In conventional microencapsulation strategies, the droplets are typically gelled immediately after emulsification, which traps cells in this off-center position. By delaying crosslinking, driving cells toward the centers of microgels is succeeded. The centering of cells in enzymatically crosslinked microgels prevents their escape during at least 28 d. It thereby uniquely enables the long-term culture of individual cells within <5-µm-thick 3D uniform hydrogel coatings. Single cell analysis of mesenchymal stem cells in enzymatically crosslinked microgels reveals unprecedented high cell viability (>90%), maintained metabolic activity (>70%), and multilineage differentiation capacity (>60%) over a period of 28 d. The facile nature of this microfluidic cell-centering method enables its straightforward integration into many microencapsulation strategies and significantly enhances control, reproducibility, and reliability of 3D single cell cultures. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Glycosylated Triterpenoids as Endosomal Escape Enhancers in Targeted Tumor Therapies

    PubMed Central

    Fuchs, Hendrik; Niesler, Nicole; Trautner, Alexandra; Sama, Simko; Jerz, Gerold; Panjideh, Hossein; Weng, Alexander

    2017-01-01

    Protein-based targeted toxins play an increasingly important role in targeted tumor therapies. In spite of their high intrinsic toxicity, their efficacy in animal models is low. A major reason for this is the limited entry of the toxin into the cytosol of the target cell, which is required to mediate the fatal effect. Target receptor bound and internalized toxins are mostly either recycled back to the cell surface or lysosomally degraded. This might explain why no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date although more than 500 targeted toxins have been developed within the last decades. To overcome the problem of insufficient endosomal escape, a number of strategies that make use of diverse chemicals, cell-penetrating or fusogenic peptides, and light-induced techniques were designed to weaken the membrane integrity of endosomes. This review focuses on glycosylated triterpenoids as endosomal escape enhancers and throws light on their structure, the mechanism of action, and on their efficacy in cell culture and animal models. Obstacles, challenges, opportunities, and future prospects are discussed. PMID:28536357

  17. NASA Dryden Flight Research Center personnel accompany NASA's first Orion full-scale abort flight test crew module as it heads to its new home.

    NASA Image and Video Library

    2008-04-01

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  18. A NASA painter applies the first primer coat to NASA's Orion full-scale abort flight test crew module in the Edwards Air Force Base paint hangar.

    NASA Image and Video Library

    2008-03-29

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  19. Air Force loadmasters oversee unloading of the full-scale Orion abort test crew module mockup from a C-17 cargo aircraft at Edwards Air Force Base March 28.

    NASA Image and Video Library

    2008-03-28

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  20. Paint shop technicians carefully apply masking prior to painting the Orion full-scale abort flight test crew module in the Edwards Air Force Base paint hangar.

    NASA Image and Video Library

    2008-03-29

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  1. NASA paint shop technicians prepare the Orion full-scale flight test crew module for painting in the Edwards Air Force Base paint hangar.

    NASA Image and Video Library

    2008-03-29

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  2. SEPS mission and system integration/interface requirements for the space transportation system. [Solar Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    Cork, M. J.; Barnett, P. M.; Shaffer, J., Jr.; Doran, B. J.

    1979-01-01

    Earth escape mission requirements on Solar Electric Propulsion System (SEPS), and the interface definition and planned integration between SEPS, user spacecraft, and other elements of the STS. Emphasis is placed on the Comet rendezvous mission, scheduled to be the first SEPS user. Interactive SEPS interface characteristics with spacecraft and mission, as well as the multiple organizations and inter-related development schedules required to integrate the SEPS with spacecraft and STS, require early attention to definition of interfaces in order to assure a successful path to the first SEPS launch in July 1985

  3. Probabilistic information transmission in a network of coupled oscillators reveals speed-accuracy trade-off in responding to threats

    PubMed Central

    Chicoli, Amanda; Paley, Derek A.

    2016-01-01

    Individuals in a group may obtain information from other group members about the environment, including the location of a food source or the presence of a predator. Here, we model how information spreads in a group using a susceptible-infected-removed epidemic model. We apply this model to a simulated shoal of fish using the motion dynamics of a coupled oscillator model, in order to test the biological hypothesis that polarized or aligned shoaling leads to faster and more accurate escape responses. The contributions of this study are the (i) application of a probabilistic model of epidemics to the study of collective animal behavior; (ii) testing the biological hypothesis that group cohesion improves predator escape; (iii) quantification of the effect of social cues on startle propagation; and (iv) investigation of the variation in response based on network connectivity. We find that when perfectly aligned individuals in a group are startled, there is a rapid escape by individuals that directly detect the threat, as well as by individuals responding to their neighbors. However, individuals that are not startled do not head away from the threat. In startled groups that are randomly oriented, there is a rapid, accurate response by individuals that directly detect the threat, followed by less accurate responses by individuals responding to neighbor cues. Over the simulation duration, however, even unstartled individuals head away from the threat. This study illustrates a potential speed-accuracy trade-off in the startle response of animal groups, in agreement with several previous experimental studies. Additionally, the model can be applied to a variety of group decision-making processes, including those involving higher-dimensional motion. PMID:27907996

  4. Probabilistic information transmission in a network of coupled oscillators reveals speed-accuracy trade-off in responding to threats

    NASA Astrophysics Data System (ADS)

    Chicoli, Amanda; Paley, Derek A.

    2016-11-01

    Individuals in a group may obtain information from other group members about the environment, including the location of a food source or the presence of a predator. Here, we model how information spreads in a group using a susceptible-infected-removed epidemic model. We apply this model to a simulated shoal of fish using the motion dynamics of a coupled oscillator model, in order to test the biological hypothesis that polarized or aligned shoaling leads to faster and more accurate escape responses. The contributions of this study are the (i) application of a probabilistic model of epidemics to the study of collective animal behavior; (ii) testing the biological hypothesis that group cohesion improves predator escape; (iii) quantification of the effect of social cues on startle propagation; and (iv) investigation of the variation in response based on network connectivity. We find that when perfectly aligned individuals in a group are startled, there is a rapid escape by individuals that directly detect the threat, as well as by individuals responding to their neighbors. However, individuals that are not startled do not head away from the threat. In startled groups that are randomly oriented, there is a rapid, accurate response by individuals that directly detect the threat, followed by less accurate responses by individuals responding to neighbor cues. Over the simulation duration, however, even unstartled individuals head away from the threat. This study illustrates a potential speed-accuracy trade-off in the startle response of animal groups, in agreement with several previous experimental studies. Additionally, the model can be applied to a variety of group decision-making processes, including those involving higher-dimensional motion.

  5. Polarized object detection in crabs: a two-channel system.

    PubMed

    Basnak, Melanie Ailín; Pérez-Schuster, Verónica; Hermitte, Gabriela; Berón de Astrada, Martín

    2018-05-25

    Many animal species take advantage of polarization vision for vital tasks such as orientation, communication and contrast enhancement. Previous studies have suggested that decapod crustaceans use a two-channel polarization system for contrast enhancement. Here, we characterize the polarization contrast sensitivity in a grapsid crab . We estimated the polarization contrast sensitivity of the animals by quantifying both their escape response and changes in heart rate when presented with polarized motion stimuli. The motion stimulus consisted of an expanding disk with an 82 deg polarization difference between the object and the background. More than 90% of animals responded by freezing or trying to avoid the polarized stimulus. In addition, we co-rotated the electric vector (e-vector) orientation of the light from the object and background by increments of 30 deg and found that the animals' escape response varied periodically with a 90 deg period. Maximum escape responses were obtained for object and background e-vectors near the vertical and horizontal orientations. Changes in cardiac response showed parallel results but also a minimum response when e-vectors of object and background were shifted by 45 deg with respect to the maxima. These results are consistent with an orthogonal receptor arrangement for the detection of polarized light, in which two channels are aligned with the vertical and horizontal orientations. It has been hypothesized that animals with object-based polarization vision rely on a two-channel detection system analogous to that of color processing in dichromats. Our results, obtained by systematically varying the e-vectors of object and background, provide strong empirical support for this theoretical model of polarized object detection. © 2018. Published by The Company of Biologists Ltd.

  6. Probabilistic information transmission in a network of coupled oscillators reveals speed-accuracy trade-off in responding to threats.

    PubMed

    Chicoli, Amanda; Paley, Derek A

    2016-11-01

    Individuals in a group may obtain information from other group members about the environment, including the location of a food source or the presence of a predator. Here, we model how information spreads in a group using a susceptible-infected-removed epidemic model. We apply this model to a simulated shoal of fish using the motion dynamics of a coupled oscillator model, in order to test the biological hypothesis that polarized or aligned shoaling leads to faster and more accurate escape responses. The contributions of this study are the (i) application of a probabilistic model of epidemics to the study of collective animal behavior; (ii) testing the biological hypothesis that group cohesion improves predator escape; (iii) quantification of the effect of social cues on startle propagation; and (iv) investigation of the variation in response based on network connectivity. We find that when perfectly aligned individuals in a group are startled, there is a rapid escape by individuals that directly detect the threat, as well as by individuals responding to their neighbors. However, individuals that are not startled do not head away from the threat. In startled groups that are randomly oriented, there is a rapid, accurate response by individuals that directly detect the threat, followed by less accurate responses by individuals responding to neighbor cues. Over the simulation duration, however, even unstartled individuals head away from the threat. This study illustrates a potential speed-accuracy trade-off in the startle response of animal groups, in agreement with several previous experimental studies. Additionally, the model can be applied to a variety of group decision-making processes, including those involving higher-dimensional motion.

  7. Changes in Tree Quality in Response to Defoliation

    Treesearch

    Jack C. Schultz; Ian T. Baldwin

    1983-01-01

    Plant chemistry alone fails to explain why most trees escape defoliation most of the time. Chemical variation in space and time, acting to enhance the effectiveness of natural enemies, may be the key. Changes and increasing variation in direct response to insect attack ("induction") may be particularly important for irruptive pests.

  8. 9 CFR 55.23 - Responsibilities of States and enrolled herd owners.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... In cases where animals escape or disappear and thus are not available for tissue sampling and testing, an APHIS representative will investigate whether the unavailability of animals for testing... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Responsibilities of States and...

  9. 9 CFR 55.23 - Responsibilities of States and enrolled herd owners.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... In cases where animals escape or disappear and thus are not available for tissue sampling and testing, an APHIS representative will investigate whether the unavailability of animals for testing... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Responsibilities of States and...

  10. 9 CFR 55.23 - Responsibilities of States and enrolled herd owners.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... In cases where animals escape or disappear and thus are not available for tissue sampling and testing, an APHIS representative will investigate whether the unavailability of animals for testing... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Responsibilities of States and...

  11. Museum Programs: Public Escapism or Education for Public Responsibility?

    ERIC Educational Resources Information Center

    Prakash, Madhu Suri; Shaman, Sanford Sivitz

    1988-01-01

    Argues that museums, as public educational institutions, must meet the challenge of educating the public, specifically by planning for education that focuses on the pressing issues and problems of people's lives. States that museums must educate for public responsibility, and discusses the ethical and educational imperatives that guide public…

  12. Three Accounts of Feminism and Women's Studies in Higher Education. Book Review Essay.

    ERIC Educational Resources Information Center

    Rice, Suzanne

    1996-01-01

    Provides an integrative essay that explores three books and their contributions to feminism and women's studies in higher education. Indicates that only one of the three works managed to escape the tendency of academic and popular media to either valorize or demonize feminists and their pursuits. (MAB)

  13. Library Services in Institutions for Mentally and Developmentally Disabled Adults.

    ERIC Educational Resources Information Center

    Ensor, Pat

    To improve the quality of life of institutionalized individuals, libraries can serve as a constructive escape mechanism for dealing with stress, a representation of external reality, and a therapeutic agent, in addition to offering bibliotherapy. Ideally, the library should be an integral part of the institution and provide a user-appropriate…

  14. Proceedings of the regional technical workshop on transportation and transit facilitation : regional initiative on transport integration, South Asia region, Bangkok, April 19-21, 1999, volume 1 : summary

    DOT National Transportation Integrated Search

    1999-01-01

    The World Bank in partnership with United Nations Economic and Social Commission for Asia and the Pacific (ESCAP) sponsored the Regional Technical Workshop on Transport and Transit Facilitation under the Initiative. Participants included public and p...

  15. Childhood and Travel Literature.

    ERIC Educational Resources Information Center

    Espey, David

    If children are not present in most travel literature--precisely because the genre has most typically been the domain of solitary male travelers who are escaping domestic obligation, routine, the familiar, and the family--they nevertheless are an integral part of the genre. The traveler is in many ways a child, an innocent abroad. Traveler writers…

  16. Intelligence-Augmented Rat Cyborgs in Maze Solving.

    PubMed

    Yu, Yipeng; Pan, Gang; Gong, Yongyue; Xu, Kedi; Zheng, Nenggan; Hua, Weidong; Zheng, Xiaoxiang; Wu, Zhaohui

    2016-01-01

    Cyborg intelligence is an emerging kind of intelligence paradigm. It aims to deeply integrate machine intelligence with biological intelligence by connecting machines and living beings via neural interfaces, enhancing strength by combining the biological cognition capability with the machine computational capability. Cyborg intelligence is considered to be a new way to augment living beings with machine intelligence. In this paper, we build rat cyborgs to demonstrate how they can expedite the maze escape task with integration of machine intelligence. We compare the performance of maze solving by computer, by individual rats, and by computer-aided rats (i.e. rat cyborgs). They were asked to find their way from a constant entrance to a constant exit in fourteen diverse mazes. Performance of maze solving was measured by steps, coverage rates, and time spent. The experimental results with six rats and their intelligence-augmented rat cyborgs show that rat cyborgs have the best performance in escaping from mazes. These results provide a proof-of-principle demonstration for cyborg intelligence. In addition, our novel cyborg intelligent system (rat cyborg) has great potential in various applications, such as search and rescue in complex terrains.

  17. Intelligence-Augmented Rat Cyborgs in Maze Solving

    PubMed Central

    Yu, Yipeng; Pan, Gang; Gong, Yongyue; Xu, Kedi; Zheng, Nenggan; Hua, Weidong; Zheng, Xiaoxiang; Wu, Zhaohui

    2016-01-01

    Cyborg intelligence is an emerging kind of intelligence paradigm. It aims to deeply integrate machine intelligence with biological intelligence by connecting machines and living beings via neural interfaces, enhancing strength by combining the biological cognition capability with the machine computational capability. Cyborg intelligence is considered to be a new way to augment living beings with machine intelligence. In this paper, we build rat cyborgs to demonstrate how they can expedite the maze escape task with integration of machine intelligence. We compare the performance of maze solving by computer, by individual rats, and by computer-aided rats (i.e. rat cyborgs). They were asked to find their way from a constant entrance to a constant exit in fourteen diverse mazes. Performance of maze solving was measured by steps, coverage rates, and time spent. The experimental results with six rats and their intelligence-augmented rat cyborgs show that rat cyborgs have the best performance in escaping from mazes. These results provide a proof-of-principle demonstration for cyborg intelligence. In addition, our novel cyborg intelligent system (rat cyborg) has great potential in various applications, such as search and rescue in complex terrains. PMID:26859299

  18. Corollary discharge inhibition of wind-sensitive cercal giant interneurons in the singing field cricket

    PubMed Central

    Hedwig, Berthold

    2014-01-01

    Crickets carry wind-sensitive mechanoreceptors on their cerci, which, in response to the airflow produced by approaching predators, triggers escape reactions via ascending giant interneurons (GIs). Males also activate their cercal system by air currents generated due to the wing movements underlying sound production. Singing males still respond to external wind stimulation, but are not startled by the self-generated airflow. To investigate how the nervous system discriminates sensory responses to self-generated and external airflow, we intracellularly recorded wind-sensitive afferents and ventral GIs of the cercal escape pathway in fictively singing crickets, a situation lacking any self-stimulation. GI spiking was reduced whenever cercal wind stimulation coincided with singing motor activity. The axonal terminals of cercal afferents showed no indication of presynaptic inhibition during singing. In two ventral GIs, however, a corollary discharge inhibition occurred strictly in phase with the singing motor pattern. Paired intracellular recordings revealed that this inhibition was not mediated by the activity of the previously identified corollary discharge interneuron (CDI) that rhythmically inhibits the auditory pathway during singing. Cercal wind stimulation, however, reduced the spike activity of this CDI by postsynaptic inhibition. Our study reveals how precisely timed corollary discharge inhibition of ventral GIs can prevent self-generated airflow from triggering inadvertent escape responses in singing crickets. The results indicate that the responsiveness of the auditory and wind-sensitive pathway is modulated by distinct CDIs in singing crickets and that the corollary discharge inhibition in the auditory pathway can be attenuated by cercal wind stimulation. PMID:25318763

  19. Defensive responses to threat scenarios in Brazilians reproduce the pattern of Hawaiian Americans and non-human mammals.

    PubMed

    Shuhama, R; Del-Ben, C M; Loureiro, S R; Graeff, F G

    2008-04-01

    A former study with scenarios conducted in Hawaii has suggested that humans share with non-human mammals the same basic defensive strategies - risk assessment, freezing, defensive threat, defensive attack, and flight. The selection of the most adaptive strategy is strongly influenced by features of the threat stimulus - magnitude, escapability, distance, ambiguity, and availability of a hiding place. Aiming at verifying if these strategies would be consistent in a different culture, 12 defensive scenarios were translated into Portuguese and adapted to the Brazilian culture. The sample consisted of male and female undergraduate students divided into two groups: 76 students, who evaluated the five dimensions of each scenario and 248 medical students, who chose the most likely response for each scenario. In agreement with the findings from studies of non-human mammal species, the scenarios were able to elicit different defensive behavioral responses, depending on features of the threat. "Flight" was chosen as the most likely response in scenarios evaluated as an unambiguous and intense threat, but with an available route of escape, whereas "attack" was chosen in an unambiguous, intense and close dangerous situation without an escape route. Less urgent behaviors, such as "check out", were chosen in scenarios evaluated as less intense, more distant and more ambiguous. Moreover, the results from the Brazilian sample were similar to the results obtained in the original study with Hawaiian students. These data suggest that a basic repertoire of defensive strategies is conserved along the mammalian evolution because they share similar functional benefits in maintaining fitness.

  20. Distribution of escaping ions produced by non-specular reflection at the stationary quasi-perpendicular shock front

    NASA Astrophysics Data System (ADS)

    Gedalin, M.; Liverts, M.; Balikhin, M. A.

    2008-05-01

    Field-aligned and gyrophase bunched ion beams are observed in the foreshock of the Earth bow shock. One of the mechanisms proposed for their production is non-specular reflection at the shock front. We study the distributions which are formed at the stationary quasi-perpendicular shock front within the same process which is responsible for the generation of reflected ions and transmitted gyrating ions. The test particle motion analysis in a model shock allows one to identify the parameters which control the efficiency of the process and the features of the escaping ion distribution. These parameters are: the angle between the shock normal and the upstream magnetic field, the ratio of the ion thermal velocity to the flow velocity upstream, and the cross-shock potential. A typical distribution of escaping ions exhibits a bimodal pitch angle distribution (in the plasma rest frame).

  1. Predator-induced morphology enhances escape locomotion in crucian carp.

    PubMed

    Domenici, Paolo; Turesson, Håkan; Brodersen, Jakob; Brönmark, Christer

    2008-01-22

    Fishes show a remarkable diversity of shapes which have been associated with their swimming abilities and anti-predator adaptations. The crucian carp (Carassius carassius) provides an extreme example of phenotypic plasticity in body shape which makes it a unique model organism for evaluating the relationship between body form and function in fishes. In crucian carp, a deep body is induced by the presence of pike (Esox lucius), and this results in lower vulnerability to gape-limited predators, such as pike itself. Here, we demonstrate that deep-bodied crucian carp attain higher speed, acceleration and turning rate during anti-predator responses than shallow-bodied crucian carp. Therefore, a predator-induced morphology in crucian carp enhances their escape locomotor performance. The deep-bodied carp also show higher percentage of muscle mass. Therefore, their superior performance in escape swimming may be due to a combination of higher muscle power and higher thrust.

  2. Listeria phospholipases subvert host autophagic defenses by stalling pre-autophagosomal structures

    PubMed Central

    Tattoli, Ivan; Sorbara, Matthew T; Yang, Chloe; Tooze, Sharon A; Philpott, Dana J; Girardin, Stephen E

    2013-01-01

    Listeria can escape host autophagy defense pathways through mechanisms that remain poorly understood. We show here that in epithelial cells, Listeriolysin (LLO)-dependent cytosolic escape of Listeria triggered a transient amino-acid starvation host response characterized by GCN2 phosphorylation, ATF3 induction and mTOR inhibition, the latter favouring a pro-autophagic cellular environment. Surprisingly, rapid recovery of mTOR signalling was neither sufficient nor necessary for Listeria avoidance of autophagic targeting. Instead, we observed that Listeria phospholipases PlcA and PlcB reduced autophagic flux and phosphatidylinositol 3-phosphate (PI3P) levels, causing pre-autophagosomal structure stalling and preventing efficient targeting of cytosolic bacteria. In co-infection experiments, wild-type Listeria protected PlcA/B-deficient bacteria from autophagy-mediated clearance. Thus, our results uncover a critical role for Listeria phospholipases C in the inhibition of autophagic flux, favouring bacterial escape from host autophagic defense. PMID:24162724

  3. Automated Escape Guidance Algorithms for An Escape Vehicle

    NASA Technical Reports Server (NTRS)

    Flanary, Ronald; Hammen, David; Ito, Daigoro; Rabalais, Bruce; Rishikof, Brian; Siebold, Karl

    2002-01-01

    An escape vehicle was designed to provide an emergency evacuation for crew members living on a space station. For maximum escape capability, the escape vehicle needs to have the ability to safely evacuate a station in a contingency scenario such as an uncontrolled (e.g., tumbling) station. This emergency escape sequence will typically be divided into three events: The fust separation event (SEP1), the navigation reconstruction event, and the second separation event (SEP2). SEP1 is responsible for taking the spacecraft from its docking port to a distance greater than the maximum radius of the rotating station. The navigation reconstruction event takes place prior to the SEP2 event and establishes the orbital state to within the tolerance limits necessary for SEP2. The SEP2 event calculates and performs an avoidance burn to prevent station recontact during the next several orbits. This paper presents the tools and results for the whole separation sequence with an emphasis on the two separation events. The fust challenge includes collision avoidance during the escape sequence while the station is in an uncontrolled rotational state, with rotation rates of up to 2 degrees per second. The task of avoiding a collision may require the use of the Vehicle's de-orbit propulsion system for maximum thrust and minimum dwell time within the vicinity of the station vicinity. The thrust of the propulsion system is in a single direction, and can be controlled only by the attitude of the spacecraft. Escape algorithms based on a look-up table or analytical guidance can be implemented since the rotation rate and the angular momentum vector can be sensed onboard and a-priori knowledge of the position and relative orientation are available. In addition, crew intervention has been provided for in the event of unforeseen obstacles in the escape path. The purpose of the SEP2 burn is to avoid re-contact with the station over an extended period of time. Performing this maneuver properly requires knowledge of the orbital state, which is obtained during the navigation state reconstruction event. Since the direction of the delta-v of the SEPI maneuver is a random variable with respect to the Local Vertical Local Horizontal (LVLH) coordinate system, calculating the required SEP2 burn is a challenge. This problem was solved using a neural network as a model-free function approximation technique.

  4. Learning to predict and control harmful events: chronic pain and conditioning.

    PubMed

    Vlaeyen, Johan W S

    2015-04-01

    Pain is a biologically relevant signal and response to bodily threat, associated with the urge to restore the integrity of the body. Immediate protective responses include increased arousal, selective attention, escape, and facial expressions, followed by recuperative avoidance and safety-seeking behaviors. To facilitate early and effective protection against future bodily threat or injury, learning takes place rapidly. Learning is the observable change in behavior due to events in the internal and external environmental and includes nonassociative (habituation and sensitization) and associative learning (Pavlovian and operant conditioning). Once acquired, these knowledge representations remain stored in memory and may generalize to perceptually or functionally similar events. Moreover, these processes are not just a consequence of pain; they may directly influence pain perception. In contrast to the rapid acquisition of learned responses, their extinction is slow, fragile, context dependent and only occurs through inhibitory processes. Here, we review features of associative forms of learning in humans that contribute to pain, pain-related distress, and disability and discuss promising future directions. Although conditioning has a long and honorable history, a conditioning perspective still might open new windows on novel treatment modalities that facilitate the well-being of individuals with chronic pain.

  5. PubMed

    Galaine, Jeanne; Godet, Yann; Adotévi, Olivier

    2016-11-01

    T cells activation is a finely regulated process to establish an effective anti-infectious or antitumor immune response while avoiding harmful autoimmune reactions. Although T cells are considered to be the main protagonists of the antitumor immune response, they act in interaction with other immune cells. The meeting of naive T cells with dendritic cells induces their differentiation into effector cells following the recognition of the peptide-MHC complex by the T cell receptor. The interaction of costimulatory molecules present on the surface of T cells with their ligand (s) expressed by mature dendritic cells contribute to the optimal T cell activation and to the formation of the immunological synapse. Conversely, engagement of inhibitory receptors expressed by T cells induces a negative feedback involved in the T cells homeostasis but also in the tumor escape from the immune system. The integration of stimulatory signals contributes to the proliferation, the survival and the differentiation of T cells whereas the inhibitory signals permit their regulation. The better understanding of T cell activation mechanisms has led to the development of therapeutic strategies aimed at stimulating the antitumor immune response or alleviating the immunosuppression. © 2016 Société Française du Cancer. Publié par Elsevier Masson SAS. Tous droits réservés.

  6. Flow control by means of a traveling curvature wave in fishlike escape responses

    NASA Astrophysics Data System (ADS)

    Liu, Geng; Yu, Yong-Liang; Tong, Bing-Gang

    2011-11-01

    Fish usually bend their bodies into a ‘‘C’’ shape and then beat their tails one or more times to escape from predators (in nature) or stimuli (in experiments). The maneuvering behavior, i.e., the C-shape bending and the return flapping, is called C-start. In this paper, the escaping performance of fishlike C-start motions has been numerically investigated for a flow physics study by the use of a two-dimensional deformable foil bending and stretching quickly. The C-start motions, performed in the quiescent water and based on prescribed deforming modes, are predicted by a numerical method coupling the two-dimensional incompressible Navier-Stokes equations and the deforming body dynamic equations. It has been found earlier that a typical C-start motion consists of (1) a main C-shape bending and (2) a rearward travelling curvature wave which was seldom mentioned in previous studies. In order to reveal the flow control mechanism of the traveling curvature wave in a fish's C-start motion, two kinds of C-start flows with different deforming modes, namely the integrated mode (IM, a C-shape bending plus a travelling curvature wave) and the basic mode (BM, a C-shape bending only) are analyzed and compared in detail. According to the numerical results, it shows that if proper values of the travelling curvature wave parameters are chosen, the foil's escaping maneuverability presented in the IM is much better than that in the BM, i.e. the turn angle and the speed of the center of mass at the end of a C-start in the IM is almost twice as large as those in the BM. Further study shows that the travelling curvature wave not only can enhance the thrust and the centripetal force but also increase the propulsive efficiency. These results suggest that an efficient travelling curvature wave is of great significance in the flow control of a C-start motion. Finally, a parametric study finds that the phase difference between the C-shape bending and the travelling curvature wave (i.e., the initial phase angle in the travelling curvature wave of the deforming model) is a key parameter in the flow control. To achieve the desirable turn angle, escaping speed, and propulsive efficiency in the C-start motions, the initial phase angles must be ranged within specific magnitudes. It is found that for optimum values of the initial phase angle, the foil's flexible deforming process is qualitatively consistent with that of a fish body in nature. The results obtained in this study provide a new physical insight into the understanding of swimming mechanisms of fish's C-start maneuvers.

  7. Flow control by means of a traveling curvature wave in fishlike escape responses.

    PubMed

    Liu, Geng; Yu, Yong-Liang; Tong, Bing-Gang

    2011-11-01

    Fish usually bend their bodies into a ''C'' shape and then beat their tails one or more times to escape from predators (in nature) or stimuli (in experiments). The maneuvering behavior, i.e., the C-shape bending and the return flapping, is called C-start. In this paper, the escaping performance of fishlike C-start motions has been numerically investigated for a flow physics study by the use of a two-dimensional deformable foil bending and stretching quickly. The C-start motions, performed in the quiescent water and based on prescribed deforming modes, are predicted by a numerical method coupling the two-dimensional incompressible Navier-Stokes equations and the deforming body dynamic equations. It has been found earlier that a typical C-start motion consists of (1) a main C-shape bending and (2) a rearward travelling curvature wave which was seldom mentioned in previous studies. In order to reveal the flow control mechanism of the traveling curvature wave in a fish's C-start motion, two kinds of C-start flows with different deforming modes, namely the integrated mode (IM, a C-shape bending plus a travelling curvature wave) and the basic mode (BM, a C-shape bending only) are analyzed and compared in detail. According to the numerical results, it shows that if proper values of the travelling curvature wave parameters are chosen, the foil's escaping maneuverability presented in the IM is much better than that in the BM, i.e. the turn angle and the speed of the center of mass at the end of a C-start in the IM is almost twice as large as those in the BM. Further study shows that the travelling curvature wave not only can enhance the thrust and the centripetal force but also increase the propulsive efficiency. These results suggest that an efficient travelling curvature wave is of great significance in the flow control of a C-start motion. Finally, a parametric study finds that the phase difference between the C-shape bending and the travelling curvature wave (i.e., the initial phase angle in the travelling curvature wave of the deforming model) is a key parameter in the flow control. To achieve the desirable turn angle, escaping speed, and propulsive efficiency in the C-start motions, the initial phase angles must be ranged within specific magnitudes. It is found that for optimum values of the initial phase angle, the foil's flexible deforming process is qualitatively consistent with that of a fish body in nature. The results obtained in this study provide a new physical insight into the understanding of swimming mechanisms of fish's C-start maneuvers.

  8. On the verge of a respiratory-type panic attack: Selective activations of rostrolateral and caudoventrolateral periaqueductal gray matter following short-lasting escape to a low dose of potassium cyanide.

    PubMed

    Müller, Cláudia Janaina Torres; Quintino-Dos-Santos, Jeyce Willig; Schimitel, Fagna Giacomin; Tufik, Sérgio; Beijamini, Vanessa; Canteras, Newton Sabino; Schenberg, Luiz Carlos

    2017-04-21

    Intravenous injections of potassium cyanide (KCN) both elicit escape by its own and facilitate escape to electrical stimulation of the periaqueductal gray matter (PAG). Moreover, whereas the KCN-evoked escape is potentiated by CO 2 , it is suppressed by both lesions of PAG and clinically effective treatments with panicolytics. These and other data suggest that the PAG harbors a hypoxia-sensitive alarm system the activation of which could both precipitate panic and render the subject hypersensitive to CO 2 . Although prior c-Fos immunohistochemistry studies reported widespread activations of PAG following KCN injections, the employment of repeated injections of high doses of KCN (>60µg) in anesthetized rats compromised both the localization of KCN-responsive areas and their correlation with escape behavior. Accordingly, here we compared the brainstem activations of saline-injected controls (air/saline) with those produced by a single intravenous injection of 40-µg KCN (air/KCN), a 2-min exposure to 13% CO 2 (CO 2 /saline), or a combined stimulus (CO 2 /KCN). Behavioral effects of KCN microinjections into the PAG were assessed as well. Data showed that whereas the KCN microinjections were ineffective, KCN intravenous injections elicited escape in all tested rats. Moreover, whereas the CO 2 alone was ineffective, it potentiated the KCN-evoked escape. Compared to controls, the nucleus tractus solitarius was significantly activated in both CO 2 /saline and CO 2 /KCN groups. Additionally, whereas the laterodorsal tegmental nucleus was activated by all treatments, the rostrolateral and caudoventrolateral PAG were activated by air/KCN only. Data suggest that the latter structures are key components of a hypoxia-sensitive suffocation alarm which activation may trigger a panic attack. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Reply to comment "On the hydrogen escape: Comment to variability of the hydrogen in the Martian upper atmosphere as simulated by a 3D atmosphere-exosphere coupling by J.-Y. Chaufray et al." by V. Krasnopolsky, Icarus, 281, 262

    NASA Astrophysics Data System (ADS)

    Chaufray, J.-Y.; Gonzalez-Galindo, F.; Forget, F.; Lopez-Valverde, M.; Leblanc, F.; Modolo, R.; Hess, S.

    2018-02-01

    Krasnopolsky (2017) makes a careful review of our recent results about the Martian hydrogen content of the Martian upper atmosphere (Chaufray et al., 2015). We comment here on his two major points. First, he suggests that the non-thermal escape of H2, and particularly collisions with hot oxygen, not taken into account in our general circulation model (GCM), should modify our reported H2 and H density profiles. This is an important issue; we acknowledge that future effective coupling of our GCM with comprehensive models of the Martian solar wind interaction, ideally after being validated with the latest plasma observations of H2+, would allow for better estimations of the relative importance of the H2 non-thermal and thermal escape processes. For the time being we need assumptions in the GCM, with proper and regular updates. According to a recent and detailed study of the anisotropic elastic and inelastic collision cross sections between O and H2 (Gacesa et al., 2012), the escape rates used by Krasnopolsky (2010) for this process might be overestimated. We therefore do not include non thermal escape of H2 in the model. And secondly, in response to Krasnopolsky's comment on the H escape variability with the solar cycle, we revised our calculations and found a small bug in the computation of the Jeans effusion velocity. Our revised computed H escape rates are included here. They have a small impact on our key conclusions: similar seasonal variations, a reduced variation with the solar cycle but still larger than Krasnopolsky (2017), and again a hydrogen scape systematically lower than the diffusion-limited flux. This bug does not affect the latest Mars Climate Database v5.2.

  10. Gene regulation network behind drought escape, avoidance and tolerance strategies in black poplar (Populus nigra L.).

    PubMed

    Yıldırım, Kubilay; Kaya, Zeki

    2017-06-01

    Drought is the major environmental problem limiting the productivity and survival of plant species. Here, previously identified three black poplar genotypes having contrasting response to drought were subjected to gradual soil water depletion in a pot trial to identify their physiological, morphological and antioxidation related adaptations. We also performed a microarray based transcriptome analyses on the leaves of genotypes by using Affymetrix poplar Genome Array containing 56,000 transcripts. Phenotypic analyses of each genotype confirmed their differential adaptations to drought that could be classified as drought escape, avoidance and tolerance. Comparative transcriptomic analysis indicated highly divergent gene expression patterns among the genotypes in response to drought and post drought re-watering (PDR). We identified 10641, 3824 and 9411 transcripts exclusively regulated in drought escape, avoidance and tolerant genotypes, respectively. The key genes involved in metabolic pathways, such as carbohydrate metabolism, photosynthesis, lipid metabolism, generation of precursor metabolites/energy, protein folding, redox homeostasis, secondary metabolic process and cell wall component biogenesis, were affected by drought stresses in the leaves of these genotypes. Transcript isoforms showed increased expression specificity in the genes coding for bark storage proteins and small heat shock proteins in drought tolerant genotype. On the other hand, drought-avoiding genotype specifically induced the transcripts annotated to the genes functional in secondary metabolite production that linked to enhanced leaf water content and growth performance under drought stress. Transcriptome profiling of drought escape genotype indicated specific regulation of the genes functional in programmed cell death and leaf senescence. Specific upregulation of GTP cyclohydrolase II and transcription factors (WRKY and ERFs) in only this genotype were associated to ROS dependent signalling pathways and gene regulation network responsible in induction of many degrading enzymes acting on cell wall carbohydrates, fatty acids and proteins under drought stress. Our findings provide new insights into the transcriptome dynamics and components of regulatory network associated with drought adaptation strategies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Dual-responsive polyplexes with enhanced disassembly and endosomal escape for efficient delivery of siRNA.

    PubMed

    Zhu, Jia; Qiao, Mingxi; Wang, Qi; Ye, Yuqing; Ba, Shuang; Ma, Jingjing; Hu, Haiyang; Zhao, Xiuli; Chen, Dawei

    2018-04-01

    Despite the extracellular barriers for siRNA delivery have been overcome by utilizing advanced nanoparticle delivery systems, the key intracellular barriers after internalization including efficient disassembly of siRNA and endosomal escape still remains challenging. To address the issues, we developed a unique pH- and redox potential-responsive polyplex delivery system based on the copolymer of mPEG-b-PLA-PHis-ssPEI1.8 k, which is composed of a pH-responsive copolymer of PEG-b-PLA-PHis (Mw 5 k) and a branched PEI (Mw1.8 k) linked with redox cleavable disulfide bond. The copolymer showed excellent siRNA complexation and protection abilities against endogenous substances at the relatively low N/P ratio of 6. The siRNA release from the polyplexes (N/P 6) was markedly increased from 13.62% to 58.67% under conditions simulating the endosomal microenvironment. Fluorescence resonance energy transfer (FRET) test also indicated a higher disassembly extent of siRNA from the copolymer. The accelerated siRNA release from the polyplexes was markedly restrained when the N/P ratio was raised above 10 due to the increasing of electrostatic interactions. The efficient endosomal escape of siRNA after internalization was confirmed by confocal microscopy, which was attributed to the cleavaged PEI chains inducing membrane destabilization, the "proton sponge effect" of PHis and PEI as well as the relative small size of after disassembly. The enhanced disassembly and endosomal escape were elucidated as the leading cause for polyplexes (N/P 6) showed more efficient Bcl-2 silencing (85.45%) than those polyplexes with higher N/P ratios (N/P 10 and 15). In vivo results further demonstrated that polyplexes (N/P 6) delivery of siBcl-2 significantly inhibited the MCF-7 breast tumor growth as compared to its counterparts. The incorporation of convertible non-electrical interactions at a balance with electrostatic interactions in complexation siRNA has been demonstrated as an effective strategy to achieve efficient disassembly from stable polyplexes. Moreover, polyplexes equipped with the enhanced disassembly and endosomal escape provides a new potential way to tackle the intracellular delivery bottleneck for siRNA delivery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Initial results from the Nankai Trough shallow splay and frontal thrust (IODP Expedition 316): Implications for fluid flow

    NASA Astrophysics Data System (ADS)

    Screaton, E.; Kimura, G.; Curewitz, D.; Scientists, E.

