Sample records for escherichia coli encode

  1. Evaluation of Hha and Hha SepB Mutant Strains of Escherichia coli O157:H7 as Bacterins for Reducing E. coli O157:H7 Shedding in Cattle

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli O157:H7 colonizes cattle intestines by using locus of enterocyte effacement (LEE)-encoded proteins. Induction of systemic immune response against LEE-encoded proteins, therefore, will prove effective in reducing E. coli O157:H7 colonization in cattle. Previous studies have demonstra...

  2. Escherichia coli O157:H7 lacking qseBC encoded quorum sensing system outcompetes the parent strain in colonization of cattle intestine

    USDA-ARS?s Scientific Manuscript database

    The qseBC encoded quorum-sensing system (QS) regulates motility of enterohemorrhagic Escherichia coli (EHEC) O157:H7 in response to bacterial autoinducer-3 (AI-3) and mammalian stress hormones epinephrine (E) and norepinephrine (NE). The qseC gene encodes a sensory kinase that post-autophosphorylati...

  3. Pea chloroplast DNA encodes homologues of Escherichia coli ribosomal subunit S2 and the beta'-subunit of RNA polymerase.

    PubMed Central

    Cozens, A L; Walker, J E

    1986-01-01

    The nucleotide sequence has been determined of a segment of 4680 bases of the pea chloroplast genome. It adjoins a sequence described elsewhere that encodes subunits of the F0 membrane domain of the ATP-synthase complex. The sequence contains a potential gene encoding a protein which is strongly related to the S2 polypeptide of Escherichia coli ribosomes. It also encodes an incomplete protein which contains segments that are homologous to the beta'-subunit of E. coli RNA polymerase and to yeast RNA polymerases II and III. PMID:3530249

  4. MCR-1 and OXA-48 In Vivo Acquisition in KPC-Producing Escherichia coli after Colistin Treatment.

    PubMed

    Beyrouthy, Racha; Robin, Frederic; Lessene, Aude; Lacombat, Igor; Dortet, Laurent; Naas, Thierry; Ponties, Valérie; Bonnet, Richard

    2017-08-01

    The spread of mcr-1 -encoding plasmids into carbapenem-resistant Enterobacteriaceae raises concerns about the emergence of untreatable bacteria. We report the acquisition of mcr-1 in a carbapenem-resistant Escherichia coli strain after a 3-week course of colistin in a patient repatriated to France from Portugal. Whole-genome sequencing revealed that the Klebsiella pneumoniae carbapenemase-producing E. coli strain acquired two plasmids, an IncL OXA-48-encoding plasmid and an IncX4 mcr-1 -encoding plasmid. This is the first report of mcr-1 in carbapenemase-encoding bacteria in France. Copyright © 2017 American Society for Microbiology.

  5. Escherichia coli yjjPB genes encode a succinate transporter important for succinate production.

    PubMed

    Fukui, Keita; Nanatani, Kei; Hara, Yoshihiko; Yamakami, Suguru; Yahagi, Daiki; Chinen, Akito; Tokura, Mitsunori; Abe, Keietsu

    2017-09-01

    Under anaerobic conditions, Escherichia coli produces succinate from glucose via the reductive tricarboxylic acid cycle. To date, however, no genes encoding succinate exporters have been established in E. coli. Therefore, we attempted to identify genes encoding succinate exporters by screening an E. coli MG1655 genome library. We identified the yjjPB genes as candidates encoding a succinate transporter, which enhanced succinate production in Pantoea ananatis under aerobic conditions. A complementation assay conducted in Corynebacterium glutamicum strain AJ110655ΔsucE1 demonstrated that both YjjP and YjjB are required for the restoration of succinate production. Furthermore, deletion of yjjPB decreased succinate production in E. coli by 70% under anaerobic conditions. Taken together, these results suggest that YjjPB constitutes a succinate transporter in E. coli and that the products of both genes are required for succinate export.

  6. THE WIDESPREAD OCCURRENCE OF THE ENTEROHEMOLYSIN GENE EHLYA AMONG ENVIRONMENTAL STRAINS OF ESCHERICHIA COLI

    EPA Science Inventory

    The putative virulence factor enterohemolysin, encoded for by the ehlyA gene, has been closely associated with the pathogenic enterohemorrhagic Escherichia coli (EHEC) group. E. coli isolates from effluents from seven geographically dispersed municipal ...

  7. Correlating levels of type III secretion and secreted proteins with fecal shedding of Escherichia coli O157:H7 in cattle

    USDA-ARS?s Scientific Manuscript database

    The locus of enterocyte effacement (LEE) encodes a type III secretion system (T3SS) for secreting factors that enable Escherichia coli O157:H7 to produce attaching and effacing lesions (A/E) on epithelial cells. The importance of LEE-encoded proteins in intestinal colonization of cattle is well-stud...

  8. Draft Genome Sequence of Enterohemorrhagic Escherichia coli O157:H7 Strain MC2 Isolated from Cattle in France

    PubMed Central

    Auffret, Pauline; Segura, Audrey; Klopp, Christophe; Bouchez, Olivier; Kérourédan, Monique; Bibbal, Delphine; Brugère, Hubert; Forano, Evelyne

    2017-01-01

    ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) with serotype O157:H7 is a major foodborne pathogen. Here, we report the draft genome sequence of EHEC O157:H7 strain MC2 isolated from cattle in France. The assembly contains 5,400,376 bp that encoded 5,914 predicted genes (5,805 protein-encoding genes and 109 RNA genes). PMID:28983004

  9. Degradation of triglycerides by a pseudomonad isolated from milk: molecular analysis of a lipase-encoding gene and its expression in Escherichia coli.

    PubMed Central

    Johnson, L A; Beacham, I R; MacRae, I C; Free, M L

    1992-01-01

    Psychrotrophic lipolytic bacteria represent a significant problem in the storage of refrigerated dairy products. A lipase-encoding gene has been cloned and characterized from a highly lipolytic strain of Pseudomonas. The nucleotide sequence of the gene predicts a polypeptide of M(r) 49,905, which was identified when the gene was expressed in Escherichia coli. Images PMID:1622251

  10. [Characterization of ibeB gene of meningitic Escherichia coli strains in calves from Xinjiang].

    PubMed

    Ling, Chen; Jiang, Jianjun; Song, Kang; Zhang, Kun; Shi, Yanxia; Feng, Guangyu; Ni, Hongbin; Zhu, Ling; Wang, Pengyan; Yan, Genqiang

    2016-06-04

    To understand the molecular biology information of ibeB gene of meningitic Escherichia coli isolates in calves. The strain used was isolated from the brain and liver tissue of calves died from Meningitis. It was identified to be an O161-K99-STa pathogenic Escherichia coli strain and named as bovine-EN and bovine-EG. Based on the sequence of ibeB gene of meningitic Escherichia coli K1 RS218 strain in GenBank, a pair of primers was designed and the ibeB gene was cloned from isolates by PCR. Part molecular biology information of ibeB among different strains was compared. The sequence length of isolates ibeB gene was 1500 bp, containing a 1371 bp open reading frame (ORF) encoding 457 amino acids. Bioinformatics analysis showed that the nucleotide and amino acid homology of ibeB gene of bovine-EN strain shared 90.5% and 96.9% identity with Escherichia coli K1 RS218 ibeB gene, respectively, while bovine-EG strain shared 99.4% and 100.0% identity with Escherichia coli K12 respectively. The ibeB gene of bovine-E strains encoded water-soluble protein whose molecular weight was 50.26 kDa and isoelectric point was 6.05. This protein contained a signal peptide A but no transmembrane domain. Subcellular localization of ibeB belonged to the secreted protein, which secretory signal path site (SP) proportion was 0.939. The ibeB gene was cloned from meningitic E. coli isolates and had higher homology and similar biological characteristics with meningitis E. coli K1 RS218ibeB, which belongs to extraintestinal pathogenic Escherichia coli.

  11. Genome dynamics and its impact on evolution of Escherichia coli.

    PubMed

    Dobrindt, Ulrich; Chowdary, M Geddam; Krumbholz, G; Hacker, J

    2010-08-01

    The Escherichia coli genome consists of a conserved part, the so-called core genome, which encodes essential cellular functions and of a flexible, strain-specific part. Genes that belong to the flexible genome code for factors involved in bacterial fitness and adaptation to different environments. Adaptation includes increase in fitness and colonization capacity. Pathogenic as well as non-pathogenic bacteria carry mobile and accessory genetic elements such as plasmids, bacteriophages, genomic islands and others, which code for functions required for proper adaptation. Escherichia coli is a very good example to study the interdependency of genome architecture and lifestyle of bacteria. Thus, these species include pathogenic variants as well as commensal bacteria adapted to different host organisms. In Escherichia coli, various genetic elements encode for pathogenicity factors as well as factors, which increase the fitness of non-pathogenic bacteria. The processes of genome dynamics, such as gene transfer, genome reduction, rearrangements as well as point mutations contribute to the adaptation of the bacteria into particular environments. Using Escherichia coli model organisms, such as uropathogenic strain 536 or commensal strain Nissle 1917, we studied mechanisms of genome dynamics and discuss these processes in the light of the evolution of microbes.

  12. KatP contributes to OxyR-regulated hydrogen peroxide resistance in Escherichia coli serotype O157:H7

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli K12 defends against peroxide mediated oxidative damage using two catalases, hydroperoxidase I (katG) and hydroperoxidase II (katE) and the peroxiredoxin, alkyl hydroperoxide reductase (ahpC). In E. coli O157:H7 strain ATCC 43895 (EDL933), plasmid pO157 encodes for an additional cata...

  13. Genome Sequence of Enterohemorrhagic Escherichia coli NCCP15658

    PubMed Central

    Song, Ju Yeon; Yoo, Ran Hee; Jang, Song Yee; Seong, Won-Keun; Kim, Seon-Young; Jeong, Haeyoung; Kang, Sung Gyun; Kim, Byung Kwon; Kwon, Soon-Kyeong; Lee, Choong Hoon; Yu, Dong Su; Park, Mi-Sun

    2012-01-01

    Enterohemorrhagic Escherichia coli causes severe food-borne disease in the guts of humans and animals. Here, we report the high-quality draft genome sequence of E. coli NCCP15658 isolated from a patient in the Republic of Korea. Its genome size was determined to be 5.46 Mb, and its genomic features, including genes encoding virulence factors, were analyzed. PMID:22740673

  14. Whole genome sequencing of Escherichia coli encoding blaNDM isolated from humans and companion animals in Egypt

    USDA-ARS?s Scientific Manuscript database

    Companion animals are a source of zoonotic infections and especially important considering the potential of companion animals to harbor antibiotic resistant pathogens. In this study, blaNDM positive Escherichia coli from companion animals, humans, and the environment from Mansoura, Egypt were charac...

  15. Regulation of Biofilm Formation in Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli O157:H7 encodes a variety of genetic factors for adherence to epithelial cells and to abiotic surfaces. While adherence to epithelial cells culminates in the formation of characteristic attaching and effacing (A/E) lesions, adherence to abiotic surfaces represents a prelude to the f...

  16. Genome Sequence of the Shiga Toxin-Producing Escherichia coli Strain NCCP15657

    PubMed Central

    Kim, Byung Kwon; Song, Geun Cheol; Hong, Gun Hyong; Seong, Won-Keun; Kim, Seon-Young; Jeong, Haeyoung; Kang, Sung Gyun; Kwon, Soon-Kyeong; Lee, Choong Hoon; Song, Ju Yeon; Yu, Dong Su; Park, Mi-Sun

    2012-01-01

    Shiga toxin-producing Escherichia coli causes bloody diarrhea and hemolytic-uremic syndrome and serious outbreaks worldwide. Here, we report the draft genome sequence of E. coli NCCP15657 isolated from a patient. The genome has virulence genes, many in the locus of enterocyte effacement (LEE) island, encoding a metalloprotease, the Shiga toxin, and constituents of type III secretion. PMID:22740674

  17. Possible mistranslation of Shiga toxin from pathogenic Escherichia coli as measured by MALDI-TOF and Orbitrap mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    RATIONALE: Shiga toxin-producing Escherichia coli (STEC) are often subjected to DNA damaging antibiotics during culturing in order to elicit the bacterial SOS response and up-regulation of bacteriophage-encoded proteins including Shiga toxin (Stx). However, such antibiotic exposure and stress may al...

  18. A critical examination of Escherichia coli esterase activity.

    PubMed

    Antonczak, Alicja K; Simova, Zuzana; Tippmann, Eric M

    2009-10-16

    The ability of Escherichia coli to grow on a series of acetylated and glycosylated compounds has been investigated. It is surmised that E. coli maintains low levels of nonspecific esterase activity. This observation may have ramifications for previous reports that relied on nonspecific esterases from E. coli to genetically encode nonnatural amino acids. It had been reported that nonspecific esterases from E. coli deacetylate tri-acetyl O-linked glycosylated serine and threonine in vivo. The glycosylated amino acids were reported to have been genetically encoded into proteins in response to the amber stop codon. However, it is our contention that such amino acids are not utilized in this manner within E. coli. The current results report in vitro analysis of the original enzyme and an in vivo analysis of a glycosylated amino acid. It is concluded that the amber suppression method with nonnatural amino acids may require a caveat for use in certain instances.

  19. A Critical Examination of Escherichia coli Esterase Activity*

    PubMed Central

    Antonczak, Alicja K.; Simova, Zuzana; Tippmann, Eric M.

    2009-01-01

    The ability of Escherichia coli to grow on a series of acetylated and glycosylated compounds has been investigated. It is surmised that E. coli maintains low levels of nonspecific esterase activity. This observation may have ramifications for previous reports that relied on nonspecific esterases from E. coli to genetically encode nonnatural amino acids. It had been reported that nonspecific esterases from E. coli deacetylate tri-acetyl O-linked glycosylated serine and threonine in vivo. The glycosylated amino acids were reported to have been genetically encoded into proteins in response to the amber stop codon. However, it is our contention that such amino acids are not utilized in this manner within E. coli. The current results report in vitro analysis of the original enzyme and an in vivo analysis of a glycosylated amino acid. It is concluded that the amber suppression method with nonnatural amino acids may require a caveat for use in certain instances. PMID:19666472

  20. Curli modulates adherence of Escherichia coli O157 to bovine recto-anal junction squamous epithelial cells

    USDA-ARS?s Scientific Manuscript database

    Our recent studies have shown that Intimin and the Locus of Enterocyte Effacement-encoded proteins do not play a role in Escherichia coli O157 (O157) adherence to the bovine recto-anal junction squamous epithelial cells (RSE) cells. Hence, to define factors that play a contributory role, we investi...

  1. Short-term evolution of Shiga toxin-producing Escherichia coli O157:H7 between two food-borne outbreaks

    USDA-ARS?s Scientific Manuscript database

    Background: Shiga toxin-producing Escherichia coli (STEC) O157 is a public health threat and outbreaks occur worldwide. STEC O157 has a mosaic genome with extensive prophage integration, including bacteriophage-encoded Shiga toxins. Here, we investigate genomic differences in a strain of STEC O157 t...

  2. ZitB (YbgR), a Member of the Cation Diffusion Facilitator Family, Is an Additional Zinc Transporter in Escherichia coli

    PubMed Central

    Grass, Gregor; Fan, Bin; Rosen, Barry P.; Franke, Sylvia; Nies, Dietrich H.; Rensing, Christopher

    2001-01-01

    The Escherichia coli zitB gene encodes a Zn(II) transporter belonging to the cation diffusion facilitator family. ZitB is specifically induced by zinc. ZitB expression on a plasmid rendered zntA-disrupted E. coli cells more resistant to zinc, and the cells exhibited reduced accumulation of 65Zn, suggesting ZitB-mediated efflux of zinc. PMID:11443104

  3. The Escherichia coli Serogroup O1 and O2 Lipopolysaccharides Are Encoded by Multiple O-antigen Gene Clusters.

    PubMed

    Delannoy, Sabine; Beutin, Lothar; Mariani-Kurkdjian, Patricia; Fleiss, Aubin; Bonacorsi, Stéphane; Fach, Patrick

    2017-01-01

    Escherichia coli strains belonging to serogroups O1 and O2 are frequently associated with human infections, especially extra-intestinal infections such as bloodstream infections or urinary tract infections. These strains can be associated with a large array of flagellar antigens. Because of their frequency and clinical importance, a reliable detection of E. coli O1 and O2 strains and also the frequently associated K1 capsule is important for diagnosis and source attribution of E. coli infections in humans and animals. By sequencing the O-antigen clusters of various O1 and O2 strains we showed that the serogroups O1 and O2 are encoded by different sets of O-antigen encoding genes and identified potentially new O-groups. We developed qPCR-assays to detect the various O1 and O2 variants and the K1-encoding gene. These qPCR assays proved to be 100% sensitive and 100% specific and could be valuable tools for the investigations of zoonotic and food-borne infection of humans with O1 and O2 extra-intestinal (ExPEC) or Shiga toxin-producing E. coli (STEC) strains.

  4. The Escherichia coli Serogroup O1 and O2 Lipopolysaccharides Are Encoded by Multiple O-antigen Gene Clusters

    PubMed Central

    Delannoy, Sabine; Beutin, Lothar; Mariani-Kurkdjian, Patricia; Fleiss, Aubin; Bonacorsi, Stéphane; Fach, Patrick

    2017-01-01

    Escherichia coli strains belonging to serogroups O1 and O2 are frequently associated with human infections, especially extra-intestinal infections such as bloodstream infections or urinary tract infections. These strains can be associated with a large array of flagellar antigens. Because of their frequency and clinical importance, a reliable detection of E. coli O1 and O2 strains and also the frequently associated K1 capsule is important for diagnosis and source attribution of E. coli infections in humans and animals. By sequencing the O-antigen clusters of various O1 and O2 strains we showed that the serogroups O1 and O2 are encoded by different sets of O-antigen encoding genes and identified potentially new O-groups. We developed qPCR-assays to detect the various O1 and O2 variants and the K1-encoding gene. These qPCR assays proved to be 100% sensitive and 100% specific and could be valuable tools for the investigations of zoonotic and food-borne infection of humans with O1 and O2 extra-intestinal (ExPEC) or Shiga toxin-producing E. coli (STEC) strains. PMID:28224115

  5. Genome sequence analyses of two isolates from the recent Escherichia coli outbreak in Germany reveal the emergence of a new pathotype: Entero-Aggregative-Haemorrhagic Escherichia coli (EAHEC).

    PubMed

    Brzuszkiewicz, Elzbieta; Thürmer, Andrea; Schuldes, Jörg; Leimbach, Andreas; Liesegang, Heiko; Meyer, Frauke-Dorothee; Boelter, Jürgen; Petersen, Heiko; Gottschalk, Gerhard; Daniel, Rolf

    2011-12-01

    The genome sequences of two Escherichia coli O104:H4 strains derived from two different patients of the 2011 German E. coli outbreak were determined. The two analyzed strains were designated E. coli GOS1 and GOS2 (German outbreak strain). Both isolates comprise one chromosome of approximately 5.31 Mbp and two putative plasmids. Comparisons of the 5,217 (GOS1) and 5,224 (GOS2) predicted protein-encoding genes with various E. coli strains, and a multilocus sequence typing analysis revealed that the isolates were most similar to the entero-aggregative E. coli (EAEC) strain 55989. In addition, one of the putative plasmids of the outbreak strain is similar to pAA-type plasmids of EAEC strains, which contain aggregative adhesion fimbrial operons. The second putative plasmid harbors genes for extended-spectrum β-lactamases. This type of plasmid is widely distributed in pathogenic E. coli strains. A significant difference of the E. coli GOS1 and GOS2 genomes to those of EAEC strains is the presence of a prophage encoding the Shiga toxin, which is characteristic for enterohemorrhagic E. coli (EHEC) strains. The unique combination of genomic features of the German outbreak strain, containing characteristics from pathotypes EAEC and EHEC, suggested that it represents a new pathotype Entero-Aggregative-Haemorrhagic E scherichia c oli (EAHEC).

  6. Evaluation of the Effects of SDIA, a LUXR Homologue, on Adherence and Motility of Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    Quorum-sensing (QS) signaling pathways are important regulatory networks for controlling the expression of genes promoting adherence of Enterohemorrhagic Escherichia coli (EHEC) O157:H7 to epithelial cells. A recent study has shown that EHEC O157:H7 encodes a luxR homologue, called sdiA¸ which upon...

  7. Assessing the relative contributions of EspA and CsgA in cellular adherence and biofilm formation of enterohemorrhagic Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    In enterohemorrhagic Escherichia coli O157:H7 (O157), the locus of enterocyte effacement (LEE) encodes a type III secretion system with an extracellular filamentous structure consisting of the polymerized translocator protein EspA. The EspA filaments provide transient interactions between bacterial ...

  8. Comparative transcriptional profiling reveals differential expression of pathways directly and indirectly influencing biofilm formation in Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    Introduction: Escherichia coli O157:H7 (O157) is a frequent cause of foodborne disease outbreaks. O157 encodes virulence factors for colonizing and survival in reservoir animals and the environment. For example, genetic factors promoting biofilm formation are linked to survival of O157 in and outsid...

  9. A new sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population of Switzerland.

    PubMed

    Perreten, Vincent; Boerlin, Patrick

    2003-03-01

    A new gene, sul3, which specifies a 263-amino-acid protein similar to a dihydropteroate synthase encoded by the 54-kb conjugative plasmid pVP440 from Escherichia coli was characterized. Expression of the cloned sul3 gene conferred resistance to sulfamethoxazole on E. coli. Two copies of the insertion element IS15Delta/26 flanked the region containing sul3. The sul3 gene was detected in one-third of the sulfonamide-resistant pathogenic E. coli isolates from pigs in Switzerland.

  10. A New Sulfonamide Resistance Gene (sul3) in Escherichia coli Is Widespread in the Pig Population of Switzerland

    PubMed Central

    Perreten, Vincent; Boerlin, Patrick

    2003-01-01

    A new gene, sul3, which specifies a 263-amino-acid protein similar to a dihydropteroate synthase encoded by the 54-kb conjugative plasmid pVP440 from Escherichia coli was characterized. Expression of the cloned sul3 gene conferred resistance to sulfamethoxazole on E. coli. Two copies of the insertion element IS15Δ/26 flanked the region containing sul3. The sul3 gene was detected in one-third of the sulfonamide-resistant pathogenic E. coli isolates from pigs in Switzerland. PMID:12604565

  11. Detection with synthetic oligonucleotide probes of nucleotide sequence variations in the genes encoding enterotoxins of Escherichia coli.

    PubMed Central

    Nishibuchi, M; Murakami, A; Arita, M; Jikuya, H; Takano, J; Honda, T; Miwatani, T

    1989-01-01

    We examined variations in the genes encoding heat-stable enterotoxin (ST) and heat-labile enterotoxin (LT) in 88 strains of Escherichia coli isolated from individuals with traveler's diarrhea to find suitable sequences for use as oligonucleotide probes. Four oligonucleotide probes of the gene encoding ST of human origin (STIb or STh), one oligonucleotide probe of the gene encoding ST of porcine origin (STIa or STp), and three oligonucleotide probes of the gene encoding LT of human origin (LTIh) were used in DNA colony hybridization tests. In 15 of 22 strains possessing the STh gene and 28 of 42 strains producing LT, the sequences of all regions tested were identical to the published sequences. One region in the STh gene examined with a 18-mer probe was relatively well conserved and was shown to be closely associated with the enterotoxicity of the E. coli strains in suckling mice. This oligonucleotide, however, hybridized with strains of Vibrio cholerae O1, V. parahaemolyticus, and Yersinia enterocolitica that gave negative results in the suckling mouse assay. PMID:2685027

  12. Protozoan Predation of Escherichia coli O157:H7 Is Unaffected by the Carriage of Shiga Toxin-Encoding Bacteriophages.

    PubMed

    Schmidt, Carrie E; Shringi, Smriti; Besser, Thomas E

    2016-01-01

    Escherichia coli O157:H7 is a food-borne bacterium that causes hemorrhagic diarrhea and hemolytic uremic syndrome in humans. While cattle are a known source of E. coli O157:H7 exposure resulting in human infection, environmental reservoirs may also be important sources of infection for both cattle and humans. Bacteriophage-encoded Shiga toxins (Stx) carried by E. coli O157:H7 may provide a selective advantage for survival of these bacteria in the environment, possibly through their toxic effects on grazing protozoa. To determine Stx effects on protozoan grazing, we co-cultured Paramecium caudatum, a common ciliate protozoon in cattle water sources, with multiple strains of Shiga-toxigenic E. coli O157:H7 and non-Shiga toxigenic cattle commensal E. coli. Over three days at ambient laboratory temperature, P. caudatum consistently reduced both E. coli O157:H7 and non-Shiga toxigenic E. coli populations by 1-3 log cfu. Furthermore, a wild-type strain of Shiga-toxigenic E. coli O157:H7 (EDL933) and isogenic mutants lacking the A subunit of Stx 2a, the entire Stx 2a-encoding bacteriophage, and/or the entire Stx 1-encoding bacteriophage were grazed with similar efficacy by both P. caudatum and Tetrahymena pyriformis (another ciliate protozoon). Therefore, our data provided no evidence of a protective effect of either Stx or the products of other bacteriophage genes on protozoan predation of E. coli. Further research is necessary to determine if the grazing activity of naturally-occurring protozoa in cattle water troughs can serve to decrease cattle exposure to E. coli O157:H7 and other Shiga-toxigenic E. coli.

  13. Peroxide resistance in Escherichia coli serotype O157:H7 biofilms is regulated by both RpoS dependent and independent mechanisms

    USDA-ARS?s Scientific Manuscript database

    In many Escherichia coli serotype O157:H7 strains, defenses against peroxide damage include the peroxiredoxin AhpCF and three catalases: KatG (catalase-peroxidase), KatE (catalase), and the plasmid-encoded KatP (catalase/peroxidase). AhpC, KatG, and KatP are induced by OxyR /s70 in exponential phase...

  14. Suppression of the lethal effect of acidic-phospholipid deficiency by defective formation of the major outer membrane lipoprotein in Escherichia coli.

    PubMed Central

    Asai, Y; Katayose, Y; Hikita, C; Ohta, A; Shibuya, I

    1989-01-01

    The Escherichia coli pgsA3 allele encoding a defective phosphatidylglycerophosphate synthase is lethal for all but certain strains. Genetic analysis of such strains has revealed that the lethal effect is fully suppressed by the lack of the major outer membrane lipoprotein that consumes phosphatidylglycerol for its maturation. Images PMID:2556377

  15. Curli temper adherence of Escherichia coli O157:H7 to squamous epithelial cells from the bovine recto-anal junction in a strain-dependent manner

    USDA-ARS?s Scientific Manuscript database

    Our recent studies have shown that Intimin and the Locus of Enterocyte Effacement-encoded proteins do not play a role in Escherichia coli O157 (O157) adherence to the bovine recto-anal junction squamous epithelial cells (RSE) cells. Hence, to define factors that play a contributory role, we investi...

  16. An imported case of bloody diarrhea in the Czech Republic caused by a hybrid enteroaggregative hemorrhagic Escherichia coli (EAHEC) O104:H4 strain associated with the large outbreak in Germany, May 2011.

    PubMed

    Marejková, M; Roháčová, H; Reisingerová, M; Petráš, P

    2012-03-01

    A large outbreak caused by a rare Shiga toxin-producing Escherichia coli serotype O104:H4 occurred in Germany in May to July 2011. The National Reference Laboratory for E. coli and Shigella investigated the stool sample from an American tourist with bloody diarrhea who arrived in the Czech Republic from Germany where she consumed salads with raw vegetable a week ago. Using culture of the enriched stool on extended-spectrum β-lactamase agar, we isolated E. coli strain which belonged to serotype O104:H4 as determined by conventional and molecular serotyping. The strain contained the major virulence characteristics of enterohemorrhagic E. coli (stx (2) encoding Shiga toxin 2) and enteroaggregative E. coli (aggA encoding aggregative adherence fimbriae I). This unique combination of virulence traits demonstrated that this strain belongs to the hybrid enteroaggregative hemorrhagic E. coli clone which caused the German outbreak. Using advanced culture and molecular biological approaches is the prerequisite for identification of new, unusual pathogens.

  17. The organization of the fuc regulon specifying L-fucose dissimilation in Escherichia coli K12 as determined by gene cloning.

    PubMed

    Chen, Y M; Zhu, Y; Lin, E C

    1987-12-01

    In Escherichia coli the six known genes specifying the utilization of L-fucose as carbon and energy source cluster at 60.2 min and constitute a regulon. These genes include fucP (encoding L-fucose permease), fucI (encoding L-fucose isomerase), fucK (encoding L-fuculose kinase), fucA (encoding L-fuculose 1-phosphate aldolase), fucO (encoding L-1,2-propanediol oxidoreductase), and fucR (encoding the regulatory protein). In this study the fuc genes were cloned and their positions on the chromosome were established by restriction endonuclease and complementation analyses. Clockwise, the gene order is: fucO-fucA-fucP-fucI-fucK-fucR. The operons comprising the structural genes and the direction of transcription were determined by complementation analysis and Southern blot hybridization. The fucPIK and fucA operons are transcribed clockwise. The fucO operon is transcribed counterclockwise. The fucR gene product activates the three structural operons in trans.

  18. A secretome view of colonisation factors in Shiga toxin-encoding Escherichia coli (STEC): from enterohaemorrhagic E. coli (EHEC) to related enteropathotypes.

    PubMed

    Monteiro, Ricardo; Ageorges, Valentin; Rojas-Lopez, Maricarmen; Schmidt, Herbert; Weiss, Agnes; Bertin, Yolande; Forano, Evelyne; Jubelin, Grégory; Henderson, Ian R; Livrelli, Valérie; Gobert, Alain P; Rosini, Roberto; Soriani, Marco; Desvaux, Mickaël

    2016-08-01

    Shiga toxin-encoding Escherichia coli (STEC) regroup strains that carry genes encoding Shiga toxin (Stx). Among intestinal pathogenic E. coli, enterohaemorrhagic E. coli (EHEC) constitute the major subgroup of virulent STEC. EHEC cause serious human disease such as haemorrhagic colitis and haemolytic-uremic syndrome. While EHEC have evolved from enteropathogenic E. coli, hybrids with enteroaggregative E. coli have recently emerged. Of note, some enteroinvasive E. coli also belong to the STEC group. While the LEE (locus of enterocyte effacement) is a key and prominent molecular determinant in the pathogenicity, neither all EHEC nor STEC contain the LEE, suggesting that they possess additional virulence and colonisation factors. Currently, nine protein secretion systems have been described in diderm-lipopolysaccharide bacteria (archetypal Gram-negative) and can be involved in the secretion of extracellular effectors, cell-surface proteins or assembly of cell-surface organelles, such as flagella or pili. In this review, we focus on the secretome of STEC and related enteropathotypes, which are relevant to the colonisation of biotic and abiotic surfaces. Considering the wealth of potential protein trafficking mechanisms, the different combinations of colonisation factors and modulation of their expression is further emphasised with regard to the ecophysiology of STEC. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Limited Dissemination of Extended-Spectrum β-Lactamase- and Plasmid-Encoded AmpC-Producing Escherichia coli from Food and Farm Animals, Sweden.

    PubMed

    Börjesson, Stefan; Ny, Sofia; Egervärn, Maria; Bergström, Jakob; Rosengren, Åsa; Englund, Stina; Löfmark, Sonja; Byfors, Sara

    2016-04-01

    Extended-spectrum β-lactamase (ESBL)- and plasmid-encoded ampC (pAmpC)-producing Enterobacteriaceae might spread from farm animals to humans through food. However, most studies have been limited in number of isolates tested and areas studied. We examined genetic relatedness of 716 isolates from 4,854 samples collected from humans, farm animals, and foods in Sweden to determine whether foods and farm animals might act as reservoirs and dissemination routes for ESBL/pAmpC-producing Escherichia coli. Results showed that clonal spread to humans appears unlikely. However, we found limited dissemination of genes encoding ESBL/pAmpC and plasmids carrying these genes from foods and farm animals to healthy humans and patients. Poultry and chicken meat might be a reservoir and dissemination route to humans. Although we found no evidence of clonal spread of ESBL/pAmpC-producing E. coli from farm animals or foods to humans, ESBL/pAmpC-producing E. coli with identical genes and plasmids were present in farm animals, foods, and humans.

  20. Comparative sequence analysis revealed altered chromosomal organization and a novel insertion sequence encoding DNA modification and potentially stress-related functions in an Escherichia coli O157:H7 foodborne isolate

    USDA-ARS?s Scientific Manuscript database

    We recently described the complete genome of enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain NADC 6564, an isolate of strain 86-24 linked to the 1986 disease outbreak. In the current study, we compared the chromosomal sequence of NADC 6564 to the well-characterized chromosomal sequences of ...

  1. Enterohemorrhagic Escherichia coli O157:H7 requires quorum sensing transcriptional regulators QseA and SdiA for colonization and persistence in the bovine intestinal tract

    USDA-ARS?s Scientific Manuscript database

    QseA and SdiA are two of several transcriptional regulators that regulate virulence gene expression of enterohemorrhagic Escherichia coli (EHEC) O157:H7 via quorum sensing (QS). QseA regulates the expression of the locus of enterocyte effacement (LEE). LEE encodes for a type III secretion (T3S) sys...

  2. Genomic comparison of Escherichia coli K1 strains isolated from the cerebrospinal fluid of patients with meningitis.

    PubMed

    Yao, Yufeng; Xie, Yi; Kim, Kwang Sik

    2006-04-01

    Escherichia coli is a major cause of enteric/diarrheal diseases, urinary tract infections, and sepsis. E. coli K1 is the leading gram-negative organism causing neonatal meningitis, but the microbial basis of E. coli K1 meningitis is incompletely understood. Here we employed comparative genomic hybridization to investigate 11 strains of E. coli K1 isolated from the cerebrospinal fluid (CSF) of patients with meningitis. These 11 strains cover the majority of common O serotypes in E. coli K1 isolates from CSF. Our data demonstrated that these 11 strains of E. coli K1 can be categorized into two groups based on their profile for putative virulence factors, lipoproteins, proteases, and outer membrane proteins. Of interest, we showed that some open reading frames (ORFs) encoding the type III secretion system apparatus were found in group 2 strains but not in group 1 strains, while ORFs encoding the general secretory pathway are predominant in group 1 strains. These findings suggest that E. coli K1 strains isolated from CSF can be divided into two groups and these two groups of E. coli K1 may utilize different mechanisms to induce meningitis.

  3. Cloning and expression of clt genes encoding milk-clotting proteases from Myxococcus xanthus 422.

    PubMed

    Poza, M; Prieto-Alcedo, M; Sieiro, C; Villa, T G

    2004-10-01

    The screening of a gene library of the milk-clotting strain Myxococcus xanthus 422 constructed in Escherichia coli allowed the description of eight positive clones containing 26 open reading frames. Only three of them (cltA, cltB, and cltC) encoded proteins that exhibited intracellular milk-clotting ability in E. coli, Saccharomyces cerevisiae, and Pichia pastoris expression systems.

  4. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models

    PubMed Central

    Hwang, In Young; Koh, Elvin; Wong, Adison; March, John C.; Bentley, William E.; Lee, Yung Seng; Chang, Matthew Wook

    2017-01-01

    Bacteria can be genetically engineered to kill specific pathogens or inhibit their virulence. We previously developed a synthetic genetic system that allows a laboratory strain of Escherichia coli to sense and kill Pseudomonas aeruginosa in vitro. Here, we generate a modified version of the system, including a gene encoding an anti-biofilm enzyme, and use the probiotic strain Escherichia coli Nissle 1917 as host. The engineered probiotic shows in vivo prophylactic and therapeutic activity against P. aeruginosa during gut infection in two animal models (Caenorhabditis elegans and mice). These findings support the further development of engineered microorganisms with potential prophylactic and therapeutic activities against gut infections. PMID:28398304

  5. NDM-5 Carbapenemase-Encoding Gene in Multidrug-Resistant Clinical Isolates of Escherichia coli from Algeria

    PubMed Central

    Sassi, Asma; Loucif, Lotfi; Gupta, Sushim Kumar; Dekhil, Mazouz; Chettibi, Houria

    2014-01-01

    Here, we report the first autochthonous cases of infections caused by blaNDM-5 New Delhi metallo-β-lactamase-producing Escherichia coli strains recovered from urine and blood specimens of three patients from Algeria between January 2012 and February 2013. The three isolates belong to sequence type 2659 and they coexpress blaCTX-M-15 with the blaTEM-1 and blaaadA2 genes. PMID:24982080

  6. An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli.

    PubMed

    Yang, Xiaoyan; Yuan, Qianqian; Zheng, Yangyang; Ma, Hongwu; Chen, Tao; Zhao, Xueming

    2016-08-01

    To find new metabolic engineering strategies to improve the yield of acetone in Escherichia coli. Results of flux balance analysis from a modified Escherichia coli genome-scale metabolic network suggested that the introduction of a non-oxidative glycolysis (NOG) pathway would improve the theoretical acetone yield from 1 to 1.5 mol acetone/mol glucose. By inserting the fxpk gene encoding phosphoketolase from Bifidobacterium adolescentis into the genome, we constructed a NOG pathway in E.coli. The resulting strain produced 47 mM acetone from glucose under aerobic conditions in shake-flasks. The yield of acetone was improved from 0.38 to 0.47 mol acetone/mol glucose which is a significant over the parent strain. Guided by computational analysis of metabolic networks, we introduced a NOG pathway into E. coli and increased the yield of acetone, which demonstrates the importance of modeling analysis for the novel metabolic engineering strategies.

  7. Affinity Isolation and I-DIRT Mass Spectrometric Analysis of the Escherichia coli O157:H7 Sakai RNA Polymerase Complex▿

    PubMed Central

    Lee, David J.; Busby, Stephen J. W.; Westblade, Lars F.; Chait, Brian T.

    2008-01-01

    Bacteria contain a single multisubunit RNA polymerase that is responsible for the synthesis of all RNA. Previous studies of the Escherichia coli K-12 laboratory strain identified a group of effector proteins that interact directly with RNA polymerase to modulate the efficiency of transcription initiation, elongation, or termination. Here we used a rapid affinity isolation technique to isolate RNA polymerase from the pathogenic Escherichia coli strain O157:H7 Sakai. We analyzed the RNA polymerase enzyme complex using mass spectrometry and identified associated proteins. Although E. coli O157:H7 Sakai contains more than 1,600 genes not present in the K-12 strain, many of which are predicted to be involved in transcription regulation, all of the identified proteins in this study were encoded on the “core” E. coli genome. PMID:18083804

  8. Affinity isolation and I-DIRT mass spectrometric analysis of the Escherichia coli O157:H7 Sakai RNA polymerase complex.

    PubMed

    Lee, David J; Busby, Stephen J W; Westblade, Lars F; Chait, Brian T

    2008-02-01

    Bacteria contain a single multisubunit RNA polymerase that is responsible for the synthesis of all RNA. Previous studies of the Escherichia coli K-12 laboratory strain identified a group of effector proteins that interact directly with RNA polymerase to modulate the efficiency of transcription initiation, elongation, or termination. Here we used a rapid affinity isolation technique to isolate RNA polymerase from the pathogenic Escherichia coli strain O157:H7 Sakai. We analyzed the RNA polymerase enzyme complex using mass spectrometry and identified associated proteins. Although E. coli O157:H7 Sakai contains more than 1,600 genes not present in the K-12 strain, many of which are predicted to be involved in transcription regulation, all of the identified proteins in this study were encoded on the "core" E. coli genome.

  9. Escherichia coli type III secretion system 2: a new kind of T3SS?

    PubMed

    Zhou, Mingxu; Guo, Zhiyan; Duan, Qiangde; Hardwidge, Philip R; Zhu, Guoqiang

    2014-03-19

    Type III secretion systems (T3SSs) are employed by Gram-negative bacteria to deliver effector proteins into the cytoplasm of infected host cells. Enteropathogenic Escherichia coli use a T3SS to deliver effector proteins that result in the creation of the attaching and effacing lesions. The genome sequence of the Escherichia coli pathotype O157:H7 revealed the existence of a gene cluster encoding components of a second type III secretion system, the E. coli type III secretion system 2 (ETT2). Researchers have revealed that, although ETT2 may not be a functional secretion system in most (or all) strains, it still plays an important role in bacterial virulence. This article summarizes current knowledge regarding the E. coli ETT2, including its genetic characteristics, prevalence, function, association with virulence, and prospects for future work.

  10. High-level expression of a synthetic gene encoding a sweet protein, monellin, in Escherichia coli.

    PubMed

    Chen, Zhongjun; Cai, Heng; Lu, Fuping; Du, Lianxiang

    2005-11-01

    The expression of a synthetic gene encoding monellin, a sweet protein, in E. coli under the control of T7 promoter from phage is described. The single-chain monellin gene was designed based on the biased codons of E. coli so as to optimize its expression. Monellin was produced and accounted for 45% of total soluble proteins. It was purified to yield 43 mg protein per g dry cell wt. The purity of the recombinant protein was confirmed by SDS-PAGE.

  11. Improved efficiency in amplification of Escherichia coli o-antigen gene clusters using genome-wide sequence comparison

    USDA-ARS?s Scientific Manuscript database

    Background: In many bacteria including E. coli, genes encoding O-antigens are clustered in the chromosome, with a 39-bp JUMPstart sequence and gnd gene located upstream and downstream of the cluster, respectively. For determining the DNA sequence of the E. coli O-antigen gene cluster, one set of P...

  12. Prevalence of genes encoding virulence factors among Escherichia coli with K1 antigen and non-K1 E. coli strains.

    PubMed

    Kaczmarek, Agnieszka; Budzynska, Anna; Gospodarek, Eugenia

    2012-10-01

    Multiplex PCR was used to detect genes encoding selected virulence determinants associated with strains of Escherichia coli with K1 antigen (K1(+)) and non-K1 E. coli (K1(-)). The prevalence of the fimA, fimH, sfa/foc, ibeA, iutA and hlyF genes was studied for 134 (67 K1(+) and 67 K1(-)) E. coli strains isolated from pregnant women and neonates. The fimA gene was present in 83.6 % of E. coli K1(+) and in 86.6 % of E. coli K1(-) strains. The fimH gene was present in all tested E. coli K1(+) strains and in 97.0 % of non-K1 strains. E. coli K1(+) strains were significantly more likely to possess the following genes than E. coli K1(-) strains: sfa/foc (37.3 vs 16.4 %, P = 0.006), ibeA (35.8 vs 4.5 %, P<0.001), iutA (82.1 vs 35.8 %, P<0.001) and hlyF (28.4 vs 6.0 %, P<0.001). In conclusion, E. coli K1(+) seems to be more virulent than E. coli K1(-) strains in developing severe infections, thereby increasing possible sepsis or neonatal bacterial meningitis.

  13. Identification of DNA gyrase inhibitor (GyrI) in Escherichia coli.

    PubMed

    Nakanishi, A; Oshida, T; Matsushita, T; Imajoh-Ohmi, S; Ohnuki, T

    1998-01-23

    DNA gyrase is an essential enzyme in DNA replication in Escherichia coli. It mediates the introduction of negative supercoils near oriC, removal of positive supercoils ahead of the growing DNA fork, and separation of the two daughter duplexes. In the course of purifying DNA gyrase from E. coli KL16, we found an 18-kDa protein that inhibited the supercoiling activity of DNA gyrase, and we coined it DNA gyrase inhibitory protein (GyrI). Its NH2-terminal amino acid sequence of 16 residues was determined to be identical to that of a putative gene product (a polypeptide of 157 amino acids) encoded by yeeB (EMBL accession no. U00009) and sbmC (Baquero, M. R., Bouzon, M., Varea, J., and Moreno, F. (1995) Mol. Microbiol. 18, 301-311) of E. coli. Assuming the identity of the gene (gyrI) encoding GyrI with the previously reported genes yeeB and sbmC, we cloned the gene after amplification by polymerase chain reaction and purified the 18-kDa protein from an E. coli strain overexpressing it. The purified 18-kDa protein was confirmed to inhibit the supercoiling activity of DNA gyrase in vitro. In vivo, both overexpression and antisense expression of the gyrI gene induced filamentous growth of cells and suppressed cell proliferation. GyrI protein is the first identified chromosomally nucleoid-encoded regulatory factor of DNA gyrase in E. coli.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Melanie A.; Udell, Christian M.; Pal, Gour Pada

    The crystallization and preliminary X-ray diffraction analysis of MraZ, formerly known as hypothetical protein YabB, from Escherichia coli K-12 is presented. The MraZ family of proteins, also referred to as the UPF0040 family, are highly conserved in bacteria and are thought to play a role in cell-wall biosynthesis and cell division. The murein region A (mra) gene cluster encodes MraZ proteins along with a number of other proteins involved in this complex process. To date, there has been no clear functional assignment provided for MraZ proteins and the structure of a homologue from Mycoplasma pneumoniae, MPN314, failed to suggest amore » molecular function. The b0081 gene from Escherichia coli that encodes the MraZ protein was cloned and the protein was overexpressed, purified and crystallized. This data is presented along with evidence that the E. coli homologue exists in a different oligomeric state to the MPN314 protein.« less

  15. Large IncHI2-plasmids encode extended-spectrum β-lactamases (ESBLs) in Enterobacter spp. bloodstream isolates, and support ESBL-transfer to Escherichia coli.

    PubMed

    Nilsen, E; Haldorsen, B C; Sundsfjord, A; Simonsen, G S; Ingebretsen, A; Naseer, U; Samuelsen, O

    2013-11-01

    We investigated the prevalence of extended-spectrum β-lactamases (ESBLs) in Enterobacter spp. bloodstream isolates from 19 hospital laboratories in Norway during 2011. A total of 62/230 (27%) isolates were resistant to third-generation cephalosporins and four (1.7%) were ESBL-positive; blaCTX -M-15 (n = 3) and blaSHV -12 (n = 1). This is comparable to the prevalence of ESBLs in clinical isolates of Escherichia coli and Klebsiella pneumoniae in Norway during the same period. All ESBL-positive isolates were multidrug resistant (MDR) and harboured plasmid-mediated quinolone resistance. Three isolates supported transfer of large IncHI2-plasmids harbouring ESBL- and MDR-encoding genes to E. coli recipients by in vitro conjugation. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  16. Cloning and expression of clostridium acetobutylicum ATCC 824 acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, J.W.; Petersen, D.J.; Bennett, G.N.

    1990-06-01

    Coenzyme A (CoA)-transferase (acetoacetyl-CoA:acetate/butyrate:CoA-transferase (butyrate-acetoacetate CoA-transferase) (EC 2.8.3.9)) of Clostridium acetobutylicum ATCC 824 is an important enzyme in the metabolic shift between the acid-producing and solvent-forming states of this organism. The genes encoding the two subunits of this enzyme have been cloned and subsequent subcloning experiments established the position of the structural genes for CoA-transferase. Complementation of Escherichia coli ato mutants with the recombinant plasmid pCoAT4 (pUC19 carrying a 1.8-kilobase insert of C. acetobutylicum DNA encoding CoA-transferase activity) enabled the transformants to grow on butyrate as a sole carbon source. Despite the ability of CoA-transferase to complement the ato defectmore » in E. coli mutants, Southern blot and Western blot (immunoblot) analyses showed showed that neither the C. acetobutylicum genes encoding CoA-transferase nor the enzyme itself shared any apparent homology with its E. coli counterpart. Polypeptides of M{sub r} of the purified CoA-transferase subunits were observed by Western blot and maxicell analysis of whole-cell extracts of E.coli harboring pCoAT4. The proximity and orientation of the genes suggest that the genes encoding the two subunits of CoA-transferase may form an operon similar to that found in E. coli. In the plasmid, however, transcription appears to be primarily from the lac promoter of the vector.« less

  17. A Commensal Gone Bad: Complete Genome Sequence of the Prototypical Enterotoxigenic Escherichia coli Strain H10407

    DTIC Science & Technology

    2010-11-01

    and Escherichia ferguso- . TABLE 2. General characteristics of the plasm ids from ETEC strains H10407 and E1392/75 Value in E. c·oli: Characteristic...0352). consetved proteins with unknown func- tions (CDSs 0673 to 0678), a flavoprotein electron transfer system (CDSs 1730 to 1734), the colanic...mediating diarrhea are not chromosomally encoded. indicating that the essential virulence factors are encoded on the plasm ids (61 ). Potentia l

  18. A mutation in a new gene bglJ, activates the bgl operon in Escherichia coli K-12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giel, M.; Desnoyer, M.; Lopilato, J.

    1996-06-01

    A new mutation , bglJ4, has been characterized that results in the expression of the silent bgl operon. The bgl operon encodes proteins necessary for the transport and utilization of the aromatic {beta}-glucosides arbutin and salicin. A variety of mutations activate the operon and result in a Bgl{sup +} phenotype. Activating mutations are located upstream of the bgl promoter and in genes located elsewhere on the chromosome. Mutations outside of the bgl operon occur in the genes encoding DNA gyrase and in the gene encoding the nucleoid associated protein H-NS. The mutation described here, bglJ4, has been mapped to amore » new locus at min 99 on the Escherichia coli K-12 genetic map. The putative protein encoded by the bglJ gene has homology to a family of transcriptional activators. Evidence is presented that increased expression of the bglJ product is needed for activation of the bgl operon. 56 refs., 3 figs., 3 tabs.« less

  19. Horizontal gene transfer of chromosomal Type II toxin-antitoxin systems of Escherichia coli.

    PubMed

    Ramisetty, Bhaskar Chandra Mohan; Santhosh, Ramachandran Sarojini

    2016-02-01

    Type II toxin-antitoxin systems (TAs) are small autoregulated bicistronic operons that encode a toxin protein with the potential to inhibit metabolic processes and an antitoxin protein to neutralize the toxin. Most of the bacterial genomes encode multiple TAs. However, the diversity and accumulation of TAs on bacterial genomes and its physiological implications are highly debated. Here we provide evidence that Escherichia coli chromosomal TAs (encoding RNase toxins) are 'acquired' DNA likely originated from heterologous DNA and are the smallest known autoregulated operons with the potential for horizontal propagation. Sequence analyses revealed that integration of TAs into the bacterial genome is unique and contributes to variations in the coding and/or regulatory regions of flanking host genome sequences. Plasmids and genomes encoding identical TAs of natural isolates are mutually exclusive. Chromosomal TAs might play significant roles in the evolution and ecology of bacteria by contributing to host genome variation and by moderation of plasmid maintenance. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Dissection and engineering of the Escherichia coli formate hydrogenlyase complex.

    PubMed

    McDowall, Jennifer S; Hjersing, M Charlotte; Palmer, Tracy; Sargent, Frank

    2015-10-07

    The Escherichia coli formate hydrogenlyase (FHL) complex is produced under fermentative conditions and couples formate oxidation to hydrogen production. In this work, the architecture of FHL has been probed by analysing affinity-tagged complexes from various genetic backgrounds. In a successful attempt to stabilize the complex, a strain encoding a fusion between FdhF and HycB has been engineered and characterised. Finally, site-directed mutagenesis of the hycG gene was performed, which is predicted to encode a hydrogenase subunit important for regulating sensitivity to oxygen. This work helps to define the core components of FHL and provides solutions to improving the stability of the enzyme. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Cloning and expression in Escherichia coli of a hygromycin B phosphotransferase gene from Streptomyces hygroscopicus.

    PubMed

    Zalacain, M; Malpartida, F; Pulido, D; Jiménez, A

    1987-01-15

    The Streptomyces hygroscopicus hyg gene encoding a hygromycin B phosphotransferase has been introduced into different sites of both the Escherichia coli plasmid pBR322 and the Escherichia coli-Saccharomyces cerevisiae shuttle vector YRp7. When this gene was inserted into the BamHI site of pBR322 and then cloned in E. coli phosphorylating activity was not detected, indicating that the hyg gene promoter was not functional in this bacterium. However, when the hyg gene was inserted into either the unique PstI site of pBR322 or into each of the two PstI sites of YRp7, phosphotransferase activity was observed. Analysis of the translation products from these constructions by coupled in vitro transcription-translation systems suggested that in all cases transcrition was regulated by a promoter not provided by the inserted hyg gene and that the synthesized polypeptide was identical to that present in S. hygroscopicus.

  2. Short genome report of cellulose-producing commensal Escherichia coli 1094.

    PubMed

    Bernal-Bayard, Joaquin; Gomez-Valero, Laura; Wessel, Aimee; Khanna, Varun; Bouchier, Christiane; Ghigo, Jean-Marc

    2018-01-01

    Bacterial surface colonization and biofilm formation often rely on the production of an extracellular polymeric matrix that mediates cell-cell and cell-surface contacts. In Escherichia coli and many Betaproteobacteria and Gammaproteobacteria cellulose is often the main component of the extracellular matrix. Here we report the complete genome sequence of the cellulose producing strain E. coli 1094 and compare it with five other closely related genomes within E. coli phylogenetic group A. We present a comparative analysis of the regions encoding genes responsible for cellulose biosynthesis and discuss the changes that could have led to the loss of this important adaptive advantage in several E. coli strains. Data deposition: The annotated genome sequence has been deposited at the European Nucleotide Archive under the accession number PRJEB21000.

  3. DNA Microarray Analysis of the Expression Profile of Escherichia coli in Response to Treatment with 4,5-Dihydroxy-2-Cyclopenten-1-One

    PubMed Central

    Phadtare, Sangita; Kato, Ikunoshin; Inouye, Masayori

    2002-01-01

    We carried out DNA microarray-based global transcript profiling of Escherichia coli in response to 4,5-dihydroxy-2-cyclopenten-1-one to explore the manifestation of its antibacterial activity. We show that it has widespread effects in E. coli affecting genes encoding proteins involved in cell metabolism and membrane synthesis and functions. Genes belonging to the regulon involved in synthesis of Cys are upregulated. In addition, rpoS and RpoS-regulated genes responding to various stresses and a number of genes responding to oxidative stress are upregulated. PMID:12426362

  4. Evaluating the pathogenic potential of environmental Escherichia coli by using the Caenorhabditis elegans infection model.

    PubMed

    Merkx-Jacques, Alexandra; Coors, Anja; Brousseau, Roland; Masson, Luke; Mazza, Alberto; Tien, Yuan-Ching; Topp, Edward

    2013-04-01

    The detection and abundance of Escherichia coli in water is used to monitor and mandate the quality of drinking and recreational water. Distinguishing commensal waterborne E. coli isolates from those that cause diarrhea or extraintestinal disease in humans is important for quantifying human health risk. A DNA microarray was used to evaluate the distribution of virulence genes in 148 E. coli environmental isolates from a watershed in eastern Ontario, Canada, and in eight clinical isolates. Their pathogenic potential was evaluated with Caenorhabditis elegans, and the concordance between the bioassay result and the pathotype deduced by genotyping was explored. Isolates identified as potentially pathogenic on the basis of their complement of virulence genes were significantly more likely to be pathogenic to C. elegans than those determined to be potentially nonpathogenic. A number of isolates that were identified as nonpathogenic on the basis of genotyping were pathogenic in the infection assay, suggesting that genotyping did not capture all potentially pathogenic types. The detection of the adhesin-encoding genes sfaD, focA, and focG, which encode adhesins; of iroN2, which encodes a siderophore receptor; of pic, which encodes an autotransporter protein; and of b1432, which encodes a putative transposase, was significantly associated with pathogenicity in the infection assay. Overall, E. coli isolates predicted to be pathogenic on the basis of genotyping were indeed so in the C. elegans infection assay. Furthermore, the detection of C. elegans-infective environmental isolates predicted to be nonpathogenic on the basis of genotyping suggests that there are hitherto-unrecognized virulence factors or combinations thereof that are important in the establishment of infection.

  5. Materials and methods for efficient lactic acid production

    DOEpatents

    Zhou, Shengde; Ingram, Lonnie O& #x27; Neal; Shanmugam, Keelnatham T; Yomano, Lorraine; Grabar, Tammy B; Moore, Jonathan C

    2013-04-23

    The present invention provides derivatives of Escherichia coli constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  6. Materials and methods for efficient lactic acid production

    DOEpatents

    Zhou, Shengde [Sycamore, IL; Ingram, Lonnie O'Neal [Gainesville, FL; Shanmugam, Keelnatham T [Gainesville, FL; Yomano, Lorraine [Gainesville, FL; Grabar, Tammy B [Gainesville, FL; Moore, Jonathan C [Gainesville, FL

    2009-12-08

    The present invention provides derivatives of ethanologenic Escherichia coli K011 constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  7. Whole genome sequencing of ESBL-producing Escherichia coli isolated from patients, farm waste and canals in Thailand.

    PubMed

    Runcharoen, Chakkaphan; Raven, Kathy E; Reuter, Sandra; Kallonen, Teemu; Paksanont, Suporn; Thammachote, Jeeranan; Anun, Suthatip; Blane, Beth; Parkhill, Julian; Peacock, Sharon J; Chantratita, Narisara

    2017-09-06

    Tackling multidrug-resistant Escherichia coli requires evidence from One Health studies that capture numerous potential reservoirs in circumscribed geographic areas. We conducted a survey of extended β-lactamase (ESBL)-producing E. coli isolated from patients, canals and livestock wastewater in eastern Thailand between 2014 and 2015, and analyzed isolates using whole genome sequencing. The bacterial collection of 149 isolates consisted of 84 isolates from a single hospital and 65 from the hospital sewer, canals and farm wastewater within a 20 km radius. E. coli ST131 predominated the clinical collection (28.6%), but was uncommon in the environment. Genome-based comparison of E. coli from infected patients and their immediate environment indicated low genetic similarity overall between the two, although three clinical-environmental isolate pairs differed by ≤ 5 single nucleotide polymorphisms. Thai E. coli isolates were dispersed throughout a phylogenetic tree containing a global E. coli collection. All Thai ESBL-positive E. coli isolates were multidrug resistant, including high rates of resistance to tobramycin (77.2%), gentamicin (77.2%), ciprofloxacin (67.8%) and trimethoprim (68.5%). ESBL was encoded by six different CTX-M elements and SHV-12. Three isolates from clinical samples (n = 2) or a hospital sewer (n = 1) were resistant to the carbapenem drugs (encoded by NDM-1, NDM-5 or GES-5), and three isolates (clinical (n = 1) and canal water (n = 2)) were resistant to colistin (encoded by mcr-1); no isolates were resistant to both carbapenems and colistin. Tackling ESBL-producing E. coli in this setting will be challenging based on widespread distribution, but the low prevalence of resistance to carbapenems and colistin suggests that efforts are now required to prevent these from becoming ubiquitous.

  8. Assessing the biocompatibility of click-linked DNA in Escherichia coli

    PubMed Central

    Sanzone, A. Pia; El-Sagheer, Afaf H.; Brown, Tom; Tavassoli, Ali

    2012-01-01

    The biocompatibility of a triazole mimic of the DNA phosphodiester linkage in Escherichia coli has been evaluated. The requirement for selective pressure on the click-containing gene was probed via a plasmid containing click DNA backbone linkages in each strand of the gene encoding the fluorescent protein mCherry. The effect of proximity of the click linkers on their biocompatibility was also probed by placing two click DNA linkers 4-bp apart at the region encoding the fluorophore of the fluorescent protein. The resulting click-containing plasmid was found to encode mCherry in E. coli at a similar level to the canonical equivalent. The ability of the cellular machinery to read through click-linked DNA was further probed by using the above click-linked plasmid to express mCherry using an in vitro transcription/translation system, and found to also be similar to that from canonical DNA. The yield and fluorescence of recombinant mCherry expressed from the click-linked plasmid was also compared to that from the canonical equivalent, and found to be the same. The biocompatibility of click DNA ligation sites at close proximity in a non-essential gene demonstrated in E. coli suggests the possibility of using click DNA ligation for the enzyme-free assembly of chemically modified genes and genomes. PMID:22904087

  9. The dhnA gene of Escherichia coli encodes a class I fructose bisphosphate aldolase.

    PubMed Central

    Thomson, G J; Howlett, G J; Ashcroft, A E; Berry, A

    1998-01-01

    The gene encoding the Escherichia coli Class I fructose-1, 6-bisphosphate aldolase (FBP aldolase) has been cloned and the protein overproduced in high amounts. This gene sequence has previously been identified as encoding an E. coli dehydrin in the GenBanktrade mark database [gene dhnA; entry code U73760; Close and Choi (1996) Submission to GenBanktrade mark]. However, the purified protein overproduced from the dhnA gene shares all its properties with those known for the E. coli Class I FBP aldolase. The protein is an 8-10-mer with a native molecular mass of approx. 340 kDa, each subunit consisting of 349 amino acids. The Class I enzyme shows low sequence identity with other known FBP aldolases, both Class I and Class II (in the order of 20%), which may be reflected by some novel properties of this FBP aldolase. The active-site peptide has been isolated and the Schiff-base-forming lysine residue (Lys236) has been identified by a combination of site-directed mutagenesis, kinetics and electrospray-ionization MS. A second lysine residue (Lys238) has been implicated in substrate binding. The cloning of this gene and the high levels of overexpression obtained will facilitate future structure-function studies. PMID:9531482

  10. Isolation of Nicotiana plumbaginifolia cDNAs encoding isoforms of serine acetyltransferase and O-acetylserine (thiol) lyase in a yeast two-hybrid system with Escherichia coli cysE and cysK genes as baits.

    PubMed

    Liszewska, Frantz; Gaganidze, Dali; Sirko, Agnieszka

    2005-01-01

    We applied the yeast two-hybrid system for screening of a cDNA library of Nicotiana plumbaginifolia for clones encoding plant proteins interacting with two proteins of Escherichia coli: serine acetyltransferase (SAT, the product of cysE gene) and O-acetylserine (thiol)lyase A, also termed cysteine synthase (OASTL-A, the product of cysK gene). Two plant cDNA clones were identified when using the cysE gene as a bait. These clones encode a probable cytosolic isoform of OASTL and an organellar isoform of SAT, respectively, as indicated by evolutionary trees. The second clone, encoding SAT, was identified independently also as a "prey" when using cysK as a bait. Our results reveal the possibility of applying the two-hybrid system for cloning of plant cDNAs encoding enzymes of the cysteine synthase complex in the two-hybrid system. Additionally, using genome walking sequences located upstream of the sat1 cDNA were identified. Subsequently, in silico analyses were performed aiming towards identification of the potential signal peptide and possible location of the deduced mature protein encoded by sat1.

  11. Isolation and functional identification of a novel cDNA for astaxanthin biosynthesis from Haematococcus pluvialis, and astaxanthin synthesis in Escherichia coli.

    PubMed

    Kajiwara, S; Kakizono, T; Saito, T; Kondo, K; Ohtani, T; Nishio, N; Nagai, S; Misawa, N

    1995-10-01

    We succeeded in isolating a novel cDNA involved in astaxanthin biosynthesis from the green alga Haematococcus pluvialis, by an expression cloning method using an Escherichia coli transformant as a host that synthesizes beta-carotene due to the Erwinia uredovora carotenoid biosynthesis genes. The cloned cDNA was shown to encode a novel enzyme, beta-carotene ketolase (beta-carotene oxygenase), which converted beta-carotene to canthaxanthin via echinenone, through chromatographic and spectroscopic analysis of the pigments accumulated in an E. coli transformant. This indicates that the encoded enzyme is responsible for the direct conversion of methylene to keto groups, a mechanism that usually requires two different enzymatic reactions proceeding via a hydroxy intermediate. Northern blot analysis showed that the mRNA was synthesized only in the cyst cells of H. pluvialis. E. coli carrying the H. pluvialis cDNA and the E. uredovora genes required for zeaxanthin biosynthesis was also found to synthesize astaxanthin (3S, 3'S), which was identified after purification by a variety of spectroscopic methods.

  12. Pantethine Rescues Phosphopantothenoylcysteine Synthetase and Phosphopantothenoylcysteine Decarboxylase Deficiency in Escherichia coli but Not in Pseudomonas aeruginosa▿†

    PubMed Central

    Balibar, Carl J.; Hollis-Symynkywicz, Micah F.; Tao, Jianshi

    2011-01-01

    Coenzyme A (CoA) plays a central and essential role in all living organisms. The pathway leading to CoA biosynthesis has been considered an attractive target for developing new antimicrobial agents with novel mechanisms of action. By using an arabinose-regulated expression system, the essentiality of coaBC, a single gene encoding a bifunctional protein catalyzing two consecutive steps in the CoA pathway converting 4′-phosphopantothenate to 4′-phosphopantetheine, was confirmed in Escherichia coli. Utilizing this regulated coaBC strain, it was further demonstrated that E. coli can effectively metabolize pantethine to bypass the requirement for coaBC. Interestingly, pantethine cannot be used by Pseudomonas aeruginosa to obviate coaBC. Through reciprocal complementation studies in combination with biochemical characterization, it was demonstrated that the differential characteristics of pantethine utilization in these two microorganisms are due to the different substrate specificities associated with endogenous pantothenate kinase, the first enzyme in the CoA biosynthetic pathway encoded by coaA in E. coli and coaX in P. aeruginosa. PMID:21551303

  13. Evaluation of hha and hha sepB mutant strains of Escherichia coli O157:H7 as bacterins for reducing E. coli O157:H7 shedding in cattle.

    PubMed

    Sharma, Vijay K; Dean-Nystrom, Evelyn A; Casey, Thomas A

    2011-07-12

    Escherichia coli O157:H7 colonizes cattle intestines by using the locus of enterocyte effacement (LEE)-encoded proteins. The induction of systemic immune response against LEE-encoded proteins, therefore, will prove effective in reducing E. coli O157:H7 colonization in cattle. The previous studies have demonstrated that a hha (encodes for a hemolysin expression modulating protein) deletion enhances expression of LEE-encoded proteins and a sepB (encodes an ATPase required for the secretion of LEE-encoded proteins) deletion results in intracellular accumulation of LEE proteins. In this study, we demonstrate the efficacy of the hha and hha sepB deletion mutants as bacterins for reducing fecal shedding of E. coli O157:H7 in experimentally inoculated weaned calves. The weaned calves were injected intramuscularly with the bacterins containing 10(9) heat-killed cells of the hha(+) wild-type or hha or hha sepB isogenic mutants, and boosted with the same doses 2- and 4-weeks later. The evaluation of the immune response two weeks after the last booster immunization revealed that the calves vaccinated with the hha mutant bacterin had higher antibody titers against LEE proteins compared to the titers for these antibodies in the calves vaccinated with the hha sepB mutant or hha(+) wild-type bacterins. Following oral inoculations with 10(10) CFU of the wild-type E. coli O157:H7, the greater numbers of calves in the group vaccinated with the hha or hha sepB mutant bacterins stopped shedding the inoculum strain within a few days after the inoculations compared to the group of calves vaccinated with the hha(+) wild-type bacterin or PBS sham vaccine. Thus, the use of bacterins prepared from the hha and hha sepB mutants for reducing colonization of E. coli O157:H7 in cattle could represent a potentially important pre-harvest strategy to enhance post-harvest safety of bovine food products, water and produce. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Biased expression, under the control of single promoter, of human interferon α-2b and Escherichia coli methionine amino peptidase genes in E. coli, irrespective of their distance from the promoter.

    PubMed

    Arif, Amina; Rashid, Naeem; Aslam, Farheen; Mahmood, Nasir; Akhtar, Muhammad

    2016-03-01

    Human interferon α-2b and Escherichia coli methionine amino peptidase genes were cloned independently as well as bicistronically in expression plasmid pET-21a (+). Production of human interferon α-2b was comparable to that of E. coli methionine amino peptidase when these genes were expressed independently in E. coli BL21-CodonPlus (DE3)-RIL. However, human interferon α-2b was produced in a much less amount whereas there was no difference in the production of methionine amino peptidase when the encoding genes were expressed bicistronically. It is important to note that human interferon α-2b was the first gene in order, after the promoter and E. coli methionine amino peptidase was the next with a linker sequence of 27 nucleotides between them.

  15. Regulatory role of XynR (YagI) in catabolism of xylonate in Escherichia coli K-12.

    PubMed

    Shimada, Tomohiro; Momiyama, Eri; Yamanaka, Yuki; Watanabe, Hiroki; Yamamoto, Kaneyoshi; Ishihama, Akira

    2017-12-01

    The genome of Escherichia coli K-12 contains ten cryptic phages, altogether constituting about 3.6% of the genome in sequence. Among more than 200 predicted genes in these cryptic phages, 14 putative transcription factor (TF) genes exist, but their regulatory functions remain unidentified. As an initial attempt to make a breakthrough for understanding the regulatory roles of cryptic phage-encoded TFs, we tried to identify the regulatory function of CP4-6 cryptic prophage-encoded YagI with unknown function. After SELEX screening, YagI was found to bind mainly at a single site within the spacer of bidirectional transcription units, yagA (encoding another uncharacterized TF) and yagEF (encoding 2-keto-3-deoxy gluconate aldolase, and dehydratase, respectively) within this prophage region. YagEF enzymes are involved in the catabolism of xylose downstream from xylonate. We then designated YagI as XynR (regulator of xylonate catabolism), one of the rare single-target TFs. In agreement with this predicted regulatory function, the activity of XynR was suggested to be controlled by xylonate. Even though low-affinity binding sites of XynR were identified in the E. coli K-12 genome, they all were inside open reading frames, implying that the regulation network of XynR is still fixed within the CR4-6 prophage without significant influence over the host E. coli K-12. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae.

    PubMed

    Gritz, L; Davies, J

    1983-11-01

    The plasmid-borne gene hph coding for hygromycin B phosphotransferase (HPH) in Escherichia coli has been identified and its nucleotide sequence determined. The hph gene is 1026 nucleotides long, coding for a protein with a predicted Mr of 39 000. The hph gene was placed in a shuttle plasmid vector, downstream from the promoter region of the cyc 1 gene of Saccharomyces cerevisiae, and an hph construction containing a single AUG in the 5' noncoding region allowed direct selection following transformation in yeast and in E. coli. Thus the hph gene can be used in cloning vectors for both pro- and eukaryotes.

  17. Overcoming codon bias: a method for high-level overexpression of Plasmodium and other AT-rich parasite genes in Escherichia coli.

    PubMed

    Baca, A M; Hol, W G

    2000-02-01

    Parasite genes often use codons which are rarely used in the highly expressed genes of Escherichia coli, possibly resulting in translational stalling and lower yields of recombinant protein. We have constructed the "RIG" plasmid to overcome the potential codon-bias problem seen in Plasmodium genes. RIG contains the genes that encode three tRNAs (Arg, Ile, Gly), which recognise rare codons found in parasite genes. When co-transformed into E. coli along with expression plasmids containing parasite genes, RIG can greatly increase levels of overexpressed protein. Codon frequency analysis suggests that RIG may be applied to a variety of protozoan and helminth genes.

  18. Cloning and Characterization of the Gene Encoding Alpha-Pinene Oxide Lyase Enzyme (Prα-POL) from Pseudomonas rhodesiae CIP 107491 and Production of the Recombinant Protein in Escherichia coli.

    PubMed

    Dubessay, Pascal; Larroche, Christian; Fontanille, Pierre

    2017-12-28

    The alpha-pinene oxide lyase (Prα-POL) from Pseudomonas rhodesiae CIP107491 belongs to catabolic alpha-pinene degradation pathway. In this study, the gene encoding Prα-POL has been identified using mapping approach combined to inverse PCR (iPCR) strategy. The Prα-POL gene included a 609-bp open reading frame encoding 202 amino acids and giving rise to a 23.7 kDa protein, with a theoretical isoelectric point (pI) of 5.23. The amino acids sequence analysis showed homologies with those of proteins with unknown function from GammaProteobacteria group. Identification of a conserved domain in amino acid in positions 18 to 190 permitted to classify Prα-POL among the nuclear transport factor 2 (NTF2) protein superfamily. Heterologous expression of Prα-POL, both under its native form and with a histidin tag, was successfully performed in Escherichia coli, and enzymatic kinetics were analyzed. Bioconversion assay using recombinant E. coli strain allowed to reach a rate of isonovalal production per gramme of biomass about 40-fold higher than the rate obtained with P. rhodesiae.

  19. Genomic and functional characterisation of IncX3 plasmids encoding blaSHV-12 in Escherichia coli from human and animal origin.

    PubMed

    Liakopoulos, Apostolos; van der Goot, Jeanet; Bossers, Alex; Betts, Jonathan; Brouwer, Michael S M; Kant, Arie; Smith, Hilde; Ceccarelli, Daniela; Mevius, Dik

    2018-05-16

    The bla SHV-12 β-lactamase gene is one of the most prevalent genes conferring resistance to extended-spectrum β-lactams in Enterobacteriaceae disseminating within and between reservoirs, mostly via plasmid-mediated horizontal gene transfer. Yet, studies regarding the biology of plasmids encoding bla SHV-12 are very limited. In this study, we revealed the emergence of IncX3 plasmids alongside IncI1α/γ in bla SHV-12 in animal-related Escherichia coli isolates. Four representative bla SHV-12 -encoding IncX3 plasmids were selected for genome sequencing and further genetic and functional characterization. We report here the first complete sequences of IncX3 plasmids of animal origin and show that IncX3 plasmids exhibit remarkable synteny in their backbone, while the major differences lie in their bla SHV-12 -flanking region. Our findings indicate that plasmids of this subgroup are conjugative and highly stable, while they exert no fitness cost on their bacterial host. These favourable features might have contributed to the emergence of IncX3 amongst SHV-12-producing E. coli in the Netherlands, highlighting the epidemic potential of these plasmids.

  20. Characterization of EhaJ, a New Autotransporter Protein from Enterohemorrhagic and Enteropathogenic Escherichia coli

    PubMed Central

    Easton, Donna M.; Totsika, Makrina; Allsopp, Luke P.; Phan, Minh-Duy; Idris, Adi; Wurpel, Daniël J.; Sherlock, Orla; Zhang, Bing; Venturini, Carola; Beatson, Scott A.; Mahony, Timothy J.; Cobbold, Rowland N.; Schembri, Mark A.

    2011-01-01

    Enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) are diarrheagenic pathotypes of E. coli that cause gastrointestinal disease with the potential for life-threatening sequelae. While certain EHEC and EPEC virulence mechanisms have been extensively studied, the factors that mediate host colonization remain to be properly defined. Previously, we identified four genes (ehaA, ehaB, ehaC, and ehaD) from the prototypic EHEC strain EDL933 that encode for proteins that belong to the autotransporter (AT) family. Here we have examined the prevalence of these genes, as well as several other AT-encoding genes, in a collection of EHEC and EPEC strains. We show that the complement of AT-encoding genes in EHEC and EPEC strains is variable, with some AT-encoding genes being highly prevalent. One previously uncharacterized AT-encoding gene, which we have termed ehaJ, was identified in 12/44 (27%) of EHEC and 2/20 (10%) of EPEC strains. The ehaJ gene lies immediately adjacent to a gene encoding a putative glycosyltransferase (referred to as egtA). Western blot analysis using an EhaJ-specific antibody indicated that EhaJ is glycosylated by EgtA. Expression of EhaJ in a recombinant E. coli strain, revealed EhaJ is located at the cell surface and in the presence of the egtA glycosyltransferase gene mediates strong biofilm formation in microtiter plate and flow cell assays. EhaJ also mediated adherence to a range of extracellular matrix proteins, however this occurred independent of glycosylation. We also demonstrate that EhaJ is expressed in a wild-type EPEC strain following in vitro growth. However, deletion of ehaJ did not significantly alter its adherence or biofilm properties. In summary, EhaJ is a new glycosylated AT protein from EPEC and EHEC. Further studies are required to elucidate the function of EhaJ in colonization and virulence. PMID:21687429

  1. Characteristics of a ugp-encoded and phoB-dependent glycerophosphoryl diester phosphodiesterase which is physically dependent on the ugp transport system of Escherichia coli.

    PubMed

    Brzoska, P; Boos, W

    1988-09-01

    The ugp-encoded transport system of Escherichia coli accumulates sn-glycerol-3-phosphate with high affinity; it is binding protein mediated and part of the pho regulon. Here, we report that glycerophosphoryl diesters (deacylated phospholipids) are also high-affinity substrates for the ugp-encoded system. The diesters are not taken up in an unaltered form but are hydrolyzed during transport to sn-glycerol-3-phosphate plus the corresponding alcohols. The enzyme responsible for this reaction is not essential for the translocation of sn-glycerol-3-phosphate or for the glycerophosphoryl diesters but can only hydrolyze diesters that are in the process of being transported. Diesters in the periplasm or in the cytoplasm were not recognized, and no enzymatic activity could be detected in cellular extracts. The enzyme is encoded by the last gene in the ugp operon, termed ugpQ. The product of the ugpQ gene, expressed in minicells, has an apparent molecular weight of 17,500. We present evidence that only one major phoB-dependent promoter controls all ugp genes.

  2. Cysteine degradation gene yhaM, encoding cysteine desulfidase, serves as a genetic engineering target to improve cysteine production in Escherichia coli.

    PubMed

    Nonaka, Gen; Takumi, Kazuhiro

    2017-12-01

    Cysteine is an important amino acid for various industries; however, there is no efficient microbial fermentation-based production method available. Owing to its cytotoxicity, bacterial intracellular levels of cysteine are stringently controlled via several modes of regulation, including cysteine degradation by cysteine desulfhydrases and cysteine desulfidases. In Escherichia coli, several metabolic enzymes are known to exhibit cysteine degradative activities, however, their specificity and physiological significance for cysteine detoxification via degradation are unclear. Relaxing the strict regulation of cysteine is crucial for its overproduction; therefore, identifying and modulating the major degradative activity could facilitate the genetic engineering of a cysteine-producing strain. In the present study, we used genetic screening to identify genes that confer cysteine resistance in E. coli and we identified yhaM, which encodes cysteine desulfidase and decomposes cysteine into hydrogen sulfide, pyruvate, and ammonium. Phenotypic characterization of a yhaM mutant via growth under toxic concentrations of cysteine followed by transcriptional analysis of its response to cysteine showed that yhaM is cysteine-inducible, and its physiological role is associated with resisting the deleterious effects of cysteine in E. coli. In addition, we confirmed the effects of this gene on the fermentative production of cysteine using E. coli-based cysteine-producing strains. We propose that yhaM encodes the major cysteine-degrading enzyme and it has the most significant role in cysteine detoxification among the numerous enzymes reported in E. coli, thereby providing a core target for genetic engineering to improve cysteine production in this bacterium.

  3. Vaccination with DNA Encoding Truncated Enterohemorrhagic Escherichia coli (EHEC) Factor for Adherence-1 Gene (efa-1') Confers Protective Immunity to Mice Infected with E. coli O157:H7.

    PubMed

    Riquelme-Neira, Roberto; Rivera, Alejandra; Sáez, Darwin; Fernández, Pablo; Osorio, Gonzalo; del Canto, Felipe; Salazar, Juan C; Vidal, Roberto M; Oñate, Angel

    2015-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is the predominant causative agent of hemorrhagic colitis in humans and is the cause of haemolytic uraemic syndrome and other illnesses. Cattle have been implicated as the main reservoir of this organism. Here, we evaluated the immunogenicity and protective efficacy of a DNA vaccine encoding conserved sequences of truncated EHEC factor for adherence-1 (efa-1') in a mouse model. Intranasal administration of plasmid DNA carrying the efa-1' gene (pVAXefa-1') into C57BL/6 mice elicited both humoral and cellular immune responses. In animals immunized with pVAXefa-1', EHEC-secreted protein-specific IgM and IgG antibodies were detected in sera at day 45. Anti-EHEC-secreted protein sIgA was also detected in nasal and bronchoalveolar lavages. In addition, antigen-specific T-cell-proliferation, IL-10, and IFN-γ were observed upon re-stimulation with either heat-killed bacteria or EHEC-secreted proteins. Vaccinated animals were also protected against challenge with E. coli O157:H7 strain EDL933. These results suggest that DNA vaccine encoding efa-1' have therapeutic potential in interventions against EHEC infections. This approach could lead to a new strategy in the production of vaccines that prevent infections in cattle.

  4. Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35-amino-acid cell-killing peptide and a cis-encoded small antisense RNA in Escherichia coli.

    PubMed

    Kawano, Mitsuoki; Oshima, Taku; Kasai, Hiroaki; Mori, Hirotada

    2002-07-01

    Genome sequence analyses of Escherichia coli K-12 revealed four copies of long repetitive elements. These sequences are designated as long direct repeat (LDR) sequences. Three of the repeats (LDR-A, -B, -C), each approximately 500 bp in length, are located as tandem repeats at 27.4 min on the genetic map. Another copy (LDR-D), 450 bp in length and nearly identical to LDR-A, -B and -C, is located at 79.7 min, a position that is directly opposite the position of LDR-A, -B and -C. In this study, we demonstrate that LDR-D encodes a 35-amino-acid peptide, LdrD, the overexpression of which causes rapid cell killing and nucleoid condensation of the host cell. Northern blot and primer extension analysis showed constitutive transcription of a stable mRNA (approximately 370 nucleotides) encoding LdrD and an unstable cis-encoded antisense RNA (approximately 60 nucleotides), which functions as a trans-acting regulator of ldrD translation. We propose that LDR encodes a toxin-antitoxin module. LDR-homologous sequences are not pre-sent on any known plasmids but are conserved in Salmonella and other enterobacterial species.

  5. Characterization of Escherichia coli Type 1 Pilus Mutants with Altered Binding Specificities

    PubMed Central

    Harris, Sandra L.; Spears, Patricia A.; Havell, Edward A.; Hamrick, Terri S.; Horton, John R.; Orndorff, Paul E.

    2001-01-01

    PCR mutagenesis and a unique enrichment scheme were used to obtain two mutants, each with a single lesion in fimH, the chromosomal gene that encodes the adhesin protein (FimH) of Escherichia coli type 1 pili. These mutants were noteworthy in part because both were altered in the normal range of cell types bound by FimH. One mutation altered an amino acid at a site previously shown to be involved in temperature-dependent binding, and the other altered an amino acid lining the predicted FimH binding pocket. PMID:11395476

  6. Repression of YdaS Toxin Is Mediated by Transcriptional Repressor RacR in the Cryptic rac Prophage of Escherichia coli K-12.

    PubMed

    Krishnamurthi, Revathy; Ghosh, Swagatha; Khedkar, Supriya; Seshasayee, Aswin Sai Narain

    2017-01-01

    Horizontal gene transfer is a major driving force behind the genomic diversity seen in prokaryotes. The cryptic rac prophage in Escherichia coli K-12 carries the gene for a putative transcription factor RacR, whose deletion is lethal. We have shown that the essentiality of racR in E. coli K-12 is attributed to its role in transcriptionally repressing toxin gene(s) called ydaS and ydaT , which are adjacent to and coded divergently to racR . IMPORTANCE Transcription factors in the bacterium E. coli are rarely essential, and when they are essential, they are largely toxin-antitoxin systems. While studying transcription factors encoded in horizontally acquired regions in E. coli , we realized that the protein RacR, a putative transcription factor encoded by a gene on the rac prophage, is an essential protein. Here, using genetics, biochemistry, and bioinformatics, we show that its essentiality derives from its role as a transcriptional repressor of the ydaS and ydaT genes, whose products are toxic to the cell. Unlike type II toxin-antitoxin systems in which transcriptional regulation involves complexes of the toxin and antitoxin, repression by RacR is sufficient to keep ydaS transcriptionally silent.

  7. Characteristics of Escherichia coli from raw vegetables at a retail market in the Czech Republic.

    PubMed

    Skočková, Alena; Karpíšková, Renáta; Koláčková, Ivana; Cupáková, Šárka

    2013-10-15

    A large epidemic caused by shigatoxigenic Escherichia coli (E. coli) in spring 2011 in Germany resulted in reduction of trust in the health safety of raw vegetables and sprouted seeds. This study focused on the detection and characterization of E. coli in raw vegetables and sprouted seeds sold in the Czech Republic. Out of 91 samples, 24 (26.4%) were positive for the presence of E. coli. Resistance to antimicrobial agents was determined by the disk diffusion method and E-test. Polymerase chain reaction was used for the detection of selected genes encoding virulence--eaeA, hly, stx1, and stx2 and genes encoding resistance to tetracycline--tet(A), tet(B), tet(C), and tet(G) and to β-lactams--blaTEM, blaSHV, and blaCTX. The blaTEM gene was detected in two isolates, the tet(B) gene in three and tet(A) in one isolate. No hly, stx1, or stx2 genes were present, but the eaeA gene was found in three (11.1%) isolates from imported vegetables. These isolates can be considered as potentially enteropathogenic. Results of this study show that raw vegetables and sprouted seeds sold in the retail market can represent a potential risk for consumers. © 2013.

  8. Engineering of Escherichia coli to facilitate efficient utilization of isomaltose and panose in industrial glucose feedstock.

    PubMed

    Abe, Kenji; Kuroda, Akio; Takeshita, Ryo

    2017-03-01

    Industrial glucose feedstock prepared by enzymatic digestion of starch typically contains significant amounts of disaccharides such as maltose and isomaltose and trisaccharides such as maltotriose and panose. Maltose and maltosaccharides can be utilized in Escherichia coli fermentation using industrial glucose feedstock because there is an intrinsic assimilation pathway for these sugars. However, saccharides that contain α-1,6 bonds, such as isomaltose and panose, are still present after fermentation because there is no metabolic pathway for these sugars. To facilitate more efficient utilization of glucose feedstock, we introduced glvA, which encodes phospho-α-glucosidase, and glvC, which encodes a subunit of the phosphoenolpyruvate-dependent maltose phosphotransferase system (PTS) of Bacillus subtilis, into E. coli. The heterologous expression of glvA and glvC conferred upon the recombinant the ability to assimilate isomaltose and panose. The recombinant E. coli assimilated not only other disaccharides but also trisaccharides, including alcohol forms of these saccharides, such as isomaltitol. To the best of our knowledge, this is the first report to show the involvement of the microbial PTS in the assimilation of trisaccharides. Furthermore, we demonstrated that an L-lysine-producing E. coli harboring glvA and glvC converted isomaltose and panose to L-lysine efficiently. These findings are expected to be beneficial for industrial fermentation.

  9. Antibiotic resistance phenotypes and virulence-associated genes in Escherichia coli isolated from animals and animal food products in Tunisia.

    PubMed

    Badi, Souhir; Cremonesi, Paola; Abbassi, Mohamed Salah; Ibrahim, Chourouk; Snoussi, Majdi; Bignoli, Giulia; Luini, Mario; Castiglioni, Bianca; Hassen, Abdennaceur

    2018-05-01

    Livestock and food products of animal origin constitute important reservoirs of intestinal and extraintestinal pathogenic Escherichia coli including antibiotic-resistant E. coli isolates. To assess potential risks to public health related to E. coli strains of animal origin in Tunisia, 65 E. coli isolates recovered from healthy animals and food products of animal origin were studied. Antimicrobial susceptibility was determined according to CLSI guidelines and genes encoding antibiotic resistance as well as virulence factors were investigated by PCR. High rates of antibiotic resistance were observed to kanamycin (78.4%), gentamicin (75.3%) and streptomycin (75.3%, encoded by strA-strB (7 isolates)), amoxicillin (64.6%), amoxicillin/clavulanic acid (60%), tetracycline (44.6%; tetA (8 isolates) and tetB (7 isolates)), nalidixic acid (27.6%, qnrS (3 isolates), qnrB (2 isolates) and qnrA (one isolate)) and sulfonamides (36.9%; sul1 (1 isolate), sul2 (4 isolates), and sul3 (1 isolate)). Virulotypes classified some isolates as STEC (3%), MNEC (1.5%) and atypical EPEC (1.5%). This study demonstrated high rates of antimicrobial resistance and the presence of some pathogenic pathovars from animal origins that are a cause of concern for public health.

  10. Whole genome sequencing of diverse Shiga toxin-producing and non-producing Escherichia coli strains reveals a variety of virulence and novel antibiotic resistance plasmids

    USDA-ARS?s Scientific Manuscript database

    The genomes of a diverse set of Shiga toxin-producing E. coli strains and the presence of 38 plasmids among all the isolates were determined. Among the novel plasmids found, there were eight that encoded resistance genes to antibiotics, including aminoglycosides, carbapenems, penicillins, cephalosp...

  11. Genetic characterization of moaB mutants of Escherichia coli

    PubMed Central

    Kozmin, Stanislav G.; Schaaper, Roel M.

    2013-01-01

    The moaABCDE operon of Escherichia coli encodes enzymes essential for the biosynthesis of the molybdenum cofactor (Moco). However, the role of the moaB gene within this operon has remained enigmatic. Here, we have investigated the effect of moaB defects on two phenotypes diagnostic for Moco-deficiency: chlorate-resistance and sensitivity to the base analog 6-N-hydroxylaminopurine (HAP). We found that transposon insertions in moaB caused partial Moco-deficiency associated with chlorate-resistance, but not for HAP-sensitivity. On the other hand, in-frame deletions of moaB, or moaB overexpression, had no effect on either phenotype. Our combined data are consistent with the lack of any role for MoaB in Moco biosynthesis in E. coli. PMID:23680484

  12. Antibacterial activity of 4,5-dihydroxy-2-cyclopentan-1-one (DHCP) and cloning of a gene conferring DHCP resistance in Escherichia coli.

    PubMed

    Phadtare, S; Yamanaka, K; Kato, I; Inouye, M

    2001-07-01

    In the present study we report that 4,5-dihydroxy-2-cyclopentan-1-one (DHCP), which is derived from heat-treatment of uronic acid or its derivatives, has antibacterial activity against Escherichia coli. The compound causes complete growth inhibition at 350 microM concentration. We have cloned a gene from E. coli, which confers DHCP resistance when present in multicopy. The putative protein encoded by this gene (dep- DHCP efflux protein) is a transmembrane efflux protein with a high homology to other antibiotic-efflux proteins including those for chloramphenicol, bicyclomycin and tetracycline. However, the Dep protein does not confer cross-resistance to any of the antibiotics tested.

  13. Recombinant Escherichia coli K5 strain with the deletion of waaR gene decreases the molecular weight of the heparosan capsular polysaccharide.

    PubMed

    Huang, Haichan; Liu, Xiaobo; Lv, Shencong; Zhong, Weihong; Zhang, Fuming; Linhardt, Robert J

    2016-09-01

    Heparosan, the capsular polysaccharide of Escherichia coli K5 having a carbohydrate backbone similar to that of heparin, has become a potential precursor for bioengineering heparin. In the heparosan biosynthesis pathway, the gene waaR encoding α-1-, 2- glycosyltransferase catalyze s the third glucosyl residues linking to the oligosaccharide chain. In the present study, a waaR deletion mutant of E. coli K5 was constructed. The mutant showed improvement of capsule polysaccharide yield. It is interesting that the heparosan molecular weight of the mutant is reduced and may become more suitable as a precursor for the production of low molecular weight heparin derived from the wild-type K5 capsular polysaccharide.

  14. Expression in Escherichia coli of the Saccharomyces cerevisiae CCT gene encoding cholinephosphate cytidylyltransferase.

    PubMed Central

    Tsukagoshi, Y; Nikawa, J; Hosaka, K; Yamashita, S

    1991-01-01

    The coding region of the CCT gene from the yeast Saccharomyces cerevisiae was cloned into the pUC18 expression vector. The plasmid directed the synthesis of an active cholinephosphate cytidylyltransferase in Escherichia coli, confirming that CCT is the structural gene for this enzyme. The enzyme produced in E. coli efficiently utilized cholinephosphate and N,N-dimethylethanolaminephosphate, but N-methylethanolamine-phosphate and ethanolaminephosphate were poor substrates. Consistently, disruption of the CCT locus in the wild-type yeast cells resulted in a drastic decrease in activities with respect to the former two substrates. When activity was expressed in E. coli, over 90% was recovered in the cytosol, whereas most of the activity of yeast cells was associated with membranes, suggesting that yeast cells possess a mechanism that promotes membrane association of cytidylyltransferase. Images PMID:1848222

  15. Overexpression of Escherichia coli udk mimics the absence of T7 Gp2 function and thereby abrogates successful infection by T7 phage.

    PubMed

    Shadrin, Andrey; Sheppard, Carol; Savalia, Dhruti; Severinov, Konstantin; Wigneshweraraj, Sivaramesh

    2013-02-01

    Successful infection of Escherichia coli by bacteriophage T7 relies upon the transcription of the T7 genome by two different RNA polymerases (RNAps). The bacterial RNAp transcribes early T7 promoters, whereas middle and late T7 genes are transcribed by the T7 RNAp. Gp2, a T7-encoded transcription factor, is a 7 kDa product of an essential middle T7 gene 2, and is a potent inhibitor of the host RNAp. The essential biological role of Gp2 is to inhibit transcription of early T7 genes that fail to terminate efficiently in order to facilitate the coordinated usage of the T7 genome by both host and phage RNAps. Overexpression of the E. coli udk gene, which encodes a uridine/cytidine kinase, interferes with T7 infection. We demonstrate that overexpression of udk antagonizes Gp2 function in E. coli in the absence of T7 infection and thus independently of T7-encoded factors. It seems that overexpression of udk reduces Gp2 stability and functionality during T7 infection, which consequently results in inadequate inhibition of host RNAp and in the accumulation of early T7 transcripts. In other words, overexpression of udk mimics the absence of Gp2 during T7 infection. Our study suggests that the transcriptional regulation of the T7 genome is surprisingly complex and might potentially be affected at many levels by phage- and host-encoded factors.

  16. Identification of Escherichia coli O157 by Using a Novel Colorimetric Detection Method with DNA Microarrays

    PubMed Central

    Swimley, Michelle S.; Taylor, Amber W.; Dawson, Erica D.

    2011-01-01

    Abstract Shiga toxin–producing Escherichia coli O157 is a leading cause of foodborne illness worldwide. To evaluate better methods to rapidly detect and genotype E. coli O157 strains, the present study evaluated the use of ampliPHOX, a novel colorimetric detection method based on photopolymerization, for pathogen identification with DNA microarrays. A low-density DNA oligonucleotide microarray was designed to target stx1 and stx2 genes encoding Shiga toxin production, the eae gene coding for adherence membrane protein, and the per gene encoding the O157-antigen perosamine synthetase. Results from the validation experiments demonstrated that the use of ampliPHOX allowed the accurate genotyping of the tested E. coli strains, and positive hybridization signals were observed for only probes targeting virulence genes present in the reference strains. Quantification showed that the average signal-to-noise ratio values ranged from 47.73 ± 7.12 to 76.71 ± 8.33, whereas average signal-to-noise ratio values below 2.5 were determined for probes where no polymer was formed due to lack of specific hybridization. Sensitivity tests demonstrated that the sensitivity threshold for E. coli O157 detection was 100–1000 CFU/mL. Thus, the use of DNA microarrays in combination with photopolymerization allowed the rapid and accurate genotyping of E. coli O157 strains. PMID:21288130

  17. T7 RNA polymerase-driven inducible cell lysis for DNA transfer from Escherichia coli to Bacillus subtilis.

    PubMed

    Juhas, Mario; Ajioka, James W

    2017-11-01

    The majority of the good DNA editing techniques have been developed in Escherichia coli; however, Bacillus subtilis is better host for a plethora of synthetic biology and biotechnology applications. Reliable and efficient systems for the transfer of synthetic DNA between E. coli and B. subtilis are therefore of the highest importance. Using synthetic biology approaches, such as streamlined lambda Red recombineering and Gibson Isothermal Assembly, we integrated genetic circuits pT7L123, Repr-ts-1 and pLT7pol encoding the lysis genes of bacteriophages MS2, ΦX174 and lambda, the thermosensitive repressor and the T7 RNA polymerase into the E. coli chromosome. In this system, T7 RNA polymerase regulated by the thermosensitive repressor drives the expression of the phage lysis genes. We showed that T7 RNA polymerase significantly increases efficiency of cell lysis and transfer of the plasmid and bacterial artificial chromosome-encoded DNA from the lysed E. coli into B. subtilis. The T7 RNA polymerase-driven inducible cell lysis system is suitable for the efficient cell lysis and transfer of the DNA engineered in E. coli to other naturally competent hosts, such as B. subtilis. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. Novel Antigens for enterotoxigenic Escherichia coli (ETEC) Vaccines

    PubMed Central

    Fleckenstein, James M.; Sheikh, Alaullah; Qadri, Firdausi

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC) are the most common bacterial pathogens-causing diarrhea in developing countries where they cause hundreds of thousands of deaths, mostly in children. These organisms are leading cause of diarrheal illness in travelers to endemic countries. ETEC pathogenesis, and consequently vaccine approaches, have largely focused on plasmid-encoded enterotoxins or fimbrial colonization factors. To date these approaches have not yielded a broadly protective vaccine. However, recent studies suggest that ETEC pathogenesis is more complex than previously appreciated and involves additional plasmid and chromosomally-encoded virulence molecules that can be targeted in vaccines. Here, we review recent novel antigen discovery efforts, potential contribution of these proteins to the molecular pathogenesis of ETEC and protective immunity, and the potential implications for development of next generation vaccines for important pathogens. These proteins may help to improve the effectiveness of future vaccines by making simpler and possibly broadly protective because of their conserved nature. PMID:24702311

  19. Identification of the mpl gene encoding UDP-N-acetylmuramate: L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase in Escherichia coli and its role in recycling of cell wall peptidoglycan.

    PubMed Central

    Mengin-Lecreulx, D; van Heijenoort, J; Park, J T

    1996-01-01

    A gene, mpl, encoding UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl-meso-diaminopimelat e ligase was recognized by its amino acid sequence homology with murC as the open reading frame yjfG present at 96 min on the Escherichia coli map. The existence of such an enzymatic activity was predicted from studies indicating that reutilization of the intact tripeptide L-alanyl-gamma-D-glutamyl-meso-diaminopimelate occurred and accounted for well over 30% of new cell wall synthesis. Murein tripeptide ligase activity could be demonstrated in crude extracts, and greatly increased activity was produced when the gene was cloned and expressed under control of the trc promoter. A null mutant totally lacked activity but was viable, showing that the enzyme is not essential for growth. PMID:8808921

  20. Flagellin and F4 fimbriae have opposite effects on biofilm formation and quorum sensing in F4ac+ enterotoxigenic Escherichia coli.

    PubMed

    Zhou, Mingxu; Guo, Zhiyan; Yang, Yang; Duan, Qiangde; Zhang, Qi; Yao, Fenghua; Zhu, Jun; Zhang, Xinjun; Hardwidge, Philip R; Zhu, Guoqiang

    2014-01-10

    Bacteria that form biofilms are often highly resistant to antibiotics and are capable of evading the host immune system. To evaluate the role of flagellin and F4 fimbriae on biofilm formation by enterotoxigenic Escherichia coli (ETEC), we deleted the fliC (encoding the major flagellin protein) and/or the faeG (encoding the major subunit of F4 fimbriae) genes from ETEC C83902. Biofilm formation was reduced in the fliC mutant but increased in the faeG mutant, as compared with the wild-type strain. The expression of AI-2 quorum sensing associated genes was regulated in the fliC and faeG mutants, consistent with the biofilm formation of these strains. But, deleting fliC and/or faeG also inhibited AI-2 quorum sensing activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Virulence and extended-spectrum β-lactamase encoding genes in Escherichia coli recovered from chicken meat intended for hospitalized human consumption.

    PubMed

    Younis, Gamal A; Elkenany, Rasha M; Fouda, Mohamed A; Mostafa, Noura F

    2017-10-01

    This study describes the prevalence of Escherichia coli in frozen chicken meat intended for human consumption with emphasis on their virulence determinants through detection of the virulence genes and recognition of the extended-spectrum β-lactamase (ESBL) encoding genes ( bla OXA and bla TEM genes). A total of 120 frozen chicken meat samples were investigated for isolation of E. coli . All isolates were subjected to biochemical and serological tests. Eight serotypes isolated from samples were analyzed for the presence of various virulence genes ( stx1, stx2 , and eae A genes) using multiplex polymerase chain reaction (PCR) technique. Moreover, the strains were evaluated for the ESBL encoding genes ( bla TEM and bla OXA ). Overall, 11.66% (14/120) chicken meat samples carried E. coli according to cultural and biochemical properties. The most predominant serotypes were O78 and O128: H2 (21.5%, each), followed by O121: H7 and O44: H18. Molecular method detected that 2 strains (25%) harbored stx1 , 3 strains (37.5%) stx2 , and 3 strains (37.5%) both stx1 and stx2 , while 1 (12.5%) strain carried eae A gene. Particularly, only O26 serotype had all tested virulence genes ( stx1, stx2, and eae A ). The results revealed that all examined 8 serotypes were Shiga toxin-producing E. coli (STEC). The ESBL encoding genes ( bla TEM and bla OXA ) of STEC were detected in 4 (50%) isolates by multiplex PCR. The overall incidence of bla TEM and bla OXA genes was 3 (37.5%) and 2 (25%) isolates. The present study indicates the prevalence of virulent and ESBL-producing E. coli in frozen chicken meat intended for hospitalized human consumption due to poor hygienic measures and irregular use of antibiotics. Therefore, the basic instructions regarding good hygienic measures should be adapted to limit public health hazard.

  2. Identification and characterization of a gene product that regulates type 1 piliation in Escherichia coli.

    PubMed Central

    Orndorff, P E; Falkow, S

    1984-01-01

    The recombinant plasmid pSH2 confers type 1 piliation (Pil+) on a nonpiliated (Pil-) strain of Escherichia coli K-12. At least four plasmid-encoded gene products are involved in pilus biosynthesis and expression. We present evidence which indicates that one gene encodes an inhibitor of piliation. Hyperpiliated (Hyp) mutants were isolated after Tn5 insertion mutagenesis of pSH2 and introduction of the plasmid DNA into a Pil- strain of E. coli as unique small, compact colonies. Also, Hyp mutants clumped during growth in static broth and were piliated under several cultural conditions that normally suppressed piliation. Electron microscopic examination of Hyp mutants associated an observed 40-fold increase in pilin antigen with an increase in the number and length of pili per cell. All Hyp mutants examined failed to produce a 23-kilodalton protein that was encoded by a gene adjacent to the structural (pilin) gene for type 1 pili, and all Tn5 insertion mutations that produced the Hyp phenotype mapped in this region (hyp). Piliation in Hyp mutants could be reduced to near parental levels by introducing a second plasmid containing a parental hyp gene. Thus the 23-kilodalton (hyp) protein appears to act in trans to regulate the level of piliation. Images PMID:6148338

  3. Revealing genome-scale transcriptional regulatory landscape of OmpR highlights its expanded regulatory roles under osmotic stress in Escherichia coli K-12 MG1655.

    PubMed

    Seo, Sang Woo; Gao, Ye; Kim, Donghyuk; Szubin, Richard; Yang, Jina; Cho, Byung-Kwan; Palsson, Bernhard O

    2017-05-19

    A transcription factor (TF), OmpR, plays a critical role in transcriptional regulation of the osmotic stress response in bacteria. Here, we reveal a genome-scale OmpR regulon in Escherichia coli K-12 MG1655. Integrative data analysis reveals that a total of 37 genes in 24 transcription units (TUs) belong to OmpR regulon. Among them, 26 genes show more than two-fold changes in expression level in an OmpR knock-out strain. Specifically, we find that: 1) OmpR regulates mostly membrane-located gene products involved in diverse fundamental biological processes, such as narU (encoding nitrate/nitrite transporter), ompX (encoding outer membrane protein X), and nuoN (encoding NADH:ubiquinone oxidoreductase); 2) by investigating co-regulation of entire sets of genes regulated by other stress-response TFs, stresses are surprisingly independently regulated among each other; and, 3) a detailed investigation of the physiological roles of the newly discovered OmpR regulon genes reveals that activation of narU represents a novel strategy to significantly improve osmotic stress tolerance of E. coli. Thus, the genome-scale approach to elucidating regulons comprehensively identifies regulated genes and leads to fundamental discoveries related to stress responses.

  4. TLA-1: a New Plasmid-Mediated Extended-Spectrum β-Lactamase from Escherichia coli

    PubMed Central

    Silva, J.; Aguilar, C.; Ayala, G.; Estrada, M. A.; Garza-Ramos, U.; Lara-Lemus, R.; Ledezma, L.

    2000-01-01

    Escherichia coli R170, isolated from the urine of an infected patient, was resistant to expanded-spectrum cephalosporins, aztreonam, ciprofloxacin, and ofloxacin but was susceptible to amikacin, cefotetan, and imipenem. This particular strain contained three different plasmids that encoded two β-lactamases with pIs of 7.0 and 9.0. Resistance to cefotaxime, ceftazidime, aztreonam, trimethoprim, and sulfamethoxazole was transferred by conjugation from E. coli R170 to E. coli J53-2. The transferred plasmid, RZA92, which encoded a single β-lactamase, was 150 kb in length. The cefotaxime resistance gene that encodes the TLA-1 β-lactamase (pI 9.0) was cloned from the transconjugant by transformation to E. coli DH5α. Sequencing of the blaTLA-1 gene revealed an open reading frame of 906 bp, which corresponded to 301 amino acid residues, including motifs common to class A β-lactamases: 70SXXK, 130SDN, and 234KTG. The amino acid sequence of TLA-1 shared 50% identity with the CME-1 chromosomal class A β-lactamase from Chryseobacterium (Flavobacterium) meningosepticum; 48.8% identity with the VEB-1 class A β-lactamase from E. coli; 40 to 42% identity with CblA of Bacteroides uniformis, PER-1 of Pseudomonas aeruginosa, and PER-2 of Salmonella typhimurium; and 39% identity with CepA of Bacteroides fragilis. The partially purified TLA-1 β-lactamase had a molecular mass of 31.4 kDa and a pI of 9.0 and preferentially hydrolyzed cephaloridine, cefotaxime, cephalothin, benzylpenicillin, and ceftazidime. The enzyme was markedly inhibited by sulbactam, tazobactam, and clavulanic acid. TLA-1 is a new extended-spectrum β-lactamase of Ambler class A. PMID:10722503

  5. TLA-1: a new plasmid-mediated extended-spectrum beta-lactamase from Escherichia coli.

    PubMed

    Silva, J; Aguilar, C; Ayala, G; Estrada, M A; Garza-Ramos, U; Lara-Lemus, R; Ledezma, L

    2000-04-01

    Escherichia coli R170, isolated from the urine of an infected patient, was resistant to expanded-spectrum cephalosporins, aztreonam, ciprofloxacin, and ofloxacin but was susceptible to amikacin, cefotetan, and imipenem. This particular strain contained three different plasmids that encoded two beta-lactamases with pIs of 7.0 and 9.0. Resistance to cefotaxime, ceftazidime, aztreonam, trimethoprim, and sulfamethoxazole was transferred by conjugation from E. coli R170 to E. coli J53-2. The transferred plasmid, RZA92, which encoded a single beta-lactamase, was 150 kb in length. The cefotaxime resistance gene that encodes the TLA-1 beta-lactamase (pI 9.0) was cloned from the transconjugant by transformation to E. coli DH5alpha. Sequencing of the bla(TLA-1) gene revealed an open reading frame of 906 bp, which corresponded to 301 amino acid residues, including motifs common to class A beta-lactamases: (70)SXXK, (130)SDN, and (234)KTG. The amino acid sequence of TLA-1 shared 50% identity with the CME-1 chromosomal class A beta-lactamase from Chryseobacterium (Flavobacterium) meningosepticum; 48.8% identity with the VEB-1 class A beta-lactamase from E. coli; 40 to 42% identity with CblA of Bacteroides uniformis, PER-1 of Pseudomonas aeruginosa, and PER-2 of Salmonella typhimurium; and 39% identity with CepA of Bacteroides fragilis. The partially purified TLA-1 beta-lactamase had a molecular mass of 31.4 kDa and a pI of 9.0 and preferentially hydrolyzed cephaloridine, cefotaxime, cephalothin, benzylpenicillin, and ceftazidime. The enzyme was markedly inhibited by sulbactam, tazobactam, and clavulanic acid. TLA-1 is a new extended-spectrum beta-lactamase of Ambler class A.

  6. X-Ray Crystal Structure of the passenger domain of Plasmid encoded toxin(Pet), an Autotransporter Enterotoxin from enteroaggregative Escherichia coli (EAEC)

    PubMed Central

    Meza-Aguilar, J. Domingo; Fromme, Petra; Torres-Larios, Alfredo; Mendoza-Hernández, Guillermo; Hernandez-Chiñas, Ulises; Monteros, Roberto A. Arreguin-Espinosa de los; Campos, Carlos A. Eslava; Fromme, Raimund

    2014-01-01

    Autotransporters (ATs) represent a superfamily of proteins produced by a variety of pathogenic bacteria, which include the pathogenic groups of Escherichia coli (E. coli) associated with gastrointestinal and urinary tract infections. We present the first X-ray structure of the passenger domain from the Plasmid-encoded toxin (Pet) a 100 kDa protein at 2.3 Å resolution which is a cause of acute diarrhea in both developing and industrialized countries. Pet is a cytoskeleton-altering toxin that induces loss of actin stress fibers. While Pet (pdb code: 4OM9) shows only a sequence identity of 50 % compared to the closest related protein sequence, extracellular serine protease plasmid (EspP) the structural features of both proteins are conserved. A closer structural look reveals that Pet contains a β-pleaded sheet at the sequence region of residues 181-190, the corresponding structural domain in EspP consists of a coiled loop. Secondary, the Pet passenger domain features a more pronounced beta sheet between residues 135-143 compared to the structure of EspP. PMID:24530907

  7. Pyranose 2-oxidase from Phanerochaete chrysosporium : expression in E. coli and biochemical characterization

    Treesearch

    Ines Pisanelli; Magdalena Kujawa; Oliver Spadiut; Roman Kittl; Petr Halada; Jindrich Volc; Michael D. Mozuch; Philip Kersten; Dietmar Haltrich; Clemens Peterbauer

    2009-01-01

    The presented work reports the isolation and heterologous expression of the p2ox gene encoding the flavoprotein pyranose 2-oxidase (P2Ox) from the basidiomycete Phanerochaete chrysosporium. The p2ox cDNA was inserted into the bacterial expression vector pET21a(+) and successfully expressed in Escherichia coli. We obtained active, fully flavinylated recombinant P2Ox in...

  8. Chromosomal features of Escherichia coli serotype O2:K2, an avian pathogenic E. coli.

    PubMed

    Jørgensen, Steffen L; Kudirkiene, Egle; Li, Lili; Christensen, Jens P; Olsen, John E; Nolan, Lisa; Olsen, Rikke H

    2017-01-01

    Escherichia coli causing infection outside the gastrointestinal system are referred to as extra-intestinal pathogenic E. coli. Avian pathogenic E. coli is a subgroup of extra-intestinal pathogenic E. coli and infections due to avian pathogenic E. coli have major impact on poultry production economy and welfare worldwide. An almost defining characteristic of avian pathogenic E. coli is the carriage of plasmids, which may encode virulence factors and antibiotic resistance determinates. For the same reason, plasmids of avian pathogenic E. coli have been intensively studied. However, genes encoded by the chromosome may also be important for disease manifestation and antimicrobial resistance. For the E. coli strain APEC_O2 the plasmids have been sequenced and analyzed in several studies, and E. coli APEC_O2 may therefore serve as a reference strain in future studies. Here we describe the chromosomal features of E. coli APEC_O2. E. coli APEC_O2 is a sequence type ST135, has a chromosome of 4,908,820 bp (plasmid removed), comprising 4672 protein-coding genes, 110 RNA genes, and 156 pseudogenes, with an average G + C content of 50.69%. We identified 82 insertion sequences as well as 4672 protein coding sequences, 12 predicated genomic islands, three prophage-related sequences, and two clustered regularly interspaced short palindromic repeats regions on the chromosome, suggesting the possible occurrence of horizontal gene transfer in this strain. The wildtype strain of E. coli APEC_O2 is resistant towards multiple antimicrobials, however, no (complete) antibiotic resistance genes were present on the chromosome, but a number of genes associated with extra-intestinal disease were identified. Together, the information provided here on E. coli APEC_O2 will assist in future studies of avian pathogenic E. coli strains, in particular regarding strain of E. coli APEC_O2, and aid in the general understanding of the pathogenesis of avian pathogenic E. coli .

  9. Cloning of the citrate permease gene of Lactococcus lactis subsp. lactis biovar diacetylactis and expression in Escherichia coli.

    PubMed Central

    Sesma, F; Gardiol, D; de Ruiz Holgado, A P; de Mendoza, D

    1990-01-01

    The citrate plasmid (Cit+ plasmid) from Lactococcus lactis subsp. lactis biovar diacetylactis was cloned into the EcoRI site of plasmid pUC18. This recombinant plasmid enabled Escherichia coli K-12 to transport and utilize citrate as a source of energy, indicating expression of the citrate permease from L. lactis biovar diacetylactis. The citrate permease was under the control of the lac promoter of pUC18. Genetic expression of the Cit+ plasmid in maxicells revealed that the plasmid encoded two polypeptides of 47 and 32 kilodaltons, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Images PMID:2117878

  10. Mutations in the Histone-like Nucleoid Structuring Regulatory Gene (hns) Decrease the Adherence of Shiga Toxin-producing Escherichia coli 091:H21 Strain B2F1 to Human Colonic Epithelial Cells and Increase the Production of Hemolysin

    DTIC Science & Technology

    1999-10-19

    osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J. Bacteriol. 170:2575-2583. Mobley, H. L., D. M. Green...produced by ETEC organisms is homologous to the toxin encoded by Y: cholerae . These toxins are the primary cause of the watery diarrhea associated with ETEC...Escherichia coli as a cause ofdiarrhea among children in Mexico . J. Clin. Microbiol. 25:1913-1919. Maurelli, A. T., and P. J. Sansonetti. 1988

  11. Enhanced phosphoserine insertion during Escherichia coli protein synthesis via partial UAG codon reassignment and release factor 1 deletion

    PubMed Central

    Heinemann, Ilka U.; Rovner, Alexis J.; Aerni, Hans R.; Rogulina, Svetlana; Cheng, Laura; Olds, William; Fischer, Jonathan T.; Söll, Dieter; Isaacs, Farren J.; Rinehart, Jesse

    2012-01-01

    Genetically encoded phosphoserine incorporation programmed by the UAG codon was achieved by addition of engineered elongation factor and an archaeal aminoacyl-tRNA synthetase to the normal Escherichia coli translation machinery (Park (2011) Science 333, 1151). However, protein yield suffers from expression of the orthogonal phosphoserine translation system and competition with release factor 1 (RF-1). In a strain lacking RF-1, phosphoserine phosphatase, and where 7 UAG codons residing in essential genes were converted to UAA, phosphoserine incorporation into GFP and WNK4 was significantly elevated, but with an accompanying loss in cellular fitness and viability. PMID:22982858

  12. An Immunocompromised Child with Bloodstream Infection Caused by Two Escherichia coli Strains, One Harboring NDM-5 and the Other Harboring OXA-48-Like Carbapenemase.

    PubMed

    Hasassri, M Earth; Boyce, Thomas G; Norgan, Andrew P; Cunningham, Scott A; Jeraldo, Patricio R; Weissman, Scott J; Patel, Robin; Banerjee, Ritu; Pogue, Jason M; Kaye, Keith S

    2016-06-01

    We describe a 16-year-old neutropenic patient from the Middle East with bloodstream infection caused by two carbapenemase-producing Escherichia coli isolates that we characterized by whole-genome sequencing. While one displayed meropenem resistance and was blaNDM positive, the other demonstrated meropenem susceptibility yet harbored blaOXA181 (which encodes a blaOXA48-like enzyme). This report highlights the challenge of laboratory detection of blaOXA48-like enzymes and the clinical implications of genotypic resistance detection in carbapenemase-producing Enterobacteriaceae. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Expression of PEP carboxylase from Escherichia coli complements the phenotypic effects of pyruvate carboxylase mutations in Saccharomyces cerevisiae.

    PubMed

    Flores, C L; Gancedo, C

    1997-08-04

    We investigated the effects of the expression of the Escherichia coli ppc gene encoding PEP carboxylase in Saccharomyces cerevisiae mutants devoid of pyruvate carboxylase. Functional expression of the ppc gene restored the ability of the yeast mutants to grow in glucose-ammonium medium. Growth yield in this medium was the same in the transformed yeast than in the wild type although the growth rate of the transformed yeast was slower. Growth in pyruvate was slowed down in the transformed strain, likely due to a futile cycle produced by the simultaneous action of PEP carboxykinase and PEP carboxylase.

  14. Stereospecific hydroxylation of indan by Escherichia coli containing the cloned toluene dioxygenase genes from Pseudomonas putida F1.

    PubMed Central

    Brand, J M; Cruden, D L; Zylstra, G J; Gibson, D T

    1992-01-01

    Escherichia coli JM109(pDTG601), containing the todC1C2BA genes encoding toluene dioxygenase from Pseudomonas putida F1, oxidizes indan to (-)-(1R)-indanol (83% R) and trans-1,3-indandiol. Under similar conditions, P. putida F39/D oxidizes indan to (-)-(1R)-indanol (96% R), 1-indanone, and trans-1,3-indandiol. The differences in the enantiomeric composition of the 1-indanols formed by the two organisms are due to the presence of a 1-indanol dehydrogenase in P. putida F39/D that preferentially oxidizes (+)-(1S)-indanol. PMID:1444374

  15. Stereospecific hydroxylation of indan by Escherichia coli containing the cloned toluene dioxygenase genes from Pseudomonas putida F1.

    PubMed

    Brand, J M; Cruden, D L; Zylstra, G J; Gibson, D T

    1992-10-01

    Escherichia coli JM109(pDTG601), containing the todC1C2BA genes encoding toluene dioxygenase from Pseudomonas putida F1, oxidizes indan to (-)-(1R)-indanol (83% R) and trans-1,3-indandiol. Under similar conditions, P. putida F39/D oxidizes indan to (-)-(1R)-indanol (96% R), 1-indanone, and trans-1,3-indandiol. The differences in the enantiomeric composition of the 1-indanols formed by the two organisms are due to the presence of a 1-indanol dehydrogenase in P. putida F39/D that preferentially oxidizes (+)-(1S)-indanol.

  16. Both flagella and F4 fimbriae from F4ac+ enterotoxigenic Escherichia coli contribute to attachment to IPEC-J2 cells in vitro.

    PubMed

    Zhou, Mingxu; Duan, Qiangde; Zhu, Xiaofang; Guo, Zhiyan; Li, Yinchau; Hardwidge, Philip R; Zhu, Guoqiang

    2013-05-13

    The role of flagella in the pathogenesis of F4ac+ Enterotoxigenic Escherichia coli (ETEC) mediated neonatal and post-weaning diarrhea (PWD) is not currently understood. We targeted the reference C83902 ETEC strain (O8:H19:F4ac+ LT+ STa+ STb+), to construct isogenic mutants in the fliC (encoding the major flagellin protein), motA (encoding the flagella motor), and faeG (encoding the major subunit of F4 fimbriae) genes. Both the ΔfliC and ΔfaeG mutants had a reduced ability to adhere to porcine intestinal epithelial IPEC-J2 cells. F4 fimbriae expression was significantly down-regulated after deleting fliC, which revealed that co-regulation exists between flagella and F4 fimbriae. However, there was no difference in adhesion between the ΔmotA mutant and its parent strain. These data demonstrate that both flagella and F4 fimbriae are required for efficient F4ac+ ETEC adhesion in vitro.

  17. Expression of a Streptococcus mutans glucosyltransferase gene in Escherichia coli.

    PubMed

    Robeson, J P; Barletta, R G; Curtiss, R

    1983-01-01

    Chromosomal DNA from Streptococcus mutans strain UAB90 (serotype c) was cloned into Escherichia coli K-12. The clone bank was screened for any sucrose-hydrolyzing activity by selection for growth on raffinose in the presence of isopropyl-beta-D-thiogalactoside. A clone expressing an S. mutans glucosyltransferase was identified. The S. mutans DNA encoding this enzyme is a 1.73-kilobase fragment cloned into the HindIII site of plasmid pBR322. We designated the gene gtfA. The plasmid-encoded gtfA enzyme, a 55,000-molecular-weight protein, is synthesized at 40% the level of pBR322-encoded beta-lactamase in E. coli minicells. Using sucrose as substrate, the gtfA enzyme catalyzes the formation of fructose and a glucan with an apparent molecular weight of 1,500. We detected the gtfA protein in S. mutans cells with antibody raised against the cloned gtfA enzyme. Immunologically identical gtfA protein appears to be present in S. mutans cells of serotypes c, e, and f, and a cross-reacting protein was made by serotype b cells. Proteins from serotype a, g, and d S. mutans cells did not react with antibody to gtfA enzyme. The gtfA activity was present in the periplasmic space of E. coli clones, since 15% of the total gtfA activity was released by cold osmotic shock and the clones were able to grow on sucrose as sole carbon source.

  18. Occurrence of shigatoxinogenic Escherichia coli O157 in Norwegian cattle herds.

    PubMed Central

    Vold, L.; Klungseth Johansen, B.; Kruse, H.; Skjerve, E.; Wasteson, Y.

    1998-01-01

    To investigate if there is a reservoir of Escherichia coli O157 in Norwegian cattle, faecal samples from 197 cattle herds were screened for E. coli O157 by the use of immunomagnetic separation (IMS) and PCR during the 1995 grazing season. Six E. coli O157:H-isolates were detected in two herds, one isolate in one and five in the other. The isolates carried the stx1, stx2, and eae genes, and a 90 MDa virulence plasmid. They were toxinogenic in a Vero cell assay. From 57 other herds, 137 faecal samples were positive for stx1 and/or stx2 genes detected by PCR run directly on IMS-isolated material. Among these samples, stx2 were the most widely distributed toxin encoding genes. No difference was found among milking cows and heifers in the rate of stx1 and/or stx2 in positive samples. PMID:9528814

  19. Characterization of the aes gene of Escherichia coli encoding an enzyme with esterase activity.

    PubMed Central

    Peist, R; Koch, A; Bolek, P; Sewitz, S; Kolbus, T; Boos, W

    1997-01-01

    malQ mutants of Escherichia coli lacking amylomaltase cannot grow on maltose. They express the maltose system constitutively and are sensitive to maltose when grown on another carbon source. In an attempt to isolate a multicopy suppressor that would result in growth on maltose, we transformed a malQ mutant with a gene bank of E. coli DNA which had been digested with Sau3a and cloned in pBR322. We screened the transformants on MacConkey maltose plates. A colony was isolated that appeared to be resistant to maltose and was pink on these plates, but it was still unable to grow on minimal medium with maltose as the carbon source. The plasmid was isolated, and the gene causing this phenotype was characterized. The deduced amino acid sequence of the encoded protein shows homology to that of lipases and esterases. We termed the gene aes, for acetyl esterase. Extracts of cells harboring plasmid-encoded aes under its own promoter exhibit a fivefold higher capacity to hydrolyze p-nitrophenyl acetate than do extracts of cells of plasmid-free strains. Similarly, strains harboring plasmid-encoded aes are able to grow on triacetyl glycerol (triacetin) whereas the plasmid-free strains are not. The expression of plasmid-encoded aes resulted in strong repression of the maltose transport genes in malT+ strains (10-fold reduction), but not in a malT(Con) strain which is independent of the inducer. Also, overproduction of MalT counteracted the Aes-dependent repression, indicating a direct interaction between MalT and Aes. PMID:9401025

  20. Sequencing a piece of history: complete genome sequence of the original Escherichia coli strain

    PubMed Central

    Dunne, Karl A; Chaudhuri, Roy R; Rossiter, Amanda E; Beriotto, Irene; Browning, Douglas F; Squire, Derrick; Cunningham, Adam F; Cole, Jeffrey A; Loman, Nicholas

    2017-01-01

    In 1885, Theodor Escherich first described the Bacillus coli commune, which was subsequently renamed Escherichia coli. We report the complete genome sequence of this original strain (NCTC 86). The 5 144 392 bp circular chromosome encodes the genes for 4805 proteins, which include antigens, virulence factors, antimicrobial-resistance factors and secretion systems, of a commensal organism from the pre-antibiotic era. It is located in the E. coli A subgroup and is closely related to E. coli K-12 MG1655. E. coli strain NCTC 86 and the non-pathogenic K-12, C, B and HS strains share a common backbone that is largely co-linear. The exception is a large 2 803 932 bp inversion that spans the replication terminus from gmhB to clpB. Comparison with E. coli K-12 reveals 41 regions of difference (577 351 bp) distributed across the chromosome. For example, and contrary to current dogma, E. coli NCTC 86 includes a nine gene sil locus that encodes a silver-resistance efflux pump acquired before the current widespread use of silver nanoparticles as an antibacterial agent, possibly resulting from the widespread use of silver utensils and currency in Germany in the 1800s. In summary, phylogenetic comparisons with other E. coli strains confirmed that the original strain isolated by Escherich is most closely related to the non-pathogenic commensal strains. It is more distant from the root than the pathogenic organisms E. coli 042 and O157 : H7; therefore, it is not an ancestral state for the species. PMID:28663823

  1. A Bacteriophage-Encoded J-Domain Protein Interacts with the DnaK/Hsp70 Chaperone and Stabilizes the Heat-Shock Factor σ32 of Escherichia coli

    PubMed Central

    Perrody, Elsa; Cirinesi, Anne-Marie; Desplats, Carine; Keppel, France; Schwager, Françoise; Tranier, Samuel; Georgopoulos, Costa; Genevaux, Pierre

    2012-01-01

    The universally conserved J-domain proteins (JDPs) are obligate cochaperone partners of the Hsp70 (DnaK) chaperone. They stimulate Hsp70's ATPase activity, facilitate substrate delivery, and confer specific cellular localization to Hsp70. In this work, we have identified and characterized the first functional JDP protein encoded by a bacteriophage. Specifically, we show that the ORFan gene 057w of the T4-related enterobacteriophage RB43 encodes a bona fide JDP protein, named Rki, which specifically interacts with the Escherichia coli host multifunctional DnaK chaperone. However, in sharp contrast with the three known host JDP cochaperones of DnaK encoded by E. coli, Rki does not act as a generic cochaperone in vivo or in vitro. Expression of Rki alone is highly toxic for wild-type E. coli, but toxicity is abolished in the absence of endogenous DnaK or when the conserved J-domain of Rki is mutated. Further in vivo analyses revealed that Rki is expressed early after infection by RB43 and that deletion of the rki gene significantly impairs RB43 proliferation. Furthermore, we show that mutations in the host dnaK gene efficiently suppress the growth phenotype of the RB43 rki deletion mutant, thus indicating that Rki specifically interferes with DnaK cellular function. Finally, we show that the interaction of Rki with the host DnaK chaperone rapidly results in the stabilization of the heat-shock factor σ32, which is normally targeted for degradation by DnaK. The mechanism by which the Rki-dependent stabilization of σ32 facilitates RB43 bacteriophage proliferation is discussed. PMID:23133404

  2. Mobile contingency locus controlling Escherichia coli K1 polysialic acid capsule acetylation.

    PubMed

    Vimr, Eric R; Steenbergen, Susan M

    2006-05-01

    Escherichia coli K1 is part of a reservoir of adherent, invasive facultative pathogens responsible for a wide range of human and animal disease including sepsis, meningitis, urinary tract infection and inflammatory bowel syndrome. A prominent virulence factor in these diseases is the polysialic acid capsular polysaccharide (K1 antigen), which is encoded by the kps/neu accretion domain inserted near pheV at 67 map units. Some E. coli K1 strains undergo form (phase) variation involving loss or gain of O-acetyl esters at carbon positions 7 or 9 of the individual sialic acid residues of the polysialic acid chains. Acetylation is catalysed by the receptor-modifying acetyl coenzyme-A-dependent O-acetyltransferase encoded by neuO, a phase variable locus mapping near the integrase gene of the K1-specific prophage, CUS-3, which is inserted in argW at 53.1 map units. As the first E. coli contingency locus shown to operate by a translational switch, further investigation of neuO should provide a better understanding of the invasive K1 pathotype. Minimal estimates of morbidity and economic costs associated with human infections caused by extraintestinal pathogenic E. coli strains such as K1 indicate at least 6.5 million cases with attendant medical costs exceeding 2.5 billion US dollars annually in the United States alone.