    2008-12-01

    Integrated Ocean Drilling Program (IODP) Expedition 316 examined the frontal thrust and the shallow portion of the megasplay fault offshore of the Kii peninsula, and was the third drilling expedition of the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE). NanTroSEIZE will integrate seafloor observations, drilling, and observatories to investigate the processes controlling slip along subduction zone plate boundary fault systems. Site C0004 examined a shallow portion of the splay fault system where it overrides slope basin sediments. Site C0008, located in the slope basin 1 km seaward of Site C0004, provided a reference site for the footwall sediments. Results of drilling indicate that the footwall sediments have dewatered significantly, suggesting permeable routes for fluid escape. These high-permeability pathways might be provided by coarse-grained layers within the slope sediments. In situ dewatering and multiple fluid escape paths will tend to obscure any geochemical signature of flow from depth. Sites C0006 and C0007 examined the frontal thrust system. Although poorly recovered, coarse-grained trench sediments were sampled within the footwall. These permeable sediments would be expected to allow rapid escape of any fluid pressures due to loading. At both sites, low porosities are observed at shallow depths, suggesting removal of overlying material. This observation is consistent with interpretations that the prism is unstable and currently in a period of collapse. Anomalously low temperatures were measured within boreholes at these sites. One possible explanation for the low temperatures is circulation of seawater along normal faults in the unstable prism.

  13. Stereophysicochemical variability plots highlight conserved antigenic areas in Flaviviruses

    PubMed Central

    Schein, Catherine H; Zhou, Bin; Braun, Werner

    2005-01-01

    Background Flaviviruses, which include Dengue (DV) and West Nile (WN), mutate in response to immune system pressure. Identifying escape mutants, variant progeny that replicate in the presence of neutralizing antibodies, is a common way to identify functionally important residues of viral proteins. However, the mutations typically occur at variable positions on the viral surface that are not essential for viral replication. Methods are needed to determine the true targets of the neutralizing antibodies. Results Stereophysicochemical variability plots (SVPs), 3-D images of protein structures colored according to variability, as determined by our PCPMer program, were used to visualize residues conserved in their physical chemical properties (PCPs) near escape mutant positions. The analysis showed 1) that escape mutations in the flavivirus envelope protein are variable residues by our criteria and 2) two escape mutants found at the same position in many flaviviruses sit above clusters of conserved residues from different regions of the linear sequence. Conservation patterns in T-cell epitopes in the NS3- protease suggest a similar mechanism of immune system evasion. Conclusion The SVPs add another dimension to structurally defining the binding sites of neutralizing antibodies. They provide a useful aid for determining antigenically important regions and designing vaccines. PMID:15845145

  14. Behaviour of mobile macrofauna is a key factor in beach ecology as response to rapid environmental changes

    NASA Astrophysics Data System (ADS)

    Scapini, Felicita

    2014-10-01

    Sandy beach animals show behavioural adaptations that are expressed as contingencies during the life history of individuals to face periodic and episodic environmental changes. Such adaptations include activity rhythms, orientation, zonation, burrowing, escape responses and feeding strategies, the first two being common adaptations to all mobile animals. The complex conditions of a particular beach environment may be integrated in a learning process enhancing the adaptation and survival of individuals and eventually of populations. Evidence exists of genetic determination of some behavioural features that are adaptive in the long term (throughout generations) by increasing individual survival and reproductive potential. The environmental features integrated with the life history of beach animals shape the individual behaviour through ontogenetic processes, as well as population behaviour through evolutionary processes. Thus, behavioural differences among individuals may reflect environmental variation at the local and small/medium temporal scales of beach processes, whereas within-population behavioural coherence and differences among populations may reflect variation at the geographic scale. The different foci stressed by different authors and the variety of evidence dependent upon local geographical and ecological conditions have often resulted in compartmentalised explanations, making generalizations and the repeatability of behavioural studies of beach ecology challenging. There was a need to developing a more synthetic paradigm for beach animal behaviour. This paper gives a brief overview of the theoretical background and keystone studies, which have contributed to our understanding of animal behaviour in sandy beach ecology, and proposes testable hypotheses to be integrated in the beach ecology paradigm.

  15. 29 CFR 1918.100 - Emergency action plans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emergency action or for reaction time for safe escape of employees from the workplace or the immediate work... times: (i) Initially when the plan is developed; (ii) Whenever the employee's responsibilities or...

  16. 29 CFR 1918.100 - Emergency action plans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emergency action or for reaction time for safe escape of employees from the workplace or the immediate work... times: (i) Initially when the plan is developed; (ii) Whenever the employee's responsibilities or...

  17. 29 CFR 1918.100 - Emergency action plans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emergency action or for reaction time for safe escape of employees from the workplace or the immediate work... times: (i) Initially when the plan is developed; (ii) Whenever the employee's responsibilities or...

  18. 29 CFR 1918.100 - Emergency action plans.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emergency action or for reaction time for safe escape of employees from the workplace or the immediate work... times: (i) Initially when the plan is developed; (ii) Whenever the employee's responsibilities or...

  19. Landscape-scale distribution and persistence of genetically modified oilseed rape (Brassica napus) in Manitoba, Canada.

    PubMed

    Knispel, Alexis L; McLachlan, Stéphane M

    2010-01-01

    Genetically modified herbicide-tolerant (GMHT) oilseed rape (OSR; Brassica napus L.) was approved for commercial cultivation in Canada in 1995 and currently represents over 95% of the OSR grown in western Canada. After a decade of widespread cultivation, GMHT volunteers represent an increasing management problem in cultivated fields and are ubiquitous in adjacent ruderal habitats, where they contribute to the spread of transgenes. However, few studies have considered escaped GMHT OSR populations in North America, and even fewer have been conducted at large spatial scales (i.e. landscape scales). In particular, the contribution of landscape structure and large-scale anthropogenic dispersal processes to the persistence and spread of escaped GMHT OSR remains poorly understood. We conducted a multi-year survey of the landscape-scale distribution of escaped OSR plants adjacent to roads and cultivated fields. Our objective was to examine the long-term dynamics of escaped OSR at large spatial scales and to assess the relative importance of landscape and localised factors to the persistence and spread of these plants outside of cultivation. From 2005 to 2007, we surveyed escaped OSR plants along roadsides and field edges at 12 locations in three agricultural landscapes in southern Manitoba where GMHT OSR is widely grown. Data were analysed to examine temporal changes at large spatial scales and to determine factors affecting the distribution of escaped OSR plants in roadside and field edge habitats within agricultural landscapes. Additionally, we assessed the potential for seed dispersal between escaped populations by comparing the relative spatial distribution of roadside and field edge OSR. Densities of escaped OSR fluctuated over space and time in both roadside and field edge habitats, though the proportion of GMHT plants was high (93-100%). Escaped OSR was positively affected by agricultural landscape (indicative of cropping intensity) and by the presence of an adjacent field planted to OSR. Within roadside habitats, escaped OSR was also strongly associated with large-scale variables, including road surface (indicative of traffic intensity) and distance to the nearest grain elevator. Conversely, within field edges, OSR density was affected by localised crop management practices such as mowing, soil disturbance and herbicide application. Despite the proximity of roadsides and field edges, there was little evidence of spatial aggregation among escaped OSR populations in these two habitats, especially at very fine spatial scales (i.e. <100 m), suggesting that natural propagule exchange is infrequent. Escaped OSR populations were persistent at large spatial and temporal scales, and low density in a given landscape or year was not indicative of overall extinction. As a result of ongoing cultivation and transport of OSR crops, escaped GMHT traits will likely remain predominant in agricultural landscapes. While escaped OSR in field edge habitats generally results from local seeding and management activities occurring at the field-scale, distribution patterns within roadside habitats are determined in large part by seed transport occurring at the landscape scale and at even larger regional scales. Our findings suggest that these large-scale anthropogenic dispersal processes are sufficient to enable persistence despite limited natural seed dispersal. This widespread dispersal is likely to undermine field-scale management practices aimed at eliminating escaped and in-field GMHT OSR populations. Agricultural transport and landscape-scale cropping patterns are important determinants of the distribution of escaped GM crops. At the regional level, these factors ensure ongoing establishment and spread of escaped GMHT OSR despite limited local seed dispersal. Escaped populations thus play an important role in the spread of transgenes and have substantial implications for the coexistence of GM and non-GM production systems. Given the large-scale factors driving the spread of escaped transgenes, localised co-existence measures may be impracticable where they are not commensurate with regional dispersal mechanisms. To be effective, strategies aimed at reducing contamination from GM crops should be multi-scale in approach and be developed and implemented at both farm and landscape levels of organisation. Multiple stakeholders should thus be consulted, including both GM and non-GM farmers, as well as seed developers, processors, transporters and suppliers. Decisions to adopt GM crops require thoughtful and inclusive consideration of the risks and responsibilities inherent in this new technology.

  20. Physical Theory of the Competition that Allows HIV to Escape from the Immune System

    NASA Astrophysics Data System (ADS)

    Wang, Guanyu; Deem, Michael W.

    2006-11-01

    Competition within the immune system may degrade immune control of viral infections. We formalize the evolution that occurs in both HIV-1 and the immune system quasispecies. Inclusion of competition in the immune system leads to a novel balance between the immune response and HIV-1, in which the eventual outcome is HIV-1 escape rather than control. The analytical model reproduces the three stages of HIV-1 infection. We propose a vaccine regimen that may be able to reduce competition between T cells, potentially eliminating the third stage of HIV-1.

  1. Biological Basis for Syphilis

    PubMed Central

    LaFond, Rebecca E.; Lukehart, Sheila A.

    2006-01-01

    Syphilis is a chronic sexually transmitted disease caused by Treponema pallidum subsp. pallidum. Clinical manifestations separate the disease into stages; late stages of disease are now uncommon compared to the preantibiotic era. T. pallidum has an unusually small genome and lacks genes that encode many metabolic functions and classical virulence factors. The organism is extremely sensitive to environmental conditions and has not been continuously cultivated in vitro. Nonetheless, T. pallidum is highly infectious and survives for decades in the untreated host. Early syphilis lesions result from the host's immune response to the treponemes. Bacterial clearance and resolution of early lesions results from a delayed hypersensitivity response, although some organisms escape to cause persistent infection. One factor contributing to T. pallidum's chronicity is the paucity of integral outer membrane proteins, rendering intact organisms virtually invisible to the immune system. Antigenic variation of TprK, a putative surface-exposed protein, is likely to contribute to immune evasion. T. pallidum remains exquisitely sensitive to penicillin, but macrolide resistance has recently been identified in a number of geographic regions. The development of a syphilis vaccine, thus far elusive, would have a significant positive impact on global health. PMID:16418521

  2. Modeling vector-borne disease risk in migratory animals under climate change.

    PubMed

    Hall, Richard J; Brown, Leone M; Altizer, Sonia

    2016-08-01

    Recent theory suggests that animals that migrate to breed at higher latitudes may benefit from reduced pressure from natural enemies, including pathogens ("migratory escape"), and that migration itself weeds out infected individuals and lowers infection prevalence ("migratory culling"). The distribution and activity period of arthropod disease vectors in temperate regions is expected to respond rapidly to climate change, which could reduce the potential for migratory escape. However, climate change could have the opposite effect of reducing transmission if differential responses in the phenology and distribution of migrants and disease vectors reduce their overlap in space and time. Here we outline a simple modeling framework for exploring the influence of climate change on vector-borne disease dynamics in a migratory host. We investigate two scenarios under which pathogen transmission dynamics might be mediated by climate change: (1) vectors respond more rapidly than migrants to advancing phenology at temperate breeding sites, causing peak susceptible host density and vector emergence to diverge ("migratory mismatch") and (2) reduced migratory propensity allows increased nonbreeding survival of infected hosts and larger breeding-site epidemics (loss of migratory culling, here referred to as "sedentary amplification"). Our results highlight the need for continued surveillance of climate-induced changes to migratory behavior and vector activity to predict pathogen prevalence and its impacts on migratory animals. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  3. On space-based SETI

    NASA Technical Reports Server (NTRS)

    Stuiver, Willem

    1990-01-01

    Space-based antenna systems for the search of signals from extra-terrestrial intelligence are discussed. Independent studies of the ecliptic solar-sailing transfer problem from the geosynchronous departure orbit to Sun-Earth collinear transterrestrial liberation point were conducted. They were based on a relatively simple mathematical model describing attitude-controlled spacecraft motion in the ecliptic plane as governed by solar and terrestrial gravitational attraction together with the solar radiation pressure. The resulting equations of motion were integrated numerically for a relevant range of values of spacecraft area-to-mass ratio and for an appropriate spacecraft attitude-control law known to lead to Earth escape. Experimentation with varying initial conditions in the departure orbit, and with attitude-control law modification after having achieved Earth escape, established the feasibility of component deployment by means of solar sailing. Details are presented.

  4. Microelectromechanical timer

    DOEpatents

    Polosky, Marc A.; Garcia, Ernest J.; Plummer, David W.

    2001-01-01

    A microminiature timer having an optical readout is disclosed. The timer can be formed by surface micromachining or LIGA processes on a silicon substrate. The timer includes an integral motor (e.g. an electrostatic motor) that can intermittently wind a mainspring to store mechanical energy for driving a train of meshed timing gears at a rate that is regulated by a verge escapement. Each timing gear contains an optical encoder that can be read out with one or more light beams (e.g. from a laser or light-emitting diode) to recover timing information. In the event that electrical power to the timer is temporarily interrupted, the mechanical clock formed by the meshed timing gears and verge escapement can continue to operate, generating accurate timing information that can be read out when the power is restored.

  5. Descriptive Analysis of Teachers' Responses to Problem Behavior Following Training

    ERIC Educational Resources Information Center

    Addison, Laura; Lerman, Dorothea C.

    2009-01-01

    The procedures described by Sloman et al. (2005) were extended to an analysis of teachers' responses to problem behavior after they had been taught to withhold potential sources of positive and negative reinforcement following instances of problem behavior. Results were consistent with those reported previously, suggesting that escape from child…

  6. Photomovements in Ciliated Protozoa

    NASA Astrophysics Data System (ADS)

    Kuhlmann, Hans-Werner

    Ciliates are unicellular, nonphotosynthetic organisms which show a number of light-induced responses. Orientation with respect to the direction of light, phototaxis, has been demonstrated in some species of ciliates. Most of these species bear conspicuous cell organelles such as subpellicular pigment granules, a colored stigma, a watchglass organelle, or a compound crystalline organelle. Several lines of evidence suggest that these kinds of organelles are prerequisites for phototactic orientation of the cells. Photoreceptor molecules presumedly mediating the photobehavior of two species have been identified. The ecological advantage of light-induced responses in ciliated protozoa is still debated. In some cases the organisms may utilize this behavior either to approach their potential prey, to escape their predators, to escape damaging light, or to meet a mating partner. Several species of ciliates display inverse phototactic behavior at different stages of their life cycle.

  7. Linking vertebral number to performance of aquatic escape responses in the axolotl (Ambystoma mexicanum).

    PubMed

    Ackerly, Kerri L; Ward, Andrea B

    2015-12-01

    Environmental conditions during early development in ectothermic vertebrates can lead to variation in vertebral number among individuals of the same species. It is often seen that individuals of a species raised at cooler temperatures have more vertebrae than individuals raised at warmer temperatures, although the functional consequences of this variation in vertebral number on swimming performance are relatively unclear. To investigate this relationship, we tested how vertebral number in axolotls (Ambystoma mexicanum) affected performance of aquatic escape responses (C-starts). Axolotls were reared at four temperatures (12-24°C) encompassing their natural thermal range and then transitioned to a mean temperature (18°C) three months before C-starts were recorded. Our results showed variation in vertebral number, but that variation was not significantly affected by developmental temperature. C-start performance among axolotls was significantly correlated with caudal vertebral number, and individuals with more caudal vertebrae were able to achieve greater curvature more quickly during their responses than individuals with fewer vertebrae. However, our results show that these individuals did not achieve greater displacements or velocities, and that developmental temperature did not have any effect on C-start performance. We highlight that the most important aspects of escape swim performance (i.e., how far individuals get from a threat and how quickly they move the most important parts of the body away from that threat) are consistent across individuals regardless of developmental temperature and morphological variation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Suppressive influences in the immune response to cancer.

    PubMed

    Bronte, Vincenzo; Mocellin, Simone

    2009-01-01

    Although much evidence has been gathered demonstrating that immune effectors can play a significant role in controlling tumor growth under natural conditions or in response to therapeutic manipulation, it is clear that malignant cells do evade immune surveillance in most cases. Considering that anticancer active specific immunotherapy seems to have reached a plateau of results and that currently no vaccination regimen is indicated as a standard anticancer therapy, the dissection of the molecular events underlying tumor immune escape is the necessary condition to make anticancer vaccines a therapeutic weapon effective enough to be implemented in the routine clinical setting. Recent years have witnessed significant advances in our understanding of the molecular mechanisms underlying tumor immune escape. These mechanistic insights are fostering the development of rationally designed therapeutics aimed to revert the immunosuppressive circuits that undermine an effective antitumor immune response. In this review, the best characterized mechanisms that allow cancer cells to evade immune surveillance are overviewed and the most debated controversies constellating this complex field are highlighted.

  9. Mars atmospheric loss to space: Observations of present-day loss and implications for long-term volatile evolution

    NASA Astrophysics Data System (ADS)

    Jakosky, Bruce; Brain, David; Luhmann, Janet; Grebowsky, Joe

    2017-04-01

    MAVEN completed its first Mars year of science mapping in October 2016. Results show loss of gas to space by multiple processes, including solar-wind pick-up, sputtering, photochemical loss, and thermal escape, along with their responses to changing solar and solar-wind boundary conditions and to discrete solar events. By understanding the current loss rates and the processes controlling them, we are able to examine the long-term loss to space, including the effects of different solar conditions early in history; in addition, we are able to use stable-isotope ratios to derive the integrated loss to space through time. Preliminary results suggest that loss to space was a dominant, if not the dominant, mechanism that drove the changing climate through time. We will present a framework for analyzing and interpreting the results, along with preliminary results on the extrapolation to long timescales.

  10. Pancreatic Cancer Metabolism: Breaking It Down to Build It Back Up.

    PubMed

    Perera, Rushika M; Bardeesy, Nabeel

    2015-12-01

    How do cancer cells escape tightly controlled regulatory circuits that link their proliferation to extracellular nutrient cues? An emerging theme in cancer biology is the hijacking of normal stress response mechanisms to enable growth even when nutrients are limiting. Pancreatic ductal adenocarcinoma (PDA) is the quintessential aggressive malignancy that thrives in nutrient-poor, hypoxic environments. PDAs overcome these limitations through appropriation of unorthodox strategies for fuel source acquisition and utilization. In addition, the interplay between evolving PDA and whole-body metabolism contributes to disease pathogenesis. Deciphering how these pathways function and integrate with one another can reveal novel angles of therapeutic attack. Alterations in tumor cell and systemic metabolism are central to the biology of pancreatic cancer. Further investigation of these processes will provide important insights into how these tumors develop and grow, and suggest new approaches for its detection, prevention, and treatment. ©2015 American Association for Cancer Research.

  11. Site-Specific Editing of the Plasmodium falciparum Genome Using Engineered Zinc-Finger Nucleases

    PubMed Central

    Straimer, Judith; Lee, Marcus CS; Lee, Andrew H; Zeitler, Bryan; Williams, April E; Pearl, Jocelynn R; Zhang, Lei; Rebar, Edward J; Gregory, Philip D; Llinás, Manuel; Urnov, Fyodor D; Fidock, David A

    2013-01-01

    Malaria afflicts over 200 million people worldwide and its most lethal etiologic agent, Plasmodium falciparum, is evolving to resist even the latest-generation therapeutics. Efficient tools for genome-directed investigations of P. falciparum pathogenesis, including drug resistance mechanisms, are clearly required. Here we report rapid and targeted genetic engineering of this parasite, using zinc-finger nucleases (ZFNs) that produce a double-strand break in a user-defined locus and trigger homology-directed repair. Targeting an integrated egfp locus, we obtained gene deletion parasites with unprecedented speed (two weeks), both with and without direct selection. ZFNs engineered against the endogenous parasite gene pfcrt, responsible for chloroquine treatment escape, rapidly produced parasites that carried either an allelic replacement or a panel of specified point mutations. The efficiency, versatility and precision of this method will enable a diverse array of genome editing approaches to interrogate this human pathogen. PMID:22922501

  12. Integrating disease management into the outpatient delivery system during and after managed care.

    PubMed

    Villagra, Victor G

    2004-01-01

    Managed care introduced disease management as a replacement strategy to utilization management. The focus changed from influencing treatment decisions to supporting self-care and compliance. Disease management rendered operational many elements of the chronic care model, but it did so outside the delivery system, thus escaping the financial limitations, cultural barriers, and inertia inherent in effecting radical change from within. Medical management "after managed care" should include the functional and structural integration of disease management with primary care clinics. Such integration would supply the infrastructure that primary care physicians need to coordinate the care of chronically ill patients more effectively.

  13. Nursing Integration and Innovation Across a Multisystem Enterprise: Priorities for Nurse Leaders.

    PubMed

    Pappas, Sharon; McCauley, Linda

    There is no escaping the fact that the ability to skillfully influence change is a requirement for nurse leaders. This need is intensified as the national health care system reforms and as the morphology of health care systems continues to change, especially in academic health care systems. The purpose of this article was 2-fold. The first objective was to relay the experience of the integration of nursing practice, education, and research within an academic health care system. The second was to, through this story of integration, expose the uniqueness and importance of nurse leader roles influencing innovation across a multisystem enterprise to fulfill the organization's mission.

  14. Animal escapology II: escape trajectory case studies

    PubMed Central

    Domenici, Paolo; Blagburn, Jonathan M.; Bacon, Jonathan P.

    2011-01-01

    Summary Escape trajectories (ETs; measured as the angle relative to the direction of the threat) have been studied in many taxa using a variety of methodologies and definitions. Here, we provide a review of methodological issues followed by a survey of ET studies across animal taxa, including insects, crustaceans, molluscs, lizards, fish, amphibians, birds and mammals. Variability in ETs is examined in terms of ecological significance and morpho-physiological constraints. The survey shows that certain escape strategies (single ETs and highly variable ETs within a limited angular sector) are found in most taxa reviewed here, suggesting that at least some of these ET distributions are the result of convergent evolution. High variability in ETs is found to be associated with multiple preferred trajectories in species from all taxa, and is suggested to provide unpredictability in the escape response. Random ETs are relatively rare and may be related to constraints in the manoeuvrability of the prey. Similarly, reports of the effect of refuges in the immediate environment are relatively uncommon, and mainly confined to lizards and mammals. This may be related to the fact that work on ETs carried out in laboratory settings has rarely provided shelters. Although there are a relatively large number of examples in the literature that suggest trends in the distribution of ETs, our understanding of animal escape strategies would benefit from a standardization of the analytical approach in the study of ETs, using circular statistics and related tests, in addition to the generation of large data sets. PMID:21753040

  15. HIV-1 Viral Escape in Cerebrospinal Fluid of Subjects on Suppressive Antiretroviral Treatment

    PubMed Central

    Edén, Arvid; Fuchs, Dietmar; Hagberg, Lars; Nilsson, Staffan; Spudich, Serena; Svennerholm, Bo; Price, Richard W.; Gisslén, Magnus

    2010-01-01

    Background. Occasional cases of viral escape in cerebrospinal fluid (CSF) despite suppression of plasma human immunodeficiency virus type 1 (HIV-1) RNA have been reported. We investigated CSF viral escape in subjects treated with commonly used antiretroviral therapy regimens in relation to intrathecal immune activation and central nervous system penetration effectiveness (CPE) rank. Methods. Sixty-nine neurologically asymptomatic subjects treated with antiretroviral therapy >6 months and plasma HIV-1 RNA <50 copies/mL were cross-sectionally included in the analysis. Antiretroviral therapy regimens included efavirenz, lopinavir/ritonavir or atazanavir/ritonavir combined with tenofovir, abacavir, or zidovudine and emtricitabine or lamivudine. HIV-1 RNA was analyzed with real-time polymerase chain reaction assays. Neopterin was analyzed by enzyme-linked immunosorbent assay. Results. Seven (10%) of the 69 subjects had detectable CSF HIV-1 RNA, in median 121 copies/mL (interquartile range, 54–213 copies/mL). Subjects with detectable CSF virus had significantly higher CSF neopterin and longer duration of treatment. Previous treatment interruptions were more common in subjects with CSF escape. Central nervous system penetration effectiveness rank was not a significant predictor of detectable CSF virus or CSF neopterin levels. Conclusions. Viral escape in CSF is more common than previously reported, suggesting that low-grade central nervous system infection may continue in treated patients. Although these findings need extension in longitudinal studies, they suggest the utility of monitoring CSF responses, as new treatment combinations and strategies modify clinical practice. PMID:21050119

  16. HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment.

    PubMed

    Edén, Arvid; Fuchs, Dietmar; Hagberg, Lars; Nilsson, Staffan; Spudich, Serena; Svennerholm, Bo; Price, Richard W; Gisslén, Magnus

    2010-12-15

    Occasional cases of viral escape in cerebrospinal fluid (CSF) despite suppression of plasma human immunodeficiency virus type 1 (HIV-1) RNA have been reported. We investigated CSF viral escape in subjects treated with commonly used antiretroviral therapy regimens in relation to intrathecal immune activation and central nervous system penetration effectiveness (CPE) rank. Sixty-nine neurologically asymptomatic subjects treated with antiretroviral therapy >6 months and plasma HIV-1 RNA <50 copies/mL were cross-sectionally included in the analysis. Antiretroviral therapy regimens included efavirenz, lopinavir/ritonavir or atazanavir/ritonavir combined with tenofovir, abacavir, or zidovudine and emtricitabine or lamivudine. HIV-1 RNA was analyzed with real-time polymerase chain reaction assays. Neopterin was analyzed by enzyme-linked immunosorbent assay. Seven (10%) of the 69 subjects had detectable CSF HIV-1 RNA, in median 121 copies/mL (interquartile range, 54-213 copies/mL). Subjects with detectable CSF virus had significantly higher CSF neopterin and longer duration of treatment. Previous treatment interruptions were more common in subjects with CSF escape. Central nervous system penetration effectiveness rank was not a significant predictor of detectable CSF virus or CSF neopterin levels. Viral escape in CSF is more common than previously reported, suggesting that low-grade central nervous system infection may continue in treated patients. Although these findings need extension in longitudinal studies, they suggest the utility of monitoring CSF responses, as new treatment combinations and strategies modify clinical practice.

  17. Evolution dynamics of a model for gene duplication under adaptive conflict

    NASA Astrophysics Data System (ADS)

    Ancliff, Mark; Park, Jeong-Man

    2014-06-01

    We present and solve the dynamics of a model for gene duplication showing escape from adaptive conflict. We use a Crow-Kimura quasispecies model of evolution where the fitness landscape is a function of Hamming distances from two reference sequences, which are assumed to optimize two different gene functions, to describe the dynamics of a mixed population of individuals with single and double copies of a pleiotropic gene. The evolution equations are solved through a spin coherent state path integral, and we find two phases: one is an escape from an adaptive conflict phase, where each copy of a duplicated gene evolves toward subfunctionalization, and the other is a duplication loss of function phase, where one copy maintains its pleiotropic form and the other copy undergoes neutral mutation. The phase is determined by a competition between the fitness benefits of subfunctionalization and the greater mutational load associated with maintaining two gene copies. In the escape phase, we find a dynamics of an initial population of single gene sequences only which escape adaptive conflict through gene duplication and find that there are two time regimes: until a time t* single gene sequences dominate, and after t* double gene sequences outgrow single gene sequences. The time t* is identified as the time necessary for subfunctionalization to evolve and spread throughout the double gene sequences, and we show that there is an optimum mutation rate which minimizes this time scale.

  18. The Emergent Terrains of "Higher Education Regionalism": How and Why Higher Education Is an Interesting Case for Comparative Regionalism

    ERIC Educational Resources Information Center

    Chou, Meng-Hsuan; Ravinet, Pauline

    2016-01-01

    The introduction of regional political initiatives in the higher education sector symbolizes one of the many aspects of the changing global higher education landscape. Remarkably, these processes have generally escaped comparative scrutiny by scholars researching higher education policy cooperation or regional integration. In this article, we…

  19. Freedom Train: The Underground Railroad as a Model of Christian Education, Antiracism, and Human Rights Advocacy

    ERIC Educational Resources Information Center

    Fears, Barbara A.

    2017-01-01

    The Underground Railroad is the first racially integrated civil/human rights movement in the United States. The basic concepts of "escape" and "travel" that undergird the movement offer a way of envisioning the teaching/learning exchange as leaving behind unhealthy ideologies, and as journeying with students from one place of…

  20. IPM- How it works in the Smokies

    Treesearch

    Kristine D. Johnson

    1998-01-01

    Many of the basic components of integrated pest management have been known for centuries. Farmers have burned fields in the early spring to reduce insects and disease organisms in their overwintering state; gardeners have removed weeds mechanically by plow and hoe; timing of planting and harvest can be planned to escape the most damaging life stages of certain pests....

  1. Competence, Didactic Situations and Virtual Environments for Teaching and Learning

    ERIC Educational Resources Information Center

    Leon, Oscar; Guzner, Claudia

    2011-01-01

    In the last decade, there has been a notable increase in the use of ICT in the development of teaching tools and, consequently, their integration in different disciplinary areas at different educational levels. University has not escaped this reality, and although most modern technological means are far from being available in every classroom--at…

  2. Transmitted virus fitness and host T cell responses collectively define divergent infection outcomes in two HIV-1 recipients

    DOE PAGES

    Yue, Ling; Pfafferott, Katja J.; Baalwa, Joshua; ...

    2015-01-08

    Control of virus replication in HIV-1 infection is critical to delaying disease progression. While cellular immune responses are a key determinant of control, relatively little is known about the contribution of the infecting virus to this process. To gain insight into this interplay between virus and host in viral control, we conducted a detailed analysis of two heterosexual HIV-1 subtype A transmission pairs in which female recipients sharing three HLA class I alleles exhibited contrasting clinical outcomes: R880F controlled virus replication while R463F experienced high viral loads and rapid disease progression. Near full-length single genome amplification defined the infecting transmitted/foundermore » (T/F) virus proteome and subsequent sequence evolution over the first year of infection for both acutely infected recipients. T/F virus replicative capacities were compared in vitro, while the development of the earliest cellular immune response was defined using autologous virus sequence-based peptides. The R880F T/F virus replicated significantly slower in vitro than that transmitted to R463F. While neutralizing antibody responses were similar in both subjects, during acute infection R880F mounted a broad T cell response, the most dominant components of which targeted epitopes from which escape was limited. In contrast, the primary HIV-specific T cell response in R463F was focused on just two epitopes, one of which rapidly escaped. This comprehensive study highlights both the importance of the contribution of the lower replication capacity of the transmitted/founder virus and an associated induction of a broad primary HIV-specific T cell response, which was not undermined by rapid epitope escape, to long-term viral control in HIV-1 infection. It underscores the importance of the earliest CD8 T cell response targeting regions of the virus proteome that cannot mutate without a high fitness cost, further emphasizing the need for vaccines that elicit a breadth of T cell responses to conserved viral epitopes.« less

  3. Transmitted virus fitness and host T cell responses collectively define divergent infection outcomes in two HIV-1 recipients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Ling; Pfafferott, Katja J.; Baalwa, Joshua

    Control of virus replication in HIV-1 infection is critical to delaying disease progression. While cellular immune responses are a key determinant of control, relatively little is known about the contribution of the infecting virus to this process. To gain insight into this interplay between virus and host in viral control, we conducted a detailed analysis of two heterosexual HIV-1 subtype A transmission pairs in which female recipients sharing three HLA class I alleles exhibited contrasting clinical outcomes: R880F controlled virus replication while R463F experienced high viral loads and rapid disease progression. Near full-length single genome amplification defined the infecting transmitted/foundermore » (T/F) virus proteome and subsequent sequence evolution over the first year of infection for both acutely infected recipients. T/F virus replicative capacities were compared in vitro, while the development of the earliest cellular immune response was defined using autologous virus sequence-based peptides. The R880F T/F virus replicated significantly slower in vitro than that transmitted to R463F. While neutralizing antibody responses were similar in both subjects, during acute infection R880F mounted a broad T cell response, the most dominant components of which targeted epitopes from which escape was limited. In contrast, the primary HIV-specific T cell response in R463F was focused on just two epitopes, one of which rapidly escaped. This comprehensive study highlights both the importance of the contribution of the lower replication capacity of the transmitted/founder virus and an associated induction of a broad primary HIV-specific T cell response, which was not undermined by rapid epitope escape, to long-term viral control in HIV-1 infection. It underscores the importance of the earliest CD8 T cell response targeting regions of the virus proteome that cannot mutate without a high fitness cost, further emphasizing the need for vaccines that elicit a breadth of T cell responses to conserved viral epitopes.« less

  4. Efficient Processing of the Immunodominant, HLA-A*0201-Restricted Human Immunodeficiency Virus Type 1 Cytotoxic T-Lymphocyte Epitope despite Multiple Variations in the Epitope Flanking Sequences

    PubMed Central

    Brander, Christian; Yang, Otto O.; Jones, Norman G.; Lee, Yun; Goulder, Philip; Johnson, R. Paul; Trocha, Alicja; Colbert, David; Hay, Christine; Buchbinder, Susan; Bergmann, Cornelia C.; Zweerink, Hans J.; Wolinsky, Steven; Blattner, William A.; Kalams, Spyros A.; Walker, Bruce D.

    1999-01-01

    Immune escape from cytotoxic T-lymphocyte (CTL) responses has been shown to occur not only by changes within the targeted epitope but also by changes in the flanking sequences which interfere with the processing of the immunogenic peptide. However, the frequency of such an escape mechanism has not been determined. To investigate whether naturally occurring variations in the flanking sequences of an immunodominant human immunodeficiency virus type 1 (HIV-1) Gag CTL epitope prevent antigen processing, cells infected with HIV-1 or vaccinia virus constructs encoding different patient-derived Gag sequences were tested for recognition by HLA-A*0201-restricted, p17-specific CTL. We found that the immunodominant p17 epitope (SL9) and its variants were efficiently processed from minigene expressing vectors and from six HIV-1 Gag variants expressed by recombinant vaccinia virus constructs. Furthermore, SL9-specific CTL clones derived from multiple donors efficiently inhibited virus replication when added to HLA-A*0201-bearing cells infected with primary or laboratory-adapted strains of virus, despite the variability in the SL9 flanking sequences. These data suggest that escape from this immunodominant CTL response is not frequently accomplished by changes in the epitope flanking sequences. PMID:10559335

  5. Neuropeptide Y receptor-expressing dorsal horn neurons: role in nocifensive reflex and operant responses to aversive cold after CFA inflammation.

    PubMed

    Lemons, L L; Wiley, R G

    2012-08-02

    The spinal Neuropeptide Y (NPY) system is a potential target for development of new pain therapeutics. NPY and two of its receptors (Y1 and Y2) are found in the superficial dorsal horn of the spinal cord, a key area of nociceptive gating and modulation. Lumbar intrathecal injection of (NPY) is antinociceptive, reducing hyper-reflexia to thermal and mechanical stimulation, particularly after nerve injury and inflammation. We have also shown that intrathecal injection of the targeted cytotoxin, Neuropeptide Y-sap (NPY-sap), is also antinociceptive, reducing nocifensive reflex responses to noxious heat and formalin. In the present study, we sought to determine the role of dorsal horn Y1R-expressing neurons in pain by destroying them with NPY-sap and testing the rats on three operant tasks. Lumbar intrathecal NPY-sap (1) reduced Complete Freund's Adjuvant (CFA)-induced hyper-reflexia on the 10°C cold plate, (2) reduced cold aversion on the thermal preference and escape tasks, (3) was analgesic to noxious heat on the escape task, (4) reduced the CFA-induced allodynia to cold temperatures experienced on the thermal preference, feeding interference, and escape tasks, and (5) did not inhibit or interfere with morphine analgesia. Published by Elsevier Ltd.

  6. [Anti-infective defence strategies and methods of escape from entomologic pathogens under immunologic control of insects].

    PubMed

    Jarosz, J

    1996-01-01

    Insect immunity comprises a complex of several distinct systems, both haemocytic and humoral in nature, that cooperate together in a more or less coordinated way to provide protection of the body cavity from invading microorganisms. Insects can respond to infections by a selective synthesis of haemolymph immune proteins that are responsible for antibacterial immunity. Antibacterial activity of insect blood is attributable to innate compounds such as lysozome, and to induced polypeptides or small basic proteins absent in non-immunized insects. The cecropins and attacins in Lepidoptera, and diptericins in Diptera are the inducible antibacterial immune proteins well defined biochemically. Bacterial pathogens and some parasites of insects, preferably entomogenous rhabditid nematodes, have developed the mechanism by which they may counteract insect immunity. This phenomenon is realized either by escaping immune reactions or by degrading antimicrobial factors of haemolymph in an active process. Passive resistance of parasites to insect immunity is a result of a strong evolutionary pressure on parasites to develop mechanisms to escape insect immune reactions or to minimize their effectiveness through changes in the parasite itself. Active resistance to the insect non-self response system involves a partial or total destruction of immune proteins by extracellular proteinases released during parasitism.

  7. Predation by the Dwarf Seahorse on Copepods: Quantifying Motion and Flows Using 3D High Speed Digital Holographic Cinematography - When Seahorses Attack!

    NASA Astrophysics Data System (ADS)

    Gemmell, Brad; Sheng, Jian; Buskey, Ed

    2008-11-01

    Copepods are an important planktonic food source for most of the world's fish species. This high predation pressure has led copepods to evolve an extremely effective escape response, with reaction times to hydrodynamic disturbances of less than 4 ms and escape speeds of over 500 body lengths per second. Using 3D high speed digital holographic cinematography (up to 2000 frames per second) we elucidate the role of entrainment flow fields generated by a natural visual predator, the dwarf seahorse (Hippocampus zosterae) during attacks on its prey, Acartia tonsa. Using phytoplankton as a tracer, we recorded and reconstructed 3D flow fields around the head of the seahorse and its prey during both successful and unsuccessful attacks to better understand how some attacks lead to capture with little or no detection from the copepod while others result in failed attacks. Attacks start with a slow approach to minimize the hydro-mechanical disturbance which is used by copepods to detect the approach of a potential predator. Successful attacks result in the seahorse using its pipette-like mouth to create suction faster than the copepod's response latency. As these characteristic scales of entrainment increase, a successful escape becomes more likely.