  3. DNA sequence of a ColV plasmid and prevalence of selected plasmid-encoded virulence genes among avian Escherichia coli strains.

    PubMed

    Johnson, Timothy J; Siek, Kylie E; Johnson, Sara J; Nolan, Lisa K

    2006-01-01

    ColV plasmids have long been associated with the virulence of Escherichia coli, despite the fact that their namesake trait, ColV production, does not appear to contribute to virulence. Such plasmids or their associated sequences appear to be quite common among avian pathogenic E. coli (APEC) and are strongly linked to the virulence of these organisms. In the present study, a 180-kb ColV plasmid was sequenced and analyzed. This plasmid, pAPEC-O2-ColV, possesses a 93-kb region containing several putative virulence traits, including iss, tsh, and four putative iron acquisition and transport systems. The iron acquisition and transport systems include those encoding aerobactin and salmochelin, the sit ABC iron transport system, and a putative iron transport system novel to APEC, eit. In order to determine the prevalence of the virulence-associated genes within this region among avian E. coli strains, 595 APEC and 199 avian commensal E. coli isolates were examined for genes of this region using PCR. Results indicate that genes contained within a portion of this putative virulence region are highly conserved among APEC and that the genes of this region occur significantly more often in APEC than in avian commensal E. coli. The region of pAPEC-O2-ColV containing genes that are highly prevalent among APEC appears to be a distinguishing trait of APEC strains.

  4. DNA Sequence of a ColV Plasmid and Prevalence of Selected Plasmid-Encoded Virulence Genes among Avian Escherichia coli Strains

    PubMed Central

    Johnson, Timothy J.; Siek, Kylie E.; Johnson, Sara J.; Nolan, Lisa K.

    2006-01-01

    ColV plasmids have long been associated with the virulence of Escherichia coli, despite the fact that their namesake trait, ColV production, does not appear to contribute to virulence. Such plasmids or their associated sequences appear to be quite common among avian pathogenic E. coli (APEC) and are strongly linked to the virulence of these organisms. In the present study, a 180-kb ColV plasmid was sequenced and analyzed. This plasmid, pAPEC-O2-ColV, possesses a 93-kb region containing several putative virulence traits, including iss, tsh, and four putative iron acquisition and transport systems. The iron acquisition and transport systems include those encoding aerobactin and salmochelin, the sit ABC iron transport system, and a putative iron transport system novel to APEC, eit. In order to determine the prevalence of the virulence-associated genes within this region among avian E. coli strains, 595 APEC and 199 avian commensal E. coli isolates were examined for genes of this region using PCR. Results indicate that genes contained within a portion of this putative virulence region are highly conserved among APEC and that the genes of this region occur significantly more often in APEC than in avian commensal E. coli. The region of pAPEC-O2-ColV containing genes that are highly prevalent among APEC appears to be a distinguishing trait of APEC strains. PMID:16385064

  5. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Woon, J. S. K.; Murad, A. M. A.; Abu Bakar, F. D.

    2015-09-01

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  6. Genome Sequence and Analysis of Escherichia coli MRE600, a Colicinogenic, Nonmotile Strain that Lacks RNase I and the Type I Methyltransferase, EcoKI

    PubMed Central

    Kurylo, Chad M.; Alexander, Noah; Dass, Randall A.; Parks, Matthew M.; Altman, Roger A.; Vincent, C. Theresa; Mason, Christopher E.; Blanchard, Scott C.

    2016-01-01

    Escherichia coli strain MRE600 was originally identified for its low RNase I activity and has therefore been widely adopted by the biomedical research community as a preferred source for the expression and purification of transfer RNAs and ribosomes. Despite its widespread use, surprisingly little information about its genome or genetic content exists. Here, we present the first de novo assembly and description of the MRE600 genome and epigenome. To provide context to these studies of MRE600, we include comparative analyses with E. coli K-12 MG1655 (K12). Pacific Biosciences Single Molecule, Real-Time sequencing reads were assembled into one large chromosome (4.83 Mb) and three smaller plasmids (89.1, 56.9, and 7.1 kb). Interestingly, the 7.1-kb plasmid possesses genes encoding a colicin E1 protein and its associated immunity protein. The MRE600 genome has a G + C content of 50.8% and contains a total of 5,181 genes, including 4,913 protein-encoding genes and 268 RNA genes. We identified 41,469 modified DNA bases (0.83% of total) and found that MRE600 lacks the gene for type I methyltransferase, EcoKI. Phylogenetic, taxonomic, and genetic analyses demonstrate that MRE600 is a divergent E. coli strain that displays features of the closely related genus, Shigella. Nevertheless, comparative analyses between MRE600 and E. coli K12 show that these two strains exhibit nearly identical ribosomal proteins, ribosomal RNAs, and highly homologous tRNA species. Substantiating prior suggestions that MRE600 lacks RNase I activity, the RNase I-encoding gene, rna, contains a single premature stop codon early in its open-reading frame. PMID:26802429

  7. Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage

    PubMed Central

    Qimron, Udi; Marintcheva, Boriana; Tabor, Stanley; Richardson, Charles C.

    2006-01-01

    Use of bacteriophages as a therapy for bacterial infection has been attempted over the last century. Such an endeavor requires the elucidation of basic aspects of the host–virus interactions and the resistance mechanisms of the host. Two recently developed bacterial collections now enable a genomewide search of the genetic interactions between Escherichia coli and bacteriophages. We have screened >85% of the E. coli genes for their ability to inhibit growth of T7 phage and >90% of the host genes for their ability to be used by the virus. In addition to identifying all of the known interactions, several other interactions have been identified. E. coli CMP kinase is essential for T7 growth, whereas overexpression of the E. coli uridine/cytidine kinase inhibits T7 growth. Mutations in any one of nine genes that encode enzymes for the synthesis of the E. coli lipopolysaccharide receptor for T7 adsorption leads to T7 resistance. Selection of T7 phage that can recognize these altered receptors has enabled the construction of phage to which the host is 100-fold less resistant. PMID:17135349

  8. Virulence genes, antibiotic resistance and integrons in Escherichia coli strains isolated from synanthropic birds from Spain.

    PubMed

    Sacristán, C; Esperón, F; Herrera-León, S; Iglesias, I; Neves, E; Nogal, V; Muñoz, M J; de la Torre, A

    2014-01-01

    The aim of this study was to determine the presence of virulence genes and antibiotic resistance profiles in 164 Escherichia coli strains isolated from birds (feral pigeons, hybrid ducks, house sparrows and spotless starlings) inhabiting urban and rural environments. A total of eight atypical enteropathogenic E. coli strains were identified: one in a house sparrow, four in feral pigeons and three in spotless starlings. Antibiotic resistance was present in 32.9% (54) of E. coli strains. The dominant type of resistance was to tetracycline (21.3%), ampicillin (19.5%) and sulfamethoxazole (18.9%). Five isolates had class 1 integrons containing gene cassettes encoding for dihydrofolate reductase A (dfrA) and aminoglycoside adenyltransferase A (aadA), one in a feral pigeon and four in spotless starlings. To our knowledge, the present study constitutes the first detection of virulence genes from E. coli in spotless starlings and house sparrows, and is also the first identification worldwide of integrons containing antibiotic resistance gene cassettes in E. coli strains from spotless starlings and pigeons.

  9. Suppression of Amber Codons in Caulobacter crescentus by the Orthogonal Escherichia coli Histidyl-tRNA Synthetase/tRNAHis Pair

    PubMed Central

    Ko, Jae-hyeong; Llopis, Paula Montero; Heinritz, Jennifer; Jacobs-Wagner, Christine; Söll, Dieter

    2013-01-01

    While translational read-through of stop codons by suppressor tRNAs is common in many bacteria, archaea and eukaryotes, this phenomenon has not yet been observed in the α-proteobacterium Caulobacter crescentus. Based on a previous report that C. crescentus and Escherichia coli tRNAHis have distinctive identity elements, we constructed E. coli tRNAHis CUA, a UAG suppressor tRNA for C. crescentus. By examining the expression of three UAG codon- containing reporter genes (encoding a β-lactamase, the fluorescent mCherry protein, or the C. crescentus xylonate dehydratase), we demonstrated that the E. coli histidyl-tRNA synthetase/tRNAHis CUA pair enables in vivo UAG suppression in C. crescentus. E. coli histidyl-tRNA synthetase (HisRS) or tRNAHis CUA alone did not achieve suppression; this indicates that the E. coli HisRS/tRNAHis CUA pair is orthogonal in C. crescentus. These results illustrate that UAG suppression can be achieved in C. crescentus with an orthogonal aminoacyl-tRNA synthetase/suppressor tRNA pair. PMID:24386240

  10. SCO-1, a Novel Plasmid-Mediated Class A β-Lactamase with Carbenicillinase Characteristics from Escherichia coli▿

    PubMed Central

    Papagiannitsis, C. C.; Loli, A.; Tzouvelekis, L. S.; Tzelepi, E.; Arlet, G.; Miriagou, V.

    2007-01-01

    A novel class A β-lactamase (SCO-1) encoded by an 80-kb self-transferable plasmid from Escherichia coli is described. The interaction of SCO-1 with β-lactams was similar to that of the CARB-type enzymes. Also, SCO-1 exhibited a 51% amino acid sequence identity with the RTG subgroup of chromosomal carbenicillinases (RTG-1, CARB-5, and CARB-8). PMID:17353248

  11. X-ray crystal structure of the passenger domain of plasmid encoded toxin(Pet), an autotransporter enterotoxin from enteroaggregative Escherichia coli (EAEC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domingo Meza-Aguilar, J.; Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato Oncología e Investigación, Hospital Infantil de México Federico Gómez 06720, D.F.; Fromme, Petra

    Highlights: • X-ray crystal structure of the passenger domain of Plasmid encoded toxin at 2.3 Å. • Structural differences between Pet passenger domain and EspP protein are described. • High flexibility of the C-terminal beta helix is structurally assigned. - Abstract: Autotransporters (ATs) represent a superfamily of proteins produced by a variety of pathogenic bacteria, which include the pathogenic groups of Escherichia coli (E. coli) associated with gastrointestinal and urinary tract infections. We present the first X-ray structure of the passenger domain from the Plasmid-encoded toxin (Pet) a 100 kDa protein at 2.3 Å resolution which is a cause ofmore » acute diarrhea in both developing and industrialized countries. Pet is a cytoskeleton-altering toxin that induces loss of actin stress fibers. While Pet (pdb code: 4OM9) shows only a sequence identity of 50% compared to the closest related protein sequence, extracellular serine protease plasmid (EspP) the structural features of both proteins are conserved. A closer structural look reveals that Pet contains a β-pleaded sheet at the sequence region of residues 181–190, the corresponding structural domain in EspP consists of a coiled loop. Secondary, the Pet passenger domain features a more pronounced beta sheet between residues 135 and 143 compared to the structure of EspP.« less

  12. Cloning of the altered mRNA stability (ams) gene of Escherichia coli K-12.

    PubMed Central

    Claverie-Martin, F; Diaz-Torres, M R; Yancey, S D; Kushner, S R

    1989-01-01

    A temperature-sensitive mutation in the ams gene of Escherichia coli causes an increase in the chemical half-life of pulse-labeled RNA at the nonpermissive temperature. Using lambda clones containing DNA fragments from the 23- to 24-min region on the E. coli chromosome, we have isolated a 5.8-kilobase DNA fragment which, when present in a low-copy-number plasmid, complements the conditional lethality and increased mRNA stability associated with the ams-1 mutation. The approximate initiation site and the direction of transcription of the ams gene were determined from the size of truncated polypeptides produced by Tn1000 insertions and Bal 31 deletions. Overexpression of the ams locus by using a T7 RNA polymerase-promoter system permitted the identification of an ams-encoded polypeptide of 110 kilodaltons. Images PMID:2477358

  13. A gene cassette for adapting Escherichia coli strains as hosts for att-Int-mediated rearrangement and pL expression vectors.

    PubMed

    Balakrishnan, R; Bolten, B; Backman, K C

    1994-01-28

    A cassette of genes from bacteriophage lambda, when carried on a derivative of bacteriophage Mu, renders strains of Escherichia coli (and in principle other Mu-sensitive bacteria) capable of supporting lambda-based expression vectors, such as rearrangement vectors and pL vectors. The gene cassette contains a temperature-sensitive allele of the repressor gene, cIts857, and a shortened leftward operon comprising, oLpL, N, xis and int. Transfection and lysogenization of this cassette into various host bacteria is mediated by phage Mu functions. Examples of regulated expression of the gene encoding T4 DNA ligase are presented.

  14. Genomic Comparison of Escherichia coli O104:H4 Isolates from 2009 and 2011 Reveals Plasmid, and Prophage Heterogeneity, Including Shiga Toxin Encoding Phage stx2

    DTIC Science & Technology

    2012-11-01

    306. 70. Smith DL, Rooks DJ, Fogg PC, Darby AC, Thomson NR, et al. (2012) Comparative genomics of Shiga toxin encoding bacteriophages. BMC Genomics 13...genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68: 560–602. 77. Smith DL, Wareing BM, Fogg PCM, Riley LM, Spencer M, et al

  15. Changing plasmid types responsible for extended spectrum cephalosporin resistance in Escherichia coli O157:H7 in the United States, 1996–2009

    PubMed Central

    Folster, J. P.; Pecic, G.; Stroika, S.; Rickert, R.; Whichard, J.

    2015-01-01

    Escherichia coli O157 is a major cause of foodborne illness. Plasmids are genetic elements that mobilize antimicrobial resistance determinants including blaCMY β-lactamases that confer resistance to extended-spectrum cephalosporins (ESC). ESCs are important for treating a variety of infections. IncA/C plasmids are found among diverse sources, including cattle, the principal source of E. coli O157 infections in humans. IncI1 plasmids are common among E. coli and Salmonella from poultry and other avian sources. To broaden our understanding of reservoirs of blaCMY, we determined the types of plasmids carrying blaCMY among E. coli O157. From 1996 to 2009, 3742 E. coli O157 isolates were tested. Eleven (0.29%) were ceftriaxone resistant and had a blaCMY-2-containing plasmid. All four isolates submitted before 2001 and a single 2001 isolate had blaCMY encoded on IncA/C plasmids, while all five isolates submitted after 2001 and a single 2001 isolate had blaCMY carried on IncI1 plasmids. The IncI1 plasmids were ST2, ST20, and ST23. We conclude that cephalosporin resistance among E. coli O157:H7 is due to plasmid-encoded blaCMY genes and that plasmid types appear to have shifted from IncA/C to IncI1. This shift suggests either a change in plasmid type among animal reservoirs or that the organism has expanded into avian reservoirs. More analysis of human, retail meat, and food animal isolates is necessary to broaden our understanding of the antimicrobial resistance determinants of ESC resistance among E. coli O157. PMID:26478858

  16. Cloning and expression in Escherichia coli of isopenicillin N synthetase genes from Streptomyces lipmanii and Aspergillus nidulans.

    PubMed Central

    Weigel, B J; Burgett, S G; Chen, V J; Skatrud, P L; Frolik, C A; Queener, S W; Ingolia, T D

    1988-01-01

    beta-Lactam antibiotics such as penicillins and cephalosporins are synthesized by a wide variety of microbes, including procaryotes and eucaryotes. Isopenicillin N synthetase catalyzes a key reaction in the biosynthetic pathway of penicillins and cephalosporins. The genes encoding this protein have previously been cloned from the filamentous fungi Cephalosporium acremonium and Penicillium chrysogenum and characterized. We have extended our analysis to the isopenicillin N synthetase genes from the fungus Aspergillus nidulans and the gram-positive procaryote Streptomyces lipmanii. The isopenicillin N synthetase genes from these organisms have been cloned and sequenced, and the proteins encoded by the open reading frames were expressed in Escherichia coli. Active isopenicillin N synthetase enzyme was recovered from extracts of E. coli cells prepared from cells containing each of the genes in expression vectors. The four isopenicillin N synthetase genes studied are closely related. Pairwise comparison of the DNA sequences showed between 62.5 and 75.7% identity; comparison of the predicted amino acid sequences showed between 53.9 and 80.6% identity. The close homology of the procaryotic and eucaryotic isopenicillin N synthetase genes suggests horizontal transfer of the genes during evolution. Images PMID:3045077

  17. Expression of Caenorhabditis elegans antimicrobial peptide NLP-31 in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Lim, Mei-Perng; Nathan, Sheila

    2014-09-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a fulminant disease endemic in Southeast Asia and Northern Australia. The standardized form of therapy is antibiotics treatment; however, the bacterium has become increasingly resistant to these antibiotics. This has spurred the need to search for alternative therapeutic agents. Antimicrobial peptides (AMPs) are small proteins that possess broad-spectrum antimicrobial activity. In a previous study, the nematode Caenorhabditis elegans was infected by B. pseudomallei and a whole animal transcriptome analysis identified a number of AMP-encoded genes which were induced significantly in the infected worms. One of the AMPs identified is NLP-31 and to date, there are no reports of anti-B. pseudomallei activity demonstrated by NLP-31. To produce NLP-31 protein for future studies, the gene encoding for NLP-31 was cloned into the pET32b expression vector and transformed into Escherichia coli BL21(DE3). Protein expression was induced with 1 mM IPTG for 20 hours at 20°C and recombinant NLP-31 was detected in the soluble fraction. Taken together, a simple optimized heterologous production of AMPs in an E. coli expression system has been successfully developed.

  18. Understanding the role of the catalase/peroxide genes in H2O2 resistance of E. coli serotype O157:H7 biofilms

    USDA-ARS?s Scientific Manuscript database

    Introduction: Escherichia coli serotype O157:H7 defenses against H2O2 include the peroxiredoxin AhpC and three catalases: KatG (catalase-peroxidase), KatE (catalase), and the plasmid-encoded KatP (catalase/peroxidase). AhpC, KatG, and KatP are induced by OxyR in exponential phase, while KatE is indu...

  19. Export of Virulence Genes and Shiga Toxin by Membrane Vesicles of Escherichia coli O157:H7

    PubMed Central

    Kolling, Glynis L.; Matthews, Karl R.

    1999-01-01

    Membrane vesicles released by Escherichia coli O157:H7 into culture medium were purified and analyzed for protein and DNA content. Electron micrographs revealed vesicles that are spherical, range in size from 20 to 100 nm, and have a complete bilayer. Analysis of vesicle protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrates vesicles that contain many proteins with molecular sizes similar to outer membrane proteins and a number of cellular proteins. Immunoblot (Western) analysis of vesicles suggests the presence of cell antigens. Treatment of vesicles with exogenous DNase hydrolyzed surface-associated DNA; PCR demonstrated that vesicles contain DNA encoding the virulence genes eae, stx1 and stx2, and uidA, which encodes for β-galactosidase. Immunoblot analysis of intact and lysed, proteinase K-treated vesicles demonstrate that Shiga toxins 1 and 2 are contained within vesicles. These results suggest that vesicles contain toxic material and transfer experiments demonstrate that vesicles can deliver genetic material to other gram-negative organisms. PMID:10223967

  20. Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation

    PubMed Central

    Raisch, Jennifer; Buc, Emmanuel; Bonnet, Mathilde; Sauvanet, Pierre; Vazeille, Emilie; de Vallée, Amélie; Déchelotte, Pierre; Darcha, Claude; Pezet, Denis; Bonnet, Richard; Bringer, Marie-Agnès; Darfeuille-Michaud, Arlette

    2014-01-01

    AIM: To provide further insight into the characterization of mucosa-associated Escherichia coli (E. coli) isolated from the colonic mucosa of cancer patients. METHODS: Phylogroups and the presence of cyclomodulin-encoding genes of mucosa-associated E. coli from colon cancer and diverticulosis specimens were determined by PCR. Adhesion and invasion experiments were performed with I-407 intestinal epithelial cells using gentamicin protection assay. Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) expression in T84 intestinal epithelial cells was measured by enzyme-linked immunosorbent assay and by Western Blot. Gut colonization, inflammation and pro-carcinogenic potential were assessed in a chronic infection model using CEABAC10 transgenic mice. Cell proliferation was analyzed by real-time mRNA quantification of PCNA and immunohistochemistry staining of Ki67. RESULTS: Analysis of mucosa-associated E. coli from colon cancer and diverticulosis specimens showed that whatever the origin of the E. coli strains, 86% of cyclomodulin-positive E. coli belonged to B2 phylogroup and most harbored polyketide synthase (pks) island, which encodes colibactin, and/or cytotoxic necrotizing factor (cnf) genes. In vitro assays using I-407 intestinal epithelial cells revealed that mucosa-associated B2 E. coli strains were poorly adherent and invasive. However, mucosa-associated B2 E. coli similarly to Crohn’s disease-associated E. coli are able to induce CEACAM6 expression in T84 intestinal epithelial cells. In addition, in vivo experiments using a chronic infection model of CEACAM6 expressing mice showed that B2 E. coli strain 11G5 isolated from colon cancer is able to highly persist in the gut, and to induce colon inflammation, epithelial damages and cell proliferation. CONCLUSION: In conclusion, these data bring new insights into the ability of E. coli isolated from patients with colon cancer to establish persistent colonization, exacerbate inflammation and trigger carcinogenesis. PMID:24914378

  1. Fate and Persistence of a Pathogenic NDM-1-Positive Escherichia coli Strain in Anaerobic and Aerobic Sludge Microcosms

    PubMed Central

    Mantilla-Calderon, David

    2017-01-01

    ABSTRACT The presence of emerging biological pollutants in treated wastewater effluents has gained attention due to increased interest in water reuse. To evaluate the effectiveness of the removal of such contaminants by the conventional wastewater treatment process, the fate and decay kinetics of NDM-1-positive Escherichia coli strain PI7 and its plasmid-encoded antibiotic resistance genes (ARGs) were assessed in microcosms of anaerobic and aerobic sludge. Results showed that E. coli PI7 decayed at a significantly lower rate under anaerobic conditions. Approximate half-lives were 32.4 ± 1.4 h and 5.9 ± 0.9 h in the anaerobic and aerobic microcosms, respectively. In the aerobic microcosms, after 72 h of operation, E. coli PI7 remained detectable, but no further decay was observed. Instead, 1 in every 10,000 E. coli cells was identified to be recalcitrant to decay and persist indefinitely in the sludge. ARGs associated with the E. coli PI7 strain were detected to have transferred to other native microorganisms in the sludge or were released to the liquid fraction upon host decay. Extracellular DNA quickly degraded in the liquid fraction of the aerobic sludge. In contrast, no DNA decay was detected in the anaerobic sludge water matrix throughout the 24-h sampling period. This study suggests an increased likelihood of environmental dispersion of ARGs associated with anaerobically treated wastewater effluents and highlights the potential importance of persister cells in the dissemination of E. coli in the environment during reuse events of treated wastewater. IMPORTANCE This study examines the decay kinetics of a pathogenic and antibiotic resistant strain of Escherichia coli in microcosms simulating biological treatment units of aerobic and anaerobic sludge. The results of this study point at a significantly prolonged persistence of the E. coli and the associated antibiotic resistance gene in the anaerobic sludge. However, horizontal transfer of the plasmid encoding the antibiotic resistance gene was detected in the aerobic sludge by a cultivation method. A subpopulation of persister E. coli cells was also detected in the aerobic sludge. The findings of this study suggest potential areas of concern arising from pathogenic and antibiotic-resistant E. coli during both anaerobic and aerobic sludge treatment processes. PMID:28411227

  2. Fate and Persistence of a Pathogenic NDM-1-Positive Escherichia coli Strain in Anaerobic and Aerobic Sludge Microcosms.

    PubMed

    Mantilla-Calderon, David; Hong, Pei-Ying

    2017-07-01

    The presence of emerging biological pollutants in treated wastewater effluents has gained attention due to increased interest in water reuse. To evaluate the effectiveness of the removal of such contaminants by the conventional wastewater treatment process, the fate and decay kinetics of NDM-1-positive Escherichia coli strain PI7 and its plasmid-encoded antibiotic resistance genes (ARGs) were assessed in microcosms of anaerobic and aerobic sludge. Results showed that E. coli PI7 decayed at a significantly lower rate under anaerobic conditions. Approximate half-lives were 32.4 ± 1.4 h and 5.9 ± 0.9 h in the anaerobic and aerobic microcosms, respectively. In the aerobic microcosms, after 72 h of operation, E. coli PI7 remained detectable, but no further decay was observed. Instead, 1 in every 10,000 E. coli cells was identified to be recalcitrant to decay and persist indefinitely in the sludge. ARGs associated with the E. coli PI7 strain were detected to have transferred to other native microorganisms in the sludge or were released to the liquid fraction upon host decay. Extracellular DNA quickly degraded in the liquid fraction of the aerobic sludge. In contrast, no DNA decay was detected in the anaerobic sludge water matrix throughout the 24-h sampling period. This study suggests an increased likelihood of environmental dispersion of ARGs associated with anaerobically treated wastewater effluents and highlights the potential importance of persister cells in the dissemination of E. coli in the environment during reuse events of treated wastewater. IMPORTANCE This study examines the decay kinetics of a pathogenic and antibiotic resistant strain of Escherichia coli in microcosms simulating biological treatment units of aerobic and anaerobic sludge. The results of this study point at a significantly prolonged persistence of the E. coli and the associated antibiotic resistance gene in the anaerobic sludge. However, horizontal transfer of the plasmid encoding the antibiotic resistance gene was detected in the aerobic sludge by a cultivation method. A subpopulation of persister E. coli cells was also detected in the aerobic sludge. The findings of this study suggest potential areas of concern arising from pathogenic and antibiotic-resistant E. coli during both anaerobic and aerobic sludge treatment processes. Copyright © 2017 Mantilla-Calderon and Hong.

  3. A murC gene in Porphyromonas gingivalis 381.

    PubMed

    Ansai, T; Yamashita, Y; Awano, S; Shibata, Y; Wachi, M; Nagai, K; Takehara, T

    1995-09-01

    The gene encoding a 51 kDa polypeptide of Porphyromonas gingivalis 381 was isolated by immunoblotting using an antiserum raised against P. gingivalis alkaline phosphatase. DNA sequence analysis of a 2.5 kb DNA fragment containing a gene encoding the 51 kDa protein revealed one complete and two incomplete ORFs. Database searches using the FASTA program revealed significant homology between the P. gingivalis 51 kDa protein and the MurC protein of Escherichia coli, which functions in peptidoglycan synthesis. The cloned 51 kDa protein encoded a functional product that complemented an E. coli murC mutant. Moreover, the ORF just upstream of murC coded for a protein that was 31% homologous with the E. coli MurG protein. The ORF just downstream of murC coded for a protein that was 17% homologous with the Streptococcus pneumoniae penicillin-binding protein 2B (PBP2B), which functions in peptidoglycan synthesis and is responsible for antibiotic resistance. These results suggest that P. gingivalis contains a homologue of the E. coli peptidoglycan synthesis gene murC and indicate the possibility of a cluster of genes responsible for cell division and cell growth, as in the E. coli mra region.

  4. Expression of a cloned lipopolysaccharide antigen from Neisseria gonorrhoeae on the surface of Escherichia coli K-12.

    PubMed Central

    Palermo, D A; Evans, T M; Clark, V L

    1987-01-01

    A gonococcal gene bank maintained in Escherichia coli K-12 was screened by colony immunoblotting, and a transformant expressing a surface antigen reactive to anti-gonococcal outer membrane antiserum was isolated. The isolate carried a recombinant plasmid, pTME6, consisting of approximately 9 kilobases of Neisseria gonorrhoeae DNA inserted into the BamHI site of pBR322. Surface labeling of E. coli HB101(pTME6) confirmed that the antigen was expressed on the E. coli cell surface. The antigenic material was resistant to proteinase K digestion and sensitive to periodate oxidation, indicating that the material was carbohydrate. Purified lipopolysaccharide (LPS) from HB101(pTME6) produced a unique band on silver-stained polyacrylamide gels that contained immunoreactive material as seen on Western blots of LPS samples. Only two of three E. coli LPS mutant strains carrying pTME6 reacted with the antigonococcal antiserum, suggesting that a certain E. coli core structure is necessary for antigen expression. We conclude that pTME6 contains one or more gonococcal genes encoding an LPS core biosynthetic enzyme(s) which can modify E. coli core LPS to produce a gonococcuslike epitope(s). Images PMID:3117695

  5. The Genotoxin Colibactin Is a Determinant of Virulence in Escherichia coli K1 Experimental Neonatal Systemic Infection.

    PubMed

    McCarthy, Alex J; Martin, Patricia; Cloup, Emilie; Stabler, Richard A; Oswald, Eric; Taylor, Peter W

    2015-09-01

    Escherichia coli strains expressing the K1 capsule are a major cause of sepsis and meningitis in human neonates. The development of these diseases is dependent on the expression of a range of virulence factors, many of which remain uncharacterized. Here, we show that all but 1 of 34 E. coli K1 neonatal isolates carried clbA and clbP, genes contained within the pks pathogenicity island and required for the synthesis of colibactin, a polyketide-peptide genotoxin that causes genomic instability in eukaryotic cells by induction of double-strand breaks in DNA. Inactivation of clbA and clbP in E. coli A192PP, a virulent strain of serotype O18:K1 that colonizes the gastrointestinal tract and translocates to the blood compartment with very high frequency in experimental infection of the neonatal rat, significantly reduced the capacity of A192PP to colonize the gut, engender double-strand breaks in DNA, and cause invasive, lethal disease. Mutation of clbA, which encodes a pleiotropic enzyme also involved in siderophore synthesis, impacted virulence to a greater extent than mutation of clbP, encoding an enzyme specific to colibactin synthesis. Restoration of colibactin gene function by complementation reestablished the fully virulent phenotype. We conclude that colibactin contributes to the capacity of E. coli K1 to colonize the neonatal gastrointestinal tract and to cause invasive disease in the susceptible neonate. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. The Genotoxin Colibactin Is a Determinant of Virulence in Escherichia coli K1 Experimental Neonatal Systemic Infection

    PubMed Central

    McCarthy, Alex J.; Martin, Patricia; Cloup, Emilie; Stabler, Richard A.

    2015-01-01

    Escherichia coli strains expressing the K1 capsule are a major cause of sepsis and meningitis in human neonates. The development of these diseases is dependent on the expression of a range of virulence factors, many of which remain uncharacterized. Here, we show that all but 1 of 34 E. coli K1 neonatal isolates carried clbA and clbP, genes contained within the pks pathogenicity island and required for the synthesis of colibactin, a polyketide-peptide genotoxin that causes genomic instability in eukaryotic cells by induction of double-strand breaks in DNA. Inactivation of clbA and clbP in E. coli A192PP, a virulent strain of serotype O18:K1 that colonizes the gastrointestinal tract and translocates to the blood compartment with very high frequency in experimental infection of the neonatal rat, significantly reduced the capacity of A192PP to colonize the gut, engender double-strand breaks in DNA, and cause invasive, lethal disease. Mutation of clbA, which encodes a pleiotropic enzyme also involved in siderophore synthesis, impacted virulence to a greater extent than mutation of clbP, encoding an enzyme specific to colibactin synthesis. Restoration of colibactin gene function by complementation reestablished the fully virulent phenotype. We conclude that colibactin contributes to the capacity of E. coli K1 to colonize the neonatal gastrointestinal tract and to cause invasive disease in the susceptible neonate. PMID:26150540

  7. Functional Analysis of Genes Comprising the Locus of Heat Resistance in Escherichia coli.

    PubMed

    Mercer, Ryan; Nguyen, Oanh; Ou, Qixing; McMullen, Lynn; Gänzle, Michael G

    2017-10-15

    The locus of heat resistance (LHR) is a 15- to 19-kb genomic island conferring exceptional heat resistance to organisms in the family Enterobacteriaceae , including pathogenic strains of Salmonella enterica and Escherichia coli The complement of LHR-comprising genes that is necessary for heat resistance and the stress-induced or growth-phase-induced expression of LHR-comprising genes are unknown. This study determined the contribution of the seven LHR-comprising genes yfdX1 GI , yfdX2 , hdeD GI , orf11 , trx GI , kefB , and psiE GI by comparing the heat resistances of E. coli strains harboring plasmid-encoded derivatives of the different LHRs in these genes. (Genes carry a subscript "GI" [genomic island] if an ortholog of the same gene is present in genomes of E. coli ) LHR-encoded heat shock proteins sHSP20, ClpK GI , and sHSP GI are not sufficient for the heat resistance phenotype; YfdX1, YfdX2, and HdeD are necessary to complement the LHR heat shock proteins and to impart a high level of resistance. Deletion of trx GI , kefB , and psiE GI from plasmid-encoded copies of the LHR did not significantly affect heat resistance. The effect of the growth phase and the NaCl concentration on expression from the putative LHR promoter p2 was determined by quantitative reverse transcription-PCR and by a plasmid-encoded p2:GFP promoter fusion. The expression levels of exponential- and stationary-phase E. coli cells were not significantly different, but the addition of 1% NaCl significantly increased LHR expression. Remarkably, LHR expression in E. coli was dependent on a chromosomal copy of evgA In conclusion, this study improved our understanding of the genes required for exceptional heat resistance in E. coli and factors that increase their expression in food. IMPORTANCE The locus of heat resistance (LHR) is a genomic island conferring exceptional heat resistance to several foodborne pathogens. The exceptional level of heat resistance provided by the LHR questions the control of pathogens by current food processing and preparation techniques. The function of LHR-comprising genes and their regulation, however, remain largely unknown. This study defines a core complement of LHR-encoded proteins that are necessary for heat resistance and demonstrates that regulation of the LHR in E. coli requires a chromosomal copy of the gene encoding EvgA. This study provides insight into the function of a transmissible genomic island that allows otherwise heat-sensitive enteric bacteria, including pathogens, to lead a thermoduric lifestyle and thus contributes to the detection and control of heat-resistant enteric bacteria in food. Copyright © 2017 American Society for Microbiology.

  8. Functional Analysis of Genes Comprising the Locus of Heat Resistance in Escherichia coli

    PubMed Central

    Mercer, Ryan; Nguyen, Oanh; Ou, Qixing; McMullen, Lynn

    2017-01-01

    ABSTRACT The locus of heat resistance (LHR) is a 15- to 19-kb genomic island conferring exceptional heat resistance to organisms in the family Enterobacteriaceae, including pathogenic strains of Salmonella enterica and Escherichia coli. The complement of LHR-comprising genes that is necessary for heat resistance and the stress-induced or growth-phase-induced expression of LHR-comprising genes are unknown. This study determined the contribution of the seven LHR-comprising genes yfdX1GI, yfdX2, hdeDGI, orf11, trxGI, kefB, and psiEGI by comparing the heat resistances of E. coli strains harboring plasmid-encoded derivatives of the different LHRs in these genes. (Genes carry a subscript “GI” [genomic island] if an ortholog of the same gene is present in genomes of E. coli.) LHR-encoded heat shock proteins sHSP20, ClpKGI, and sHSPGI are not sufficient for the heat resistance phenotype; YfdX1, YfdX2, and HdeD are necessary to complement the LHR heat shock proteins and to impart a high level of resistance. Deletion of trxGI, kefB, and psiEGI from plasmid-encoded copies of the LHR did not significantly affect heat resistance. The effect of the growth phase and the NaCl concentration on expression from the putative LHR promoter p2 was determined by quantitative reverse transcription-PCR and by a plasmid-encoded p2:GFP promoter fusion. The expression levels of exponential- and stationary-phase E. coli cells were not significantly different, but the addition of 1% NaCl significantly increased LHR expression. Remarkably, LHR expression in E. coli was dependent on a chromosomal copy of evgA. In conclusion, this study improved our understanding of the genes required for exceptional heat resistance in E. coli and factors that increase their expression in food. IMPORTANCE The locus of heat resistance (LHR) is a genomic island conferring exceptional heat resistance to several foodborne pathogens. The exceptional level of heat resistance provided by the LHR questions the control of pathogens by current food processing and preparation techniques. The function of LHR-comprising genes and their regulation, however, remain largely unknown. This study defines a core complement of LHR-encoded proteins that are necessary for heat resistance and demonstrates that regulation of the LHR in E. coli requires a chromosomal copy of the gene encoding EvgA. This study provides insight into the function of a transmissible genomic island that allows otherwise heat-sensitive enteric bacteria, including pathogens, to lead a thermoduric lifestyle and thus contributes to the detection and control of heat-resistant enteric bacteria in food. PMID:28802266

  9. Optimization of the production and purification processes of carnobacteriocins Cbn BM1 and Cbn B2 from Carnobacterium maltaromaticum CP5 by heterologous expression in Escherichia coli.

    PubMed

    Jasniewski, Jordane; Cailliez-Grimal, Catherine; Gelhaye, Eric; Revol-Junelles, Anne-Marie

    2008-04-01

    An optimization of the production and purification processes of carnobacteriocins Cbn BM1 and Cbn B2 from Carnobacterium maltaromaticum CP5, by heterologous expression in Escherichia coli is described. The genes encoding mature bacteriocin were cloned into an E. coli expression system and expressed as a fusion protein with a thermostable thioredoxin. Recombinant E. coli were cultivated following a fed-batch fermentation process with pH, temperature and oxygenation regulation. The overexpression of the fusion proteins was improved by replacing IPTG by lactose. The fusion proteins were purified by thermal coagulation followed by affinity chromatography. The thioredoxin fusion protein was removed by using CNBr instead of enterokinase and the carnobacteriocins were recovered by reverse-phase chromatography. These optimizations led us to produce up to 320 mg of pure protein per liter of culture, which is four to ten fold higher than what is described for other heterologous expression systems.

  10. HU participates in expression of a specific set of genes required for growth and survival at acidic pH in Escherichia coli.

    PubMed

    Bi, Hongkai; Sun, Lianle; Fukamachi, Toshihiko; Saito, Hiromi; Kobayashi, Hiroshi

    2009-05-01

    The major histone-like Escherichia coli protein, HU, is composed of alpha and beta subunits respectively encoded by hupA and hupB in Escherichia coli. A mutant deficient in both hupA and hupB grew at a slightly slower rate than the wild type at pH 7.5. Growth of the mutant diminished with a decrease in pH, and no growth was observed at pH 4.6. Mutants of either hupA or hupB grew at all pH levels tested. The arginine-dependent survival at pH 2.5 was diminished approximately 60-fold by the deletion of both hupA and hupB, whereas the survival was slightly affected by the deletion of either hupA or hupB. The mRNA levels of adiA and adiC, which respectively encode arginine decarboxylase and arginine/agmatine antiporter, were low in the mutant deficient in both hupA and hupB. The deletion of both hupA and hupB had little effect on survival at pH 2.5 in the presence of glutamate or lysine, and expression of the genes for glutamate and lysine decarboxylases was not impaired by the deletion of the HU genes. These results suggest that HU regulates expression of the specific set of genes required for growth and survival in acidic environments.

  11. [Phenotypic and molecular identification of extended-spectrum beta-lactamase (ESBL) TEM and SHV produced by clinical isolates Escherichia coli and Klebsiella spp. in hospitals].

    PubMed

    González Mesa, Leonora; Ramos Morí, Astrid; Nadal Becerra, Loreta; Morffi Figueroa, Janet; Hernández Robledo, Ernesto; Alvarez, Ana Berta; Marchena Bequer, Juan J; González Alemán, Mabel; Villain Plous, Carlos

    2007-01-01

    Nosocomial infections caused by gram-negative bacilli which produce extended spectrum beta-lactamase (ESBL) are associated with the increase of morbidity and mortality in hospitals. The objective of this study was to evaluate the frequency of ESBL, specifically the TEM and SHV type, produced by Escherichia coli and Klebsiella spp. strains, and also to determine the antimicrobial susceptibility of these isolates in comparison with other antibiotic families. A total of 326 strains were collected between 2002-2004 from hospitals in Havana City. The susceptibility tests were carried out according to the NCCLS guides and they were confirmed as. ESBL producers by the double disk diffusion method. The molecular characterization of these enzymes was determined by polymerase chain reaction (PCR), using two sets of oligonucleotides to amplify genes encoding TEM and SHV type beta-lactamase. The ESBL phenotype was detected in 31 (10%) Escherichia coli isolates, 19 of these strains (61%) carried the blaTEM genes, 5 (16%) blaSHV genes, 4 (12%) strains carried both genes and 11 strains (35%) carried the non-ESBL blaTEM and blaSHV genes. In Klebsiella spp. the ESBL phenotype was detected in 10 (36 %) isolates, only one strain carried the blaTEM gene. The most active antimicrobials against Escherichia coli were ciprofloxacin (64.5%) and gentamicin (58.07%); in the case of Klebsiella spp. the same antimicrobials were the most active with similar susceptibility (70%) for both. The carbapenems still remain the most active antibiotics against Escherichia coli and Klebsiella spp. strains, which are ESBL producers. However, their use should be closely controlled.

  12. Alteration in levels of unsaturated fatty acids in mutants of Escherichia coli defective in DNA replication.

    PubMed

    Suzuki, E; Kondo, T; Makise, M; Mima, S; Sakamoto, K; Tsuchiya, T; Mizushima, T

    1998-07-01

    We previously reported that mutations in the dnaA gene which encodes the initiator of chromosomal DNA replication in Escherichia coli caused an alteration in the levels of unsaturated fatty acids of phospholipids in membranes. In this study, we examined fatty acid compositions in other mutants which are defective in DNA replication. As in the case of temperature-sensitive dnaA mutants, temperature-sensitive dnaC and dnaE mutants, which have defects in initiation and elongation, respectively, of DNA replication showed a lower level of unsaturation of fatty acids (ratio of unsaturated to saturated fatty acids) compared with the wild-type strain, especially at high temperatures. On the other hand, temperature-sensitive mutants defective in cellular processes other than DNA replication, such as RNA synthesis and cell division, did not show a lower level of unsaturation of fatty acids compared with the wild-type strain. These results suggest that the inhibition of DNA replication causes a lower level of unsaturation of fatty acids in Escherichia coli cells.

  13. Identification of the anti-terminator qO111:H)- gene in Norwegian sorbitol-fermenting Escherichia coli O157:NM.

    PubMed

    Haugum, Kjersti; Lindstedt, Bjørn-Arne; Løbersli, Inger; Kapperud, Georg; Brandal, Lin Thorstensen

    2012-04-01

    Sorbitol-fermenting Escherichia coli O157:NM (SF O157) is an emerging pathogen suggested to be more virulent than nonsorbitol-fermenting Escherichia coli O157:H7 (NSF O157). Important virulence factors are the Shiga toxins (stx), encoded by stx1 and/or stx2 located within prophages integrated in the bacterial genome. The stx genes are expressed from p(R) (') as a late protein, and anti-terminator activity from the Q protein is necessary for read through of the late terminator t(R) (') and activation of p(R) (') . We investigated the regulation of stx2(EDL933) expression at the genomic level in 17 Norwegian SF O157. Sequencing of three selected SF O157 strains revealed that the anti-terminator q gene and genes upstream of stx2(EDL933) were identical or similar to the ones observed in the E. coli O111:H- strain AP010960, but different from the ones observed in the NSF O157 strain EDL933 (AE005174). This suggested divergent stx2(EDL933) -encoding bacteriophages between NSF O157 and the SF O157 strains (FR874039-41). Furthermore, different DNA structures were detected in the SF O157 strains, suggesting diversity among bacteriophages also within the SF O157 group. Further investigations are needed to elucidate whether the q(O111:H) (-) gene observed in all our SF O157 contributes to the increased virulence seen in SF O157 compared to NSF O157. An assay for detecting q(O111:H) (-) was developed. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woon, J. S. K., E-mail: jameswoon@siswa.ukm.edu.my; Murad, A. M. A., E-mail: munir@ukm.edu.my; Abu Bakar, F. D., E-mail: fabyff@ukm.edu.my

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-Tmore » Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.« less

  15. Organization of K88ac-encoded polypeptides in the Escherichia coli cell envelope: use of minicells and outer membrane protein mutants for studying assembly of pili.

    PubMed

    Dougan, G; Dowd, G; Kehoe, M

    1983-01-01

    Escherichia coli K-12 minicells, harboring recombinant plasmids encoding polypeptides involved in the expression of K88ac adhesion pili on the bacterial cell surface, were labeled with [35S]methionine and fractionated by a variety of techniques. A 70,000-dalton polypeptide, the product of the K88ac adhesion cistron adhA, was primarily located in the outer membrane of minicells, although it was less clearly associated with this membrane than the classical outer membrane proteins OmpA and matrix protein. Two polypeptides of molecular weights 26,000 and 17,000 (the products of adhB and adhC, respectively) were located in significant amounts in the periplasmic space. The 29,000-dalton polypeptide was shown to be processed in E. coli minicells. The 23.500-dalton K88ac pilus subunit (the product of adhD) was detected in both inner and outer membrane fractions. E. coli mutants defective in the synthesis of murein lipoprotein or the major outer membrane polypeptide OmpA were found to express normal amounts of K88ac antigen on the cell surface, whereas expression of the K88ac antigen was greatly reduced in perA mutants. The possible functions of the adh cistron products are discussed.

  16. Engineering Escherichia coli into a protein delivery system for mammalian cells.

    PubMed

    Reeves, Analise Z; Spears, William E; Du, Juan; Tan, Kah Yong; Wagers, Amy J; Lesser, Cammie F

    2015-05-15

    Many Gram-negative pathogens encode type 3 secretion systems, sophisticated nanomachines that deliver proteins directly into the cytoplasm of mammalian cells. These systems present attractive opportunities for therapeutic protein delivery applications; however, their utility has been limited by their inherent pathogenicity. Here, we report the reengineering of a laboratory strain of Escherichia coli with a tunable type 3 secretion system that can efficiently deliver heterologous proteins into mammalian cells, thereby circumventing the need for virulence attenuation. We first introduced a 31 kB region of Shigella flexneri DNA that encodes all of the information needed to form the secretion nanomachine onto a plasmid that can be directly propagated within E. coli or integrated into the E. coli chromosome. To provide flexible control over type 3 secretion and protein delivery, we generated plasmids expressing master regulators of the type 3 system from either constitutive or inducible promoters. We then constructed a Gateway-compatible plasmid library of type 3 secretion sequences to enable rapid screening and identification of sequences that do not perturb function when fused to heterologous protein substrates and optimized their delivery into mammalian cells. Combining these elements, we found that coordinated expression of the type 3 secretion system and modified target protein substrates produces a nonpathogenic strain that expresses, secretes, and delivers heterologous proteins into mammalian cells. This reengineered system thus provides a highly flexible protein delivery platform with potential for future therapeutic applications.

  17. Insight on specificity of uracil permeases of the NAT/NCS2 family from analysis of the transporter encoded in the pyrimidine utilization operon of Escherichia coli.

    PubMed

    Botou, Maria; Lazou, Panayiota; Papakostas, Konstantinos; Lambrinidis, George; Evangelidis, Thomas; Mikros, Emmanuel; Frillingos, Stathis

    2018-04-01

    The uracil permease UraA of Escherichia coli is a structurally known prototype for the ubiquitous Nucleobase-Ascorbate Transporter (NAT) or Nucleobase-Cation Symporter-2 (NCS2) family and represents a well-defined subgroup of bacterial homologs that remain functionally unstudied. Here, we analyze four of these homologs, including RutG of E. coli which shares 35% identity with UraA and is encoded in the catabolic rut (pyrimidine utilization) operon. Using amplified expression in E. coli K-12, we show that RutG is a high-affinity permease for uracil, thymine and, at low efficiency, xanthine and recognizes also 5-fluorouracil and oxypurinol. In contrast, UraA and the homologs from Acinetobacter calcoaceticus and Aeromonas veronii are permeases specific for uracil and 5-fluorouracil. Molecular docking indicates that thymine is hindered from binding to UraA by a highly conserved Phe residue which is absent in RutG. Site-directed replacement of this Phe with Ala in the three uracil-specific homologs allows high-affinity recognition and/or transport of thymine, emulating the RutG profile. Furthermore, all RutG orthologs from enterobacteria retain an Ala at this position, implying that they can use both uracil and thymine and, possibly, xanthine as substrates and provide the bacterial cell with a range of catabolizable nucleobases. © 2018 John Wiley & Sons Ltd.

  18. Escherichia coli O104:H4 Pathogenesis: an Enteroaggregative E. coli/Shiga Toxin-Producing E. coli Explosive Cocktail of High Virulence.

    PubMed

    Navarro-Garcia, Fernando

    2014-12-01

    A major outbreak caused by Escherichia coli of serotype O104:H4 spread throughout Europe in 2011. This large outbreak was caused by an unusual strain that is most similar to enteroaggregative E. coli (EAEC) of serotype O104:H4. A significant difference, however, is the presence of a prophage encoding the Shiga toxin, which is characteristic of enterohemorrhagic E. coli (EHEC) strains. This combination of genomic features, associating characteristics from both EAEC and EHEC, represents a new pathotype. The 2011 E. coli O104:H4 outbreak of hemorrhagic diarrhea in Germany is an example of the explosive cocktail of high virulence and resistance that can emerge in this species. A total of 46 deaths, 782 cases of hemolytic-uremic syndrome, and 3,128 cases of acute gastroenteritis were attributed to this new clone of EAEC/EHEC. In addition, recent identification in France of similar O104:H4 clones exhibiting the same virulence factors suggests that the EHEC O104:H4 pathogen has become endemically established in Europe after the end of the outbreak. EAEC strains of serotype O104:H4 contain a large set of virulence-associated genes regulated by the AggR transcription factor. They include, among other factors, the pAA plasmid genes encoding the aggregative adherence fimbriae, which anchor the bacterium to the intestinal mucosa (stacked-brick adherence pattern on epithelial cells). Furthermore, sequencing studies showed that horizontal genetic exchange allowed for the emergence of the highly virulent Shiga toxin-producing EAEC O104:H4 strain that caused the German outbreak. This article discusses the role these virulence factors could have in EAEC/EHEC O104:H4 pathogenesis.

  19. Characterization of clinically isolated thymidine-dependent small-colony variants of Escherichia coli producing extended-spectrum β-lactamase.

    PubMed

    Negishi, Tatsuya; Matsumoto, Takehisa; Horiuchi, Kazuki; Kasuga, Eriko; Natori, Tatsuya; Matsuoka, Mina; Ogiwara, Naoko; Sugano, Mitsutoshi; Uehara, Takeshi; Nagano, Noriyuki; Honda, Takayuki

    2018-01-01

    Thymidine-dependent small-colony variants (TD-SCVs) are difficult to detect or test for antimicrobial susceptibility. We investigated the characteristics of clonal TD-SCVs of Escherichia coli, both with and without blaCTX-M-3, isolated from a patient. Mutation in the thyA gene was analysed by sequencing, and morphological abnormalities in the colonies and cells of the isolates were examined. Additionally, conjugational transfer experiments were performed to prove the horizontal transferability of plasmids harbouring resistance genes. The TD-SCVs contained a single nucleotide substitution in the thyA gene, c.62G>A, corresponding to p.Arg21His. Morphologically, their colonies were more translucent and flattened than those of the wild-type strain. In addition, cells of the TD-SCVs were swollen and elongated, sometimes with abnormal and incomplete divisions; a large amount of cell debris was also observed. Changing c.62G>A back to the wild-type sequence reversed these abnormalities. Conjugational transfer experiments showed that the TD-SCV of E. coli with blaCTX-M-3 failed to transfer blaCTX-M-3 to E. coli CSH2. However, the TD-SCV of E. coli without blaCTX-M-3 experimentally received the plasmid encoding blaSHV-18 from Klebsiella pneumoniae ATCC 700603 and transferred it to E. coli CSH2. Mutation in the thyA gene causes morphological abnormalities in the colonies and cells of E. coli, as well as inducing thymidine auxotrophy. In addition, TD-SCVs horizontally transmit plasmids encoding resistance genes. It is important to detect TD-SCVs based on their characteristics because they serve as reservoirs of transferable antibiotic resistance plasmids.

  20. PpsA-mediated alternative pathway to complement RNase E essentiality in Escherichia coli.

    PubMed

    Tamura, Masaru; Honda, Naoko; Fujimoto, Hirofumi; Cohen, Stanley N; Kato, Atsushi

    2016-07-01

    Escherichia coli cells require RNase E, encoded by the essential gene rne, to propagate. The growth properties on different carbon sources of E. coli cells undergoing suppression of RNase E production suggested that reduction in RNase E is associated with decreased expression of phosphoenolpyruvate synthetase (PpsA), which converts pyruvate to phosphoenolpyruvate during gluconeogenesis. Western blotting and genetic complementation confirmed the role of RNase E in PpsA expression. Adventitious ppsA overexpression from a multicopy plasmid was sufficient to restore colony formation of ∆rne E. coli on minimal media containing glycerol or succinate as the sole carbon source. Complementation of ∆rne by ppsA overproduction was observed during growth on solid media but was only partial, and bacteria showed slowed cell division and grew as filamentous chains. We found that restoration of colony-forming ability by ppsA complementation occurred independent of the presence of endogenous RNase G or second-site suppressors of RNase E essentiality. Our investigations demonstrate the role of phosphoryl transfer catalyzable by PpsA as a determinant of RNase E essentiality in E. coli.

  1. The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase

    PubMed Central

    Rensing, Christopher; Mitra, Bharati; Rosen, Barry P.

    1997-01-01

    The first Zn(II)-translocating P-type ATPase has been identified as the product of o732, a potential gene identified in the sequencing of the Escherichia coli genome. This gene, termed zntA, was disrupted by insertion of a kanamycin gene through homologous recombination. The mutant strain exhibited hypersensitivity to zinc and cadmium salts but not salts of other metals, suggesting a role in zinc homeostasis in E. coli. Everted membrane vesicles from a wild-type strain accumulated 65Zn(II) and 109Cd(II) by using ATP as an energy source. Transport was sensitive to vanadate, an inhibitor of P-type ATPases. Membrane vesicles from the zntA∷kan strain did not accumulate those metal ions. Both the sensitive phenotype and transport defect of the mutant were complemented by expression of zntA on a plasmid. PMID:9405611

  2. Cloning and sequencing of the Thermoanaerobacterium saccharolyticum B6A-RI apu gene and purification and characterization of the amylopullulanase from Escherichia coli.

    PubMed

    Ramesh, M V; Podkovyrov, S M; Lowe, S E; Zeikus, J G

    1994-01-01

    The amylopullulanase gene (apu) of the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum B6A-RI was cloned into Escherichia coli. The complete nucleotide sequence of the gene was determined. It encoded a protein consisting of 1,288 amino acids with a signal peptide of 35 amino acids. The enzyme purified from E. coli was a monomer with an M(r) of 142,000 +/- 2,000 and had same the catalytic and thermal characteristics as the native glycoprotein from T. saccharolyticum B6A. Linear alignment and the hydrophobic cluster analysis were used to compare this amylopullulanase with other amylolytic enzymes. Both methods revealed strictly conserved amino acid residues among these enzymes, and it is proposed that Asp-594, Asp-700, and Glu-623 are a putative catalytic triad of the T. saccharolyticum B6A-RI amylopullulanase.

  3. Cloning and sequencing of the Thermoanaerobacterium saccharolyticum B6A-RI apu gene and purification and characterization of the amylopullulanase from Escherichia coli.

    PubMed Central

    Ramesh, M V; Podkovyrov, S M; Lowe, S E; Zeikus, J G

    1994-01-01

    The amylopullulanase gene (apu) of the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum B6A-RI was cloned into Escherichia coli. The complete nucleotide sequence of the gene was determined. It encoded a protein consisting of 1,288 amino acids with a signal peptide of 35 amino acids. The enzyme purified from E. coli was a monomer with an M(r) of 142,000 +/- 2,000 and had same the catalytic and thermal characteristics as the native glycoprotein from T. saccharolyticum B6A. Linear alignment and the hydrophobic cluster analysis were used to compare this amylopullulanase with other amylolytic enzymes. Both methods revealed strictly conserved amino acid residues among these enzymes, and it is proposed that Asp-594, Asp-700, and Glu-623 are a putative catalytic triad of the T. saccharolyticum B6A-RI amylopullulanase. Images PMID:8117096

  4. A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnelly, M. I.; Millard, C. S.; Clark, D. P.

    1998-04-01

    Escherichia coli strain NZN111, which is unable to grow fermentatively because of insertional inactivation of the genes encoding pyruvate: formate lyase and the fermentative lactate dehydrogenase, gave rise spontaneously to a chromosomal mutation that restored its ability to ferment glucose. The mutant strain, named AFP111, fermented glucose more slowly than did its wild-type ancestor, strain W1485, and generated a very different spectrum of products. AFP111 produced succinic acid, acetic acid, and ethanol in proportions of approx 2:1:1. Calculations of carbon and electron balances accounted fully for the observed products; 1 mol of glucose was converted to 1 mol of succinicmore » acid and 0.5 mol each of acetic acid and ethanol. The data support the emergence in E.coli of a novel succinic acid:acetic acid:ethanol fermentation pathway.« less

  5. Engineering Escherichia coli for improved ethanol production from gluconate.

    PubMed

    Hildebrand, Amanda; Schlacta, Theresa; Warmack, Rebeccah; Kasuga, Takao; Fan, Zhiliang

    2013-10-10

    We report on engineering Escherichia coli to produce ethanol at high yield from gluconic acid (gluconate). Knocking out genes encoding for the competing pathways (l-lactate dehydrogenase and pyruvate formate lyase A) in E. coli KO11 eliminated lactate production, lowered the carbon flow toward acetate production, and improved the ethanol yield from 87.5% to 97.5% of the theoretical maximum, while the growth rate of the mutant strain was about 70% of the wild type. The corresponding genetic modifications led to a small improvement of ethanol yield from 101.5% to 106.0% on glucose. Deletion of the pyruvate dehydrogenase gene (pdh) alone improved the ethanol yield from 87.5% to 90.4% when gluconate was a substrate. The growth rate of the mutant strain was identical to that of the wild type. The corresponding genetic modification led to no improvements on ethanol yield on glucose. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. A novel aldo-keto reductase from Escherichia coli can increase resistance to methylglyoxal toxicity.

    PubMed

    Grant, Anne W; Steel, Gavin; Waugh, Hugh; Ellis, Elizabeth M

    2003-01-21

    A novel aldo-keto reductase (AKR) from Escherichia coli has been cloned, expressed and purified. This protein, YghZ, is distantly related (<40%) to mammalian aflatoxin dialdehyde reductases of the aldo-keto reductase AKR7 family and to potassium channel beta-subunits in the AKR6 family. The enzyme has been placed in a new AKR family (AKR14), with the designation AKR14A1. Sequences encoding putative homologues of this enzyme exist in many other bacteria. The enzyme can reduce several aldehyde and diketone substrates, including the toxic metabolite methylglyoxal. The K(m) for the model substrate 4-nitrobenzaldehyde is 1.06 mM and for the endogenous dicarbonyl methylglyoxal it is 3.4 mM. Overexpression of the recombinant enzyme in E. coli leads to increased resistance to methylglyoxal. It is possible that this enzyme plays a role in the metabolism of methylglyoxal, and can influence its levels in vivo.

  7. Full shut-off of Escherichia coli RNA-polymerase by T7 phage requires a small phage-encoded DNA-binding protein

    PubMed Central

    Tabib-Salazar, Aline; Liu, Bing; Shadrin, Andrey; Burchell, Lynn; Wang, Zhexin; Wang, Zhihao; Goren, Moran G.; Yosef, Ido; Qimron, Udi; Severinov, Konstantin

    2017-01-01

    Abstract Infection of Escherichia coli by the T7 phage leads to rapid and selective inhibition of the bacterial RNA polymerase (RNAP) by the 7 kDa T7 protein Gp2. We describe the identification and functional and structural characterisation of a novel 7 kDa T7 protein, Gp5.7, which adopts a winged helix-turn-helix-like structure and specifically represses transcription initiation from host RNAP-dependent promoters on the phage genome via a mechanism that involves interaction with DNA and the bacterial RNAP. Whereas Gp2 is indispensable for T7 growth in E. coli, we show that Gp5.7 is required for optimal infection outcome. Our findings provide novel insights into how phages fine-tune the activity of the host transcription machinery to ensure both successful and efficient phage progeny development. PMID:28486695

  8. Cloning and characterization of the Bacillus subtilis birA gene encoding a repressor of the biotin operon.

    PubMed

    Bower, S; Perkins, J; Yocum, R R; Serror, P; Sorokin, A; Rahaim, P; Howitt, C L; Prasad, N; Ehrlich, S D; Pero, J

    1995-05-01

    The Bacillus subtilis birA gene, which regulates biotin biosynthesis, has been cloned and characterized. The birA gene maps at 202 degrees on the B. subtilis chromosome and encodes a 36,200-Da protein that is 27% identical to Escherichia coli BirA protein. Three independent mutations in birA that lead to deregulation of biotin synthesis alter single amino acids in the amino-terminal end of the protein. The amino-terminal region that is affected by these three birA mutations shows sequence similarity to the helix-turn-helix DNA binding motif previously identified in E. coli BirA protein. B. subtilis BirA protein also possesses biotin-protein ligase activity, as judged by its ability to complement a conditional lethal birA mutant of E. coli.

  9. Cloning and characterization of the Bacillus subtilis birA gene encoding a repressor of the biotin operon.

    PubMed Central

    Bower, S; Perkins, J; Yocum, R R; Serror, P; Sorokin, A; Rahaim, P; Howitt, C L; Prasad, N; Ehrlich, S D; Pero, J

    1995-01-01

    The Bacillus subtilis birA gene, which regulates biotin biosynthesis, has been cloned and characterized. The birA gene maps at 202 degrees on the B. subtilis chromosome and encodes a 36,200-Da protein that is 27% identical to Escherichia coli BirA protein. Three independent mutations in birA that lead to deregulation of biotin synthesis alter single amino acids in the amino-terminal end of the protein. The amino-terminal region that is affected by these three birA mutations shows sequence similarity to the helix-turn-helix DNA binding motif previously identified in E. coli BirA protein. B. subtilis BirA protein also possesses biotin-protein ligase activity, as judged by its ability to complement a conditional lethal birA mutant of E. coli. PMID:7730294

  10. CLONING AND CHARACTERIZATION OF CDNA ENCODING GIARDIA LAMBLIA d-GIARDIN

    USDA-ARS?s Scientific Manuscript database

    A cDNA coding for d-giardin was cloned from Giardia lamblia trophozoites in order to localize the protein and study its function in mediating surface attachment. Recombinant d-giardin antigen was produced in Escherichia coli as a poly-histidine fusion protein and was purified by affinity chromatogr...

  11. Escherichia coli mutant with altered respiratory control of the frd operon.

    PubMed Central

    Iuchi, S; Kuritzkes, D R; Lin, E C

    1985-01-01

    In wild-type Escherichia coli, fumarate reductase encoded by the frd operon is inducible by its substrate in the absence of molecular oxygen and nitrate. Synthesis of this enzyme under permissive conditions requires the fnr+ gene product, which is believed to be a pleiotropic regulatory protein that activates transcription. A spontaneous mutant was isolated in which the expression of the frd operon no longer depended on the presence of fumarate or the fnr+ gene product. Aerobic repression of the operon was abolished, but nitrate repression remained intact. Transductional analysis showed that the mutation was closely linked to the frd locus. The mutant phenotype strongly suggests that repression by molecular oxygen and nitrate is mediated by different mechanisms. PMID:3882660

  12. Cloning and sequencing of a gene encoding a glutamate and aspartate carrier of Escherichia coli K-12.

    PubMed Central

    Wallace, B; Yang, Y J; Hong, J S; Lum, D

    1990-01-01

    A gene encoding a carrier protein for glutamate and aspartate was cloned into Escherichia coli K-12 strain BK9MDG by using the high-copy-number plasmid pBR322. The gene (designated gltP) is probably identical to a gene recently cloned from E. coli B (Y. Deguchi, I. Yamato, and Y. Anraku, J. Bacteriol. 171:1314-1319). A 1.6-kilobase DNA fragment containing gltP was subcloned into the expression plasmids pT7-5 and pT7-6, and its product was identified by a phage T7 RNA polymerase-T7 promoter coupled system (S. Tabor and C. C. Richardson, Proc. Natl. Acad. Sci. USA 82:1074-1078) as a polypeptide with an apparent mass of 38 kilodaltons. A portion of the gltP polypeptide was associated with the cytoplasmic membrane. The nucleotide sequence of the 1.6-kilobase fragment was determined. It contained an open reading frame capable of encoding a highly hydrophobic polypeptide of 395 amino acids, containing four possible transmembrane segments. Uptake of glutamate and aspartate was increased 5.5- and 4.5-fold, respectively, in strains containing gltP plasmids. Glutamate uptake was insensitive to the concentration of Na+ and was inhibited by L-cysteate and beta-hydroxyaspartate. These results suggest that gltP is a structural gene for a carrier protein of the Na(+)-independent, binding-protein-independent glutamate-aspartate transport system. Images PMID:1971622

  13. The BaeSR Two-Component Regulatory System Mediates Resistance to Condensed Tannins in Escherichia coli▿ †

    PubMed Central

    Zoetendal, Erwin G.; Smith, Alexandra H.; Sundset, Monica A.; Mackie, Roderick I.

    2008-01-01

    The gene expression profiles of Escherichia coli strains grown anaerobically with or without Acacia mearnsii (black wattle) extract were compared to identify tannin resistance strategies. The cell envelope stress protein gene spy and the multidrug transporter-encoding operon mdtABCD, both under the control of the BaeSR two-component regulatory system, were significantly up-regulated in the presence of tannins. BaeSR mutants were more tannin sensitive than their wild-type counterparts. PMID:18039828

  14. Arginine-Dependent Acid Resistance in Salmonella enterica Serovar Typhimurium

    PubMed Central

    Kieboom, Jasper; Abee, Tjakko

    2006-01-01

    Salmonella enterica serovar Typhimurium does not survive a pH 2.5 acid challenge under conditions similar to those used for Escherichia coli (J. W. Foster, Nat. Rev. Microbiol. 2:898-907, 2004). Here, we provide evidence that S. enterica serovar Typhimurium can display arginine-dependent acid resistance (AR) provided the cells are grown under anoxic conditions and not under the microaerobic conditions used for assessment of AR in E. coli. The role of the arginine decarboxylase pathway in Salmonella AR was shown by the loss of AR in mutants lacking adiA, which encodes arginine decarboxylase; adiC, which encodes the arginine-agmatine antiporter; or adiY, which encodes an AraC-like regulator. Transcription of adiA and adiC was found to be dependent on AdiY, anaerobiosis, and acidic pH. PMID:16855258

  15. Development of an Escherichia coli K12-specific quantitative polymerase chain reaction assay and DNA isolation suited to biofilms associated with iron drinking water pipe corrosion products.

    PubMed

    Lu, Jingrang; Gerke, Tammie L; Buse, Helen Y; Ashbolt, Nicholas J

    2014-12-01

    A quantitative polymerase chain reaction assay (115 bp amplicon) specific to Escherichia coli K12 with an ABI(TM) internal control was developed based on sequence data encoding the rfb gene cluster. Assay specificity was evaluated using three E. coli K12 strains (ATCC W3110, MG1655 & DH1), 24 non-K12 E. coli and 23 bacterial genera. The biofilm detection limit was 10(3) colony-forming units (CFU) E. coli K12 mL(-1), but required a modified protocol, which included a bio-blocker Pseudomonas aeruginosa with ethylenediaminetetraacetic acid buffered to pH 5 prior to cell lysis/DNA extraction. The novel protocol yielded the same sensitivity for drinking water biofilms associated with Fe3O4 (magnetite)-coated SiO2 (quartz) grains and biofilm-surface iron corrosion products from a drinking water distribution system. The novel DNA extraction protocol and specific E. coli K12 assay are sensitive and robust enough for detection and quantification within iron drinking water pipe biofilms, and are particularly well suited for studying enteric bacterial interactions within biofilms.

  16. blaNDM-21, a new variant of blaNDM in an Escherichia coli clinical isolate carrying blaCTX-M-55 and rmtB.

    PubMed

    Liu, Lu; Feng, Yu; McNally, Alan; Zong, Zhiyong

    2018-06-14

    New Delhi MBL (NDM) is a type of carbapenemase; 20 variants of NDM have been identified to date. We have found a new variant of NDM, NDM-21, and describe it here. A carbapenem-resistant Escherichia coli was subjected to WGS using an Illumina X10 sequencer to identify the antimicrobial resistance genes and its ST. The gene encoding the new variant of NDM was cloned into E. coli DH5α, with blaNDM-5 being cloned as the control. Transformants were tested for susceptibility to carbapenems. Mating was performed to obtain the plasmid carrying the new blaNDM gene and the complete plasmid sequence was obtained using long-read MinION sequencing. The E. coli isolate belonged to ST617 and phylogenetic group A. It had a gene encoding NDM-21, a new NDM variant. NDM-21 differs from NDM-5 by a Gly-to-Ser amino acid substitution at position 69 (G69S). NDM-21 retains the same activity against carbapenems as NDM-5. blaNDM-21 is carried by a 46.1 kb IncX3 plasmid, which is self-transmissible, and is located in a complex genetic context as blaNDM-5. The isolate also carried blaCTX-M-55, which encodes an ESBL conferring resistance to aztreonam (which completed its resistance to all clinically available β-lactams), and rmtB, which mediates high-level resistance to aminoglycosides, on an IncFII plasmid. A new NDM variant has been identified and blaNDM-21 has evolved from blaNDM-5 on an IncX3 plasmid.

  17. aes, the gene encoding the esterase B in Escherichia coli, is a powerful phylogenetic marker of the species.

    PubMed

    Lescat, Mathilde; Hoede, Claire; Clermont, Olivier; Garry, Louis; Darlu, Pierre; Tuffery, Pierre; Denamur, Erick; Picard, Bertrand

    2009-12-29

    Previous studies have established a correlation between electrophoretic polymorphism of esterase B, and virulence and phylogeny of Escherichia coli. Strains belonging to the phylogenetic group B2 are more frequently implicated in extraintestinal infections and include esterase B2 variants, whereas phylogenetic groups A, B1 and D contain less virulent strains and include esterase B1 variants. We investigated esterase B as a marker of phylogeny and/or virulence, in a thorough analysis of the esterase B-encoding gene. We identified the gene encoding esterase B as the acetyl-esterase gene (aes) using gene disruption. The analysis of aes nucleotide sequences in a panel of 78 reference strains, including the E. coli reference (ECOR) strains, demonstrated that the gene is under purifying selection. The phylogenetic tree reconstructed from aes sequences showed a strong correlation with the species phylogenetic history, based on multi-locus sequence typing using six housekeeping genes. The unambiguous distinction between variants B1 and B2 by electrophoresis was consistent with Aes amino-acid sequence analysis and protein modelling, which showed that substituted amino acids in the two esterase B variants occurred mostly at different sites on the protein surface. Studies in an experimental mouse model of septicaemia using mutant strains did not reveal a direct link between aes and extraintestinal virulence. Moreover, we did not find any genes in the chromosomal region of aes to be associated with virulence. Our findings suggest that aes does not play a direct role in the virulence of E. coli extraintestinal infection. However, this gene acts as a powerful marker of phylogeny, illustrating the extensive divergence of B2 phylogenetic group strains from the rest of the species.

  18. Growth rate regulation of Escherichia coli acetyl coenzyme A carboxylase, which catalyzes the first committed step of lipid biosynthesis.

    PubMed Central

    Li, S J; Cronan, J E

    1993-01-01

    Acetyl coenzyme A (CoA) carboxylase catalyzes the synthesis of malonyl-CoA, the first intermediate of fatty acid synthesis. The Escherichia coli enzyme is encoded by four subunits located at three different positions on the E. coli chromosome. The accBC genes lie in a small operon at min 72, whereas accA and accD are located at min 4.3 and 50, respectively. We examined the expression of the genes that encode the E. coli acetyl-CoA carboxylase subunits (accA, accBC, and accD) under a variety of growth conditions by quantitative Northern (RNA) blot analysis. We found a direct correlation between the levels of transcription of the acc genes and the rate of cellular growth. Consistent results were also obtained upon nutritional upshift and downshift experiments and upon dilution of stationary-phase cultures into fresh media. We also determined the 5' end of the accA and accD mRNAs by primer extension and did transcriptional fusion analysis of the previously reported accBC promoter. Several interesting features were found in the promoter regions of these genes, including a bent DNA sequence and an open reading frame within the unusually long leader mRNA of the accBC operon, potential stem-loop structures in the accA and accD mRNA leader regions, and a stretch of GC-rich sequences followed by AT-rich sequences common to all three promoters. In addition, both accA and accD are located in complex gene clusters. For example, the accA promoter was localized within the upstream polC gene (which encodes the DNA polymerase III catalytic subunit), suggesting that additional regulatory mechanisms exist. Images PMID:7678242

  19. Novel Type of Fimbriae Encoded by the Large Plasmid of Sorbitol-Fermenting Enterohemorrhagic Escherichia coli O157:H−

    PubMed Central

    Brunder, Werner; Khan, A. Salam; Hacker, Jörg; Karch, Helge

    2001-01-01

    Sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H− have emerged as important causes of diarrheal diseases and the hemolytic-uremic syndrome in Germany. In this study, we characterized a 32-kb fragment of the plasmid of SF EHEC O157:H−, pSFO157, which differs markedly from plasmid pO157 of classical non-sorbitol-fermenting EHEC O157:H7. We found a cluster of six genes, termed sfpA, sfpH, sfpC, sfpD, sfpJ, and sfpG, which mediate mannose-resistant hemagglutination and the expression of fimbriae. sfp genes are similar to the pap genes, encoding P-fimbriae of uropathogenic E. coli, but the sfp cluster lacks homologues of genes encoding subunits of a tip fibrillum as well as regulatory genes. The major pilin, SfpA, despite its similarity to PapA, does not cluster together with known PapA alleles in a phylogenetic tree but is structurally related to the PmpA pilin of Proteus mirabilis. The putative adhesin gene sfpG, responsible for the hemagglutination phenotype, shows significant homology neither to papG nor to other known sequences. Sfp fimbriae are 3 to 5 nm in diameter, in contrast to P-fimbriae, which are 7 nm in diameter. PCR analyses showed that the sfp gene cluster is a characteristic of SF EHEC O157:H− strains and is not present in other EHEC isolates, diarrheagenic E. coli, or other Enterobacteriaceae. The sfp gene cluster is flanked by two blocks of insertion sequences and an origin of plasmid replication, indicating that horizontal gene transfer may have contributed to the presence of Sfp fimbriae in SF EHEC O157:H−. PMID:11401985

  20. Single molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae

    PubMed Central

    Conlan, Sean; Thomas, Pamela J.; Deming, Clayton; Park, Morgan; Lau, Anna F.; Dekker, John P.; Snitkin, Evan S.; Clark, Tyson A.; Luong, Khai; Song, Yi; Tsai, Yu-Chih; Boitano, Matthew; Gupta, Jyoti; Brooks, Shelise Y.; Schmidt, Brian; Young, Alice C.; Thomas, James W.; Bouffard, Gerard G.; Blakesley, Robert W.; Mullikin, James C.; Korlach, Jonas; Henderson, David K.; Frank, Karen M.; Palmore, Tara N.; Segre, Julia A.

    2014-01-01

    Public health officials have raised concerns that plasmid transfer between Enterobacteriaceae species may spread resistance to carbapenems, an antibiotic class of last resort, thereby rendering common healthcare-associated infections nearly impossible to treat. We performed comprehensive surveillance and genomic sequencing to identify carbapenem-resistant Enterobacteriaceae in the NIH Clinical Center patient population and hospital environment in order to to articulate the diversity of carbapenemase-encoding plasmids and survey the mobility of and assess the mobility of these plasmids between bacterial species. We isolated a repertoire of carbapenemase-encoding Enterobacteriaceae, including multiple strains of Klebsiella pneumoniae, Klebsiella oxytoca, Escherichia coli, Enterobacter cloacae, Citrobacter freundii, and Pantoea species. Long-read genome sequencing with full end-to-end assembly revealed that these organisms carry the carbapenem-resistance genes on a wide array of plasmids. Klebsiella pneumoniae and Enterobacter cloacae isolated simultaneously from a single patient harbored two different carbapenemase-encoding plasmids, overriding the epidemiological scenario of plasmid transfer between organisms within this patient. We did, however, find evidence supporting horizontal transfer of carbapenemase-encoding plasmids between Klebsiella pneumoniae, Enterobacter cloacae and Citrobacter freundii in the hospital environment. Our comprehensive sequence data, with full plasmid identification, challenges assumptions about horizontal gene transfer events within patients and identified wider possible connections between patients and the hospital environment. In addition, we identified a new carbapenemase-encoding plasmid of potentially high clinical impact carried by Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae and Pantoea species, from unrelated patients and the hospital environment. PMID:25232178

  1. Hygiene quality and presence of ESBL-producing Escherichia coli in raw food diets for dogs

    PubMed Central

    Nilsson, Oskar

    2015-01-01

    Background Raw food diets are popular among some dog owners, even though there are concerns regarding the infectious disease risk and public health implications. Hence, the two aims of this study were to investigate the hygiene quality of raw food diets for dogs in the Swedish market and if Escherichia coli with transferable resistance to extended spectrum cephalosporins (ESC) was present in such products. Methods Samples of raw food diets were suspended and further diluted in 0.9% saline. Appropriate dilutions were 1) cultured on Petrifilm™SEC to quantify the amount of E. coli in the samples and 2) mixed with cefotaxime to a final concentration of 1 mg/L and cultured on Petrifilm™SEC to quantify the amount of ESC-resistant E. coli in the samples. Furthermore, undiluted suspensions were mixed 1:1 with double strength MacConkey broth with cefotaxime, enriched overnight and finally cultured on MacConkey agar with cefotaxime (1 mg/L). Suspected ESC-resistant E. coli were screened by PCR for genes encoding extended spectrum beta lactamases and plasmid-mediated AmpC and their susceptibility to a panel of antimicrobials was performed by broth microdilution using VetMIC GN-mo. Results Escherichia coli was isolated from all samples (n=39) and ESC-resistant E. coli was isolated from nine samples (23%). All ESC-resistant E. coli were PCR-positive for the bla CMY-2 group and only one of them was also resistant to a non-beta-lactam antibiotic. Conclusion The results of this study indicate that raw food diets could be a source of ESC-resistant E. coli to dogs and highlight the need for maintaining good hygiene when handling these products to prevent infection. PMID:26490763

  2. The Probiotic Escherichia coli Strain Nissle 1917 Combats Lambdoid Bacteriophages stx and λ.

    PubMed

    Bury, Susanne; Soundararajan, Manonmani; Bharti, Richa; von Bünau, Rudolf; Förstner, Konrad U; Oelschlaeger, Tobias A

    2018-01-01

    Shiga toxin (Stx) producing E. coli (STEC) such as Enterohemorrhagic E. coli (EHEC) are the major cause of foodborne illness in humans. In vitro studies showed the probiotic Escherichia coli strain Nissle 1917 (EcN) to efficiently inhibit the production of Stx. Life threatening EHEC strains as for example the serotype O104:H4, responsible for the great outbreak in 2011 in Germany, evolutionary developed from certain E. coli strains which got infected by stx2 -encoding lambdoid phages turning the E. coli into lysogenic and subsequently Stx producing strains. Since antibiotics induce stx genes and Stx production, EHEC infected persons are not recommended to be treated with antibiotics. Therefore, EcN might be an alternative medication. However, because even commensal E. coli strains might be converted into Stx-producers after becoming host to a stx encoding prophage, we tested EcN for stx -phage genome integration. Our experiments revealed the resistance of EcN toward not only stx -phages but also against lambda-phages. This resistance was not based on the lack of or by mutated phage receptors. Rather it involved the expression of a phage repressor ( pr ) gene of a defective prophage in EcN which was able to partially protect E. coli K-12 strain MG1655 against stx and lambda phage infection. Furthermore, we observed EcN to inactivate phages and thereby to protect E. coli K-12 strains against infection by stx - as well as lambda-phages. Inactivation of lambda-phages was due to binding of lambda-phages to LamB of EcN whereas inactivation of stx -phages was caused by a thermostable protein of EcN. These properties together with its ability to inhibit Stx production make EcN a good candidate for the prevention of illness caused by EHEC and probably for the treatment of already infected people.

  3. Multiple regulatory elements for the glpA operon encoding anaerobic glycerol-3-phosphate dehydrogenase and the glpD operon encoding aerobic glycerol-3-phosphate dehydrogenase in Escherichia coli: further characterization of respiratory control.

    PubMed

    Iuchi, S; Cole, S T; Lin, E C

    1990-01-01

    In Escherichia coli, sn-glycerol-3-phosphate can be oxidized by two different flavo-dehydrogenases, an anaerobic enzyme encoded by the glpACB operon and an aerobic enzyme encoded by the glpD operon. These two operons belong to the glp regulon specifying the utilization of glycerol, sn-glycerol-3-phosphate, and glycerophosphodiesters. In glpR mutant cells grown under conditions of low catabolite repression, the glpA operon is best expressed anaerobically with fumarate as the exogenous electron acceptor, whereas the glpD operon is best expressed aerobically. Increased anaerobic expression of glpA is dependent on the fnr product, a pleiotropic activator of genes involved in anaerobic respiration. In this study we found that the expression of a glpA1(Oxr) (oxygen-resistant) mutant operon, selected for increased aerobic expression, became less dependent on the FNR protein but more dependent on the cyclic AMP-catabolite gene activator protein complex mediating catabolite repression. Despite the increased aerobic expression of glpA1(Oxr), a twofold aerobic repressibility persisted. Moreover, anaerobic repression by nitrate respiration remained normal. Thus, there seems to exist a redox control apart from the FNR-mediated one. We also showed that the anaerobic repression of the glpD operon was fully relieved by mutations in either arcA (encoding a presumptive DNA recognition protein) or arcB (encoding a presumptive redox sensor protein). The arc system is known to mediate pleiotropic control of genes of aerobic function.

  4. DNA sequence analysis of the composite plasmid pTC conferring virulence and antimicrobial resistance for porcine enterotoxigenic Escherichia coli.

    PubMed

    Fekete, Péter Z; Brzuszkiewicz, Elzbieta; Blum-Oehler, Gabriele; Olasz, Ferenc; Szabó, Mónika; Gottschalk, Gerhard; Hacker, Jörg; Nagy, Béla

    2012-01-01

    In this study the plasmid pTC, a 90 kb self-conjugative virulence plasmid of the porcine enterotoxigenic Escherichia coli (ETEC) strain EC2173 encoding the STa and STb heat-stable enterotoxins and tetracycline resistance, has been sequenced in two steps. As a result we identified five main distinct regions of pTC: (i) the maintenance region responsible for the extreme stability of the plasmid, (ii) the TSL (toxin-specific locus comprising the estA and estB genes) which is unique and characteristic for pTC, (iii) a Tn10 transposon, encoding tetracycline resistance, (iv) the tra (plasmid transfer) region, and (v) the colE1-like origin of replication. It is concluded that pTC is a self-transmissible composite plasmid harbouring antibiotic resistance and virulence genes. pTC belongs to a group of large conjugative E. coli plasmids represented by NR1 with a widespread tra backbone which might have evolved from a common ancestor. This is the first report of a completely sequenced animal ETEC virulence plasmid containing an antimicrobial resistance locus, thereby representing a selection advantage for spread of pathogenicity in the presence of antimicrobials leading to increased disease potential. Copyright © 2011. Published by Elsevier GmbH.

  5. Host Defense Peptide Resistance Contributes to Colonization and Maximal Intestinal Pathology by Crohn's Disease-Associated Adherent-Invasive Escherichia coli

    PubMed Central

    McPhee, Joseph B.; Small, Cherrie L.; Reid-Yu, Sarah A.; Brannon, John R.; Le Moual, Hervé

    2014-01-01

    Host defense peptides secreted by colonocytes and Paneth cells play a key role in innate host defenses in the gut. In Crohn's disease, the burden of tissue-associated Escherichia coli commonly increases at epithelial surfaces where host defense peptides concentrate, suggesting that this bacterial population might actively resist this mechanism of bacterial killing. Adherent-invasive E. coli (AIEC) is associated with Crohn's disease; however, the colonization determinants of AIEC in the inflamed gut are undefined. Here, we establish that host defense peptide resistance contributes to host colonization by Crohn's-associated AIEC. We identified a plasmid-encoded genomic island (called PI-6) in AIEC strain NRG857c that confers high-level resistance to α-helical cationic peptides and α- and β-defensins. Deletion of PI-6 sensitized strain NRG857c to these host defense molecules, reduced its competitive fitness in a mouse model of infection, and attenuated its ability to induce cecal pathology. This phenotype is due to two genes in PI-6, arlA, which encodes a Mig-14 family protein implicated in defensin resistance, and arlC, an OmpT family outer membrane protease. Implicit in these findings are new bacterial targets whose inhibition might limit AIEC burden and disease in the gut. PMID:24866805

  6. Requirement for two or more Erwinia carotovora subsp. carotovora pectolytic gene products for maceration of potato tuber tissue by Escherichia coli.

    PubMed

    Roberts, D P; Berman, P M; Allen, C; Stromberg, V K; Lacy, G H; Mount, M S

    1986-07-01

    Several genes encoding enzymes capable of degrading plant cell wall components have been cloned from Erwinia carotovora subsp. carotovora EC14. Plasmids containing cloned EC14 DNA mediate the production of endo-pectate lyases, exo-pectate lyase, endo-polygalacturonase, and cellulase(s). Escherichia coli strains containing one of these plasmids or combinations of two plasmids were tested for their ability to macerate potato tuber slices. Only one E. coli strain, containing two plasmids that encode endo-pectate lyases, exo-pectate lyase, and endo-polygalacturonase, caused limited maceration. The pectolytic proteins associated with one of these plasmids, pDR1, have been described previously (D. P. Roberts, P. M. Berman, C. Allen, V. K. Stromberg, G. H. Lacy, and M. S. Mount, Can. J. Plant Pathol. 8:17-27, 1986) and include two secreted endo-pectate lyases. The second plasmid, pDR30, contains a 2.1-kilobase EC14 DNA insert that mediates the production of an exo-pectate lyase and an endo-polygalacturonase. These enzymes are similar in physicochemical properties to those produced by EC14. Our results suggest that the concerted activities of endo-pectate lyases with endo-polygalacturonase or exo-pectate lyase or both cause maceration.

  7. Requirement for two or more Erwinia carotovora subsp. carotovora pectolytic gene products for maceration of potato tuber tissue by Escherichia coli.

    PubMed Central

    Roberts, D P; Berman, P M; Allen, C; Stromberg, V K; Lacy, G H; Mount, M S

    1986-01-01

    Several genes encoding enzymes capable of degrading plant cell wall components have been cloned from Erwinia carotovora subsp. carotovora EC14. Plasmids containing cloned EC14 DNA mediate the production of endo-pectate lyases, exo-pectate lyase, endo-polygalacturonase, and cellulase(s). Escherichia coli strains containing one of these plasmids or combinations of two plasmids were tested for their ability to macerate potato tuber slices. Only one E. coli strain, containing two plasmids that encode endo-pectate lyases, exo-pectate lyase, and endo-polygalacturonase, caused limited maceration. The pectolytic proteins associated with one of these plasmids, pDR1, have been described previously (D. P. Roberts, P. M. Berman, C. Allen, V. K. Stromberg, G. H. Lacy, and M. S. Mount, Can. J. Plant Pathol. 8:17-27, 1986) and include two secreted endo-pectate lyases. The second plasmid, pDR30, contains a 2.1-kilobase EC14 DNA insert that mediates the production of an exo-pectate lyase and an endo-polygalacturonase. These enzymes are similar in physicochemical properties to those produced by EC14. Our results suggest that the concerted activities of endo-pectate lyases with endo-polygalacturonase or exo-pectate lyase or both cause maceration. Images PMID:3013836

  8. A murC gene from coryneform bacteria.

    PubMed

    Wachi, M; Wijayarathna, C D; Teraoka, H; Nagai, K

    1999-02-01

    The upstream flanking region of the ftsQ and ftsZ genes of Brevibacterium flavum MJ233, which belongs to the coryneform bacteria, was amplified by the inverse polymerase chain reaction method and cloned in Escherichia coli. Complementation analysis of E. coli mutant with a defective cell-wall synthesis mechanism with the cloned fragment and its DNA sequencing indicated the presence of the murC gene, encoding UDP-N-acetylmuramate:L-alanine ligase involved in peptidoglycan synthesis, just upstream from the ftsQ gene. The B. flavum murC gene could encode a protein of 486 amino acid residues with a calculated molecular mass of 51 198 Da. A 50-kDa protein was synthesized by the B. flavum murC gene in an in vitro transcription/translation system using E. coli S30 lysate. These results indicate that the genes responsible for cell-wall synthesis and cell division are located as a cluster in B. flavum similar to the E. coli mra region.

  9. Controlling Citrate Synthase Expression by CRISPR/Cas9 Genome Editing for n-Butanol Production in Escherichia coli.

    PubMed

    Heo, Min-Ji; Jung, Hwi-Min; Um, Jaeyong; Lee, Sang-Woo; Oh, Min-Kyu

    2017-02-17

    Genome editing using CRISPR/Cas9 was successfully demonstrated in Esherichia coli to effectively produce n-butanol in a defined medium under microaerobic condition. The butanol synthetic pathway genes including those encoding oxygen-tolerant alcohol dehydrogenase were overexpressed in metabolically engineered E. coli, resulting in 0.82 g/L butanol production. To increase butanol production, carbon flux from acetyl-CoA to citric acid cycle should be redirected to acetoacetyl-CoA. For this purpose, the 5'-untranslated region sequence of gltA encoding citrate synthase was designed using an expression prediction program, UTR designer, and modified using the CRISPR/Cas9 genome editing method to reduce its expression level. E. coli strains with decreased citrate synthase expression produced more butanol and the citrate synthase activity was correlated with butanol production. These results demonstrate that redistributing carbon flux using genome editing is an efficient engineering tool for metabolite overproduction.

  10. Molecular Analysis of Asymptomatic Bacteriuria Escherichia coli Strain VR50 Reveals Adaptation to the Urinary Tract by Gene Acquisition

    DOE PAGES

    Beatson, Scott A.; Ben Zakour, Nouri L.; Totsika, Makrina; ...

    2015-05-01

    Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. Here, to understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50- pheV has a mosaic structure and contains genes encoding a numbermore » of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50- pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50 afa and VR50 afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50 afa and VR50 afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50- pheV mutant. In conlusion, our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder.« less

  11. Molecular Analysis of Asymptomatic Bacteriuria Escherichia coli Strain VR50 Reveals Adaptation to the Urinary Tract by Gene Acquisition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beatson, Scott A.; Ben Zakour, Nouri L.; Totsika, Makrina

    Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. Here, to understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50- pheV has a mosaic structure and contains genes encoding a numbermore » of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50- pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50 afa and VR50 afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50 afa and VR50 afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50- pheV mutant. In conlusion, our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder.« less

  12. OI-57, a Genomic Island of Escherichia coli O157, Is Present in Other Seropathotypes of Shiga Toxin-Producing E. coli Associated with Severe Human Disease▿

    PubMed Central

    Imamovic, Lejla; Tozzoli, Rosangela; Michelacci, Valeria; Minelli, Fabio; Marziano, Maria Luisa; Caprioli, Alfredo; Morabito, Stefano

    2010-01-01

    Strains of Shiga toxin-producing Escherichia coli (STEC) are a heterogeneous E. coli group that may cause severe disease in humans. STEC have been categorized into seropathotypes (SPTs) based on their phenotypic and molecular characteristics and the clinical features of the associated diseases. SPTs range from A to E, according to a decreasing rank of pathogenicity. To define the virulence gene asset (“virulome”) characterizing the highly pathogenic SPTs, we used microarray hybridization to compare the whole genomes of STEC belonging to SPTs B, C, and D with that of STEC O157 (SPT A). The presence of the open reading frames (ORFs) associated with SPTs A and B was subsequently investigated by PCR in a larger panel of STEC and in other E. coli strains. A genomic island termed OI-57 was present in SPTs A and B but not in the other SPTs. OI-57 harbors the putative virulence gene adfO, encoding a factor enhancing the adhesivity of STEC O157, and ckf, encoding a putative killing factor for the bacterial cell. PCR analyses showed that OI-57 was present in its entirety in the majority of the STEC genomes examined, indicating that it represents a stable acquisition of the positive clonal lineages. OI-57 was also present in a high proportion of the human enteropathogenic E. coli genomes assayed, suggesting that it could be involved in the attaching-and-effacing colonization of the intestinal mucosa. In conclusion, OI-57 appears to be part of the virulome of pathogenic STEC and further studies are needed to elucidate its role in the pathogenesis of STEC infections. PMID:20823207

  13. Molecular analysis of asymptomatic bacteriuria Escherichia coli strain VR50 reveals adaptation to the urinary tract by gene acquisition.

    PubMed

    Beatson, Scott A; Ben Zakour, Nouri L; Totsika, Makrina; Forde, Brian M; Watts, Rebecca E; Mabbett, Amanda N; Szubert, Jan M; Sarkar, Sohinee; Phan, Minh-Duy; Peters, Kate M; Petty, Nicola K; Alikhan, Nabil-Fareed; Sullivan, Mitchell J; Gawthorne, Jayde A; Stanton-Cook, Mitchell; Nhu, Nguyen Thi Khanh; Chong, Teik Min; Yin, Wai-Fong; Chan, Kok-Gan; Hancock, Viktoria; Ussery, David W; Ulett, Glen C; Schembri, Mark A

    2015-05-01

    Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. High prevalence of diarrheagenic Escherichia coli carrying toxin-encoding genes isolated from children and adults in southeastern Brazil.

    PubMed

    Spano, Liliana Cruz; da Cunha, Keyla Fonseca; Monfardini, Mariane Vedovatti; de Cássia Bergamaschi Fonseca, Rita; Scaletsky, Isabel Christina Affonso

    2017-12-18

    Diarrheagenic Escherichia coli (DEC) are important bacterial causes of childhood diarrhea in Brazil, but its impact in adults is unknown. This study aimed at investigating DEC among children and adults living in endemic areas. A total of 327 stools specimens were collected from children (n = 141) and adults (n = 186) with diarrhea attending health centers. Diarrheagenic E. coli (DEC) were identified by their virulence genes (multiplex polymerase chain reaction) and HEp-2 cell adherence patterns. DEC were detected in 56 (40%) children and 74 (39%) adults; enteroaggregative E. coli (EAEC) (23%) was the most prevalent pathotype, followed by diffusely adherent E. coli (DAEC) (13%), and occurred at similar frequencies in both diarrheal groups. Atypical enteropathogenic E. coli (aEPEC) strains were recovered more frequently from children (6%) than from adults (1%). Twenty-six percent of the EAEC were classified as typical EAEC possessing aggR gene, and carried the aap gene. EAEC strains carrying aggR-aap-aatA genes were significantly more frequent among children than adults (p < 0.05). DAEC strains possessing Afa/Dr. genes were detected from children (10%) and adults (6%). EAEC and DAEC strains harboring genes for the EAST1 (astA), Pet, Pic, and Sat toxins were common in both diarrheal groups. The astA and the porcine AE/associated adhesin (paa) genes were found in most of aEPEC strains. High levels of resistance to antimicrobial drugs were found among DAEC and aEPEC isolates. The results show a high proportion of EAEC and DAEC carrying toxin-encoding genes among adults with diarrhea.

  15. Escherichia coli W as a new platform strain for the enhanced production of L-valine by systems metabolic engineering.

    PubMed

    Park, Jin Hwan; Jang, Yu-Sin; Lee, Jeong Wook; Lee, Sang Yup

    2011-05-01

    A less frequently employed Escherichia coli strain W, yet possessing useful metabolic characteristics such as less acetic acid production and high L-valine tolerance, was metabolically engineered for the production of L-valine. The ilvA gene was deleted to make more pyruvate, a key precursor for L-valine, available for enhanced L-valine biosynthesis. The lacI gene was deleted to allow constitutive expression of genes under the tac or trc promoter. The ilvBN(mut) genes encoding feedback-resistant acetohydroxy acid synthase (AHAS) I and the L-valine biosynthetic ilvCED genes encoding acetohydroxy acid isomeroreductase, dihydroxy acid dehydratase, and branched chain amino acid aminotransferase, respectively, were amplified by plasmid-based overexpression. The global regulator Lrp and L-valine exporter YgaZH were also amplified by plasmid-based overexpression. The engineered E. coli W (ΔlacI ΔilvA) strain overexpressing the ilvBN(mut) , ilvCED, ygaZH, and lrp genes was able to produce an impressively high concentration of 60.7 g/L L-valine by fed-batch culture in 29.5 h, resulting in a high volumetric productivity of 2.06 g/L/h. The most notable finding is that there was no other byproduct produced during L-valine production. The results obtained in this study suggest that E. coli W can be a good alternative to Corynebacterium glutamicum and E. coli K-12, which have so far been the most efficient L-valine producer. Furthermore, it is expected that various bioproducts including other amino acids might be more efficiently produced by this revisited platform strain of E. coli. Copyright © 2010 Wiley Periodicals, Inc.

  16. Molecular Analysis of Asymptomatic Bacteriuria Escherichia coli Strain VR50 Reveals Adaptation to the Urinary Tract by Gene Acquisition

    PubMed Central

    Ben Zakour, Nouri L.; Totsika, Makrina; Forde, Brian M.; Watts, Rebecca E.; Mabbett, Amanda N.; Szubert, Jan M.; Sarkar, Sohinee; Phan, Minh-Duy; Peters, Kate M.; Petty, Nicola K.; Alikhan, Nabil-Fareed; Sullivan, Mitchell J.; Gawthorne, Jayde A.; Stanton-Cook, Mitchell; Nhu, Nguyen Thi Khanh; Chong, Teik Min; Yin, Wai-Fong; Chan, Kok-Gan; Hancock, Viktoria; Ussery, David W.; Ulett, Glen C.

    2015-01-01

    Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder. PMID:25667270

  17. Genome-Based Comparison of Cyclic Di-GMP Signaling in Pathogenic and Commensal Escherichia coli Strains

    PubMed Central

    Povolotsky, Tatyana L.

    2015-01-01

    ABSTRACT The ubiquitous bacterial second messenger cyclic di-GMP (c-di-GMP) has recently become prominent as a trigger for biofilm formation in many bacteria. It is generated by diguanylate cyclases (DGCs; with GGDEF domains) and degraded by specific phosphodiesterases (PDEs; containing either EAL or HD-GYP domains). Most bacterial species contain multiples of these proteins with some having specific functions that are based on direct molecular interactions in addition to their enzymatic activities. Escherichia coli K-12 laboratory strains feature 29 genes encoding GGDEF and/or EAL domains, resulting in a set of 12 DGCs, 13 PDEs, and four enzymatically inactive “degenerate” proteins that act by direct macromolecular interactions. We present here a comparative analysis of GGDEF/EAL domain-encoding genes in 61 genomes of pathogenic, commensal, and probiotic E. coli strains (including enteric pathogens such as enteroaggregative, enterohemorrhagic, enteropathogenic, enterotoxigenic, and adherent and invasive Escherichia coli and the 2011 German outbreak O104:H4 strain, as well as extraintestinal pathogenic E. coli, such as uropathogenic and meningitis-associated E. coli). We describe additional genes for two membrane-associated DGCs (DgcX and DgcY) and four PDEs (the membrane-associated PdeT, as well as the EAL domain-only proteins PdeW, PdeX, and PdeY), thus showing the pangenome of E. coli to contain at least 35 GGDEF/EAL domain proteins. A core set of only eight proteins is absolutely conserved in all 61 strains: DgcC (YaiC), DgcI (YliF), PdeB (YlaB), PdeH (YhjH), PdeK (YhjK), PdeN (Rtn), and the degenerate proteins CsrD and CdgI (YeaI). In all other GGDEF/EAL domain genes, diverse point and frameshift mutations, as well as small or large deletions, were discovered in various strains. IMPORTANCE Our analysis reveals interesting trends in pathogenic Escherichia coli that could reflect different host cell adherence mechanisms. These may either benefit from or be counteracted by the c-di-GMP-stimulated production of amyloid curli fibers and cellulose. Thus, EAEC, which adhere in a “stacked brick” biofilm mode, have a potential for high c-di-GMP accumulation due to DgcX, a strongly expressed additional DGC. In contrast, EHEC and UPEC, which use alternative adherence mechanisms, tend to have extra PDEs, suggesting that low cellular c-di-GMP levels are crucial for these strains under specific conditions. Overall, our study also indicates that GGDEF/EAL domain proteins evolve rapidly and thereby contribute to adaptation to host-specific and environmental niches of various types of E. coli. PMID:26303830

  18. Genome-Based Comparison of Cyclic Di-GMP Signaling in Pathogenic and Commensal Escherichia coli Strains.

    PubMed

    Povolotsky, Tatyana L; Hengge, Regine

    2016-01-01

    The ubiquitous bacterial second messenger cyclic di-GMP (c-di-GMP) has recently become prominent as a trigger for biofilm formation in many bacteria. It is generated by diguanylate cyclases (DGCs; with GGDEF domains) and degraded by specific phosphodiesterases (PDEs; containing either EAL or HD-GYP domains). Most bacterial species contain multiples of these proteins with some having specific functions that are based on direct molecular interactions in addition to their enzymatic activities. Escherichia coli K-12 laboratory strains feature 29 genes encoding GGDEF and/or EAL domains, resulting in a set of 12 DGCs, 13 PDEs, and four enzymatically inactive "degenerate" proteins that act by direct macromolecular interactions. We present here a comparative analysis of GGDEF/EAL domain-encoding genes in 61 genomes of pathogenic, commensal, and probiotic E. coli strains (including enteric pathogens such as enteroaggregative, enterohemorrhagic, enteropathogenic, enterotoxigenic, and adherent and invasive Escherichia coli and the 2011 German outbreak O104:H4 strain, as well as extraintestinal pathogenic E. coli, such as uropathogenic and meningitis-associated E. coli). We describe additional genes for two membrane-associated DGCs (DgcX and DgcY) and four PDEs (the membrane-associated PdeT, as well as the EAL domain-only proteins PdeW, PdeX, and PdeY), thus showing the pangenome of E. coli to contain at least 35 GGDEF/EAL domain proteins. A core set of only eight proteins is absolutely conserved in all 61 strains: DgcC (YaiC), DgcI (YliF), PdeB (YlaB), PdeH (YhjH), PdeK (YhjK), PdeN (Rtn), and the degenerate proteins CsrD and CdgI (YeaI). In all other GGDEF/EAL domain genes, diverse point and frameshift mutations, as well as small or large deletions, were discovered in various strains. Our analysis reveals interesting trends in pathogenic Escherichia coli that could reflect different host cell adherence mechanisms. These may either benefit from or be counteracted by the c-di-GMP-stimulated production of amyloid curli fibers and cellulose. Thus, EAEC, which adhere in a "stacked brick" biofilm mode, have a potential for high c-di-GMP accumulation due to DgcX, a strongly expressed additional DGC. In contrast, EHEC and UPEC, which use alternative adherence mechanisms, tend to have extra PDEs, suggesting that low cellular c-di-GMP levels are crucial for these strains under specific conditions. Overall, our study also indicates that GGDEF/EAL domain proteins evolve rapidly and thereby contribute to adaptation to host-specific and environmental niches of various types of E. coli. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Complete genome sequence of the thermotolerant foodborne pathogen Salmonella enterica serovar Senftenberg ATCC 43845 and phylogenetic analysis of loci encoding thermotolerance

    USDA-ARS?s Scientific Manuscript database

    Introduction: Previous studies in Cronobacter sakazakii, Klebsiella spp., and Escherichia coli have identified a genomic island that confers thermotolerance to its hosts. This island has recently been identified in Salmonella enterica serovar Senfentenberg ATCC 43845, a historically important, heat ...

  20. Shiga toxins, and the genes encoding them, in fecal samples from native Idaho ungulates.

    PubMed

    Gilbreath, Jeremy J; Shields, Malcolm S; Smith, Rebekah L; Farrell, Larry D; Sheridan, Peter P; Spiegel, Kathleen M

    2009-02-01

    Cattle are a known reservoir of Shiga toxin-producing Escherichia coli. The prevalence and stability of Shiga toxin and/or Shiga toxin genes among native wild ungulates in Idaho were investigated. The frequency of both Shiga genes and toxin was similar to that reported for Idaho cattle ( approximately 19%).

  1. Lambda Red recombinase-mediated integration of the high molecular weight DNA into the Escherichia coli chromosome.

    PubMed

    Juhas, Mario; Ajioka, James W

    2016-10-05

    Escherichia coli K-12 is a frequently used host for a number of synthetic biology and biotechnology applications and chassis for the development of the minimal cell factories. Novel approaches for integrating high molecular weight DNA into the E. coli chromosome would therefore greatly facilitate engineering efforts in this bacterium. We developed a reliable and flexible lambda Red recombinase-based system, which utilizes overlapping DNA fragments for integration of the high molecular weight DNA into the E. coli chromosome. Our chromosomal integration strategy can be used to integrate high molecular weight DNA of variable length into any non-essential locus in the E. coli chromosome. Using this approach we integrated 15 kb DNA encoding sucrose catabolism and lactose metabolism and transport operons into the fliK locus of the flagellar region 3b in the E. coli K12 MG1655 chromosome. Furthermore, with this system we integrated 50 kb of Bacillus subtilis 168 DNA into two target sites in the E. coli K12 MG1655 chromosome. The chromosomal integrations into the fliK locus occurred with high efficiency, inhibited motility, and did not have a negative effect on the growth of E. coli. In addition to the rational design of synthetic biology devices, our high molecular weight DNA chromosomal integration system will facilitate metabolic and genome-scale engineering of E. coli.

  2. Immunogenicity of nuclear-encoded LTB:ST fusion protein from Escherichia coli expressed in tobacco plants.

    PubMed

    Rosales-Mendoza, Sergio; Soria-Guerra, Ruth E; Moreno-Fierros, Leticia; Govea-Alonso, Dania O; Herrera-Díaz, Areli; Korban, Schuyler S; Alpuche-Solís, Ángel G

    2011-06-01

    Enterotoxigenic Escherichia coli (ETEC) is one of the main causative agents of diarrhea in infants and for travelers. Inclusion of a heat-stable (ST) toxin into vaccine formulations is mandatory as most ETEC strains can produce both heat-labile (LT) and ST enterotoxins. In this study, a genetic fusion gene encoding for an LTB:ST protein has been constructed and transferred into tobacco via Agrobacterium tumefaciens-mediated transformation. Transgenic tobacco plants carrying the LTB:ST gene are then subjected to GM1-ELISA revealing that the LTB:ST has assembled into pentamers and displays antigenic determinants from both LTB and ST. Protein accumulation of up to 0.05% total soluble protein is detected. Subsequently, mucosal and systemic humoral responses are elicited in mice orally dosed with transgenic tobacco leaves. This has suggested that the plant-derived LTB:ST is immunogenic via the oral route. These findings are critical for the development of a plant-based vaccine capable of eliciting broader protection against ETEC and targeting both LTB and ST. Features of this platform in comparison to transplastomic approaches are discussed.

  3. Protein Chaperones Q8ZP25_SALTY from Salmonella Typhimurium and HYAE_ECOLI from Escherichia coli Exhibit Thioredoxin-like Structures Despite Lack of Canonical Thioredoxin Active Site Sequence Motif

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parish, D.; Benach, J; Liu, G

    2008-01-01

    The structure of the 142-residue protein Q8ZP25 SALTY encoded in the genome of Salmonella typhimurium LT2 was determined independently by NMR and X-ray crystallography, and the structure of the 140-residue protein HYAE ECOLI encoded in the genome of Escherichia coli was determined by NMR. The two proteins belong to Pfam (Finn et al. 34:D247-D251, 2006) PF07449, which currently comprises 50 members, and belongs itself to the 'thioredoxin-like clan'. However, protein HYAE ECOLI and the other proteins of Pfam PF07449 do not contain the canonical Cys-X-X-Cys active site sequence motif of thioredoxin. Protein HYAE ECOLI was previously classified as a (NiFe)more » hydrogenase-1 specific chaperone interacting with the twin-arginine translocation (Tat) signal peptide. The structures presented here exhibit the expected thioredoxin-like fold and support the view that members of Pfam family PF07449 specifically interact with Tat signal peptides.« less

  4. A mutant crp allele that differentially activates the operons of the fuc regulon in Escherichia coli.

    PubMed

    Zhu, Y; Lin, E C

    1988-05-01

    L-Fucose is used by Escherichia coli through an inducible pathway mediated by a fucP-encoded permease, a fucI-encoded isomerase, a fucK-encoded kinase, and a fucA-encoded aldolase. The adolase catalyzes the formation of dihydroxyacetone phosphate and L-lactaldehyde. Anaerobically, lactaldehyde is converted by a fucO-encoded oxidoreductase to L-1,2-propanediol, which is excreted. The fuc genes belong to a regulon comprising four linked operons: fucO, fucA, fucPIK, and fucR. The positive regulator encoded by fucR responds to fuculose 1-phosphate as the effector. Mutants serially selected for aerobic growth on propanediol became constitutive in fucO and fucA [fucO(Con) fucA(Con)], but noninducible in fucPIK [fucPIK(Non)]. An external suppressor mutation that restored growth on fucose caused constitutive expression of fucPIK. Results from this study indicate that this suppressor mutation occurred in crp, which encodes the cyclic AMP-binding (or receptor) protein. When the suppressor allele (crp-201) was transduced into wild-type strains, the recipient became fucose negative and fucose sensitive (with glycerol as the carbon and energy source) because of impaired expression of fucA. The fucPIK operon became hyperinducible. The growth rate on maltose was significantly reduced, but growth on L-rhamnose, D-galactose, L-arabinose, glycerol, or glycerol 3-phosphate was close to normal. Lysogenization of fuc+ crp-201 cells by a lambda bacteriophage bearing crp+ restored normal growth ability on fucose. In contrast, lysogenization of [fucO(Con)fucA(Con)fucPIK(Non)crp-201] cells by the same phage retarded their growth on fucose.

  5. A mutant crp allele that differentially activates the operons of the fuc regulon in Escherichia coli.

    PubMed Central

    Zhu, Y; Lin, E C

    1988-01-01

    L-Fucose is used by Escherichia coli through an inducible pathway mediated by a fucP-encoded permease, a fucI-encoded isomerase, a fucK-encoded kinase, and a fucA-encoded aldolase. The adolase catalyzes the formation of dihydroxyacetone phosphate and L-lactaldehyde. Anaerobically, lactaldehyde is converted by a fucO-encoded oxidoreductase to L-1,2-propanediol, which is excreted. The fuc genes belong to a regulon comprising four linked operons: fucO, fucA, fucPIK, and fucR. The positive regulator encoded by fucR responds to fuculose 1-phosphate as the effector. Mutants serially selected for aerobic growth on propanediol became constitutive in fucO and fucA [fucO(Con) fucA(Con)], but noninducible in fucPIK [fucPIK(Non)]. An external suppressor mutation that restored growth on fucose caused constitutive expression of fucPIK. Results from this study indicate that this suppressor mutation occurred in crp, which encodes the cyclic AMP-binding (or receptor) protein. When the suppressor allele (crp-201) was transduced into wild-type strains, the recipient became fucose negative and fucose sensitive (with glycerol as the carbon and energy source) because of impaired expression of fucA. The fucPIK operon became hyperinducible. The growth rate on maltose was significantly reduced, but growth on L-rhamnose, D-galactose, L-arabinose, glycerol, or glycerol 3-phosphate was close to normal. Lysogenization of fuc+ crp-201 cells by a lambda bacteriophage bearing crp+ restored normal growth ability on fucose. In contrast, lysogenization of [fucO(Con)fucA(Con)fucPIK(Non)crp-201] cells by the same phage retarded their growth on fucose. PMID:2834341

  6. Improved synthesis of chiral alcohols with Escherichia coli cells co-expressing pyridine nucleotide transhydrogenase, NADP+-dependent alcohol dehydrogenase and NAD+-dependent formate dehydrogenase.

    PubMed

    Weckbecker, Andrea; Hummel, Werner

    2004-11-01

    Recombinant pyridine nucleotide transhydrogenase (PNT) from Escherichia coli has been used to regenerate NAD+ and NADPH. The pnta and pntb genes encoding for the alpha- and beta-subunits were cloned and co-expressed with NADP+-dependent alcohol dehydrogenase (ADH) from Lactobacillus kefir and NAD+-dependent formate dehydrogenase (FDH) from Candida boidinii. Using this whole-cell biocatalyst, efficient conversion of prochiral ketones to chiral alcohols was achieved: 66% acetophenone was reduced to (R)-phenylethanol over 12 h, whereas only 19% (R)-phenylethanol was formed under the same conditions with cells containing ADH and FDH genes but without PNT genes. Cells that were permeabilized with toluene showed ketone reduction only if both cofactors were present.

  7. Molecular cloning and characterization of Bacillus alvei thiol-dependent cytolytic toxin expressed in Escherichia coli.

    PubMed

    Geoffroy, C; Alouf, J E

    1988-07-01

    A chromosomal DNA fragment from Bacillus alvei, encoding a thiol-dependent haemolytic product known as alveolysin (Mr 60,000, pI 5.0) was cloned in Escherichia coli SK1592, using pBR322 as the vector plasmid. Only a single haemolysin-positive clone was identified, by testing for haemolysis on blood agar plates. The haemolytic material was associated with the host bacterial cell. It was released by ultrasonic disruption and purified 267-fold. A 64 kDa polypeptide of pI 8.2 cofractionated with haemolytic activity during gel filtration chromatography and isoelectric focusing. It behaved identically to alveolysin in its activation by thiols, inactivation by thiol group reagents, inhibition by cholesterol, and neutralization, immunoprecipitation and immunoblotting by immune sera raised against alveolysin and streptolysin O.

  8. Production of immunologically active surface antigens of hepatitis B virus by Escherichia coli.

    PubMed Central

    MacKay, P; Pasek, M; Magazin, M; Kovacic, R T; Allet, B; Stahl, S; Gilbert, W; Schaller, H; Bruce, S A; Murray, K

    1981-01-01

    Several plasmids have been constructed which direct the synthesis of hepatitis B virus surface antigens in Escherichia coli either as the native polypeptide or fused to other plasmid encoded polypeptides. When injected into rabbits, extracts from bacteria carrying some of these plasmids induced the synthesis of antibodies to the antigens even though the extracts did not give satisfactory positive results in radioimmunoassay for them. Either the NH2-terminal segment or the COOH-terminal segment of the surface antigens alone was sufficient to elicit the immune response, but antibodies against the two segments showed different specificities. The results emphasize the value of an in vivo assay for the presence of antigens in crude cell extracts and illustrate the feasibility of this type of screening with laboratory animals. PMID:6170067

  9. Expression, Identification and Purification of Dictyostelium Acetoacetyl-CoA Thiolase Expressed in Escherichia coli

    PubMed Central

    Tanaka, Takeshi; Shima, Yasuyuki; Ogawa, Naoki; Nagayama, Koki; Yoshida, Takashi; Ohmachi, Tetsuo

    2011-01-01

    Acetoacetyl-CoA thiolase (AT) is an enzyme that catalyses the CoA-dependent thiolytic cleavage of acetoacetyl-CoA to yield 2 molecules of acetyl-CoA, or the reverse condensation reaction. A full-length cDNA clone pBSGT-3, which has homology to known thiolases, was isolated from Dictyostelium cDNA library. Expression of the protein encoded in pBSGT-3 in Escherichia coli, its thiolase enzyme activity, and the amino acid sequence homology search revealed that pBSGT-3 encodes an AT. The recombinant AT (r-thiolase) was expressed in an active form in an E. coli expression system, and purified to homogeneity by selective ammonium sulfate fractionation and two steps of column chromatography. The purified enzyme exhibited a specific activity of 4.70 mU/mg protein. Its N-terminal sequence was (NH2)-Arg-Met-Tyr-Thr-Thr-Ala-Lys-Asn-Leu-Glu-, which corresponds to the sequence from positions 15 to 24 of the amino acid sequence deduced from pBSGT-3 clone. The r-thiolase in the inclusion body expressed highly in E. coli was the precursor form, which is slightly larger than the purified r-thiolase. When incubated with the cell-free extract of Dictyostelium cells, the precursor was converted to the same size to the purified r-thiolase, suggesting that the presequence at the N-terminus is removed by a Dictyostelium processing peptidase. PMID:21209787

  10. mhpT encodes an active transporter involved in 3-(3-hydroxyphenyl)propionate catabolism by Escherichia coli K-12.

    PubMed

    Xu, Ying; Chen, Bing; Chao, Hongjun; Zhou, Ning-Yi

    2013-10-01

    Escherichia coli K-12 utilizes 3-(3-hydroxyphenyl)propionate (3HPP) as a sole carbon and energy source. Among the genes in its catabolic cluster in the genome, mhpT was proposed to encode a hypothetical transporter. Since no transporter for 3HPP uptake has been identified, we investigated whether MhpT is responsible for 3HPP uptake. MhpT fused with green fluorescent protein was found to be located at the periphery of cells by confocal microscopy, consistent with localization to the cytoplasmic membrane. Gene knockout and complementation studies clearly indicated that mhpT is essential for 3HPP catabolism in E. coli K-12 W3110 at pH 8.2. Uptake assays with (14)C-labeled substrates demonstrated that strain W3110 and strain W3110ΔmhpT containing recombinant MhpT specifically transported 3HPP but not benzoate, 3-hydroxybenzoate, or gentisate into cells. Energy dependence assays suggested that MhpT-mediated 3HPP transport was driven by the proton motive force. The change of Ala-272 of MhpT to a histidine, surprisingly, resulted in enhanced transport activity, and strain W3110ΔmhpT containing the MhpT A272H mutation had a slightly higher growth rate than the wild-type strain at pH 8.2. Hence, we demonstrated that MhpT is a specific 3HPP transporter and vital for E. coli K-12 W3110 growth on this substrate under basic conditions.

  11. Bipolar localization of the group II intron Ll.LtrB is maintained in Escherichia coli deficient in nucleoid condensation, chromosome partitioning and DNA replication.

    PubMed

    Beauregard, Arthur; Chalamcharla, Venkata R; Piazza, Carol Lyn; Belfort, Marlene; Coros, Colin J

    2006-11-01

    Group II introns are mobile genetic elements that invade their cognate intron-minus alleles via an RNA intermediate, in a process known as retrohoming. They can also retrotranspose to ectopic sites at low frequency. In Escherichia coli, retrotransposition of the lactococcal group II intron, Ll.LtrB, occurs preferentially within the Ori and Ter macrodomains of the E. coli chromosome. These macrodomains migrate towards the poles of the cell, where the intron-encoded protein, LtrA, localizes. Here we investigate whether alteration of nucleoid condensation, chromosome partitioning and replication affect retrotransposition frequencies, as well as bipolar localization of the Ll.LtrB intron integration and LtrA distribution in E. coli. We thus examined these properties in the absence of the nucleoid-associated proteins H-NS, StpA and MukB, in variants of partitioning functions including the centromere-like sequence migS and the actin homologue MreB, as well as in the replication mutants DeltaoriC, seqA, tus and topoIV (ts). Although there were some dramatic fluctuations in retrotransposition levels in these hosts, bipolar localization of integration events was maintained. LtrA was consistently found in nucleoid-free regions, with its localization to the cellular poles being largely preserved in these hosts. Together, these results suggest that bipolar localization of group II intron retrotransposition results from the residence of the intron-encoded protein at the poles of the cell.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stols, L.; Donnelly, M.I.; Kulkarni, G.

    The malic enzyme gene of Ascaris suum was cloned into the vector pTRC99a in two forms encoding alternative amino-termini. The resulting plasmids, pMEA1 and pMEA2, were introduced into Escherichia coli NZN111, a strain that is unable to grow fermentatively because of inactivation of the genes encoding pyruvate dissimilation. Induction of pMEA1, which encodes the native animoterminus, gave better overexpression of malic enzyme, approx 12-fold compared to uninduced cells. Under the appropriate culture conditions, expression of malic enzyme allowed the fermentative dissimilation of glucose by NZN111. The major fermentation product formed in induced cultures was succinic acid.

  13. Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during L-tryptophan production in Escherichia coli.

    PubMed

    Liu, Lina; Chen, Sheng; Wu, Jing

    2017-10-01

    Escherichia coli FB-04(pta1), a recombinant L-tryptophan production strain, was constructed in our laboratory. However, the conversion rate (L-tryptophan yield per glucose) of this strain is somewhat low. In this study, additional genes have been deleted in an effort to increase the conversion rate of E. coli FB-04(pta1). Initially, the pykF gene, which encodes pyruvate kinase I (PYKI), was inactivated to increase the accumulation of phosphoenolpyruvate, a key L-tryptophan precursor. The resulting strain, E. coli FB-04(pta1)ΔpykF, showed a slightly higher L-tryptophan yield and a higher conversion rate in fermentation processes. To further improve the conversion rate, the phosphoenolpyruvate:glucose phosphotransferase system (PTS) was disrupted by deleting the ptsH gene, which encodes the phosphocarrier protein (HPr). The levels of biomass, L-tryptophan yield, and conversion rate of this strain, E. coli FB-04(pta1)ΔpykF/ptsH, were especially low during fed-batch fermentation process, even though it achieved a significant increase in conversion rate during shake-flask fermentation. To resolve this issue, four HPr mutations (N12S, N12A, S46A, and S46N) were introduced into the genomic background of E. coli FB-04(pta1)ΔpykF/ptsH, respectively. Among them, the strain harboring the N12S mutation (E. coli FB-04(pta1)ΔpykF-ptsHN12S) showed a prominently increased conversion rate of 0.178 g g -1 during fed-batch fermentation; an increase of 38.0% compared with parent strain E. coli FB-04(pta1). Thus, mutation of the genomic of ptsH gene provided an alternative method to weaken the PTS and improve the efficiency of carbon source utilization.

  14. Metabolic engineering of Escherichia coli for the biosynthesis of 2-pyrrolidone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jingwei; Kao, Emily; Wang, George

    2-Pyrrolidone is a valuable bulk chemical with myriad applications as a solvent, polymer precursor and active pharmaceutical intermediate. A novel 2-pyrrolidone synthase, ORF27, from Streptomyces aizunensis was identified to catalyze the ring closing dehydration of γ-aminobutyrate. ORF27's tendency to aggregate was resolved by expression at low temperature and fusion to the maltose binding protein (MBP). Recombinant Escherichia coli was metabolically engineered for the production of 2-pyrrolidone from glutamate by expressing both the genes encoding GadB, a glutamate decarboxylase, and ORF27. Incorporation of a GadB mutant lacking H465 and T466, GadB_δHT, improved the efficiency of one-pot 2-pyrrolidone biosynthesis in vivo. Whenmore » the recombinant E. coli strain expressing the E. coli GadB_δHT mutant and the ORF27-MBP fusion was cultured in ZYM-5052 medium containing 9. g/L of l-glutamate, 7.7. g/L of l-glutamate was converted to 1.1. g/L of 2-pyrrolidone within 31. h, achieving 25% molar yield from the consumed substrate.« less

  15. Extracellular proteins of Vibrio cholerae: molecular cloning, nucleotide sequence and characterization of the deoxyribonuclease (DNase) together with its periplasmic localization in Escherichia coli K-12.

    PubMed

    Focareta, T; Manning, P A

    1987-01-01

    The gene encoding the extracellular DNase of Vibrio cholerae was cloned into Escherichia coli K-12. A maximal coding region of 1.2 kb and a minimal region of 0.6 kb were determined by transposon mutagenesis and deletion analysis. The nucleotide sequence of this region contained a single open reading frame of 690 bp corresponding to a protein of Mr 26,389 with a typical N-terminal signal sequence of 18 aa which, when removed, would give a mature protein of Mr 24,163. This is in good agreement with the size of 24 kDa, calculated directly by Coomassie blue staining following sodium dodecyl sulphate-polyacrylamide gel electrophoresis and indirectly via a DNA-hydrolysis assay. The protein is located in the periplasmic space of E. coli K-12 unlike in V. cholerae where it is excreted into the extracellular medium. The introduction of the DNase gene into a periplasmic (tolA) leaky mutant of E. coli K-12 facilitates the release of the protein, further confirming the periplasmic location.