  8. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species

    PubMed Central

    Modise, David M.; Gemeildien, Junaid; Ndimba, Bongani K.; Christoffels, Alan

    2018-01-01

    Background Crop response to the changing climate and unpredictable effects of global warming with adverse conditions such as drought stress has brought concerns about food security to the fore; crop yield loss is a major cause of concern in this regard. Identification of genes with multiple responses across environmental stresses is the genetic foundation that leads to crop adaptation to environmental perturbations. Methods In this paper, we introduce an integrated approach to assess candidate genes for multiple stress responses across-species. The approach combines ontology based semantic data integration with expression profiling, comparative genomics, phylogenomics, functional gene enrichment and gene enrichment network analysis to identify genes associated with plant stress phenotypes. Five different ontologies, viz., Gene Ontology (GO), Trait Ontology (TO), Plant Ontology (PO), Growth Ontology (GRO) and Environment Ontology (EO) were used to semantically integrate drought related information. Results Target genes linked to Quantitative Trait Loci (QTLs) controlling yield and stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and closely related species were identified. Based on the enriched GO terms of the biological processes, 1116 sorghum genes with potential responses to 5 different stresses, such as drought (18%), salt (32%), cold (20%), heat (8%) and oxidative stress (25%) were identified to be over-expressed. Out of 169 sorghum drought responsive QTLs associated genes that were identified based on expression datasets, 56% were shown to have multiple stress responses. On the other hand, out of 168 additional genes that have been evaluated for orthologous pairs, 90% were conserved across species for drought tolerance. Over 50% of identified maize and rice genes were responsive to drought and salt stresses and were co-located within multifunctional QTLs. Among the total identified multi-stress responsive genes, 272 targets were shown to be co-localized within QTLs associated with different traits that are responsive to multiple stresses. Ontology mapping was used to validate the identified genes, while reconstruction of the phylogenetic tree was instrumental to infer the evolutionary relationship of the sorghum orthologs. The results also show specific genes responsible for various interrelated components of drought response mechanism such as drought tolerance, drought avoidance and drought escape. Conclusions We submit that this approach is novel and to our knowledge, has not been used previously in any other research; it enables us to perform cross-species queries for genes that are likely to be associated with multiple stress tolerance, as a means to identify novel targets for engineering stress resistance in sorghum and possibly, in other crop species. PMID:29590108

  9. How embryos escape from danger: the mechanism of rapid, plastic hatching in red-eyed treefrogs.

    PubMed

    Cohen, Kristina L; Seid, Marc A; Warkentin, Karen M

    2016-06-15

    Environmentally cued hatching allows embryos to escape dangers and exploit new opportunities. Such adaptive responses require a flexibly regulated hatching mechanism sufficiently fast to meet relevant challenges. Anurans show widespread, diverse cued hatching responses, but their described hatching mechanisms are slow, and regulation of timing is unknown. Arboreal embryos of red-eyed treefrogs, Agalychnis callidryas, escape from snake attacks and other threats by very rapid premature hatching. We used videography, manipulation of hatching embryos and electron microscopy to investigate their hatching mechanism. High-speed video revealed three stages of the hatching process: pre-rupture shaking and gaping, vitelline membrane rupture near the snout, and muscular thrashing to exit through the hole. Hatching took 6.5-49 s. We hypothesized membrane rupture to be enzymatic, with hatching enzyme released from the snout during shaking. To test this, we displaced hatching embryos to move their snout from its location during shaking. The membrane ruptured at the original snout position and embryos became trapped in collapsed capsules; they either moved repeatedly to relocate the hole or shook again and made a second hole to exit. Electron microscopy revealed that hatching glands are densely concentrated on the snout and absent elsewhere. They are full of vesicles in embryos and release most of their contents rapidly at hatching. Agalychnis callidryas' hatching mechanism contrasts with the slow process described in anurans to date and exemplifies one way in which embryos can achieve rapid, flexibly timed hatching to escape from acute threats. Other amphibians with cued hatching may also have novel hatching mechanisms. © 2016. Published by The Company of Biologists Ltd.

  10. Involvement of HLA class I molecules in the immune escape of urologic tumors.

    PubMed

    Carretero, R; Gil-Julio, H; Vázquez-Alonso, F; Garrido, F; Castiñeiras, J; Cózar, J M

    2014-04-01

    To analyze the influence of different alterations in human leukocyte antigen class I molecules (HLA I) in renal cell carcinoma, as well as in bladder and prostate cancer. We also study the correlation between HLA I expression and the progression of the disease and the response after immunotherapy protocols. It has been shown, experimentally, that the immune system can recognize and kill neoplastic cells. By analyzing the expression of HLA I molecules on the surface of cancer cells, we were able to study the tumor escape mechanisms against the immune system. Alteration or irreversible damage in HLA I molecules is used by the neoplastic cells to escape the immune system. The function of these molecules is to recognize endogenous peptides and present them to T cells of the immune system. There is a clear relationship between HLA I reversible alterations and success of therapy. Irreversible lesions also imply a lack of response to treatment. The immune system activation can reverse HLA I molecules expression in tumors with reversible lesions, whereas tumors with irreversible ones do not respond to such activation. Determine the type of altered HLA I molecules in tumors is of paramount importance when choosing the type of treatment to keep looking for therapeutic success. Those tumors with reversible lesions can be treated with traditional immunotherapy; however, tumour with irreversible alterations should follow alternative protocols, such as the use of viral vectors carrying the HLA genes to achieve damaged re-expression of the protein. From studies in urologic tumors, we can conclude that the HLA I molecules play a key role in these tumors escape to the immune system. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  11. Antidepressant activity of the adenosine A2A receptor antagonist, istradefylline (KW-6002) on learned helplessness in rats.

    PubMed

    Yamada, Koji; Kobayashi, Minoru; Shiozaki, Shizuo; Ohta, Teruko; Mori, Akihisa; Jenner, Peter; Kanda, Tomoyuki

    2014-07-01

    Istradefylline, an adenosine A2A receptor antagonist, improves motor function in animal models of Parkinson's disease (PD) and in patients with PD. In addition, some A2A antagonists exert antidepressant-like activity in rodent models of depression, such as the forced swim and the tail suspension tests. We have investigated the effect of istradefylline on depression-like behaviors using the rat learned helplessness (LH) model. Acute, as well as chronic, oral administration of istradefylline significantly improved the inescapable shock (IES)-induced escape deficit with a degree of efficacy comparable to chronic treatment with the tricyclic antidepressant desipramine and the selective serotonin (5-HT) reuptake inhibitor, fluoxetine. Both the A1/A2A receptor nonspecific antagonist theophylline and the moderately selective antagonist CGS15943, but not the A1 selective antagonist DPCPX, ameliorated the IES-induced escape deficit. The enhancement of escape response by istradefylline was reversed by a local injection of the A2A specific agonist CGS21680 either into the nucleus accumbens, the caudate-putamen, or the paraventricular nucleus of the hypothalamus, but not by the A1 specific agonist R-PIA into the nucleus accumbens. Moreover, neither the 5-HT2A/2C receptor antagonist methysergide or the adrenergic α 2 antagonist yohimbine, nor the β-adrenergic antagonist propranolol, affected the improvement of escape response induced by istradefylline. Istradefylline exerts antidepressant-like effects via modulation of A2A receptor activity which is independent of monoaminergic transmission in the brain. Istradefylline may represent a novel treatment option for depression in PD as well as for the motor symptoms.

  12. Toward a theory of resilience for international development applications

    PubMed Central

    Barrett, Christopher B.; Constas, Mark A.

    2014-01-01

    We advance a theory of resilience as it applies to the challenges of international development. The conceptualization we advance for development resilience focuses on the stochastic dynamics of individual and collective human well-being, especially on the avoidance of and escape from chronic poverty over time in the face of myriad stressors and shocks. Development resilience clearly nests within it the related but distinct idea of humanitarian resilience and thereby offers a conceptual apparatus to integrate the humanitarian and development ambitions. We discuss the implications for programming, systems integration, and measurement. PMID:25246580

  13. Antibody-Dependent Cell-Mediated Viral Inhibition Emerges after Simian Immunodeficiency Virus SIVmac251 Infection of Rhesus Monkeys Coincident with gp140-Binding Antibodies and Is Effective against Neutralization-Resistant Viruses▿

    PubMed Central

    Asmal, Mohammed; Sun, Yue; Lane, Sophie; Yeh, Wendy; Schmidt, Stephen D.; Mascola, John R.; Letvin, Norman L.

    2011-01-01

    Antibody-dependent cell-mediated viral inhibition (ADCVI) is an attractive target for vaccination because it takes advantage of both the anamnestic properties of an adaptive immune response and the rapid early response characteristics of an innate immune response. Effective utilization of ADCVI in vaccine strategies will depend on an understanding of the natural history of ADCVI during acute and chronic human immunodeficiency virus type 1 (HIV-1) infection. We used the simian immunodeficiency virus (SIV)-infected rhesus monkey as a model to study the kinetics of ADCVI in early infection, the durability of ADCVI through the course of infection, and the effectiveness of ADCVI against viruses with envelope mutations that are known to confer escape from antibody neutralization. We demonstrate the development of ADCVI, capable of inhibiting viral replication 100-fold, within 3 weeks of infection, preceding the development of a comparable-titer neutralizing antibody response by weeks to months. The emergence of ADCVI was temporally associated with the emergence of gp140-binding antibodies, and in most animals, ADCVI persisted through the course of infection. Highly evolved viral envelopes from viruses isolated at late time points following infection that were resistant to plasma neutralization remained susceptible to ADCVI, suggesting that the epitope determinants of neutralization escape are not shared by antibodies that mediate ADCVI. These findings suggest that despite the ability of SIV to mutate and adapt to multiple immunologic pressures during the course of infection, SIV envelope may not escape the binding of autologous antibodies that mediate ADCVI. PMID:21450829

  14. Development of a New Technique to Assess Susceptibility to Predation Resulting from Sublethal Stresses (Indirect Mortality)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cada, G.F.

    2003-08-25

    Fish that pass through a hydroelectric turbine may not be killed directly, but may nonetheless experience sublethal stresses that will increase their susceptibility to predators (indirect mortality). There is a need to develop reliable tests for indirect mortality so that the full consequences of passage through turbines (and other routes around a hydroelectric dam) can be assessed. We evaluated a new technique for assessing indirect mortality, based on a behavioral response to a startling stimulus (akin to perceiving an approaching predator). We compare this technique to the standard predator preference test. The behavioral response is a rapid movement commonly referredmore » to as a startle response, escape response, or C-shape, based on the characteristic body position assumed by the fish. When viewed from above, a startled fish bends into a C-shape, then springs back and swims away in a direction different from its original orientation. This predator avoidance (escape) behavior can be compromised by sublethal stresses that temporarily stun or disorient the fish. We subjected striped shiners and fathead minnows to varying intensities of either turbulence (10-, 20- or 30-min) or 2-min exposures to a fish anesthetic (100 or 200 mg/L of tricaine methanesulfonate), and evaluated their subsequent behavior. Individual fish were given a startle stimulus and filmed with a high-speed video camera. Each fish was startled and filmed twice before being stressed, and then at 1-, 5-, 15-, and 30-min post-exposure. The resulting image files were analyzed for a variety of behavioral measures including: presence of a response, time to first reaction, duration of reaction, time to formation of maximum C-shape, time to completion of C-shape, and completeness of C-shape. The most immediate measure of potential changes in fish behavior was whether stressed fish exhibited a startle response. For striped shiners, the number of fish not responding to the stimulus was significantly different from controls at 1-min post-exposure and for fathead minnows at 1- and 5-min post-exposure. The greatest effects occurred with exposure to the fish anesthetic; in fathead minnows all of the recorded measures were significantly different from controls at 1-min and 5-min post-exposure at the 100 mg/L dose. For striped shiners all recorded behavioral measures were significantly different from controls at 1-min at the 200 and 100 mg/L doses and for selected behavioral measures at 5-min. Turbulence also had significant effects on striped shiner startle responses following 20- and 30-min exposures for all behavioral measures at 1-min. The patterns suggest that any effects on startle response due to turbulence or low doses of anesthetic are short-lived, but can be evaluated using the escape behavior technique. The most useful indication of changes in escape behavior in these tests was the simple reaction/no reaction to the startle stimulus. The startle response occurred reliably among unstressed fish, and was frequently reduced or eliminated in fish exposed to turbulence or anesthesia. The other behavioral parameters observed were often altered by the sublethal stresses as well. A standard predator preference test was also conducted with largemouth bass as the predators and fathead minnows as prey. In this test design, groups of 10 unstressed fish (controls) and 10 stressed fish were put in a tank with a predator. The stressed fathead minnows were exposed to turbulence or fish anesthetic. The predator was allowed to eat half of the prey, and the data were evaluated to determine whether predators consumed greater proportions of stressed minnows than control minnows. The predation test indicated that exposure to MS-222 resulted in significant predation in fathead minnows, but exposure to turbulence did not. This pattern was the same as seen in fathead minnows using the startle response (escape behavior) test. For the sublethal stresses we applied, evaluation of changes in fish escape behavior yielded results comparable to traditional predator preference tests. Because this fish behavior test is simpler and quicker to conduct than predator preference tests, it shows promise as a useful technique for assessing indirect mortality resulting from sublethal stresses.« less

  15. Flies dynamically anti-track, rather than ballistically escape, aversive odor during flight.

    PubMed

    Wasserman, Sara; Lu, Patrick; Aptekar, Jacob W; Frye, Mark A

    2012-08-15

    Tracking distant odor sources is crucial to foraging, courtship and reproductive success for many animals including fish, flies and birds. Upon encountering a chemical plume in flight, Drosophila melanogaster integrates the spatial intensity gradient and temporal fluctuations over the two antennae, while simultaneously reducing the amplitude and frequency of rapid steering maneuvers, stabilizing the flight vector. There are infinite escape vectors away from a noxious source, in contrast to a single best tracking vector towards an attractive source. Attractive and aversive odors are segregated into parallel neuronal pathways in flies; therefore, the behavioral algorithms for avoidance may be categorically different from tracking. Do flies plot random ballistic or otherwise variable escape vectors? Or do they instead make use of temporally dynamic mechanisms for continuously and directly avoiding noxious odors in a manner similar to tracking appetitive ones? We examine this question using a magnetic tether flight simulator that permits free yaw movements, such that flies can actively orient within spatially defined odor plumes. We show that in-flight aversive flight behavior shares all of the key features of attraction such that flies continuously 'anti-track' the noxious source.

  16. Flies dynamically anti-track, rather than ballistically escape, aversive odor during flight

    PubMed Central

    Wasserman, Sara; Lu, Patrick; Aptekar, Jacob W.; Frye, Mark A.

    2012-01-01

    SUMMARY Tracking distant odor sources is crucial to foraging, courtship and reproductive success for many animals including fish, flies and birds. Upon encountering a chemical plume in flight, Drosophila melanogaster integrates the spatial intensity gradient and temporal fluctuations over the two antennae, while simultaneously reducing the amplitude and frequency of rapid steering maneuvers, stabilizing the flight vector. There are infinite escape vectors away from a noxious source, in contrast to a single best tracking vector towards an attractive source. Attractive and aversive odors are segregated into parallel neuronal pathways in flies; therefore, the behavioral algorithms for avoidance may be categorically different from tracking. Do flies plot random ballistic or otherwise variable escape vectors? Or do they instead make use of temporally dynamic mechanisms for continuously and directly avoiding noxious odors in a manner similar to tracking appetitive ones? We examine this question using a magnetic tether flight simulator that permits free yaw movements, such that flies can actively orient within spatially defined odor plumes. We show that in-flight aversive flight behavior shares all of the key features of attraction such that flies continuously ‘anti-track’ the noxious source. PMID:22837456

  17. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers.

    PubMed

    Fuchs, Hendrik; Weng, Alexander; Gilabert-Oriol, Roger

    2016-07-01

    The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments.

  18. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers

    PubMed Central

    Fuchs, Hendrik; Weng, Alexander; Gilabert-Oriol, Roger

    2016-01-01

    The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments. PMID:27376327

  19. Modeling Neutral Densities Downstream of a Gridded Ion Thruster

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2010-01-01

    The details of a model for determining the neutral density downstream of a gridded ion thruster are presented. An investigation of the possible sources of neutrals emanating from and surrounding a NEXT ion thruster determined that the most significant contributors to the downstream neutral density include discharge chamber neutrals escaping through the perforated grids, neutrals escaping from the neutralizer, and vacuum facility background neutrals. For the neutral flux through the grids, near- and far-field equations are presented for rigorously determining the neutral density downstream of a cylindrical aperture. These equations are integrated into a spherically-domed convex grid geometry with a hexagonal array of apertures for determining neutral densities downstream of the ion thruster grids. The neutrals escaping from an off-center neutralizer are also modeled assuming diffuse neutral emission from the neutralizer keeper orifice. Finally, the effect of the surrounding vacuum facility neutrals is included and assumed to be constant. The model is used to predict the neutral density downstream of a NEXT ion thruster with and without neutralizer flow and a vacuum facility background pressure. The impacts of past simplifying assumptions for predicting downstream neutral densities are also examined for a NEXT ion thruster.

  20. Global Influences and Local Responses: The Restructuring of the University of Botswana, 1990-2000

    ERIC Educational Resources Information Center

    Tabulawa, Richard

    2007-01-01

    The University of Botswana has not escaped the reform fever currently gripping higher education institutions the world-over. In the late 1980s the University initiated an administrative/management restructuring exercise whose resultant structure was implemented between 1998 and 2000. The exercise, in many respects, was a response to globalization.…

  1. Assessment and Treatment of Combat-Related PTSD in Returning War Veterans

    DTIC Science & Technology

    2011-01-01

    treatment interventions. Adrenergic agents such as Beta - blockers showed initial promise in the mitigation of the length and severity of PTSD illness...responses (e.g. anxiety , palpitations, escape or avoidance). The conditioned response can be conceptual- ized as an automatic fight or flight response that...sound and is positively correlated with measures of trauma, depression and anxiety (Foa et al., 1993). As compared with the Structured Clinical

  2. The effects of plant essential oils on escape response and mortality rate of Aedes aegypti and Anopheles minimus.

    PubMed

    Sathantriphop, Sunaiyana; Achee, Nicole L; Sanguanpong, Unchalee; Chareonviriyaphap, Theeraphap

    2015-12-01

    The High Throughput Screening System (HITSS) has been applied in insecticide behavioral response studies with various mosquito species. In general, chemical or natural compounds can produce a range of insect responses: contact irritancy, spatial repellency, knock-down, and toxicity. This study characterized these actions in essential oils derived from citronella, hairy basil, catnip, and vetiver in comparison to DEET and picaridin against Aedes aegypti and Anopheles minimus mosquito populations. Results indicated the two mosquito species exhibited significantly different (P<0.05) contact irritant escape responses between treatment and control for all tested compound concentrations, except with the minimum dose of picaridin (P>0.05) against Ae. aegypti. Spatial repellency responses were elicited in both mosquito species when exposed to all compounds, but the strength of the repellent response was dependent on compound and concentration. Data show that higher test concentrations had greatest toxic effects on both mosquito populations, but vetiver had no toxic effect on Ae. aegypti and picaridin did not elicit toxicity in either Ae. aegypti or An. minimus at any test concentration. Ultimately, this study demonstrates the ability of the HITSS assay to guide selection of effective plant essential oils for repelling, irritating, and killing mosquitoes. © 2015 The Society for Vector Ecology.

  3. Nuance and behavioral cogency: How the Visible Burrow System inspired the Stress-Alternatives Model and conceptualization of the continuum of anxiety.

    PubMed

    Robertson, James M; Prince, Melissa A; Achua, Justin K; Carpenter, Russ E; Arendt, David H; Smith, Justin P; Summers, Torrie L; Summers, Tangi R; Summers, Cliff H

    2015-07-01

    By creating the Visible Burrow System (VBS) Bob Blanchard found a way to study the interaction of genetics, physiology, environment, and adaptive significance in a model with broad validity. The VBS changed the way we think about anxiety and affective disorders by allowing the mechanisms which control them to be observed in a dynamic setting. Critically, Blanchard used the VBS and other models to show how behavioral systems like defense are dependent upon context and behavioral elements unique to the individual. Inspired by the VBS, we developed a Stress Alternatives Model (SAM) to further explore the multifaceted dynamics of the stress response with a dichotomous choice condition. Like the VBS, the SAM is a naturalistic model built upon risk assessment and defensive behavior, but with a choice of response: escape or submission to a large conspecific aggressor. The anxiety of novelty during the first escape must be weighed against fear of the aggressor, and a decision must be made. Both outcomes are adaptively significant, evidenced by a 50/50 split in outcome across several study systems. By manipulating the variables of the SAM, we show that a gradient of anxiety exists that spans the contextual settings of escaping an open field, escaping from aggression, and submitting to aggression. These findings correspond with increasing levels of corticosterone and increasing levels of NPS and BDNF in the central amygdala as the context changes.Whereas some anxiolytics were able to reduce the latency to escape for some animals, only with the potent anxiolytic drug antalarmin (CRF1R-blocker) and the anxiogenic drug yohimbine (α2 antagonist) were we able to reverse the outcome for a substantial proportion of individuals. Our findings promote a novel method for modeling anxiety, offering a distinction between low-and-high levels, and accounting for individual variability. The translational value of the VBS is immeasurable, and it guided us and many other researchers to seek potential clinical solutions through a deeper understanding of regional neurochemistry and gene expression in concert with an ecological behavioral model.

  4. Nuance and behavioral cogency: How the Visible Burrow System inspired the Stress-Alternatives Model and conceptualization of the continuum of anxiety

    PubMed Central

    Robertson, James M.; Prince, Melissa A.; Achua, Justin K.; Carpenter, Russ E.; Arendt, David H.; Smith, Justin P.; Summers, Torrie L.; Summers, Tangi R.; Summers, Cliff H.

    2015-01-01

    By creating the Visible Burrow System (VBS) Bob Blanchard found a way to study the interaction of genetics, physiology, environment, and adaptive significance in a model with broad validity. The VBS changed the way we think about anxiety and affective disorders by allowing the mechanisms which control them to be observed in a dynamic setting. Critically, Blanchard used the VBS and other models to show how behavioral systems like defense are dependent upon context and behavioral elements unique to the individual. Inspired by the VBS, we developed a Stress Alternatives Model (SAM) to further explore the multifaceted dynamics of the stress response with a dichotomous choice condition. Like the VBS, the SAM is a naturalistic model built upon risk-assessment and defensive behavior, but with a choice of response: escape or submission to a large conspecific aggressor. The anxiety of novelty during the first escape must be weighed against fear of the aggressor, and a decision must be made. Both outcomes are adaptively significant, evidenced by a 50/50 split in outcome across several study systems. By manipulating the variables of the SAM, we show that a gradient of anxiety exists that spans the contextual settings of escaping an open field, escaping from aggression, and submitting to aggression. These findings correspond with increasing levels of corticosterone and increasing levels of NPS and BDNF in the central amygdala as the context changes. Whereas some anxiolytics were able to reduce the latency to escape for some animals, only with the potent anxiolytic drug antalarmin (CRF1R-blocker) and the anxiogenic drug yohimbine (α2 antagonist) were we able to reverse the outcome for a substantial proportion of individuals. Our findings promote a novel method for modeling anxiety, offering a distinction between low-and-high levels, and accounting for individual variability. The translational value of the VBS is immeasurable, and it guided us and many other researchers to seek potential clinical solutions through a deeper understanding of regional neurochemistry and gene expression in concert with an ecological behavioral model. PMID:26066728

  5. Rodent models of depression: learned helplessness induced in mice.

    PubMed

    Anisman, H; Merali, Z

    2001-05-01

    Uncontrollable stressors induce a variety of behavioral disturbances that are in many ways reminiscent of the symptoms that characterize clinical depression. These deficits are evident across a range of species, including mice. Given the increasing focus on genetic techniques involving mice to identify the mechanisms subserving these behavioral disturbances (e.g., recombinant, knockout, and transgenic strains), it is of particular interest to provide a detailed description of the method to induce behavioral deficits in response to uncontrollable stressors. This unit describes the procedure used to assess the effects of controllable and uncontrollable shock on subsequent shock escape performance in mice using an escape-delay procedure.

  6. The dynamical behaviour of our planetary system. Proceedings. 4th Alexander von Humboldt Colloquium on Celestial Mechanics, Ramsau (Austria), 17 - 23 Mar 1996.

    NASA Astrophysics Data System (ADS)

    Dvorak, R.; Henrard, J.

    1996-03-01

    The following topics were dealt with: celestial mechanics, dynamical astronomy, planetary systems, resonance scattering, Hamiltonian mechanics non-integrability, irregular periodic orbits, escape, dynamical system mapping, fast Fourier method, precession-nutation, Nekhoroshev theorem, asteroid dynamics, the Trojan problem, planet-crossing orbits, Kirkwood gaps, future research, human comprehension limitations.

  7. Cyclophilin A Levels Dictate Infection Efficiency of Human Immunodeficiency Virus Type 1 Capsid Escape Mutants A92E and G94D ▿

    PubMed Central

    Ylinen, Laura M. J.; Schaller, Torsten; Price, Amanda; Fletcher, Adam J.; Noursadeghi, Mahdad; James, Leo C.; Towers, Greg J.

    2009-01-01

    Cyclophilin A (CypA) is an important human immunodeficiency virus type 1 (HIV-1) cofactor in human cells. HIV-1 A92E and G94D capsid escape mutants arise during CypA inhibition and in certain cell lines are dependent on CypA inhibition. Here we show that dependence on CypA inhibition is due to high CypA levels. Restricted HIV-1 is stable, and remarkably, restriction is augmented by arresting cell division. Nuclear entry is not inhibited. We propose that high CypA levels and capsid mutations combine to disturb uncoating, leading to poor infectivity, particularly in arrested cells. Our data suggest a role for CypA in uncoating the core of HIV-1 to facilitate integration. PMID:19073742

  8. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors

    PubMed Central

    Akbay, Esra A; Koyama, Shohei; Carretero, Julian; Altabef, Abigail; Tchaicha, Jeremy H; Christensen, Camilla L; Mikse, Oliver R; Cherniack, Andrew D; Beauchamp, Ellen M; Pugh, Trevor J; Wilkerson, Matthew D; Fecci, Peter E; Butaney, Mohit; Reibel, Jacob B; Soucheray, Margaret; Cohoon, Travis J; Janne, Pasi A; Meyerson, Matthew; Hayes, D. Neil; Shapiro, Geoffrey I; Shimamura, Takeshi; Sholl, Lynette M; Rodig, Scott J; Freeman, Gordon J; Hammerman, Peter S; Dranoff, Glenn; Wong, Kwok-Kin

    2013-01-01

    The success in lung cancer therapy with Programmed Death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between Epidermal Growth Factor Receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, cytotoxic T lymphocyte antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased cytotoxic T cells and increased markers of T cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T cell function and lowering the levels of tumor-promoting cytokines. Expression of mutant EGFR in bronchial epithelial cells induced PD-L1, and PD-L1 expression was reduced by EGFR inhibitors in non-small cell lung cancer cell lines with activated EGFR. These data suggest that oncogenic EGFR signaling remodels the tumor microenvironment to trigger immune escape, and mechanistically link treatment response to PD-1 inhibition. PMID:24078774

  9. Do Lyman-alpha photons escape from star-forming galaxies through dust holes?

    NASA Astrophysics Data System (ADS)

    France, Kevin; Wofford, A.; Leitherer, C.; Fleming, B.; McCandliss, S. R.; Nell, N.

    2014-01-01

    H I Lyman-alpha (LyA) is commonly used as a signpost for the entire galaxy at redshifts z>2, and yet spatially and kinematically resolved views of the local conditions within galaxies that determine the integrated properties of this line are scarce. We obtained Hubble Space Telescope (HST) images in continuum-subtracted LyA, H-alpha, H-beta, and far-UV continuum of three low-inclination spiral star-forming galaxies located at redshifts z=0.02, 0.03, and 0.05. This was accomplished using the UVIS and SBC channels of the Wide Field Camera 3 (WFC3) and the Advanced Camera for Surveys (ACS), respectively. Previous HST spectroscopy obtained by our team with the Cosmic Origins Spectrograph (COS) showed that the galaxies display different integrated LyA profiles within their central few kiloparsecs, i.e., pure absorption, single emission, and double emission, which are representative of what is observed between redshifts 0-3. This data is useful for establishing the relative importance of starburst phase, dust content, and gas kinematics in determining the LyA escape. We present preliminary results that combine our spectroscopic and imaging observations.

  10. Body size, swimming speed, or thermal sensitivity? Predator-imposed selection on amphibian larvae.

    PubMed

    Gvoždík, Lumír; Smolinský, Radovan

    2015-11-02

    Many animals rely on their escape performance during predator encounters. Because of its dependence on body size and temperature, escape velocity is fully characterized by three measures, absolute value, size-corrected value, and its response to temperature (thermal sensitivity). The primary target of the selection imposed by predators is poorly understood. We examined predator (dragonfly larva)-imposed selection on prey (newt larvae) body size and characteristics of escape velocity using replicated and controlled predation experiments under seminatural conditions. Specifically, because these species experience a wide range of temperatures throughout their larval phases, we predict that larvae achieving high swimming velocities across temperatures will have a selective advantage over more thermally sensitive individuals. Nonzero selection differentials indicated that predators selected for prey body size and both absolute and size-corrected maximum swimming velocity. Comparison of selection differentials with control confirmed selection only on body size, i.e., dragonfly larvae preferably preyed on small newt larvae. Maximum swimming velocity and its thermal sensitivity showed low group repeatability, which contributed to non-detectable selection on both characteristics of escape performance. In the newt-dragonfly larvae interaction, body size plays a more important role than maximum values and thermal sensitivity of swimming velocity during predator escape. This corroborates the general importance of body size in predator-prey interactions. The absence of an appropriate control in predation experiments may lead to potentially misleading conclusions about the primary target of predator-imposed selection. Insights from predation experiments contribute to our understanding of the link between performance and fitness, and further improve mechanistic models of predator-prey interactions and food web dynamics.

  11. Mechanisms Of Hypoxia-Induced Immune Escape In Cancer And Their Regulation By Nitric Oxide.

    PubMed

    Graham, Charles; Barsoum, Ivraym; Kim, Judy; Black, Madison; Siemens, Robert D

    2015-08-01

    The acquired ability of tumour cells to avoid destruction by immune effector mechanisms (immune escape) is important for malignant progression. Also associated with malignant progression is tumour hypoxia, which induces aggressive phenotypes such as invasion, metastasis and drug resistance in cancer cells. Our studies revealed that hypoxia contributes to escape from innate immunity by increasing tumour cell expression of the metalloproteinase ADAM10 in a manner dependent on accumulation of the alpha subunit of the transcription factor hypoxia-inducible factor-1 (HIF-1α). Increased ADAM10 expression leads to shedding of the NK cell-activating ligand, MICA, from the surface of tumour cells, thereby resulting in resistance to NK cell-mediated lysis. Our more recent studies demonstrated that hypoxia, also via HIF-1α accumulation, increases the expression of the inhibitory co-stimulatory ligand PD-L1 on tumour cells. Elevated PD-L1 expression leads to escape from adaptive immunity via increased apoptosis of CD8 + cytotoxic T lymphocytes. Accumulating evidence indicates that hypoxia-induced acquisition of malignant phenotypes, including immune escape, is in part due to impaired nitric oxide (NO)-mediated activation of cGMP signalling and that restoration of cGMP signalling prevents such hypoxic responses. We have shown that NO/cGMP signalling inhibits hypoxia-induced malignant phenotypes likely in part by interfering with HIF-1α accumulation via a mechanism involving calpain. These findings indicate that activation of NO/cGMP signalling may have useful applications in cancer therapy. Copyright © 2015. Published by Elsevier B.V.

  12. Focused Attention, Heart Rate Deceleration, and Cognitive Development in Preterm and Full-Term Infants

    PubMed Central

    Petrie Thomas, Julianne H.; Whitfield, Michael F.; Oberlander, Tim F.; Synnes, Anne R.; Grunau, Ruth E.

    2012-01-01

    The majority of children who are born very preterm escape major impairment, yet more subtle cognitive and attention problems are very common in this population. Previous research has linked infant focused attention during exploratory play to later cognition in children born full-term and preterm. Infant focused attention can be indexed by sustained decreases in heart rate (HR). However there are no preterm studies that have jointly examined infant behavioral attention and concurrent HR response during exploratory play in relation to developing cognition. We recruited preterm infants free from neonatal conditions associated with major adverse outcomes, and further excluded infants with developmental delay (Bayley Mental Development Index [MDI < 70]) at 8 months corrected age (CA). During infant exploratory play at 8 months CA, focused attention and concurrent HR response were compared in 83 preterm infants (born 23–32 weeks gestational age [GA]) who escaped major impairment to 46 full-term infants. Focused attention and HR response were then examined in relation to Bayley MDI, after adjusting for neonatal risk. MDI did not differ by group, yet full-term infants displayed higher global focused attention ratings. Among the extremely preterm infants born <29 weeks, fewer days on mechanical ventilation, mean longest focus, and greater HR deceleration during focused attention episodes, accounted for 49% of adjusted variance in predicting concurrent MDI. There were no significant associations for later-born gestational age (29–32 weeks) or full-term infants. Among extremely preterm infants who escape major impairment, our findings suggest unique relationships between focused attention, HR deceleration, and developing cognition. PMID:22487941

  13. Mechanisms of virus immune evasion lead to development from chronic inflammation to cancer formation associated with human papillomavirus infection.

    PubMed

    Senba, Masachika; Mori, Naoki

    2012-10-02

    Human papillomavirus (HPV) has developed strategies to escape eradication by innate and adaptive immunity. Immune response evasion has been considered an important aspect of HPV persistence, which is the main contributing factor leading to HPV-related cancers. HPV-induced cancers expressing viral oncogenes E6 and E7 are potentially recognized by the immune system. The major histocompatibility complex (MHC) class I molecules are patrolled by natural killer cells and CD8+ cytotoxic T lymphocytes, respectively. This system of recognition is a main target for the strategies of immune evasion deployed by viruses. The viral immune evasion proteins constitute useful tools to block defined stages of the MHC class I presentation pathway, and in this way HPV avoids the host immune response. The long latency period from initial infection to persistence signifies that HPV evolves mechanisms to escape the immune response. It has now been established that there are oncogenic mechanisms by which E7 binds to and degrades tumor suppressor Rb, while E6 binds to and inactivates tumor suppressor p53. Therefore, interaction of p53 and pRb proteins can give rise to an increased immortalization and genomic instability. Overexpression of NF-κB in cervical and penile cancers suggests that NF-κB activation is a key modulator in driving chronic inflammation to cancer. HPV oncogene-mediated suppression of NF-κB activity contributes to HPV escape from the immune system. This review focuses on the diverse mechanisms of the virus immune evasion with HPV that leads to chronic inflammation and cancer.

  14. Photoionization of the diffuse interstellar medium and galactic halo by OB associtations

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Shull, J. Michael

    1994-01-01

    Assuming smoothly varying H I distributions in te Galactic disk, we have calculated the geometry of diffuse II regions due to OB associations in the Galactic plane. Near the solar circle, OB associations with a Lyman continuum (Lyc) photon luminosity Psi(sub Lyc) = 3.3 x 10(exp 7) cm(exp -2) s(exp -1), produce H II regions that are density bounded in the vertical direction (H II chimneys) allowing Lyc to escape the gaseous disk and penetrate into the Galactic halo. We provide analytic formulae for the Lyc escape fraction as functions of S(sub 0) O-star catalog of Garmany and a new Lyc stellar stellar Lyc stellar flux calibration, we find a production rate of Lyc photons by OB associations within 2.5 kpc of Psi(sub Lyc) = 3.3 x 10(exp 7) cm(exp -2) s(exp -1). Integrating the fraction of Lyc photons that escape the disk over our adopted luminosity function of OB associations, we estimate that approximately 7% of the ionizing photons, or Phi(sub Lyc) = 2.3 x 10(exp 6) cm(exp -2) s(exp -1), escape each side of the H I disk layer and penetrate the diffuse ionized medium ('Reynolds layer'). This flux is sufficient to explain the potoionization of this, although we have not constructed a model for the observed H-alpha emission and pulsar dispersion measures that is fully consistent with the absorption rate of Lyc in the H II layer. Since our quiescent model does not account for the effects of dynamic chimneys and superbubbles, which should enhance Lyc escape, we conclude the O stars are the probable source of ionizing radiation for the Reynolds layer. For a random distribution of OB associations throughout the disk, the Lyc flux is nearly uniform for heights Z is greater than approximately 0.8 kpc above the midplane.

  15. Impact of ocean acidification on the early development and escape behavior of marine medaka (Oryzias melastigma).

    PubMed

    Wang, Xiaojie; Song, Lulu; Chen, Yi; Ran, Haoyu; Song, Jiakun

    2017-10-01

    Ocean acidification is predicted to affect a wide diversity of marine organisms. However, no studies have reported the effects of ocean acidification on Indian Ocean fish. We have used the Indian Ocean medaka (Oryzias melastigma) as a model species for a marine fish that lives in coastal waters. We investigated the impact of ocean acidification on the embryonic development and the stereotyped escape behavior (mediated by the Mauthner cell) in newly hatched larvae. Newly fertilized eggs of medaka were reared in seawater at three different partial pressures of carbon dioxide (pCO 2 ): control at 450 μatm, moderate at 1160 μatm, and high at 1783 μatm. Hatch rates, embryonic duration, and larval malformation rates were compared and were not significantly different between the treatments and the control. In the high pCO 2 group, however, the yolks of larvae were significantly smaller than in the control group, and the newly hatched larvae were significantly longer than the larvae in the control. In the moderate pCO 2 group, the eye distance decreased significantly. No significantly negative growth effects were observed in the larvae when exposed to pCO 2 levels that are predicted as a result of ocean acidification in the next 100-200 years. Larvae reared under control conditions readily produced C-start escape behavior to mechanosensory stimuli; however, in the moderate and high pCO 2 experimental groups, the probabilities of C-start were significantly lower than those of the control group. Therefore, the sensory integration needed for the C-start escape behavior appears to be vulnerable to ocean acidification. Altered behavior in marine larval fish, particularly behaviors involved in escape from predation, could have potentially negative implications to fish populations, and, further, to the marine ecosystems at the levels of CO 2 projected for the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Environmental Pollutants

    USDA-ARS?s Scientific Manuscript database

    Managing animal production systems to reduce environmental impacts is most difficult for air quality. Water and soil quality responses to animal production can be managed through planning and understanding the risk of spills, overapplication, or improper use of manure. Escape of gaseous or particula...

  17. The Effect of Aging on the Ventilatory Response to Wearing a Chemical, Biological, Radiological, and Nuclear Hood Respirator at Rest and During Mild Exercise.