  16. Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli

    PubMed Central

    Moreno-Bruna, Beatriz; Baroja-Fernández, Edurne; Muñoz, Francisco José; Bastarrica-Berasategui, Ainara; Zandueta-Criado, Aitor; Rodríguez-López, Milagros; Lasa, Iñigo; Akazawa, Takashi; Pozueta-Romero, Javier

    2001-01-01

    An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as “nudix” hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wild-type bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli. PMID:11416161

  17. Genetics of digalactoside-binding adhesin from a uropathogenic Escherichia coli strain.

    PubMed Central

    Normark, S; Lark, D; Hull, R; Norgren, M; Båga, M; O'Hanley, P; Schoolnik, G; Falkow, S

    1983-01-01

    The uropathogenic strain Escherichia coli J96 mediates mannose-resistant hemagglutination owing to production of a digalactoside-binding adhesin. A cosmid clone from this strain has been isolated that, when harbored in E. coli K-12, expressed Pap pili and this adhesin (R. Hull et al., Infect. Immun. 33:933-938, 1981). By transposon mutagenesis and by the construction of a number of hybrid plasmid derivatives, we have demonstrated that about 8.5 kilobases of DNA is required to generate a mannose-resistant hemagglutination-positive phenotype in E. coli K-12 strain P678-54. The structural gene for the Pap pili monomer, papA, has been identified and mapped close to the promotor-proximal end of the Pap operon. Although strain P678-54 that harbored a Tn5 insertion within papA showed a mannose-resistant hemagglutination-positive phenotype, it was negative in a competitive enzyme-linked immunosorbent assay with anti-Pap pilus serum. This could mean that a Pap adhesin is encoded by a region on the Pap operon that is distinct from papA. Images PMID:6136465

  18. Metabolic engineering of Escherichia coli for the biosynthesis of 2-pyrrolidone

    DOE PAGES

    Zhang, Jingwei; Kao, Emily; Wang, George; ...

    2016-12-01

    2-Pyrrolidone is a valuable bulk chemical with myriad applications as a solvent, polymer precursor and active pharmaceutical intermediate. A novel 2-pyrrolidone synthase, ORF27, from Streptomyces aizunensis was identified to catalyze the ring closing dehydration of γ-aminobutyrate. ORF27's tendency to aggregate was resolved by expression at low temperature and fusion to the maltose binding protein (MBP). Recombinant Escherichia coli was metabolically engineered for the production of 2-pyrrolidone from glutamate by expressing both the genes encoding GadB, a glutamate decarboxylase, and ORF27. Incorporation of a GadB mutant lacking H465 and T466, GadB_δHT, improved the efficiency of one-pot 2-pyrrolidone biosynthesis in vivo. Whenmore » the recombinant E. coli strain expressing the E. coli GadB_δHT mutant and the ORF27-MBP fusion was cultured in ZYM-5052 medium containing 9. g/L of l-glutamate, 7.7. g/L of l-glutamate was converted to 1.1. g/L of 2-pyrrolidone within 31. h, achieving 25% molar yield from the consumed substrate.« less

  19. Mutation of the ptsG Gene Results in Increased Production of Succinate in Fermentation of Glucose by Escherichia coli

    PubMed Central

    Chatterjee, Ranjini; Millard, Cynthia Sanville; Champion, Kathleen; Clark, David P.; Donnelly, Mark I.

    2001-01-01

    Escherichia coli NZN111 is blocked in the ability to grow fermentatively on glucose but gave rise spontaneously to a mutant that had this ability. The mutant carries out a balanced fermentation of glucose to give approximately 1 mol of succinate, 0.5 mol of acetate, and 0.5 mol of ethanol per mol of glucose. The causative mutation was mapped to the ptsG gene, which encodes the membrane-bound, glucose-specific permease of the phosphotransferase system, protein EIICBglc. Replacement of the chromosomal ptsG gene with an insertionally inactivated form also restored growth on glucose and resulted in the same distribution of fermentation products. The physiological characteristics of the spontaneous and null mutants were consistent with loss of function of the ptsG gene product; the mutants possessed greatly reduced glucose phosphotransferase activity and lacked normal glucose repression. Introduction of the null mutant into strains not blocked in the ability to ferment glucose also increased succinate production in those strains. This phenomenon was widespread, occurring in different lineages of E. coli, including E. coli B. PMID:11133439

  20. PBP5, PBP6 and DacD play different roles in intrinsic β-lactam resistance of Escherichia coli.

    PubMed

    Sarkar, Sujoy Kumar; Dutta, Mouparna; Chowdhury, Chiranjit; Kumar, Akash; Ghosh, Anindya S

    2011-09-01

    Escherichia coli PBP5, PBP6 and DacD, encoded by dacA, dacC and dacD, respectively, share substantial amino acid identity and together constitute ~50 % of the total penicillin-binding proteins of E. coli. PBP5 helps maintain intrinsic β-lactam resistance within the cell. To test if PBP6 and DacD play simlar roles, we deleted dacC and dacD individually, and dacC in combination with dacA, from E. coli 2443 and compared β-lactam sensitivity of the mutants and the parent strain. β-Lactam resistance was complemented by wild-type, but not dd-carboxypeptidase-deficient PBP5, confirming that enzymic activity of PBP5 is essential for β-lactam resistance. Deletion of dacC and expression of PBP6 during exponential or stationary phase did not alter β-lactam resistance of a dacA mutant. Expression of DacD during mid-exponential phase partially restored β-lactam resistance of the dacA mutant. Therefore, PBP5 dd-carboxypeptidase activity is essential for intrinsic β-lactam resistance of E. coli and DacD can partially compensate for PBP5 in this capacity, whereas PBP6 cannot.

  1. Conditional suicide system of Escherichia coli released into soil that uses the Bacillus subtilis sacB gene.

    PubMed Central

    Recorbet, G; Robert, C; Givaudan, A; Kudla, B; Normand, P; Faurie, G

    1993-01-01

    The sacB gene from Bacillus subtilis confers sucrose sensitivity upon gram-negative bacteria. The gene was investigated for use as a potential conditional suicide system for Escherichia coli released into soil. To ensure against the loss of the cell death function encoded under nonselective conditions, the nptI-sacR-B suicide cassette was inserted into the E. coli chromosome by using a circular nonreplicative integration vector. Stability studies yielded no loss of the suicide cassette in the integrated E. coli EL1026 strain. sacB induction in the absence of a selective pressure resulted in a lysis efficiency of up to 99.9%. The microcosm experiments confirmed the ability of the suicide cassette to limit the growth and reduce the survival of E. coli strains released into soil. Sucrose addition to sterile soil resulted in a 10(-3)-fold reduction of the final E. coli population density. sacB induction prevented the proliferation and triggered the rapid disappearance of E. coli from natural soil. Mutation to sucrose tolerance occurred at a frequency of 10(-5), making E. coli EL1026 a potential counterselectable donor strain for gene transfer studies. Specificity and potential adaptability to a wide range of gram-negative bacteria are additional conveniences of this conditional suicide system for the containment and counterselection of engineered microorganisms. PMID:8517732

  2. Conditional suicide system of Escherichia coli released into soil that uses the Bacillus subtilis sacB gene.

    PubMed

    Recorbet, G; Robert, C; Givaudan, A; Kudla, B; Normand, P; Faurie, G

    1993-05-01

    The sacB gene from Bacillus subtilis confers sucrose sensitivity upon gram-negative bacteria. The gene was investigated for use as a potential conditional suicide system for Escherichia coli released into soil. To ensure against the loss of the cell death function encoded under nonselective conditions, the nptI-sacR-B suicide cassette was inserted into the E. coli chromosome by using a circular nonreplicative integration vector. Stability studies yielded no loss of the suicide cassette in the integrated E. coli EL1026 strain. sacB induction in the absence of a selective pressure resulted in a lysis efficiency of up to 99.9%. The microcosm experiments confirmed the ability of the suicide cassette to limit the growth and reduce the survival of E. coli strains released into soil. Sucrose addition to sterile soil resulted in a 10(-3)-fold reduction of the final E. coli population density. sacB induction prevented the proliferation and triggered the rapid disappearance of E. coli from natural soil. Mutation to sucrose tolerance occurred at a frequency of 10(-5), making E. coli EL1026 a potential counterselectable donor strain for gene transfer studies. Specificity and potential adaptability to a wide range of gram-negative bacteria are additional conveniences of this conditional suicide system for the containment and counterselection of engineered microorganisms.

  3. RNA-Seq analysis of isolate- and growth phase-specific differences in the global transcriptomes of enteropathogenic Escherichia coli prototype isolates

    PubMed Central

    Hazen, Tracy H.; Daugherty, Sean C.; Shetty, Amol; Mahurkar, Anup A.; White, Owen; Kaper, James B.; Rasko, David A.

    2015-01-01

    Enteropathogenic Escherichia coli (EPEC) are a leading cause of diarrheal illness among infants in developing countries. E. coli isolates classified as typical EPEC are identified by the presence of the locus of enterocyte effacement (LEE) and the bundle-forming pilus (BFP), and absence of the Shiga-toxin genes, while the atypical EPEC also encode LEE but do not encode BFP or Shiga-toxin. Comparative genomic analyses have demonstrated that EPEC isolates belong to diverse evolutionary lineages and possess lineage- and isolate-specific genomic content. To investigate whether this genomic diversity results in significant differences in global gene expression, we used an RNA sequencing (RNA-Seq) approach to characterize the global transcriptomes of the prototype typical EPEC isolates E2348/69, B171, C581-05, and the prototype atypical EPEC isolate E110019. The global transcriptomes were characterized during laboratory growth in two different media and three different growth phases, as well as during adherence of the EPEC isolates to human cells using in vitro tissue culture assays. Comparison of the global transcriptomes during these conditions was used to identify isolate- and growth phase-specific differences in EPEC gene expression. These analyses resulted in the identification of genes that encode proteins involved in survival and metabolism that were coordinately expressed with virulence factors. These findings demonstrate there are isolate- and growth phase-specific differences in the global transcriptomes of EPEC prototype isolates, and highlight the utility of comparative transcriptomics for identifying additional factors that are directly or indirectly involved in EPEC pathogenesis. PMID:26124752

  4. Cyclomodulins in Urosepsis Strains of Escherichia coli▿

    PubMed Central

    Dubois, Damien; Delmas, Julien; Cady, Anne; Robin, Frédéric; Sivignon, Adeline; Oswald, Eric; Bonnet, Richard

    2010-01-01

    Determinants of urosepsis in Escherichia coli remain incompletely defined. Cyclomodulins (CMs) are a growing functional family of toxins that hijack the eukaryotic cell cycle. Four cyclomodulin types are actually known in E. coli: cytotoxic necrotizing factors (CNFs), cycle-inhibiting factor (Cif), cytolethal distending toxins (CDTs), and the pks-encoded toxin. In the present study, the distribution of CM-encoding genes and the functionality of these toxins were investigated in 197 E. coli strains isolated from patients with community-acquired urosepsis (n = 146) and from uninfected subjects (n = 51). This distribution was analyzed in relation to the phylogenetic background, clinical origin, and antibiotic resistance of the strains. It emerged from this study that strains harboring the pks island and the cnf1 gene (i) were strongly associated with the B2 phylogroup (P, <0.001), (ii) frequently harbored both toxin-encoded genes in phylogroup B2 (33%), and (iii) were predictive of a urosepsis origin (P, <0.001 to 0.005). However, the prevalences of the pks island among phylogroup B2 strains, in contrast to those of the cnf1 gene, were not significantly different between fecal and urosepsis groups, suggesting that the pks island is more important for the colonization process and the cnf1 gene for virulence. pks- or cnf1-harboring strains were significantly associated with susceptibility to antibiotics (amoxicillin, cotrimoxazole, and quinolones [P, <0.001 to 0.043]). Otherwise, only 6% and 1% of all strains harbored the cdtB and cif genes, respectively, with no particular distribution by phylogenetic background, antimicrobial susceptibility, or clinical origin. PMID:20375237

  5. Structure of the Escherichia coli phosphonate binding protein PhnD and rationally optimized phosphonate biosensors.

    PubMed

    Alicea, Ismael; Marvin, Jonathan S; Miklos, Aleksandr E; Ellington, Andrew D; Looger, Loren L; Schreiter, Eric R

    2011-12-02

    The phnD gene of Escherichia coli encodes the periplasmic binding protein of the phosphonate (Pn) uptake and utilization pathway. We have crystallized and determined structures of E. coli PhnD (EcPhnD) in the absence of ligand and in complex with the environmentally abundant 2-aminoethylphosphonate (2AEP). Similar to other bacterial periplasmic binding proteins, 2AEP binds near the center of mass of EcPhnD in a cleft formed between two lobes. Comparison of the open, unliganded structure with the closed 2AEP-bound structure shows that the two lobes pivot around a hinge by ~70° between the two states. Extensive hydrogen bonding and electrostatic interactions stabilize 2AEP, which binds to EcPhnD with low nanomolar affinity. These structures provide insight into Pn uptake by bacteria and facilitated the rational design of high signal-to-noise Pn biosensors based on both coupled small-molecule dyes and autocatalytic fluorescent proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Molecular cloning and expression of the hyu genes from Microbacterium liquefaciens AJ 3912, responsible for the conversion of 5-substituted hydantoins to alpha-amino acids, in Escherichia coli.

    PubMed

    Suzuki, Shun'ichi; Takenaka, Yasuhiro; Onishi, Norimasa; Yokozeki, Kenzo

    2005-08-01

    A DNA fragment from Microbacterium liquefaciens AJ 3912, containing the genes responsible for the conversion of 5-substituted-hydantoins to alpha-amino acids, was cloned in Escherichia coli and sequenced. Seven open reading frames (hyuP, hyuA, hyuH, hyuC, ORF1, ORF2, and ORF3) were identified on the 7.5 kb fragment. The deduced amino acid sequence encoded by the hyuA gene included the N-terminal amino acid sequence of the hydantoin racemase from M. liquefaciens AJ 3912. The hyuA, hyuH, and hyuC genes were heterologously expressed in E. coli; their presence corresponded with the detection of hydantoin racemase, hydantoinase, and N-carbamoyl alpha-amino acid amido hydrolase enzymatic activities respectively. The deduced amino acid sequences of hyuP were similar to those of the allantoin (5-ureido-hydantoin) permease from Saccharomyces cerevisiae, suggesting that hyuP protein might function as a hydantoin transporter.

  7. Structure of the Escherichia coli Phosphonate Binding Protein PhnD and Rationally Optimized Phosphonate Biosensors

    PubMed Central

    Alicea, Ismael; Marvin, Jonathan S.; Miklos, Aleksandr E.; Ellington, Andrew D.; Looger, Loren L.; Schreiter, Eric R.

    2012-01-01

    The phnD gene of Escherichia coli encodes the periplasmic binding protein of the phosphonate uptake and utilization pathway. We have crystallized and determined structures of E. coli PhnD (EcPhnD) in the absence of ligand and in complex with the environmentally abundant 2-aminoethylphosphonate (2AEP). Similar to other bacterial periplasmic binding proteins, 2AEP binds near the center of mass of EcPhnD in a cleft formed between two lobes. Comparison of the open, unliganded structure with the closed 2AEP-bound structure shows that the two lobes pivot around a hinge by ~70° between the two states. Extensive hydrogen bonding and electrostatic interactions stabilize 2AEP, which binds to EcPhnD with low nanomolar affinity. These structures provide insight into phosphonate uptake by bacteria and facilitated the rational design of high signal-to-noise phosphonate biosensors based both on coupled small molecule dyes and autocatalytic fluorescent proteins. PMID:22019591

  8. Similarity of Escherichia coli propanediol oxidoreductase (fucO product) and an unusual alcohol dehydrogenase from Zymomonas mobilis and Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway, T.; Ingram, L.O.

    1989-07-01

    The gene that encodes 1,2-propanediol oxidoreductase (fucO) from Escherichia coli was sequenced. The reading frame specified a protein of 383 amino acids (including the N-terminal methionine), with an aggregate molecular weight of 40,642. The induction of fucO transcription, which occurred in the presence of fucose, was confirmed by Northern blot analysis. In E. coli, the primary fucO transcript was approximately 2.1 kilobases in length. The 5{prime} end of the transcript began more than 0.7 kilobase upstream of the fucO start codon within or beyond the fucA gene. Propanediol oxidoreductase exhibited 41.7% identity with the iron-containing alcohol dehydrogenase II from Zymomonasmore » mobilis and 39.5% identity with ADH4 from Saccharomyces cerevisiae. These three proteins did not share homology with either short-chain or long-chain zinc-containing alcohol dehydrogenase enzymes. We propose that these three unusual alcohol dehydrogenases define a new family of enzymes.« less

  9. A homolog of Escherichia coli RecA in mitochondria of the cellular slime mold Dictyostelium discoideum.

    PubMed

    Hasegawa, Yasuna; Wakabayashi, Masayuki; Nakamura, Shogo; Kodaira, Ken-ichi; Shinohara, Hiroaki; Yasukawa, Hiro

    2004-05-04

    The cellular slime mold Dictyostelium discoideum expresses a gene encoding a 452-amino-acid polypeptide that is 47% identical to Escherichia coli RecA. A recA-deficient E. coli, JE6651, was transformed by pYSN1, which was designed to express the truncated form of the D. discoideum gene, and used in suppression assays. The viability of the transformant, JE6651(pYSN1), increased following UV irradiation or mitomycin C treatment. Phage lambda (red(-) gam(-)), which required RecA activity for DNA packaging, formed plaques on a lawn of JE6651(pYSN1). These results indicate that the gene product has a DNA recombination activity. Fluorescence of D. discoideum protein fused with GFP was detected in mitochondria. The gene disruption mutant was hypersensitive to UV-light (254nm), mitomycin C and H(2)O(2), indicating that D. discoideum recA is important for survival following exposure to DNA damaging agents.

  10. Structure of the Escherichia coli Phosphonate Binding Protein PhnD and Rationally Optimized Phosphonate Biosensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alicea, Ismael; Marvin, Jonathan S.; Miklos, Aleksandr E.

    2012-09-17

    The phnD gene of Escherichia coli encodes the periplasmic binding protein of the phosphonate (Pn) uptake and utilization pathway. We have crystallized and determined structures of E. coli PhnD (EcPhnD) in the absence of ligand and in complex with the environmentally abundant 2-aminoethylphosphonate (2AEP). Similar to other bacterial periplasmic binding proteins, 2AEP binds near the center of mass of EcPhnD in a cleft formed between two lobes. Comparison of the open, unliganded structure with the closed 2AEP-bound structure shows that the two lobes pivot around a hinge by {approx}70{sup o} between the two states. Extensive hydrogen bonding and electrostatic interactionsmore » stabilize 2AEP, which binds to EcPhnD with low nanomolar affinity. These structures provide insight into Pn uptake by bacteria and facilitated the rational design of high signal-to-noise Pn biosensors based on both coupled small-molecule dyes and autocatalytic fluorescent proteins.« less

  11. Full shut-off of Escherichia coli RNA-polymerase by T7 phage requires a small phage-encoded DNA-binding protein.

    PubMed

    Tabib-Salazar, Aline; Liu, Bing; Shadrin, Andrey; Burchell, Lynn; Wang, Zhexin; Wang, Zhihao; Goren, Moran G; Yosef, Ido; Qimron, Udi; Severinov, Konstantin; Matthews, Steve J; Wigneshweraraj, Sivaramesh

    2017-07-27

    Infection of Escherichia coli by the T7 phage leads to rapid and selective inhibition of the bacterial RNA polymerase (RNAP) by the 7 kDa T7 protein Gp2. We describe the identification and functional and structural characterisation of a novel 7 kDa T7 protein, Gp5.7, which adopts a winged helix-turn-helix-like structure and specifically represses transcription initiation from host RNAP-dependent promoters on the phage genome via a mechanism that involves interaction with DNA and the bacterial RNAP. Whereas Gp2 is indispensable for T7 growth in E. coli, we show that Gp5.7 is required for optimal infection outcome. Our findings provide novel insights into how phages fine-tune the activity of the host transcription machinery to ensure both successful and efficient phage progeny development. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Tellurite-exposed Escherichia coli exhibits increased intracellular {alpha}-ketoglutarate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinoso, Claudia A.; Auger, Christopher; Appanna, Vasu D.

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Tellurite-exposed E. coli exhibits decreased {alpha}-KG dehydrogenase activity. Black-Right-Pointing-Pointer Cells lacking {alpha}-KGDH genes are more sensitive to ROS than isogenic, wt E. coli. Black-Right-Pointing-Pointer KG accumulation may serve to face tellurite-mediated oxidative damage in E. coli. -- Abstract: The tellurium oxyanion tellurite is toxic to most organisms because of its ability to generate oxidative stress. However, the detailed mechanism(s) how this toxicant interferes with cellular processes have yet to be fully understood. As part of our effort to decipher the molecular interactions of tellurite with living systems, we have evaluated the global metabolism of {alpha}-ketoglutarate a known antioxidantmore » in Escherichia coli. Tellurite-exposed cells displayed reduced activity of the KG dehydrogenase complex (KGDHc), resulting in increased intracellular KG content. This complex's reduced activity seems to be due to decreased transcription in the stressed cells of sucA, a gene that encodes the E1 component of KGDHc. Furthermore, it was demonstrated that the increase in total reactive oxygen species and superoxide observed upon tellurite exposure was more evident in wild type cells than in E. coli with impaired KGDHc activity. These results indicate that KG may be playing a pivotal role in combating tellurite-mediated oxidative damage.« less

  13. Physiological Function of Rac Prophage During Biofilm Formation and Regulation of Rac Excision in Escherichia coli K-12.

    PubMed

    Liu, Xiaoxiao; Li, Yangmei; Guo, Yunxue; Zeng, Zhenshun; Li, Baiyuan; Wood, Thomas K; Cai, Xingsheng; Wang, Xiaoxue

    2015-11-04

    Rac or rac-like prophage harbors many genes with important physiological functions, while it remains excision-proficient in several bacterial strains including Escherichia coli, Salmonella spp. and Shigella spp. Here, we found that rac excision is induced during biofilm formation, and the isogenic stain without rac is more motile and forms more biofilms in nutrient-rich medium at early stages in E. coli K-12. Additionally, the presence of rac genes increases cell lysis during biofilm development. In most E. coli strains, rac is integrated into the ttcA gene which encodes a tRNA-thioltransferase. Rac excision in E. coli K-12 leads to a functional change of TtcA, which results in reduced fitness in the presence of carbenicillin. Additionally, we demonstrate that YdaQ (renamed as XisR) is the excisionase of rac in E. coli K-12, and that rac excision is induced by the stationary sigma factor RpoS through inducing xisR expression. Taken together, our results reveal that upon rac integration, not only are new genes introduced into the host, but also there is a functional change in a host enzyme. Hence, rac excision is tightly regulated by host factors to control its stability in the host genome under different stress conditions.

  14. Physiological Function of Rac Prophage During Biofilm Formation and Regulation of Rac Excision in Escherichia coli K-12

    PubMed Central

    Liu, Xiaoxiao; Li, Yangmei; Guo, Yunxue; Zeng, Zhenshun; Li, Baiyuan; Wood, Thomas K.; Cai, Xingsheng; Wang, Xiaoxue

    2015-01-01

    Rac or rac-like prophage harbors many genes with important physiological functions, while it remains excision-proficient in several bacterial strains including Escherichia coli, Salmonella spp. and Shigella spp. Here, we found that rac excision is induced during biofilm formation, and the isogenic stain without rac is more motile and forms more biofilms in nutrient-rich medium at early stages in E. coli K-12. Additionally, the presence of rac genes increases cell lysis during biofilm development. In most E. coli strains, rac is integrated into the ttcA gene which encodes a tRNA-thioltransferase. Rac excision in E. coli K-12 leads to a functional change of TtcA, which results in reduced fitness in the presence of carbenicillin. Additionally, we demonstrate that YdaQ (renamed as XisR) is the excisionase of rac in E. coli K-12, and that rac excision is induced by the stationary sigma factor RpoS through inducing xisR expression. Taken together, our results reveal that upon rac integration, not only are new genes introduced into the host, but also there is a functional change in a host enzyme. Hence, rac excision is tightly regulated by host factors to control its stability in the host genome under different stress conditions. PMID:26530864

  15. D-arabinose metabolism in Escherichia coli B: induction and cotransductional mapping of the L-fucose-D-arabinose pathway enzymes.

    PubMed

    Elsinghorst, E A; Mortlock, R P

    1988-12-01

    D-Arabinose is degraded by Escherichia coli B via some of the L-fucose pathway enzymes and a D-ribulokinase which is distinct from the L-fuculokinase of the L-fucose pathway. We found that L-fucose and D-arabinose acted as the apparent inducers of the enzymes needed for their degradation. These enzymes, including D-ribulokinase, appeared to be coordinately regulated, and mutants which constitutively synthesized the L-fucose enzymes also constitutively synthesized D-ribulokinase. In contrast to D-arabinose-positive mutants of E. coli K-12, in which L-fuculose-1-phosphate and D-ribulose-1-phosphate act as inducers of the L-fucose pathway, we found that these intermediates did not act as inducers in E. coli B. To further characterize the E. coli B system, some of the L-fucose-D-arabinose genes were mapped by using bacteriophage P1 transduction. A transposon Tn10 insertion near the E. coli B L-fucose regulon was used in two- and three-factor reciprocal crosses. The gene encoding D-ribulokinase, designated darK, was found to map within the L-fucose regulon, and the partial gene order was found to be Tn10-fucA-darK-fucI-fucK-thyA.

  16. D-arabinose metabolism in Escherichia coli B: induction and cotransductional mapping of the L-fucose-D-arabinose pathway enzymes.

    PubMed Central

    Elsinghorst, E A; Mortlock, R P

    1988-01-01

    D-Arabinose is degraded by Escherichia coli B via some of the L-fucose pathway enzymes and a D-ribulokinase which is distinct from the L-fuculokinase of the L-fucose pathway. We found that L-fucose and D-arabinose acted as the apparent inducers of the enzymes needed for their degradation. These enzymes, including D-ribulokinase, appeared to be coordinately regulated, and mutants which constitutively synthesized the L-fucose enzymes also constitutively synthesized D-ribulokinase. In contrast to D-arabinose-positive mutants of E. coli K-12, in which L-fuculose-1-phosphate and D-ribulose-1-phosphate act as inducers of the L-fucose pathway, we found that these intermediates did not act as inducers in E. coli B. To further characterize the E. coli B system, some of the L-fucose-D-arabinose genes were mapped by using bacteriophage P1 transduction. A transposon Tn10 insertion near the E. coli B L-fucose regulon was used in two- and three-factor reciprocal crosses. The gene encoding D-ribulokinase, designated darK, was found to map within the L-fucose regulon, and the partial gene order was found to be Tn10-fucA-darK-fucI-fucK-thyA. PMID:3056899

  17. The X-Ray Crystal Structure of Escherichia coli Succinic Semialdehyde Dehydrogenase; Structural Insights into NADP+/Enzyme Interactions

    PubMed Central

    Langendorf, Christopher G.; Key, Trevor L. G.; Fenalti, Gustavo; Kan, Wan-Ting; Buckle, Ashley M.; Caradoc-Davies, Tom; Tuck, Kellie L.; Law, Ruby H. P.; Whisstock, James C.

    2010-01-01

    Background In mammals succinic semialdehyde dehydrogenase (SSADH) plays an essential role in the metabolism of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) to succinic acid (SA). Deficiency of SSADH in humans results in elevated levels of GABA and γ-Hydroxybutyric acid (GHB), which leads to psychomotor retardation, muscular hypotonia, non-progressive ataxia and seizures. In Escherichia coli, two genetically distinct forms of SSADHs had been described that are essential for preventing accumulation of toxic levels of succinic semialdehyde (SSA) in cells. Methodology/Principal Findings Here we structurally characterise SSADH encoded by the E coli gabD gene by X-ray crystallographic studies and compare these data with the structure of human SSADH. In the E. coli SSADH structure, electron density for the complete NADP+ cofactor in the binding sites is clearly evident; these data in particular revealing how the nicotinamide ring of the cofactor is positioned in each active site. Conclusions/Significance Our structural data suggest that a deletion of three amino acids in E. coli SSADH permits this enzyme to use NADP+, whereas in contrast the human enzyme utilises NAD+. Furthermore, the structure of E. coli SSADH gives additional insight into human mutations that result in disease. PMID:20174634

  18. The yajC gene from Lactobacillus buchneri and Escherichia coli and its role in ethanol tolerance

    USDA-ARS?s Scientific Manuscript database

    The yajC gene (Lbuc_0921)from Lactobacillus buchneri NRRL B-30929 was identified from proteomics analyses in response to ethanol treatment. This protein’s expression level was increased by 15 fold in response to 10% vs 0% ethanol. The yajC encodes the smaller subunit of the preprotein translocase co...

  19. Shiga Toxins, and the Genes Encoding Them, in Fecal Samples from Native Idaho Ungulates▿

    PubMed Central

    Gilbreath, Jeremy J.; Shields, Malcolm S.; Smith, Rebekah L.; Farrell, Larry D.; Sheridan, Peter P.; Spiegel, Kathleen M.

    2009-01-01

    Cattle are a known reservoir of Shiga toxin-producing Escherichia coli. The prevalence and stability of Shiga toxin and/or Shiga toxin genes among native wild ungulates in Idaho were investigated. The frequency of both Shiga genes and toxin was similar to that reported for Idaho cattle (∼19%). PMID:19060170

  20. TLA-2, a novel Ambler class A expanded-spectrum beta-lactamase.

    PubMed

    Girlich, Delphine; Poirel, Laurent; Schlüter, Andreas; Nordmann, Patrice

    2005-11-01

    Beta-lactamase TLA-2 is encoded by a 47-kb plasmid isolated from an unidentified bacterial strain from a wastewater treatment plant. TLA-2 is an Ambler class A beta-lactamase that shares 52% amino acid identity with CGA-1 from Chryseobacterium gleum and 51% with TLA-1 from Escherichia coli. The enzyme hydrolyzes mostly cephalosporins.

  1. The aminoglycoside antibiotic kanamycin damages DNA bases in Escherichia coli: caffeine potentiates the DNA-damaging effects of kanamycin while suppressing cell killing by ciprofloxacin in Escherichia coli and Bacillus anthracis.

    PubMed

    Kang, Tina Manzhu; Yuan, Jessica; Nguyen, Angelyn; Becket, Elinne; Yang, Hanjing; Miller, Jeffrey H

    2012-06-01

    The distribution of mutants in the Keio collection of Escherichia coli gene knockout mutants that display increased sensitivity to the aminoglycosides kanamycin and neomycin indicates that damaged bases resulting from antibiotic action can lead to cell death. Strains lacking one of a number of glycosylases (e.g., AlkA, YzaB, Ogt, KsgA) or other specific repair proteins (AlkB, PhrB, SmbC) are more sensitive to these antibiotics. Mutants lacking AlkB display the strongest sensitivity among the glycosylase- or direct lesion removal-deficient strains. This perhaps suggests the involvement of ethenoadenine adducts, resulting from reactive oxygen species and lipid peroxidation, since AlkB removes this lesion. Other sensitivities displayed by mutants lacking UvrA, polymerase V (Pol V), or components of double-strand break repair indicate that kanamycin results in damaged base pairs that need to be removed or replicated past in order to avoid double-strand breaks that saturate the cellular repair capacity. Caffeine enhances the sensitivities of these repair-deficient strains to kanamycin and neomycin. The gene knockout mutants that display increased sensitivity to caffeine (dnaQ, holC, holD, and priA knockout mutants) indicate that caffeine blocks DNA replication, ultimately leading to double-strand breaks that require recombinational repair by functions encoded by recA, recB, and recC, among others. Additionally, caffeine partially protects cells of both Escherichia coli and Bacillus anthracis from killing by the widely used fluoroquinolone antibiotic ciprofloxacin.

  2. Functional characterization of a geraniol synthase-encoding gene from Camptotheca acuminata and its application in production of geraniol in Escherichia coli.

    PubMed

    Chen, Fei; Li, Wei; Jiang, Liangzhen; Pu, Xiang; Yang, Yun; Zhang, Guolin; Luo, Yinggang

    2016-09-01

    Geraniol synthase (GES) catalyzes the conversion of geranyl diphosphate (GPP) into geraniol, an acyclic monoterpene alcohol that has been widely used in many industries. Here we report the functional characterization of CaGES from Camptotheca acuminata, a camptothecin-producing plant, and its application in production of geraniol in Escherichia coli. The full-length cDNA of CaGES was obtained from overlap extension PCR amplification. The intact and N-terminus-truncated CaGESs were overexpressed in E. coli and purified to homogeneity. Recombinant CaGES showed the conversion activity from GPP to geraniol. To produce geraniol in E. coli using tCaGES, the biosynthetic precursor GPP should be supplied and transferred to the catalytic pocket of tCaGES. Thus, ispA(S80F), a mutant of farnesyl diphosphate (FPP) synthase, was prepared to produce GPP via the head-to-tail condensation of isoprenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A slight increase of geraniol production was observed in the fermentation broth of the recombinant E. coli harboring tCaGES and ispA(S80F). To enhance the supply of IPP and DMAPP, the encoding genes involved in the whole mevalonic acid biosynthetic pathway were introduced to the E. coli harboring tCaGES and the ispA(S80F) and a significant increase of geraniol yield was observed. The geraniol production was enhanced to 5.85 ± 0.46 mg L(-1) when another copy of ispA(S80F) was introduced to the above recombinant strain. The following optimization of medium composition, fermentation time, and addition of metal ions led to the geraniol production of 48.5 ± 0.9 mg L(-1). The present study will be helpful to uncover the biosynthetic enigma of camptothecin and tCaGES will be an alternative to selectively produce geraniol in E. coli with other metabolic engineering approaches.

  3. A homomeric geranyl diphosphate synthase-encoding gene from Camptotheca acuminata and its combinatorial optimization for production of geraniol in Escherichia coli.

    PubMed

    Yang, Lixia; Jiang, Liangzhen; Li, Wei; Yang, Yun; Zhang, Guolin; Luo, Yinggang

    2017-10-01

    Geranyl diphosphate (GPP), the unique precursor for all monoterpenoids, is biosynthesized from isopentenyl diphosphate and dimethylallyl diphosphate via the head-to-tail condensation reaction catalyzed by GPP synthase (GPPS). Herein a homomeric GPPS from Camptotheca acuminata, a camptothecin-producing plant, was obtained from 5'- and 3'-rapid amplification of cDNA ends and subsequent overlap extension and convenient PCR amplifications. The truncate CaGPPS was introduced to replace ispA of pBbA5c-MevT(CO)-MBIS(CO, ispA), a de novo biosynthetic construct for farnesyl diphosphate generation, and overexpressed in Escherichia coli, together with the truncate geraniol synthase-encoding gene from C. acuminata (tCaGES), to confirm CaGPPS-catalyzed reaction in vivo. A 24.0 ± 1.3 mg L -1 of geraniol was produced in the recombinant E. coli. The production of GPP was also validated by the direct UPLC-HRMS E analyses. The tCaGPPS and tCaGES genes with different copy numbers were introduced into E. coli to balance their catalytic potential for high-yield geraniol production. A 1.6-fold increase of geraniol production was obtained when four copies of tCaGPPS and one copy of tCaGES were introduced into E. coli. The following fermentation conditions optimization, including removal of organic layers and addition of new n-decane, led to a 74.6 ± 6.5 mg L -1 of geraniol production. The present study suggested that the gene copy number optimization, i.e., the ratio of tCaGPPS and tCaGES, plays an important role in geraniol production in the recombinant E. coli. The removal and addition of organic solvent are very useful for sustainable high-yield production of geraniol in the recombinant E. coli in view of that the solubility of geraniol is limited in the fermentation broth and/or n-decane.

  4. Enhancement of expression and apparent secretion of Erwinia chrysanthemi endoglucanase (encoded by celZ) in Escherichia coli B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, S.; Yomano, L.P.; Saleh, A.Z.

    1999-06-01

    Escherichia coli B has been engineered as a biocatalyst for the conversion of lignocellulose into ethanol. Previous research has demonstrated that derivatives of E. coli B can produce high levels of Erwinia chrysanthemi endoglucanase (encoded by celZ) as a periplasmic product and that this enzyme can function with commercial fungal cellulase to increase ethanol production. In this study, the authors have demonstrated two methods that improve celZ expression in E. coli B. Initially, with a low-copy-number vector, two E. coli glycolytic gene promoters (gap and eno) were tested and found to be less effective than the original celZ promoter. Bymore » screening 18,000 random fragments of Zymomonas mobilis DNA, a surrogate promoter was identified which increased celZ expression up to sixfold. With this promoter, large polar inclusion bodies were clearly evident in the periplasmic space. Sequencing revealed that the most active surrogate promoter is derived from five Sau3A1 fragments, one of which was previously sequenced in Z. mobilis. Visual inspection indicated that this DNA fragment contains at least five putative promoter regions, two of which were confirmed by primer extension analysis. Addition of the out genes from E. chrysanthemi EC16 caused a further increase in the production of active enzyme and facilitated secretion or release of over half of the activity into the extracellular environment. With the most active construct, of a total of 13,000 IU of active enzyme per liter of culture, 7,800 IU was in the supernatant. The total active endoglucanase was estimated to represent 4 to 6% of cellular protein.« less

  5. The Gene tia, Harbored by the Subtilase-Encoding Pathogenicity Island, Is Involved in the Ability of Locus of Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli Strains To Invade Monolayers of Epithelial Cells

    PubMed Central

    Chiani, Paola; Michelacci, Valeria; Minelli, Fabio; Caprioli, Alfredo; Morabito, Stefano

    2017-01-01

    ABSTRACT Locus of enterocyte effacement (LEE)-negative Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are human pathogens that lack the LEE locus, a pathogenicity island (PAI) involved in the intimate adhesion of LEE-positive strains to the host gut epithelium. The mechanism used by LEE-negative STEC strains to colonize the host intestinal mucosa is still not clear. The cell invasion determinant tia, previously described in enterotoxigenic E. coli strains, has been identified in LEE-negative STEC strains that possess the subtilase-encoding pathogenicity island (SE-PAI). We evaluated the role of the gene tia, present in these LEE-negative STEC strains, in the invasion of monolayers of cultured cells. We observed that these strains were able to invade Caco-2 and HEp-2 cell monolayers and compared their invasion ability with that of a mutant strain in which the gene tia had been inactivated. Mutation of the gene tia resulted in a strong reduction of the invasive phenotype, and complementation of the tia mutation with a functional copy of the gene restored the invasion activity. Moreover, we show that the gene tia is overexpressed in bacteria actively invading cell monolayers, demonstrating that tia is involved in the ability to invade cultured monolayers of epithelial cells shown by SE-PAI-positive E. coli, including STEC, strains. However, the expression of the tia gene in the E. coli K-12 strain JM109 was not sufficient, in its own right, to confer to this strain the ability to invade cell monolayers, suggesting that at least another factor must be involved in the invasion ability displayed by the SE-PAI-positive strains. PMID:28893912

  6. The Gene tia, Harbored by the Subtilase-Encoding Pathogenicity Island, Is Involved in the Ability of Locus of Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli Strains To Invade Monolayers of Epithelial Cells.

    PubMed

    Bondì, Roslen; Chiani, Paola; Michelacci, Valeria; Minelli, Fabio; Caprioli, Alfredo; Morabito, Stefano

    2017-12-01

    Locus of enterocyte effacement (LEE)-negative Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are human pathogens that lack the LEE locus, a pathogenicity island (PAI) involved in the intimate adhesion of LEE-positive strains to the host gut epithelium. The mechanism used by LEE-negative STEC strains to colonize the host intestinal mucosa is still not clear. The cell invasion determinant tia , previously described in enterotoxigenic E. coli strains, has been identified in LEE-negative STEC strains that possess the subtilase-encoding pathogenicity island (SE-PAI). We evaluated the role of the gene tia , present in these LEE-negative STEC strains, in the invasion of monolayers of cultured cells. We observed that these strains were able to invade Caco-2 and HEp-2 cell monolayers and compared their invasion ability with that of a mutant strain in which the gene tia had been inactivated. Mutation of the gene tia resulted in a strong reduction of the invasive phenotype, and complementation of the tia mutation with a functional copy of the gene restored the invasion activity. Moreover, we show that the gene tia is overexpressed in bacteria actively invading cell monolayers, demonstrating that tia is involved in the ability to invade cultured monolayers of epithelial cells shown by SE-PAI-positive E. coli , including STEC, strains. However, the expression of the tia gene in the E. coli K-12 strain JM109 was not sufficient, in its own right, to confer to this strain the ability to invade cell monolayers, suggesting that at least another factor must be involved in the invasion ability displayed by the SE-PAI-positive strains. Copyright © 2017 American Society for Microbiology.

  7. cAMP-CRP acts as a key regulator for the viable but non-culturable state in Escherichia coli.

    PubMed

    Nosho, Kazuki; Fukushima, Hiroko; Asai, Takehiro; Nishio, Masahiro; Takamaru, Reiko; Kobayashi-Kirschvink, Koseki Joseph; Ogawa, Tetsuhiro; Hidaka, Makoto; Masaki, Haruhiko

    2018-03-01

    A variety of bacteria, including Escherichia coli, are known to enter the viable but non-culturable (VBNC) state under various stress conditions. During this state, cells lose colony-forming activities on conventional agar plates while retaining signs of viability. Diverse environmental stresses including starvation induce the VBNC state. However, little is known about the genetic mechanism inducing this state. Here, we aimed to reveal the genetic determinants of the VBNC state of E. coli. We hypothesized that the VBNC state is a process wherein specific gene products important for colony formation are depleted during the extended period of stress conditions. If so, higher expression of these genes would maintain colony-forming activities, thereby restraining cells from entering the VBNC state. From an E. coli plasmid-encoded ORF library, we identified genes that were responsible for maintaining high colony-forming activities after exposure to starvation condition. Among these, cpdA encoding cAMP phosphodiesterase exhibited higher performance in the maintenance of colony-forming activities. As cpdA overexpression decreases intracellular cAMP, cAMP or its complex with cAMP-receptor protein (CRP) may negatively regulate colony-forming activities under stress conditions. We confirmed this using deletion mutants lacking adenylate cyclase or CRP. These mutants fully maintained colony-forming activities even after a long period of starvation, while wild-type cells lost most of this activity. Thus, we concluded that the lack of cAMP-CRP effectively retains high colony-forming activities, indicating that cAMP-CRP acts as a positive regulator necessary for the induction of the VBNC state in E. coli.

  8. Comparison of broad-spectrum cephalosporin-resistant Escherichia coli isolated from dogs and humans in Hokkaido, Japan.

    PubMed

    Okubo, Torahiko; Sato, Toyotaka; Yokota, Shin-ichi; Usui, Masaru; Tamura, Yutaka

    2014-04-01

    Resistance to broad-spectrum cephalosporins (BSCs) in Enterobacteriaceae in companion animals has become a great concern for public health. To estimate the dissemination of BSC-resistant bacteria between dog and human, we examined the BSC-resistance determinants of and genetic similarities between 69 BSC-resistant Escherichia coli isolates derived from canine rectal swabs (n = 28) and human clinical samples (n = 41). Some E. coli isolates possessed blaTEM-1b (14 canine and 16 human isolates), blaCTx-M-2 (6 human isolates), blaCTx-M-14 (3 canine and 14 human isolates), blaCTx-M-27 (1 canine and 15 human isolates), and blaCMY-2 (11 canine and 3 human isolates). The possession of CTX-M-type β-lactamases was significantly more frequent in human isolates, whereas CMY-2 was more common in canine isolates. Bacterial typing methods (phylogenetic typing, O-antigen serotyping, and pulsed-field gel electrophoresis) showed little clonal relationship between canine isolates and human isolates. Plasmid analysis and Southern blotting indicated that the plasmids encoding CMY-2 were similar among canine and human isolates. Based on the differences in the major β-lactamase and the divergence of bacterial types between canine and human isolates, it seems that clonal dissemination of BSC-resistant E. coli between canines and humans is limited. The similarity of the CMY-2-encoding plasmid suggests that plasmid-mediated β-lactamase gene transmission plays a role in interspecies diffusion of BSC-resistant E. coli between dog and human. Copyright © 2013 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  9. The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex.

    PubMed

    Kruse, Thomas; Bork-Jensen, Jette; Gerdes, Kenn

    2005-01-01

    MreB proteins of Escherichia coli, Bacillus subtilis and Caulobacter crescentus form actin-like cables lying beneath the cell surface. The cables are required to guide longitudinal cell wall synthesis and their absence leads to merodiploid spherical and inflated cells prone to cell lysis. In B. subtilis and C. crescentus, the mreB gene is essential. However, in E. coli, mreB was inferred not to be essential. Using a tight, conditional gene depletion system, we systematically investigated whether the E. coli mreBCD-encoded components were essential. We found that cells depleted of mreBCD became spherical, enlarged and finally lysed. Depletion of each mre gene separately conferred similar gross changes in cell morphology and viability. Thus, the three proteins encoded by mreBCD are all essential and function in the same morphogenetic pathway. Interestingly, the presence of a multicopy plasmid carrying the ftsQAZ genes suppressed the lethality of deletions in the mre operon. Using GFP and cell fractionation methods, we showed that the MreC and MreD proteins were associated with the cell membrane. Using a bacterial two-hybrid system, we found that MreC interacted with both MreB and MreD. In contrast, MreB and MreD did not interact in this assay. Thus, we conclude that the E. coli MreBCD form an essential membrane-bound complex. Curiously, MreB did not form cables in cell depleted for MreC, MreD or RodA, indicating a mutual interdependency between MreB filament morphology and cell shape. Based on these and other observations we propose a model in which the membrane-associated MreBCD complex directs longitudinal cell wall synthesis in a process essential to maintain cell morphology.

  10. Design of a recombinant Escherichia coli for producing L-phenylalanine from glycerol.

    PubMed

    Thongchuang, Mayura; Pongsawasdi, Piamsook; Chisti, Yusuf; Packdibamrung, Kanoktip

    2012-10-01

    A recombinant Escherichia coli was engineered to produce the commercially important amino acid L-phenylalanine (L-Phe) using glycerol as the carbon source. Compared to the conventionally used glucose and sucrose, glycerol is a less expensive carbon source. As phenylalanine dehydrogenase (PheDH) activity is involved in the last step of L-Phe synthesis in E. coli, a phenylalanine dehydrogenase gene (phedh) from the thermotolerant Bacillus lentus was cloned into pRSFDuet-1 (pPheDH) and expressed in E. coli BL21(DE3). The resulting clone had a limited ability to produce L-Phe from glycerol, possibly because of a poor glycerol uptake by the cell, or an inability to excrete L-Phe, or both. Therefore, yddG gene encoding an aromatic amino acid exporter and glpF gene encoding a glycerol transport facilitator were coexpressed with the phedh in a reengineered E. coli. In a glycerol medium, the maximum L-Phe production rates of the clones pPY (phedh and yddG genes) and pPYF (phedh, yddG and glpF genes) were 1.4- and 1.8-fold higher than the maximum production rate of the pPheDH clone. The better producing pPYF clone was further evaluated in a 5 l stirred-tank fermenter (37 °C, an aeration rate of 1 vvm, an agitation speed of 400 rpm). In the fermenter, the maximum concentration of L-Phe (366 mg/l) was achieved in a much shorter period compared to in the shake flasks. In the latter, the highest titer of L-Phe was only 76 % of the maximum value attained in the fermenter.

  11. Pathogenic Escherichia coli and food handlers in luxury hotels in Nairobi, Kenya.

    PubMed

    Onyango, Abel O; Kenya, Eucharia U; Mbithi, John J N; Ng'ayo, Musa O

    2009-11-01

    The epidemiology and virulence properties of pathogenic Escherichia coli among food handlers in tourist destination hotels in Kenya are largely uncharacterized. This cross-sectional study among consenting 885 food handlers working in nine luxurious tourist hotels in Nairobi, Kenya determined the epidemiology, virulence properties, antibiotics susceptibility profiles and conjugation abilities of pathogenic Escherichia coli. Pathogenic Escherichia coli was detected among 39 (4.4%) subjects, including 1.8% enteroaggregative Escherichia coli (EAEC) harboring aggR genes, 1.2% enterotoxigenic Escherichia coli (ETEC) expressing both LT and STp toxins, 1.1% enteropathogenic Escherichia coli (EPEC) and 0.2% Shiga-like Escherichia coli (EHEC) both harboring eaeA and stx2 genes respectively. All the pathotypes had increased surface hydrophobicity. Using multivariate analyses, food handlers with loose stools were more likely to be infected with pathogenic Escherichia coli. Majority 53.8% of the pathotypes were resistant to tetracycline with 40.2% being multi-drug resistant. About 85.7% pathotypes trans-conjugated with Escherichia coli K12 F(-) NA(r) LA. The carriage of multi-drug resistant, toxin expressing pathogenic Escherichia coli by this population is of public health concern because exposure to low doses can result in infection. Screening food handlers and implementing public awareness programs is recommended as an intervention to control transmission of enteric pathogens.

  12. Gene cloning and overexpression of two conjugated polyketone reductases, novel aldo-keto reductase family enzymes, of Candida parapsilosis.

    PubMed

    Kataoka, M; Delacruz-Hidalgo, A-R G; Akond, M A; Sakuradani, E; Kita, K; Shimizu, S

    2004-04-01

    The genes encoding two conjugated polyketone reductases (CPR-C1, CPR-C2) of Candida parapsilosis IFO 0708 were cloned and sequenced. The genes encoded a total of 304 and 307 amino acid residues for CPR-C1 and CPR-C2, respectively. The deduced amino acid sequences of the two enzymes showed high similarity to each other and to several proteins of the aldo-keto reductase (AKR) superfamily. However, several amino acid residues in putative active sites of AKRs were not conserved in CPR-C1 and CPR-C2. The two CPR genes were overexpressed in Escherichia coli. The E. coli transformant bearing the CPR-C2 gene almost stoichiometrically reduced 30 mg ketopantoyl lactone/ml to D-pantoyl lactone.

  13. Molecular characterization of ESBL-producing Escherichia coli isolates from hospital- and community-acquired infections in NW Mexico.

    PubMed

    Miranda-Romero, Ana Laura; Silva-Sanchez, Jesus; Garza-Ramos, Ulises; Barrios, Humberto; Sánchez-Pérez, Alejandro; Reyna-Flores, Fernando

    2017-01-01

    We investigated the molecular characteristics of ESBL-producing E. coli (ESBL-PEc) isolates from two hospitals and community settings in Ciudad Obregon, Sonora, Mexico. Between 2011 and 2014, thirty-seven ESBL-PEc isolates were collected. The major encoded ESBL was the bla CTX-M-15 gene (97%); followed by 13.5% of the bla SHV-12 gene, and 5.5% encoded the bla TLA-1 gene. The PMQR gene aac(6´)-Ib-cr was detected in 97% of the isolates and the qnrB gene, in one isolate. The ESBL-PEc isolates corresponded to phylogenetic group B2, ST131. Our results highlight the dissemination of ESBL-PEc isolates in northwest Mexico (Ciudad Obregon, Sonora). Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Migratory White Stork (Ciconia ciconia): A Potential Vector of the OXA-48-Producing Escherichia coli ST38 Clone in Algeria.

    PubMed

    Bouaziz, Amira; Loucif, Lotfi; Ayachi, Ammar; Guehaz, Karima; Bendjama, Esma; Rolain, Jean-Marc

    2018-05-01

    The emergence of carbapenemase-producing Enterobacteriaceae is of great concern to public health worldwide. The aim of this study was to screen for the presence of carbapenemase-producing Enterobacteriaceae in white stork (Ciconia ciconia) migratory bird stools, and to investigate their molecular support on β-lactamase production. In March 2015, 32 fecal samples of white stork were collected in the Commune of El Madher Wilaya de Batna, in eastern Algeria. Samples were subjected to selective isolation of carbapenem-resistant Enterobacteriaceae. Representative colonies were screened phenotypically for carbapenemase production. Carbapenemase-producing isolates were subjected to antibiotic susceptibility testing and extended-spectrum β-lactamase (ESBL) coproduction. β-Lactamase determinants were searched for by PCR and sequencing. Three carbapenemase-producing Escherichia coli were obtained. Only one strain was positive for ESBL production. The OXA-48-type carbapenemase-encoding gene was detected in all isolates. Screening for other β-lactamase-encoding genes showed that all isolates coexpress the bla TEM gene, whereas one of them additionally harbored the bla CTX-M-15 ESBL gene. Multilocus sequence typing results showed that two strains belonged to the sequence type 38. This work demonstrated for the first time that the migratory white stork can play an important role in the dissemination of OXA-48-producing E. coli as a potential reservoir and vector.

  15. Construction and expression of immunogenic hybrid enterotoxigenic Escherichia coli CFA/I and CS2 colonization fimbriae for use in vaccines.

    PubMed

    Tobias, Joshua; Svennerholm, Ann-Mari; Holmgren, Jan; Lebens, Michael

    2010-07-01

    Enterotoxigenic Escherichia coli (ETEC) are an important cause of diarrheal morbidity in developing countries, especially in children and also of traveler's diarrhea. Colonization factors (CFs) of ETEC, like CFA/I and CS2 which are genetically and structurally related, play a substantial role in pathogenicity, and since intestinal-mucosal immune responses against CFs appear to be protective, much effort has focused on the development of a CF-based ETEC vaccine. We have constructed hybrid operons in which the major CS2 subunit-encoding cotA gene was inserted into the CFA/I operon, either replacing (hybrid I) or being added to the major CFA/I subunit-encoding cfaB gene (hybrid II). Using specific monoclonal antibodies against the major subunits of CFA/I and CS2, high levels of surface expression of both fimbrial subunits were shown in E. coli carrying the hybrid II operon. Oral immunization of mice with formalin-killed bacteria expressing hybrid II fimbriae induced strong CFA/I- and CS2-specific serum IgG + IgM and fecal IgA antibody responses, which were higher than those achieved by similar immunization with the reference strains. Bacteria expressing hybrid fimbriae are potential candidate strains in an oral-killed CF-ETEC vaccine, and the approach represents an attractive and novel means of producing a broad-spectrum ETEC vaccine.

  16. Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway.

    PubMed

    Erental, Ariel; Sharon, Idith; Engelberg-Kulka, Hanna

    2012-01-01

    In eukaryotes, the classical form of programmed cell death (PCD) is apoptosis, which has as its specific characteristics DNA fragmentation and membrane depolarization. In Escherichia coli a different PCD system has been reported. It is mediated by the toxin-antitoxin system module mazEF. The E. coli mazEF module is one of the most thoroughly studied toxin-antitoxin systems. mazF encodes a stable toxin, MazF, and mazE encodes a labile antitoxin, MazE, which prevents the lethal effect of MazF. mazEF-mediated cell death is a population phenomenon requiring the quorum-sensing pentapeptide NNWNN designated Extracellular Death Factor (EDF). mazEF is triggered by several stressful conditions, including severe damage to the DNA. Here, using confocal microscopy and FACS analysis, we show that under conditions of severe DNA damage, the triggered mazEF-mediated cell death pathway leads to the inhibition of a second cell death pathway. The latter is an apoptotic-like death (ALD); ALD is mediated by recA and lexA. The mazEF-mediated pathway reduces recA mRNA levels. Based on these results, we offer a molecular model for the maintenance of an altruistic characteristic in cell populations. In our model, the ALD pathway is inhibited by the altruistic EDF-mazEF-mediated death pathway.

  17. Growth properties associated with A-U replacement of specific G-C base pairs in 16S rRNA from Escherichia coli.

    PubMed Central

    Triman, K L

    1995-01-01

    Mutations that disrupt each of seven specific G-C base pairs in 16S rRNA from Escherichia coli confer loss of expression of a plasmid-encoded 16S rRNA selectable marker (spectinomycin resistance). However, A-U replacement of G-C base pairs at nucleotides 359/52 or 1292/1245 in 16S rRNA permits normal expression of the marker. By contrast, A-U replacements at 146/176, 153/168, 350/339, or 1293/1244 are associated with loss of expression of the marker. These genetic studies are designed to determine the importance of specific base pairs by assessment of the structural and functional impairments of 16S rRNA molecules resulting from expression of base pair substitutions at these positions. PMID:7543481

  18. Engineering the growth pattern and cell morphology for enhanced PHB production by Escherichia coli.

    PubMed

    Wu, Hong; Chen, Jinchun; Chen, Guo-Qiang

    2016-12-01

    E. coli JM109∆envC∆nlpD deleted with genes envC and nlpD responsible for degrading peptidoglycan (PG) led to long filamentous cell shapes. When cell fission ring location genes minC and minD of Escherichia coli were deleted, E. coli JM109∆minCD changed the cell growth pattern from binary division to multiple fissions. Bacterial morphology can be further engineered by overexpressing sulA gene resulting in inhibition on FtsZ, thus generating very long cellular filaments. By overexpressing sulA in E. coli JM109∆envC∆nlpD and E. coli JM109∆minCD harboring poly(3-hydroxybutyrate) (PHB) synthesis operon phbCAB encoded in plasmid pBHR68, respectively, both engineered cells became long filaments and accumulated more PHB compared with the wild-type. Under same shake flask growth conditions, E. coli JM109∆minCD (pBHR68) overexpressing sulA grown in multiple fission pattern accumulated approximately 70 % PHB in 9 g/L cell dry mass (CDM), which was significantly higher than E. coli JM109∆envC∆nlpD and the wild type, that produced 7.6 g/L and 8 g/L CDM containing 64 % and 51 % PHB, respectively. Results demonstrated that a combination of the new division pattern with elongated shape of E. coli improved PHB production. This provided a new vision on the enhanced production of inclusion bodies.

  19. Diarrheagenic Escherichia coli strains recovered from urban pigeons (Columba livia) in Brazil and their antimicrobial susceptibility patterns.

    PubMed

    Silva, Vânia L; Nicoli, Jacques R; Nascimento, Thiago C; Diniz, Cláudio G

    2009-09-01

    Urban pigeons (Columba livia) come into close contact with humans and animals, and may contribute to the spread of infectious agents. These may include human pathogens such as diarrheagenic Escherichia coli strains, which are able to survive in pigeon feces, thus creating potential for human exposure and infection. Our objectives were to determine the occurrence of diarrheagenic E. coli strains in fresh feces from urban pigeons and their drug susceptibility patterns. E. coli strains were isolated from 100 fresh feces samples and presumptive phenotypic species identification was carried out, confirmed by amplification of specific 16S ribosomal RNA encoding DNA. Multiplex PCR was performed to characterize pathogenic strains. Drug susceptibility patterns were determined by the agar dilution method. Enteroinvasive E. coli, Shiga toxin-producing E. coli, enteropathogenic E. coli, and enterotoxigenic E. coli were detected at an overall rate of 12.1%. Among the isolated E. coli strains, 62.1% were susceptible to all tested drugs, whereas 37.9% were resistant to at least one of the antimicrobials tested. Amikacin was the less effective drug (36.8% resistance), followed by ampicillin (7.8%). No resistance was detected to gentamicin, ceftriaxone, and ceftazidime and almost all the isolates were susceptible to ampicillin-sulbactam (98.4%), levofloxacin (97.8%), and trimethoprim-sulfamethoxazole (96.1%). Since these pigeons may harbor multidrug-resistant pathogens, their presence in an urban environment could be an important component of infection spread, with impact on public health.

  20. Prevalence and antibiotic resistance patterns of diarrheagenic Escherichia coli isolated from adolescents and adults in Hamedan, Western Iran

    PubMed Central

    Alikhani, Mohammad Yousef; Hashemi, Seyyed Hamid; Aslani, Mohammad Mehdi; Farajnia, Safar

    2013-01-01

    Background and Objectives Pathogenic strains of Escherichia coli are a common cause of acute infectious diarrhea. The aim of this study was to investigate the frequency, virulence markers and antibiotic resistance patterns of diarrheagenic E. coli (DEC) isolated from adolescents and adults in Hamadan, west of Iran. Materials and Methods A total of 187 stool samples were collected from adults with acute diarrhea. Stool culture was performed by conventional methods for enteropathogenic bacteria. Virulence factor genes for DEC were detected by polymerase chain reaction. Antimicrobial susceptibility was tested using the disk diffusion method. Results Among the 187 patients, 40 (21.4%) were positive for DEC. The most frequently identified DEC was enteropathogenic E. coli (47.5%), followed by enteroaggregative (20%), enterotoxigenic (17.5%) and shiga-toxin producing E. coli (15%). No isolates of enteroinvasive E. coli were detected. All STEC strains were stx+ / eaeA-. Out of the seven ETEC strains, five (71.4%) produced ST, one (14.3%) produced only LT and one (14.3%) of the isolates produced both ST and LT encoded by est and elt genes, respectively. Among the 40 DEC strains 27(67.5%) were multidrug resistant. Conclusion DEC contribute to the burden of diarrhea in adults in Hamadan. Enteropathogenic E. coli was the most commonly identified DEC strain in the region studied. PMID:23466523

  1. Escherichia coli H-Genotyping PCR: a Complete and Practical Platform for Molecular H Typing.

    PubMed

    Banjo, Masaya; Iguchi, Atsushi; Seto, Kazuko; Kikuchi, Taisei; Harada, Tetsuya; Scheutz, Flemming; Iyoda, Sunao

    2018-06-01

    In Escherichia coli , more than 180 O groups and 53 H types have been recognized. The O:H serotyping of E. coli strains is an effective method for identifying strains with pathogenic potential and classifying them into clonal groups. In particular, the serotyping of Shiga toxin-producing E. coli (STEC) strains provides valuable information to evaluate the routes, sources, and prevalence of agents in outbreak investigations and surveillance. Here, we present a complete and practical PCR-based H-typing system, E. coli H-genotyping PCR, consisting of 10 multiplex PCR kits with 51 single PCR primer pairs. Primers were designed based on a detailed comparative analysis of sequences from all H-antigen (flagellin)-encoding genes, fliC and its homologs. The specificity of this system was confirmed by using all H type reference strains. Additionally, 362 serotyped wild strains were also used to evaluate its practicality. All 277 H-type-identified isolates gave PCR products that corresponded to the results of serological H typing. Moreover, 76 nonmotile and nine untypeable strains could be successfully subtyped into any H type by the PCR system. The E. coli H-genotyping PCR developed here allows broader, rapid, and low-cost subtyping of H types and will assist epidemiological studies as well as surveillance of pathogenic E. coli . Copyright © 2018 American Society for Microbiology.

  2. CoSMoS: Conserved Sequence Motif Search in the proteome

    PubMed Central

    Liu, Xiao I; Korde, Neeraj; Jakob, Ursula; Leichert, Lars I

    2006-01-01

    Background With the ever-increasing number of gene sequences in the public databases, generating and analyzing multiple sequence alignments becomes increasingly time consuming. Nevertheless it is a task performed on a regular basis by researchers in many labs. Results We have now created a database called CoSMoS to find the occurrences and at the same time evaluate the significance of sequence motifs and amino acids encoded in the whole genome of the model organism Escherichia coli K12. We provide a precomputed set of multiple sequence alignments for each individual E. coli protein with all of its homologues in the RefSeq database. The alignments themselves, information about the occurrence of sequence motifs together with information on the conservation of each of the more than 1.3 million amino acids encoded in the E. coli genome can be accessed via the web interface of CoSMoS. Conclusion CoSMoS is a valuable tool to identify highly conserved sequence motifs, to find regions suitable for mutational studies in functional analyses and to predict important structural features in E. coli proteins. PMID:16433915

  3. Recombinant Protein Expression in Escherichia coli (E.coli): What We Need to Know.

    PubMed

    Hayat, Seyed Mohammad Gheibi; Farahani, Najmeh; Golichenari, Behrouz; Sahebkar, Amir Hosein

    2018-01-31

    Host, vector, and culture conditions (including cultivation media) are considered among the three main elements contributing to a successful production of recombinant proteins. Accordingly, one of the most common hosts to produce recombinant therapeutic proteins is Escherichia coli. A comprehensive literature review was performed to identify important factors affecting production of recombinant proteins in Escherichia coli. Escherichia coli is taken into account as the easiest, quickest, and cheapest host with a fully known genome. Thus, numerous modifications have been carried out on Escherichia coli to optimize it as a good candidate for protein expression and; as a result, several engineered strains of Escherichia coli have been designed. In general; host strain, vector, and cultivation parameters are recognized as crucial ones determining success of recombinant protein expression in Escherichia coli. In this review, the role of host, vector, and culture conditions along with current pros and cons of different types of these factors leading to success of recombinant protein expression in Escherichia coli were discussed. Successful protein expression in Escherichia coli necessitates a broad knowledge about physicochemical properties of recombinant proteins, selection among common strains of Escherichia coli and vectors, as well as factors related to media including time, temperature, and inducer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Differential Substrate Specificity and Kinetic Behavior of Escherichia coli YfdW and Oxalobacter formigenes Formyl Coenzyme A Transferase▿ †

    PubMed Central

    Toyota, Cory G.; Berthold, Catrine L.; Gruez, Arnaud; Jónsson, Stefán; Lindqvist, Ylva; Cambillau, Christian; Richards, Nigel G. J.

    2008-01-01

    The yfdXWUVE operon appears to encode proteins that enhance the ability of Escherichia coli MG1655 to survive under acidic conditions. Although the molecular mechanisms underlying this phenotypic behavior remain to be elucidated, findings from structural genomic studies have shown that the structure of YfdW, the protein encoded by the yfdW gene, is homologous to that of the enzyme that mediates oxalate catabolism in the obligate anaerobe Oxalobacter formigenes, O. formigenes formyl coenzyme A transferase (FRC). We now report the first detailed examination of the steady-state kinetic behavior and substrate specificity of recombinant, wild-type YfdW. Our studies confirm that YfdW is a formyl coenzyme A (formyl-CoA) transferase, and YfdW appears to be more stringent than the corresponding enzyme (FRC) in Oxalobacter in employing formyl-CoA and oxalate as substrates. We also report the effects of replacing Trp-48 in the FRC active site with the glutamine residue that occupies an equivalent position in the E. coli protein. The results of these experiments show that Trp-48 precludes oxalate binding to a site that mediates substrate inhibition for YfdW. In addition, the replacement of Trp-48 by Gln-48 yields an FRC variant for which oxalate-dependent substrate inhibition is modified to resemble that seen for YfdW. Our findings illustrate the utility of structural homology in assigning enzyme function and raise the question of whether oxalate catabolism takes place in E. coli upon the up-regulation of the yfdXWUVE operon under acidic conditions. PMID:18245280

  5. Association of Antibiotic Resistance in Agricultural Escherichia coli Isolates with Attachment to Quartz▿

    PubMed Central

    Liu, Ping; Soupir, Michelle L.; Zwonitzer, Martha; Huss, Bridgette; Jarboe, Laura R.

    2011-01-01

    Surface water can be contaminated by bacteria from various sources, including manure from agricultural facilities. Attachment of these bacteria to soil and organic particles contributes to their transport through the environment, though the mechanism of attachment is unknown. As bacterial attachment to human tissues is known to be correlated with antibiotic resistance, we have investigated here the relationship between bacterial attachment to environmental particles and antibiotic resistance in agricultural isolates. We evaluated 203 Escherichia coli isolates collected from swine facilities for attachment to quartz, resistance to 13 antibiotics, and the presence of genes encoding 13 attachment factors. The genes encoding type I, EcpA, P pili, and Ag43 were detected, though none was significantly related to attachment. Quartz attachment was positively and significantly (P < 0.0038) related to combined resistance to amoxicillin/streptomycin/tetracycline/sulfamethazine/tylosin/chlortetracycline and negatively and significantly (P < 0.0038) related to combined resistance to nalidixic acid/kanamycin/neomycin. These results provide clear evidence for a link between antibiotic resistance and attachment to quartz in agricultural isolates. We propose that this may be due to encoding by the responsible genes on a mobile genetic element. Further exploration of the relationship between antibiotic resistance and attachment to environmental particles will improve the understanding and modeling of environmental transport processes, with the goal of preventing human exposure to antibiotic-resistant or virulent microorganisms. PMID:21821756

  6. Association of antibiotic resistance in agricultural Escherichia coli isolates with attachment to quartz.

    PubMed

    Liu, Ping; Soupir, Michelle L; Zwonitzer, Martha; Huss, Bridgette; Jarboe, Laura R

    2011-10-01

    Surface water can be contaminated by bacteria from various sources, including manure from agricultural facilities. Attachment of these bacteria to soil and organic particles contributes to their transport through the environment, though the mechanism of attachment is unknown. As bacterial attachment to human tissues is known to be correlated with antibiotic resistance, we have investigated here the relationship between bacterial attachment to environmental particles and antibiotic resistance in agricultural isolates. We evaluated 203 Escherichia coli isolates collected from swine facilities for attachment to quartz, resistance to 13 antibiotics, and the presence of genes encoding 13 attachment factors. The genes encoding type I, EcpA, P pili, and Ag43 were detected, though none was significantly related to attachment. Quartz attachment was positively and significantly (P < 0.0038) related to combined resistance to amoxicillin/streptomycin/tetracycline/sulfamethazine/tylosin/chlortetracycline and negatively and significantly (P < 0.0038) related to combined resistance to nalidixic acid/kanamycin/neomycin. These results provide clear evidence for a link between antibiotic resistance and attachment to quartz in agricultural isolates. We propose that this may be due to encoding by the responsible genes on a mobile genetic element. Further exploration of the relationship between antibiotic resistance and attachment to environmental particles will improve the understanding and modeling of environmental transport processes, with the goal of preventing human exposure to antibiotic-resistant or virulent microorganisms.

  7. Cloning, expression and structural stability of a cold-adapted ß-Galactosidase from Rahnella sp.R3

    USDA-ARS?s Scientific Manuscript database

    A novel gene was isolated for the first time from a psychrophilic gram-negative bacterium Rahnella sp.R3. It encoded a cold-adapted ß-galactosidase (R-ß-Gal). Recombinant R-ß-Gal was expressed in Escherichia coli BL21 (DE3), purified, and characterized. R-ß-Gal belongs to the glycosyl hydrolase fami...

  8. Enhanced detection and identification of Shiga toxin 1 and 2 from pathogenic bacteria by MALDI-TOF-TOF-MS/MS-PSD and top-down proteomic analysis

    USDA-ARS?s Scientific Manuscript database

    Shiga toxin producing Escherichia coli (STEC) represent a continuing threat to the Nation’s food supply and public health. Shiga toxin genes (stx) are encoded in lambda-like bacteriophages whose genome is inserted into the bacterial DNA. Environmental stress can trigger bacteriophage replication a...

  9. TLA-2, a Novel Ambler Class A Expanded-Spectrum β-Lactamase

    PubMed Central

    Girlich, Delphine; Poirel, Laurent; Schlüter, Andreas; Nordmann, Patrice

    2005-01-01

    β-Lactamase TLA-2 is encoded by a 47-kb plasmid isolated from an unidentified bacterial strain from a wastewater treatment plant. TLA-2 is an Ambler class A β-lactamase that shares 52% amino acid identity with CGA-1 from Chryseobacterium gleum and 51% with TLA-1 from Escherichia coli. The enzyme hydrolyzes mostly cephalosporins. PMID:16251326

  10. Feasibility of Screening for Antibiotic Resistance-Part II

    DTIC Science & Technology

    2005-08-01

    fluoroquinolones were introduced on the market. The first two generations are not widely used anymore, because of widespread resistance or ineffectiveness...Mutations that confer resistance against ciprofloxacin have been found in all four genes encoding subunits of Topoisomerase H and IV, and also in an entirely...aerogenes, Erwinia carotovora, Escherichia coli K12, Francisella tularensis, Klebsiella pneumoniae , Neisseria gonorrhoeae, Providencia stuartii

  11. Divergently overlapping cis-encoded antisense RNA regulating toxin-antitoxin systems from E. coli: hok/sok, ldr/rdl, symE/symR.

    PubMed

    Kawano, Mitsuoki

    2012-12-01

    Toxin-antitoxin (TA) systems are categorized into three classes based on the type of antitoxin. In type I TA systems, the antitoxin is a small antisense RNA that inhibits translation of small toxic proteins by binding to the corresponding mRNAs. Those type I TA systems were originally identified as plasmid stabilization modules rendering a post-segregational killing (PSK) effect on the host cells. The type I TA loci also exist on the Escherichia coli chromosome but their biological functions are less clear. Genetic organization and regulatory elements of hok/sok and ldr/rdl families are very similar and the toxins are predicted to contain a transmembrane domain, but otherwise share no detectable sequence similarity. This review will give an overview of the type I TA modules of E. coli K-12, especially hok/sok, ldr/rdl and SOS-inducible symE/symR systems, which are regulated by divergently overlapping cis-encoded antisense RNAs.

  12. Urinary Tract Physiological Conditions Promote Ciprofloxacin Resistance in Low-Level-Quinolone-Resistant Escherichia coli

    PubMed Central

    Rodríguez-Martínez, José Manuel; Costas, Coloma; Aznar, Javier; Pascual, Álvaro

    2016-01-01

    Escherichia coli isolates carrying chromosomally encoded low-level-quinolone-resistant (LLQR) determinants are frequently found in urinary tract infections (UTIs). LLQR mutations are considered the first step in the evolutionary pathway producing high-level fluoroquinolone resistance. Therefore, their evolution and dissemination might influence the outcome of fluoroquinolone treatments of UTI. Previous studies support the notion that low urine pH decreases susceptibility to ciprofloxacin (CIP) in E. coli. However, the effect of the urinary tract physiological parameters on the activity of ciprofloxacin against LLQR E. coli strains has received little attention. We have studied the activity of ciprofloxacin under physiological urinary tract conditions against a set of well-characterized isogenic E. coli derivatives carrying the most prevalent chromosomal mutations (ΔmarR, gyrA-S83L, gyrA-D87N, and parC-S80R and some combinations). The results presented here demonstrate that all the LLQR strains studied became resistant to ciprofloxacin (according to CLSI guidelines) under physiological conditions whereas the control strain lacking LLQR mutations did not. Moreover, the survival of some LLQR E. coli variants increased up to 100-fold after challenge with a high concentration of ciprofloxacin under UTI conditions compared to the results seen with Mueller-Hinton broth. These selective conditions could explain the high prevalence of LLQR mutations in E. coli. Furthermore, our data strongly suggest that recommended methods for MIC determination produce poor estimations of CIP activity against LLQR E. coli in UTIs. PMID:27139482

  13. Development of a genetically engineered Escherichia coli strain for plasmid transformation in Corynebacterium glutamicum.

    PubMed

    Li, Hedan; Zhang, Lirong; Guo, Wei; Xu, Daqing

    2016-12-01

    Gene disruption and replacement in Corynebacterium glutamicum is dependent upon a high transformation efficiency. The cglIR-cgIIR restriction system is a major barrier to introduction of foreign DNA into Corynebacterium glutamicum cells. To improve the transformation efficiency of C. glutamicum, the cglIM gene encoding methyltransferase in the cglIR-cglIIR-cglIM restriction-modification system of C. glutamicum ATCC 13032 was chromosomally integrated and expressed in Escherichia coli, resulting in an engineered strain E. coli AU1. The electro-transformation experiments of C. glutamicum ATCC 13032 with the E. coli-C. glutamicum shuttle plasmid pAU4 showed that the transformation efficiency of C. glutamicum with pAU4 DNA extracted from E. coli TG1/pAU4 was 1.80±0.21×10 2 cfu/μg plasmid DNA, while using pAU4 DNA extracted from E. coli AU1/pAU4, the transformation efficiency reached up to 5.22±0.33×10 6 cfu/μg plasmid DNA. The results demonstrated that E. coli AU1 is able to confer the cglIM-specific DNA methylation pattern to its resident plasmid, which makes the plasmid resistant to the cglIR-cglIIR restriction and efficiently transferred into C. glutamicum. E. coli AU1 is a useful intermediate host for efficient transformation of C. glutamicum. Copyright © 2016. Published by Elsevier B.V.

  14. Metabolic engineering of the Stevia rebaudiana ent-kaurene biosynthetic pathway in recombinant Escherichia coli.

    PubMed

    Kong, Min Kyung; Kang, Hyun-Jun; Kim, Jin Ho; Oh, Soon Hwan; Lee, Pyung Cheon

    2015-11-20

    The ent-kaurene is a dedicated precursor pool and is responsible for synthesizing natural sweeteners such as steviol glycosides. In this study, to produce ent-kaurene in Escherichia coli, we modularly constructed and expressed two ent-kaurene genes encoding ent-copalyl diphosphate synthase (CPPS) and ent-kaurene synthase (KS) from Stevia rebaudiana known as a typical plant producing steviol glycoside. The CPPS and KS from S. rebaudiana were functionally expressed in a heterologous host E. coli. Furthermore, in order to enhance ent-kaurene production in E. coli, six geranylgeranyl diphosphate synthases (GGPPS) from various microorganisms and eight strains of E. coli as host were compared by measuring ent-kaurene production. The highest ent-kaurene production of approximately 41.1mg/L was demonstrated in E. coli strain MG1655 co-expressing synthetic CPPS-KS module and GGPPS from Rhodobacter sphaeroides. The ent-kaurene production was further increased up to 179.6 mg/L by overexpression of the three key enzymes for isoprenoid precursor, 1-deoxyxylulose-5-phosphate synthase (DXS), farnesyl diphosphate synthase (IspA) and isopentenyl diphosphate isomerase (IDI) from E. coli. Finally, the highest titer of ent-kaurene (578 mg/L) with a specific yield of ent-kaurene of 143.5mg/g dry cell weight was obtained by culturing E. coli strain MG1655 co-expressing the ent-kaurene module, DXS, IDI and IspA in 1L bioreactor containing 20 g/L glycerol. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Lysogeny with Shiga Toxin 2-Encoding Bacteriophages Represses Type III Secretion in Enterohemorrhagic Escherichia coli

    PubMed Central

    Xu, Xuefang; McAteer, Sean P.; Tree, Jai J.; Shaw, Darren J.; Wolfson, Eliza B. K.; Beatson, Scott A.; Roe, Andrew J.; Allison, Lesley J.; Chase-Topping, Margo E.; Mahajan, Arvind; Tozzoli, Rosangela; Woolhouse, Mark E. J.; Morabito, Stefano; Gally, David L.

    2012-01-01

    Lytic or lysogenic infections by bacteriophages drive the evolution of enteric bacteria. Enterohemorrhagic Escherichia coli (EHEC) have recently emerged as a significant zoonotic infection of humans with the main serotypes carried by ruminants. Typical EHEC strains are defined by the expression of a type III secretion (T3S) system, the production of Shiga toxins (Stx) and association with specific clinical symptoms. The genes for Stx are present on lambdoid bacteriophages integrated into the E. coli genome. Phage type (PT) 21/28 is the most prevalent strain type linked with human EHEC infections in the United Kingdom and is more likely to be associated with cattle shedding high levels of the organism than PT32 strains. In this study we have demonstrated that the majority (90%) of PT 21/28 strains contain both Stx2 and Stx2c phages, irrespective of source. This is in contrast to PT 32 strains for which only a minority of strains contain both Stx2 and 2c phages (28%). PT21/28 strains had a lower median level of T3S compared to PT32 strains and so the relationship between Stx phage lysogeny and T3S was investigated. Deletion of Stx2 phages from EHEC strains increased the level of T3S whereas lysogeny decreased T3S. This regulation was confirmed in an E. coli K12 background transduced with a marked Stx2 phage followed by measurement of a T3S reporter controlled by induced levels of the LEE-encoded regulator (Ler). The presence of an integrated Stx2 phage was shown to repress Ler induction of LEE1 and this regulation involved the CII phage regulator. This repression could be relieved by ectopic expression of a cognate CI regulator. A model is proposed in which Stx2-encoding bacteriophages regulate T3S to co-ordinate epithelial cell colonisation that is promoted by Stx and secreted effector proteins. PMID:22615557

  16. delta. -aminolevulinic acid dehydratase deficiency can cause. delta. -aminolevulinate auxotrophy in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neill, G.P.; Michelsen, U.; Soll, D.

    Ethylmethane sulfonate-induced mutants of several Escherichia coli strains that required {delta}-aminolevulinic acid (ALA) for growth were isolated by penicillin enrichment or by selection for respiratory-defective strains resistant to the aminoglycoside antibiotic kanamycin. Three classes of mutants were obtained. Two-thirds of the strains were mutants in hemA. Representative of a third of the mutations was the hem-201 mutation. This mutation was mapped to min 8.6 to 8.7. Complementation of the auxotrophic phenotype by wild-type DNA from the corresponding phage 8F10 allowed the isolation of the gene. DNA sequence analysis revealed that the hem-201 gene encoded ALA dehydratase and was similar tomore » a known hemB gene of E. coli. Complementation studies of hem-201 and hemB1 mutant strains with various hem-201 gene subfragments showed that hem-201 and the previously reported hemB1 mutation are in the same gene and that no other gene is required to complement the hem-201 mutant. ALA-forming activity from glutamate could not be detected by in vitro or in vivo assays. Extracts of hem-201 cells had drastically reduce ALA dehydratase levels, while cells transformed with the plasmid-encoded wild-type gene possessed highly elevated enzyme levels. The ALA requirement for growth, the lack of any ALA-forming enzymatic activity, and greatly reduced ALA dehydratase activity of the hem-201 strain suggest that a diffusible product of an enzyme in the heme biosynthetic pathway after ALA formation is involved in positive regulation of ALA biosynthesis. Analysis of another class of ALA-requiring mutants showed that the auxotrophy of the hem-205 mutant could be relieved by either methionine or cysteine and that the mutation maps in the cysG gene, which encodes uroporphyrinogen III methylase. The properties of these nonleaky ALA-requiring strains suggest that ALA is involved more extensively in E. coli intermediary metabolism than has been appreciated to date.« less

  17. [Plasticity of bacterial genomes: pathogenicity islands and the locus of enterocyte effacement (LEE)].

    PubMed

    Kirsch, Petra; Jores, Jörg; Wieler, Lothar H

    2004-01-01

    Many bacterial virulence attributes, like toxins, adhesins, invasins, iron uptake systems, are encoded within specific regions of the bacterial genome. These in size varying regions are termed pathogenicity islands (PAIs) since they confer pathogenic properties to the respective micro-organism. Per definition PAIs are exclusively found in pathogenic strains and are often inserted near transfer-RNA genes. Nevertheless, non-pathogenic bacteria also possess foreign DNA elements that confer advantageous features, leading to improved fitness. These additional DNA elements as well as PAIs are termed genomic islands and were acquired during bacterial evolution. Significant G+C content deviation in pathogenicity islands with respect to the rest of the genome, the presence of direct repeat sequences at the flanking regions, the presence of integrase gene determinants as other mobility features,the particular insertion site (tRNA gene) as well as the observed genetic instability suggests that pathogenicity islands were acquired by horizontal gene transfer. PAIs are the fascinating proof of the plasticity of bacterial genomes. PAIs were originally described in human pathogenic Escherichia (E.) coli strains. In the meantime PAIs have been found in various pathogenic bacteria of humans, animals and even plants. The Locus of Enterocyte Effacement (LEE) is one particular widely distributed PAI of E coli. In addition, it also confers pathogenicity to the related species Citrobacter (C.) rodentium and Escherichia (E.) alvei. The LEE is an important virulence feature of several animal pathogens. It is an obligate PAI of all animal and human enteropathogenic E. coli (EPEC), and most enterohaemorrhegic E. coli (EHEC) also harbor the LEE. The LEE encodes a type III secretion system, an adhesion (intimin) that mediates the intimate contact between the bacterium and the epithelial cell, as well as various proteins which are secreted via the type III secretion system. The LEE encoded virulence features are responsible for the formation of so called attaching and effacing (AE) lesions in the intestinal epithelium. Due to its wide distribution in animal pathogens, LEE encoded antigens are suitable vaccine antigens. Acquisition and structure of the LEE pathogenicity island is the crucial point of numerous investigations. However, the evolution of the LEE, its origin and further spread in E. coli, are far from being resolved.

  18. The SXT conjugative element and linear prophage N15 encode toxin-antitoxin-stabilizing systems homologous to the tad-ata module of the Paracoccus aminophilus plasmid pAMI2.

    PubMed

    Dziewit, Lukasz; Jazurek, Magdalena; Drewniak, Lukasz; Baj, Jadwiga; Bartosik, Dariusz

    2007-03-01

    A group of proteic toxin-antitoxin (TA) cassettes whose representatives are widely distributed among bacterial genomes has been identified. These cassettes occur in chromosomes, plasmids, bacteriophages, and noncomposite transposons, as well as in the SXT conjugative element of Vibrio cholerae. The following four homologous loci were subjected to detailed comparative studies: (i) tad-ata from plasmid pAMI2 of Paracoccus aminophilus (the prototype of this group), (ii) gp49-gp48 from the linear bacteriophage N15 of Escherichia coli, (iii) s045-s044 from SXT, and (iv) Z3230-Z3231 from the genomic island of enterohemorrhagic Escherichia coli O157:H7 strain EDL933. Functional analysis revealed that all but one of these loci (Z3230-Z3231) are able to stabilize heterologous replicons, although the host ranges varied. The TA cassettes analyzed have the following common features: (i) the toxins are encoded by the first gene of each operon; (ii) the antitoxins contain a predicted helix-turn-helix motif of the XRE family; and (iii) the cassettes have two promoters that are different strengths, one which is located upstream of the toxin gene and one which is located upstream of the antitoxin gene. All four toxins tested are functional in E. coli; overexpression of the toxins (in the absence of antitoxin) results in a bacteriostatic effect manifested by elongation of bacterial cells and growth arrest. The toxins have various effects on cell viability, which suggests that they may recognize different intracellular targets. Preliminary data suggest that different cellular proteases are involved in degradation of antitoxins encoded by the loci analyzed.

  19. Draft genome sequence of Escherichia coli ST977: A clinical multidrug-resistant strain harbouring blaNDM-3 isolated from a bloodstream infection.

    PubMed

    Li, Xi; Sun, Long; Zhu, Yongze; Shen, Mengyuan; Tu, Yuexing

    2018-04-14

    The emergence of carbapenem-resistant Escherichia coli has become a serious challenge to manage in the clinic because of multidrug resistance. Here we report the draft genome sequence of NDM-3-producing E. coli strain NT1 isolated from a bloodstream infection in China. Whole genomic DNA of E. coli strain NT1 was extracted and was sequenced using an Illumina HiSeq™ X Ten platform. The generated sequence reads were assembled using CLC Genomics Workbench. The draft genome was annotated using Rapid Annotation using Subsystem Technology (RAST). Bioinformatics analysis was further performed. The genome size was calculated at 5,353 620bp, with 5297 protein-coding sequences and the presence of genes conferring resistance to aminoglycosides, β-lactams, quinolones, macrolides, phenicols, sulphonamides, tetracycline and trimethoprim. In addition, genes encoding virulence factors were also identified. To our knowledge, this is the first report of an E. coli strain producing NDM-3 isolated from a human bloodstream infection. The genome sequence will provide valuable information to understand antibiotic resistance mechanisms and pathogenic mechanisms in this strain. Close surveillance is urgently needed to monitor the spread of NDM-3-producing isolates. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  20. The cytochrome complex SoxXA of Paracoccus pantotrophus is produced in Escherichia coli and functional in the reconstituted sulfur-oxidizing enzyme system.

    PubMed

    Rother, Dagmar; Friedrich, Cornelius G

    2002-07-29

    The heterodimeric c-type cytochrome complex SoxXA of Paracoccus pantotrophus was produced in Escherichia coli. The soxX and soxA genes, separated by two genes in the sox gene cluster of P. pantotrophus, were fused with ribosome binding sites optimal for E. coli and combined to give soxXA in pRD133.27. The cytochrome complex SoxXA was produced in E. coli M15 containing pRD133.27, pREP4 encoding the Lac repressor and plasmid pEC86, carrying essential cytochrome c maturation genes. SoxX and SoxA were formed in a ratio of about 2.5:1. SoxA appeared to be unstable when not complexed with SoxX. The cytochrome complex SoxXA, purified to homogeneity from periplasmic extracts of E. coli M15 (pRD133.27, pREP4, pEC86), exhibited identical biochemical and biophysical properties as compared to SoxXA of P. pantotrophus. Moreover, this cytochrome complex was shown to be equally catalytically active with respect to rates and reactivity with different sulfur substrates in the reconstituted sulfur-oxidizing enzyme system using homogeneous Sox-proteins of P. pantotrophus. Homogeneous SoxX was catalytically inactive.

  1. Xylanase from the extremely thermophilic bacterium Caldocellum saccharolyticum: Overexpression of the gene in Escherichia coli and characterization of the gene product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luethi, E.; Jasmat, N.B.; Bergquist, P.L.

    A xylanase encoded by the xynA gene of the extreme thermophile Caldocellum saccharolyticum was overexpressed in Escherichia coli by cloning the gene downstream from the temperature-inducible {lambda} P{sub R} and P{sub L} promoters of the expression vector pJLA602. Induction of up to 55 times was obtained by growing the cells at 42{degrees}C, and the xylanase made up of 20% of the whole-cell protein content. The enzyme was located in the cytoplasmic fraction in E.coli. The temperature and pH optima were determined to be 70{degrees}C and pH 5.5 to 6, respectively. The xylanase was stable for at least 72 h ifmore » incubated at 60{degrees}C, with half-lives of 8 to 9 h at 70{degrees}C and 2 to 3 min at 80{degrees}C. The enzyme had high activity on xylan and ortho-nitrophenyl {beta}-D-xylopyranoside and some activity on carboxymethyl cellulose and para-nitrophenyl {beta}-D-cellobioside. The gene was probably expressed from its own promoter in E. coli. Translation of the xylanase overproduced in E. coli seemed to initiate at a GTG codon and not at an ATG codon as previously determined.« less

  2. Cloning and expression of antibacterial goat lactoferricin from Escherichia coli AD494(DE3)pLysS expression system.

    PubMed

    Chen, Gen-Hung; Yin, Li-Jung; Chiang, I-Hua; Jiang, Shann-Tzong

    2008-12-01

    Goat lactoferricin (GLfcin), an antibacterial peptide, is released from the N terminus of goat lactoferrin by pepsin digestion. Two GLfcin-related cDNAs, GLfcin L and GLfcin S, encoding Ala20-Ser60 and Ser36-Ser60 of goat lactoferrin, respectively, were cloned into the pET-23a(+) expression vector upstream from (His)6-Tag gene and transformed into Escherichia coli AD494(DE3)pLysS expression host. After being induced by isopropyl-beta-D-thiogalactopyranoside (IPTG), two (His)6-Tag fused recombinant lactoferricins, GLfcin L-His*Tag and GLfcin S-His*Tag, were expressed in soluble form within the E. coli cytoplasm. The GLfcin L-His*Tag and GLfcin S-His*Tag were purified using HisTrap affinity chromatography. According to an antibacterial activity assay using the agar diffusion method, GLfcin L-His*Tag had antibacterial activity against E. coli BCRC 11549, Staphylococcus aureus BCRC 25923, and Propionibacterium acnes BCRC 10723, while GLfcin S-His*Tag was able to inhibit the growth of E. coli BCRC 11549 and P. acnes BCRC 10723. These two recombinant lactoferricins behaved as thermostable peptides, which could retain their activity for up to 30 min of exposure at 100 degrees C.

  3. Systematic Engineering of Escherichia coli for d-Lactate Production from Crude Glycerol.

    PubMed

    Wang, Zei Wen; Saini, Mukesh; Lin, Li-Jen; Chiang, Chung-Jen; Chao, Yun-Peng

    2015-11-04

    Crude glycerol resulting from biodiesel production is an abundant and renewable resource. However, the impurities in crude glycerol usually make microbial fermentation problematic. This issue was addressed by systematic engineering of Escherichia coli for the production of d-lactate from crude glycerol. First, mgsA and the synthetic pathways of undesired products were eliminated in E. coli, rendering the strain capable of homofermentative production of optically pure d-lactate. To direct carbon flux toward d-lactate, the resulting strain was endowed with an enhanced expression of glpD-glpK in the glycerol catabolism and of a heterologous gene encoding d-lactate dehydrogenase. Moreover, the strain was evolved to improve its utilization of cruder glycerol and subsequently equipped with the FocA channel to export intracellular d-lactate. Finally, the fed-batch fermentation with two-phase culturing was carried out with a bioreactor. As a result, the engineered strain enabled production of 105 g/L d-lactate (99.9% optical purity) from 121 g/L crude glycerol at 40 h. The result indicates the feasibility of our approach to engineering E. coli for the crude glycerol-based fermentation.

  4. Functional expression of plant acetolactate synthase genes in Escherichia coli

    PubMed Central

    Smith, Julie K.; Schloss, John V.; Mazur, Barbara J.

    1989-01-01

    Acetolactate synthase (ALS; EC 4.1.3.18) is the first common enzyme in the biosynthetic pathways leading to leucine, isoleucine, and valine. It is the target enzyme for three classes of structurally unrelated herbicides, the sulfonylureas, the imidazolinones, and the triazolopyrimidines. A cloned ALS gene from the small cruciferous plant Arabidopsis thaliana has been fused to bacterial transcription/translation signals and the resulting plasmid has been used to transform Escherichia coli. The cloned plant gene, which includes sequences encoding the chloroplast transit peptide, is functionally expressed in the bacteria. It is able to complement genetically a strain of E. coli that lacks endogenous ALS activity. An ALS gene cloned from a line of Arabidopsis previously shown to be resistant to sulfonylurea herbicides has been similarly expressed in E. coli. The herbicide-resistance phenotype is expressed in the bacteria, as assayed by both enzyme activity and the ability to grow in the presence of herbicides. This system has been useful for purifying substantial amounts of the plant enzyme, for studying the sequence parameters involved in subcellular protein localization, and for characterizing the interactions that occur between ALS and its various inhibitors. Images PMID:16594052

  5. Cloning of the Escherichia coli endo-1,4-D-glucanase gene and identification of its product.

    PubMed

    Park, Y W; Yun, H D

    1999-03-01

    A plasmid (pYP17) containing a genomic DNA insert from Escherichia coli K-12 that confers the ability to hydrolyze carboxymethylcellulose (CMC) was isolated from a genomic library constructed in the cosmid vector pLAFR3 in E. coli DH5alpha. A small 1.65-kb fragment, designated bcsC (pYP300), was sequenced and found to contain an ORF of 1,104 bp encoding a protein of 368 amino acid residues, with a calculated molecular weight of 41,700 Da. BcsC carries a typical prokaryotic signal peptide of 21 amino acid residues. The predicted amino acid sequence of the BcsC protein is similar to that of CelY of Erwinia chrysanthemi, CMCase of Cellulomonas uda, EngX of Acetobacter xylinum, and CelC of Agrobacterium tumefaciens. Based on these sequence similarities, we propose that the bcsC gene is a member of glycosyl hydrolase family 8. The apparent molecular mass of the protein, when expressed in E. coli, is approximately 40 kDa, and the CMCase activity is found mainly in the extracellular space. The enzyme is optimally active at pH 7 and a temperature of 40 degrees C.

  6. Functional expression of a human GDP-L-fucose transporter in Escherichia coli.

    PubMed

    Förster-Fromme, Karin; Schneider, Sarah; Sprenger, Georg A; Albermann, Christoph

    2017-02-01

    To investigate the translocation of nucleotide-activated sugars from the cytosol across a membrane into the endoplasmatic reticulum or the Golgi apparatus which is an important step in the synthesis of glycoproteins and glycolipids in eukaryotes. The heterologous expression of the recombinant and codon-adapted human GDP-L-fucose antiporter gene SLC35C1 (encoding an N-terminal OmpA-signal sequence) led to a functional transporter protein located in the cytoplasmic membrane of Escherichia coli. The in vitro transport was investigated using inverted membrane vesicles. SLC35C1 is an antiporter specific for GDP-L-fucose and depending on the concomitant reverse transport of GMP. The recombinant transporter FucT1 exhibited an activity for the transport of 3 H-GDP-L-fucose with a V max of 8 pmol/min mg with a K m of 4 µM. The functional expression of SLC35C1 in GDP-L-fucose overproducing E. coli led to the export of GDP-L-fucose to the culture supernatant. The export of GDP-L-fucose by E. coli provides the opportunity for the engineering of a periplasmatic fucosylation reaction in recombinant bacterial cells.

  7. The Yersiniabactin-Associated ATP Binding Cassette Proteins YbtP and YbtQ Enhance Escherichia coli Fitness during High-Titer Cystitis

    PubMed Central

    Koh, Eun-Ik; Hung, Chia S.

    2016-01-01

    The Yersinia high-pathogenicity island (HPI) is common to multiple virulence strategies used by Escherichia coli strains associated with urinary tract infection (UTI). Among the genes in this island are ybtP and ybtQ, encoding distinctive ATP binding cassette (ABC) proteins associated with iron(III)-yersiniabactin import in Yersinia pestis. In this study, we compared the impact of ybtPQ on a model E. coli cystitis strain during in vitro culture and experimental murine infections. A ybtPQ-null mutant exhibited no growth defect under standard culture conditions, consistent with nonessentiality in this background. A growth defect phenotype was observed and genetically complemented in vitro during iron(III)-yersiniabactin-dependent growth. Following inoculation into the bladders of C3H/HEN and C3H/HeOuJ mice, this strain exhibited a profound, 106-fold competitive infection defect in the subgroup of mice that progressed to high-titer bladder infections. These results identify a virulence role for YbtPQ in the highly inflammatory microenvironment characteristic of high-titer cystitis. The profound competitive defect may relate to the apparent selection of Yersinia HPI-positive E. coli in uncomplicated clinical UTIs. PMID:26883590

  8. Counterselection method based on conditional silencing of antitoxin genes in Escherichia coli.

    PubMed

    Tsukuda, Miyuki; Nakashima, Nobutaka; Miyazaki, Kentaro

    2015-11-01

    Counterselection is a genetic engineering technique to eliminate specific genetic fragments containing selectable marker genes. Although the technique is widely used in bacterial genome engineering and plasmid curing experiments, the repertoire of the markers usable in Escherichia coli is limited. Here we developed a novel counterselection method in E. coli based on antisense RNA (asRNA) technology directed against toxin-antitoxin (TA) modules. Under normal conditions, excess antitoxin neutralizes its cognate toxin and thus the module is stably maintained in the genome. We hypothesised that repression of an antitoxin gene would perturb cell growth due to the toxin being released. We designed asRNAs corresponding to all 19 type II antitoxins encoded in the E. coli genome. asRNAs were then conditionally expressed; repression of MqsA in the MqsR/MqsA module had the greatest inhibitory effect, followed by RnlB in the RnlA/RnlB module. The utility of asRNA(MqsA) as a counterselection marker was demonstrated by efficient plasmid curing and strain improvement experiments. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Bacterial synthesis of N-hydroxycinnamoyl phenethylamines and tyramines.

    PubMed

    Sim, Geun Young; Yang, So-Mi; Kim, Bong Gyu; Ahn, Joong-Hoon

    2015-10-13

    Hydroxycinnamic acids (HCAs) including cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid, are C6-C3 phenolic compounds that are synthesized via the phenylpropanoid pathway. HCAs serve as precursors for the synthesis of lignins, flavonoids, anthocyanins, stilbenes and other phenolic compounds. HCAs can also be conjugated with diverse compounds including quinic acid, hydroxyl acids, and amines. Hydroxycinnamoyl (HC) amine conjugates such as N-HC tyramines and N-HC phenethylamines have been considered as potential starting materials to develop antiviral and anticancer drugs. We synthesized N-HC tyramines and N-HC phenethylamines using three different approaches in Escherichia coli. Five N-HC phenethylamines and eight N-HC tyramines were synthesized by feeding HCAs and phenethylamine or tyramine to E. coli harboring 4CL (encoding 4-coumarate CoA:ligase) and either SHT (encoding phenethylamine N-HC transferase) or THT (encoding tyramine N-HC transferase). Also, N-(p-coumaroyl) phenethylamine and N-(p-coumaroyl) tyramine were synthesized from p-coumaric acid using E. coli harboring an additional gene, PDC (encoding phenylalanine decarboxylase) or TDC (encoding tyrosine decarboxylase). Finally, we synthesized N-(p-coumaroyl) phenethylamine and N-(p-coumaroyl) tyramine from glucose by reconstructing the metabolic pathways for their synthesis in E. coli. Productivity was maximized by optimizing the cell concentration and incubation temperature. We reconstructed the metabolic pathways for synthesis of N-HC tyramines and N-HC phenethylamines by expressing several genes including 4CL, TST or SHT, PDC or TDC, and TAL (encoding tyrosine ammonia lyase) and engineering the shikimate metabolic pathway to increase endogenous tyrosine concentration in E. coli. Approximately 101.9 mg/L N-(p-coumaroyl) phenethylamine and 495.4 mg/L N-(p-coumaroyl) tyramine were synthesized from p-coumaric acid. Furthermore, 152.5 mg/L N-(p-coumaroyl) phenethylamine and 94.7 mg/L N-(p-coumaroyl) tyramine were synthesized from glucose.

  10. Subunit association of gamma-glutamyltranspeptidase of Escherichia coli K-12.

    PubMed

    Hashimoto, W; Suzuki, H; Nohara, S; Tachi, H; Yamamoto, K; Kumagai, H

    1995-12-01

    gamma-Glutamyltranspeptidase [EC 2.3.2.2] of Escherichia coli K-12 consists of one large subunit and one small subunit, which can be separated from each other by high-performance liquid chromatography. Using ion spray mass spectrometry, the masses of the large and the small subunit were determined to be 39,207 and 20,015, respectively. The large subunit exhibited no gamma-glutamyltranspeptidase activity and the small subunit had little enzymatic activity, but a mixture of the two subunits showed partial recovery of the enzymatic activity. The results of native-polyacrylamide gel electrophoresis suggested that they could partially recombine, and that the recombined dimer exhibited enzymatic activity. The gene of gamma-glutamyltranspeptidase encoded a signal peptide, and the large and small subunits in a single open reading frame in that order. Two kinds of plasmid were constructed encoding the signal peptide and either the large or the small subunit. A gamma-glutamyltranspeptidase-less mutant of E. coli K-12 was transformed with each plasmid or with both of them. The strain harboring the plasmid encoding each subunit produced a small amount of the corresponding subunit protein in the periplasmic space but exhibited no enzymatic activity. The strain transformed with both plasmids together exhibited the enzymatic activity, but its specific activity was approximately 3% of that of a strain harboring a plasmid encoding the intact structural gene. These results indicate that a portion of the separated large and small subunits can be reconstituted in vitro and exhibit the enzymatic activity, and that the expressed large and small subunits independently are able to associate in vivo and be folded into an active structure, though the specific activity of the associated subunits was much lower than that of native enzyme. This suggests that the synthesis of gamma-glutamyltranspeptidase in a single precursor polypeptide and subsequent processing are more effective to construct the intact structure of gamma-glutamyltranspeptidase than the association of the separated large and small subunits.

  11. Enhancement of geraniol resistance of Escherichia coli by MarA overexpression.

    PubMed

    Shah, Asad Ali; Wang, Chonglong; Chung, Young-Ryun; Kim, Jae-Yean; Choi, Eui-Sung; Kim, Seon-Won

    2013-03-01

    Improvement of a microorganism's tolerance against organic solvents is required for a microbial factory producing terpenoid based biofuels. The bacterial genes, marA, imp, cls and cti have been found to increase organic solvent tolerance. Thus, the tolerance against the following terpenoids (isopentenol, geraniol, myrcene, and farnesol) was studied with overexpression of marA, imp, cls and cti genes in Escherichia coli. The marA overexpression significantly enhanced the tolerance of E. coli against geraniol, whereas there was no tolerance improvement against the terpenoids by overexpression of cls and cti genes. The imp overexpression even yielded sensitive phenotype to the tested solvents. The colony forming efficiency of the marA overexpressing E. coli was increased by 10(4)-fold in plate overlay of geraniol compared to that of wild type E. coli and a two-fold decrease of intracellular geraniol accumulation was also observed in liquid culture of geraniol. Single knock-out mutations of marA, or one of the following genes (acrA, acrB and tolC) encoding AcrAB-TolC efflux pump made E. coli hypersensitive to geraniol. The geraniol tolerance conferred by marA overexpression was attributed to the AcrAB-TolC efflux pump that is activated by MarA. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Enhancement of  l-phenylalanine production in Escherichia coli by heterologous expression of Vitreoscilla hemoglobin.

    PubMed

    Wu, Wei-Bin; Guo, Xiao-Lei; Zhang, Ming-Liang; Huang, Qing-Gen; Qi, Feng; Huang, Jian-Zhong

    2018-05-01

    l-Phenylalanine is an important amino acid that is widely used in the production of food flavors and pharmaceuticals. Generally, l-phenylalanine production by engineered Escherichia coli requires a high rate of oxygen supply. However, the coexpression of Vitreoscilla hemoglobin gene (vgb), driven bya tac promoter, with the genes encoding 3-deoxy-d-arabinoheptulosonate-7-phosphate synthetase (aroF) and feedback-resistant chorismate mutase/prephenate dehydratase (pheA fbr ), led to increased productivity and decreased demand for aeration by E. coli CICC10245. Shake-flask studies showed that vgb-expressing strains displayed higher rates of oxygen uptake, and l-phenylalanine production under standard aeration conditions was increased. In the aerobic fermentation process, cell growth, l-phenylalanine production, and glucose consumption by the recombinant E. coli strain PAPV, which harbored aroF, pheA fbr , and tac-vgb genes, were increased compared to that in the strain harboring only aroF and pheA fbr (E. coli strain PAP), especially under oxygen-limited conditions. The vgb-expressing strain PAPV produced 21.9% more biomass and 16.6% more l-phenylalanine, while consuming only approximately 5% more glucose after 48 H of fermentation. This study demonstrates a method to enhance the l-phenylalanine production by E. coli using less intensive and thus more economical aeration conditions. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  13. Route of infection alters virulence of neonatal septicemia Escherichia coli clinical isolates

    PubMed Central

    Cole, Bryan K.; Scott, Edgar; Ilikj, Marko; Bard, David; Akins, Darrin R.; Dyer, David W.

    2017-01-01

    Escherichia coli is the leading cause of Gram-negative neonatal septicemia in the United States. Invasion and passage across the neonatal gut after ingestion of maternal E. coli strains produce bacteremia. In this study, we compared the virulence properties of the neonatal E. coli bacteremia clinical isolate SCB34 with the archetypal neonatal E. coli meningitis strain RS218. Whole-genome sequencing data was used to compare the protein coding sequences among these clinical isolates and 33 other representative E. coli strains. Oral inoculation of newborn animals with either strain produced septicemia, whereas intraperitoneal injection caused septicemia only in pups infected with RS218 but not in those injected with SCB34. In addition to being virulent only through the oral route, SCB34 demonstrated significantly greater invasion and transcytosis of polarized intestinal epithelial cells in vitro as compared to RS218. Protein coding sequences comparisons highlighted the presence of known virulence factors that are shared among several of these isolates, and revealed the existence of proteins exclusively encoded in SCB34, many of which remain uncharacterized. Our study demonstrates that oral acquisition is crucial for the virulence properties of the neonatal bacteremia clinical isolate SCB34. This characteristic, along with its enhanced ability to invade and transcytose intestinal epithelium are likely determined by the specific virulence factors that predominate in this strain. PMID:29236742

  14. General method for site-directed mutagenesis in Escherichia coli O18ac:K1:H7: deletion of the inducible superoxide dismutase gene, sodA, does not diminish bacteremia in neonatal rats.

    PubMed

    Bloch, C A; Thorne, G M; Ausubel, F M

    1989-07-01

    A defined deletion in the Escherichia coli K-12 sodA gene (encoding manganese-superoxide dismutase) linked to a nontransposable selectable marker was generated by transposon Tn5 insertion in combination with in vitro mutagenesis. This mutant allele was used to replace the wild-type sodA gene in an E. coli clinical isolate of serotype O18ac:K1:H7 by bacteriophage P1 transduction. The O18ac:K1:H7 sodA mutant contained no manganese-superoxide dismutase and no hybrid manganese-iron-superoxide dismutase. The sodA mutant was more sensitive to paraquat toxicity than were the parental strain and an isogenic mutant bearing an analogously constructed sodA+ Tn5 insertion allele. In a suckling rat model for bacteremia following oral inoculation of E. coli K1, the sodA mutant was undiminished in its capabilities both to colonize the gastrointestinal tract and, surprisingly, to cause bacteremia. In conjunction with the rat model for E. coli K1 pathogenesis, the method for site-directed mutagenesis described in this paper permits determination of the role played in colonization and bacteremia by any K1 gene which either has a homolog in E. coli K-12 or can be cloned and manipulated therein.

  15. Construction of a cell-surface display system based on the N-terminal domain of ice nucleation protein and its application in identification of mycoplasma adhesion proteins.

    PubMed

    Bao, S; Yu, S; Guo, X; Zhang, F; Sun, Y; Tan, L; Duan, Y; Lu, F; Qiu, X; Ding, C

    2015-07-01

    To construct and demonstrate a surface display system that could be used to identify mycoplasma adhesion proteins. Using the N-terminal domain of InaZ (InaZN) as the anchoring motif and the enhanced green fluorescent protein (EGFP) as the reporter, the surface display system pET-InaZN-EGFP was constructed. Then, the mgc2 gene which encodes an adhesin and the holB gene which encodes DNA polymerase III subunit delta' (nonadhesin, negative control) of Mycoplasma gallisepticum were cloned into the pET-InaZN-EGFP respectively. The fusion proteins were expressed in Escherichia coli BL21 (DE3). The distribution of the fusion proteins in E. coli cells was determined using SDS-PAGE followed by Western blotting, based on cell fractionation. Escherichia coli cell surface display of the fusion protein was confirmed by immunofluorescence microscopy. The results indicated that the fusion proteins were not only anchored to the outer membrane fraction but also were successfully displayed on the surface of E. coli cells. Adhesion analysis of E. coli harbouring InaZN-EGFP-mgc2 to host cells showed that the MGC2-positive E. coli cells can effectively adhere to the surfaces of DF-1 cells. A surface display system using the InaZN as the anchoring motif and EGFP as the reporter was developed to identify putative adhesins of mycoplasma. Results indicated that adhesion by the cytadhesin-like protein MGC2 of mycoplasma can be reproduced using this surface display system. This is the first construction of surface display system which could be used to identify the adhesion proteins of mycoplasma. The method developed in this study can even be used to select and identify the adhesion proteins of other pathogens. © 2015 The Society for Applied Microbiology.

  16. Phylogenetic grouping and pathotypic comparison of urine and fecal Escherichia coli isolates from children with urinary tract infection.

    PubMed

    Navidinia, Masoumeh; Peerayeh, Shahin Najar; Fallah, Fatemeh; Bakhshi, Bita; Sajadinia, Raheleh Sadat

    2014-01-01

    The aim of this study was to investigate the phylogenetic background and to assess hlyD (involved in the secretion of haemolysin A) and intI1 (encoding a class 1 integrase) in Escherichia coli isolates derived from urinary and fecal specimens. A total of 200 E. coli isolates was collected from patients presenting with urinary tract infection (UTI) during September 2009 to September 2010 and screened for hlyD and intI1 genes by polymerase chain reaction (PCR). Phylogenetic analysis showed that E. coli is composed of four main phylogenetic groups (A, B1, B2 and D) and that uropathogenic E. coli (UPEC) isolates mainly belong to groups B2 (54%) and D (34%) whereas group A (44%) and D (26%) are predominant among commensal E. coli isolates. In this study, hlyD was present in 26% of UPEC and 2% of commensal E. coli isolates. However, hemolytic activity was detected for 42% of UPEC and 6% of commensal E. coli isolates (p < 0.05). intI1 gene was more frequently expressed in UPEC (24%) in comparison with commensal E. coli isolates (12%). Resistance to aztreonam, co-trimoxazole and cefpodoxime were frequently found among UPEC isolates whereas commensal E. coli isolates were commonly resistant to co-trimoxazole, nalidixic acid and cefotaxime. Concluding, a considerable difference between UPEC and commensal E. coli isolates was observed regarding their phylogenetic groups, presence of class 1 integron and hlyD gene, hemolysin activity and resistance pattern. The detection of class 1 integrons and hlyD gene was higher among UPEC compared with commensal E. coli isolates. These findings may contribute for a better understanding of the factors involved in the pathogenesis of UPEC.

  17. Isolation, crystallization in the macrogravitation field, preliminary X-ray investigation of uridine phosphorylase from Escherichia coli K-12.

    PubMed

    Mikhailov, A M; Smirnova, E A; Tsuprun, V L; Tagunova, I V; Vainshtein, B K; Linkova, E V; Komissarov, A A; Siprashvili, Z Z; Mironov, A S

    1992-03-01

    Uridine phosphorylase (UPH) from Escherichia coli K-12 has been purified to near homogeneity from a strain harbouring the udp gene, encoding UPH, on a multicopy plasmid. UPH was purified to electrophoretic homogeneity with the specific activity 230 units/mg with a recovery of 80%, yielding 120 mg of enzyme from 3g cells. Crystals of enzyme suitable for X-ray diffraction analysis were obtained in a preparative ultracentrifuge. The packing of the molecules in the crystals may be described by the space group P2(1)2(1)2(1) with the unit cell constants a = 90.4; b = 128.8; c = 136.8 A. There is one molecule per asymmetric unit, Vm = 2.4. These crystals diffract to at least 2.5-2.7 A resolution. The hexameric structure of UPH was directly demonstrated by electron microscopy study and image processing.

  18. Alteration of Escherichia coli topoisomerase IV to novobiocin resistance.

    PubMed

    Hardy, Christine D; Cozzarelli, Nicholas R

    2003-03-01

    DNA gyrase and topoisomerase IV (topo IV) are the two essential type II topoisomerases of Escherichia coli. Gyrase is responsible for maintaining negative supercoiling of the bacterial chromosome, whereas topo IV's primary role is in disentangling daughter chromosomes following DNA replication. Coumarins, such as novobiocin, are wide-spectrum antimicrobial agents that primarily interfere with DNA gyrase. In this work we designed an alteration in the ParE subunit of topo IV at a site homologous to that which confers coumarin resistance in gyrase. This parE mutation renders the encoded topo IV approximately 40-fold resistant to inhibition by novobiocin in vitro and imparts a similar resistance to inhibition of topo IV-mediated relaxation of supercoiled DNA in vivo. We conclude that topo IV is a secondary target of novobiocin and that it is very likely to be inhibited by the same mechanism as DNA gyrase.

  19. Frameshifting in the expression of the Escherichia coli trpR gene is modulated by translation initiation.

    PubMed Central

    Benhar, I; Miller, C; Engelberg-Kulka, H

    1993-01-01

    The Escherichia coli trpR gene encodes the 108-amino-acid-long Trp repressor. We have shown previously that a +1 frameshifting event occurs during the expression of trpR, resulting in the synthesis of an additional (+1 frame) polypeptide. Using trpR-lac'Z fusions, we have recently found that the transition from the 0 to the +1 frame occurs via the bypassing of a 55-nucleotide-long segment of the trpR+1-lac'Z mRNA (I. Benhar, and H. Engelberg-Kulka, Cell 72:121-130, 1993). Here we show that the frequency of trpR frameshifting (or bypassing) can be regulated both in vivo and in vitro. This frequency is inversely proportional to the rate of initiation of translation of the trpR gene. Hence, modulating the level of translation initiation affects the frequency of frameshifting. Images PMID:8491735

  20. Prevalence of Stx-producing Shigella species isolated from French Travelers Returning from the Caribbean: An Emerging Pathogen with International Implications

    PubMed Central

    Gray, Miranda D.; Lacher, David W.; Leonard, Susan R.; Abbott, Jason; Zhao, Shaohua; Lampel, Keith A.; Prothery, Estelle; Gouali, Malika; Weill, François-Xavier; Maurelli, Anthony T.

    2015-01-01

    Shiga toxins are potent cytotoxins that inhibit host cell protein synthesis, leading to cell death. Classically, these toxins are associated with intestinal infections due to Shiga toxin-producing Escherichia coli or Shigella dysenteriae serotype 1 and infections with these strains can lead to hemolytic uremic syndrome. Over the past decade there is increasing recognition that Shiga toxin is produced by additional Shigella species. We recently reported the presence and expression of stx genes in Shigella flexneri 2a clinical isolates. The toxin genes were carried by a new stx-encoding bacteriophage and infection with these strains correlated with recent travel to Haiti or the Dominican Republic. In this study we further explored the epidemiological link to this region by utilizing the French National Reference Center for Escherichia coli, Shigella and Salmonella collection to survey the frequency of Stx-producing Shigella species isolated from French travelers returning from the Caribbean. About 21% of the isolates tested were found to encode and produce Stx. These isolates included strains of S. flexneri 2a, S. flexneri Y, and S. dysenteriae 4. All of the travelers whom were infected with Stx-producing Shigella had recently traveled to Haiti, the Dominican Republic, or French Guiana. Furthermore, whole genome sequencing found that the toxin genes were encoded by a prophage that was highly identical to the phage we identified in our previous study. These findings demonstrate that this new stx-encoding prophage is circulating within that geographical area, has spread to other continents, and is capable of spreading to multiple Shigella serogroups. PMID:25980352

  1. Cytotoxic Escherichia coli strains encoding colibactin isolated from immunocompromised mice with urosepsis and meningitis

    PubMed Central

    Feng, Yan; Mannion, Anthony; Ge, Zhongming; Garcia, Alexis; Scott, Kathleen E.; Caron, Tyler J.; Jacobsen, Johanne T.; Victora, Gabriel; Jaenisch, Rudolf; Fox, James G.

    2018-01-01

    Immune-compromised mouse models allow for testing the preclinical efficacy of human cell transplantations and gene therapy strategies before moving forward to clinical trials. However, CRISPR/Cas9 gene editing of the Wsh/Wsh mouse strain to create an immune-compromised model lacking function of Rag2 and Il2rγ led to unexpected morbidity and mortality. This warranted an investigation to ascertain the cause and predisposing factors associated with the outbreak. Postmortem examination was performed on 15 moribund mice. The main lesions observed in these mice consisted of ascending urogenital tract infections, suppurative otitis media, pneumonia, myocarditis, and meningoencephalomyelitis. As Escherichia coli strains harboring polyketide synthase (pks) genomic island were recently isolated from laboratory mice, the tissue sections from the urogenital tract, heart, and middle ear were subjected to E. coli specific PNA-FISH assay that revealed discrete colonies of E. coli associated with the lesions. Microbiological examination and 16S rRNA sequencing confirmed E. coli-induced infection and septicemia in the affected mice. Further characterization by clb gene analysis and colibactin toxicity assays of the pks+ E. coli revealed colibactin-associated cytotoxicity. Rederivation of the transgenic mice using embryo transfer produced mice with an intestinal flora devoid of pks+ E. coli. Importantly, these barrier-maintained rederived mice have produced multiple litters without adverse health effects. This report is the first to describe acute morbidity and mortality associated with pks+ E. coli urosepsis and meningitis in immunocompromised mice, and highlights the importance of monitoring and exclusion of colibactin-producing pks+ E. coli. PMID:29554148

  2. Systems metabolic engineering of Escherichia coli for L-threonine production.

    PubMed

    Lee, Kwang Ho; Park, Jin Hwan; Kim, Tae Yong; Kim, Hyun Uk; Lee, Sang Yup

    2007-01-01

    Amino-acid producers have traditionally been developed by repeated random mutagenesis owing to the difficulty in rationally engineering the complex and highly regulated metabolic network. Here, we report the development of the genetically defined L-threonine overproducing Escherichia coli strain by systems metabolic engineering. Feedback inhibitions of aspartokinase I and III (encoded by thrA and lysC, respectively) and transcriptional attenuation regulations (located in thrL) were removed. Pathways for Thr degradation were removed by deleting tdh and mutating ilvA. The metA and lysA genes were deleted to make more precursors available for Thr biosynthesis. Further target genes to be engineered were identified by transcriptome profiling combined with in silico flux response analysis, and their expression levels were manipulated accordingly. The final engineered E. coli strain was able to produce Thr with a high yield of 0.393 g per gram of glucose, and 82.4 g/l Thr by fed-batch culture. The systems metabolic engineering strategy reported here may be broadly employed for developing genetically defined organisms for the efficient production of various bioproducts.

  3. Processing of the Escherichia coli leuX tRNA transcript, encoding tRNA(Leu5), requires either the 3'-->5' exoribonuclease polynucleotide phosphorylase or RNase P to remove the Rho-independent transcription terminator.

    PubMed

    Mohanty, Bijoy K; Kushner, Sidney R

    2010-01-01

    Here we report a unique processing pathway in Escherichia coli for tRNA(Leu5) in which the exoribonuclease polynucleotide phosphorylase (PNPase) removes the Rho-independent transcription terminator from the leuX transcript without requiring the RhlB RNA helicase. Our data demonstrate for the first time that PNPase can efficiently degrade an RNA substrate containing secondary structures in vivo. Furthermore, RNase P, an endoribonuclease that normally generates the mature 5'-ends of tRNAs, removes the leuX terminator inefficiently independent of PNPase activity. RNase P cleaves 4-7 nt downstream of the CCA determinant generating a substrate for RNase II, which removes an additional 3-4 nt. Subsequently, RNase T completes the 3' maturation process by removing the remaining 1-3 nt downstream of the CCA determinant. RNase E, G and Z are not involved in terminator removal. These results provide further evidence that the E. coli tRNA processing machinery is far more diverse than previously envisioned.

  4. Genetic improvement of Escherichia coli for ethanol production: Chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohta, Kazuyoshi; Beall, D.S.; Mejia, J.P.

    1991-04-01

    Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high levels of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selected for increased expression of alcohol dehydrogenase on aldehyde indicator plates. These mutants were functionally equivalent to the previous plasmid-based strains for the fermentation of xylose and glucose tomore » ethanol. Ethanol concentrations of 54.4 and 41.6 g/liter were obtained from 10% glucose and 8% xylose, respectively. The efficiency of conversion exceeded theoretical limits (0.51 g of ethanol/g of sugar) on the basis of added sugars because of the additional production of ethanol from the catabolism of complex nutrients. Further mutations were introduced to inactivate succinate production (frd) and to block homologous recombination (recA).« less

  5. Analysis of the regulatory region of the protease III (ptr) gene of Escherichia coli K-12.

    PubMed

    Claverie-Martin, F; Diaz-Torres, M R; Kushner, S R

    1987-01-01

    The ptr gene of Escherichia coli encodes protease III (Mr 110,000) and a 50-kDa polypeptide, both of which are found in the periplasmic space. The gene is physically located between the recC and recB loci on the E. coli chromosome. The nucleotide sequence of a 1167-bp EcoRV-ClaI fragment of chromosomal DNA containing the promoter region and 885 bp of the ptr coding sequence has been determined. S1 nuclease mapping analysis showed that the major 5' end of the ptr mRNA was localized 127 bp upstream from the ATG start codon. The open reading frame (ORF), preceded by a Shine-Dalgarno sequence, extends to the end of the sequenced DNA. Downstream from the -35 and -10 regions is a sequence that strongly fits the consensus sequence of known nitrogen-regulated promoters. A signal peptide of 23 amino acids residues is present at the N terminus of the derived amino acid sequence. The cleavage site as well as the ORF were confirmed by sequencing the N terminus of mature protease III.

  6. Escherichia coli DNA contamination in AmpliTaq Gold polymerase interferes with TaqMan analysis of lacZ.

    PubMed

    Koponen, Jonna K; Turunen, Anna-Mari; Ylä-Herttuala, Seppo

    2002-03-01

    Real-time PCR is a powerful method for the quantification of gene expression in biological samples. This method uses TaqMan chemistry based on the 5' -exonuclease activity of the AmpliTaq Gold DNA polymerase which releases fluorescence from hybridized probes during synthesis of each new PCR product. Many gene therapy studies use lacZ, encoding Escherichia coli beta-galactosidase, as a marker gene. Our results demonstrate that E. coli DNA contamination in AmpliTaq Gold polymerase interferes with TaqMan analysis of lacZ gene expression and decreases sensitivity of the method below the level required for biodistribution and long-term gene expression studies. In biodistribution analyses the contamination can lead to false-negative results by masking low-level lacZ expression in target and ectopic tissues, and false-positive results if sufficient controls are not used. We conclude that, to get reliable TaqMan results with lacZ, adequate controls should be included in each run to rule out contamination from AmpliTaq Gold polymerase.

  7. Overproduction of α-Lipoic Acid by Gene Manipulated Escherichia coli

    PubMed Central

    Sun, Yirong; Zhang, Wenbin; Ma, Jincheng; Pang, Hongshen; Wang, Haihong

    2017-01-01

    Alpha-lipoic acid (LA) is an important enzyme cofactor widely used by organisms and is also a natural antioxidant for the treatment of pathologies driven by low levels of endogenous antioxidants. In order to establish a safer and more efficient process for LA production, we developed a new biological method for LA synthesis based on the emerging knowledge of lipoic acid biosynthesis. We first cloned the lipD gene, which encodes the lipoyl domain of the E2 subunit of pyruvate dehydrogenase, allowing high levels of LipD production. Plasmids containing genes for the biosynthesis of LA were subsequently constructed utilizing various vectors and promotors to produce high levels of LA. These plasmids were transformed into the Escherichia coli strain BL21. Octanoic acid (OA) was used as the substrate for LA synthesis. One transformant, YS61, which carried lipD, lplA, and lipA, produced LA at levels over 200-fold greater than the wild-type strain, showing that LA could be produced efficiently in E. coli using genetic engineering methods. PMID:28068366

  8. Characterization of integron-mediated antimicrobial resistance among Escherichia coli strains isolated from a captive population of Amur tigers in China.