    PubMed

    Ofir, Dror; Yanir, Yoav; Eynan, Mirit; Aviner, Ben; Biram, Adi; Mullokandov, Michael; Bar, Ronen; Arieli, Yehuda

    2017-01-01

    Structural changes in the human body resulting from aging may affect the response to altered levels of O 2 and CO 2 . An abnormal ventilatory response to a buildup of CO 2 in the inspired air due to rebreathing may result in adverse effects, which will impair the individual's ability to function under stress. The purpose of this study was to evaluate the effect of age on the respiratory response to wearing an escape hood at rest and during mild exercise. Subjects were seven healthy, young adult males (20-30 years) and seven healthy, middle-aged males (45-65 years). Inspired CO 2 and O 2 , breathing pattern (tidal volume [V T ] and breathing frequency [F]), and mouth inspiratory and expiratory pressures, were measured at rest and during mild exercise (50 w) while wearing the CAPS 2000 escape hood (Shalon Chemical Industries and Supergum-Rubber and Plastic Technology, Tel Aviv, Israel). Resting inspired CO 2 was higher in the middle-aged group compared with the young group (2.25% ± 0.42% and 1.80% ± 0.34%, respectively; p < 0.05). Breathing pattern in the middle-aged group tended to be shallower and faster compared with the young group (V T : 0.69 ± 0.27 L and 0.79 ± 0.32 L, respectively; F: 14.7 ± 4.0 breaths/min and 12.4 ± 2.8 breaths/min, respectively). During exercise, there was a trend toward a high inspired CO 2 in the middle-aged group compared with the young group (2.18% ± 0.40% CO 2 and 1.94% ± 0.70% CO 2 , respectively). A correlation was found between age and inspired CO 2 when wearing the escape hood (r 2 = 0.375; p < 0.05). The age-related decrease in pulmonary function, together with the finding in this study of a higher inspired CO 2 in middle-aged subjects wearing the CAPS 2000, may represent a greater risk for persons of middle age wearing an escape hood. On the basis of this study, it would appear reasonable to recommend that new respirators be evaluated on subjects from different age groups, to ensure the safety of both young and old. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  18. Time-dependent Electron Acceleration in Pulsar Wind Termination Shocks: Application to the 2011 April Crab Nebula Gamma-Ray Flare

    NASA Astrophysics Data System (ADS)

    Kroon, John J.; Becker, Peter A.; Finke, Justin D.

    2018-01-01

    The γ-ray flares from the Crab Nebula observed by AGILE and Fermi-LAT between 2007 and 2013 reached GeV photon energies and lasted several days. The strongest emission, observed during the 2011 April “superflare”, exceeded the quiescent level by more than an order of magnitude. These observations challenge the standard models for particle acceleration in pulsar wind nebulae, because the radiating electrons have energies exceeding the classical radiation-reaction limit for synchrotron emission. Particle-in-cell simulations have suggested that the classical synchrotron limit can be exceeded if the electrons also experience electrostatic acceleration due to shock-driven magnetic reconnection. In this paper, we revisit the problem using an analytic approach based on solving a fully time-dependent electron transport equation describing the electrostatic acceleration, synchrotron losses, and escape experienced by electrons in a magnetically confined plasma “blob” as it encounters and passes through the pulsar wind termination shock. We show that our model can reproduce the γ-ray spectra observed during the rising and decaying phases of each of the two sub-flare components of the 2011 April superflare. We integrate the spectrum for photon energies ≥slant 100 MeV to obtain the light curve for the event, which also agrees with the observations. We find that strong electrostatic acceleration occurs on both sides of the termination shock, driven by magnetic reconnection. We also find that the dominant mode of particle escape changes from diffusive escape to advective escape as the blob passes through the shock.

  19. Potassic magma genesis and the Ailao Shan-Red River fault

    NASA Astrophysics Data System (ADS)

    Flower, Martin F. J.; Hoàng, Nguyễn; Lo, Chinh-hua; Chí, Cung Thu'ọ'ng; Cu'ò'ng, Nguyễn Quốc; Liu, Fu-tian; Deng, Jin-fu; Mo, Xuan-xue

    2013-09-01

    Two types of K-rich magma of Eocene to Early Oligocene (ca. 40-30) and Plio-Pleistocene (ca. 5-0.1 Ma) age were emplaced prior to and following left-lateral slip on the Ailao Shan-Red River (ASRR) fault, a regional shear zone extending between southwest China and the Tonkin Gulf (South China Sea) that accommodated 'escape' of the Indochina block. The first type is exposed in the Dali-Lijiang and adjacent regions of western Yunnan and Sichuan and comprises ultramafic potassic to ultrapotassic 'absarokites' and their shoshonite, banakite, and SiO2-rich derivatives which were emplaced immediately prior to activation of the ASRR fault. They are characterized by high Mg.-nos, and low contents of fusible oxides (FeO*, CaO, Al2O3), for equivalent MgO content, and pronounced primitive mantle-normalized high-field strength element (HFSE) depletions. In contrast, 'post-escape' K-rich magmas were erupted in the Puer, Maguan-Pingbian regions of south and southeast Yunnan. Apart from their relative enrichments in potassium they show typical HFSE-rich intra-plate compositional affinity. Geological and geomorphic evidence, and thermochronologic age dating of metamorphisc events, suggest that left-lateral shearing occurred between ca. 30 and 17 Ma; thereby accommodating the southeastward 'escape' of Indochina and (possibly) two episodes of spreading in the South China Sea. The southwestern part of Dali-Lijiang magmatic products was detached and offset by ca. 600 km and are now located in Phan Xi Pang in northern Viet Nam. The same is true for the Permo-Triassic Emeishan flood basalts, whose western exposures were likewise displaced by the same amount and are now represented by the Song Da complex, also in northern Viet Nam. Here, we report geochemical, isotopic, and 40Ar/39Ar age data for samples from both the 'pre-escape' Dali-Lijiang magmas and the 'post-escape' K-rich Puer, Maguan-Pingbian basalts and basanites, with a view to comparing and contrasting their interpolated source compositions, estimated conditions of upper mantle melt segregation and, by inference, their mantle dynamic and contamination histories insofar as these were conditioned by the India-Asia collision. Our interpretations yielded two complementary conclusions. The first contends that the pre-escape magmas result from adiabatic melting of crust-contaminated asthenosphere comprising a 'mélange' of continental lithospheric mantle (CLM) (hydrated by sab-derived hysdrous fluids released at 0.2-0.5 GPa) and lower crust, delaminated from the overriding plate during mantle wedge corner flow and further enriched by metasomatic melts of subducted continental crust. We postulate that incipient H2O-saturated melting of the 'mélange' occurs at depths of between ca. 100 and 200 km after being 'dragged' down by relict oceanic slab fragments, in response to the dehydration of supra-subduction amphibole- and phlogopite. The ensuing viscosity 'crisis' and buoyancy relative to ambient 'fertile' convecting mantle of such asthenospheric 'pockets', and the collision-related change from lithospheric compression to extension, almost certainly predisposes such a refractory yet crust-contaminated 'pockets' to rapid adiabatic melting. The second conclusion concerns the post-escape K-rich basalts and basanites and is based on the contention that decompression melting of thermally anomalous K-rich asthenospheric occurred in response to regional post-escape transtension, concomitant with the cessation Indochina escape and contiguous seafloor spreading. However, although these magmas share the HFSE-rich fertile source character of other, widely dispersed, post-escape Cenozoic basalts they more specifically resemble relatively rare examples of intra-plate, K-rich activity observed in northeast China, central Spain, and elsewhere in Asia and Europe, arguably (indirectly) reflecting mantle perturbations caused by major continental collisions.

  20. Integrated genomic and immunophenotypic classification of pancreatic cancer reveals three distinct subtypes with prognostic/predictive significance.

    PubMed

    Wartenberg, Martin; Cibin, Silvia; Zlobec, Inti; Vassella, Erik; Eppenberger-Castori, Serenella M M; Terracciano, Luigi; Eichmann, Micha; Worni, Mathias; Gloor, Beat; Perren, Aurel; Karamitopoulou, Eva

    2018-04-16

    Current clinical classification of pancreatic ductal adenocarcinoma (PDAC) is unable to predict prognosis or response to chemo- or immunotherapy and does not take into account the host reaction to PDAC-cells. Our aim is to classify PDAC according to host- and tumor-related factors into clinically/biologically relevant subtypes by integrating molecular and microenvironmental findings. A well-characterized PDAC-cohort (n=110) underwent next-generation sequencing with a hotspot cancer panel, while Next-generation Tissue-Microarrays were immunostained for CD3, CD4, CD8, CD20, PD-L1, p63, hyaluronan-mediated motility receptor (RHAMM) and DNA mismatch-repair proteins. Previous data on FOXP3 were integrated. Immune-cell counts and protein expression were correlated with tumor-derived driver mutations, clinicopathologic features (TNM 8. 2017), survival and epithelial-mesenchymal-transition (EMT)-like tumor budding.  Results: Three PDAC-subtypes were identified: the "immune-escape" (54%), poor in T- and B-cells and enriched in FOXP3+Tregs, with high-grade budding, frequent CDKN2A- , SMAD4- and PIK3CA-mutations and poor outcome; the "immune-rich" (35%), rich in T- and B-cells and poorer in FOXP3+Tregs, with infrequent budding, lower CDKN2A- and PIK3CA-mutation rate and better outcome and a subpopulation with tertiary lymphoid tissue (TLT), mutations in DNA damage response genes (STK11, ATM) and the best outcome; and the "immune-exhausted" (11%) with immunogenic microenvironment and two subpopulations: one with PD-L1-expression and high PIK3CA-mutation rate and a microsatellite-unstable subpopulation with high prevalence of JAK3-mutations. The combination of low budding, low stromal FOXP3-counts, presence of TLTs and absence of CDKN2A-mutations confers significant survival advantage in PDAC-patients. Immune host responses correlate with tumor characteristics leading to morphologically recognizable PDAC-subtypes with prognostic/predictive significance. Copyright ©2018, American Association for Cancer Research.

  1. Effects of cyclic adenosine monophosphate response element binding protein overexpression in the basolateral amygdala on behavioral models of depression and anxiety.

    PubMed

    Wallace, Tanya L; Stellitano, Kathryn E; Neve, Rachael L; Duman, Ronald S

    2004-08-01

    Chronic antidepressant administration increases the cyclic adenosine monophosphate response element binding protein (CREB) in the amygdala, a critical neural substrate involved in the physiologic responses to stress, fear, and anxiety. To determine the role of CREB in the amygdala in animal models of depression and anxiety, a viral gene transfer approach was used to selectively express CREB in this region of the rat brain. In the learned helplessness model of depression, induction of CREB in the basolateral amygdala after training decreased the number of escape failures, an antidepressant response. However, expression of CREB before training increased escape failures, and increased immobility in the forced swim test, depressive effects. Expression of CREB in the basolateral amygdala also increased behavioral measures of anxiety in both the open field test and the elevated plus maze, and enhanced cued fear conditioning. Taken together, these data demonstrate that CREB expression in the basolateral amygdala influences behavior in models of depression, anxiety, and fear. Moreover, in the basolateral amygdala, the temporal expression of CREB in relation to learned helplessness training, determines the qualitative outcome in this animal model of depression.

  2. Spectral response characterization of CdTe sensors of different pixel size with the IBEX ASIC

    NASA Astrophysics Data System (ADS)

    Zambon, P.; Radicci, V.; Trueb, P.; Disch, C.; Rissi, M.; Sakhelashvili, T.; Schneebeli, M.; Broennimann, C.

    2018-06-01

    We characterized the spectral response of CdTe sensors with different pixel sizes - namely 75, 150 and 300 μm - bonded to the latest generation IBEX single photon counting ASIC developed at DECTRIS, to detect monochromatic X-ray energy in the range 10-60 keV. We present a comparison of pulse height spectra recorded for several energies, showing the dependence on the pixel size of the non-trivial atomic fluorescence and charge sharing effects that affect the detector response. The extracted energy resolution, in terms of full width at half maximum or FWHM, ranges from 1.5 to 4 keV according to the pixel size and chip configuration. We devoted a careful analysis to the Quantum Efficiency and to the Spectral Efficiency - a newly-introduced measure that quantifies the impact of fluorescence and escape phenomena on the spectrum integrity in high- Z material based detectors. We then investigated the influence of the photon flux on the aforementioned quantities up to 180 ṡ 106 cts/s/mm2 and 50 ṡ 106 cts/s/mm2 for the 150 μm and 300 μm pixel case, respectively. Finally, we complemented the experimental data with analytical and with Monte Carlo simulations - taking into account the stochastic nature of atomic fluorescence - with an excellent agreement.

  3. Cooperative regulation of anxiety and panic-related defensive behaviors in the rat periaqueductal grey matter by 5-HT1A and μ-receptors.

    PubMed

    Roncon, Camila M; Biesdorf, Carla; Coimbra, Norberto C; Audi, Elisabeth A; Zangrossi, Hélio; Graeff, Frederico G

    2013-12-01

    Previous results with the elevated T-maze (ETM) test indicate that the antipanic action of serotonin (5-HT) in the dorsal periaqueductal grey (dPAG) depends on the activation endogenous opioid peptides. The aim of the present work was to investigate the interaction between opioid- and serotonin-mediated neurotransmission in the modulation of defensive responses in rats submitted to the ETM. The obtained results showed that intra-dPAG administration of morphine significantly increased escape latency, a panicolytic-like effect that was blocked by pre-treatment with intra-dPAG injection of either naloxone or the 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1 piperazinyl] ethyl] -N- 2- pyridinyl-ciclohexanecarboxamide maleate (WAY-100635). In addition, previous administration of naloxone antagonized both the anti-escape and the anti-avoidance (anxiolytic-like) effect of the 5-HT1A agonist (±)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT), but did not affect the anti-escape effect of the 5-HT2A agonist (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI). Moreover, the combination of sub-effective doses of locally administered 5-HT and morphine significantly impaired ETM escape performance. Finally, the µ-antagonist D-PHE-CYS-TYR-D-TRP-ORN-THR-PEN (CTOP) blocked the anti-avoidance as well as the anti-escape effect of 8-OHDPAT, and the association of sub-effective doses of the µ-opioid receptor agonist [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin acetate salt (DAMGO) and of 8-OHDPAT had anti-escape and anti-avoidance effects in the ETM. These results suggest a synergic interaction between the 5-HT1A and the µ-opioid receptor at post-synaptic level on neurons of the dPAG that regulate proximal defense, theoretically related to panic attacks.

  4. Waiting for O2

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.; Catling, D. C.; Claire, M.

    2011-12-01

    Oxygenic photosynthesis appears to be a necessary condition for the creation of an oxygen-rich atmosphere like Earth's. But available geological and geochemical evidence suggests that oxygenic photosynthesis appeared hundreds of millions of years before the oxygen-rich atmosphere was fully established. The interregnum implies that at least one other necessary condition for O2 had to be met. Here we argue that the second condition was the irreversible oxidation of the surface and crust by hydrogen escape. This is the same cause as it is for other planets with oxidized surfaces, such as Mars. The link between hydrogen escape and oxygen is direct because the primary process in oxygenic photosynthesis is splitting H2O into hydrogen and O2. Gradual oxidation of the surface and crust eventually brought Earth to a tipping point where free O2 became more stable than competing reduced gases such as CH4; or put another way, the system evolved to the point where surface oxidation under a reducing atmosphere could not keep pace with hydrogen escape. Because hydrogen escape is no faster than other geological processes that govern the long-term redox budget of the atmosphere, the approach to oxygen's final triumph would have been fitful and punctuated by episodes of oxygenation, as the record suggests was the case. The duration of the interregnum was determined by the rate of hydrogen escape and by the size of the reduced reservoir that needed to be oxidized before O2 became favored. If hydrogen escape was responsible for O2, it may be possible to account for the rough constancy of del 13C as a rough constancy of the H2/CO2 ratio in volcanic gases that follows from the constancy of the mantle's oxygen fugacity and a rough constancy in the H2O/CO2 ratio in subducted materials.

  5. Do pigeons (Columba livia) use information about the absence of food appropriately? A further look into suboptimal choice.

    PubMed

    Fortes, Inês; Machado, Armando; Vasconcelos, Marco

    2017-11-01

    In the natural environment, when an animal encounters a stimulus that signals the absence of food-a 'bad-news' stimulus-it will most likely redirect its search to another patch or prey. Because the animal does not pay the opportunity cost of waiting in the presence of a bad-news stimulus, the properties of the stimulus (e.g., its duration and probability) may have little impact in the evolution of the decision processes deployed in these circumstances. Hence, in the laboratory, when animals are forced to experience a bad-news stimulus they seem to ignore its duration, even though they pay the cost of waiting. Under certain circumstances, this insensitivity to the opportunity cost can lead to suboptimal preferences, such as a preference for an option yielding a low rather than a high rate of reinforcement. In 2 experiments, we tested Vasconcelos, Monteiro, and Kacelnik's (2015) assumption that, if given the opportunity, animals will escape the bad-news stimulus. To predict when an escape response should occur, we incorporated ideas from the prey choice model into Vasconcelos et al. (2015) model and made 2 novel predictions. Namely, both longer intertrial intervals and longer durations of signals predicting food or no food should lead to higher proportions of escape responses. The results of 2 experiments with pigeons supported these predictions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Thermal acclimation of interactions: differential responses to temperature change alter predator-prey relationship.

    PubMed

    Grigaltchik, Veronica S; Ward, Ashley J W; Seebacher, Frank

    2012-10-07

    Different species respond differently to environmental change so that species interactions cannot be predicted from single-species performance curves. We tested the hypothesis that interspecific difference in the capacity for thermal acclimation modulates predator-prey interactions. Acclimation of locomotor performance in a predator (Australian bass, Macquaria novemaculeata) was qualitatively different to that of its prey (eastern mosquitofish, Gambusia holbrooki). Warm (25°C) acclimated bass made more attacks than cold (15°C) acclimated fish regardless of acute test temperatures (10-30°C), and greater frequency of attacks was associated with increased prey capture success. However, the number of attacks declined at the highest test temperature (30°C). Interestingly, escape speeds of mosquitofish during predation trials were greater than burst speeds measured in a swimming arena, whereas attack speeds of bass were lower than burst speeds. As a result, escape speeds of mosquitofish were greater at warm temperatures (25°C and 30°C) than attack speeds of bass. The decline in the number of attacks and the increase in escape speed of prey means that predation pressure decreases at high temperatures. We show that differential thermal responses affect species interactions even at temperatures that are within thermal tolerance ranges. This thermal sensitivity of predator-prey interactions can be a mechanism by which global warming affects ecological communities.

  7. Thermal acclimation of interactions: differential responses to temperature change alter predator–prey relationship

    PubMed Central

    Grigaltchik, Veronica S.; Ward, Ashley J. W.; Seebacher, Frank

    2012-01-01

    Different species respond differently to environmental change so that species interactions cannot be predicted from single-species performance curves. We tested the hypothesis that interspecific difference in the capacity for thermal acclimation modulates predator–prey interactions. Acclimation of locomotor performance in a predator (Australian bass, Macquaria novemaculeata) was qualitatively different to that of its prey (eastern mosquitofish, Gambusia holbrooki). Warm (25°C) acclimated bass made more attacks than cold (15°C) acclimated fish regardless of acute test temperatures (10–30°C), and greater frequency of attacks was associated with increased prey capture success. However, the number of attacks declined at the highest test temperature (30°C). Interestingly, escape speeds of mosquitofish during predation trials were greater than burst speeds measured in a swimming arena, whereas attack speeds of bass were lower than burst speeds. As a result, escape speeds of mosquitofish were greater at warm temperatures (25°C and 30°C) than attack speeds of bass. The decline in the number of attacks and the increase in escape speed of prey means that predation pressure decreases at high temperatures. We show that differential thermal responses affect species interactions even at temperatures that are within thermal tolerance ranges. This thermal sensitivity of predator–prey interactions can be a mechanism by which global warming affects ecological communities. PMID:22859598

  8. Hydrodynamical Modeling of Hydrogen Escape from Rocky Planets

    NASA Astrophysics Data System (ADS)

    Barringer, Daniel; Zugger, M.; Kasting, J.

    2013-01-01

    Hydrogen escape affects both the composition of primitive atmospheres of terrestrial planets and the planet’s state of oxidation. On Mars, hydrogen escape played a critical role in how long the planet remained in a warm wet state amenable to life. For both solar and extrasolar planets, hydrogen-rich atmospheres are better candidates for originating life by way of Miller-Urey-type prebiotic synthesis. However, calculating the rate of atmospheric hydrogen escape is difficult, for a number of reasons. First, the escape can be controlled either by diffusion through the homopause or by conditions in the upper atmosphere, whichever is slower. Second, both thermal and non-thermal escape mechanisms are typically important. Third, thermal escape itself can be subdivided into Jeans escape (thin upper atmosphere), and hydrodynamic escape, and hydrodynamic escape can be further subdivided into transonic escape and slower subsonic escape, depending on whether the exobase occurs above or below the sonic point. Additionally, the rate of escape for real terrestrial planet atmospheres, which are not 100% hydrogen, depends upon the concentration of infrared coolants, and upon heating and photochemistry driven largely by extreme ultraviolet (EUV) radiation. We have modified an existing 1-D model of hydrodynamic escape (F. Tian et al., JGR, 2008) to work in the high- hydrogen regime. Calculations are underway to determine hydrogen escape rates as a function of atmospheric H2 mixing ratio and the solar EUV flux. We will compare these rates with the estimated upper limit on the escape rate based on diffusion. Initial results for early Earth and Mars will later be extended to rocky exoplanets.

  9. Protein intrinsic disorder in plants.

    PubMed

    Pazos, Florencio; Pietrosemoli, Natalia; García-Martín, Juan A; Solano, Roberto

    2013-09-12

    To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional) form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously) with different partners. Similarly, they also serve as signal integrators in signaling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms cannot escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks.

  10. Protein intrinsic disorder in plants

    PubMed Central

    Pazos, Florencio; Pietrosemoli, Natalia; García-Martín, Juan A.; Solano, Roberto

    2013-01-01

    To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional) form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously) with different partners. Similarly, they also serve as signal integrators in signaling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms cannot escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks. PMID:24062761

  11. Martian Atmospheric and Ionospheric plasma Escape

    NASA Astrophysics Data System (ADS)

    Lundin, Rickard

    2016-04-01

    Solar forcing is responsible for the heating, ionization, photochemistry, and erosion processes in the upper atmosphere throughout the lifetime of the terrestrial planets. Of the four terrestrial planets, the Earth is the only one with a fully developed biosphere, while our kin Venus and Mars have evolved into arid inhabitable planets. As for Mars, there are ample evidences for an early Noachian, water rich period on Mars. The question is, what made Mars evolve so differently compared to the Earth? Various hydrosphere and atmospheric evolution scenarios for Mars have been forwarded based on surface morphology, chemical composition, simulations, semi-empiric (in-situ data) models, and the long-term evolution of the Sun. Progress has been made, but the case is still open regarding the changes that led to the present arid surface and tenuous atmosphere at Mars. This presentation addresses the long-term variability of the Sun, the solar forcing impact on the Martian atmosphere, and its interaction with the space environment - an electromagnetic wave and particle interaction with the upper atmosphere that has implications for its photochemistry, composition, and energization that governs thermal and non-thermal escape. Non-thermal escape implies an electromagnetic upward energization of planetary ions and molecules to velocities above escape velocity, a process governed by a combination of solar EUV radiation (ionization), and energy and momentum transfer by the solar wind. The ion escape issue dates back to the early Soviet and US-missions to Mars, but the first more accurate estimates of escape rates came with the Phobos-2 mission in 1989. Better-quality ion composition measurement results of atmospheric/ionospheric ion escape from Mars, obtained from ESA Mars Express (MEX) instruments, have improved our understanding of the ion escape mechanism. With the NASA MAVEN spacecraft orbiting Mars since Sept. 2014, dual in-situ measurement with plasma instruments are now carried out in the Martian planetary realm. Of particular interest from a planetary atmospheric escape point of view is the long-term implications of solar forcing. From ASPERA-data on MEX it has been possible to cover the transition from cycle 23 up to the cycle 24 maximum, data displaying clear solar cycle dependence. The planetary ion escape rate increased from solar minimum to solar maximum by a factor of 10. From a regression analysis using ion escape fluxes and solar forcing proxies, a "back-casting" tool is developed [1], enabling determination of the planetary ion escape back in time based on long-term solar forcing proxies (F10.7, sunspot number). The tool may be applied to other long-term solar proxies, such as the radiogenic isotopes in the Earth's atmosphere, 10Be and 14C. The cosmic-ray production of these long-lifetime (>10000 year) isotopes is modulated by the solar-heliospheric magnetic flux, i.e. an indirect measure of solar magnetic activity. Beyond that there is so far only one additional rough "back-casting" tool, the "Sun-in-time", a method whereby the age of, EUV/UV radiation, and mass-loss of other sun-like stars are determined [2, 3]. [1] Lundin et al., Geophys. Res. Lett., 40, 23, pp. 6028-6032, 2013. [2] Wood et al., ApJ, 574:412-425, 2002. [3] Ribas et al., ApJ., 622:680-694, 2005

  12. Relationships among Symptom Management Burden, Coping Responses, and Caregiver Psychological Distress at End of Life.

    PubMed

    Washington, Karla T; Wilkes, Chelsey M; Rakes, Christopher R; Otten, Sheila J; Parker Oliver, Debra; Demiris, George

    2018-05-04

    Family caregivers (FCGs) face numerous stressors and are at heightened risk of psychological distress. While theoretical explanations exist linking caregiving stressors with outcomes such as anxiety and depression, limited testing of these theories has occurred among FCGs of patients nearing the end of life. Researchers sought to evaluate mediational relationships among burden experienced by hospice FCGs because of symptom management demands, caregivers' coping responses, and caregivers' psychological distress. Quantitative data for this descriptive exploratory study were collected through survey. Hypothesized relationships among caregiver variables were examined with structural equation modeling. Respondents were FCGs (N = 228) of hospice patients receiving services from a large, non-profit community hospice in the Mid-Southern United States. Burden associated with managing hospice patients' psychological symptoms was shown to predict psychological distress for FCGs. Caregivers' use of escape-avoidance coping responses mediated this relationship. Results suggest that FCGs would benefit from additional tools to address patients' psychological symptoms at end of life. When faced with psychological symptom management burden, caregivers need a range of coping skills as alternatives to escape-avoidance coping.

  13. Immediate response strategy and shift to place strategy in submerged T-maze.

    PubMed

    Asem, Judith S A; Holland, Peter C

    2013-12-01

    A considerable amount of research has demonstrated that animals can use different strategies when learning about, and navigating within, their environment. Since the influential research of Packard and McGaugh (1996), it has been widely accepted that, early in learning, rats use a flexible dorsal hippocampal-dependent place strategy. As learning progresses, they switch to a less effortful and more automatic dorsolateral caudate-dependent response strategy. However, supporting literature is dominated by the use of appetitively motivated tasks, using food reward. Because motivation often plays a crucial role in guiding learning, memory, and behavior, we examined spatial learning strategies of rats in an escape-motivated submerged T-maze. In Experiment 1, we observed rapid learning and the opposite pattern as that reported in appetitively motivated tasks. Rats exhibited a response strategy early in learning before switching to a place strategy, which persisted over extensive training. In Experiment 2, we replicated Packard and McGaugh's (1996) observations, using the apparatus and procedures as in Experiment 1, but with food reward instead of water escape. Mechanisms for, and implications of, this motivational modulation of spatial learning strategy are considered.

  14. Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans

    PubMed Central

    Liedtke, Wolfgang; Tobin, David M.; Bargmann, Cornelia I.; Friedman, Jeffrey M.

    2003-01-01

    All animals detect osmotic and mechanical stimuli, but the molecular basis for these responses is incompletely understood. The vertebrate transient receptor potential channel vanilloid subfamily 4 (TRPV4) (VR-OAC) cation channel has been suggested to be an osmo/mechanosensory channel. To assess its function in vivo, we expressed TRPV4 in Caenorhabditis elegans sensory neurons and examined its ability to generate behavioral responses to sensory stimuli. C. elegans ASH neurons function as polymodal sensory neurons that generate a characteristic escape behavior in response to mechanical, osmotic, or olfactory stimuli. These behaviors require the TRPV channel OSM-9 because osm-9 mutants do not avoid nose touch, high osmolarity, or noxious odors. Expression of mammalian TRPV4 in ASH neurons of osm-9 worms restored avoidance responses to hypertonicity and nose touch, but not the response to odorant repellents. Mutations known to reduce TRPV4 channel activity also reduced its ability to direct nematode avoidance behavior. TRPV4 function in ASH required the endogenous C. elegans osmotic and nose touch avoidance genes ocr-2, odr-3, osm-10, and glr-1, indicating that TRPV4 is integrated into the normal ASH sensory apparatus. The osmotic and mechanical avoidance responses of TRPV4-expressing animals were different in their sensitivity and temperature dependence from the responses of wild-type animals, suggesting that the TRPV4 channel confers its characteristic properties on the transgenic animals' behavior. These results provide evidence that TRPV4 can function as a component of an osmotic/mechanical sensor in vivo. PMID:14581619

  15. Immune-driven recombination and loss of control after HIV superinfection.

    PubMed

    Streeck, Hendrik; Li, Bin; Poon, Art F Y; Schneidewind, Arne; Gladden, Adrianne D; Power, Karen A; Daskalakis, Demetre; Bazner, Suzane; Zuniga, Rosario; Brander, Christian; Rosenberg, Eric S; Frost, Simon D W; Altfeld, Marcus; Allen, Todd M

    2008-08-04

    After acute HIV infection, CD8(+) T cells are able to control viral replication to a set point. This control is often lost after superinfection, although the mechanism behind this remains unclear. In this study, we illustrate in an HLA-B27(+) subject that loss of viral control after HIV superinfection coincides with rapid recombination events within two narrow regions of Gag and Env. Screening for CD8(+) T cell responses revealed that each of these recombination sites (approximately 50 aa) encompassed distinct regions containing two immunodominant CD8 epitopes (B27-KK10 in Gag and Cw1-CL9 in Env). Viral escape and the subsequent development of variant-specific de novo CD8(+) T cell responses against both epitopes were illustrative of the significant immune selection pressures exerted by both responses. Comprehensive analysis of the kinetics of CD8 responses and viral evolution indicated that the recombination events quickly facilitated viral escape from both dominant WT- and variant-specific responses. These data suggest that the ability of a superinfecting strain of HIV to overcome preexisting immune control may be related to its ability to rapidly recombine in critical regions under immune selection pressure. These data also support a role for cellular immune pressures in driving the selection of new recombinant forms of HIV.

  16. Space Shuttle Hot Cabin Emergency Responses

    NASA Technical Reports Server (NTRS)

    Stepaniak, P.; Effenhauser, R. K.; McCluskey, R.; Gillis, D. B.; Hamilton, D.; Kuznetz, L. H.

    2005-01-01

    Methods: Human thermal tolerance, countermeasures, and thermal model data were reviewed and compared to existing shuttle ECS failure temperature and humidity profiles for each failure mode. Increases in core temperature associated with cognitive impairment was identified, as was metabolic heat generation of crewmembers, temperature monitoring, and communication capabilities after partial power-down and other limiting factors. Orbiter landing strategies and a hydration and salt replacement protocol were developed to put wheels on deck in each failure mode prior to development of significant cognitive impairment or collapse of crewmembers. Thermal tradeoffs for use of the Advanced Crew Escape Suit (ACES), Liquid Cooling Garment, integrated G-suit and Quick Don Mask were examined. candidate solutions involved trade-offs or conflicts with cabin oxygen partial pressure limits, system power-downs to limit heat generation, risks of alternate and emergency landing sites or compromise of Mode V-VIII scenarios. Results: Rehydration and minimized cabin workloads are required in all failure modes. Temperature/humidity profiles increase rapidly in two failure modes, and deorbit is recommended without the ACES, ICU and g-suit. This latter configuration limits several shuttle approach and landing escape modes and requires communication modifications. Additional data requirements were identified and engineering simulations were recommended to develop more current shuttle temperature and humidity profiles. Discussion: After failure of the shuttle ECS, there is insufficient cooling capacity of the ACES to protect crewmembers from rising cabin temperature and humidity. The LCG is inadequate for cabin temperatures above 76 F. Current shuttle future life policy makes it unlikely that major engineering upgrades necessary to address this problem will occur.

  17. Digesting or swimming? Integration of the postprandial metabolism, behavior and locomotion in a frequently foraging fish.

    PubMed

    Nie, Li-Juan; Cao, Zhen-Dong; Fu, Shi-Jian

    2017-02-01

    Fish that are active foragers usually perform routine activities while digesting their food; thus, their postprandial swimming capacity and related behavior adjustments might be ecologically important. To test whether digestion affect swimming performance and the relationships of digestion with metabolism and behavior in an active forager, we investigated the postprandial metabolic response, spontaneous swimming activities, critical swimming speed (Ucrit), and fast-start escape performance of both fasted and digesting (3h after feeding to satiation) juvenile rose bitterling (Rhodeus ocellatus). Feeding to satiation elicited a 50% increase in the oxygen consumption rate, which peaked at 3h after feeding and returned to the prefeeding state after another 3h. However, approximately 50% and 90% of individuals resumed feeding behavior at 2 and 3h postfeeding, respectively, although the meal size varied substantially. Digestion showed no effect on either steady swimming performance as suggested by the Ucrit or unsteady swimming performance indicated by the maximum linear velocity in fast-start escape movement. However, digesting fish showed more spontaneous activity as indicated by the longer total distance traveled, mainly through an increased percentage of time spent moving (PTM). A further analysis found that fasting individuals with high swimming speed were more inclined to increase their PTM during digestive processes. The present study suggests that as an active forager With a small meal size and hence limited postprandial physiological and morphological changes, the swimming performance of rose bitterling is maintained during digestion, which might be crucial for its active foraging mode and anti-predation strategy. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Impact of methane flow through deformable lake sediments on atmospheric release

    NASA Astrophysics Data System (ADS)

    Scandella, B.; Juanes, R.

    2010-12-01

    Methane is a potent greenhouse gas that is generated geothermally and biologically in lake and ocean sediments. Free gas bubbles may escape oxidative traps and contribute more to the atmospheric source than dissolved methane, but the details of the methane release depend on the interactions between the multiple fluid phases and the deformable porous medium. We present a model and supporting laboratory experiments of methane release through “breathing” dynamic flow conduits that open in response to drops in the hydrostatic load on lake sediments, which has been validated against a high-resolution record of free gas flux and hydrostatic pressure in Upper Mystic Lake, MA. In contrast to previous linear elastic fracture mechanics analysis of gassy sediments, the evolution of gas transport in a deformable compliant sediment is presented within the framework of multiphase poroplasticity. Experiments address how strongly the mode and rate of gas flow, captured by our model, impacts the size of bubbles released into the water column. A bubble's size in turn determines how efficiently it transports methane to the atmosphere, and integrating this effect will be critical to improving estimates of the atmospheric methane source from lakes. Cross-sectional schematic of lake sediments showing two venting sites: one open at left and one closed at right. The vertical release of gas bubbles (red) at the open venting site creates a local pressure drop, which drives both bubble formation from the methane-rich pore water (higher concentrations shaded darker red) and lateral advection of dissolved methane (purple arrows). Even as bubbles in the open site escape, those at the closed site remain trapped.

  19. Southeast Asia Report. No. 1296

    DTIC Science & Technology

    1983-06-07

    proposals. Agrarian Reform Minister Coftrado F. Estrella , head of the seven-man delegation, said the Philippine posi- tions on integrated...rural development, human set- tlements, social develop- ment, and other topics were incorporated in the commission’s report. Estrella said the...alleviation of poverty." Estrella said that the ESCAP sought to "analy* ze agricultural policies and Strategie« of member- countries and examine ways of

  20. Inhibition of chaotic escape from a potential well by incommensurate escape-suppressing excitations.

    PubMed

    Chacón, R; Martínez, J A

    2002-03-01

    Theoretical results are presented concerning the reduction of chaotic escape from a potential well by means of a harmonic parametric excitation that satisfies an ultrasubharmonic resonance condition with the escape-inducing excitation. The possibility of incommensurate escape-suppressing excitations is demonstrated by studying rational approximations to the irrational escape-suppressing frequency. The analytical predictions for the suitable amplitudes and initial phases of the escape-suppressing excitation are tested against numerical simulations based on a high-resolution grid of initial conditions. These numerical results indicate that the reduction of escape is reliably achieved for small amplitudes and at, and only at, the predicted initial phases. For the case of irrational escape-suppressing frequencies, the effective escape-reducing initial phases are found to lie close to the accumulation points of the set of suitable initial phases that are associated with the complete series of convergents up to the convergent giving the chosen rational approximation.

  1. MMORPG escapism predicts decreased well-being: examination of gaming time, game realism beliefs, and online social support for offline problems.

    PubMed

    Kaczmarek, Lukasz D; Drążkowski, Dariusz

    2014-05-01

    Massively multiplayer online role-playing game (MMORPG) escapists are individuals who indulge in the MMORPG environment to avoid real world problems. Though a relationship between escapism and deteriorated well-being has been established, little is known about particular pathways that mediate this relationship. In the current study, we examined this topic by testing an integrative model of MMORPG escapism, which includes game realism beliefs, gaming time, offline social support, and online social support for offline problems. MMORPG players (N=1,056) completed measures of escapist motivation, game realism beliefs, social support, well-being, and reported gaming time. The tested structural equation model had a good fit to the data. We found that individuals with escapist motivation endorsed stronger game realism beliefs and spent more time playing MMORPGs, which, in turn, increased online support but decreased offline social support. Well-being was favorably affected by both online and offline social support, although offline social support had a stronger effect. The higher availability of online social support for offline problems did not compensate for the lower availability of offline support among MMORPG escapists. Understanding the psychological factors related to depletion of social resources in MMORPG players can help optimize MMORPGs as leisure activities.

  2. A Physical Theory of the Competition that Allows HIV to Escape from the Immune System

    NASA Astrophysics Data System (ADS)

    Deem, Michael

    2007-03-01

    Competition within the immune system may degrade immune control of viral infections. We formalize the evolution that occurs in both HIV-1 and the immune system quasispecies [1]. Inclusion of competition in the immune system leads to a novel balance between the immune response and HIV-1, in which the eventual outcome is HIV-1 escape rather than control. The analytical model reproduces the three stages of HIV-1 infection. We propose a vaccine regimen that may be able to reduce competition between T cells, potentially eliminating the third stage of HIV-1. 1) G. Wang and M. W. Deem, Phys. Rev. Lett. 97 (2006) 188106.

  3. μ-Opioid and 5-HT1A receptors in the dorsomedial hypothalamus interact for the regulation of panic-related defensive responses.

    PubMed

    Roncon, Camila Marroni; Yamashita, Paula Shimene de Melo; Frias, Alana Tercino; Audi, Elisabeth Aparecida; Graeff, Frederico Guilherme; Coimbra, Norberto Cysne; Zangrossi, Helio

    2017-06-01

    The dorsomedial hypothalamus (DMH) and the dorsal periaqueductal gray (DPAG) have been implicated in the genesis and regulation of panic-related defensive behaviors, such as escape. Previous results point to an interaction between serotonergic and opioidergic systems within the DPAG to inhibit escape, involving µ-opioid and 5-HT1A receptors (5-HT1AR). In the present study we explore this interaction in the DMH, using escape elicited by electrical stimulation of this area as a panic attack index. The obtained results show that intra-DMH administration of the non-selective opioid receptor antagonist naloxone (0.5 nmol) prevented the panicolytic-like effect of a local injection of serotonin (20 nmol). Pretreatment with the selective μ-opioid receptor (MOR) antagonist CTOP (1 nmol) blocked the panicolytic-like effect of the 5-HT1AR agonist 8-OHDPAT (8 nmol). Intra-DMH injection of the selective MOR agonist DAMGO (0.3 nmol) also inhibited escape behavior, and a previous injection of the 5-HT1AR antagonist WAY-100635 (0.37 nmol) counteracted this panicolytic-like effect. These results offer the first evidence that serotonergic and opioidergic systems work together within the DMH to inhibit panic-like behavior through an interaction between µ-opioid and 5-HT1A receptors, as previously described in the DPAG.

  4. Factor analysis of responses to the Irrational Beliefs Scale in a sample of Iraqi university students.

    PubMed

    Hassan, Namir; Ismail, Hairul Nizam

    2004-06-01

    In a study of irrational beliefs within a university population, 282 male and 238 female students responded to the 33-item Students' Irrational Beliefs Scale, and their responses were factor analyzed. Analysis suggested six dimensions could explain 39.5% of the variance. These dimensions were Perfectionism, Negativism, Blame Proneness, Escapism, Anxious Over Concern, and Absolute Demands.

  5. Immune responses to bioengineered organs

    PubMed Central

    Ochando, Jordi; Charron, Dominique; Baptista, Pedro M.; Uygun, Basak E.

    2017-01-01

    Purpose of review Organ donation in the United States registered 9079 deceased organ donors in 2015. This high percentage of donations allowed organ transplantation in 29 851 recipients. Despite increasing numbers of transplants performed in comparison with previous years, the numbers of patients that are in need for a transplant increase every year at a higher rate. This reveals that the discrepancy between the demand and availability of organs remains fundamental problem in organ transplantation. Recent findings Development of bioengineered organs represents a promising approach to increase the pool of organs for transplantation. The technology involves obtaining complex three-dimensional scaffolds that support cellular activity and functional remodeling though tissue recellularization protocols using progenitor cells. This innovative approach integrates cross-thematic approaches from specific areas of transplant immunology, tissue engineering and stem cell biology, to potentially manufacture an unlimited source of donor organs for transplantation. Summary Although bioengineered organs are thought to escape immune recognition, the potential immune reactivity toward each of its components has not been studied in detail. Here, we summarize the host immune response toward different progenitor cells and discuss the potential implications of using nonself biological scaffolds to develop bioengineered organs. PMID:27926545

  6. Autophagy in Measles Virus Infection.

    PubMed

    Rozières, Aurore; Viret, Christophe; Faure, Mathias

    2017-11-24

    Autophagy is a biological process that helps cells to recycle obsolete cellular components and which greatly contributes to maintaining cellular integrity in response to environmental stress factors. Autophagy is also among the first lines of cellular defense against invading microorganisms, including viruses. The autophagic destruction of invading pathogens, a process referred to as xenophagy, involves cytosolic autophagy receptors, such as p62/SQSTM1 (Sequestosome 1) or NDP52/CALCOCO2 (Nuclear Dot 52 KDa Protein/Calcium Binding And Coiled-Coil Domain 2), which bind to microbial components and target them towards growing autophagosomes for degradation. However, most, if not all, infectious viruses have evolved molecular tricks to escape from xenophagy. Many viruses even use autophagy, part of the autophagy pathway or some autophagy-associated proteins, to improve their infectious potential. In this regard, the measles virus, responsible for epidemic measles, has a unique interface with autophagy as the virus can induce multiple rounds of autophagy in the course of infection. These successive waves of autophagy result from distinct molecular pathways and seem associated with anti- and/or pro-measles virus consequences. In this review, we describe what the autophagy-measles virus interplay has taught us about both the biology of the virus and the mechanistic orchestration of autophagy.

  7. The Depression Coping Questionnaire.

    ERIC Educational Resources Information Center

    Kleinke, Chris L.

    College students (N=396), chronic pain patients (N=319), and schizophrenic veterans (N=43) completed the Depression Coping Questionnaire (DCQ) and the Beck Depression Inventory (BDI). Factor analysis of the DCQ identified eleven coping responses: social support, problem solving, self-blame/escape, aggression, indulgence, activities, medication,…

  8. Escape behaviour of birds in urban parks and cemeteries across Europe: Evidence of behavioural adaptation to human activity.

    PubMed

    Morelli, Federico; Mikula, Peter; Benedetti, Yanina; Bussière, Raphaël; Jerzak, Leszek; Tryjanowski, Piotr

    2018-08-01

    Urban environments are very heterogeneous, and birds living in the proximity of humans have to adapt to local conditions, e.g. by changing their behavioural response to potential predators. In this study, we tested whether the escape distance of birds (measured as flight initiation distance; FID) differed between parks and cemeteries, areas characterized by different microhabitat conditions and human conduct, that are determinants of animal behaviour at large spatial scales. While escape behaviour of park populations of birds was often examined, cemetery populations have not been studied to the same extent and a large-scale comparison is still missing. Overall, we collected 2139 FID estimates for 44 bird species recorded in 79 parks and 90 cemeteries in four European countries: Czech Republic, France, Italy and Poland. Mixed model procedure was applied to study escape behaviour in relation to type of area (park or cemetery), environmental characteristics (area size, coverage by trees, shrubs, grass, chapels, tombstones, flowerbeds, number of street lamps) and human activity (human density, pedestrians speed and ratio of men/women). Birds allowed people closer in cemeteries than in parks in all countries. This pattern was persistent even when focusing on intraspecific differences in FID between populations of the most common bird species. Escape distance of birds was negatively correlated with the size of parks/cemeteries, while positively associated with tombstone coverage and human density in both types of habitat. Our findings highlight the ability of birds to adapt their behaviour to different types of urban areas, based on local environmental conditions, including the character of human-bird interactions. Our results also suggest that this behavioural pattern may be widespread across urban landscapes. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Automated guidance algorithms for a space station-based crew escape vehicle.

    PubMed

    Flanary, R; Hammen, D G; Ito, D; Rabalais, B W; Rishikof, B H; Siebold, K H

    2003-04-01

    An escape vehicle was designed to provide an emergency evacuation for crew members living on a space station. For maximum escape capability, the escape vehicle needs to have the ability to safely evacuate a station in a contingency scenario such as an uncontrolled (e.g., tumbling) station. This emergency escape sequence will typically be divided into three events: The first separation event (SEP1), the navigation reconstruction event, and the second separation event (SEP2). SEP1 is responsible for taking the spacecraft from its docking port to a distance greater than the maximum radius of the rotating station. The navigation reconstruction event takes place prior to the SEP2 event and establishes the orbital state to within the tolerance limits necessary for SEP2. The SEP2 event calculates and performs an avoidance burn to prevent station recontact during the next several orbits. This paper presents the tools and results for the whole separation sequence with an emphasis on the two separation events. The first challenge includes collision avoidance during the escape sequence while the station is in an uncontrolled rotational state, with rotation rates of up to 2 degrees per second. The task of avoiding a collision may require the use of the Vehicle's de-orbit propulsion system for maximum thrust and minimum dwell time within the vicinity of the station vicinity. The thrust of the propulsion system is in a single direction, and can be controlled only by the attitude of the spacecraft. Escape algorithms based on a look-up table or analytical guidance can be implemented since the rotation rate and the angular momentum vector can be sensed onboard and a-priori knowledge of the position and relative orientation are available. In addition, crew intervention has been provided for in the event of unforeseen obstacles in the escape path. The purpose of the SEP2 burn is to avoid re-contact with the station over an extended period of time. Performing this maneuver requires knowledge of the orbital state, which is obtained during the navigation state reconstruction event. Since the direction of the delta-v of the SEP1 maneuver is a random variable with respect to the Local Vertical Local Horizontal (LVLH) coordinate system, calculating the required SEP2 burn is a challenge. This problem was solved using elements of neural network theory for model-free function approximation and decision making. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  10. Disruption of the auditory response to a regular click train by a single, extra click.

    PubMed

    Lütkenhöner, Bernd; Patterson, Roy D

    2015-06-01

    It has been hypothesized that the steady-state response to a periodic sequence of clicks can be modeled as the superposition of responses to single clicks. Here, this hypothesis is challenged by presenting an extra click halfway between two consecutive clicks of a regular series, while measuring the auditory evoked field. After a solitary click at time zero, the click series sounded from 100 to 900 ms, with the extra click presented around 500 ms. The silent period between two stimulus sequences was 310-390 ms (uniformly distributed) so that one stimulation cycle lasted, on average, 1250 ms. Five different click rates between 20 and 60 Hz were examined. The disturbance caused by the extra click was revealed by subtracting the estimated steady-state response from the joint response to the click series and the extra click. The early peaks of the single-click response effectively coincide with same-polarity peaks of the 20-Hz steady-state response. Nevertheless, prediction of the latter from the former proved impossible. However, the 40-Hz steady-state response can be predicted reasonably well from the 20-Hz steady-state response. Somewhat surprisingly, the amplitude of the evoked response to the extra click grew when the click rate of the train was increased from 20 to 30 Hz; the opposite effect would have been expected from research on adaptation. The smaller amplitude at lower click rates might be explained by forward suppression. In this case, the apparent escape from suppression at higher rates might indicate that the clicks belonging to the periodic train are being integrated into an auditory stream, possibly in much the same manner as in classical stream segregation experiments.

  11. Cytokinin is required for escape but not release from auxin mediated apical dominance

    PubMed Central

    Müller, Dörte; Waldie, Tanya; Miyawaki, Kaori; To, Jennifer PC; Melnyk, Charles W; Kieber, Joseph J; Kakimoto, Tatsuo; Leyser, Ottoline

    2015-01-01

    Auxin produced by an active primary shoot apex is transported down the main stem and inhibits the growth of the axillary buds below it, contributing to apical dominance. Here we use Arabidopsis thaliana cytokinin (CK) biosynthetic and signalling mutants to probe the role of CK in this process. It is well established that bud outgrowth is promoted by CK, and that CK synthesis is inhibited by auxin, leading to the hypothesis that release from apical dominance relies on an increased supply of CK to buds. Our data confirm that decapitation induces the expression of at least one ISOPENTENYLTRANSFERASE (IPT) CK biosynthetic gene in the stem. We further show that transcript abundance of a clade of the CK-responsive type-A Arabidopsis response regulator (ARR) genes increases in buds following CK supply, and that, contrary to their typical action as inhibitors of CK signalling, these genes are required for CK-mediated bud activation. However, analysis of the relevant arr and ipt multiple mutants demonstrates that defects in bud CK response do not affect auxin-mediated bud inhibition, and increased IPT transcript levels are not needed for bud release following decapitation. Instead, our data suggest that CK acts to overcome auxin-mediated bud inhibition, allowing buds to escape apical dominance under favourable conditions, such as high nitrate availability. Significance Statement It has been proposed that the release of buds from auxin-mediated apical dominance following decapitation requires increased cytokinin biosynthesis and consequent increases in cytokinin supply to buds. Here we show that in Arabidopsis, increases in cytokinin appear to be unnecessary for the release of buds from apical dominance, but rather allow buds to escape the inhibitory effect of apical auxin, thereby promoting bud activation in favourable growth conditions. PMID:25904120

  12. Fluoride bioaccumulation and toxic effects on the survival and behavior of the endangered white-clawed crayfish Austropotamobius pallipes (Lereboullet).

    PubMed

    Aguirre-Sierra, Arantxa; Alonso, Alvaro; Camargo, Julio A

    2013-08-01

    Laboratory experiments were performed to examine the toxic effects of fluoride (F(-)) on the survival and behavior of white-clawed crayfish (Austropotamobius pallipes). Body fluoride contents (bioaccumulation) of test crayfish were also examined. No significant differences between male and female crayfish regarding mortality, escape (tail-flip) response, and fluoride bioaccumulation were detected. For mortality, 48-, 72-, 96-, 120-, 144-, 168-, and 192-h median lethal concentrations (LC50) were estimated to be 93.0, 55.3, 42.7, 36.5, 32.9, 30.6, and 28.9 mg F(-)/l, respectively. For the escape response, 48-, 72-, 96-, 120-, 144-, 168- and 192-h median effective concentrations (EC50) were estimated to be 18.4, 11.1, 8.6, 7.4, 6.7, 6.2 and 5.9 mg F(-)/l, respectively. Average food consumption in test crayfish tended to decrease with increasing water fluoride concentration with a 192-h lowest-observed effect concentration of 10.7 mg F(-)/l. These results indicate that the escape response was the most sensitive end point to fluoride toxicity followed by food consumption and mortality. Fluoride bioaccumulation in test crayfish increased with increasing water fluoride concentration and exposure time. The exoskeleton accumulated more fluoride than muscle. A comparison of the obtained results with previous data for other freshwater invertebrates shows that white-clawed crayfish are relatively tolerant to fluoride toxicity. We conclude that fluoride pollution in freshwater ecosystems should not be viewed as an important risk factor contributing to the catastrophic decrease of A. pallipes in many European countries. Our results indicate that fluoride bioaccumulation in A. pallipes might be used as a bioindicator of fluoride pollution in freshwater ecosystems where it is present.

  13. Stress induces equivalent remodeling of hippocampal spine synapses in a simulated postpartum environment and in a female rat model of major depression.

    PubMed

    Baka, Judith; Csakvari, Eszter; Huzian, Orsolya; Dobos, Nikoletta; Siklos, Laszlo; Leranth, Csaba; MacLusky, Neil J; Duman, Ronald S; Hajszan, Tibor

    2017-02-20

    Stress and withdrawal of female reproductive hormones are known risk factors of postpartum depression. Although both of these factors are capable of powerfully modulating neuronal plasticity, there is no direct electron microscopic evidence of hippocampal spine synapse remodeling in postpartum depression. To address this issue, hormonal conditions of pregnancy and postpartum period were simulated in ovariectomized adult female Sprague-Dawley rats (n=76). The number of hippocampal spine synapses and the depressive behavior of rats in an active escape task were investigated in untreated control, hormone-withdrawn 'postpartum', simulated proestrus, and hormone-treated 'postpartum' animals. After 'postpartum' withdrawal of gonadal steroids, inescapable stress caused a loss of hippocampal spine synapses, which was related to poor escape performance in hormone-withdrawn 'postpartum' females. These responses were equivalent with the changes observed in untreated controls that is an established animal model of major depression. Maintaining proestrus levels of ovarian hormones during 'postpartum' stress exposure did not affect synaptic and behavioral responses to inescapable stress in simulated proestrus animals. By contrast, maintaining pregnancy levels of estradiol and progesterone during 'postpartum' stress exposure completely prevented the stress-induced loss of hippocampal spine synapses, which was associated with improved escape performance in hormone-treated 'postpartum' females. This protective effect appears to be mediated by a muted stress response as measured by serum corticosterone concentrations. In line with our emerging 'synaptogenic hypothesis' of depression, the loss of hippocampal spine synapses may be a novel perspective both in the pathomechanism and in the clinical management of postpartum affective illness. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Stress Induces Equivalent Remodeling of Hippocampal Spine Synapses in a Simulated Postpartum Environment and in a Female Rat Model of Major Depression

    PubMed Central

    Baka, Judith; Csakvari, Eszter; Huzian, Orsolya; Dobos, Nikoletta; Siklos, Laszlo; Leranth, Csaba; MacLusky, Neil J; Duman, Ronald S; Hajszan, Tibor

    2017-01-01

    Stress and withdrawal of female reproductive hormones are known risk factors of postpartum depression. Although both of these factors are capable of powerfully modulating neuronal plasticity, there is no direct electron microscopic evidence of hippocampal spine synapse remodeling in postpartum depression. To address this issue, hormonal conditions of pregnancy and postpartum period were simulated in ovariectomized adult female Sprague-Dawley rats (n=76). The number of hippocampal spine synapses and the depressive behavior of rats in an active escape task were investigated in untreated control, hormone-withdrawn ‘postpa rtum’, simulated proestrus, and hormone-treated ‘postpartum’ animals. After ‘postpartum’ withdrawal of gonadal steroids, inescapable stress caused a loss of hippocampal spine synapses, which was related to poor escape performance in hormone-withdrawn ‘postpartum’ females. These responses were equivalent with the changes observed in untreated controls that is an established animal model of major depression. Maintaining proestrus levels of ovarian hormones during ‘postpartum’ stress exposure did not affect synaptic and behavioral responses to inescapable stress in simulated proestrus animals. By contrast, maintaining pregnancy levels of estradiol and progesterone during ‘postpartum’ stress exposure completely prevented the stress-induced loss of hippocampal spine synapses, which was associated with improved escape performance in hormone-treated ‘postpartum’ females. This protective effect appears to be mediated by a muted stress response as measured by serum corticosterone concentrations. In line with our emerging ‘synaptogenic hypothesis’ of depression, the loss of hippocampal spine synapses may be a novel perspective both in the pathomechanism and in the clinical management of postpartum affective illness. PMID:28012870

  15. Small Spacecraft System-Level Design and Optimization for Interplanetary Trajectories

    NASA Technical Reports Server (NTRS)

    Spangelo, Sara; Dalle, Derek; Longmier, Ben

    2014-01-01

    The feasibility of an interplanetary mission for a CubeSat, a type of miniaturized spacecraft, that uses an emerging technology, the CubeSat Ambipolar Thruster (CAT) is investigated. CAT is a large delta-V propulsion system that uses a high-density plasma source that has been miniaturized for small spacecraft applications. An initial feasibility assessment that demonstrated escaping Low Earth Orbit (LEO) and achieving Earth-escape trajectories with a 3U CubeSat and this thruster technology was demonstrated in previous work. We examine a mission architecture with a trajectory that begins in Earth orbits such as LEO and Geostationary Earth Orbit (GEO) which escapes Earth orbit and travels to Mars, Jupiter, or Saturn. The goal was to minimize travel time to reach the destinations and considering trade-offs between spacecraft dry mass, fuel mass, and solar power array size. Sensitivities to spacecraft dry mass and available power are considered. CubeSats are extremely size, mass, and power constrained, and their subsystems are tightly coupled, limiting their performance potential. System-level modeling, simulation, and optimization approaches are necessary to find feasible and optimal operational solutions to ensure system-level interactions are modeled. Thus, propulsion, power/energy, attitude, and orbit transfer models are integrated to enable systems-level analysis and trades. The CAT technology broadens the possible missions achievable with small satellites. In particular, this technology enables more sophisticated maneuvers by small spacecraft such as polar orbit insertion from an equatorial orbit, LEO to GEO transfers, Earth-escape trajectories, and transfers to other interplanetary bodies. This work lays the groundwork for upcoming CubeSat launch opportunities and supports future development of interplanetary and constellation CubeSat and small satellite mission concepts.

  16. Problems in radiation transfer in astrophysics: An escape probability treatment of line overlap and a model of masers around VX Sgr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockett, P.B.

    1989-01-01

    The escape probability formalism is used in this dissertation to treat two problems in astrophysical radiative transfer. The first problem concerns line overlap, which occurs when two or more spectral lines lie close enough together that there is a significant probability that a photon emitted in one of the lines can be absorbed in another. The second problem involves creating a detailed model of the masers around the supergiant star, VX Sgr. The author has developed an escape probability procedure that accounts for the effects of line overlap by integrating the amount of absorption in each of the overlapping lines.more » This method was used to test the accuracy of a simpler escape probability formalism developed by Elitzur and Netzer that utilized rectangular line profiles. Good agreement between the two methods was found for a wide range of physical conditions. The more accurate method was also used to examine the effects of line overlap of the far infrared lines of the OH molecule. This overlap did have important effects on the level populations and could cause maser emission. He has also developed a detailed model of the OH 1612 and water masers around VX Sgr. He found that the masers can be adequately explained using reasonable estimates for the physical parameters. He also was able to provide a tighter constraint on the highly uncertain mass loss rate from the star. He had less success modeling the SiO masers. His explanation will require a more exact method of treating the many levels involved and also a more accurate knowledge of the relevant physical input parameters.« less

  17. Problems in radiative transfer in astrophysics: An escape probability treatment of line overlap and a model of the masers around VX Sgr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockett, P.B.

    1989-01-01

    The escape probability formalism is used to treat two problems in astrophysical radiative transfer. The first problem concerns line overlap, which occurs when two or more spectral lines lie close enough together that there is a significant probability that a photon emitted in one of the lines can be absorbed in another. The second problem involved creating a detailed model of the masers around the supergiant star, VX Sgr. An escape probability procedure was developed that accounts for the effects of line overlap by integrating the amount of absorption in each of the overlapping lines. This method was used tomore » test the accuracy of a simpler escape probability formalism developed by Elitzur and Netzer that utilized rectangular line profiles. Good agreement between the two methods was found for a wide range of physical conditions. The more accurate method was also used to examine the effects of line overlap of the far infrared lines of the OH molecule. This overlap did have important effects on the level populations and could cause maser emission. A detailed model of the OH 1612 and water masers around VX Sgr were also developed. The masers can be adequately explained using reasonable estimates for the physical parameters. It is possible to provide a tighter constraint on the highly uncertain mass loss rate from the star. Modeling the SiO masers was less successful. Their explanation will require a more exact method of treating the many levels involved and also a more accurate knowledge of the relevant physical input parameters.« less

  18. Scattering of Planetesimals by a Planet

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2004-05-01

    We investigate the scattering process of planetesimals by a planet by numerical orbital integration, aiming at construction of theory for the comet (Oort) cloud formation. The standard scenario of the formation of the Oort cloud can be divided into three dynamical stages:(1)The eccentricity and the aphelion distance of planetesimals are increased by planetary perturbation. (2)The eccentricity is reduced and the perihelion distance is increased by the external forces such as the galactic tide. (3)The inclination is randomized also by the external forces. We model the first stage of this scenario as the restricted three-body problem and calculate the orbital evolution of planetesimals scattered by a planet. There are 4 kinds of outcomes for scattering of planetesimals by a planet: to collide with the planet, to fall onto the central star, to escape from the planetary system, and to remain in bound orbits. Here we consider the escape efficiency as the efficiency of formation of highly eccentric planetesimals, which are candidates for the members of the comet cloud. We obtain the dependence of the escape/collision probability on orbital parameters of the planetesimals and the planet. Using these results, we calculate the efficiencies of escaping from the planetary system and collision with the planet. For example, for the minimum-mass disk model, the inner and massive planet is more efficient to eject planetesimals and increase their eccentricities. Planetesimals with high eccentricities and low inclinations are easier to be ejected from the planetary system. We preset the empirical fitting formulae of these efficiencies as a function of the orbital parameters of the planetesimals and the planets. We apply the results to the solar system and discuss the efficiency of the outer giant planets.

  19. Relationship of scores on the Escapism Scale of the MMPI to escape from minimum security federal custody.

    PubMed

    White, R B

    1979-04-01

    Investigated the ability of the Escapism (Ec) scale of the MMPI to differentiate between escape and non-escape minimum security federal prisoners. At the .05 level there was no difference between the scores of the two groups on the Ec scale or on comparisons of other correctional data, age, and ethnic composition. It appears that the Ec scale alone or in combination with other data will be a poor predictor of escape. Also, the rate of escape was so low as to make accurate prediction from any criteria extremely unlikely.

  20. Mars atmospheric escape and evolution; interaction with the solar wind

    NASA Astrophysics Data System (ADS)

    Chassefière, Eric; Leblanc, François

    2004-09-01

    This tutorial deals with the question of atmospheric escape on Mars. After a brief introduction describing the general context of Mars escape studies, we will present in Section 2 a simplified theory of thermal escape, of both Jeans and hydrodynamic types. The phenomenon of hydrodynamic escape, still hypothetical and not proved to have ever existed on terrestrial planets, will be treated with the help of two well known examples: (i) the isotopic fractionation of xenon in Mars and Earth atmospheres, (ii) the paradox of missing oxygen in Venus atmosphere. In Section 3, a simplified approach of non-thermal escape will be developed, treating in a specific way the different kinds of escape (photochemical escape, ion sputtering, ion escape and ionospheric outflow). As a matter of illustration, some calculations of the relative contributions of these mechanisms, and of their time evolutions, will be given, and the magnitude of the total amount of atmosphere lost by non-thermal escape will be estimated. Section 4 will present the state of knowledge concerning the constraints derived from Mars isotopic geochemistry in terms of past escape and evolution. Finally, a few conclusions, which are more interrogations, will be proposed.

  1. Special Operations Forces--Responsive, Capable, and Ready

    DTIC Science & Technology

    1990-05-01

    communication Planning Criticisms of poor communications that hammeted mission success rangea from radio inoperability amorng raid force elements to strict...ons, an armory. and a means of rapid escape are also face the Unenviable choice of rushing light and inad- normally part of the complex. equate

  2. The Holocaust and History.

    ERIC Educational Resources Information Center

    Singer, Alan, Ed.

    2003-01-01

    This theme based journal issue consists of articles and teaching ideas focusing on the Holocaust and history. This publication contains the following materials: (1) "Multiple Perspectives on the Holocaust?" (Alan Singer); (2) "Responses to 'Multiple Perspectives on the Holocaust'"; (3) "Escape to Cuba: Story of Laura Kahn,…

  3. Late Veneer collisions and their impact on the evolution of Venus (PS Division Outstanding ECS Award Lecture)

    NASA Astrophysics Data System (ADS)

    Gillmann, Cedric; Golabek, Gregor; Tackley, Paul; Raymond, Sean

    2017-04-01

    During the end of the accretion, the so-called Late Veneer phase, while the bulk of the mass of terrestrial planets is already in place, a substantial number of large collisions can still occur. Those impacts are thought to be responsible for the repartition of the Highly Siderophile Elements. They are also susceptible to have a strong effect on volatile repartition and mantle convection. We study how Late Veneer impacts modify the evolution of Venus and its atmosphere, using a coupled numerical simulation. We focus on volatile exchanges and their effects on surface conditions. Mantle dynamics, volcanism and degassing processes lead to an input of gases in the atmosphere and are modeled using the StagYY mantle convection code. Volatile losses are estimated through atmospheric escape modeling. It involves two different aspects: hydrodynamic escape (0-500 Myr) and non-thermal escape. Hydrodynamic escape is massive but occurs only when the solar energy input is strong. Post 4 Ga escape from non-thermal processes is comparatively low but long-lived. The resulting state of the atmosphere is used to the calculate greenhouse effect and surface temperature, through a one-dimensional gray radiative-convective model. Large impacts are capable of contributing to (i) atmospheric escape, (ii) volatile replenishment and (iii) energy transfer to the mantle. We test various impactor compositions, impact parameters (velocity, location, size, and timing) and eroding power. Scenarios we tested are adapted from numerical stochastic simulations (Raymond et al., 2013). Impactor sizes are dominated by large bodies (R>500 km). Erosion of the atmosphere by a few large impacts appears limited. Swarms of smaller more mass-effective impactors seem required for this effect to be significant. Large impactors have two main effects on the atmosphere. They can (i) create a large input of volatile from the melting they cause during the impact and through the volatiles they carry. This leads to an increase in atmosphere density and surface temperatures. However, early impacts can also (ii) deplete the mantle of Venus and (assuming strong early escape) ultimately remove volatiles from the system, leading to lower late degassing and lower surface temperatures. The competition between those effects depends on the time of the impact, which directly governs the strength of atmospheric losses.

  4. Born Knowing: Tentacled Snakes Innately Predict Future Prey Behavior

    PubMed Central

    Catania, Kenneth C.

    2010-01-01

    Background Aquatic tentacled snakes (Erpeton tentaculatus) can take advantage of their prey's escape response by startling fish with their body before striking. The feint usually startles fish toward the snake's approaching jaws. But when fish are oriented at a right angle to the jaws, the C-start escape response translates fish parallel to the snake's head. To exploit this latter response, snakes must predict the future location of the fish. Adult snakes can make this prediction. Is it learned, or are tentacled snakes born able to predict future fish behavior? Methods and Findings Laboratory-born, naïve snakes were investigated as they struck at fish. Trials were recorded at 250 or 500 frames per second. To prevent learning, snakes were placed in a water container with a clear transparency sheet or glass bottom. The chamber was placed over a channel in a separate aquarium with fish below. Thus snakes could see and strike at fish, without contact. The snake's body feint elicited C-starts in the fish below the transparency sheet, allowing strike accuracy to be quantified in relationship to the C-starts. When fish were oriented at a right angle to the jaws, naïve snakes biased their strikes to the future location of the escaping fish's head, such that the snake's jaws and the fish's translating head usually converged. Several different types of predictive strikes were observed. Conclusions The results show that some predators have adapted their nervous systems to directly compensate for the future behavior of prey in a sensory realm that usually requires learning. Instead of behavior selected during their lifetime, newborn tentacled snakes exhibit behavior that has been selected on a different scale—over many generations. Counter adaptations in fish are not expected, as tentacled snakes are rare predators exploiting fish responses that are usually adaptive. PMID:20585384

  5. A comparison of procedures for unpairing conditioned reflexive motivating operations.

    PubMed

    Kettering, Tracy L; Neef, Nancy A; Kelley, Michael E; Heward, William L

    2018-03-01

    This study compared the effectiveness of two procedures to reduce behavior evoked by a reflexive conditioned motivating operation (CMO-R). Task demands were shown to evoke escape-maintained problem behavior for 4 students with disabilities. Alternative communication responses were taught as an appropriate method to request escape and this treatment combined with extinction for problem behavior led to decreases in problem behavior for all students. A beeping timer was then arranged to temporally precede the task demand to create a CMO-R that evoked communication responses. When data showed that the sound of the timer was functioning as a CMO-R, two methods to reduce behavior evoked by a CMO-R-extinction unpairing and noncontingent unpairing-were evaluated. Results indicated that noncontingent unpairing was an effective method to reduce the evocative effects of the CMO-R. Extinction produced unsystematic effects across participants. Results are discussed in terms of abolishing CMOs and the implications of CMOs. © 2018 Society for the Experimental Analysis of Behavior.

  6. Antigenic variability: Obstacles on the road to vaccines against traditionally difficult targets.

    PubMed

    Servín-Blanco, R; Zamora-Alvarado, R; Gevorkian, G; Manoutcharian, K

    2016-10-02

    Despite the impressive impact of vaccines on public health, the success of vaccines targeting many important pathogens and cancers has to date been limited. The burden of infectious diseases today is mainly caused by antigenically variable pathogens (AVPs), which escape immune responses induced by prior infection or vaccination through changes in molecular structures recognized by antibodies or T cells. Extensive genetic and antigenic variability is the major obstacle for the development of new or improved vaccines against "difficult" targets. Alternative, qualitatively new approaches leading to the generation of disease- and patient-specific vaccine immunogens that incorporate complex permanently changing epitope landscapes of intended targets accompanied by appropriate immunomodulators are urgently needed. In this review, we highlight some of the most critical common issues related to the development of vaccines against many pathogens and cancers that escape protective immune responses owing to antigenic variation, and discuss recent efforts to overcome the obstacles by applying alternative approaches for the rational design of new types of immunogens.

  7. VLT/MUSE illuminates possible channels for Lyman continuum escape in the halo of SBS 0335-52E

    NASA Astrophysics Data System (ADS)

    Herenz, E. C.; Hayes, M.; Papaderos, P.; Cannon, J. M.; Bik, A.; Melinder, J.; Östlin, G.

    2017-10-01

    We report on the discovery of ionised gas filaments in the circum-galactic halo of the extremely metal-poor compact starburst SBS 0335-052E in a 1.5 h integration with the MUSE integral-field spectrograph. We detect these features in Hα and [O III] emission down to a limiting surface-brightness of 5 × 10-19 erg s-1 cm-2 arcsec-2. The filaments have projected diameters of 2.1 kpc and extend more than 9 kpc to the north and north-west from the main stellar body. We also detect extended nebular He II λ4686 emission that brightens towards the north-west at the rim of a starburst driven super-shell. We also present a velocity field of the ionised gas. The filaments appear to connect seamlessly in velocity space to the kinematical disturbances caused by the shell. Similar to high-z star-forming galaxies, the ionised gas in this galaxy is dispersion dominated. We argue that the filaments were created via feedback from the starburst and that these ionised structures in the halo may act as escape channels for Lyman continuum radiation in this gas-rich system. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 096.B-0690.

  8. Simulations of Dissipative Circular Restricted Three-body Problems Using the Velocity-scaling Correction Method

    NASA Astrophysics Data System (ADS)

    Wang, Shoucheng; Huang, Guoqing; Wu, Xin

    2018-02-01

    In this paper, we survey the effect of dissipative forces including radiation pressure, Poynting–Robertson drag, and solar wind drag on the motion of dust grains with negligible mass, which are subjected to the gravities of the Sun and Jupiter moving in circular orbits. The effect of the dissipative parameter on the locations of five Lagrangian equilibrium points is estimated analytically. The instability of the triangular equilibrium point L4 caused by the drag forces is also shown analytically. In this case, the Jacobi constant varies with time, whereas its integral invariant relation still provides a probability for the applicability of the conventional fourth-order Runge–Kutta algorithm combined with the velocity scaling manifold correction scheme. Consequently, the velocity-only correction method significantly suppresses the effects of artificial dissipation and a rapid increase in trajectory errors caused by the uncorrected one. The stability time of an orbit, regardless of whether it is chaotic or not in the conservative problem, is apparently longer in the corrected case than in the uncorrected case when the dissipative forces are included. Although the artificial dissipation is ruled out, the drag dissipation leads to an escape of grains. Numerical evidence also demonstrates that more orbits near the triangular equilibrium point L4 escape as the integration time increases.

  9. Flight crew interface aspects of forward-looking airborne windshear detection systems

    NASA Technical Reports Server (NTRS)

    Anderson, Charles D.; Carbaugh, David C.

    1993-01-01

    The goal of this research effort was to conduct analyses and research which could provide guidelines for design of the crew interface of an integrated windshear system. Addressed were HF issues, crew/system requirements, candidate display formats, alerting criteria, and crew procedures. A survey identified five flight management issues as top priority: missed alert acceptability; avoidance distance needed; false alert acceptability; nuisance rate acceptability; and crew procedures. Results of a simulation study indicated that the warning time for a look-ahead alert needs to be between 11 and 36 seconds (target of 23 seconds) before the reactive system triggers in order to be effective. Pilots considered the standard go-around maneuver most appropriate for look-ahead alerts, and the escape maneuvers used did not require lateral turns. Prototype display formats were reviewed or developed for alerting the crew; providing guidance to avoid or escape windshear; and status displays to provide windshear situational awareness. The three alerting levels now in use were considered appropriate, with a fourth (time-critical) level as a possible addition, although many reviewers felt only two levels of alerting were needed. Another survey gathered expert opinion on what crew procedures and alerting criteria should be used for look-ahead, or integrated, windshear systems, with a wide diversity of opinion in these areas.

  10. Biodiversity conservation in Swedish forests: ways forward for a 30-year-old multi-scaled approach.

    PubMed

    Gustafsson, Lena; Perhans, Karin

    2010-12-01

    A multi-scaled model for biodiversity conservation in forests was introduced in Sweden 30 years ago, which makes it a pioneer example of an integrated ecosystem approach. Trees are set aside for biodiversity purposes at multiple scale levels varying from individual trees to areas of thousands of hectares, with landowner responsibility at the lowest level and with increasing state involvement at higher levels. Ecological theory supports the multi-scaled approach, and retention efforts at every harvest occasion stimulate landowners' interest in conservation. We argue that the model has large advantages but that in a future with intensified forestry and global warming, development based on more progressive thinking is necessary to maintain and increase biodiversity. Suggestions for the future include joint planning for several forest owners, consideration of cost-effectiveness, accepting opportunistic work models, adjusting retention levels to stand and landscape composition, introduction of temporary reserves, creation of "receiver habitats" for species escaping climate change, and protection of young forests.

  11. Genetic analysis of vertebrate sensory hair cell mechanosensation: the zebrafish circler mutants.

    PubMed

    Nicolson, T; Rüsch, A; Friedrich, R W; Granato, M; Ruppersberg, J P; Nüsslein-Volhard, C

    1998-02-01

    The molecular basis of sensory hair cell mechanotransduction is largely unknown. In order to identify genes that are essential for mechanosensory hair cell function, we characterized a group of recently isolated zebrafish motility mutants. These mutants are defective in balance and swim in circles but have no obvious morphological defects. We examined the mutants using calcium imaging of acoustic-vibrational and tactile escape responses, high resolution microscopy of sensory neuroepithelia in live larvae, and recordings of extracellular hair cell potentials (microphonics). Based on the analyses, we have identified several classes of genes. Mutations in sputnik and mariner affect hair bundle integrity. Mutant astronaut and cosmonaut hair cells have relatively normal microphonics and thus appear to affect events downstream of mechanotransduction. Mutant orbiter, mercury, and gemini larvae have normal hair cell morphology and yet do not respond to acoustic-vibrational stimuli. The microphonics of lateral line hair cells of orbiter, mercury, and gemini larvae are absent or strongly reduced. Therefore, these genes may encode components of the transduction apparatus.

  12. Relation of pretreatment sequence diversity in NS5A region of HCV genotype 1 with immune response between pegylated-INF/ribavirin therapy outcomes.