    PubMed

    Xue, Yuan; Chen, Jianfei; Wang, Yulong; Zhang, Yanlong; Liu, Dan; Hua, Yuping

    2013-12-01

    The present study was undertaken to identify and characterize integrons and integrated resistance gene cassettes among multidrug resistant Escherichia coli isolates from a captive population of Amur tigers (Panthera tigris altaica) in China. In addition, the prevalence of antimicrobial resistance and class I integrons was assessed in E. coli strains (n = 61) isolated from a captive population of Amur tigers in Heilongjiang Amur Tiger Park, China. Among the isolates, 52.46% (32 of 61) were positive for intI1, but no isolates carried intI2 or intI3. Most isolates were susceptible to amoxicillin/clavulanic acid, aztreonam, and polymyxin B, while they also exhibited high incidence rates of resistance to ampicillin, doxycycline, chloramphenicol, tetracycline, and dihydrofolate reductase. Sequencing analysis revealed three gene cassettes, which encoded resistance to dihydrofolate reductase (dfrA15), dihydrofolate reductase (dfrA12), and adenyltransferase (aadA2). The gene cassette arrays dfrA15 (31%) and dfrA12-aadA2 (19%) were most prevalent among these isolates.

  9. [Virulence factors and pathophysiology of extraintestinal pathogenic Escherichia coli].

    PubMed

    Bidet, P; Bonarcorsi, S; Bingen, E

    2012-11-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) causing urinary tract infections, bacteraemia or meningitis are characterized by a particular genetic background (phylogenetic group B2 and D) and the presence, within genetic pathogenicity islands (PAI) or plasmids, of genes encoding virulence factors involved in adhesion to epithelia, crossing of the body barriers (digestive, kidney, bloodbrain), iron uptake and resistance to the immune system. Among the many virulence factors described, two are particularly linked with a pathophysiological process: type P pili PapGII adhesin is linked with acute pyelonephritis, in the absence of abnormal flow of urine, and the K1 capsule is linked with neonatal meningitis. However, if the adhesin PapGII appears as the key factor of pyelonephritis, such that its absence in strain causing the infection is predictive of malformation or a vesico-ureteral reflux, the meningeal virulence of E. coli can not be reduced to a single virulence factor, but results from a combination of factors unique to each clone, and an imbalance between the immune defenses of the host and bacterial virulence. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  10. Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants.

    PubMed

    Pourahmad Jaktaji, Razieh; Pasand, Shirin

    2016-01-15

    Fluoroquinolones are important antibiotics for the treatment of urinary tract infections caused by Escherichia coli. Mutational studies have shown that ciprofloxacin, a member of fluoroquinolones induces SOS response and mutagenesis in pathogenic bacteria which in turn develop antibiotic resistance. However, inhibition of SOS response can increase recombination activity which in turn leads to genetic variation. The aim of this study was to measure 5 SOS genes expressions in nine E. coli mutants with different MICs for ciprofloxacin following exposure to ciprofloxacin. Gene expression was assessed by quantitative real time PCR. Gene alteration assessment was conducted by PCR amplification and DNA sequencing. Results showed that the expression of recA was increased in 5 mutants. This overexpression is not related to gene alteration, and enhances the expression of polB and umuCD genes encoding nonmutagenic and mutagenic polymerases, respectively. The direct relationship between the level of SOS expression and the level of resistance to ciprofloxacin was also indicated. It was concluded that novel therapeutic strategy that inhibits RecA activity would enhance the efficiency of common antibiotics against pathogenic bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Molecular Characterization of Plasmids Encoding CTX-M β-Lactamases and their Associated Addiction Systems Circulating Among Escherichia coli from Retail Chickens, Chicken Farms, and Slaughterhouses in Korea.

    PubMed

    Jo, Su-Jin; Woo, Gun-Jo

    2016-02-01

    Extended-spectrum β-lactamases (ESBLs), particularly those of the CTX-M types, are the predominant resistance determinants of Escherichia coli that are rapidly spreading worldwide. To determine CTX-M types, E. coli isolates were collected from retail chickens (n = 390) and environmental samples from chicken farms (n = 32) and slaughterhouses (n = 67) in Korea. Fifteen strains harboring blaCTX-M genes were isolated from 358 E. coli isolates. The most common CTX-M type was eight of CTX-M-15, followed by six of CTX-M-1 and one of CTX-M- 14. The blaCTX-M genes were identified in the isolates from retail chickens (n = 9), followed by feces, water pipes, floors, and walls. Conjugations confirmed the transferability of the plasmids carrying blaCTX-M genes to the recipient E. coli J53 strain. Furthermore, eight addiction systems carried by the replicons in CTX-M types were confirmed. The dominant system was identified as ccdAB, vagCD, and pndAC in donor strains and transconjugants. The clonal relationship between the two strains carrying blaCTX-M genes indicates that E. coli may transmit from the farm to retail chickens, suggesting a possible public health risk. Our findings demonstrate that the detection of CTX-M types in E. coli isolates is important for tracking ESBL production in animals, and suggest linkage of multiple addiction systems in plasmids bearing blaCTX-M genes.

  12. A retrospective: Use of Escherichia coli as a vehicle to study phospholipid synthesis and function

    PubMed Central

    Dowhan, William

    2012-01-01

    Although the study of individual phospholipids and their synthesis began in the 1920’s first in plants and then mammals, it was not until the early 1960’s that Eugene Kennedy using Escherichia coli initiated studies of bacterial phospholipid metabolism. With the base of information already available from studies of mammalian tissue, the basic blueprint of phospholipid biosynthesis in E. coli was worked out by the late 1960’s. In 1970’s and 1980’s most of the enzymes responsible for phospholipid biosynthesis were purified and many of the genes encoding these enzymes were identified. By the late 1990’s conditional and null mutants were available along with clones of the genes for every step of phospholipid biosynthesis. Most of these genes had been sequenced before the complete E. coli genome sequence was available. Strains of E. coli were developed in which phospholipid composition could be changed in a systematic manner while maintaining cell viability. Null mutants, strains in which phospholipid metabolism was artificially regulated, and strains synthesizing foreign lipids not found in E. coli have been used to this day to define specific roles for individual phospholipid. This review will trace the findings that have led to the development of E. coli as an excellent model system to study mechanisms underlying the synthesis and function of phospholipids that are widely applicable to other prokaryotic and eukaryotic systems. PMID:22925633

  13. O-acetyltransferase gene neuO is segregated according to phylogenetic background and contributes to environmental desiccation resistance in Escherichia coli K1.

    PubMed

    Mordhorst, Ines L; Claus, Heike; Ewers, Christa; Lappann, Martin; Schoen, Christoph; Elias, Johannes; Batzilla, Julia; Dobrindt, Ulrich; Wieler, Lothar H; Bergfeld, Anne K; Mühlenhoff, Martina; Vogel, Ulrich

    2009-12-01

    Escherichia coli K1 causes disease in humans and birds. Its polysialic acid capsule can be O-acetylated via phase-variable expression of the acetyltransferase NeuO encoded by prophage CUS-3. The role of capsule O-acetylation in ecological adaptation or pathogenic invasion of E. coli K1 is largely unclear. A population genetics approach was performed to study the distribution of neuO among E. coli K1 isolates from human and avian sources. Multilocus sequence typing revealed 39 different sequence types (STs) among 183 E. coli K1 strains. The proportion of the ST95 complex (STC95) was 44%. NeuO was found in 98% of the STC95 strains, but only in 24% of other STs. Grouping of STs and prophage genotypes revealed a segregation of prophage types according to STs, suggesting coevolution of CUS-3 and the E. coli K1 host. Within the STC95, which is known to harbour both human and avian pathogenic isolates, CUS-3 genotypes were shared irrespective of the host species. Functional analysis of a variety of strain pairs revealed that NeuO-mediated K1 capsule O-acetylation enhanced desiccation resistance. In contrast, NeuO expression led to a reduced biofilm formation in biofilm positive E. coli K1 isolates. These findings suggest a delicate ecological balance of neuO'on'/'off' switching.

  14. Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid.

    PubMed Central

    Stevenson, G; Andrianopoulos, K; Hobbs, M; Reeves, P R

    1996-01-01

    Colanic acid (CA) is an extracellular polysaccharide produced by most Escherichia coli strains as well as by other species of the family Enterobacteriaceae. We have determined the sequence of a 23-kb segment of the E. coli K-12 chromosome which includes the cluster of genes necessary for production of CA. The CA cluster comprises 19 genes. Two other sequenced genes (orf1.3 and galF), which are situated between the CA cluster and the O-antigen cluster, were shown to be unnecessary for CA production. The CA cluster includes genes for synthesis of GDP-L-fucose, one of the precursors of CA, and the gene for one of the enzymes in this pathway (GDP-D-mannose 4,6-dehydratase) was identified by biochemical assay. Six of the inferred proteins show sequence similarity to glycosyl transferases, and two others have sequence similarity to acetyl transferases. Another gene (wzx) is predicted to encode a protein with multiple transmembrane segments and may function in export of the CA repeat unit from the cytoplasm into the periplasm in a process analogous to O-unit export. The first three genes of the cluster are predicted to encode an outer membrane lipoprotein, a phosphatase, and an inner membrane protein with an ATP-binding domain. Since homologs of these genes are found in other extracellular polysaccharide gene clusters, they may have a common function, such as export of polysaccharide from the cell. PMID:8759852

  15. RtcB is the RNA ligase component of an Escherichia coli RNA repair operon.

    PubMed

    Tanaka, Naoko; Shuman, Stewart

    2011-03-11

    RNA 2',3'-cyclic phosphate ends play important roles in RNA metabolism as substrates for RNA ligases during tRNA restriction-repair and tRNA splicing. Diverse bacteria from multiple phyla encode a two-component RNA repair cassette, comprising Pnkp (polynucleotide kinase-phosphatase-ligase) and Hen1 (RNA 3'-terminal ribose 2'-O-methyltransferase), that heals and then seals broken tRNAs with 2',3'-cyclic phosphate and 5'-OH ends. The Pnkp-Hen1 repair operon is absent in the majority of bacterial species, thereby raising the prospect that other RNA repair systems might be extant. A candidate component is RNA 3'-phosphate cyclase, a widely distributed enzyme that transforms RNA 3'-monophosphate termini into 2',3'-cyclic phosphates but cannot seal the ends it produces. Escherichia coli RNA cyclase (RtcA) is encoded in a σ(54)-regulated operon with RtcB, a protein of unknown function. Taking a cue from Pnkp-Hen1, we purified E. coli RtcB and tested it for RNA ligase activity. We report that RtcB per se seals broken tRNA-like stem-loop structures with 2',3'-cyclic phosphate and 5'-OH ends to form a splice junction with a 2'-OH, 3',5'-phosphodiester. We speculate that: (i) RtcB might afford bacteria a means to recover from stress-induced RNA damage; and (ii) RtcB homologs might catalyze tRNA repair or splicing reactions in archaea and eukarya.

  16. Plasmid-encoded amikacin resistance in multiresistant strains of Klebsiella pneumoniae isolated from neonates with meningitis.

    PubMed Central

    Woloj, M; Tolmasky, M E; Roberts, M C; Crosa, J H

    1986-01-01

    Two multiresistant Klebsiella pneumoniae strains isolated from cerebrospinal fluid of human neonates were analyzed for their plasmid content. Two of the plasmids harbored by these strains, pJHCMW1 (11 kilobase pairs) and pJHCMW4 (75 kilobase pairs), carried genetic determinants for amikacin resistance. These plasmids also encoded resistance to kanamycin, tobramycin, and ampicillin which could be transferred to Escherichia coli by conjugation. Extracts from transconjugant derivatives carrying pJHCMW4 produced an acetyltransferase activity that acetylated all three aminoglycosides. Transconjugant derivatives carrying pJHCMW1 encoded both acetylating and phosphorylating activities. Southern blot hybridization analysis indicated considerable DNA homology between these two plasmids. Images PMID:3521478

  17. Secretome Biomarkers for the Identification and Differentiation of Enterohemorrhagic and Enteropathogenic Escherichia coli Strains

    DTIC Science & Technology

    2013-09-01

    SbBS512_E4084 Shigella byodii /EC NC101 ND ND ND EC: E. coli ND: not determined 8 Table 2. Common Strain-Unique Proteins from Replicate...E24377A- Escherichia coli str. K-12 substr. MG1655- Escherichia coli SE11- Escherichia coli- W3110 Shigella boy dii CDC 3083-94- Shigella boy dii Sb227

  18. 76 FR 72331 - Shiga Toxin-Producing Escherichia coli in Certain Raw Beef Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... Escherichia coli in Certain Raw Beef Products AGENCY: Food Safety and Inspection Service, USDA. ACTION: Public...-O157 Shiga toxin-producing Escherichia coli in raw, intact and non-intact beef products and product... implementation plans and methods for controlling non-O157 Shiga toxin-producing Escherichia coli in raw, intact...

  19. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways.

    PubMed

    Martínez, Irene; Zhu, Jiangfeng; Lin, Henry; Bennett, George N; San, Ka-Yiu

    2008-11-01

    Reactions requiring reducing equivalents, NAD(P)H, are of enormous importance for the synthesis of industrially valuable compounds such as carotenoids, polymers, antibiotics and chiral alcohols among others. The use of whole-cell biocatalysis can reduce process cost by acting as catalyst and cofactor regenerator at the same time; however, product yields might be limited by cofactor availability within the cell. Thus, our study focussed on the genetic manipulation of a whole-cell system by modifying metabolic pathways and enzymes to improve the overall production process. In the present work, we genetically engineered an Escherichia coli strain to increase NADPH availability to improve the productivity of products that require NADPH in its biosynthesis. The approach involved an alteration of the glycolysis step where glyceraldehyde-3-phosphate (GAP) is oxidized to 1,3 bisphophoglycerate (1,3-BPG). This reaction is catalyzed by NAD-dependent endogenous glyceraldehyde-3-phosphate dehydrogenase (GAPDH) encoded by the gapA gene. We constructed a recombinant E. coli strain by replacing the native NAD-dependent gapA gene with a NADP-dependent GAPDH from Clostridium acetobutylicum, encoded by the gene gapC. The beauty of this approach is that the recombinant E. coli strain produces 2 mol of NADPH, instead of NADH, per mole of glucose consumed. Metabolic flux analysis showed that the flux through the pentose phosphate (PP) pathway, one of the main pathways that produce NADPH, was reduced significantly in the recombinant strain when compared to that of the parent strain. The effectiveness of the NADPH enhancing system was tested using the production of lycopene and epsilon-caprolactone as model systems using two different background strains. The recombinant strains, with increased NADPH availability, consistently showed significant higher productivity than the parent strains.

  20. Transcriptional analysis of the Escherichia coli ColV-Ia plasmid pS88 during growth in human serum and urine.

    PubMed

    Lemaître, Chloé; Bidet, Philippe; Bingen, Edouard; Bonacorsi, Stéphane

    2012-06-21

    The sequenced O45:K1:H7 Escherichia coli meningitis strain S88 harbors a large virulence plasmid. To identify possible genetic determinants of pS88 virulence, we examined the transcriptomes of 88 plasmidic ORFs corresponding to known and putative virulence genes, and 35 ORFs of unknown function. Quantification of plasmidic transcripts was obtained by quantitative real-time reverse transcription of extracted RNA, normalized on three housekeeping genes. The transcriptome of E. coli strain S88 grown in human serum and urine ex vivo were compared to that obtained during growth in Luria Bertani broth, with and without iron depletion. We also analyzed the transcriptome of a pS88-like plasmid recovered from a neonate with urinary tract infection. The transcriptome obtained after ex vivo growth in serum and urine was very similar to those obtained in iron-depleted LB broth. Genes encoding iron acquisition systems were strongly upregulated. ShiF and ORF 123, two ORFs encoding protein with hypothetical function and physically linked to aerobactin and salmochelin loci, respectively, were also highly expressed in iron-depleted conditions and may correspond to ancillary iron acquisition genes. Four ORFs were induced ex vivo, independently of the iron concentration. Other putative virulence genes such as iss, etsC, ompTp and hlyF were not upregulated in any of the conditions studied. Transcriptome analysis of the pS88-like plasmid recovered in vivo showed a similar pattern of induction but at much higher levels. We identify new pS88 genes potentially involved in the growth of E. coli meningitis strain S88 in human serum and urine.

  1. Metagenomes of complex microbial consortia derived from different soils as sources for novel genes conferring formation of carbonyls from short-chain polyols on Escherichia coli.

    PubMed

    Knietsch, Anja; Waschkowitz, Tanja; Bowien, Susanne; Henne, Anke; Daniel, Rolf

    2003-01-01

    Metagenomic DNA libraries from three different soil samples (meadow, sugar beet field, cropland) were constructed. The three unamplified libraries comprised approximately 1267000 independent clones and harbored approximately 4.05 Gbp of environmental DNA. Approximately 300000 recombinant Escherichia coli strains of each library per test substrate were screened for the production of carbonyls from short-chain (C2 to C4) polyols such as 1,2-ethanediol, 2,3-butanediol, and a mixture of glycerol and 1,2-propanediol on indicator agar. Twenty-four positive E. COLI clones were obtained during the initial screen. Fifteen of them contained recombinant plasmids, designated pAK201-215, which conferred a stable carbonyl-forming phenotype on E. coli Sequencing revealed that the inserts of pAK201-215 encoded 26 complete and 14 incomplete predicted protein-encoding genes. Most of these genes were similar to genes with unknown functions from other microorganisms or unrelated to any other known gene. The further analysis was focused on the 7 plasmids (pAK204, pAK206, pAK208, and pAK210-213) recovered from the positive clones, which exhibited an NAD(H)-dependent alcohol oxidoreductase activity with polyols or the correlating carbonyls as substrates in crude extracts. Three genes (ORF6, ORF24, and ORF25) conferring this activity were identified during subcloning of the inserts of pAK204, pAK211, and pAK212. The sequences of the three deduced gene products revealed no significant similarities to known alcohol oxidoreductases, but contained putative glycine-rich regions, which are characteristic for binding of nicotinamide cofactors. Copyright 2003 S. Karger AG, Basel

  2. Nucleotide sequencing and characterization of the genes encoding benzene oxidation enzymes of Pseudomonas putida.

    PubMed Central

    Irie, S; Doi, S; Yorifuji, T; Takagi, M; Yano, K

    1987-01-01

    The nucleotide sequence of the genes from Pseudomonas putida encoding oxidation of benzene to catechol was determined. Five open reading frames were found in the sequence. Four corresponding protein molecules were detected by a DNA-directed in vitro translation system. Escherichia coli cells containing the fragment with the four open reading frames transformed benzene to cis-benzene glycol, which is an intermediate of the oxidation of benzene to catechol. The relation between the product of each cistron and the components of the benzene oxidation enzyme system is discussed. Images PMID:3667527

  3. Genomic and Transcriptomic Analysis of Escherichia coli Strains Associated with Persistent and Transient Bovine Mastitis and the Role of Colanic Acid.

    PubMed

    Lippolis, John D; Holman, Devin B; Brunelle, Brian W; Thacker, Tyler C; Bearson, Bradley L; Reinhardt, Timothy A; Sacco, Randy E; Casey, Thomas A

    2018-01-01

    Escherichia coli is a leading cause of bacterial mastitis in dairy cattle. It is most often transient in nature, causing an infection that lasts 2 to 3 days. However, E. coli has been shown to cause a persistent infection in a minority of cases. Mechanisms that allow for a persistent E. coli infection are not fully understood. The goal of this work was to determine differences between E. coli strains originally isolated from dairy cattle with transient and persistent mastitis. Using RNA sequencing, we show gene expression differences in nearly 200 genes when bacteria from the two clinical phenotypes are compared. We sequenced the genomes of the E. coli strains and report genes unique to the two phenotypes. Differences in the wca operon, which encodes colanic acid, were identified by DNA as well as RNA sequencing and differentiated the two phenotypes. Previous work demonstrated that E. coli strains that cause persistent infections were more motile than those that cause transient infections. Deletion of genes in the wca operon from a persistent-infection strain resulted in a reduction of motility as measured in swimming and swarming assays. Furthermore, colanic acid has been shown to protect bacteria from complement-mediated killing. We show that transient-infection E. coli strains were more sensitive to complement-mediated killing. The deletion of genes from the wca operon caused a persistent-infection E. coli strain to become sensitive to complement-mediated killing. This work identifies important differences between E. coli strains that cause persistent and transient mammary infections in dairy cattle. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

  4. Inhibition of Coenzyme Qs Accumulation in Engineered Escherichia coli by High Concentration of Farnesyl Diphosphate.

    PubMed

    Samoudi, Mojtaba; Omid Yeganeh, Negar; Shahbani Zahiri, Hossein; Shariati, Parvin; Hajhosseini, Reza

    2015-01-01

    Coenzyme Q 10 (CoQ 10 ) is an isoprenoid component used widely in nutraceutical industries. Farnesyl diphosphate synthase (FPPS) is a responsible enzyme for biosynthesis of farnesyl diphosphate (FPP), a key precursor for CoQs production. This research involved investigating the effect of FPPS over-expression on CoQs production in engineered CoQ 10 -producing Escherichia coli (E. coli). Two CoQ 10 -producing strains, as referred to E. coli Ba and E. coli Br, were transformed by the encoding gene for FPPS (ispA) under the control of either the trc or P BAD promoters. Over-expression of ispA under the control of P BAD promoter led to a relative increase in CoQ 10 production only in recombinant E. coli Br although induction by arabinose resulted in partial reduction of CoQ 10 production in both recombinant E. coli Ba and E. coli Br strains. Over-expression of ispA under the control of stronger trc promoter, however, led to a severe decrease in CoQ 10 production in both recombinant E. coli Ba and E. coli Br strains, as reflected by reductions from 629±40 to 30±13 and 564±28 to 80±14 μg/g Dried Cell Weight (DCW), respectively. The results showed high level of FPP reduces endogenous CoQ 8 production as well and that CoQs are produced in a complimentary manner, as the increase in production of one decreases the production of the other. The reduction in CoQ 10 production can be a result of Dds inhibition by high FPP concentration. Therefore, more effort is needed to verify the role of intermediate metabolite concentration and to optimize production of CoQ 10 .

  5. Inhibition of Coenzyme Qs Accumulation in Engineered Escherichia coli by High Concentration of Farnesyl Diphosphate

    PubMed Central

    Samoudi, Mojtaba; Omid Yeganeh, Negar; Shahbani Zahiri, Hossein; Shariati, Parvin; Hajhosseini, Reza

    2015-01-01

    Background: Coenzyme Q 10 (CoQ 10 ) is an isoprenoid component used widely in nutraceutical industries. Farnesyl diphosphate synthase (FPPS) is a responsible enzyme for biosynthesis of farnesyl diphosphate (FPP), a key precursor for CoQs production. This research involved investigating the effect of FPPS over-expression on CoQs production in engineered CoQ 10 -producing Escherichia coli (E. coli). Methods: Two CoQ 10 -producing strains, as referred to E. coli Ba and E. coli Br, were transformed by the encoding gene for FPPS (ispA) under the control of either the trc or P BAD promoters. Results: Over-expression of ispA under the control of P BAD promoter led to a relative increase in CoQ 10 production only in recombinant E. coli Br although induction by arabinose resulted in partial reduction of CoQ 10 production in both recombinant E. coli Ba and E. coli Br strains. Over-expression of ispA under the control of stronger trc promoter, however, led to a severe decrease in CoQ 10 production in both recombinant E. coli Ba and E. coli Br strains, as reflected by reductions from 629±40 to 30±13 and 564±28 to 80±14 μg/g Dried Cell Weight (DCW), respectively. The results showed high level of FPP reduces endogenous CoQ 8 production as well and that CoQs are produced in a complimentary manner, as the increase in production of one decreases the production of the other. Conclusion: The reduction in CoQ 10 production can be a result of Dds inhibition by high FPP concentration. Therefore, more effort is needed to verify the role of intermediate metabolite concentration and to optimize production of CoQ 10 . PMID:26306151

  6. The asymptomatic bacteriuria Escherichia coli strain 83972 outcompetes uropathogenic E. coli strains in human urine.

    PubMed

    Roos, Viktoria; Ulett, Glen C; Schembri, Mark A; Klemm, Per

    2006-01-01

    Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU). In contrast to uropathogenic E. coli (UPEC), which causes symptomatic urinary tract infections (UTI), very little is known about the mechanisms by which these strains colonize the human urinary tract. The prototype ABU E. coli strain 83972 was originally isolated from a girl who had carried it asymptomatically for 3 years. Deliberate colonization of UTI-susceptible individuals with E. coli 83972 has been used successfully as an alternative approach for the treatment of patients who are refractory to conventional therapy. Colonization with strain 83972 appears to prevent infection with UPEC strains in such patients despite the fact that this strain is unable to express the primary adhesins involved in UTI, viz. P and type 1 fimbriae. Here we investigated the growth characteristics of E. coli 83972 in human urine and show that it can outcompete a representative spectrum of UPEC strains for growth in urine. The unique ability of ABU E. coli 83972 to outcompete UPEC in urine was also demonstrated in a murine model of human UTI, confirming the selective advantage over UPEC in vivo. Comparison of global gene expression profiles of E. coli 83972 grown in lab medium and human urine revealed significant differences in expression levels in the two media; significant down-regulation of genes encoding virulence factors such as hemolysin, lipid A, and capsular polysaccharides was observed in cells grown in urine. Clearly, divergent abilities of ABU E. coli and UPEC to exploit human urine as a niche for persistence and survival suggest that these key differences may be exploited for preventative and/or therapeutic approaches.

  7. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase*

    PubMed Central

    Yao, Jiangwei; Dodson, V. Joshua; Frank, Matthew W.; Rock, Charles O.

    2015-01-01

    The obligate intracellular parasite Chlamydia trachomatis has a reduced genome but relies on de novo fatty acid and phospholipid biosynthesis to produce its membrane phospholipids. Lipidomic analyses showed that 8% of the phospholipid molecular species synthesized by C. trachomatis contained oleic acid, an abundant host fatty acid that cannot be made by the bacterium. Mass tracing experiments showed that isotopically labeled palmitic, myristic, and lauric acids added to the medium were incorporated into C. trachomatis-derived phospholipid molecular species. HeLa cells did not elongate lauric acid, but infected HeLa cell cultures elongated laurate to myristate and palmitate. The elongated fatty acids were incorporated exclusively into C. trachomatis-produced phospholipid molecular species. C. trachomatis has adjacent genes encoding the separate domains of the bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase gene (aas) of Escherichia coli. The CT775 gene encodes an acyltransferase (LpaT) that selectively transfers fatty acids from acyl-ACP to the 1-position of 2-acyl-glycerophospholipids. The CT776 gene encodes an acyl-ACP synthetase (AasC) with a substrate preference for palmitic compared with oleic acid in vitro. Exogenous fatty acids were elongated and incorporated into phospholipids by Escherichia coli-expressing AasC, illustrating its function as an acyl-ACP synthetase in vivo. These data point to an AasC-dependent pathway in C. trachomatis that selectively scavenges host saturated fatty acids to be used for the de novo synthesis of its membrane constituents. PMID:26195634

  8. Emergence of Antibiotic Resistance-Associated Clones Among Escherichia coli Recovered From Newborns With Early-Onset Sepsis and Meningitis in the United States, 2008–2009

    PubMed Central

    Weissman, Scott J.; Hansen, Nellie I.; Zaterka-Baxter, Kristen; Higgins, Rosemary D.; Stoll, Barbara J.

    2016-01-01

    Background Escherichia coli associated with early-onset sepsis (EOS) have historically been antibiotic-susceptible and K1-encapsulated. In the era of emerging antibiotic resistance, however, the clonal makeup of E coli associated with EOS has not been well characterized. Methods Escherichia coli isolates were collected from 28 cases of EOS and early-onset meningitis (EOM) from April 2008 through December 2009, during a parent study conducted at National Institute of Child Health and Human Development Neonatal Research Network centers from February 2006 through December 2009. Clinical and microbiologic data were collected for the parent study. We applied polymerase chain reaction- and sequence-based molecular techniques to determine clonal, virulence-associated and antibiotic resistance-associated traits of the E coli isolates. Results Among 28 E coli strains, phylogroup B2 strains predominated (68%), of which more than half were K1-encapsulated (53%). Phylogroup D strains were prominent as well (18%), but none were K1-encapsulated. Across the strain collection, the rate of ampicillin resistance was high (78%). The sole strain resistant to either extended-spectrum cephalosporins or fluoroquinolones represented ST131 H30-Rx, the multidrug-resistant subclone that has emerged worldwide in the last decade. This strain encoded extended-spectrum β-lactamase CTX-M-15 and carried an IncF plasmid of type F2:A1:B-. Conclusions In this collection of EOS/EOM-associated E coli isolates, we observed a high rate of ampicillin resistance, a low rate of fluoroquinolone resistance, and no aminoglycoside resistance, with resistance to third-generation cephalosporins appearing in only a single strain, from the worldwide emerging ST131 clone. Ongoing surveillance of antibiotic resistance among EOS isolates is warranted, to ensure that standard empiric regimens remain effective. PMID:26407251

  9. Emergence of Antibiotic Resistance-Associated Clones Among Escherichia coli Recovered From Newborns With Early-Onset Sepsis and Meningitis in the United States, 2008-2009.

    PubMed

    Weissman, Scott J; Hansen, Nellie I; Zaterka-Baxter, Kristen; Higgins, Rosemary D; Stoll, Barbara J

    2016-09-01

    Escherichia coli associated with early-onset sepsis (EOS) have historically been antibiotic-susceptible and K1-encapsulated. In the era of emerging antibiotic resistance, however, the clonal makeup of E coli associated with EOS has not been well characterized. Escherichia coli isolates were collected from 28 cases of EOS and early-onset meningitis (EOM) from April 2008 through December 2009, during a parent study conducted at National Institute of Child Health and Human Development Neonatal Research Network centers from February 2006 through December 2009. Clinical and microbiologic data were collected for the parent study. We applied polymerase chain reaction- and sequence-based molecular techniques to determine clonal, virulence-associated and antibiotic resistance-associated traits of the E coli isolates. Among 28 E coli strains, phylogroup B2 strains predominated (68%), of which more than half were K1-encapsulated (53%). Phylogroup D strains were prominent as well (18%), but none were K1-encapsulated. Across the strain collection, the rate of ampicillin resistance was high (78%). The sole strain resistant to either extended-spectrum cephalosporins or fluoroquinolones represented ST131 H30-Rx, the multidrug-resistant subclone that has emerged worldwide in the last decade. This strain encoded extended-spectrum β-lactamase CTX-M-15 and carried an IncF plasmid of type F2:A1:B-. In this collection of EOS/EOM-associated E coli isolates, we observed a high rate of ampicillin resistance, a low rate of fluoroquinolone resistance, and no aminoglycoside resistance, with resistance to third-generation cephalosporins appearing in only a single strain, from the worldwide emerging ST131 clone. Ongoing surveillance of antibiotic resistance among EOS isolates is warranted, to ensure that standard empiric regimens remain effective. © The Author 2015. Published by Oxford University Press on behalf of the Pediatric Infectious Diseases Society. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Identification and Cloning of gusA, Encoding a New β-Glucuronidase from Lactobacillus gasseri ADH†

    PubMed Central

    Russell, W. M.; Klaenhammer, T. R.

    2001-01-01

    The gusA gene, encoding a new β-glucuronidase enzyme, has been cloned from Lactobacillus gasseri ADH. This is the first report of a β-glucuronidase gene cloned from a bacterial source other than Escherichia coli. A plasmid library of L. gasseri chromosomal DNA was screened for complementation of an E. coli gus mutant. Two overlapping clones that restored β-glucuronidase activity in the mutant strain were sequenced and revealed three complete and two partial open reading frames. The largest open reading frame, spanning 1,797 bp, encodes a 597-amino-acid protein that shows 39% identity to β-glucuronidase (GusA) of E. coli K-12 (EC 3.2.1.31). The other two complete open reading frames, which are arranged to be separately transcribed, encode a putative bile salt hydrolase and a putative protein of unknown function with similarities to MerR-type regulatory proteins. Overexpression of GusA was achieved in a β-glucuronidase-negative L. gasseri strain by expressing the gusA gene, subcloned onto a low-copy-number shuttle vector, from the strong Lactobacillus P6 promoter. GusA was also expressed in E. coli from a pET expression system. Preliminary characterization of the GusA protein from crude cell extracts revealed that the enzyme was active across an acidic pH range and a broad temperature range. An analysis of other lactobacilli identified β-glucuronidase activity and gusA homologs in other L. gasseri isolates but not in other Lactobacillus species tested. PMID:11229918

  11. Characterization of putative toxin/antitoxin systems in Vibrio parahaemolyticus.

    PubMed

    Hino, M; Zhang, J; Takagi, H; Miyoshi, T; Uchiumi, T; Nakashima, T; Kakuta, Y; Kimura, M

    2014-07-01

    To obtain more information about the toxin/antitoxin (TA) systems in the Vibrio genus and also to examine their involvement in the induction of a viable but nonculturable (VBNC) state, we searched homologues of the Escherichia coli TA systems in the Vibrio parahaemolyticus genome. We found that a gene cluster, vp1842/vp1843, in the V. parahaemolyticus genome database has homology to that encoding the E. coli TA proteins, DinJ/YafQ. Expression of the putative toxin gene vp1843 in E. coli cells strongly inhibited the cell growth, while coexpression with the putative antitoxin gene vp1842 neutralized this effect. Mutational analysis identified Lys37 and Pro45 in the gene product VP1843 of vp1843 as crucial residues for the growth retardation of E. coli cells. VP1843, unlike the E. coli toxin YafQ, has no protein synthesis inhibitory activity, and that instead the expression of vp1843 in E. coli caused morphological change of the cells. The gene cluster vp1842/vp1843 encodes the V. parahaemolyticus TA system; VP1843 inhibits cell growth, whereas VP1842 serves as an antitoxin by forming a stable complex with VP1843. The putative toxin, VP1843, may be involved in the induction of the VBNC state in V. parahaemolyticus by inhibiting cell division. © 2014 The Society for Applied Microbiology.

  12. PmrD is Required for Modifications to Escherichia Coli Endotoxin that Promote Antimicrobial Resistance

    DTIC Science & Technology

    2015-01-20

    is unlimited. PmrD Is Required for Modifications to Escherichia coli Endotoxin That Promote Antimicrobial Resistance The views, opinions and/or...East 27th Street Suite 5.300 Austin, TX 78712 -1532 ABSTRACT PmrD Is Required for Modifications to Escherichia coli Endotoxin That Promote...PhoPQ and PmrAB in E. coli than previously understood. PmrD Is Required for Modifications to Escherichia coli Endotoxin That Promote Antimicrobial

  13. A Proteomic Analysis Reveals Differential Regulation of the σS-Dependent yciGFE(katN) Locus by YncC and H-NS in Salmonella and Escherichia coli K-12

    PubMed Central

    Beraud, Mélanie; Kolb, Annie; Monteil, Véronique; D'Alayer, Jacques; Norel, Françoise

    2010-01-01

    The stationary phase sigma factor σS (RpoS) controls a regulon required for general stress resistance of the closely related enterobacteria Salmonella and Escherichia coli. The σS-dependent yncC gene encodes a putative DNA binding regulatory protein. Application of the surface-enhanced laser desorption/ionization-time of flight (SELDI-TOF) ProteinChip technology for proteome profiling of wild-type and mutant strains of Salmonella enterica serovar Typhimurium revealed potential protein targets for YncC regulation, which were identified by mass spectrometry, and subsequently validated. These proteins are encoded by the σS-dependent operon yciGFEkatN and regulation of their expression by YncC operates at the transcriptional level, as demonstrated by gene fusion analyses and by in vitro transcription and DNase I footprinting experiments with purified YncC. The yciGFE genes are present (without katN) in E. coli K-12 but are poorly expressed, compared with the situation in Salmonella. We report that the yciGFE(katN) locus is silenced by the histone-like protein H-NS in both species, but that σS efficiently relieves silencing in Salmonella but not in E. coli K-12. In Salmonella, YncC acts in concert with σS to activate transcription at the yciG promoter (pyciG). When overproduced, YncC also activated σS-dependent transcription at pyciG in E. coli K-12, but solely by countering the negative effect of H-NS. Our results indicate that differences between Salmonella and E. coli K-12, in the architecture of cis-acting regulatory sequences upstream of pyciG, contribute to the differential regulation of the yciGFE(katN) genes by H-NS and YncC in these two enterobacteria. In E. coli, this locus is subject to gene rearrangements and also likely to horizontal gene transfer, consistent with its repression by the xenogeneic silencer H-NS. PMID:20713450

  14. Alkyl hydroperoxide reductase from Bacillus aquimaris MKSC 6.2 protects Esherichia coli from oxidative stress.

    PubMed

    Natalia, Dessy; Jumadila, Ozi; Anggraini, Irika Devi; Meutia, Febrina; Puspasari, Fernita; Hasan, Khomaini

    2016-07-01

    Alkyl hydroperoxide reductase genes (ahpCF) from the soft coral associated Bacillus aquimaris MKSC6.2 have been isolated. The cloned 546 bp ahpC gene encodes a 181 amino acid residues polypeptide. The AhpC belongs to typical 2-Cys peroxiredoxin (Prx) containing conserved peroxidatic cysteine residue (C46 ) required for hydroperoxide reduction and conserved resolving cysteine (C166 ). The isolated 1530 bp ahpF gene encodes a polypeptide of 509 amino acid residues with two conserved C128 HNC131 and C337 PHC340 catalytic residues required for reduction of oxidized-AhpC during catalytic turnover. A survival study with Escherichia coli showed that overexpression of AhpC and AhpF resulted in a total protection against 0.16 mM t-butyl hydroperoxide. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A Novel 6'-N-Aminoglycoside Acetyltransferase, AAC(6')-Ial, from a Clinical Isolate of Serratia marcescens.

    PubMed

    Tada, Tatsuya; Miyoshi-Akiyama, Tohru; Shimada, Kayo; Dahal, Rajan K; Mishra, Shyam K; Ohara, Hiroshi; Kirikae, Teruo; Pokhrel, Bharat M

    2016-03-01

    Serratia marcescens IOMTU115 has a novel 6'-N-aminoglycoside acetyltransferase-encoding gene, aac(6')-Ial. The encoded protein AAC(6')-Ial has 146 amino acids, with 91.8% identity to the amino acid sequence of AAC(6')-Ic in S. marcescens SM16 and 97.3% identity to the amino acid sequence of AAC(6')-Iap in S. marcescens WW4. The minimum inhibitory concentrations of aminoglycosides for Escherichia coli expressing AAC(6')-Ial were similar to those for E. coli expressing AAC(6')-Ic or AAC(6')-Iap. Thin-layer chromatography showed that AAC(6')-Ial, AAC(6')-Ic, or AAC(6')-Iap acetylated all the aminoglycosides tested, except for apramycin, gentamicin, and lividomycin. Kinetics assays revealed that AAC(6')-Ial is a functional acetyltransferase against aminoglycosides. The aac(6')-Ial gene was located on chromosomal DNA.

  16. An Escherichia coli Nissle 1917 Missense Mutant Colonizes the Streptomycin-Treated Mouse Intestine Better than the Wild Type but Is Not a Better Probiotic

    PubMed Central

    Adediran, Jimmy; Leatham-Jensen, Mary P.; Mokszycki, Matthew E.; Frimodt-Møller, Jakob; Krogfelt, Karen A.; Kazmierczak, Krystyna; Kenney, Linda J.; Conway, Tyrrell

    2014-01-01

    Previously we reported that the streptomycin-treated mouse intestine selected for two different Escherichia coli MG1655 mutants with improved colonizing ability: nonmotile E. coli MG1655 flhDC deletion mutants that grew 15% faster in vitro in mouse cecal mucus and motile E. coli MG1655 envZ missense mutants that grew slower in vitro in mouse cecal mucus yet were able to cocolonize with the faster-growing flhDC mutants. The E. coli MG1655 envZ gene encodes a histidine kinase that is a member of the envZ-ompR two-component signal transduction system, which regulates outer membrane protein profiles. In the present investigation, the envZP41L gene was transferred from the intestinally selected E. coli MG1655 mutant to E. coli Nissle 1917, a human probiotic strain used to treat gastrointestinal infections. Both the E. coli MG1655 and E. coli Nissle 1917 strains containing envZP41L produced more phosphorylated OmpR than their parents. The E. coli Nissle 1917 strain containing envZP41L also became more resistant to bile salts and colicin V and grew 50% slower in vitro in mucus and 15% to 30% slower on several sugars present in mucus, yet it was a 10-fold better colonizer than E. coli Nissle 1917. However, E. coli Nissle 1917 envZP41L was not better at preventing colonization by enterohemorrhagic E. coli EDL933. The data can be explained according to our “restaurant” hypothesis for commensal E. coli strains, i.e., that they colonize the intestine as sessile members of mixed biofilms, obtaining the sugars they need for growth locally, but compete for sugars with invading E. coli pathogens planktonically. PMID:24478082

  17. Comparison of the overlapping frd and ampC operons of Escherichia coli with the corresponding DNA sequences in other gram-negative bacteria.

    PubMed

    Bergström, S; Lindberg, F P; Olsson, O; Normark, S

    1983-09-01

    Specific DNA probes from Escherichia coli K-12 were used to analyze the sequence divergence of the frd and ampC operons in various species of gram-negative bacteria. These operons code for the fumarate reductase complex and the chromosomal beta-lactamase, respectively. We demonstrate that the two operons show the same general pattern of divergence, although the frd operon is considerably more conserved than is the ampC operon. The major exception is Salmonella typhimurium LT2, which shows a strong homology to the E. coli frd probe but none to the E. coli ampC probe. The operons from Citrobacter freundii and Shigella sonnei were cloned and characterized by physical mapping, Southern hybridization, and protein synthesis in minicells. In S. sonnei, as in E. coli K-12, the frd and ampC operons overlap (T. Grundström and B. Jaurin, Proc. Natl. Acad. Sci. U.S.A. 79:1111-1115, 1982). Only minor discrepancies between the two operons were found over the entire frd-ampC region. In C. freundii, the ampC and frd operons do not overlap, being separated by about 1,100 base pairs. Presumably the inducible property of the C. freundii chromosomal beta-lactamase is encoded by this 1,100-base-pair DNA segment.

  18. Conservation of an ATP-binding domain among recA proteins from Proteus vulgaris, erwinia carotovora, Shigella flexneri, and Escherichia coli K-12 and B/r

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, K.L.; Hess, R.M.; McEntee, K.

    1988-06-01

    The purified RecA proteins encoded by the cloned genes from Proteus vulgaris, Erwinia carotovora, Shigella flexneri, and Escherichia coli B/r were compared with the RecA protein from E. coli K-12. Each of the proteins hydrolyzed ATP in the presence of single-stranded DNA, and each was covalently modified with the photoaffinity ATP analog 8-azidoadenosine 5'-triphosphate (8N/sub 3/ATP). Two-dimensional tryptic maps of the four heterologous RecA proteins demonstrated considerable structural conservation among these bacterial genera. Moreover, when the (..cap alpha..-/sup 32/P)8N/sub 3/ATP-modified proteins were digested with trypsin and analyzed by high-performance liquid chromatography, a single peak of radioactivity was detected in eachmore » of the digests and these peptides eluted identically with the tryptic peptide T/sub 31/ of the E. coli K-12 RecA protein, which was the unique site of 8N/sub 3/ATP photolabeling. Each of the heterologous recA genes hybridized to oligonucleotide probes derived from the ATP-binding domain sequence of the E. coli K-12 gene. These last results demonstrate that the ATP-binding domain of the RecA protein has been strongly conserved for greater than 10/sup 7/ years.« less

  19. Enterohaemorrhagic Escherichia coli gains a competitive advantage by using ethanolamine as a nitrogen source in the bovine intestinal content.

    PubMed

    Bertin, Yolande; Girardeau, J P; Chaucheyras-Durand, F; Lyan, Bernard; Pujos-Guillot, Estelle; Harel, Josée; Martin, Christine

    2011-02-01

    The bovine gastrointestinal tract is the main reservoir for enterohaemorrhagic Escherichia coli (EHEC) responsible for food-borne infections. Characterization of nutrients that promote the carriage of these pathogens by the ruminant would help to develop ecological strategies to reduce their survival in the bovine gastrointestinal tract. In this study, we show for the first time that free ethanolamine (EA) constitutes a nitrogen source for the O157:H7 EHEC strain EDL933 in the bovine intestinal content because of induction of the eut (ethanolamine utilization) gene cluster. In contrast, the eut gene cluster is absent in the genome of most species constituting the mammalian gut microbiota. Furthermore, the eutB gene (encoding a subunit of the enzyme that catalyses the release of ammonia from EA) is poorly expressed in non-pathogenic E. coli. Accordingly, EA is consumed by EHEC but is poorly metabolized by endogenous microbiota of the bovine small intestine, including commensal E. coli. Interestingly, the capacity to utilize EA as a nitrogen source confers a growth advantage to E. coli O157:H7 when the bacteria enter the stationary growth phase. These data demonstrate that EHEC strains take advantage of a nitrogen source that is not consumed by the resident microbiota, and suggest that EA represents an ecological niche favouring EHEC persistence in the bovine intestine.

  20. An EAL domain protein and cyclic AMP contribute to the interaction between the two quorum sensing systems in Escherichia coli.

    PubMed

    Zhou, Xianxuan; Meng, Xiaoming; Sun, Baolin

    2008-09-01

    Quorum sensing (QS) is a bacterial cell-cell communication process by which bacteria communicate using extracellular signals called autoinducers. Two QS systems have been identified in Escherichia coli K-12, including an intact QS system 2 that is stimulated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex and a partial QS system 1 that consists of SdiA (suppressor of cell division inhibitor) responding to signals generated by other microbial species. The relationship between QS system 1 and system 2 in E. coli, however, remains obscure. Here, we show that an EAL domain protein, encoded by ydiV, and cAMP are involved in the interaction between the two QS systems in E. coli. Expression of sdiA and ydiV is inhibited by glucose. SdiA binds to the ydiV promoter region in a dose-dependent, but nonspecific, manner; extracellular autoinducer 1 from other species stimulates ydiV expression in an sdiA-dependent manner. Furthermore, we discovered that the double sdiA-ydiV mutation, but not the single mutation, causes a 2-fold decrease in intracellular cAMP concentration that leads to the inhibition of QS system 2. These results indicate that signaling pathways that respond to important environmental cues, such as autoinducers and glucose, are linked together for their control in E. coli.

  1. Administration of capsule-selective endosialidase E minimizes upregulation of organ gene expression induced by experimental systemic infection with Escherichia coli K1.

    PubMed

    Zelmer, Andrea; Martin, Melissa J; Gundogdu, Ozan; Birchenough, George; Lever, Rebecca; Wren, Brendan W; Luzio, J Paul; Taylor, Peter W

    2010-07-01

    Many neurotropic strains of Escherichia coli cause potentially lethal bacteraemia and meningitis in newborn infants by virtue of their capacity to elaborate the protective polysialic acid (polySia) K1 capsule. Recombinant capsule depolymerase, endosialidase E (endoE), selectively removes polySia from the bacterial surface; when administered intraperitoneally to infected neonatal rats, the enzyme interrupts the transit of E. coli K1 from gut to brain via the blood circulation and prevents death from systemic infection. We now show that experimental E. coli K1 infection is accompanied by extensive modulation of host gene expression in the liver, spleen and brain tissues of neonatal rats. Bacterial invasion of the brain resulted in a threefold or greater upregulation of approximately 400 genes, a large number of which were associated with the induction of inflammation and the immune and stress responses: these included genes encoding C-X-C and C-C chemokines, lipocalins, cytokines, apolipoproteins and enzymes involved in the synthesis of low-molecular-mass inflammatory mediators. Administration of a single dose of endoE, 24 h after initiation of systemic infection, markedly reduced, but did not completely abrogate, these changes in gene expression, suggesting that attenuation of E. coli K1 virulence by removal of the polySia capsule may minimize the attendant inflammatory processes that contribute to poor outcome in these severe systemic infections.

  2. Genomic epidemiology of global Klebsiella pneumoniae carbapenemase (KPC)-producing Escherichia coli.

    PubMed

    Stoesser, N; Sheppard, A E; Peirano, G; Anson, L W; Pankhurst, L; Sebra, R; Phan, H T T; Kasarskis, A; Mathers, A J; Peto, T E A; Bradford, P; Motyl, M R; Walker, A S; Crook, D W; Pitout, J D

    2017-07-19

    The dissemination of carbapenem resistance in Escherichia coli has major implications for the management of common infections. bla KPC , encoding a transmissible carbapenemase (KPC), has historically largely been associated with Klebsiella pneumoniae, a predominant plasmid (pKpQIL), and a specific transposable element (Tn4401, ~10 kb). Here we characterize the genetic features of bla KPC emergence in global E. coli, 2008-2013, using both long- and short-read whole-genome sequencing. Amongst 43/45 successfully sequenced bla KPC -E. coli strains, we identified substantial strain diversity (n = 21 sequence types, 18% of annotated genes in the core genome); substantial plasmid diversity (≥9 replicon types); and substantial bla KPC -associated, mobile genetic element (MGE) diversity (50% not within complete Tn4401 elements). We also found evidence of inter-species, regional and international plasmid spread. In several cases bla KPC was found on high copy number, small Col-like plasmids, previously associated with horizontal transmission of resistance genes in the absence of antimicrobial selection pressures. E. coli is a common human pathogen, but also a commensal in multiple environmental and animal reservoirs, and easily transmissible. The association of bla KPC with a range of MGEs previously linked to the successful spread of widely endemic resistance mechanisms (e.g. bla TEM , bla CTX-M ) suggests that it may become similarly prevalent.

  3. Effects of the plasmid-encoded toxin of enteroaggregative Escherichia coli on focal adhesion complexes

    PubMed Central

    Cappello, Renato E; Estrada-Gutierrez, Guadalupe; Irles, Claudine; Giono-Cerezo, Silvia; Bloch, Robert J; Nataro, James P

    2011-01-01

    Enteroaggregative Escherichia coli (EAEC) is an emerging diarrheal pathogen. Many EAEC strains produce the plasmid encoded toxin (Pet), which elicits cytotoxic effects on human intestinal tissue. Pet-intoxicated HEp-2 cells exhibit rounding and detachment from the substratum, accompanied by loss of F-actin stress fibers and condensation of the spectrin-containing membrane cytoskeleton. Although studies suggest that Pet directly cleaves spectrin, it is not known if this is the essential mode of action of the toxin. In addition, the effects of Pet on cytoskeletal elements other than actin and spectrin have not been reported. Here, we demonstrate by immunofluorescence that upon Pet intoxication, HEp-2 and HT29 cells lose focal adhesion complexes (FAC), a process that includes redistribution of focal adhesion kinase (FAK), α-actinin, paxillin, vinculin, F-actin, and spectrin itself. This redistribution was coupled with depletion of phosphotyrosine labeling at FACs. Immunoblotting and immunoprecipitation experiments revealed that FAK was tyrosine dephosphorylated, prior to the redistribution of FAK and spectrin. Moreover, phosphatase inhibition blocked cell retraction, suggesting that tyrosine dephosphorylation is an event that precedes FAK cleavage. Finally, we show that in vitro tyrosine-dephophorylated FAK was susceptible to Pet cleavage. These data suggest that mechanisms other than spectrin redistribution occur during Pet intoxication. PMID:21205005

  4. Differential transcriptional control of the two tRNA(fMet) genes of Escherichia coli K-12.

    PubMed

    Nagase, T; Ishii, S; Imamoto, F

    1988-07-15

    The metZ gene of Escherichia coli, which encodes the tRNA(f1Met), was cloned. Using the nucleotide sequence, in vitro transcription, and S1 nuclease mapping analyses, we identified the promoter region, transcriptional start point, the two tandem tRNA(f1Met) structural genes separated by an intergenic space of 33 bp, and the two Rho-independent transcriptional termination sites, in that order. We compared the promoter region of the metZ gene with that of the metY gene, which encodes the tRNA(f2Met) and is located in the promoter-proximal portion of the nusA operon. A G + C-rich sequence (5'-GCGCATCCAC-3'), similar to the corresponding sequence of the rrn promoters that are under stringent control, was found between the Pribnow box and the transcriptional start point of the metZ promoter, but not in the metY promoter region. We therefore examined the effect of guanosine 3'-diphosphate, 5'-diphosphate (ppGpp), the chemical mediator of stringent control, and found that ppGpp inhibited the transcription of the metZ gene, but not that of the metY gene. These data suggested that the promoters for metZ and metY have different physiological functions and are regulated by different mechanisms.

  5. Cloning of cellobiose phosphoenolpyruvate-dependent phosphotransferase genes: Functional expression in recombinant Escherichia coli and identification of a putative binding region for disaccharides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Xiaokuang; Davis, F.C.; Ingram, L.O.

    1997-02-01

    Genomic libraries from nine cellobiose-metabolizing bacteria were screened for cellobiose utilization. Positive clones were recovered from six libraries, all of which encode phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) proteins. Clones from Bacillus subtilis, Butyrivibrio fibrisolvens, and Klebsiella oxytoca allowed the growth of recombinant Escherichia coli in cellobiose-M9 minimal medium. The K. oxytoca clone, pLOI1906, exhibited an unusually broad substrate range (cellobiose, arbutin, salicin, and methylumbelliferyl derivatives of glucose, cellobiose, mannose, and xylose) and was sequenced. The insert in this plasmid encoded the carboxy-terminal region of a putative regulatory protein, cellobiose permease (single polypeptide), and phospho-{beta}-glucosidase, which appear to form an operon (casRAB).more » Subclones allowed both casA and casB to be expressed independently, as evidenced by in vitro complementation. An analysis of the translated sequences from the EIIC domains of cellobiose, aryl-{beta}-glucoside, and other disaccharide permeases allowed the identification of a 50-amino-acid conserved region. A disaccharide consensus sequence is proposed for the most conserved segment (13 amino acids), which may represent part of the EIIC active site for binding and phosphorylation. 63 refs., 4 figs., 4 tabs.« less

  6. SHV-7, a novel cefotaxime-hydrolyzing beta-lactamase, identified in Escherichia coli isolates from hospitalized nursing home patients.

    PubMed Central

    Bradford, P A; Urban, C; Jaiswal, A; Mariano, N; Rasmussen, B A; Projan, S J; Rahal, J J; Bush, K

    1995-01-01

    Four ceftazidime-resistant Escherichia coli strains were isolated from elderly nursing home patients in a New York hospital during 1993. Strains MCQ-2, MCQ-3, and MCQ-4 were determined to be identical by pulsed-field gel electrophoresis and plasmid profiles, whereas strain MCQ-1 was unique. Strain MCQ-1 was determined to produce a TEM-10 beta-lactamase. Strains MCQ-2, MCQ-3, and MCQ-4 were also noted to be resistant to cefotaxime. These three strains produced two beta-lactamases with pIs of 5.4 (TEM-1) and 7.6. beta-Lactamase assays revealed that the pI 7.6 enzyme hydrolyzed cefotaxime faster (at a relative hydrolysis rate of 30% compared with that of benzylpenicillin) than either ceftazidime or aztreonam (relative hydrolysis rates of 13 and 3.3%, respectively). Nucleotide sequencing of the gene encoding the pI 7.6 beta-lactamase from strain MCQ-3 revealed a blaSHV-type gene differing from the gene encoding SHV-1 at four nucleotides which resulted in amino acid substitutions: phenylalanine for isoleucine at position 8, serine for arginine at position 43, serine for glycine at position 238, and lysine for glutamate at position 240. This novel SHV-type extended-spectrum beta-lactamase is designated SHV-7. PMID:7785992

  7. Co-Expression of ORFCma with PHB Depolymerase (PhaZCma ) in Escherichia coli Induces Efficient Whole-Cell Biodegradation of Polyesters.

    PubMed

    Lee, Ming-Chieh; Liu, En-Jung; Yang, Cheng-Han; Hsiao, Li-Jung; Wu, Tzong-Ming; Li, Si-Yu

    2018-04-01

    Whole-cell degradation of polyesters not only avoids the tedious process of enzyme separation, but also allows the degraded product to be reused as a carbon source. In this study, Escherichia coli BL21(DE3) harboring phaZ Cma , a gene encoding poly(3-hydroxybutyrate) (PHB) depolymerase from Caldimonas manganoxidans, is constructed. The extra-cellular fraction of E. coli/pPHAZ exhibits a fast PHB degradation rate where it only took 35 h to completely degrade PHB films, while C. manganoxidans takes 81 h to do the same. The co-expression of ORF Cma (a putative periplasmic substrate binding protein that is within the same operon of phaZ Cma ) further improves the PHB degradation. While 28 h is needed for E. coli/pPHAZ to cause an 80% weight loss in PHB films, E. coli/pORFPHAZ needs only 21 h. Furthermore, it is able to degrade at-least four different polyesters, PHB, poly(lactic acid) (PLA), polycaprolactone (PCL), and poly(butylene succinate-co-adipate) (PBSA). Testing of the time course of 3-hydroxybutyrate concentration and the turbidity of the degradation solutions over time shows that PhaZ Cma has both exo- and endo-enzymatic activity. The whole-cell E. coli/pORFPHAZ can be used for recycling various polyesters while ORF Cma can potentially be a universal element for enhancing the secretion of recombinant protein. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Recombinant expression of Streptococcus pneumoniae capsular polysaccharides in Escherichia coli

    PubMed Central

    Kay, Emily J.; Yates, Laura E.; Terra, Vanessa S.; Cuccui, Jon; Wren, Brendan W.

    2016-01-01

    Currently, Streptococcus pneumoniae is responsible for over 14 million cases of pneumonia worldwide annually, and over 1 million deaths, the majority of them children. The major determinant for pathogenesis is a polysaccharide capsule that is variable and is used to distinguish strains based on their serotype. The capsule forms the basis of the pneumococcal polysaccharide vaccine (PPV23) that contains purified capsular polysaccharide from 23 serotypes, and the pneumococcal conjugate vaccine (PCV13), containing 13 common serotypes conjugated to CRM197 (mutant diphtheria toxin). Purified capsule from S. pneumoniae is required for pneumococcal conjugate vaccine production, and costs can be prohibitively high, limiting accessibility of the vaccine in low-income countries. In this study, we demonstrate the recombinant expression of the capsule-encoding locus from four different serotypes of S. pneumoniae within Escherichia coli. Furthermore, we attempt to identify the minimum set of genes necessary to reliably and efficiently express these capsules heterologously. These E. coli strains could be used to produce a supply of S. pneumoniae serotype-specific capsules without the need to culture pathogenic bacteria. Additionally, these strains could be applied to synthetic glycobiological applications: recombinant vaccine production using E. coli outer membrane vesicles or coupling to proteins using protein glycan coupling technology. PMID:27110302

  9. N-terminal SKIK peptide tag markedly improves expression of difficult-to-express proteins in Escherichia coli and Saccharomyces cerevisiae.

    PubMed

    Ojima-Kato, Teruyo; Nagai, Satomi; Nakano, Hideo

    2017-05-01

    Despite advances in microbial protein expression systems, low production of proteins remains a great concern for some genes. Here we report that the insertion of a short peptide tag, consisting of Ser-Lys-Ile-Lys (SKIK), adjacent to the start codon of genes encoding difficult-to-express proteins can increase protein expression in Escherichia coli and Saccharomyces cerevisiae. Protein expression levels of a mouse monoclonal antibody (mAb), rabbit mAbs obtained from clonal B cells, and an artificially designed peptide were significantly increased simply by the addition of the SKIK tag in E. coli systems. In particular, a ∼30-fold increase in protein production was observed for the mouse mAb, and the artificially designed peptide band became detectable in sodium dodecyl sulfate-poly acrylamide gel electrophoresis after coomassie brilliant blue staining or western blotting on adding the SKIK tag. The tag also increased the expression of tagged proteins in S. cerevisiae and an E. coli cell-free protein synthesis system. Although the mechanism of high protein expression on addition of the tag is unclear, our findings offer great benefits to biotechnology research and industry. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Metabolic engineering of Escherichia coli to produce 2'-fucosyllactose via salvage pathway of guanosine 5'-diphosphate (GDP)-l-fucose.

    PubMed

    Chin, Young-Wook; Seo, Nari; Kim, Jae-Han; Seo, Jin-Ho

    2016-11-01

    2'-Fucosyllactose (2-FL) is one of the key oligosaccharides in human milk. In the present study, the salvage guanosine 5'-diphosphate (GDP)-l-fucose biosynthetic pathway from fucose was employed in engineered Escherichia coli BL21star(DE3) for efficient production of 2-FL. Introduction of the fkp gene coding for fucokinase/GDP-l-fucose pyrophosphorylase (Fkp) from Bacteroides fragilis and the fucT2 gene encoding α-1,2-fucosyltransferase from Helicobacter pylori allows the engineered E. coli to produce 2-FL from fucose, lactose and glycerol. To enhance the lactose flux to 2-FL production, the attenuated, and deleted mutants of β-galactosidase were employed. Moreover, the 2-FL yield and productivity were further improved by deletion of the fucI-fucK gene cluster coding for fucose isomerase (FucI) and fuculose kinase (FucK). Finally, fed-batch fermentation of engineered E. coli BL21star(DE3) deleting lacZ and fucI-fucK, and expressing fkp and fucT2 resulted in 23.1 g/L of extracellular concentration of 2-FL and 0.39 g/L/h productivity. Biotechnol. Bioeng. 2016;113: 2443-2452. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Characterization of thimet- and neurolysin-like activities in Escherichia coli M 3 A peptidases and description of a specific substrate.

    PubMed

    Paschoalin, Thaysa; Carmona, Adriana K; Oliveira, Vitor; Juliano, Luiz; Travassos, Luiz R

    2005-09-01

    M 3 A oligopeptidases from Escherichia coli, with hydrolytic properties similar to Zn-dependent mammalian thimet oligopeptidase (EP 24.15) and neurolysin (EP 24.16), were studied aiming at identification of comparative enzyme and substrate specificity, hydrolytic products, and susceptibility to inhibitors. Fluorescent peptides, neurotensin (NT) and bradykinin (BK), were used as substrates for bacterial lysates. Bacterial enzymes were totally inhibited by o-phenanthrolin, JA-2 and partially by Pro-Ile, but not by leupeptin, PMSF, E-64, and Z-Pro-Prolinal, using internally quenched Abz-GFSPFRQ-EDDnp as substrate. The molecular mass of the bacterial oligopeptidase activity (77--78 kDa) was determined by gel filtration, and the effect of inhibitors, including captopril, suggested that it results from a combination of oligopeptidase A (OpdA) and peptidyl dipeptidase Dcp (77.1 and 77.5 kDa, respectively). Recombinant OpdA cloned from the same E. coli strain entirely reproduced the primary cleavage of fluorescent peptides, NT and BK, by the bacterial lysate. Genes encoding these M 3 A enzymes were those recognized in E. coli genome, bearing identity at the amino acid level (25--31%) with mammalian Zn-dependent oligopeptidases. We also describe a substrate, Abz-GFSPFRQ-EDDnp, that differentiates bacterial and mammalian oligopeptidases.

  12. Genetic background of novel sequence types of CTX-M-8- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae from public wastewater treatment plants in São Paulo, Brazil.