    PubMed

    de Queiróz, A T L; Maracaja-Coutinho, V; Jardim, A C G; Rahal, P; de Carvalho-Mello, I M V G; Matioli, S R

    2011-02-01

    Hepatitis C virus (HCV) infection frequently persists despite substantial virus-specific immune responses and the combination of pegylated interferon (INF)-α and ribavirin therapy. Major histocompatibility complex class I restricted CD8(+) T cells are responsible for the control of viraemia in HCV infection, and several studies suggest protection against viral infection associated with specific HLAs. The reason for low rates of sustained viral response (SVR) in HCV patients remains unknown. Escape mutations in response to cytotoxic T lymphocyte are widely described; however, its influence in the treatment outcome is ill understood. Here, we investigate the differences in CD8 epitopes frequencies from the Los Alamos database between groups of patients that showed distinct response to pegylated α-INF with ribavirin therapy and test evidence of natural selection on the virus in those who failed treatment, using five maximum likelihood evolutionary models from PAML package. The group of sustained virological responders showed three epitopes with frequencies higher than Non-responders group, all had statistical support, and we observed evidence of selection pressure in the last group. No escape mutation was observed. Interestingly, the epitope VLSDFKTWL was 100% conserved in SVR group. These results suggest that the response to treatment can be explained by the increase in immune pressure, induced by interferon therapy, and the presence of those epitopes may represent an important factor in determining the outcome of therapy. © 2010 Blackwell Publishing Ltd.

  13. 46 CFR 185.606 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Escape hatches and emergency exits. 185.606 Section 185... 100 GROSS TONS) OPERATIONS Markings Required § 185.606 Escape hatches and emergency exits. All escape hatches and other emergency exits used as means of escape must be marked on both sides in clearly legible...

  14. 46 CFR 185.606 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Escape hatches and emergency exits. 185.606 Section 185... 100 GROSS TONS) OPERATIONS Markings Required § 185.606 Escape hatches and emergency exits. All escape hatches and other emergency exits used as means of escape must be marked on both sides in clearly legible...

  15. 46 CFR 185.606 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Escape hatches and emergency exits. 185.606 Section 185... 100 GROSS TONS) OPERATIONS Markings Required § 185.606 Escape hatches and emergency exits. All escape hatches and other emergency exits used as means of escape must be marked on both sides in clearly legible...

  16. 46 CFR 185.606 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Escape hatches and emergency exits. 185.606 Section 185... 100 GROSS TONS) OPERATIONS Markings Required § 185.606 Escape hatches and emergency exits. All escape hatches and other emergency exits used as means of escape must be marked on both sides in clearly legible...

  17. 46 CFR 185.606 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Escape hatches and emergency exits. 185.606 Section 185... 100 GROSS TONS) OPERATIONS Markings Required § 185.606 Escape hatches and emergency exits. All escape hatches and other emergency exits used as means of escape must be marked on both sides in clearly legible...

  18. Escape as Reinforcement and Escape Extinction in the Treatment of Feeding Problems

    ERIC Educational Resources Information Center

    LaRue, Robert H.; Stewart, Victoria; Piazza, Cathleen C.; Volkert, Valerie M.; Patel, Meeta R.; Zeleny, Jason

    2011-01-01

    Given the effectiveness of putative escape extinction as treatment for feeding problems, it is surprising that little is known about the effects of escape as reinforcement for appropriate eating during treatment. In the current investigation, we examined the effectiveness of escape as reinforcement for mouth clean (a product measure of…

  19. High-Throughput Analysis of Stimulus-Evoked Behaviors in Drosophila Larva Reveals Multiple Modality-Specific Escape Strategies

    PubMed Central

    Ohyama, Tomoko; Jovanic, Tihana; Denisov, Gennady; Dang, Tam C.; Hoffmann, Dominik; Kerr, Rex A.; Zlatic, Marta

    2013-01-01

    All organisms react to noxious and mechanical stimuli but we still lack a complete understanding of cellular and molecular mechanisms by which somatosensory information is transformed into appropriate motor outputs. The small number of neurons and excellent genetic tools make Drosophila larva an especially tractable model system in which to address this problem. We developed high throughput assays with which we can simultaneously expose more than 1,000 larvae per man-hour to precisely timed noxious heat, vibration, air current, or optogenetic stimuli. Using this hardware in combination with custom software we characterized larval reactions to somatosensory stimuli in far greater detail than possible previously. Each stimulus evoked a distinctive escape strategy that consisted of multiple actions. The escape strategy was context-dependent. Using our system we confirmed that the nociceptive class IV multidendritic neurons were involved in the reactions to noxious heat. Chordotonal (ch) neurons were necessary for normal modulation of head casting, crawling and hunching, in response to mechanical stimuli. Consistent with this we observed increases in calcium transients in response to vibration in ch neurons. Optogenetic activation of ch neurons was sufficient to evoke head casting and crawling. These studies significantly increase our understanding of the functional roles of larval ch neurons. More generally, our system and the detailed description of wild type reactions to somatosensory stimuli provide a basis for systematic identification of neurons and genes underlying these behaviors. PMID:23977118

  20. Decompression illness in goats following simulated submarine escape: 1993-2006.

    PubMed

    Seddon, F M; Thacker, J C; Fisher, A S; Jurd, K M; White, M G; Loveman, G A M

    2014-01-01

    The United Kingdom Ministry of Defence commissioned work to define the relationship between the internal pressure of a distressed submarine (DISSUB), the depth from which escape is made and the risk of decompression illness (DCI). The program of work used an animal model (goat) to define these risks and this paper reports the incidence and type of DCI observed. A total of 748 pressure exposures comprising saturation only, escape only or saturation followed by escape were conducted in the submarine escape simulator between 1993 and 2006. The DCI following saturation exposures was predominantly limb pain, whereas following escape exposures the DCI predominantly involved the central nervous system and was fast in onset. There was no strong relationship between the risk of DCI and the range of escape depths investigated. The risk of DCI incurred from escape following saturation was greater than that obtained by combining the risks for the independent saturation only, and escape only, exposures. The output from this program of work has led to improved advice on the safety of submarine escape.

  1. Neural control and precision of flight muscle activation in Drosophila.

    PubMed

    Lehmann, Fritz-Olaf; Bartussek, Jan

    2017-01-01

    Precision of motor commands is highly relevant in a large context of various locomotor behaviors, including stabilization of body posture, heading control and directed escape responses. While posture stability and heading control in walking and swimming animals benefit from high friction via ground reaction forces and elevated viscosity of water, respectively, flying animals have to cope with comparatively little aerodynamic friction on body and wings. Although low frictional damping in flight is the key to the extraordinary aerial performance and agility of flying birds, bats and insects, it challenges these animals with extraordinary demands on sensory integration and motor precision. Our review focuses on the dynamic precision with which Drosophila activates its flight muscular system during maneuvering flight, considering relevant studies on neural and muscular mechanisms of thoracic propulsion. In particular, we tackle the precision with which flies adjust power output of asynchronous power muscles and synchronous flight control muscles by monitoring muscle calcium and spike timing within the stroke cycle. A substantial proportion of the review is engaged in the significance of visual and proprioceptive feedback loops for wing motion control including sensory integration at the cellular level. We highlight that sensory feedback is the basis for precise heading control and body stability in flies.

  2. Risks incurred by hydrogen escaping from containers and conduits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swain, M.R.; Grilliot, E.S.

    1998-08-01

    This paper is a discussion of a method for hydrogen leak classification. Leaks are classified as; gas escapes into enclosed spaces, gas escapes into partially enclosed spaces (vented), and gas escapes into unenclosed spaces. Each of the three enclosure classifications is further divided into two subclasses; total volume of hydrogen escaped and flow rate of escaping hydrogen. A method to aid in risk assessment determination in partially enclosed spaces is proposed and verified for several enclosure geometries. Examples are discussed for additional enclosure geometries.

  3. Mergers in health care: avoiding divorce IDS style.

    PubMed

    Drazen, E; Kueber, M

    1998-08-01

    The recent flurry of merger activity in the healthcare industry has given rise to a significant number of integration efforts. Unfortunately, some of these "marriages" will end in "divorce." Reasons for failure can be found in four critical dimensions of integration: structural, operational, clinical, and informational. Each dimension has its associated pitfalls, and every merger confronts clearly identifiable risks. By taking steps to mitigate such risks, merging organizations can improve the chances the merger will succeed. If the merger does fail, measures taken prior to the merger, such as including an escape clause in the merger contract, can help avoid problems in dividing operational assets, physicians practices, and information assets.

  4. Multiparameter behavioral profiling reveals distinct thermal response regimes in Caenorhabditis elegans

    PubMed Central

    2012-01-01

    Background Responding to noxious stimuli by invoking an appropriate escape response is critical for survival of an organism. The sensations of small and large changes in temperature in most organisms have been studied separately in the context of thermotaxis and nociception, respectively. Here we use the nematode C. elegans to address the neurogenetic basis of responses to thermal stimuli over a broad range of intensities. Results C. elegans responds to aversive temperature by eliciting a stereotypical behavioral sequence. Upon sensation of the noxious stimulus, it moves backwards, turns and resumes forward movement in a new direction. In order to study the response of C. elegans to a broad range of noxious thermal stimuli, we developed a novel assay that allows simultaneous characterization of multiple aspects of escape behavior elicited by thermal pulses of increasing amplitudes. We exposed the laboratory strain N2, as well as 47 strains with defects in various aspects of nervous system function, to thermal pulses ranging from ΔT = 0.4°C to 9.1°C and recorded the resulting behavioral profiles. Conclusions Through analysis of the multidimensional behavioral profiles, we found that the combinations of molecules shaping avoidance responses to a given thermal pulse are unique. At different intensities of aversive thermal stimuli, these distinct combinations of molecules converge onto qualitatively similar stereotyped behavioral sequences. PMID:23114012

  5. Effects of reinforcement without extinction on increasing compliance with nail cutting: A systematic replication.

    PubMed

    Dowdy, Art; Tincani, Matt; Nipe, Timothy; Weiss, Mary Jane

    2018-06-17

    Personal hygiene routines, such as nail cutting, are essential for maintaining good health. However, individuals with autism spectrum disorder (ASD) and other developmental disabilities often struggle to comply with essential, personal hygiene routines. We conducted a systematic replication of Schumacher and Rapp (2011), Shabani and Fisher (2006), and Bishop et al. (2013) to evaluate an intervention that did not require escape extinction for increasing compliance with nail cutting. With two adolescents diagnosed with ASD who resisted nail cutting, we evaluated the effects of delivering a preferred edible item contingent on compliance with nail cutting. Results indicated that the treatment reduced participants' escape responses and increased their compliance with nail cutting. © 2018 Society for the Experimental Analysis of Behavior.

  6. Hydrodynamic escape from planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Tian, Feng

    Hydrodynamic escape is an important process in the formation and evolution of planetary atmospheres. Due to the existence of a singularity point near the transonic point, it is difficult to find transonic steady state solutions by solving the time-independent hydrodynamic equations. In addition to that, most previous works assume that all energy driving the escape flow is deposited in one narrow layer. This assumption not only results in less accurate solutions to the hydrodynamic escape problem, but also makes it difficult to include other chemical and physical processes in the hydrodynamic escape models. In this work, a numerical model describing the transonic hydrodynamic escape from planetary atmospheres is developed. A robust solution technique is used to solve the time dependent hydrodynamic equations. The method has been validated in an isothermal atmosphere where an analytical solution is available. The hydrodynamic model is applied to 3 cases: hydrogen escape from small orbit extrasolar planets, hydrogen escape from a hydrogen rich early Earth's atmosphere, and nitrogen/methane escape from Pluto's atmosphere. Results of simulations on extrasolar planets are in good agreement with the observations of the transiting extrasolar planet HD209458b. Hydrodynamic escape of hydrogen from other hypothetical close-in extrasolar planets are simulated and the influence of hydrogen escape on the long-term evolution of these extrasolar planets are discussed. Simulations on early Earth suggest that hydrodynamic escape of hydrogen from a hydrogen rich early Earth's atmosphere is about two orders magnitude slower than the diffusion limited escape rate. A hydrogen rich early Earth's atmosphere could have been maintained by the balance between the hydrogen escape and the supply of hydrogen into the atmosphere by volcanic outgassing. Origin of life may have occurred in the organic soup ocean created by the efficient formation of prebiotic molecules in the hydrogen rich early Earth's atmosphere. Simulations show that hydrodynamic escape of nitrogen from Pluto is able to remove a ~3 km layer of ice over the age of the solar system. The escape flux of neutral nitrogen may interact with the solar wind at Pluto's orbit and may be detected by the New Horizon mission.

  7. Creating Engaging Escape Rooms for the Classroom

    ERIC Educational Resources Information Center

    Nicholson, Scott

    2018-01-01

    Escape rooms are "live-action team-based games where players discover clues, solve puzzles, and accomplish tasks in one or more rooms in order to accomplish a specific goal (usually escaping from the room) in a limited amount of time." Escape Rooms are one type of Escape Game, which are narrative-based challenges that use puzzles, tasks,…

  8. Learned helplessness in the rat: effect of response topography in a within-subject design.

    PubMed

    dos Santos, Cristiano Valerio; Gehm, Tauane; Hunziker, Maria Helena Leite

    2011-02-01

    Three experiments investigated learned helplessness in rats manipulating response topography within-subject and different intervals between treatment and tests among groups. In Experiment 1, rats previously exposed to inescapable shocks were tested under an escape contingency where either jumping or nose poking was required to terminate shocks; tests were run either 1, 14 or 28 days after treatment. Most rats failed to jump, as expected, but learned to nose poke, regardless of the interval between treatment and tests and order of testing. The same results were observed in male and female rats from a different laboratory (Experiment 2) and despite increased exposure to the escape contingencies using a within-subject design (Experiment 3). Furthermore, no evidence of helplessness reversal was observed, since animals failed to jump even after having learned to nose-poke in a previous test session. These results are not consistent with a learned helplessness hypothesis, which claims that shock (un)controllability is the key variable responsible for the effect. They are nonetheless consistent with the view that inescapable shocks enhance control by irrelevant features of the relationship between the environment and behavior. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Tumor acidity-activatable manganese phosphate nanoplatform for amplification of photodynamic cancer therapy and magnetic resonance imaging.

    PubMed

    Hao, Yongwei; Zheng, Cuixia; Wang, Lei; Zhang, Jinjie; Niu, Xiuxiu; Song, Qingling; Feng, Qianhua; Zhao, Hongjuan; Li, Li; Zhang, Hongling; Zhang, Zhenzhong; Zhang, Yun

    2017-10-15

    Amorphous biodegradable metal phosphate nanomaterials are considered to possess great potential in cancer theranostic application due to their promise in providing ultra-sensitive pH-responsive therapeutic benefits and diagnostic functions simultaneously. Here we report the synthesis of photosensitising and acriflavine-carrying amorphous porous manganese phosphate (PMP) nanoparticles with ultra-sensitive pH-responsive degradability and their application for a photoactivable synergistic nanosystem that imparts reactive oxygen species (ROS) induced cytotoxicity in synchrony with hypoxia-inducible factor 1α/vascular endothelial growth factor (HIF1α/VEGF) inhibitor that suppresses tumor growth and treatment escape signalling pathway. Carboxymethyl dextran (CMD) is chemically anchored on the surface of porous manganese phosphate theranostic system through the pH-responsive boronate esters. Upon the stimulus of the tumor acid microenvironment, manganese phosphate disintegrates and releases Mn 2+ ions rapidly, which are responsible for the magnetic resonance imaging (MRI) effect. Meanwhile, the released photosensitizer chlorin e6 (Ce6) produces ROS under irradiation while acriflavine (ACF) inhibits the HIF-1α/VEGF pathway during the burst release of VEGF in tumour induced by photodynamic therapy (PDT), resulting in increased therapeutic efficacy. Considering the strong pH responsivity, MRI signal amplification and drug release profile, the PMP nanoparticles offer new prospects for tumor acidity-activatable theranostic application by amplifying the PDT through inhibiting the HIF-1α /VEGF pathway timely while enhancing the MRI effect. In this study, we report the synthesis of the tumor acidity-activatable amorphous porous manganese phosphate nanoparticles and their application for a photoactivable synergistic nanosystem that imparts reactive oxygen species (ROS) induced cytotoxicity in synchrony with hypoxia-inducible factor 1α/vascular endothelial growth factor (HIF-1α/VEGF) inhibitor that suppresses tumor growth and treatment escape signalling pathway. Besides, upon the stimulus of the tumor acid microenvironment, the manganese phosphate nanoparticles finally disintegrate and release Mn 2+ ions rapidly, which are responsible for the magnetic resonance imaging (MRI) effect. This nanoplatform is featured with distinctive advantages such as ultra pH-responsive drug release, MRI function and rational drug combination exploiting the blockage of the treatment escape signalling pathway. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. A comparison of positive and negative reinforcement for compliance to treat problem behavior maintained by escape.

    PubMed

    Slocum, Sarah K; Vollmer, Timothy R

    2015-09-01

    Previous research has shown that problem behavior maintained by escape can be treated using positive reinforcement. In the current study, we directly compared functional (escape) and nonfunctional (edible) reinforcers in the treatment of escape-maintained problem behavior for 5 subjects. In the first treatment, compliance produced a break from instructions. In the second treatment, compliance produced a small edible item. Neither treatment included escape extinction. Results suggested that the delivery of a positive reinforcer for compliance was effective for treating escape-maintained problem behavior for all 5 subjects, and the delivery of escape for compliance was ineffective for 3 of the 5 subjects. Implications and future directions related to the use of positive reinforcers in the treatment of escape behavior are discussed. © Society for the Experimental Analysis of Behavior.

  11. An empirical investigation of time-out with and without escape extinction to treat escape-maintained noncompliance.

    PubMed

    Everett, Gregory E; Joe Olmi, D; Edwards, Ron P; Tingstrom, Daniel H; Sterling-Turner, Heather E; Christ, Theodore J

    2007-07-01

    The present study evaluates the effectiveness of two time-out (TO) procedures in reducing escape-maintained noncompliance of 4 children. Noncompliant behavioral function was established via a functional assessment (FA), including indirect and direct descriptive procedures and brief confirmatory experimental analyses. Following FA, parents were taught to consequate noncompliance with two different TO procedures, one without and one with escape extinction following TO release. Although results indicate TO without escape extinction is effective in increasing compliance above baseline levels, more optimal levels of compliance were obtained for all 4 children when escape extinction was added to the TO procedures already in place. Results indicate efficacy of TO with escape extinction when applied to escape-maintained noncompliance and are discussed as an initial example of the successful application of TO to behaviors maintained by negative reinforcement.

  12. The atmospheric escape at Mars: complementing the scenario

    NASA Astrophysics Data System (ADS)

    Lilensten, Jean; Simon, Cyril; Barthélémy, Mathieu; Thissen, Roland; Ehrenreich, David; Gronoff, Guillaume; Witasse, Olivier

    2013-04-01

    In the recent years, the presence of dications in the atmospheres of Mars, Venus, Earth and Titan has been modeled and assessed. These studies also suggested that these ions could participate to the escape of the planetary atmospheres because a large fraction of them is unstable and highly ener- getic. When they dissociate, their internal energy is transformed into kinetic energy which may be larger than the escape energy. This study assesses the impact of the doubly-charged ions in the escape of CO2-dominated planetary atmospheres and to compare it to the escape of thermal photo-ions.We solve a Boltzmann transport equation at daytime taking into account the dissociative states of CO++ for a simplified single constituent atmosphere of a 2 case-study planet. We compute the escape of fast ions using a Beer-Lambert approach. We study three test-cases. On a Mars-analog planet in today's conditions, we retrieve the measured electron escape flux. When comparing the two mechanisms (i.e. excluding solar wind effects, sputtering ...), the escape due to the fast ions issuing from the dissociation of dications may account for up to 6% of the total and the escape of thermal ions for the remaining. We show that these two mechanisms cannot explain the escape of the atmosphere since the magnetic field vanished but complement the other processes and allow writing the scenario of the Mars escape. We show that the atmosphere of a Mars analog planet would empty in another giga years and a half. At Venus orbit, the contribution of the dications in the escape rate is negligible.When simulating the hot Jupiter HD209458b, the two processes cannot explain the measured escape flux of C+.

  13. Central nervous system-specific consequences of simian immunodeficiency virus Gag escape from major histocompatability complex class I-mediated control

    PubMed Central

    Beck, Sarah E.; Queen, Suzanne E.; Viscidi, Raphael; Johnson, Darius; Kent, Stephen J.; Adams, Robert J.; Tarwater, Patrick M.; Mankowski, Joseph L.

    2016-01-01

    In the fourth decade of the HIV epidemic, the relationship between host immunity and HIV central nervous system (CNS) disease remains incompletely understood. Using a simian immunodeficiency virus (SIV)/macaque model, we examined CNS outcomes in pigtailed macaques expressing the MHC class I allele Mane-A1*084:01 which confers resistance to SIV-induced CNS disease and induces the prototypic viral escape mutation Gag K165R. Insertion of gag K165R into the neurovirulent clone SIV/17E-Fr reduced viral replication in vitro compared to SIV/17E-Fr. We also found lower CSF, but not plasma, viral loads in macaques inoculated with SIV/17E-Fr K165R versus those inoculated with wildtype. Although escape mutation K165R was genotypically stable in plasma, it rapidly reverted to wildtype Gag KP9 in both CSF and in microglia cultures. We induced robust Gag KP9-specific CTL tetramer responses by vaccinating Mane-A*084:01-positive pigtailed macaques with a Gag KP9 virus-like particle (VLP) vaccine. Upon SIV/17E-Fr challenge, vaccinated animals had lower SIV RNA in CSF compared to unvaccinated controls, but showed no difference in plasma viral loads. These data clearly demonstrate that viral fitness in the CNS is distinct from the periphery and underscores the necessity of understanding the consequences of viral escape in CNS disease with the advent of new therapeutic vaccination strategies. PMID:26727909

  14. Central nervous system-specific consequences of simian immunodeficiency virus Gag escape from major histocompatibility complex class I-mediated control.

    PubMed

    Beck, Sarah E; Queen, Suzanne E; Viscidi, Raphael; Johnson, Darius; Kent, Stephen J; Adams, Robert J; Tarwater, Patrick M; Mankowski, Joseph L

    2016-08-01

    In the fourth decade of the HIV epidemic, the relationship between host immunity and HIV central nervous system (CNS) disease remains incompletely understood. Using a simian immunodeficiency virus (SIV)/macaque model, we examined CNS outcomes in pigtailed macaques expressing the MHC class I allele Mane-A1*084:01 which confers resistance to SIV-induced CNS disease and induces the prototypic viral escape mutation Gag K165R. Insertion of gag K165R into the neurovirulent clone SIV/17E-Fr reduced viral replication in vitro compared to SIV/17E-Fr. We also found lower cerebrospinal fluid (CSF), but not plasma, viral loads in macaques inoculated with SIV/17E-Fr K165R versus those inoculated with wildtype. Although escape mutation K165R was genotypically stable in plasma, it rapidly reverted to wildtype Gag KP9 in both CSF and in microglia cultures. We induced robust Gag KP9-specific CTL tetramer responses by vaccinating Mane-A*084:01-positive pigtailed macaques with a Gag KP9 virus-like particle (VLP) vaccine. Upon SIV/17E-Fr challenge, vaccinated animals had lower SIV RNA in CSF compared to unvaccinated controls, but showed no difference in plasma viral loads. These data clearly demonstrate that viral fitness in the CNS is distinct from the periphery and underscores the necessity of understanding the consequences of viral escape in CNS disease with the advent of new therapeutic vaccination strategies.

  15. Effects of testosterone administration on threat and escape anticipation in the orbitofrontal cortex.

    PubMed

    Heany, Sarah J; Bethlehem, Richard A I; van Honk, Jack; Bos, Peter A; Stein, Dan J; Terburg, David

    2018-05-30

    Recent evidence suggests that the steroid hormone testosterone can decrease the functional coupling between orbitofrontal cortex (OFC) and amygdala. Theoretically this decoupling has been linked to a testosterone-driven increase of goal-directed behaviour in case of threat, but this has never been studied directly. Therefore, we placed twenty-two women in dynamically changing situations of escapable and inescapable threat after a within-subject placebo controlled testosterone administration. Using functional magnetic resonance imaging (fMRI) we provide evidence that testosterone activates the left lateral OFC (LOFC) in preparation of active goal-directed escape and decouples this OFC area from a subcortical threat system including the central-medial amygdala, hypothalamus and periaqueductal gray. This LOFC decoupling was specific to threatening situations, a point that was further emphasized by an absence of such decoupling in a second experiment focused on resting-state connectivity. These results not only confirm that testosterone administration decouples the LOFC from the subcortical threat system, but also show that this is specifically the case in response to acute threat, and ultimately leads to an increase in LOFC activity when the participant prepares a goal-directed action to escape. Together these results for the first time provide a detailed understanding of functional brain alterations induced by testosterone under threat conditions, and corroborate and extend the view that testosterone prepares the brain for goal-directed action in case of threat. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Structural Basis of HCV Neutralization by Human Monoclonal Antibodies Resistant to Viral Neutralization Escape

    PubMed Central

    Krey, Thomas; Meola, Annalisa; Keck, Zhen-yong; Damier-Piolle, Laurence; Foung, Steven K. H.; Rey, Felix A.

    2013-01-01

    The high mutation rate of hepatitis C virus allows it to rapidly evade the humoral immune response. However, certain epitopes in the envelope glycoproteins cannot vary without compromising virus viability. Antibodies targeting these epitopes are resistant to viral escape from neutralization and understanding their binding-mode is important for vaccine design. Human monoclonal antibodies HC84-1 and HC84-27 target conformational epitopes overlapping the CD81 receptor-binding site, formed by segments aa434–446 and aa610–619 within the major HCV glycoprotein E2. No neutralization escape was yet observed for these antibodies. We report here the crystal structures of their Fab fragments in complex with a synthetic peptide comprising aa434–446. The structures show that the peptide adopts an α-helical conformation with the main contact residues F442 and Y443 forming a hydrophobic protrusion. The peptide retained its conformation in both complexes, independently of crystal packing, indicating that it reflects a surface feature of the folded glycoprotein that is exposed similarly on the virion. The same residues of E2 are also involved in interaction with CD81, suggesting that the cellular receptor binds the same surface feature and potential escape mutants critically compromise receptor binding. In summary, our results identify a critical structural motif at the E2 surface, which is essential for virus propagation and therefore represents an ideal candidate for structure-based immunogen design for vaccine development. PMID:23696737

  17. Modified Advanced Crew Escape Suit Intravehicular Activity Suit for Extravehicular Activity Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an intravehicular activity (IVA) suit for a spacewalk or extravehicular activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Laboratory (NBL) environment at the Sonny Carter Training Facility near NASA Johnson Space Center in Houston, Texas. The Space Shuttle Advanced Crew Escape Suit was modified to integrate with the Orion spacecraft. The first several missions of the Orion Multi-Purpose Crew Vehicle will not have mass available to carry an EVA-specific suit; therefore, any EVA required will have to be performed by the Modified Advanced Crew Escape Suit (MACES). Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or whether a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects, including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, tool carrying, body stabilization, equipment handling, and tool usage. Hardware configurations included with and without Thermal Micrometeoroid Garment, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on International Space Station mock-ups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstrating the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determining critical sizing factors, and need for adjusting suit work envelope. Early testing demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight-like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission-specific modifications for umbilical management or Primary Life Support System integration, safety tether attachment, and tool interfaces. These evaluations are continuing through calendar year 2014.

  18. STS-47 Payload Specialist Mohri at side hatch during JSC egress exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Japanese Payload Specialist Mamoru Mohri, wearing launch and entry suit (LES), prepares to enter the Crew Compartment Trainer (CCT) side hatch during launch emergency egress (bailout) in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Mohri's right hand rests on the extended crew escape system (CES) pole which will be used in the exercise. Mohri represents Japan's National Development Space Agency (NASDA).

  19. The ecology of human fear: survival optimization and the nervous system

    PubMed Central

    Mobbs, Dean; Hagan, Cindy C.; Dalgleish, Tim; Silston, Brian; Prévost, Charlotte

    2015-01-01

    We propose a Survival Optimization System (SOS) to account for the strategies that humans and other animals use to defend against recurring and novel threats. The SOS attempts to merge ecological models that define a repertoire of contextually relevant threat induced survival behaviors with contemporary approaches to human affective science. We first propose that the goal of the nervous system is to reduce surprise and optimize actions by (i) predicting the sensory landscape by simulating possible encounters with threat and selecting the appropriate pre-encounter action and (ii) prevention strategies in which the organism manufactures safe environments. When a potential threat is encountered the (iii) threat orienting system is engaged to determine whether the organism ignores the stimulus or switches into a process of (iv) threat assessment, where the organism monitors the stimulus, weighs the threat value, predicts the actions of the threat, searches for safety, and guides behavioral actions crucial to directed escape. When under imminent attack, (v) defensive systems evoke fast reflexive indirect escape behaviors (i.e., fight or flight). This cascade of responses to threat of increasing magnitude are underwritten by an interconnected neural architecture that extends from cortical and hippocampal circuits, to attention, action and threat systems including the amygdala, striatum, and hard-wired defensive systems in the midbrain. The SOS also includes a modulatory feature consisting of cognitive appraisal systems that flexibly guide perception, risk and action. Moreover, personal and vicarious threat encounters fine-tune avoidance behaviors via model-based learning, with higher organisms bridging data to reduce face-to-face encounters with predators. Our model attempts to unify the divergent field of human affective science, proposing a highly integrated nervous system that has evolved to increase the organism's chances of survival. PMID:25852451

  20. New insights on the collisional escape of light neutrals from Mars

    NASA Astrophysics Data System (ADS)

    Gacesa, Marko; Zahnle, Kevin

    2017-04-01

    Photodissociative recombination (PDR) of atmospheric molecules on Mars is a major mechanism of production of hot (suprathermal) atoms with sufficient kinetic energy to either directly escape to space or to eject other atmospheric species. This collisional ejection mechanism is important for evaluating the escape rates of all light neutrals that are too heavy to escape via Jeans escape. In particular, it plays a role in estimating the total volume of escaped water constituents (i.e., O and H) from Mars, as well as influences evolution of the atmospheric [D]/[H] ratio1. We present revised estimates of total collisional escape rates of neutral light elements including H, He, and H2, based on recent (years 2015-2016) atmospheric density profiles obtained from the NASA Mars Atmosphere and Volatile Evolution (MAVEN) mission. We also estimate the contribution to the collisional escape from Energetic Neutral Atoms (ENAs) produced in charge-exchange of solar wind H+ and He+ ions with atmospheric gases2,3. Scattering of hot oxygen and atmospheric species of interest is modeled using fully-quantum reactive scattering formalism1,3. The escape rates are evaluated using a 1D model of the atmosphere supplemented with MAVEN measurements of the neutrals. Finally, new estimates of contributions of these non-thermal mechanisms to the estimated PDR escape rates from young Mars4 are presented. [1] M. Gacesa and V. Kharchenko, "Non-thermal escape of molecular hydrogen from Mars", Geophys. Res. Lett., 39, L10203 (2012). [2] N. Lewkow and V. Kharchenko, "Precipitation of Energetic Neutral Atoms and Escape Fluxes induced from the Mars Atmosphere", Astroph. J., 790, 98 (2014). [3] M. Gacesa, N. Lewkow, and V. Kharchenko, "Non-thermal production and escape of OH from the upper atmosphere of Mars", Icarus 284, 90 (2017). [4] J. Zhao, F. Tian, Y. Ni, and X. Huang, "DR-induced escape of O and C from early Mars", Icarus 284, 305 (2017).

  1. Clinical Holistic Medicine: A Psychological Theory of Dependency to Improve Quality of Life

    PubMed Central

    Ventegodt, Søren; Morad, Mohammed; Kandel, Isack; Merrick, Joav

    2004-01-01

    In this paper, we suggest a psychological theory of dependency as an escape from feeling existential suffering and a poor quality of life. The ways in which human beings escape hidden existential pains are multiple. The wide range of dependency states seems to be the most common escape strategy used. If the patient can be guided into the hidden existential pain to feel, understand, and integrate it, we believe that dependency can be cured. The problem is that the patient must be highly motivated, sufficiently resourceful, and supported to want such a treatment that is inherently painful. Often, the family and surrounding world is suffering more than the dependent person himself, because the pattern of behavior the patient is dependent on makes him or her rather insensitive and unable to feel. If the patient is motivated, resourceful, and trusts his physician, recovery from even a severe state of dependency is not out of reach, if the holistic medical tools are applied wisely. The patient must find hidden resources to take action, then in therapy confront and feel old emotional pain, understand the source and inner logic of it, and finally learn to let go of negative attitudes and beliefs. In this way, the person can be healed and released of the emotional suffering and no longer be a slave to the dependency pattern. PMID:15349506

  2. SDSS-IV MaNGA: What Shapes the Distribution of Metals in Galaxies? Exploring the Roles of the Local Gas Fraction and Escape Velocity

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, J. K.; Heckman, T.; Sánchez, S. F.; Zakamska, N. L.; Cleary, J.; Zhu, G.; Brinkmann, J.; Drory, N.; THE MaNGA TEAM

    2018-01-01

    We determine the local metallicity of the ionized gas for more than 9.2 × 105 star-forming regions (spaxels) located in 1023 nearby galaxies included in the Sloan Digital Sky Survey-IV MaNGA integral field spectroscopy unit survey. We use the dust extinction derived from the Balmer decrement and the stellar template fitting in each spaxel to estimate the local gas and stellar mass densities, respectively. We also use the measured rotation curves to determine the local escape velocity (V esc). We then analyze the relationships between the local metallicity and both the local gas fraction (μ) and V esc. We find that metallicity decreases with both increasing μ and decreasing V esc. By examining the residuals in these relations we show that the gas fraction plays a more primary role in the local chemical enrichment than does V esc. We show that the gas-regulator model of chemical evolution provides a reasonable explanation of the metallicity on local scales. The best-fit parameters for this model are consistent with the metal loss caused by momentum-driven galactic outflows. We also argue that both the gas fraction and the local escape velocity are connected to the local stellar surface density, which in turn is a tracer of the epoch at which the dominant local stellar population formed.

  3. Emotional Responses to Self-Injury Imagery among Adults with Borderline Personality Disorder

    ERIC Educational Resources Information Center

    Welch, Stacy Shaw; Linehan, Marsha M.; Sylvers, Patrick; Chittams, Jesse; Rizvi, Shireen L.

    2008-01-01

    Nonsuicidal self-injury (NSSI) and suicide attempts (SAs) are especially prevalent in borderline personality disorder. One proposed mechanism for the maintenance of NSSI and SAs is escape conditioning, whereby immediate reductions in aversive emotional states negatively reinforce the behaviors. Psychophysiological and subjective indicators of…

  4. Human-ignited wildfire patterns and responses to policy shifts

    Treesearch

    M. L. Chas-Amil; J. P. Prestemon; C. J. McClean; J. Touza

    2015-01-01

    Development of efficient forest wildfire policies requires an understanding of the underlying reasons behind forest fire occurrences. Globally, there is a close relationship between forest wildfires and human activities; most wildfires are human events due to negligence (e.g., agricultural burning escapes) and deliberate actions (e.g., vandalism, pyromania, revenge,...

  5. Response Covariation: The Relationship between Correct Academic Responding and Problem Behavior.

    ERIC Educational Resources Information Center

    Lalli, Joseph S.; Kates, Kelly; Casey, Sean D.

    1999-01-01

    Examines the relationship between the accuracy of academic responding and aggression for two boys with mild retardation. Aggression was highest during spelling instruction; an evaluation showed aggression was escape maintained. Changes in teaching formats resulted in increased posttest scores. Data showed that the rates of problem behavior…

  6. Drosulfakinin activates CCKLR-17D1 and promotes larval locomotion and escape response in Drosophila

    USDA-ARS?s Scientific Manuscript database

    Neuropeptides are ubiquitous in both mammals and invertebrates and play essential roles in regulation and modulation of many developmental and physiological processes through activation of G-protein-coupled-receptors (GPCRs). However, the mechanisms by which many of the neuropeptides regulate speci...

  7. Culturally Sensitive Career Assessment: A Quandary. ERIC Digest No. 210.

    ERIC Educational Resources Information Center

    Austin, James T.

    Multicultural perspectives on assessment challenge traditional perspectives by advancing an additional source of variation in test responses that is presumed to escape test developers and test users. Increasing and convergent evidence from multiple sources indicates the following types of ethnocentric errors in test development, administration,…

  8. FORECASTING REGIONAL TO GLOBAL PLANT MIGRATION IN RESPONSE TO CLIMATE CHANGE

    EPA Science Inventory

    The rate of future climate change is likely to exceed the migration rates of most plant species. The replacement of dominant species by locally rare species may require decades, and extinctions may occur when plant species cannot migrate fast enough to escape the consequences of...

  9. Venus, Earth, Mars: Comparative ion escape caused by the interaction with the solar wind

    NASA Astrophysics Data System (ADS)

    Barabash, Stas

    For the solar system planets the non-thermal atmospheric escape exceeds by far the Jean escape for particles heavier than helium. In this talk we consider only ion escape and compare the total ion escape rates for Venus, Earth, and Mars caused by the interaction with the solar wind. We review the most recent data on the escape rates based on measurements from Mars Express, Venus Express, and Cluster. The comparison of the available numbers show that despite large differences in the atmospheric masses between these three planets (a factor of 100 -200), different types of the interactions with the solar wind (magnetized and non-magnetized obstacles), the escape rates for Mars, Venus, and the Earth are within the range 1024 - 1025 s-1 . Surprisingly, the expected shielding of the Earth atmosphere by the intrinsic magnetic field is not as efficient as one may think. The reason for this is the non-thermal escape caused by the solar wind interaction is a energy -limited process. Indeed, normalizing the escape rates to the planet-dependent escape energy and power available in the solar wind results in the normalized escape rates deferring only on a factor between three planets. The larger Earth's magnetosphere intercepts and tunnels down to the ionosphere more energy from the solar wind than more compact interaction regions of non-magnetized planets.

  10. Identification of Amino Acid Substitutions Supporting Antigenic Change of Influenza A(H1N1)pdm09 Viruses

    PubMed Central

    Koel, Björn F.; Mögling, Ramona; Chutinimitkul, Salin; Fraaij, Pieter L.; Burke, David F.; van der Vliet, Stefan; de Wit, Emmie; Bestebroer, Theo M.; Rimmelzwaan, Guus F.; Osterhaus, Albert D. M. E.; Smith, Derek J.; Fouchier, Ron A. M.

    2015-01-01

    ABSTRACT The majority of currently circulating influenza A(H1N1) viruses are antigenically similar to the virus that caused the 2009 influenza pandemic. However, antigenic variants are expected to emerge as population immunity increases. Amino acid substitutions in the hemagglutinin protein can result in escape from neutralizing antibodies, affect viral fitness, and change receptor preference. In this study, we constructed mutants with substitutions in the hemagglutinin of A/Netherlands/602/09 in an attenuated backbone to explore amino acid changes that may contribute to emergence of antigenic variants in the human population. Our analysis revealed that single substitutions affecting the loop that consists of amino acid positions 151 to 159 located adjacent to the receptor binding site caused escape from ferret and human antibodies elicited after primary A(H1N1)pdm09 virus infection. The majority of these substitutions resulted in similar or increased replication efficiency in vitro compared to that of the virus carrying the wild-type hemagglutinin and did not result in a change of receptor preference. However, none of the substitutions was sufficient for escape from the antibodies in sera from individuals that experienced both seasonal and pandemic A(H1N1) virus infections. These results suggest that antibodies directed against epitopes on seasonal A(H1N1) viruses contribute to neutralization of A(H1N1)pdm09 antigenic variants, thereby limiting the number of possible substitutions that could lead to escape from population immunity. IMPORTANCE Influenza A viruses can cause significant morbidity and mortality in humans. Amino acid substitutions in the hemagglutinin protein can result in escape from antibody-mediated neutralization. This allows the virus to reinfect individuals that have acquired immunity to previously circulating strains through infection or vaccination. To date, the vast majority of A(H1N1)pdm09 strains remain antigenically similar to the virus that caused the 2009 influenza pandemic. However, antigenic variants are expected to emerge as a result of increasing population immunity. We show that single amino acid substitutions near the receptor binding site were sufficient to escape from antibodies specific for A(H1N1)pdm09 viruses but not from antibodies elicited in response to infections with seasonal A(H1N1) and A(H1N1)pdm09 viruses. This study identified substitutions in A(H1N1)pdm09 viruses that support escape from population immunity but also suggested that the number of potential escape variants is limited by previous exposure to seasonal A(H1N1) viruses. PMID:25609810

  11. Establishing a learned-helplessness effect paradigm in C57BL/6 mice: behavioural evidence for emotional, motivational and cognitive effects of aversive uncontrollability per se.

    PubMed

    Pryce, Christopher R; Azzinnari, Damiano; Sigrist, Hannes; Gschwind, Tilo; Lesch, Klaus-Peter; Seifritz, Erich

    2012-01-01

    Uncontrollability of major life events has been proposed to be central to depression onset and maintenance. The learned helplessness (LH) effect describes a deficit in terminating controllable aversive stimuli in individuals that experienced aversive stimuli as uncontrollable relative to individuals that experienced the same stimuli as controllable. The LH effect translates across species and therefore can provide an objective-valid readout in animal models of depression. Paradigms for a robust LH effect are established and currently applied in rat but there are few reports of prior and current study of the LH effect in mouse. This includes the C57BL/6 mouse, typically the strain of choice for application of molecular-genetic tools in pre-clinical depression research. The aims of this study were to develop a robust paradigm for the LH effect in BL/6 mice, provide evidence for underlying psychological processes, and study the effect of a depression-relevant genotype on the LH effect. The apparatus used for in/escapable electro-shock exposure and escape test was a two-way shuttle arena with continuous automated measurement of locomotion, compartment transfers, e-shock escapes, vertical activity and freezing. Brother-pairs of BL/6 mice were allocated to either escapable e-shocks (ES) or inescapable e-shocks (IS), with escape latencies of the ES brother used as e-shock durations for the IS brother. The standard two-way shuttle paradigm was modified: the central gate was replaced by a raised divider and e-shock escape required transfer to the distal part of the safe compartment. These refinements yielded reduced superstitious, pre-adaptive e-shock transfers in IS mice and thereby increased the LH effect. To obtain a robust LH effect in all brother pairs, pre-screening for minor between-brother ES differences was necessary and did not confound the LH effect. IS mice developed reduced motor responses to e-shock, consistent with a motivational deficit, and absence of a learning curve for escapes at escape test, consistent with a cognitive deficit. When a tone CS was used to predict e-shock, IS mice exhibited increased reactivity to the CS, consistent with hyper-emotionality. There was no ES-IS difference in pain sensitivity. Mice heterozygous knockout for the 5-HTT gene exhibited an increased LH effect relative to wildtype mice. This mouse model will allow for the detailed molecular study of the aetiology, psychology, neurobiology and neuropharmacology of uncontrollability of aversive stimuli, a potential major aetiological factor and state marker in depression. This article is part of a Special Issue entitled 'Anxiety and Depression'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Effects of Visual Information on Wind-Evoked Escape Behavior of the Cricket, Gryllus bimaculatus.

    PubMed

    Kanou, Masamichi; Matsuyama, Akane; Takuwa, Hiroyuki

    2014-09-01

    We investigated the effects of visual information on wind-evoked escape behavior in the cricket, Gryllus bimaculatus. Most agitated crickets were found to retreat into a shelter made of cardboard installed in the test arena within a short time. As this behavior was thought to be a type of escape, we confirmed how a visual image of a shelter affected wind-evoked escape behavior. Irrespective of the brightness of the visual background (black or white) or the absence or presence of a shelter, escape jumps were oriented almost 180° opposite to the source of the air puff stimulus. Therefore, the direction of wind-evoked escape depends solely depended on the direction of the stimulus air puff. In contrast, the turning direction of the crickets during the escape was affected by the position of the visual image of the shelter. During the wind-evoked escape jump, most crickets turned in the direction in which a shelter was presented. This behavioral nature is presumably necessary for crickets to retreat into a shelter within a short time after their escape jump.

  13. Managing Pacific salmon escapements: The gaps between theory and reality

    USGS Publications Warehouse

    Knudsen, E. Eric; Knudsen, E. Eric; Steward, Cleveland R.; MacDonald, Donald D.; Williams, Jack E.; Reiser, Dudley W.

    1999-01-01

    There are myriad challenges to estimating intrinsic production capacity for Pacific salmon populations that are heavily exploited and/or suffering from habitat alteration. Likewise, it is difficult to determine whether perceived decreases in production are due to harvest, habitat, or hatchery influences, natural variation, or some combination of all four. There are dramatic gaps between the true nature of the salmon spawner/recruit relationship and the theoretical basis for describing and understanding the relationship. Importantly, there are also extensive practical difficulties associated with gathering and interpreting accurate escapement and run-size information and applying it to population management. Paradoxically, certain aspects of salmon management may well be contributing to losses in abundance and biodiversity, including harvesting salmon in mixed population fisheries, grouping populations into management units subject to a common harvest rate, and fully exploiting all available hatchery fish at the expense of wild fish escapements. Information on U.S. Pacific salmon escapement goal-setting methods, escapement data collection methods and estimation types, and the degree to which stocks are subjected to mixed stock fisheries was summarized and categorized for 1,025 known management units consisting of 9,430 known populations. Using criteria developed in this study, only 1% of U.S. escapement goals are by methods rated as excellent. Escapement goals for 16% of management units were rated as good. Over 60% of escapement goals have been set by methods rated as either fair or poor and 22% of management units have no escapement goals at all. Of the 9,430 populations for which any information was available, 6,614 (70%) had sufficient information to categorize the method by which escapement data are collected. Of those, data collection methods were rated as excellent for 1%, good for 1%, fair for 2%, and poor for 52%. Escapement estimates are not made for 44% of populations. Escapement estimation type (quality of the data resulting from survey methods) was rated as excellent for <1%, good for 30%, fair for 3%, poor for 22%, and nonexistent for 45%. Numerous recommendations for improvements in escapement mangement are made in this chapter. In general, improvements are needed on theoretical escapement management techniques, escapement goal setting methods, and escapement and run size data quality. There is also a need to change managers' and harvesters' expectations to coincide with the natural variation and uncertainty in the abundance of salmon populations. All the recommendations are aimed at optimizing the number of spawners-healthy escapements ensure salmon sustainability by providing eggs for future production, nutrients to the system, and genetic diversity.

  14. The Real Cost: Know the Real Cost of Tobacco

    MedlinePlus

    ... LINK IS COPIED TO CLIPBOARD Brain Escape The Game Billboard screen loads the game and displays the text “Brain Escape Addiction from smoking is hard to escape.” This game is called Brain Escape. The objective is to ...

  15. THERMALLY DRIVEN ATMOSPHERIC ESCAPE: TRANSITION FROM HYDRODYNAMIC TO JEANS ESCAPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, Alexey N.; Johnson, Robert E.; Tucker, Orenthal J.

    2011-03-10

    Thermally driven escape from planetary atmospheres changes in nature from an organized outflow (hydrodynamic escape) to escape on a molecule-by-molecule basis (Jeans escape) with increasing Jeans parameter, {lambda}, the ratio of the gravitational to thermal energy of the atmospheric molecules. This change is described here for the first time using the direct simulation Monte Carlo method. When heating is predominantly below the lower boundary of the simulation region, R{sub 0}, and well below the exobase of a single-component atmosphere, the nature of the escape process changes over a surprisingly narrow range of Jeans parameters, {lambda}{sub 0}, evaluated at R{sub 0}.more » For an atomic gas, the transition occurs over {lambda}{sub 0} {approx} 2-3, where the lower bound, {lambda}{sub 0} {approx} 2.1, corresponds to the upper limit for isentropic, supersonic outflow. For {lambda}{sub 0} > 3 escape occurs on a molecule-by-molecule basis and we show that, contrary to earlier suggestions, for {lambda}{sub 0} > {approx}6 the escape rate does not deviate significantly from the familiar Jeans rate. In a gas composed of diatomic molecules, the transition shifts to {lambda}{sub 0} {approx} 2.4-3.6 and at {lambda}{sub 0} > {approx}4 the escape rate increases a few tens of percent over that for the monatomic gas. Scaling by the Jeans parameter and the Knudsen number, these results can be applied to thermally induced escape of the major species from solar and extrasolar planets.« less

  16. 16. INTERIOR VIEW OF SUBMARINE SECTION AT 110FOOT LEVEL, ESCAPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. INTERIOR VIEW OF SUBMARINE SECTION AT 110-FOOT LEVEL, ESCAPE TRAINING TANK, SHOWING LADDER TO ESCAPE TANK, LOOKING SOUTH - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  17. Escape tectonics in the Los Angeles metropolitan region and implications for seismic risk

    NASA Astrophysics Data System (ADS)

    Walls, Christian; Rockwell, Thomas; Mueller, Karl; Bock, Yehuda; Williams, Simon; Pfanner, John; Dolan, James; Fang, Peng

    1998-07-01

    Recent damaging earthquakes in California, including the 1971 San Fernando, 1983 Coalinga, 1987 Whittier Narrows and 1994 Northridge events, have drawn attention to thrust faults as both potentially hazardous seismic sources and as a mechanism for accommodating shortening in many regions of southern California. Consequently, many geological studies, have concluded that thrust faults in Southern California pose the greatest seismic hazard, and also account for most of the estimated 5-7mmyr-1 of contraction across the greater Los Angeles metropolitan area, indicated by Global Positioning System geodetic measurements. Our study demonstrates, however, that less than 50% of the geodetically observed contraction is accommodated on the principal thrust systems across the Los Angeles region. We integrate the most recent geological, geodetic and seismological data to assess the spatial distribution of strain across the Los Angeles metropolitan region. We then demonstrate that a significant component of seismic moment release and shortening in this region is accommodated by east-west crustal escape `extrusion' along known strike-slip and oblique-slip faults.

  18. STS-26 MS Hilmers during egress training at JSC's MAIL full fuselage trainer

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), tries out the new crew escape system (CES) inflated slide during an emergency egress training exercise in JSC's Shuttle Mockup and Integration Laboratory (MAIL) Bldg 9A. Technicians stand on either side of the slide ready to help Hilmers to his feet once he reaches the bottom. Watching from floor level at the far left is astronaut Steven R. Nagel. A second crewmember stands in the open side hatch of the Full Fuselage Trainer (FFT) awaiting his turn to slide to 'safety'. During Crew Station Review (CSR) #3, the crew donned the new (navy blue) partial pressure suits (LESs) and checked out CES slide and other CES configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options. The CES pole extends out the side hatch just above Hilmers' head.

  19. The X-ray Detectability of Electron Beams Escaping from the Sun

    NASA Astrophysics Data System (ADS)

    Saint-Hilaire, Pascal; Krucker, Säm; Christe, Steven; Lin, Robert P.

    2009-05-01

    We study the detectability and characterization of electron beams as they leave their acceleration site in the low corona toward interplanetary space through their nonthermal X-ray bremsstrahlung emission. We demonstrate that the largest interplanetary electron beams (gsim1035 electrons above 10 keV) can be detected in X-rays with current and future instrumentation, such as RHESSI or the X-Ray Telescope (XRT) onboard Hinode. We make a list of optimal observing conditions and beam characteristics. Amongst others, good imaging (as opposed to mere localization or detection in spatially integrated data) is required for proper characterization, putting the requirement on the number of escaping electrons (above 10 keV) to gsim3 × 1036 for RHESSI, gsim3 × 1035 for Hinode/XRT, and gsim1033 electrons for the FOXSI sounding rocket scheduled to fly in 2011. Moreover, we have found that simple modeling hints at the possibility that coronal soft X-ray jets could be the result of local heating by propagating electron beams.

  20. Scaling analysis and instantons for thermally assisted tunneling and quantum Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Jiang, Zhang; Smelyanskiy, Vadim N.; Isakov, Sergei V.; Boixo, Sergio; Mazzola, Guglielmo; Troyer, Matthias; Neven, Hartmut

    2017-01-01

    We develop an instantonic calculus to derive an analytical expression for the thermally assisted tunneling decay rate of a metastable state in a fully connected quantum spin model. The tunneling decay problem can be mapped onto the Kramers escape problem of a classical random dynamical field. This dynamical field is simulated efficiently by path-integral quantum Monte Carlo (QMC). We show analytically that the exponential scaling with the number of spins of the thermally assisted quantum tunneling rate and the escape rate of the QMC process are identical. We relate this effect to the existence of a dominant instantonic tunneling path. The instanton trajectory is described by nonlinear dynamical mean-field theory equations for a single-site magnetization vector, which we solve exactly. Finally, we derive scaling relations for the "spiky" barrier shape when the spin tunneling and QMC rates scale polynomially with the number of spins N while a purely classical over-the-barrier activation rate scales exponentially with N .

  1. Genes That Escape X-Inactivation in Humans Have High Intraspecific Variability in Expression, Are Associated with Mental Impairment but Are Not Slow Evolving

    PubMed Central

    Zhang, Yuchao; Castillo-Morales, Atahualpa; Jiang, Min; Zhu, Yufei; Hu, Landian; Urrutia, Araxi O.; Kong, Xiangyin; Hurst, Laurence D.

    2013-01-01

    In female mammals most X-linked genes are subject to X-inactivation. However, in humans some X-linked genes escape silencing, these escapees being candidates for the phenotypic aberrations seen in polyX karyotypes. These escape genes have been reported to be under stronger purifying selection than other X-linked genes. Although it is known that escape from X-inactivation is much more common in humans than in mice, systematic assays of escape in humans have to date employed only interspecies somatic cell hybrids. Here we provide the first systematic next-generation sequencing analysis of escape in a human cell line. We analyzed RNA and genotype sequencing data obtained from B lymphocyte cell lines derived from Europeans (CEU) and Yorubans (YRI). By replicated detection of heterozygosis in the transcriptome, we identified 114 escaping genes, including 76 not previously known to be escapees. The newly described escape genes cluster on the X chromosome in the same chromosomal regions as the previously known escapees. There is an excess of escaping genes associated with mental retardation, consistent with this being a common phenotype of polyX phenotypes. We find both differences between populations and between individuals in the propensity to escape. Indeed, we provide the first evidence for there being both hyper- and hypo-escapee females in the human population, consistent with the highly variable phenotypic presentation of polyX karyotypes. Considering also prior data, we reclassify genes as being always, never, and sometimes escape genes. We fail to replicate the prior claim that genes that escape X-inactivation are under stronger purifying selection than others. PMID:24023392

  2. Cellular immune responses to HIV

    NASA Astrophysics Data System (ADS)

    McMichael, Andrew J.; Rowland-Jones, Sarah L.

    2001-04-01

    The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.

  3. Charge Exchange Contribution to the Decay of the Ring Current, Measured by Energetic Neutral Atoms (ENAs)

    NASA Technical Reports Server (NTRS)

    Jorgensen, A. M.; Henderson, M. G.; Roelof, E. C.; Reeves, G. D.; Spence, H. E.

    2001-01-01

    In this paper we calculate the contribution of charge exchange to the decay of the ring current. Past works have suggested that charge exchange of ring current protons is primarily responsible for the decay of the ring current during the late recovery phase, but there is still much debate about the fast decay of the early recovery phase. We use energetic neutral atom (ENA) measurements from Polar to calculate the total ENA energy escape. To get the total ENA escape we apply a forward modeling technique, and to estimate the total ring current energy escape we use the Dessler-Parker-Sckopke relationship. We find that during the late recovery phase of the March 10, 1998 storm ENAs with energies greater than 17.5 keV can account for 75% of the estimated energy loss from the ring current. During the fast recovery the measured ENAs can only account for a small portion of the total energy loss. We also find that the lifetime of the trapped ions is significantly shorter during the fast recovery phase than during the late recovery phase, suggesting that different processes are operating during the two phases.

  4. Retrograde air escape via the nasolacrimal system: a previously unrecognized complication of continuous positive airway pressure in the management of obstructive sleep apnea.

    PubMed

    Singh, Narinder Pal; Walker, Robbie James Eades; Cowan, Fiona; Davidson, Arthur Craig; Roberts, David Newton

    2014-05-01

    Continuous positive airway pressure (CPAP) is the gold standard treatment for moderate to severe obstructive sleep apnoea (OSA). Eye-related side effects of CPAP are commonly attributed to a poorly sealed mask, allowing leaked air to blow over the eye. We present 3 cases where attended polysomnography (A-PSG) demonstrated CPAP-associated retrograde air escape via the nasolacrimal system (CRANS) in the absence of any mask leaks. Symptoms included dry eye, epiphora, air escape from the medial canthus, and eyelid flutter. Symptoms were controlled with a variety of surgical and nonsurgical techniques. CRANS represents a previously undescribed clinical entity. CRANS may be responsible for some CPAP-related eye side effects and possibly for rarer secondary eye complications, including conjunctivitis and corneal ulceration. CRANS should be suspected in any patient on CPAP complaining of eye symptoms. CRANS may be diagnosed through careful observation during A-PSG and confirmed by performing a "saline bubble test." Management options include nonsurgical (mask alternatives, humidification, nasopharyngeal airway) and surgical techniques (nasal airway surgery, inferior turbinate out-fracture and adhesion, injection of bulking agent around Hasner's valve).

  5. Impact of Antiretroviral Regimens on CSF Viral Escape in a Prospective Multicohort Study of ART-Experienced HIV-1 Infected Adults in the United States.

    PubMed

    Mukerji, Shibani S; Misra, Vikas; Lorenz, David R; Uno, Hajime; Morgello, Susan; Franklin, Donald; Ellis, Ronald J; Letendre, Scott; Gabuzda, Dana

    2018-04-03

    Cerebrospinal fluid (CSF) viral escape occurs in 4-20% of HIV-infected adults, yet the impact of antiretroviral therapy (ART) on CSF escape is unclear. Prospective study of 1063 participants with baseline plasma viral load (VL) ≤400 copies/ml between 2005-2016. Odds ratio for ART regimens (PI with nucleoside reverse transcriptase inhibitor [PI+NRTI] versus other ART) and CSF escape was estimated using mixed-effects models. Drug resistance mutation frequencies were calculated. Baseline mean age was 46, median plasma VL, CD4 nadir, and CD4 count were 50 copies/mL, 88 cells/μL, and 424 cells/μL, respectively; 48% on PI+NRTI, 33% on non-NRTI, and 6% on integrase inhibitors. During median follow-up of 4.4 years, CSF escape occurred in 77 participants (7.2%). PI+NRTI use was an independent predictor of CSF escape (OR 3.1 [95% CI 1.8-5.0]) in adjusted analyses and models restricted to plasma VL ≤50 copies/ml (p<0.001). Regimens containing atazanavir (ATV) were a stronger predictor of CSF viral escape than non-ATV PI+NRTI regimens. Plasma and CSF M184V/I combined with thymidine-analog mutations were more frequent in CSF escape versus no escape (23% vs. 2.3%). Genotypic susceptibility score-adjusted CNS penetration-effectiveness (CPE) values were calculated for CSF escape with M184V/I mutations (n=34). Adjusted CPE values were low (<5) for CSF and plasma in 27 (79%) and 13 (38%), respectively, indicating suboptimal CNS drug availability. PI+NRTI regimens are independent predictors of CSF escape in HIV-infected adults. Reduced CNS ART bioavailability may predispose to CSF escape in patients with M184V/I mutations. Optimizing ART regimens may reduce risk of CSF escape.

  6. 30 CFR 75.382 - Mechanical escape facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mechanical escape facilities. 75.382 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.382 Mechanical escape facilities. (a) Mechanical escape facilities shall be provided with overspeed, overwind, and automatic stop...

  7. Physics escape room as an educational tool

    NASA Astrophysics Data System (ADS)

    Vörös, Alpár István Vita; Sárközi, Zsuzsa

    2017-12-01

    Escape rooms have flourished in the last decade. These are adventure games in which players work together to solve puzzles using hints, clues and a strategy to escape from a locked room. In many cases they use different phenomena related to physics. Hence the idea of using escape rooms in science centers or even in classroom activities. Escape rooms are designed for one single team of players, the method is more suitable for activities in a science centre. In our paper, we show that escape rooms' puzzle solving methods could be used in physics classroom activities as well, taking into account that several teams have to work together in the same room/place. We have developed an educational escape game for physics of fluids, as this topic is left out from the Romanian high-school curriculum. We have tried out our game during the project week called "Şcoala altfel" ("school in a different way") and in a physics camp for gifted students. We present the designed physics escape game and the results.

  8. Prevalence of residential smoke alarms and fire escape plans in the U.S.: results from the Second Injury Control and Risk Survey (ICARIS-2).

    PubMed

    Ballesteros, Michael F; Kresnow, Marcie-Jo

    2007-01-01

    This study was conducted to estimate (1) the proportion of U.S. homes with installed smoke alarms and fire escape plans, and (2) the frequency of testing home smoke alarms and of practicing the fire escape plans. The authors analyzed data on smoke alarms and fire escape plans from a national cross-sectional random-digit dialed telephone survey of 9,684 households. Ninety-five percent of surveyed households reported at least one installed smoke alarm and 52% had a fire escape plan. The prevalence of alarms varied by educational level, income, and the presence of a child in the home. Only 15% tested their alarms once a month and only 16% of homes with an escape plan reported practicing it every six months. While smoke alarm prevalence in U.S. homes is high, only half of homes have a fire escape plan. Additional emphasis is needed on testing of installed smoke alarms and on preparedness for fire escape plans.

  9. Multi-fluid MHD Study of the Solar Wind Interaction with Mars' Upper Atmosphere during the 2015 March 8th ICME Event

    NASA Astrophysics Data System (ADS)

    Dong, C.; Ma, Y.; Bougher, S. W.; Toth, G.; Nagy, A. F.; Halekas, J. S.; Dong, Y.; Curry, S.; Luhmann, J. G.; Brain, D. A.; Connerney, J. E. P.; Espley, J. R.; Mahaffy, P. R.; Benna, M.; McFadden, J. P.; Mitchell, D. L.; DiBraccio, G. A.; Lillis, R. J.; Jakosky, B. M.; Grebowsky, J. M.

    2015-12-01

    The 3-D Mars multi-fluid BATS-R-US MHD code is used to study the solar wind interaction with the Martian upper atmosphere during the 2015 March 8th interplanetary coronal mass ejection (ICME). We studied four steady-state cases, corresponding to three major ICME phases: pre-ICME phase (Case 1), sheath phase (Cases 2--3), and ejecta phase (Case 4). Detailed data-model comparisons demonstrate that the simulation results are in good agreement with Mars Atmosphere and Volatile EvolutioN (MAVEN) measurements, indicating that the multi-fluid MHD model can reproduce most of the features observed by MAVEN, thus providing confidence in the estimate of ion escape rates from its calculation. The total ion escape rate is increased by an order of magnitude, from 2.05×1024 s-1 (pre-ICME phase) to 2.25×1025 s-1 (ICME sheath phase), during this time period. The calculated ion escape rates were used to examine the relative importance of the two major ion loss channels from the planet: energetic pickup ion loss through the dayside plume and cold ionospheric ion loss through the nightside plasma wake region. We found that the energetic pickup ions escaping from the dayside plume could be as much as ~23% of the total ion loss prior to the ICME arrival. Interestingly, the tailward ion escape rate is significantly increased at the ejecta phase, leading to a reduction of the dayside ion escape to ~5% of the total ion loss. Under such circumstance, the cold ionospheric ions escaping from the plasma wake comprise the majority of the ion loss from the planet. Furthermore, by comparing four simulation results along the same MAVEN orbit, we note that there is no significant variation in the Martian lower ionosphere. Finally, both bow shock and magnetic pileup boundary (BS, MPB) locations are decreased from (1.2 RMars, 1.57 RMars) at the pre-ICME phase to (1.16 RMars, 1.47 RMars) respectively during the sheath phase along the dayside Sun-Mars line. MAVEN has provided a great opportunity to study the evolution of the Martian atmosphere and climate over its history. A large quantity of useful data has been returned for future studies. These kinds of data-model comparisons can help the community to better understand the Martian upper atmosphere response to the (extreme) variation in the solar wind and its interplanetary environment from a global perspective.

  10. Inefficient volatile loss from the Moon-forming disk: Reconciling the giant impact hypothesis and a wet Moon

    NASA Astrophysics Data System (ADS)

    Nakajima, Miki; Stevenson, David J.

    2018-04-01

    The Earth's Moon is thought to have formed from a circumterrestrial disk generated by a giant impact between the proto-Earth and an impactor approximately 4.5 billion years ago. Since this impact was energetic, the disk would have been hot (4000-6000 K) and partially vaporized (20-100% by mass). This formation process is thought to be responsible for the geochemical observation that the Moon is depleted in volatiles (e.g., K and Na). To explain this volatile depletion, some studies suggest the Moon-forming disk was rich in hydrogen, which was dissociated from water, and it escaped from the disk as a hydrodynamic wind accompanying heavier volatiles (hydrodynamic escape). This model predicts that the Moon should be significantly depleted in water, but this appears to contradict some of the recently measured lunar water abundances and D/H ratios that suggest that the Moon is more water-rich than previously thought. Alternatively, the Moon could have retained its water if the upper parts (low pressure regions) of the disk were dominated by heavier species because hydrogen would have had to diffuse out from the heavy-element rich disk, and therefore the escape rate would have been limited by this slow diffusion process (diffusion-limited escape). To identify which escape the disk would have experienced and to quantify volatiles loss from the disk, we compute the thermal structure of the Moon-forming disk considering various bulk water abundances (100-1000 ppm) and mid-plane disk temperatures (2500-4000 K). Assuming that the disk consists of silicate (SiO2 or Mg2SiO4) and water and that the disk is in the chemical equilibrium, our calculations show that the upper parts of the Moon-forming disk are dominated by heavy atoms or molecules (SiO and O at Tmid > 2500- 2800 K and H2O at Tmid < 2500- 2800 K) and hydrogen is a minor species. This indicates that hydrogen escape would have been diffusion-limited, and therefore the amount of lost water and hydrogen would have been small compared to the initial abundance assumed. This result indicates that the giant impact hypothesis can be consistent with the water-rich Moon. Furthermore, since the hydrogen wind would have been weak, the other volatiles would not have escaped either. Thus, the observed volatile depletion of the Moon requires another mechanism.

  11. The escape of Lyman photons from a young starburst: the case of Haro11†

    NASA Astrophysics Data System (ADS)

    Hayes, Matthew; Östlin, Göran; Atek, Hakim; Kunth, Daniel; Mas-Hesse, J. Miguel; Leitherer, Claus; Jiménez-Bailón, Elena; Adamo, Angela

    2007-12-01

    Lyman α (Lyα) is one of the dominant tools used to probe the star-forming galaxy population at high redshift (z). However, astrophysical interpretations of data drawn from Lyα alone hinge on the Lyα escape fraction which, due to the complex radiative transport, may vary greatly. Here, we map the Lyα emission from the local luminous blue compact galaxy Haro11, a known emitter of Lyα and the only known candidate for low-z Lyman continuum emission. To aid in the interpretation, we perform a detailed ultraviolet and optical multiwavelength analysis and model the stellar population, dust distribution, ionizing photon budget, and star-cluster population. We use archival X-ray observations to further constrain properties of the starburst and estimate the neutral hydrogen column density. The Lyα morphology is found to be largely symmetric around a single young star-forming knot and is strongly decoupled from other wavelengths. From general surface photometry, only very slight correlation is found between Lyα and Hα, E(B - V), and the age of the stellar population. Only around the central Lyα bright cluster do we find the Lyα/Hα ratio at values predicted by the recombination theory. The total Lyα escape fraction is found to be just 3 per cent. We compute that ~90 per cent of the Lyα photons that escape do so after undergoing multiple resonance scattering events, masking their point of origin. This leads to a largely symmetric distribution and, by increasing the distance that photons must travel to escape, decreases the escape probability significantly. While dust must ultimately be responsible for the destruction of Lyα, it plays a little role in governing the observed morphology, which is regulated more by interstellar medium kinematics and geometry. We find tentative evidence for local Lyα equivalent width in the immediate vicinity of star clusters being a function of cluster age, consistent with hydrodynamic studies. We estimate the intrinsic production of ionizing photons and put further constraints of ~9 per cent on the escaping fraction of photons at 900Å. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS 5-26555. These observations are associated with programmes #GO9470 and #GO10575. Based on observations made with ESO Telescopes at the La Silla Observatories under programme ID 073.B-0785. ‡ E-mail: matthew@astro.su.se

  12. Dynamics of defensive reactivity in patients with panic disorder and agoraphobia: implications for the etiology of panic disorder.

    PubMed

    Richter, Jan; Hamm, Alfons O; Pané-Farré, Christiane A; Gerlach, Alexander L; Gloster, Andrew T; Wittchen, Hans-Ulrich; Lang, Thomas; Alpers, Georg W; Helbig-Lang, Sylvia; Deckert, Jürgen; Fydrich, Thomas; Fehm, Lydia; Ströhle, Andreas; Kircher, Tilo; Arolt, Volker

    2012-09-15

    The learning perspective of panic disorder distinguishes between acute panic and anxious apprehension as distinct emotional states. Following animal models, these clinical entities reflect different stages of defensive reactivity depending upon the imminence of interoceptive or exteroceptive threat cues. The current study tested this model by investigating the dynamics of defensive reactivity in a large group of patients with panic disorder and agoraphobia (PD/AG). Three hundred forty-five PD/AG patients participated in a standardized behavioral avoidance test (being entrapped in a small, dark chamber for 10 minutes). Defense reactivity was assessed measuring avoidance and escape behavior, self-reports of anxiety and panic symptoms, autonomic arousal (heart rate and skin conductance), and potentiation of the startle reflex before and during exposure of the behavioral avoidance test. Panic disorder and agoraphobia patients differed substantially in their defensive reactivity. While 31.6% of the patients showed strong anxious apprehension during this task (as indexed by increased reports of anxiety, elevated physiological arousal, and startle potentiation), 20.9% of the patients escaped from the test chamber. Active escape was initiated at the peak of the autonomic surge accompanied by an inhibition of the startle response as predicted by the animal model. These physiological responses resembled the pattern observed during the 34 reported panic attacks. We found evidence that defensive reactivity in PD/AG patients is dynamically organized ranging from anxious apprehension to panic with increasing proximity of interoceptive threat. These data support the learning perspective of panic disorder. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Dications and thermal ions in planetary atmospheric escape

    NASA Astrophysics Data System (ADS)

    Lilensten, J.; Simon Wedlund, C.; Barthélémy, M.; Thissen, R.; Ehrenreich, D.; Gronoff, G.; Witasse, O.

    2013-01-01

    In the recent years, the presence of dications in the atmospheres of Mars, Venus, Earth and Titan has been modeled and assessed. These studies also suggested that these ions could participate to the escape of the planetary atmospheres because a large fraction of them is unstable and highly energetic. When they dissociate, their internal energy is transformed into kinetic energy which may be larger than the escape energy. The goal of this study is to assess the impact of the doubly-charged ions in the escape of CO2-dominated planetary atmospheres and to compare it to the escape of thermal photo-ions. We solve a Boltzmann transport equation at daytime taking into account the dissociative states of CO2++ for a simplified single constituent atmosphere of a case-study planet. We compute the escape of fast ions using a Beer-Lambert approach. We study three test-cases. On a Mars-analog planet in today's conditions, we retrieve the measured electron escape flux. When comparing the two mechanisms (i.e. excluding solar wind effects, sputtering, etc.), the escape due to the fast ions issuing from the dissociation of dications may account for up to 6% of the total and the escape of thermal ions for the remaining. We show that these two mechanisms cannot explain the escape of the atmosphere since the magnetic field vanished and even contribute only marginally to this loss. We show that with these two mechanisms, the atmosphere of a Mars analog planet would empty in another giga years and a half. At Venus orbit, the contribution of the dications in the escape rate is negligible. When simulating the hot Jupiter HD 209458 b, the two processes cannot explain the measured escape flux of C+. This study shows that the dications may constitute a source of the escape of planetary atmospheres which had not been taken into account until now. This source, although marginal, is not negligible. The influence of the photoionization is of course large, but cannot explain alone the loss of Mars' atmosphere nor the atmospheric escape of HD 209458 b.

  14. Limits to Creation of Oxygen-Rich Atmospheres on Planets in the Outer Reaches of the Conventional Habitable Zone

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin

    2017-01-01

    Abundant free oxygen appears to be a requirement for macroflora and macrofauna. To the best of our knowledge, a general discussion of which habitable planets are conducive to oxygen has not taken place. Theories for the rise of oxygen fall into 4 categories: (i) It is governed by an intrinsic rate of biological innovation, independent of environmental factors. (ii) It is caused by mantle evolution, probably consequent to secular cooling. (iii) It is caused by hydrogen escape, which irreversibly oxidizes the Earth. (iv) It is Gaia's response to the brightening Sun, its rise prevented until reduced greenhouse gases were no longer needed to maintain a clement climate. All but the first of these make implicit astronomical predictions that can be quantified and made explicit. Here we address the third hypothesis. In this hypothesis hydrogen escape acts like an hourglass that continues until all relevant reduced mineral buffers have been oxidized (titrated, as it were) and the surface made safe for O2. The hypothesis predicts that abundant free O2 will be absent from habitable planets that have not experienced significant hydrogen escape. Where hydrogen escape is modest or insignificant, the atmosphere can be approximated as hydrostatic, which makes assessing radiative cooling by embedded molecules, atoms, and ions such as CO2 and H3+ straightforward. In particular, H2 is efficient at exciting non-LTE CO2 15 micron emission, which makes radiative cooling very effective when H2 is abundant. We can therefore map out the region of phase space in which habitable planets do not lose hydrogen, and therefore do not develop O2 atmospheres. A related matter is the power of radiative cooling by embedded molecules to enforce the diffusion limit to hydrogen escape. This matter in particular is relevant to addressing the empirical observation that rocky planets with thin or negligible atmospheres are rarely or never bigger than approx.1.6 Earth radii.

  15. Inferring Fish Escape Behaviour in Trawls Based on Catch Comparison Data: Model Development and Evaluation Based on Data from Skagerrak, Denmark

    PubMed Central

    Karlsen, Junita Diana

    2014-01-01

    During the fishing process, fish react to a trawl with a series of behaviours that often are species and size specific. Thus, a thorough understanding of fish behaviour in relation to fishing gear and a scientific understanding of the ability of different gear designs to utilize or stimulate various behavioural patterns during the catching process are essential for developing more efficient, selective, and environmentally friendly trawls. Although many behavioural studies using optical and acoustic observation systems have been conducted, harsh observation conditions on the fishing grounds often hamper the ability to directly observe fish behaviour in relation to fishing gear. As an alternative to optical and acoustic methods, we developed and applied a new mathematical model to catch data to extract detailed and quantitative information about species- and size-dependent escape behaviour in towed fishing gear such as trawls. We used catch comparison data collected with a twin trawl setup; the only difference between the two trawls was that a 12 m long upper section was replaced with 800 mm diamond meshes in one of them. We investigated the length-based escape behaviour of cod (Gadus morhua), haddock (Melanogrammus aeglefinus), saithe (Pollachius virens), witch flounder (Glyptocephalus cynoglossus), and lemon sole (Microstomus kitt) and quantified the extent to which behavioural responses set limits for the large mesh panel’s selective efficiency. Around 85% of saithe, 80% of haddock, 44% of witch flounder, 55% of lemon sole, and 55% of cod (below 68 cm) contacted the large mesh panel and escaped. We also demonstrated the need to account for potential selectivity in the trawl body, as it can bias the assessment of length-based escape behaviour. Our indirect assessment of fish behaviour was in agreement with the direct observations made for the same species in a similar section of the trawl body reported in the literature. PMID:24586403

  16. Limits to Creation of Oxygen-Rich Atmospheres on Planets in the Outer Reaches of the Conventional Habitable Zone

    NASA Astrophysics Data System (ADS)

    Zahnle, Kevin

    2017-10-01

    Abundant free oxygen appears to be a requirement for macroflora and macrofauna. To the best of our knowledge, a general discussion of which habitable planets are conducive to oxygen has not taken place. Theories for the rise of oxygen fall into 4 categories: (i) It is governed by an intrinsic rate of biological innovation, independent of environmental factors. (ii) It is caused by mantle evolution, probably consequent to secular cooling. (iii) It is caused by hydrogen escape, which irreversibly oxidizes the Earth. (iv) It is Gaia’s response to the brightening Sun, its rise prevented until reduced greenhouse gases were no longer needed to maintain a clement climate. All but the first of these make implicit astronomical predictions that can be quantified and made explicit.Here we address the third hypothesis. In this hypothesis hydrogen escape acts like an hourglass that continues until all relevant reduced mineral buffers have been oxidized (titrated, as it were) and the surface made safe for O2. The hypothesis predicts that abundant free O2 will be absent from habitable planets that have not experienced significant hydrogen escape. Where hydrogen escape is modest or insignificant, the atmosphere can be approximated as hydrostatic, which makes assessing radiative cooling by embedded molecules, atoms, and ions such as CO2 and H3+ straightforward. In particular, H2 is efficient at exciting non-LTE CO2 15 micron emission, which makes radiative cooling very effective when H2 is abundant. We can therefore map out the region of phase space in which habitable planets do not lose hydrogen, and therefore do not develop O2 atmospheres.A related matter is the power of radiative cooling by embedded molecules to enforce the diffusion limit to hydrogen escape. This matter in particular is relevant to addressing the empirical observation that rocky planets with thin or negligible atmospheres are rarely or never bigger than ~1.6 Earth radii.

  17. Lunar mission safety and rescue: Escape/rescue analysis and plan

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results are presented of the technical analysis of escape/rescue/survival situations, crew survival techniques, alternate escape/rescue approaches and vehicles, and the advantages and disadvantages of each for advanced lunar exploration. Candidate escape/rescue guidelines are proposed and elements of a rescue plan developed. The areas of discussions include the following: lunar arrival/departure operations, lunar orbiter operations, lunar surface operations, lunar surface base escape/rescue analysis, lander tug location operations, portable airlock, emergency pressure suit, and the effects of no orbiting lunar station, no lunar surface base, and no foreign lunar orbit/surface operations on the escape/rescue plan.

  18. Escapism among players of MMORPGs--conceptual clarification, its relation to mental health factors, and development of a new measure.

    PubMed

    Hagström, David; Kaldo, Viktor

    2014-01-01

    Previous studies show that the concept of escapism needs to be clarified and that its relation to problematic online gaming and other factors needs further examination. This study uses well-established, basic learning theory to clarify the concept of escapism, and examines its relation to problematic gaming, psychological distress, and satisfaction with life among players of massively multiplayer online role-playing games (MMORPGs). MMORPG players (n=201) answered an online questionnaire where these factors were measured and correlated with a previously developed scale on motivation to play (MTPI), including extra items to cover positive and negative aspects of escapism. Factor analysis and construct validation show that positive aspects of escapism are theoretically and empirically unstable and that escapism is best clarified as purely "negative escapism," corresponding to playing being negatively reinforced as a way of avoiding everyday hassles and distress. Negative escapism had a stronger relationship to symptoms of Internet addiction, psychological distress, and life satisfaction than other variables and other more positive motivations to play. Future studies should use the revised subscale for escapism (in the MTPI-R) presented in the present study, for example when screening for Internet addiction.

  19. STS-47 MS Jemison extends side hatch mockup CES pole during JSC training

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) Mae C. Jemison extends crew escape system (CES) pole through a side hatch mockup during launch emergency egress (bailout) training in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. MS Jerome Apt (right) looks on. The crewmembers practiced extending the CES pole prior to donning their launch and entry suits (LESs) and conducting the simulation in the Crew Compartment Trainer (CCT).

  20. STS-38 MS Springer climbs through CCT side hatch prior to egress training

    NASA Image and Video Library

    1990-03-05

    STS-38 Mission Specialist (MS) Robert C. Springer, wearing launch and entry suit (LES), climbs through the side hatch of the crew compartment trainer (CCT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Springer will practice emergency egress through the side hatch using the crew escape system (CES) pole (at Springer's left). The inflated safety cushion under Springer will break his fall as he rolls out of the side hatch.

  1. STS-38 MS Springer climbs through CCT side hatch prior to egress training

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-38 Mission Specialist (MS) Robert C. Springer, wearing launch and entry suit (LES), climbs through the side hatch of the crew compartment trainer (CCT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Springer will practice emergency egress through the side hatch using the crew escape system (CES) pole (at Springer's left). The inflated safety cushion under Springer will break his fall as he rolls out of the side hatch.

  2. [Offshore work and the work of nurses on board: an integrative review].

    PubMed

    Antoniolli, Silvana Aline Cordeiro; Emmel, Suzel Vaz; Ferreira, Gímerson Erick; Paz, Potiguara de Oliveira; Kaiser, Dagmar Elaine

    2015-08-01

    To know the production of theoretical approaches on issues related to offshore work and the work of offshore nurses. Integrative literature review conducted in the databases of LILACS, BDENF, MEDLINE, SciELO and Index PSI. We selected 33 studies published in national and international journals between 1997 and 2014. The thematic analysis corpus resulted in four central themes: offshore work environment; amid work adversities, an escape; structuring of offshore health and safety services; in search of safe practices. This study contributes to the offshore work of nurses in relation to the nature of work, acting amid adversities and the restless search for safe practices in the open sea.

  3. Mars H Escape is potentially dominated by a high-altitude water source

    NASA Astrophysics Data System (ADS)

    Chaffin, Michael; Deighan, Justin; Schneider, Nick; Stewart, Ian

    2017-04-01

    H escape from the Mars atmosphere has removed a large part of Mars' initial water inventory. Until recently, this escape was thought to be slow and steady, sourced from long-lived molecular hydrogen whose lightness and volatility in comparison with water allow it to penetrate the upper atmosphere. Contradicting this thinking, observations from the Hubble Space Telescope and Mars Express, as well as more recent MAVEN measurements, indicate that H escape varies by at least a factor of ten over the Mars year and is largest in Southern Summer near perihelion. At the largest rates, H escape exceeds the ability of molecular hydrogen to supply the escape fluxes observed. At the same time in Southern Summer, Mars Express solar occultations have shown unexpectedly large concentrations of water at high altitude, potentially providing a source of escaping H unaccounted for in standard models. Here we show via photochemical modeling that the presence of this high altitude water can partially explain the large escape rates observed in Southern Summer. We further show that this escaping H is not in immediate balance with O escape, and therefore that short-term atmospheric dynamics can drive long-term variations in the oxidation balance and volatile content of planetary atmospheres. Future simultaneous observations by MAVEN, Mars Express, and the Trace Gas Orbiter may provide a direct test of this mechanism.

  4. Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water

    NASA Astrophysics Data System (ADS)

    Chaffin, M. S.; Deighan, J.; Schneider, N. M.; Stewart, A. I. F.

    2017-01-01

    Atmospheric loss has controlled the history of Martian habitability, removing most of the planet’s initial water through atomic hydrogen and oxygen escape from the upper atmosphere to space. In standard models, H and O escape in a stoichiometric 2:1 ratio because H reaches the upper atmosphere via long-lived molecular hydrogen, whose abundance is regulated by a photochemical feedback sensitive to atmospheric oxygen content. The relatively constant escape rates these models predict are inconsistent with known H escape variations of more than an order of magnitude on seasonal timescales, variation that requires escaping H to have a source other than H2. The best candidate source is high-altitude water, detected by the Mars Express spacecraft in seasonally variable concentrations. Here we use a one-dimensional time-dependent photochemical model to show that the introduction of high-altitude water can produce a large increase in the H escape rate on a timescale of weeks, quantitatively linking these observations. This H escape pathway produces prompt H loss that is not immediately balanced by O escape, influencing the oxidation state of the atmosphere for millions of years. Martian atmospheric water loss may be dominated by escape via this pathway, which may therefore potentially control the planet’s atmospheric chemistry. Our findings highlight the influence that seasonal atmospheric variability can have on planetary evolution.

  5. APIS—a novel approach for conditioning honey bees

    PubMed Central

    Kirkerud, Nicholas H.; Wehmann, Henja-Niniane; Galizia, C. Giovanni; Gustav, David

    2013-01-01

    Honey bees perform robustly in different conditioning paradigms. This makes them excellent candidates for studying mechanisms of learning and memory at both an individual and a population level. Here we introduce a novel method of honey bee conditioning: APIS, the Automatic Performance Index System. In an enclosed walking arena where the interior is covered with an electric grid, presentation of odors from either end can be combined with weak electric shocks to form aversive associations. To quantify behavioral responses, we continuously monitor the movement of the bee by an automatic tracking system. We found that escapes from one side to the other, changes in velocity as well as distance and time spent away from the punished odor are suitable parameters to describe the bee's learning capabilities. Our data show that in a short-term memory test the response rate for the conditioned stimulus (CS) in APIS correlates well with response rate obtained from conventional Proboscis Extension Response (PER)-conditioning. Additionally, we discovered that bees modulate their behavior to aversively learned odors by reducing their rate, speed and magnitude of escapes and that both generalization and extinction seem to be different between appetitive and aversive stimuli. The advantages of this automatic system make it ideal for assessing learning rates in a standardized and convenient way, and its flexibility adds to the toolbox for studying honey bee behavior. PMID:23616753

  6. APIS-a novel approach for conditioning honey bees.

    PubMed

    Kirkerud, Nicholas H; Wehmann, Henja-Niniane; Galizia, C Giovanni; Gustav, David

    2013-01-01

    Honey bees perform robustly in different conditioning paradigms. This makes them excellent candidates for studying mechanisms of learning and memory at both an individual and a population level. Here we introduce a novel method of honey bee conditioning: APIS, the Automatic Performance Index System. In an enclosed walking arena where the interior is covered with an electric grid, presentation of odors from either end can be combined with weak electric shocks to form aversive associations. To quantify behavioral responses, we continuously monitor the movement of the bee by an automatic tracking system. We found that escapes from one side to the other, changes in velocity as well as distance and time spent away from the punished odor are suitable parameters to describe the bee's learning capabilities. Our data show that in a short-term memory test the response rate for the conditioned stimulus (CS) in APIS correlates well with response rate obtained from conventional Proboscis Extension Response (PER)-conditioning. Additionally, we discovered that bees modulate their behavior to aversively learned odors by reducing their rate, speed and magnitude of escapes and that both generalization and extinction seem to be different between appetitive and aversive stimuli. The advantages of this automatic system make it ideal for assessing learning rates in a standardized and convenient way, and its flexibility adds to the toolbox for studying honey bee behavior.

  7. Signal Regulatory Protein alpha (SIRPalpha)+ Cells in the Adaptive Response to ESAT-6/CFP-10 Protein of Tuberculous Mycobacteria

    USDA-ARS?s Scientific Manuscript database

    Early secretory antigenic target-6 (ESAT-6) and culture filtrate protein-10(CFP-10) are co-secreted proteins of Mycobacterium tuberculosis complex mycobacteria (includes M. bovis, the zoonotic agent of bovine tuberculosis) involved in phagolysosome escape of the bacillus and, potentially, in the eff...

  8. Apology and Redress: Escaping the Dustbin of History in the Postsegregationist South

    ERIC Educational Resources Information Center

    Fine, Gary Alan

    2013-01-01

    How at moments of dramatic change and a shifting social context do political actors alter their public identities? Put differently, how do political figures respond when positions with which they have been closely identified are no longer morally and electorally defensible and must be altered? Responses to identity challenge within institutional…

  9. Intellectual property issues of immune checkpoint inhibitors

    PubMed Central

    Storz, Ulrich

    2016-01-01

    Immune checkpoint inhibitors are drugs that interfere with tumor escape responses. Some members of this class are already approved, and expected to be blockbusters in the future. Many companies have developed patent activities in this field. This article focuses on the patent landscape, and discusses key players and cases related to immune checkpoint inhibitors. PMID:26466763

  10. Carbon Capture and Storage (CCS): Risk assessment focused on marine bacteria.

    PubMed

    Borrero-Santiago, A R; DelValls, T A; Riba, I

    2016-09-01

    Carbon capture and storage (CCS) is one of the options to mitigate the negative effects of the climate change. However, this strategy may have associated some risks such as CO2 leakages due to an escape from the reservoir. In this context, marine bacteria have been underestimated. In order to figure out the gaps and the lack of knowledge, this work summarizes different studies related to the potential effects on the marine bacteria associated with an acidification caused by a CO2 leak from CSS. An improved integrated model for risk assessment is suggested as a tool based on the rapid responses of bacterial community. Moreover, this contribution proposes a strategy for laboratory protocols using Pseudomona stanieri (CECT7202) as a case of study and analyzes the response of the strain under different CO2 conditions. Results showed significant differences (p≤0.05) under six diluted enriched medium and differences about the days in the exponential growth phase. Dilution 1:10 (Marine Broth 2216 with seawater) was selected as an appropriate growth medium for CO2 toxicity test in batch cultures. This work provide an essential and a complete tool to understand and develop a management strategy to improve future works related to possible effects produced by potential CO2 leaks. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Flavonols Mediate Root Phototropism and Growth through Regulation of Proliferation-to-Differentiation Transition.

    PubMed

    Silva-Navas, Javier; Moreno-Risueno, Miguel A; Manzano, Concepción; Téllez-Robledo, Bárbara; Navarro-Neila, Sara; Carrasco, Víctor; Pollmann, Stephan; Gallego, F Javier; Del Pozo, Juan C

    2016-06-01

    Roots normally grow in darkness, but they may be exposed to light. After perceiving light, roots bend to escape from light (root light avoidance) and reduce their growth. How root light avoidance responses are regulated is not well understood. Here, we show that illumination induces the accumulation of flavonols in Arabidopsis thaliana roots. During root illumination, flavonols rapidly accumulate at the side closer to light in the transition zone. This accumulation promotes asymmetrical cell elongation and causes differential growth between the two sides, leading to root bending. Furthermore, roots illuminated for a long period of time accumulate high levels of flavonols. This high flavonol content decreases both auxin signaling and PLETHORA gradient as well as superoxide radical content, resulting in reduction of cell proliferation. In addition, cytokinin and hydrogen peroxide, which promote root differentiation, induce flavonol accumulation in the root transition zone. As an outcome of prolonged light exposure and flavonol accumulation, root growth is reduced and a different root developmental zonation is established. Finally, we observed that these differentiation-related pathways are required for root light avoidance. We propose that flavonols function as positional signals, integrating hormonal and reactive oxygen species pathways to regulate root growth direction and rate in response to light. © 2016 American Society of Plant Biologists. All rights reserved.

  12. Flavonols Mediate Root Phototropism and Growth through Regulation of Proliferation-to-Differentiation Transition

    PubMed Central

    Silva-Navas, Javier; Moreno-Risueno, Miguel A.; Manzano, Concepción; Téllez-Robledo, Bárbara; Navarro-Neila, Sara; Carrasco, Víctor; Pollmann, Stephan

    2016-01-01

    Roots normally grow in darkness, but they may be exposed to light. After perceiving light, roots bend to escape from light (root light avoidance) and reduce their growth. How root light avoidance responses are regulated is not well understood. Here, we show that illumination induces the accumulation of flavonols in Arabidopsis thaliana roots. During root illumination, flavonols rapidly accumulate at the side closer to light in the transition zone. This accumulation promotes asymmetrical cell elongation and causes differential growth between the two sides, leading to root bending. Furthermore, roots illuminated for a long period of time accumulate high levels of flavonols. This high flavonol content decreases both auxin signaling and PLETHORA gradient as well as superoxide radical content, resulting in reduction of cell proliferation. In addition, cytokinin and hydrogen peroxide, which promote root differentiation, induce flavonol accumulation in the root transition zone. As an outcome of prolonged light exposure and flavonol accumulation, root growth is reduced and a different root developmental zonation is established. Finally, we observed that these differentiation-related pathways are required for root light avoidance. We propose that flavonols function as positional signals, integrating hormonal and reactive oxygen species pathways to regulate root growth direction and rate in response to light. PMID:26628743

  13. Temporal and spatial temperature distribution in the glabrous skin of rats induced by short-pulse CO2 laser

    NASA Astrophysics Data System (ADS)

    Lu, Pen-Li; Hsu, Shu-Shen; Tsai, Meng-Li; Jaw, Fu-Shan; Wang, An-Bang; Yen, Chen-Tung

    2012-11-01

    Pain is a natural alarm that aids the body in avoiding potential danger and can also present as an important indicator in clinics. Infrared laser-evoked potentials can be used as an objective index to evaluate nociception. In animal studies, a short-pulse laser is crucial because it completes the stimulation before escape behavior. The objective of the present study was to obtain the temporal and spatial temperature distributions in the skin caused by the irradiation of a short-pulse laser. A fast speed infrared camera was used to measure the surface temperature caused by a CO2 laser of different durations (25 and 35 ms) and power. The measured results were subsequently implemented with a three-layer finite element model to predict the subsurface temperature. We found that stratum corneum was crucial in the modeling of fast temperature response, and escape behaviors correlated with predictions of temperature at subsurface. Results indicated that the onset latency and duration of activated nociceptors must be carefully considered when interpreting physiological responses evoked by infrared irradiation.

  14. 46 CFR 122.606 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Escape hatches and emergency exits. 122.606 Section 122.606 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING... Markings Required § 122.606 Escape hatches and emergency exits. All escape hatches and other emergency...

  15. 46 CFR 122.606 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Escape hatches and emergency exits. 122.606 Section 122.606 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING... Markings Required § 122.606 Escape hatches and emergency exits. All escape hatches and other emergency...

  16. 46 CFR 122.606 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Escape hatches and emergency exits. 122.606 Section 122.606 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING... Markings Required § 122.606 Escape hatches and emergency exits. All escape hatches and other emergency...

  17. 46 CFR 122.606 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Escape hatches and emergency exits. 122.606 Section 122.606 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING... Markings Required § 122.606 Escape hatches and emergency exits. All escape hatches and other emergency...

  18. 46 CFR 122.606 - Escape hatches and emergency exits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Escape hatches and emergency exits. 122.606 Section 122.606 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING... Markings Required § 122.606 Escape hatches and emergency exits. All escape hatches and other emergency...

  19. 30 CFR 77.1101 - Escape and evacuation; plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fire Protection § 77.1101 Escape and evacuation; plan. (a) Before September 30, 1971, each operator of... event of a fire. (b) All employees shall be instructed on current escape and evacuation plans, fire alarm signals, and applicable procedures to be followed in case of fire. (c) Plans for escape and...

  20. 30 CFR 77.1101 - Escape and evacuation; plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fire Protection § 77.1101 Escape and evacuation; plan. (a) Before September 30, 1971, each operator of... event of a fire. (b) All employees shall be instructed on current escape and evacuation plans, fire alarm signals, and applicable procedures to be followed in case of fire. (c) Plans for escape and...

  1. 30 CFR 77.1101 - Escape and evacuation; plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fire Protection § 77.1101 Escape and evacuation; plan. (a) Before September 30, 1971, each operator of... event of a fire. (b) All employees shall be instructed on current escape and evacuation plans, fire alarm signals, and applicable procedures to be followed in case of fire. (c) Plans for escape and...

  2. 30 CFR 77.1101 - Escape and evacuation; plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fire Protection § 77.1101 Escape and evacuation; plan. (a) Before September 30, 1971, each operator of... event of a fire. (b) All employees shall be instructed on current escape and evacuation plans, fire alarm signals, and applicable procedures to be followed in case of fire. (c) Plans for escape and...

  3. 42 CFR 84.51 - Entry and escape, or escape only; classification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Entry and escape, or escape only; classification. 84.51 Section 84.51 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES...

  4. 42 CFR 84.51 - Entry and escape, or escape only; classification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Entry and escape, or escape only; classification. 84.51 Section 84.51 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES...

  5. 42 CFR 84.51 - Entry and escape, or escape only; classification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Entry and escape, or escape only; classification. 84.51 Section 84.51 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES...

  6. 42 CFR 84.51 - Entry and escape, or escape only; classification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Entry and escape, or escape only; classification. 84.51 Section 84.51 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES...

  7. 42 CFR 84.51 - Entry and escape, or escape only; classification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Entry and escape, or escape only; classification. 84.51 Section 84.51 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES...

  8. Differential effects of massed and spaced training on place and response learning: A memory systems perspective.

    PubMed

    Wingard, Jeffrey C; Goodman, Jarid; Leong, Kah-Chung; Packard, Mark G

    2015-09-01

    Studies employing brain lesion or intracerebral drug infusions in rats have demonstrated a double dissociation between the roles of the hippocampus and dorsolateral striatum in place and response learning. The hippocampus mediates a rapid cognitive learning process underlying place learning, whereas the dorsolateral striatum mediates a relatively slower learning process in which stimulus-response habits underlying response learning are acquired in an incremental fashion. One potential implication of these findings is that hippocampus-dependent learning may benefit from a relative massing of training trials, whereas dorsal striatum-dependent learning may benefit from a relative distribution of training trials. In order to examine this hypothesis, the present study compared the effects of massed (30s inter-trial interval; ITI) or spaced (30min ITI) training on acquisition of a hippocampus-dependent place learning task, and a dorsolateral striatum-dependent response task in a plus-maze. In the place task rats swam from varying start points (N or S) to a hidden escape platform located in a consistent spatial location (W). In the response task rats swam from varying start points (N or S) to a hidden escape platform located in the maze arm consistent with a body-turn response (left). In the place task, rats trained with the massed trial schedule acquired the task quicker than rats trained with the spaced trial schedule. In the response task, rats trained with the spaced trial schedule acquired the task quicker than rats trained with the massed trial schedule. The double dissociation observed suggests that the reinforcement parameters most conducive to effective learning in hippocampus-dependent and dorsolateral striatum-dependent learning may have differential temporal characteristics. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Towards energy-efficient nonoscillatory forward-in-time integrations on lat-lon grids

    NASA Astrophysics Data System (ADS)

    Polkowski, Marcin; Piotrowski, Zbigniew; Ryczkowski, Adam

    2017-04-01

    The design of the next-generation weather prediction models calls for new algorithmic approaches allowing for robust integrations of atmospheric flow over complex orography at sub-km resolutions. These need to be accompanied by efficient implementations exposing multi-level parallelism, capable to run on modern supercomputing architectures. Here we present the recent advances in the energy-efficient implementation of the consistent soundproof/implicit compressible EULAG dynamical core of the COSMO weather prediction framework. Based on the experiences of the atmospheric dwarfs developed within H2020 ESCAPE project, we develop efficient, architecture agnostic implementations of fully three-dimensional MPDATA advection schemes and generalized diffusion operator in curvilinear coordinates and spherical geometry. We compare optimized Fortran implementation with preliminary C++ implementation employing the Gridtools library, allowing for integrations on CPU and GPU while maintaining single source code.

  10. Studies of learned helplessness in honey bees (Apis mellifera ligustica).

    PubMed

    Dinges, Christopher W; Varnon, Christopher A; Cota, Lisa D; Slykerman, Stephen; Abramson, Charles I

    2017-04-01

    The current study reports 2 experiments investigating learned helplessness in the honey bee (Apis mellifera ligustica). In Experiment 1, we used a traditional escape method but found the bees' activity levels too high to observe changes due to treatment conditions. The bees were not able to learn in this traditional escape procedure; thus, such procedures may be inappropriate to study learned helplessness in honey bees. In Experiment 2, we used an alternative punishment, or passive avoidance, method to investigate learned helplessness. Using a master and yoked design where bees were trained as either master or yoked and tested as either master or yoked, we found that prior training with unavoidable and inescapable shock in the yoked condition interfered with avoidance and escape behavior in the later master condition. Unlike control bees, learned helplessness bees failed to restrict their movement to the safe compartment following inescapable shock. Unlike learned helplessness studies in other animals, no decrease in general activity was observed. Furthermore, we did not observe a "freezing" response to inescapable aversive stimuli-a phenomenon, thus far, consistently observed in learned helplessness tests with other species. The bees, instead, continued to move back and forth between compartments despite punishment in the incorrect compartment. These findings suggest that, although traditional escape methods may not be suitable, honey bees display learned helplessness in passive avoidance procedures. Thus, regardless of behavioral differences from other species, honey bees can be a unique invertebrate model organism for the study of learned helplessness. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Heating and acceleration of escaping planetary ions

    NASA Astrophysics Data System (ADS)

    Nilsson, Hans

    2010-05-01

    The magnetic field of the Earth acts like a shield against the solar wind, leading to a magnetopause position many planetary radii away from the planet, in contrast to the situation at non- or weakly magnetized planets such as Mars and Venus. Despite this there is significant ion outflow due to solar wind interaction from the cusp and polar cap regions of the Earth's ionosphere. Effective interaction regions form, in particular in the ionospheric projection of the cusp, where ionospheric plasma flows up along the field-lines in response to magnetospheric energy input. Strong wave-particle interaction at altitudes above the ionosphere further accelerates the particles so that gravity is overcome. For the particles to enter a direct escape path they must be accelerated along open magnetic field lines so that they cross the magnetopause or reach a distance beyond the region of return flow in the tail. This return flow may also be either lost to space or returned to the atmosphere. Throughout this transport chain the heating and acceleration experienced by the particles will have an influence on the final fate of the particles. We will present quantitative estimates of centrifugal acceleration and perpendicular heating along the escape path from the cusp, through the high altitude polar cap/mantle, based on Cluster spacecraft data. We will open up for a discussion on the benefits of a ponderomotive force description of the acceleration affecting the ion circulation and escape. Finally we will compare with the situation at the unmagnetized planets Mars and Venus and discuss to what extent a magnetic field protects an atmosphere from loss through solar wind interaction.

  12. Flight mechanics and control of escape manoeuvres in hummingbirds. I. Flight kinematics.

    PubMed

    Cheng, Bo; Tobalske, Bret W; Powers, Donald R; Hedrick, Tyson L; Wethington, Susan M; Chiu, George T C; Deng, Xinyan

    2016-11-15

    Hummingbirds are nature's masters of aerobatic manoeuvres. Previous research shows that hummingbirds and insects converged evolutionarily upon similar aerodynamic mechanisms and kinematics in hovering. Herein, we use three-dimensional kinematic data to begin to test for similar convergence of kinematics used for escape flight and to explore the effects of body size upon manoeuvring. We studied four hummingbird species in North America including two large species (magnificent hummingbird, Eugenes fulgens, 7.8 g, and blue-throated hummingbird, Lampornis clemenciae, 8.0 g) and two smaller species (broad-billed hummingbird, Cynanthus latirostris, 3.4 g, and black-chinned hummingbirds Archilochus alexandri, 3.1 g). Starting from a steady hover, hummingbirds consistently manoeuvred away from perceived threats using a drastic escape response that featured body pitch and roll rotations coupled with a large linear acceleration. Hummingbirds changed their flapping frequency and wing trajectory in all three degrees of freedom on a stroke-by-stroke basis, likely causing rapid and significant alteration of the magnitude and direction of aerodynamic forces. Thus it appears that the flight control of hummingbirds does not obey the 'helicopter model' that is valid for similar escape manoeuvres in fruit flies. Except for broad-billed hummingbirds, the hummingbirds had faster reaction times than those reported for visual feedback control in insects. The two larger hummingbird species performed pitch rotations and global-yaw turns with considerably larger magnitude than the smaller species, but roll rates and cumulative roll angles were similar among the four species. © 2016. Published by The Company of Biologists Ltd.

  13. Forest edge burning in the Brazilian Amazon promoted by escaping fires from managed pastures

    NASA Astrophysics Data System (ADS)

    Cano-Crespo, Ana; Oliveira, Paulo J. C.; Boit, Alice; Cardoso, Manoel; Thonicke, Kirsten

    2015-10-01

    Understanding to what extent different land uses influence fire occurrence in the Amazonian forest is particularly relevant for its conservation. We evaluate the relationship between forest fires and different anthropogenic activities linked to a variety of land uses in the Brazilian states of Mato Grosso, Pará, and Rondônia. We combine the new high-resolution (30 m) TerraClass land use database with Moderate Resolution Imaging Spectroradiometer burned area data for 2008 and the extreme dry year of 2010. Excluding the non-forest class, most of the burned area was found in pastures, primary and secondary forests, and agricultural lands across all three states, while only around 1% of the total was located in deforested areas. The trend in burned area did not follow the declining deforestation rates from 2001 to 2010, and the spatial overlap between deforested and burned areas was only 8% on average. This supports the claim of deforestation being disconnected from burning since 2005. Forest degradation showed an even lower correlation with burned area. We found that fires used in managing pastoral and agricultural lands that escape into the neighboring forests largely contribute to forest fires. Such escaping fires are responsible for up to 52% of the burned forest edges adjacent to burned pastures and up to 22% of the burned forest edges adjacent to burned agricultural fields, respectively. Our findings call for the development of control and monitoring plans to prevent fires from escaping from managed lands into forests to support effective land use and ecosystem management.

  14. Compact Starburst Galaxies with Fast Outflows: Spatially Resolved Stellar Mass Profiles

    NASA Astrophysics Data System (ADS)

    Gottlieb, Sophia; Diamond-Stanic, Aleksandar; Lipscomb, Charles; Ohene, Senyo; Rines, Josh; Moustakas, John; Sell, Paul; Tremonti, Christy; Coil, Alison; Rudnick, Gregory; Hickox, Ryan C.; Geach, James; Kepley, Amanda

    2018-01-01

    Powerful galactic winds driven by stellar feedback and black hole accretion are thought to play an important role in regulating star formation in galaxies. In particular, strong stellar feedback from supernovae, stellar winds, radiation pressure, and cosmic rays is required by simulations of star-forming galaxies to prevent the vast majority of baryons from cooling and collapsing to form stars. However, it remains unclear whether these stellar processes play a significant role in expelling gas and shutting down star formation in massive progenitors of quiescent galaxies. What are the limits of stellar feedback? We present multi-band photometry with HST/WFC3 (F475W, F814W, F160W) for a dozen compact starburst galaxies at z~0.6 with half-light radii that suggest incredibly large central escape velocities. These massive galaxies are driving fast (>1000 km/s) outflows that have been previously attributed to stellar feedback associated with the compact (r~100 pc) starburst. But how compact is the stellar mass? In the context of the stellar feedback hypothesis, it is unclear whether these fast outflows are being driven at velocities comparable to the escape velocity of an incredibly dense stellar system (as predicted by some models of radiation-pressure winds) or at velocities that exceed the central escape velocity by large factor. Our spatially resolved measurements with HST show that the stellar mass is more extended than the light, and this requires that the physical mechanism responsible for driving the winds must be able to launch gas at velocities that are factors of 5-10 beyond the central escape velocity.

  15. Light-controlled endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin by photochemical internalization - A minimally invasive cancer stem cell-targeting strategy.

    PubMed

    Bostad, Monica; Olsen, Cathrine Elisabeth; Peng, Qian; Berg, Kristian; Høgset, Anders; Selbo, Pål Kristian

    2015-05-28

    The cancer stem cell (CSC) marker CD133 is an attractive target to improve antitumor therapy. We have used photochemical internalization (PCI) for the endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin (PCIAC133-saporin). PCI employs an endocytic vesicle-localizing photosensitizer, which generates reactive oxygen species upon light-activation causing a rupture of the vesicle membranes and endosomal escape of entrapped drugs. Here we show that AC133-saporin co-localizes with the PCI-photosensitizer TPCS2a, which upon light exposure induces cytosolic release of AC133-saporin. PCI of picomolar levels of AC133-saporin in colorectal adenocarcinoma WiDr cells blocked cell proliferation and induced 100% inhibition of cell viability and colony forming ability at the highest light doses, whereas no cytotoxicity was obtained in the absence of light. Efficient PCI-based CD133-targeting was in addition demonstrated in the stem-cell-like, triple negative breast cancer cell line MDA-MB-231 and in the aggressive malignant melanoma cell line FEMX-1, whereas no enhanced targeting was obtained in the CD133-negative breast cancer cell line MCF-7. PCIAC133-saporin induced mainly necrosis and a minimal apoptotic response based on assessing cleavage of caspase-3 and PARP, and the TUNEL assay. PCIAC133-saporin resulted in S phase arrest and reduced LC3-II conversion compared to control treatments. Notably, co-treatment with Bafilomycin A1 and PCIAC133-saporin blocked LC3-II conversion, indicating a termination of the autophagic flux in WiDr cells. For the first time, we demonstrate laser-controlled targeting of CD133 in vivo. After only one systemic injection of AC133-saporin and TPCS2a, a strong anti-tumor response was observed after PCIAC133-saporin. The present PCI-based endosomal escape technology represents a minimally invasive strategy for spatio-temporal, light-controlled targeting of CD133+ cells in localized primary tumors or metastasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Construction and expression of hepatitis B surface antigen escape variants within the "a" determinant by site directed mutagenesis.

    PubMed

    Golsaz Shirazi, Forough; Amiri, Mohammad Mehdi; Mohammadi, Hamed; Bayat, Ali Ahmad; Roohi, Azam; Khoshnoodi, Jalal; Zarnani, Amir Hassan; Jeddi-Tehrani, Mahmood; Kardar, Gholam Ali; Shokri, Fazel

    2013-09-01

    The antibody response to hepatitis B surface antigen (HBsAg) controls hepatitis B virus infection. The "a" determinant of HBsAg is the most important target for protective antibody response, diagnosis and immunoprophylaxis. Mutations in this area may induce immune escape mutants and affect the performance of HBsAg assays. To construct clinically relevant recombinant mutant forms of HBsAg and assessment of their reactivity with anti-HBs monoclonal antibodies (MAbs). Wild type (wt) and mutant (mt) HBsAg genes were constructed by site directed mutagenesis and SEOing PCR. The amplified genes were inserted into pCMV6-neo plasmid and transfected in CHO cell line. The expression of wt- and mtHBsAg was assessed by commercial ELISA assays and stable cells were established and cloned by limiting dilution. The recombinant mutants were further characterized using a panel of anti-HBs monoclonal antibodies (MAbs) and the pattern of their reactivity was assessed by ELISA. Ten HBsAg mutants having single mutation within the "a" determinant including P120E, T123N, Q129H, M133L, K141E, P142S, D144A, G145R, N146S and C147S together with a wt form were successfully constructed and expressed in CHO cells. Reactivity of anti-HBs MAbs with mtHBsAgs displayed different patterns. The effect of mutations on antibody binding differed depending on the amino acid involved and its location within the ''a'' determinant. Mutation at amino acids 123 and 145 resulted in either complete loss or significant reduction of binding to all anti-HBs MAbs. Our panel of mtHBsAgs is a valuable tool for assessment of the antibody response to HBV escape mutants and may have substantial implications in HBV immunological diagnostics.

  17. Sensitive Period for the Recovery of the Response Rate of the Wind-Evoked Escape Behavior of Unilaterally Cercus-Ablated Crickets (Gryllus bimaculatus).

    PubMed

    Takuwa, Hiroyuki; Kanou, Masamichi

    2015-04-01

    We examined the compensational recovery of the response rate (relative occurrence) of the wind-evoked escape behavior in unilaterally cercus-ablated crickets (Gryllus bimaculatus) and elucidated the existence of a sensitive period for such recovery by rearing the crickets under different conditions. In one experiment, each cricket was reared in an apparatus called a walking inducer (WI) to increase the sensory input to the remaining cercus, i.e., the self-generated wind caused by walking. In another experiment, each cricket was reared in a small plastic case separate from the outside atmosphere (wind-free: WF). In this rearing condition, the cricket did not experience self-generated wind as walking was prohibited. During the recovery period after the unilateral cercus ablation, the crickets were reared under either the WI or WF condition to investigate the role of the sensory inputs on the compensational recovery of the response rate. The compensational recovery of the response rate occurred only in the crickets reared under the WI condition during the early period after the ablation. In particular, WI rearing during the first three days after the ablation resulted in the largest compensational recovery in the response rate. In contrast, no compensational recovery was observed in the crickets reared under the WF condition during the first three days. These results suggest that a sensitive period exists in which sensory inputs from the remaining cercus affect the compensational recovery of the response rate more effectively than during other periods.

  18. ESCAPE AS REINFORCEMENT AND ESCAPE EXTINCTION IN THE TREATMENT OF FEEDING PROBLEMS

    PubMed Central

    LaRue, Robert H; Stewart, Victoria; Piazza, Cathleen C; Volkert, Valerie M; Patel, Meeta R; Zeleny, Jason

    2011-01-01

    Given the effectiveness of putative escape extinction as treatment for feeding problems, it is surprising that little is known about the effects of escape as reinforcement for appropriate eating during treatment. In the current investigation, we examined the effectiveness of escape as reinforcement for mouth clean (a product measure of swallowing), escape as reinforcement for mouth clean plus escape extinction (EE), and EE alone as treatment for the food refusal of 5 children. Results were similar to those of previous studies, in that reinforcement alone did not result in increases in mouth clean or decreases in inappropriate behavior (e.g., Piazza, Patel, Gulotta, Sevin, & Layer, 2003). Increases in mouth clean and decreases in inappropriate behavior occurred when the therapist implemented EE independent of the presence or absence of reinforcement. Results are discussed in terms of the role of negative reinforcement in the etiology and treatment of feeding problems. PMID:22219525

  19. Induction of Mincle by Helicobacter pylori and consequent anti-inflammatory signaling denote a bacterial survival strategy

    PubMed Central

    Devi, Savita; Rajakumara, Eerappa; Ahmed, Niyaz

    2015-01-01

    Evasion of innate immune recognition is one of the key strategies for persistence of Helicobacter pylori, by virtue of its ability to modulate or escape the host innate immune receptors and signaling pathways. C-type lectin receptors (CLRs) predominantly expressed by macrophages are pivotal in tailoring immune response against pathogens. The recognition of glyco or carbohydrate moieties by Mincle (Macrophage inducible C-type lectin) is emerging as a crucial element in anti-fungal and anti-mycobacterial immunity. Herein, we demonstrate the role of Mincle in modulation of innate immune response against H. pylori infection. Our results revealed an upregulated expression of Mincle which was independent of direct host cell contact. Upon computational modelling, Mincle was observed to interact with the Lewis antigens of H. pylori LPS and possibly activating an anti-inflammatory cytokine production, thereby maintaining a balance between pro- and anti-inflammatory cytokine production. Furthermore, siRNA mediated knockdown of Mincle in human macrophages resulted in up regulation of pro-inflammatory cytokines and consequent down regulation of anti-inflammatory cytokines. Collectively, our study demonstrates a novel mechanism employed by H. pylori to escape clearance by exploiting functional plasticity of Mincle to strike a balance between pro-and anti-inflammatory responses ensuring its persistence in the host. PMID:26456705

  20. Long-Term Habituation of the C-Start Escape Response in Zebrafish Larvae

    PubMed Central

    Roberts, Adam C.; Pearce, Kaycey C.; Choe, Ronny C.; Alzagatiti, Joseph B.; Yeung, Anthony K.; Bill, Brent R.; Glanzman, David L.

    2016-01-01

    The cellular and molecular basis of long-term memory in vertebrates remains poorly understood. Knowledge regarding long-term memory has been impeded by the enormous complexity of the vertebrate brain, particularly the mammalian brain, as well as by the relative complexity of the behavioral alterations examined in most studies of long-term memory in vertebrates. Here, we demonstrate a long-term form of nonassociative learning—specifically, long-term habituation (LTH)—of a simple reflexive escape response, the C-start, in zebrafish larvae. The C-start is triggered by the activation of one of a pair of giant neurons in the zebrafish’s hindbrain, the Mauthner cells. We show that LTH of the C-start requires the activity of NMDA receptors and involves macromolecular synthesis. We further show that the long-term habituated reflex can by rapidly dishabituated by a brief tactile stimulus. Our results set the stage for rigorous, mechanistic investigations of the long-term memory for habituation of a reflexive behavioral response, one that is mediated by a relatively simple, neurobiologically tractable, neural circuit. Moreover, the demonstration of NMDAR and transcriptionally dependent LTH in a translucent vertebrate organism should facilitate the use of optical recording, and optogenetic manipulation, of neuronal activity to elucidate the cellular basis of a long-term vertebrate memory. PMID:27555232

Top