    PubMed

    Dropa, Milena; Lincopan, Nilton; Balsalobre, Livia C; Oliveira, Danielle E; Moura, Rodrigo A; Fernandes, Miriam Rodriguez; da Silva, Quézia Moura; Matté, Glavur R; Sato, Maria I Z; Matté, Maria H

    2016-03-01

    The release of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae to the environment is a public health issue worldwide. The aim of this study was to investigate the genetic background of genes encoding ESBLs in wastewater treatment plants (WWTPs) in São Paulo, southeastern Brazil. In 2009, during a local surveillance study, seven ESBL-producing Enterobacteriaceae strains were recovered from five WWTPs and screened for ESBL genes and mobile genetic elements. Multilocus sequence typing (MLST) was carried out, and wild plasmids were transformed into electrocompetent Escherichia coli. S1-PFGE technique was used to verify the presence of high molecular weight plasmids in wild-type strains and in bla ESBL-containing E. coli transformants. Strains harbored bla CTX-M-8, bla CTX-M-15, and/or bla SHV-28. Sequencing results showed that bla CTX-M-8 and bla CTX-M-15 genes were associated with IS26. MLST revealed new sequence types for E. coli (ST4401, ST4402, ST4403, and ST4445) and Klebsiella pneumoniae (ST1574), except for one K. pneumoniae from ST307 and Enterobacter cloacae from ST131. PCR and S1-PFGE results showed CTX-M-producing E. coli transformants carried heavy plasmids sizing 48.5-209 kb, which belonged to IncI1, IncF, and IncM1 incompatibility groups. This is the first report of CTX-M-8 and SHV-28 enzymes in environmental samples, and the present results demonstrate the plasmid-mediated spread of CTX-M-encoding genes through five WWTPs in São Paulo, Brazil, suggesting WWTPs are hotspots for the transfer of ESBL genes and confirming the urgent need to improve the management of sewage in order to minimize the dissemination of resistance genes to the environment.

  13. Presence and characterization of shiga toxin-producing Escherichia coli and other potentially diarrheagenic E. coli strains in retail meats.

    PubMed

    Xia, Xiaodong; Meng, Jianghong; McDermott, Patrick F; Ayers, Sherry; Blickenstaff, Karen; Tran, Thu-Thuy; Abbott, Jason; Zheng, Jie; Zhao, Shaohua

    2010-03-01

    To determine the presence of Shiga toxin-producing Escherichia coli (STEC) and other potentially diarrheagenic E. coli strains in retail meats, 7,258 E. coli isolates collected by the U.S. National Antimicrobial Resistance Monitoring System (NARMS) retail meat program from 2002 to 2007 were screened for Shiga toxin genes. In addition, 1,275 of the E. coli isolates recovered in 2006 were examined for virulence genes specific for other diarrheagenic E. coli strains. Seventeen isolates (16 from ground beef and 1 from a pork chop) were positive for stx genes, including 5 positive for both stx(1) and stx(2), 2 positive for stx(1), and 10 positive for stx(2). The 17 STEC strains belonged to 10 serotypes: O83:H8, O8:H16, O15:H16, O15:H17, O88:H38, ONT:H51, ONT:H2, ONT:H10, ONT:H7, and ONT:H46. None of the STEC isolates contained eae, whereas seven carried enterohemorrhagic E. coli (EHEC) hlyA. All except one STEC isolate exhibited toxic effects on Vero cells. DNA sequence analysis showed that the stx(2) genes from five STEC isolates encoded mucus-activatable Stx2d. Subtyping of the 17 STEC isolates by pulsed-field gel electrophoresis (PFGE) yielded 14 distinct restriction patterns. Among the 1,275 isolates from 2006, 11 atypical enteropathogenic E. coli (EPEC) isolates were identified in addition to 3 STEC isolates. This study demonstrated that retail meats, mainly ground beef, were contaminated with diverse STEC strains. The presence of atypical EPEC strains in retail meat is also of concern due to their potential to cause human infections.

  14. Rifaximin Resistance in Escherichia coli Associated with Inflammatory Bowel Disease Correlates with Prior Rifaximin Use, Mutations in rpoB, and Activity of Phe-Arg-β-Naphthylamide-Inhibitable Efflux Pumps

    PubMed Central

    Kothary, Vishesh; Scherl, Ellen J.; Bosworth, Brian; Jiang, Zhi-Dong; DuPont, Herbert L.; Harel, Josee

    2013-01-01

    Escherichia coli is implicated in the pathogenesis of inflammatory bowel disease (IBD). Rifaximin, a nonabsorbable derivative of rifampin effective against E. coli, improves symptoms in mild-to-moderate IBD. However, rifaximin resistance can develop in a single step in vitro. We examined the prevalence and mechanisms of rifaximin resistance in 62 strains of E. coli isolated from the ileal mucosa of 50 patients (19 with ileal Crohn's disease [L1+L3], 6 with colonic Crohn's disease [L2], 13 with ulcerative colitis [UC], 4 with symptomatic non-IBD diagnoses [NI], and 8 healthy [H]). Resistance (MIC > 1,024 mg/liter) was present in 12/48 IBD-associated ileal E. coli strains. Resistance correlated with prior rifaximin treatment (P < 0.00000001) but not with the presence of ileal inflammation (P = 0.73) or E. coli phylogroup. Mutations in a 1,057-bp region of rpoB, which encodes the bacterial target of rifaximin, were identified in 10/12 resistant strains versus 0/50 sensitive strains (P < 0.000000001) and consisted of seven amino acid substitutions. The efflux pump inhibitor Phe-Arg-β-naphthylamide (PAβN) lowered the MIC of 9/12 resistant strains 8- to 128-fold. Resistance was stable in the absence of rifaximin in 10/12 resistant strains after 30 passages. We conclude that IBD-associated ileal E. coli frequently manifest resistance to rifaximin that correlates with prior rifaximin use, amino acid substitutions in rpoB, and activity of PAβN-inhibitable efflux pumps, but not with the presence of ileal inflammation or E. coli phylogroup. These findings have significant implications for treatment trials targeting IBD-associated E. coli. PMID:23183443

  15. Meconium ileus caused by mutations in GUCY2C, encoding the CFTR-activating guanylate cyclase 2C.

    PubMed

    Romi, Hila; Cohen, Idan; Landau, Daniella; Alkrinawi, Suliman; Yerushalmi, Baruch; Hershkovitz, Reli; Newman-Heiman, Nitza; Cutting, Garry R; Ofir, Rivka; Sivan, Sara; Birk, Ohad S

    2012-05-04

    Meconium ileus, intestinal obstruction in the newborn, is caused in most cases by CFTR mutations modulated by yet-unidentified modifier genes. We now show that in two unrelated consanguineous Bedouin kindreds, an autosomal-recessive phenotype of meconium ileus that is not associated with cystic fibrosis (CF) is caused by different homozygous mutations in GUCY2C, leading to a dramatic reduction or fully abrogating the enzymatic activity of the encoded guanlyl cyclase 2C. GUCY2C is a transmembrane receptor whose extracellular domain is activated by either the endogenous ligands, guanylin and related peptide uroguanylin, or by an external ligand, Escherichia coli (E. coli) heat-stable enterotoxin STa. GUCY2C is expressed in the human intestine, and the encoded protein activates the CFTR protein through local generation of cGMP. Thus, GUCY2C is a likely candidate modifier of the meconium ileus phenotype in CF. Because GUCY2C heterozygous and homozygous mutant mice are resistant to E. coli STa enterotoxin-induced diarrhea, it is plausible that GUCY2C mutations in the desert-dwelling Bedouin kindred are of selective advantage. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Generation of Trichoderma atroviride mutants with constitutively activated G protein signaling by using geneticin resistance as selection marker.

    PubMed

    Gruber, Sabine; Omann, Markus; Rodrìguez, Carolina Escobar; Radebner, Theresa; Zeilinger, Susanne

    2012-11-17

    Species of the fungal genus Trichoderma are important industrial producers of cellulases and hemicellulases, but also widely used as biocontrol agents (BCAs) in agriculture. In the latter function Trichoderma species stimulate plant growth, induce plant defense and directly antagonize plant pathogenic fungi through their mycoparasitic capabilities. The recent release of the genome sequences of four mycoparasitic Trichoderma species now forms the basis for large-scale genetic manipulations of these important BCAs. Thus far, only a limited number of dominant selection markers, including Hygromycin B resistance (hph) and the acetamidase-encoding amdS gene, have been available for transformation of Trichoderma spp. For more extensive functional genomics studies the utilization of additional dominant markers will be essential. We established the Escherichia coli neomycin phosphotransferase II-encoding nptII gene as a novel selectable marker for the transformation of Trichoderma atroviride conferring geneticin resistance. The nptII marker cassette was stably integrated into the fungal genome and transformants exhibited unaltered phenotypes compared to the wild-type. Co-transformation of T. atroviride with nptII and a constitutively activated version of the Gα subunit-encoding tga3 gene (tga3Q207L) resulted in a high number of mitotically stable, geneticin-resistant transformants. Further analyses revealed a co-transformation frequency of 68% with 15 transformants having additionally integrated tga3Q207L into their genome. Constitutive activation of the Tga3-mediated signaling pathway resulted in increased vegetative growth and an enhanced ability to antagonize plant pathogenic host fungi. The neomycin phosphotransferase II-encoding nptII gene from Escherichia coli proved to be a valuable tool for conferring geneticin resistance to the filamentous fungus T. atroviride thereby contributing to an enhanced genetic tractability of these important BCAs.

  17. Prevalence of Shiga toxin-producing Shigella species isolated from French travellers returning from the Caribbean: an emerging pathogen with international implications.

    PubMed

    Gray, M D; Lacher, D W; Leonard, S R; Abbott, J; Zhao, S; Lampel, K A; Prothery, E; Gouali, M; Weill, F-X; Maurelli, A T

    2015-08-01

    Shiga toxins (Stxs) are potent cytotoxins that inhibit host cell protein synthesis, leading to cell death. Classically, these toxins are associated with intestinal infections due to Stx-producing Escherichia coli or Shigella dysenteriae serotype 1, and infections with these strains can lead to haemolytic-uraemic syndrome. Over the past decade, there has been increasing recognition that Stx is produced by additional Shigella species. We recently reported the presence and expression of stx genes in Shigella flexneri 2a clinical isolates. The toxin genes were carried by a new stx-encoding bacteriophage, and infection with these strains correlated with recent travel to Haiti or the Dominican Republic. In this study, we further explored the epidemiological link to this region by utilizing the French National Reference Centre for Escherichia coli, Shigella and Salmonella collection to survey the frequency of Stx-producing Shigella species isolated from French travellers returning from the Caribbean. Approximately 21% of the isolates tested were found to encode and produce Stx. These isolates included strains of S. flexneri 2a, S. flexneri Y, and S. dysenteriae 4. All of the travellers who were infected with Stx-producing Shigella had recently travelled to Haiti, the Dominican Republic, or French Guiana. Furthermore, whole genome sequencing showed that the toxin genes were encoded by a prophage that was highly identical to the phage that we identified in our previous study. These findings demonstrate that this new stx-encoding prophage is circulating within that geographical area, has spread to other continents, and is capable of spreading to multiple Shigella serogroups. Published by Elsevier Ltd.

  18. Fecal carriage of extended-spectrum β-lactamases and AmpC-producing Escherichia coli in a Libyan community

    PubMed Central

    2014-01-01

    Background Extended-spectrum β-lactamases (ESBLs), including the AmpC type, are important mechanisms of resistance among Enterobacteriaeceae. CTX-M type extended-spectrum β- lactamases, of which there are now over 90 variants, are distributed globally, yet appear to vary in regional distribution. AmpC β-lactamases hydrolyze third generation cephalosporins, but are resistant to inhibition by clavulanate or other β-lactamase inhibitors in vitro. Fecal carriage and rates of colonization by bacteria harboring these resistance mechanisms have been reported in patients with community-acquired infections and in healthy members of their households. Expression of these ESBLs compromises the efficacy of current antibacterial therapies, potentially increasing the seriousness of hospital- and community-acquired Escherichia coli (E. coli) infections. To investigate the occurrence of ESBL-producing E. coli in human fecal flora isolated from two pediatric populations residing in the Libyan cities Zleiten and Abou El Khoms. Isolates were further studied to characterize genes encoding β-lactam resistance, and establish genetic relationships. Methods Antibiotic resistance profiles of phenotypically characterized E. coli isolates recovered from the stools of 243 Libyan children during two surveillance periods in 2001 and 2007 were determined by the disk diffusion method. ESBL-screening was performed using the cephalosporin/clavulanate double synergy disc method, and the AmpC-phenotype was confirmed by the aminophenyl-boronic acid test. ESBL genes were molecularly characterized. Phylogenetic group and multilocus sequence typing (MLST) were determined for ESBL-producing isolates and PFGE was performed to compare banding profiles of some dominant strains. Results ESBLs were identified in 13.4% (18/134) of E. coli isolates, and nine isolates (6.7%) demonstrated AmpC activity; all 18 isolates contained a CTX-M gene. Three CTX-M gene families (CTX-M-1, n = 9; CTX-M-15, n = 8 and CTX-M-3, n = 1) were distributed in diverse E. coli backgrounds (phylogenetic group D, 39%; B2, 28%; B1, 22% and A, 11%). MLST analysis revealed 14 sequence type (ST) with six new sequence types. The gene encoding the CMY-2 enzyme was detected in five AmpC-positive E. coli. Conclusions These results identified heterogeneous clones of CTX-M-producing E. coli in the fecal isolates, indicating that the intestinal tract acts as a reservoir for ESBL-producing organisms, and a trafficker of antibiotic resistance genes. PMID:24934873

  19. Characterization of the sensor domain of QseE histidine kinase from Escherichia coli.

    PubMed

    Yeo, Kwon Joo; Park, Jin-Wan; Kim, Eun-Hee; Jeon, Young Ho; Hwang, Kwang Yeon; Cheong, Hae-Kap

    2016-10-01

    In enterohemorrhagic Escherichia coli (EHEC), the QseEF two-component system causes attaching and effacing (AE) lesion on epithelial cells. QseE histidine kinase senses the host hormone epinephrine, sulfate, and phosphate; it also regulates QseF response regulator, which activates LEE gene that encodes AE lesion. In order to understand the recognition of ligand molecules and signal transfer mechanism in pathogenic bacteria, structural studies of the sensor domain of QseE of Escherichia coli should be conducted. In this study, we describe the overexpression, purification, and structural and biophysical properties of the sensor domain of QseE. The fusion protein had a 6×His tag at its N-terminus; this protein was overexpressed as inclusion bodies in E. coli BL21 (DE3). The protein was denatured in 7M guanidine hydrochloride and refolded by dialysis. The purification of the refolded protein was carried out using Ni-NTA affinity column and size-exclusion chromatography. Thereafter, the characteristics of the refolded protein were determined from NMR, CD, and MALS spectroscopies. In a pH range of 7.4-5.0, the folded protein existed in a monomeric form with a predominantly helical structure. (1)H-(15)N HSQC NMR spectra shows that approximately 93% backbone amide peaks are detected at pH 5.0, suggesting that the number of backbone signals is sufficient for NMR studies. These data might provide an opportunity for structural and functional studies of the sensor domain of QseE. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Sequences of two related multiple antibiotic resistance virulence plasmids sharing a unique IS26-related molecular signature isolated from different Escherichia coli pathotypes from different hosts.

    PubMed

    Venturini, Carola; Hassan, Karl A; Roy Chowdhury, Piklu; Paulsen, Ian T; Walker, Mark J; Djordjevic, Steven P

    2013-01-01

    Enterohemorrhagic Escherichia coli (EHEC) and atypical enteropathogenic E. coli (aEPEC) are important zoonotic pathogens that increasingly are becoming resistant to multiple antibiotics. Here we describe two plasmids, pO26-CRL125 (125 kb) from a human O26:H- EHEC, and pO111-CRL115 (115kb) from a bovine O111 aEPEC, that impart resistance to ampicillin, kanamycin, neomycin, streptomycin, sulfathiazole, trimethoprim and tetracycline and both contain atypical class 1 integrons with an identical IS26-mediated deletion in their 3´-conserved segment. Complete sequence analysis showed that pO26-CRL125 and pO111-CRL115 are essentially identical except for a 9.7 kb fragment, present in the backbone of pO26-CRL125 but absent in pO111-CRL115, and several indels. The 9.7 kb fragment encodes IncI-associated genes involved in plasmid stability during conjugation, a putative transposase gene and three imperfect repeats. Contiguous sequence identical to regions within these pO26-CRL125 imperfect repeats was identified in pO111-CRL115 precisely where the 9.7 kb fragment is missing, suggesting it may be mobile. Sequences shared between the plasmids include a complete IncZ replicon, a unique toxin/antitoxin system, IncI stability and maintenance genes, a novel putative serine protease autotransporter, and an IncI1 transfer system including a unique shufflon. Both plasmids carry a derivate Tn21 transposon with an atypical class 1 integron comprising a dfrA5 gene cassette encoding resistance to trimethoprim, and 24 bp of the 3´-conserved segment followed by Tn6026, which encodes resistance to ampicillin, kanymycin, neomycin, streptomycin and sulfathiazole. The Tn21-derivative transposon is linked to a truncated Tn1721, encoding resistance to tetracycline, via a region containing the IncP-1α oriV. Absence of the 5 bp direct repeats flanking Tn3-family transposons, indicates that homologous recombination events played a key role in the formation of this complex antibiotic resistance gene locus. Comparative sequence analysis of these closely related plasmids reveals aspects of plasmid evolution in pathogenic E. coli from different hosts.

  1. Coculture of Escherichia coli O157:H7 with a Nonpathogenic E. coli Strain Increases Toxin Production and Virulence in a Germfree Mouse Model

    PubMed Central

    Goswami, Kakolie; Chen, Chun; Xiaoli, Lingzi; Eaton, Kathryn A.

    2015-01-01

    Escherichia coli O157:H7 is a notorious foodborne pathogen due to its low infectious dose and the disease symptoms it causes, which include bloody diarrhea and severe abdominal cramps. In some cases, the disease progresses to hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS), due to the expression of one or more Shiga toxins (Stx). Isoforms of Stx, including Stx2a, are encoded within temperate prophages. In the presence of certain antibiotics, phage induction occurs, which also increases the expression of toxin genes. Additionally, increased Stx2 accumulation has been reported when O157:H7 was cocultured with phage-susceptible nonpathogenic E. coli. This study characterized an E. coli O157:H7 strain, designated PA2, that belongs to the hypervirulent clade 8 cluster. Stx2a levels after ciprofloxacin induction were lower for PA2 than for the prototypical outbreak strains Sakai and EDL933. However, during coculture with the nonpathogenic strain E. coli C600, PA2 produced Stx2a levels that were 2- to 12-fold higher than those observed during coculture with EDL933 and Sakai, respectively. Germfree mice cocolonized by PA2 and C600 showed greater kidney damage, increased Stx2a accumulation in feces, and more visible signs of disease than mice given PA2 or C600 alone. These data suggest one mechanism by which microorganisms associated with the colonic microbiota could enhance the virulence of E. coli O157:H7, particularly a subset of clade 8 strains. PMID:26259815

  2. Sorbitol-Fermenting Enterohemorrhagic Escherichia coli O157:H− Isolates from Czech Patients with Novel Plasmid Composition Not Previously Seen in German Isolates

    PubMed Central

    Bauwens, Andreas; Marejková, Monika; Middendorf-Bauchart, Barbara; Prager, Rita; Kossow, Annelene; Zhang, Wenlan; Karch, Helge

    2017-01-01

    ABSTRACT Sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H− strains, first identified in Germany, have emerged as important pathogens throughout Europe. Besides chromosomally encoded Shiga toxin 2a (the major virulence factor), several putative virulence loci, including the hly, etp, and sfp operons, encoding EHEC hemolysin, type II secretion system proteins, and Sfp fimbriae, respectively, are located on the 121-kb plasmid pSFO157 in German strains. Here we report novel SF EHEC O157:H− strains isolated from patients in the Czech Republic. These strains share the core genomes and chromosomal virulence loci encoding toxins (stx2a and the cdtV-ABC operon) and adhesins (eae-γ, efa1, lpfAO157OI-141, and lpfAO157OI-154) with German strains but differ essentially in their plasmids. In contrast to all previously detected SF EHEC O157:H− strains, the Czech strains carry two plasmids, of 79 kb and 86 kb. The 79-kb plasmid harbors the sfp operon, but neither of the plasmids contains the hly and etp operons. Sequence analyses demonstrated that the 79-kb plasmid (pSFO157 258/98-1) evolved from pSFO157 of German strains by deletion of a 41,534-bp region via homologous recombination, resulting in loss of the hly and etp operons. The 86-kb plasmid (pSFO157 258/98-2) displays 98% sequence similarity to a 92.7-kb plasmid of an extraintestinal pathogenic E. coli bloodstream isolate. Our finding of this novel plasmid composition in SF EHEC O157:H− strains extends the evolutionary history of EHEC O157 plasmids. Moreover, the unique molecular plasmid characteristics permit the identification of such strains, thereby facilitating further investigations of their geographic distribution, clinical significance, and epidemiology. IMPORTANCE Since their first identification in Germany in 1989, sorbitol-fermenting enterohemorrhagic Escherichia coli O157:H− (nonmotile) strains have emerged as important causes of the life-threatening disease hemolytic-uremic syndrome in Europe. They account for 10 to 20% of sporadic cases of this disease and have caused several large outbreaks. The strains isolated throughout Europe share conserved chromosomal and plasmid characteristics. Here we identified novel sorbitol-fermenting enterohemorrhagic E. coli O157:H− patient isolates in the Czech Republic which differ from all such strains reported previously by their unique plasmid characteristics, including plasmid number, composition of plasmid-carried virulence genes, and plasmid origins. Our findings contribute substantially to understanding the evolution of E. coli O157 strains and their plasmids. In practical terms, they enable the identification of strains with these novel plasmid characteristics in patient stool samples and thus the investigation of their roles as human pathogens in other geographic areas. PMID:28970221

  3. Sorbitol-Fermenting Enterohemorrhagic Escherichia coli O157:H- Isolates from Czech Patients with Novel Plasmid Composition Not Previously Seen in German Isolates.

    PubMed

    Bauwens, Andreas; Marejková, Monika; Middendorf-Bauchart, Barbara; Prager, Rita; Kossow, Annelene; Zhang, Wenlan; Karch, Helge; Mellmann, Alexander; Bielaszewska, Martina

    2017-12-01

    Sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H - strains, first identified in Germany, have emerged as important pathogens throughout Europe. Besides chromosomally encoded Shiga toxin 2a (the major virulence factor), several putative virulence loci, including the hly , etp , and sfp operons, encoding EHEC hemolysin, type II secretion system proteins, and Sfp fimbriae, respectively, are located on the 121-kb plasmid pSFO157 in German strains. Here we report novel SF EHEC O157:H - strains isolated from patients in the Czech Republic. These strains share the core genomes and chromosomal virulence loci encoding toxins ( stx 2a and the cdtV -ABC operon) and adhesins ( eae -γ, efa1 , lpfA O157OI-141 , and lpfA O157OI-154 ) with German strains but differ essentially in their plasmids. In contrast to all previously detected SF EHEC O157:H - strains, the Czech strains carry two plasmids, of 79 kb and 86 kb. The 79-kb plasmid harbors the sfp operon, but neither of the plasmids contains the hly and etp operons. Sequence analyses demonstrated that the 79-kb plasmid (pSFO157 258/98-1) evolved from pSFO157 of German strains by deletion of a 41,534-bp region via homologous recombination, resulting in loss of the hly and etp operons. The 86-kb plasmid (pSFO157 258/98-2) displays 98% sequence similarity to a 92.7-kb plasmid of an extraintestinal pathogenic E. coli bloodstream isolate. Our finding of this novel plasmid composition in SF EHEC O157:H - strains extends the evolutionary history of EHEC O157 plasmids. Moreover, the unique molecular plasmid characteristics permit the identification of such strains, thereby facilitating further investigations of their geographic distribution, clinical significance, and epidemiology. IMPORTANCE Since their first identification in Germany in 1989, sorbitol-fermenting enterohemorrhagic Escherichia coli O157:H - (nonmotile) strains have emerged as important causes of the life-threatening disease hemolytic-uremic syndrome in Europe. They account for 10 to 20% of sporadic cases of this disease and have caused several large outbreaks. The strains isolated throughout Europe share conserved chromosomal and plasmid characteristics. Here we identified novel sorbitol-fermenting enterohemorrhagic E. coli O157:H - patient isolates in the Czech Republic which differ from all such strains reported previously by their unique plasmid characteristics, including plasmid number, composition of plasmid-carried virulence genes, and plasmid origins. Our findings contribute substantially to understanding the evolution of E. coli O157 strains and their plasmids. In practical terms, they enable the identification of strains with these novel plasmid characteristics in patient stool samples and thus the investigation of their roles as human pathogens in other geographic areas. Copyright © 2017 American Society for Microbiology.

  4. Adaptive Mutations in RNA Polymerase and the Transcriptional Terminator Rho Have Similar Effects on Escherichia coli Gene Expression.

    PubMed

    González-González, Andrea; Hug, Shaun M; Rodríguez-Verdugo, Alejandra; Patel, Jagdish Suresh; Gaut, Brandon S

    2017-11-01

    Modifications to transcriptional regulators play a major role in adaptation. Here, we compared the effects of multiple beneficial mutations within and between Escherichia coli rpoB, the gene encoding the RNA polymerase β subunit, and rho, which encodes a transcriptional terminator. These two genes have harbored adaptive mutations in numerous E. coli evolution experiments but particularly in our previous large-scale thermal stress experiment, where the two genes characterized alternative adaptive pathways. To compare the effects of beneficial mutations, we engineered four advantageous mutations into each of the two genes and measured their effects on fitness, growth, gene expression and transcriptional termination at 42.2 °C. Among the eight mutations, two rho mutations had no detectable effect on relative fitness, suggesting they were beneficial only in the context of epistatic interactions. The remaining six mutations had an average relative fitness benefit of ∼20%. The rpoB mutations affected the expression of ∼1,700 genes; rho mutations affected the expression of fewer genes but most (83%) were a subset of those altered by rpoB mutants. Across the eight mutants, relative fitness correlated with the degree to which a mutation restored gene expression back to the unstressed, 37.0 °C state. The beneficial mutations in the two genes did not have identical effects on fitness, growth or gene expression, but they caused parallel phenotypic effects on gene expression and genome-wide transcriptional termination. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. An unusual occurrence of plasmid-mediated blaOXA-23 carbapenemase in clinical isolates of Escherichia coli from India.

    PubMed

    Paul, Deepjyoti; Ingti, Birson; Bhattacharjee, Dibyojyoti; Maurya, Anand Prakash; Dhar, Debadatta; Chakravarty, Atanu; Bhattacharjee, Amitabha

    2017-05-01

    The bla OXA-23 group was considered as the first group of OXA-type β-lactamases conferring carbapenem resistance and has been reported worldwide in Acinetobacter baumannii, however their presence in Escherichia coli is very rare and unique. This study describes an unusual occurrence of bla OXA-23 in 14 clinical isolates of E. coli obtained from intensive care unit patients admitted to a tertiary referral hospital in India. The bla OXA-23 gene was found located within a self-conjugative plasmid of IncF rep B and IncK incompatibility types and simultaneously carrying bla CTX-M-15 , bla VEB-1 , bla PER-1 and/or bla NDM-1 . The copy number of bla OXA-23 within the IncK-type plasmid was inversely proportional to increasing concentrations of imipenem, whereas in the case of the IncF rep B-type the result was variable; and increased copy number of the IncK-type plasmid was observed with increasing concentrations of meropenem. Plasmids encoding bla OXA-23 could be successfully eliminated after single treatment and were found to be not highly stable, as complete loss of plasmids was observed within 5-10 days. This study emphasises that carbapenem stress invariably altered the copy number of two different Inc type plasmids encoding the bla OXA-23 resistance gene and also highlights a potential threat of clonal expansion of this class D carbapenemase through a heterologous host in this country, which is in second incidence globally. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  6. Modifications in the pmrB gene are the primary mechanism for the development of chromosomally encoded resistance to polymyxins in uropathogenic Escherichia coli.

    PubMed

    Phan, Minh-Duy; Nhu, Nguyen Thi Khanh; Achard, Maud E S; Forde, Brian M; Hong, Kar Wai; Chong, Teik Min; Yin, Wai-Fong; Chan, Kok-Gan; West, Nicholas P; Walker, Mark J; Paterson, David L; Beatson, Scott A; Schembri, Mark A

    2017-10-01

    Polymyxins remain one of the last-resort drugs to treat infections caused by MDR Gram-negative pathogens. Here, we determined the mechanisms by which chromosomally encoded resistance to colistin and polymyxin B can arise in the MDR uropathogenic Escherichia coli ST131 reference strain EC958. Two complementary approaches, saturated transposon mutagenesis and spontaneous mutation induction with high concentrations of colistin and polymyxin B, were employed to select for mutations associated with resistance to polymyxins. Mutants were identified using transposon-directed insertion-site sequencing or Illumina WGS. A resistance phenotype was confirmed by MIC and further investigated using RT-PCR. Competitive growth assays were used to measure fitness cost. A transposon insertion at nucleotide 41 of the pmrB gene (EC958pmrB41-Tn5) enhanced its transcript level, resulting in a 64- and 32-fold increased MIC of colistin and polymyxin B, respectively. Three spontaneous mutations, also located within the pmrB gene, conferred resistance to both colistin and polymyxin B with a corresponding increase in transcription of the pmrCAB genes. All three mutations incurred a fitness cost in the absence of colistin and polymyxin B. This study identified the pmrB gene as the main chromosomal target for induction of colistin and polymyxin B resistance in E. coli. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Genome Sequences and Phylogenetic Analysis of K88- and F18-Positive Porcine Enterotoxigenic Escherichia coli

    PubMed Central

    Shepard, Sara M.; Danzeisen, Jessica L.; Isaacson, Richard E.; Seemann, Torsten; Achtman, Mark

    2012-01-01

    Porcine enterotoxigenic Escherichia coli (ETEC) continues to result in major morbidity and mortality in the swine industry via postweaning diarrhea. The key virulence factors of ETEC strains, their serotypes, and their fimbrial components have been well studied. However, most studies to date have focused on plasmid-encoded traits related to colonization and toxin production, and the chromosomal backgrounds of these strains have been largely understudied. Here, we generated the genomic sequences of K88-positive and F18-positive porcine ETEC strains and examined the phylogenetic distribution of clinical porcine ETEC strains and their plasmid-associated genetic content. The genomes of porcine ETEC strains UMNK88 and UMNF18 were both found to contain remarkable plasmid complements containing known virulence factors, potential novel virulence factors, and antimicrobial resistance-associated elements. The chromosomes of these strains also possessed several unique genomic islands containing hypothetical genes with similarity to classical virulence factors, although phage-associated genomic islands dominated the accessory genomes of these strains. Phylogenetic analysis of 78 clinical isolates associated with neonatal and porcine diarrhea revealed that a limited subset of porcine ETEC lineages exist that generally contain common toxin and fimbrial profiles, with many of the isolates belonging to the ST10, ST23, and ST169 multilocus sequencing types. These lineages were generally distinct from existing human ETEC database isolates. Overall, most porcine ETEC strains appear to have emerged from a limited subset of E. coli lineages that either have an increased propensity to carry plasmid-encoded virulence factors or have the appropriate ETEC core genome required for virulence. PMID:22081385

  8. Molecular cloning and cold shock induced overexpression of the DNA encoding phor sensor domain from Mycobacterium tuberculosis as a target molecule for novel anti-tubercular drugs

    NASA Astrophysics Data System (ADS)

    Langi, Gladys Emmanuella Putri; Moeis, Maelita R.; Ihsanawati, Giri-Rachman, Ernawati Arifin

    2014-03-01

    Mycobacterium tuberculosis (Mtb), the sole cause of Tuberculosis (TB), is still a major global problem. The discovery of new anti-tubercular drugs is needed to face the increasing TB cases, especially to prevent the increase of cases with resistant Mtb. A potential novel drug target is the Mtb PhoR sensor domain protein which is the histidine kinase extracellular domain for receiving environmental signals. This protein is the initial part of the two-component system PhoR-PhoP regulating 114 genes related to the virulence of Mtb. In this study, the gene encoding PhoR sensor domain (SensPhoR) was subcloned from pGEM-T SensPhoR from the previous study (Suwanto, 2012) to pColdII. The construct pColdII SensPhoR was confirmed through restriction analysis and sequencing. Using the construct, SensPhoR was overexpressed at 15°C using Escherichia coli BL21 (DE3). Low temperature was chosen because according to the solubility prediction program of recombinant proteins from The University of Oklahama, the PhoR sensor domain has a chance of 79.8% to be expressed as insoluble proteins in Escherichia coli's (E. coli) cytoplasm. This prediction is also supported by other similar programs: PROSO and PROSO II. The SDS PAGE result indicated that the PhoR sensor domain recombinant protein was overexpressed. For future studies, this protein will be purified and used for structure analysis which can be used to find potential drugs through rational drug design.

  9. Molecular Characterization of Shiga Toxin-Producing Escherichia coli Strains Isolated in Poland.

    PubMed

    Januszkiewicz, Aleksandra; Rastawicki, Waldemar

    2016-08-26

    Shiga toxin-producing Escherichia coli (STEC) strains also called verotoxin-producing E. coli (VTEC) represent one of the most important groups of food-borne pathogens that can cause several human diseases such as hemorrhagic colitis (HC) and hemolytic - uremic syndrome (HUS) worldwide. The ability of STEC strains to cause disease is associated with the presence of wide range of identified and putative virulence factors including those encoding Shiga toxin. In this study, we examined the distribution of various virulence determinants among STEC strains isolated in Poland from different sources. A total of 71 Shiga toxin-producing E. coli strains isolated from human, cattle and food over the years 1996-2010 were characterized by microarray and PCR detection of virulence genes. As stx1a subtype was present in all of the tested Shiga toxin 1 producing E. coli strains, a greater diversity of subtypes was found in the gene stx2, which occurred in five subtypes: stx2a, stx2b, stx2c, stx2d, stx2g. Among STEC O157 strains we observed conserved core set of 14 virulence factors, stable in bacteria genome at long intervals of time. There was one cattle STEC isolate which possessed verotoxin gene as well as sta1 gene encoded heat-stable enterotoxin STIa characteristic for enterotoxigenic E. coli. To the best of our knowledge, this is the first comprehensive analysis of virulence gene profiles identified in STEC strains isolated from human, cattle and food in Poland. The results obtained using microarrays technology confirmed high effectiveness of this method in determining STEC virulotypes which provides data suitable for molecular risk assessment of the potential virulence of this bacteria. virulence factors including those encoding Shiga toxin. In this study, we examined the distribution of various virulence determinants among STEC strains isolated in Poland from different sources. A total of 71 Shiga toxin-producing E. coli strains isolated from human, cattle and food over the years 1996-2010 were characterized by microarray and PCR detection of virulence genes. As stx1a subtype was present in all of the tested Shiga toxin 1 producing E. coli strains, a greater diversity of subtypes was found in the gene stx2, which occurred in five subtypes: stx2a, stx2b, stx2c, stx2d, stx2g. Among STEC O157 strains we observed conserved core set of 14 virulence factors, stable in bacteria genome at long intervals of time. There was one cattle STEC isolate which possessed verotoxin gene as well as sta1 gene encoded heat-stable enterotoxin STIa characteristic for enterotoxigenic E. coli. To the best of our knowledge, this is the first comprehensive analysis of virulence gene profiles identified in STEC strains isolated from human, cattle and food in Poland. The results obtained using microarrays technology confirmed high effectiveness of this method in determining STEC virulotypes which provides data suitable for molecular risk assessment of the potential virulence of this bacteria.

  10. An Innovative Cloning Platform Enables Large-Scale Production and Maturation of an Oxygen-Tolerant [NiFe]-Hydrogenase from Cupriavidus necator in Escherichia coli

    PubMed Central

    Schiffels, Johannes; Pinkenburg, Olaf; Schelden, Maximilian; Aboulnaga, El-Hussiny A. A.; Baumann, Marcus E. M.; Selmer, Thorsten

    2013-01-01

    Expression of multiple heterologous genes in a dedicated host is a prerequisite for approaches in synthetic biology, spanning from the production of recombinant multiprotein complexes to the transfer of tailor-made metabolic pathways. Such attempts are often exacerbated, due in most cases to a lack of proper directional, robust and readily accessible genetic tools. Here, we introduce an innovative system for cloning and expression of multiple genes in Escherichia coli BL21 (DE3). Using the novel methodology, genes are equipped with individual promoters and terminators and subsequently assembled. The resulting multiple gene cassettes may either be placed in one vector or alternatively distributed among a set of compatible plasmids. We demonstrate the effectiveness of the developed tool by production and maturation of the NAD+reducing soluble [NiFe]-hydrogenase (SH) from Cupriavidus necator H16 (formerly Ralstonia eutropha H16) in E. coli BL21Star™ (DE3). The SH (encoded in hoxFUYHI) was successfully matured by co-expression of a dedicated set of auxiliary genes, comprising seven hyp genes (hypC1D1E1A2B2F2X) along with hoxW, which encodes a specific endopeptidase. Deletion of genes involved in SH maturation reduced maturation efficiency substantially. Further addition of hoxN1, encoding a high-affinity nickel permease from C. necator, considerably increased maturation efficiency in E. coli. Carefully balanced growth conditions enabled hydrogenase production at high cell-densities, scoring mg·(Liter culture)−1 yields of purified functional SH. Specific activities of up to 7.2±1.15 U·mg−1 were obtained in cell-free extracts, which is in the range of the highest activities ever determined in C. necator extracts. The recombinant enzyme was isolated in equal purity and stability as previously achieved with the native form, yielding ultrapure preparations with anaerobic specific activities of up to 230 U·mg−1. Owing to the combinatorial power exhibited by the presented cloning platform, the system might represent an important step towards new routes in synthetic biology. PMID:23861944

  11. Diversity of naturally occurring Ambler class B metallo-β-lactamases in Erythrobacter spp.

    PubMed

    Girlich, Delphine; Poirel, Laurent; Nordmann, Patrice

    2012-11-01

    In silico analysis identified a metallo-β-lactamase (MBL) in Erythrobacter litoralis HTCC2594, sharing 55% amino acid identity with NDM-1. The aim of this work was to characterize the chromosomally encoded MBLs from several Erythrobacter spp. that may represent potential reservoirs of acquired MBLs. Erythrobacter citreus, Erythrobacter flavus, Erythrobacter longus, Erythrobacter aquimaris and Erythrobacter vulgaris were from the Pasteur Institute collection, France. DNA was extracted and used for shotgun cloning, and β-lactamases were expressed in Escherichia coli. MICs for resulting E. coli recombinant strains were determined by Etest. The deduced amino acid sequences were analysed and compared with BLASTP. Enzymatic activity of bacterial extracts from recombinant E. coli strains was determined by UV spectrophotometry with imipenem (100 μM) as substrate. Resulting E. coli recombinant strains harboured hypothetical MBL-encoding genes. MICs of β-lactams showed decreased susceptibility to carbapenems only for E. coli (pFLA-1) and E. coli (pLON-1), expressing the MBL from E. flavus and E. longus, respectively. MBLs from different Erythrobacter spp. shared weak amino acid identity, ranging from 45% to75% identity. They differed greatly from that of E. litoralis HTCC2594 (and NDM-1), sharing only 11%-23% identity. Enzymatic activity against imipenem was detectable but weak in all these recombinant E. coli strains, except E. coli (pFLA-1), in which specific activity was significantly higher. Several chromosomally located MBLs have been identified from Erythrobacter spp. They share weak amino acid identity and are very weakly related to other acquired MBLs (10%-23%).

  12. Characterization and Genomic Study of Phage vB_EcoS-B2 Infecting Multidrug-Resistant Escherichia coli

    PubMed Central

    Xu, Yue; Yu, Xinyan; Gu, Yu; Huang, Xu; Liu, Genyan; Liu, Xiaoqiu

    2018-01-01

    The potential of bacteriophage as an alternative antibacterial agent has been reconsidered for control of pathogenic bacteria due to the widespread occurrence of multi-drug resistance bacteria. More and more lytic phages have been isolated recently. In the present study, we isolated a lytic phage named vB_EcoS-B2 from waste water. VB_EcoS-B2 has an icosahedral symmetry head and a long tail without a contractile sheath, indicating that it belongs to the family Siphoviridae. The complete genome of vB_EcoS-B2 is composed of a circular double stranded DNA of 44,283 bp in length, with 54.77% GC content. vB_EcoS-B2 is homologous to 14 relative phages (such as Escherichia phage SSL-2009a, Escherichia phage JL1, and Shigella phage EP23), but most of these phages exhibit different gene arrangement. Our results serve to extend our understanding toward phage evolution of family Siphoviridae of coliphages. Sixty-five putative open reading frames were predicted in the complete genome of vB_EcoS-B2. Twenty-one of proteins encoded by vB_EcoS-B2 were determined in phage particles by Mass Spectrometry. Bacteriophage genome and proteome analysis confirmed the lytic nature of vB_EcoS-B2, namely, the absence of toxin-coding genes, islands of pathogenicity, or genes through lysogeny or transduction. Furthermore, vB_EcoS-B2 significantly reduced the growth of E. coli MG1655 and also inhibited the growth of several multi-drug resistant clinical stains of E. coli. Phage vB_EcoS-B2 can kill some of the MRD E. coli entirely, strongly indicating us that it could be one of the components of phage cocktails to treat multi-drug resistant E. coli. This phage could be used to interrupt or reduce the spread of multi-drug resistant E. coli. PMID:29780362

  13. Extensively drug-resistant New Delhi metallo-β-lactamase-encoding bacteria in the environment, Dhaka, Bangladesh, 2012.

    PubMed

    Toleman, Mark A; Bugert, Joachim J; Nizam, Syed A

    2015-06-01

    Carriage of the New Delhi metallo-β-lactamase variant 1 (NDM-1) enables drug resistance to move between communities and hospitals. In Bangladesh, we found the blaNDM-1 gene in 62% of environmental waters and in fermentative and nonfermentative gram-negative bacteria. Escherichia coli sequence type (ST) 101 was most commonly found, reflecting a common global relationship between ST101 and NDM-1.

  14. Biochemical localization of a protein involved in Gluconacetobacter hansenii cellulose synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Prashanti R; Catchmark, Jeffrey M; Brown, Nicole Robitaille

    2011-02-08

    Using subcellular fractionation and Western blot methods, we have shown that AcsD, one of the proteins encoded by the Acetobacter cellulose synthase (acs) operon, is localized in the periplasmic region of the cell. AcsD protein was heterologously expressed in Escherichia coli and purified using histidine tag affinity methods. The purified protein was used to obtain rabbit polyclonal antibodies. The purity of the subcellular fractions was assessed by marker enzyme assays.

  15. Transcriptional responses of Escherichia coli K-12 and O157:H7 associated with lettuce leaves.

    PubMed

    Fink, Ryan C; Black, Elaine P; Hou, Zhe; Sugawara, Masayuki; Sadowsky, Michael J; Diez-Gonzalez, Francisco

    2012-03-01

    An increasing number of outbreaks of gastroenteritis recently caused by Escherichia coli O157:H7 have been linked to the consumption of leafy green vegetables. Although it is known that E. coli survives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identify E. coli genes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparing E. coli K-12, a model system, and E. coli O157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, including tnaA (33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsA and ybiM) and curli production (csgA and csgB) were significantly upregulated in E. coli K-12 and O157:H7. Both csgA and bhsA (ycfR) mutants were impaired in the long-term colonization of the leaf surface, but only csgA mutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction of E. coli K-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation.

  16. Prevalence of ESBLs and PMQR genes in fecal Escherichia coli isolated from the non-human primates in six zoos in China.

    PubMed

    Wang, Yang; He, Tao; Han, Jing; Wang, Juan; Foley, Steven L; Yang, Guangyou; Wan, Shuangxiu; Shen, Jianzhong; Wu, Congming

    2012-09-14

    The aim of this study is to characterize the prevalence of extended-spectrum β-lactamases (ESBLs) and plasmid-mediated quinolone resistance (PMQR) genes in Escherichia coli from captive non-human primates. A total of 206 E. coli isolates were collected from primates in six zoos in China in 2009 and their susceptibility to 10 antimicrobials were tested by broth microdilution. The susceptibility patterns of E. coli strains varied greatly among different zoos reflecting different backgrounds of antimicrobial usage. Both the ESBL-encoding genes and the PMQR genes were detected by PCR. Of the 206 strains, 65 (32%) were confirmed as phenotypic ESBL producers with bla(CTX-M) (27%, bla(CTX-M-15), n=31, bla(CTX-M-3), n=23 and bla(CTX-M-14), n=2) mainly mediating the ESBL phenotype. qnrS1 (18%, n=36) and oqxAB (15%, n=31) were the predominant PMQR genes and the prevalence of PMQR genes was much higher among phenotypic ESBL producers than that among phenotypic non-ESBL producers from any zoo. Notably, the PMQR genes qnrS1 and oqxAB and β-lactamase genes bla(TEM-1) and bla(CTX-M-3) were found together in 23 E. coli isolates in two zoos in Shanghai. PFGE analysis of these 23 isolates demonstrated nearly identical PFGE profiles (similarity matrix >97%) indicating this specific E. coli genotype was prevalent in these two zoos. To the best of our knowledge, this is the first report of these four genes coexisting in an E. coli genotype and the first report of antimicrobial resistance profiles in E. coli isolated from primates in China. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Hcp Family Proteins Secreted via the Type VI Secretion System Coordinately Regulate Escherichia coli K1 Interaction with Human Brain Microvascular Endothelial Cells

    PubMed Central

    Zhou, Yan; Tao, Jing; Yu, Hao; Ni, Jinjing; Zeng, Lingbing; Teng, Qihui; Kim, Kwang Sik; Zhao, Guo-Ping

    2012-01-01

    Type VI secretion systems (T6SSs) are involved in the pathogenicity of several Gram-negative bacteria. Based on sequence analysis, we found that a cluster of Escherichia coli virulence factors (EVF) encoding a putative T6SS exists in the genome of the meningitis-causing E. coli K1 strain RS218. The T6SS-associated deletion mutants exhibited significant defects in binding to and invasion of human brain microvascular endothelial cells (HBMEC) compared with the parent strain. Hcp family proteins (the hallmark of T6SS), including Hcp1 and Hcp2, were localized in the bacterial outer membrane, but the involvements of Hcp1 and Hcp2 have been shown to differ in E. coli-HBMEC interaction. The deletion mutant of hcp2 showed defects in the bacterial binding to and invasion of HBMEC, while Hcp1 was secreted in a T6SS-dependent manner and induced actin cytoskeleton rearrangement, apoptosis, and the release of interleukin-6 (IL-6) and IL-8 in HBMEC. These findings demonstrate that the T6SS is functional in E. coli K1, and two Hcp family proteins participate in different steps of E. coli interaction with HBMEC in a coordinate manner, e.g., binding to and invasion of HBMEC, the cytokine and chemokine release followed by cytoskeleton rearrangement, and apoptosis in HBMEC. This is the first demonstration of the role of T6SS in meningitis-causing E. coli K1, and T6SS-associated Hcp family proteins are likely to contribute to the pathogenesis of E. coli meningitis. PMID:22184413

  18. Hcp family proteins secreted via the type VI secretion system coordinately regulate Escherichia coli K1 interaction with human brain microvascular endothelial cells.

    PubMed

    Zhou, Yan; Tao, Jing; Yu, Hao; Ni, Jinjing; Zeng, Lingbing; Teng, Qihui; Kim, Kwang Sik; Zhao, Guo-Ping; Guo, Xiaokui; Yao, Yufeng

    2012-03-01

    Type VI secretion systems (T6SSs) are involved in the pathogenicity of several gram-negative bacteria. Based on sequence analysis, we found that a cluster of Escherichia coli virulence factors (EVF) encoding a putative T6SS exists in the genome of the meningitis-causing E. coli K1 strain RS218. The T6SS-associated deletion mutants exhibited significant defects in binding to and invasion of human brain microvascular endothelial cells (HBMEC) compared with the parent strain. Hcp family proteins (the hallmark of T6SS), including Hcp1 and Hcp2, were localized in the bacterial outer membrane, but the involvements of Hcp1 and Hcp2 have been shown to differ in E. coli-HBMEC interaction. The deletion mutant of hcp2 showed defects in the bacterial binding to and invasion of HBMEC, while Hcp1 was secreted in a T6SS-dependent manner and induced actin cytoskeleton rearrangement, apoptosis, and the release of interleukin-6 (IL-6) and IL-8 in HBMEC. These findings demonstrate that the T6SS is functional in E. coli K1, and two Hcp family proteins participate in different steps of E. coli interaction with HBMEC in a coordinate manner, e.g., binding to and invasion of HBMEC, the cytokine and chemokine release followed by cytoskeleton rearrangement, and apoptosis in HBMEC. This is the first demonstration of the role of T6SS in meningitis-causing E. coli K1, and T6SS-associated Hcp family proteins are likely to contribute to the pathogenesis of E. coli meningitis.

  19. Transcriptional Responses of Escherichia coli K-12 and O157:H7 Associated with Lettuce Leaves

    PubMed Central

    Fink, Ryan C.; Black, Elaine P.; Hou, Zhe; Sugawara, Masayuki; Sadowsky, Michael J.

    2012-01-01

    An increasing number of outbreaks of gastroenteritis recently caused by Escherichia coli O157:H7 have been linked to the consumption of leafy green vegetables. Although it is known that E. coli survives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identify E. coli genes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparing E. coli K-12, a model system, and E. coli O157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, including tnaA (33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsA and ybiM) and curli production (csgA and csgB) were significantly upregulated in E. coli K-12 and O157:H7. Both csgA and bhsA (ycfR) mutants were impaired in the long-term colonization of the leaf surface, but only csgA mutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction of E. coli K-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation. PMID:22247152

  20. Molecular characterization and expression of the M6 gene of grass carp hemorrhage virus (GCHV), an aquareovirus.

    PubMed

    Qiu, T; Lu, R H; Zhang, J; Zhu, Z Y

    2001-07-01

    The complete nucleotide sequence of M6 gene of grass carp hemorrhage virus (GCHV) was determined. It is 2039 nucleotides in length and contains a single large open reading frame that could encode a protein of 648 amino acids with predicted molecular mass of 68.7 kDa. Amino acid sequence comparison revealed that the protein encoded by GCHV M6 is closely related to the protein mu1 of mammalian reovirus. The M6 gene, encoding the major outer-capsid protein, was expressed using the pET fusion protein vector in Escherichia coli and detected by Western blotting using chicken anti-GCHV immunoglobulin (IgY). The result indicates that the protein encoded by M6 may share a putative Asn-42-Pro-43 proteolytic cleavage site with mu1.

  1. Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light.

    PubMed

    Kusakabe, Tamami; Tatsuke, Tsuneyuki; Tsuruno, Keigo; Hirokawa, Yasutaka; Atsumi, Shota; Liao, James C; Hanai, Taizo

    2013-11-01

    Production of alternate fuels or chemicals directly from solar energy and carbon dioxide using engineered cyanobacteria is an attractive method to reduce petroleum dependency and minimize carbon emissions. Here, we constructed a synthetic pathway composed of acetyl-CoA acetyl transferase (encoded by thl), acetoacetyl-CoA transferase (encoded by atoAD), acetoacetate decarboxylase (encoded by adc) and secondary alcohol dehydrogenase (encoded by adh) in Synechococcus elongatus strain PCC 7942 to produce isopropanol. The enzyme-coding genes, heterogeneously originating from Clostridium acetobutylicum ATCC 824 (thl and adc), Escherichia coli K-12 MG1655 (atoAD) and Clostridium beijerinckii (adh), were integrated into the S. elongatus genome. Under the optimized production conditions, the engineered cyanobacteria produced 26.5 mg/L of isopropanol after 9 days. © 2013 Published by Elsevier Inc.

  2. Production of vinyl derivatives from alkaline hydrolysates of corn cobs by recombinant Escherichia coli containing the phenolic acid decarboxylase from Lactobacillus plantarum CECT 748T.

    PubMed

    Salgado, José Manuel; Rodríguez-Solana, Raquel; Curiel, José Antonio; de las Rivas, Blanca; Muñoz, Rosario; Domínguez, José Manuel

    2012-08-01

    The enzyme PAD from Lactobacillus plantarum CECT 748T decarboxylates some cinnamic acids namely p-coumaric acid (p-CA), caffeic acid (CA), and ferulic acid (FA) into their corresponding 4-vinyl derivatives (4-VD): 4-vinyl phenol (4-VP), 4-vinyl catechol (4-VC), and 4-vinyl guaiacol (4-VG), respectively, which are valuable food additives mainly employed as flavouring agents. The gene encoding this enzyme was cloned and overexpressed in Escherichia coli. Recombinant E. coli cells overproducing L. plantarum PAD showed a preference to degrade mainly p-CA and CA. Sterilized liquors obtained after alkaline hydrolysis of corn cob or alkaline hydrolysis of the solid residue coming from acid hydrolysis of corn cob were employed as growth media in fermentations performed in shaker or bioreactor. The fermentative process allowed converting 2222.8 mg/L p-CA into 993.9 mg/L 4-VP. The process described here allowed the production with a high-yield of a valuable food additive from a by-product of the food industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Thaulin-1: The first antimicrobial peptide isolated from the skin of a Patagonian frog Pleurodema thaul (Anura: Leptodactylidae: Leiuperinae) with activity against Escherichia coli.

    PubMed

    Marani, Mariela M; Perez, Luis O; de Araujo, Alyne Rodrigues; Plácido, Alexandra; Sousa, Carla F; Quelemes, Patrick Veras; Oliveira, Mayara; Gomes-Alves, Ana G; Pueta, Mariana; Gameiro, Paula; Tomás, Ana M; Delerue-Matos, Cristina; Eaton, Peter; Camperi, Silvia A; Basso, Néstor G; de Souza de Almeida Leite, Jose Roberto

    2017-03-20

    Patagonia's biodiversity has been explored from many points of view, however, skin secretions of native amphibians have not been evaluated for antimicrobial peptide research until now. In this sense, Pleurodema thaul is the first amphibian specie to be studied from this large region of South America. Analysis of cDNA-encoding peptide in skin samples allowed identification of four new antimicrobial peptides. The predicted mature peptides were synthesized and all of them showed weak or null antimicrobial activity against Klebsiella pneumoniae, Staphylococcus aureus and Escherichia coli with the exception of thaulin-1, a cationic 26-residue linear, amphipathic, Gly- and Leu-rich peptide with moderate antimicrobial activity against E. coli (MIC of 24.7μM). AFM and SPR studies suggested a preferential interaction between these peptides and bacterial membranes. Cytotoxicity assays showed that thaulin peptides had minimal effects at MIC concentrations towards human and animal cells. These are the first peptides described for amphibians of the Pleurodema genus. These findings highlight the potential of the Patagonian region's unexplored biodiversity as a source for new molecule discovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Cloning of phaCAB genes from thermophilic Caldimonas manganoxidans in Escherichia coli for poly(3-hydroxybutyrate) (PHB) production.

    PubMed

    Lin, Ji-Hong; Lee, Ming-Chieh; Sue, You-Sheng; Liu, Yung-Chuan; Li, Si-Yu

    2017-08-01

    PHB biosynthesis pathway, consisting of three open reading frames (ORFs) that encode for β-ketothiolase (phaA Cma , 1179 bp), acetoacetyl-CoA reductase (phaB Cma , 738 bp), and PHA synthase (phaC Cma , 1694 bp), of Caldimonas manganoxidans was identified. The functions of PhaA, PhaB, and PhaC were demonstrated by successfully reconstructing PHB biosynthesis pathway of C. manganoxidans in Escherichia coli, where PHB production was confirmed by OD 600 , gas chromatography, Nile blue stain, and transmission electron microscope (TEM). The protein sequence alignment of PHB synthases revealed that phaC Cma shares at least 60% identity with those of class I PHB synthase. The effects of PhaA, PhaB, and PhaC expression levels on PHB production were investigated. While the overexpression of PhaB is found to be important in recombinant E. coli, performances of PHB production can be quantified as follows: PHB concentration of 16.8 ± 0.6 g/L, yield of 0.28 g/g glucose, content of 74%, productivity of 0.28 g/L/h, and Mw of 1.41 MDa.

  5. Escherichia coli K-12 and B contain functional bacteriophage P2 ogr genes.

    PubMed Central

    Slettan, A; Gebhardt, K; Kristiansen, E; Birkeland, N K; Lindqvist, B H

    1992-01-01

    The bacteriophage P2 ogr gene encodes an essential 72-amino-acid protein which acts as a positive regulator of P2 late transcription. A P2 ogr deletion phage, which depends on the supply of Ogr protein in trans for lytic growth on Escherichia coli C, has previously been constructed. E. coli B and K-12 were found to support the growth of the ogr-defective P2 phage because of the presence of functional ogr genes located in cryptic P2-like prophages in these strains. The cryptic ogr genes were cloned and sequenced. Compared with the P2 wild-type ogr gene, the ogr genes in the B and K-12 strains are conserved, containing mostly silent base substitutions. One of the base substitutions in the K-12 ogr gene results in replacement of an alanine with valine at position 57 in the Ogr protein but does not seem to affect the function of Ogr as a transcriptional activator. The cryptic ogr genes are constitutively transcribed, apparently at a higher level than the wild-type ogr gene in a P2 lysogen. Images PMID:1597424

  6. The NAG Sensor NagC Regulates LEE Gene Expression and Contributes to Gut Colonization by Escherichia coli O157:H7.

    PubMed

    Le Bihan, Guillaume; Sicard, Jean-Félix; Garneau, Philippe; Bernalier-Donadille, Annick; Gobert, Alain P; Garrivier, Annie; Martin, Christine; Hay, Anthony G; Beaudry, Francis; Harel, Josée; Jubelin, Grégory

    2017-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 are human pathogens responsible for bloody diarrhea and renal failures. EHEC employ a type 3 secretion system to attach directly to the human colonic epithelium. This structure is encoded by the locus of enterocyte effacement (LEE) whose expression is regulated in response to specific nutrients. In this study, we show that the mucin-derived sugars N-acetylglucosamine (NAG) and N-acetylneuraminic acid (NANA) inhibit EHEC adhesion to epithelial cells through down-regulation of LEE expression. The effect of NAG and NANA is dependent on NagC, a transcriptional repressor of the NAG catabolism in E. coli . We show that NagC is an activator of the LEE1 operon and a critical regulator for the colonization of mice intestine by EHEC. Finally, we demonstrate that NAG and NANA as well as the metabolic activity of Bacteroides thetaiotaomicron affect the in vivo fitness of EHEC in a NagC-dependent manner. This study highlights the role of NagC in coordinating metabolism and LEE expression in EHEC and in promoting EHEC colonization in vivo .

  7. The NAG Sensor NagC Regulates LEE Gene Expression and Contributes to Gut Colonization by Escherichia coli O157:H7

    PubMed Central

    Le Bihan, Guillaume; Sicard, Jean-Félix; Garneau, Philippe; Bernalier-Donadille, Annick; Gobert, Alain P.; Garrivier, Annie; Martin, Christine; Hay, Anthony G.; Beaudry, Francis; Harel, Josée; Jubelin, Grégory

    2017-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 are human pathogens responsible for bloody diarrhea and renal failures. EHEC employ a type 3 secretion system to attach directly to the human colonic epithelium. This structure is encoded by the locus of enterocyte effacement (LEE) whose expression is regulated in response to specific nutrients. In this study, we show that the mucin-derived sugars N-acetylglucosamine (NAG) and N-acetylneuraminic acid (NANA) inhibit EHEC adhesion to epithelial cells through down-regulation of LEE expression. The effect of NAG and NANA is dependent on NagC, a transcriptional repressor of the NAG catabolism in E. coli. We show that NagC is an activator of the LEE1 operon and a critical regulator for the colonization of mice intestine by EHEC. Finally, we demonstrate that NAG and NANA as well as the metabolic activity of Bacteroides thetaiotaomicron affect the in vivo fitness of EHEC in a NagC-dependent manner. This study highlights the role of NagC in coordinating metabolism and LEE expression in EHEC and in promoting EHEC colonization in vivo. PMID:28484684

  8. Identification of endogenous inducers of the mal regulon in Escherichia coli.

    PubMed Central

    Ehrmann, M; Boos, W

    1987-01-01

    The expression of the maltose regulon in Escherichia coli is induced when maltose or maltodextrins are present in the growth medium. Mutations in malK, which codes for a component of the transport system, result in the elevated expression of the remaining mal genes. Uninduced expression in the wild type, as well as elevated expression in malK mutants, is strongly repressed at high osmolarity. In the absence of malQ-encoded amylomaltase, expression remains high at high osmolarity. We found that uninduced expression in the wild type and elevated expression in malK mutants were paralleled by the appearance of two types of endogenous carbohydrates. One, produced primarily at high osmolarity, was identified as comprising maltodextrins that are derived from glycogen or glycogen-synthesizing enzymes. The other, produced primarily at low osmolarity, consisted of an oligosaccharide that was not derived from glycogen. We isolated a mutant that no longer synthesized this oligosaccharide. The gene carrying this mutation, termed malI, was mapped at min 36 on the E. coli linkage map. A Tn10 insertion in malI also resulted in the loss of constitutivity at low osmolarity and delayed the induction of the maltose regulon by exogenous inducers. Images PMID:3038842

  9. Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli.

    PubMed

    Gao, Jie; Lan, Ting

    2016-01-19

    Late embryogenesis abundant (LEA) proteins are a large and highly diverse gene family present in a wide range of plant species. LEAs are proposed to play a role in various stress tolerance responses. Our study represents the first-ever survey of LEA proteins and their encoding genes in a widely distributed pine (Pinus tabuliformis) in China. Twenty-three LEA genes were identified from the P. tabuliformis belonging to seven groups. Proteins with repeated motifs are an important feature specific to LEA groups. Ten of 23 pine LEA genes were selectively expressed in specific tissues, and showed expression divergence within each group. In addition, we selected 13 genes representing each group and introduced theses genes into Escherichia coli to assess the protective function of PtaLEA under heat and salt stresses. Compared with control cells, the E. coli cells expressing PtaLEA fusion protein exhibited enhanced salt and heat resistance and viability, indicating the protein may play a protective role in cells under stress conditions. Furthermore, among these enhanced tolerance genes, a certain extent of function divergence appeared within a gene group as well as between gene groups, suggesting potential functional diversity of this gene family in conifers.

  10. Cloning and expression of cyclophilin from Platanus orientalis pollens in Escherichia coli

    PubMed Central

    Sankian, Mojtaba; Vahedi, Fatemeh; Pazouki, Nazanin; Moghadam, Malihe; Jabbari Azad, Farahzad; Varasteh, Abdol-Reza

    2012-01-01

    Background: Allergy is a clinical disorder affecting the human population with wide geographical distribution. Platanus orientalis (P. orientalis) trees are planted in many countries and their pollen causes allergic reactions. Cyclophilin has recently been identified as one of the most important allergens of P. orientalis pollen. We aimed to clone and purify this allergen in Escherichia coli for further studies and therapeutic and diagnostic purposes for allergy to P. orientalis. Methods: RNA was extracted from P. orientalis. A full-length fragment encoding cyclophilin was prepared by polymerase chain reaction amplification of the first-strand cDNA synthesized from P. orientalis RNA. The cDNA was inserted into the pET32b (+) vector, and the construct transformed into E. coli Top10 and BL21 cells. The expressed protein was purified by the CuSO4 method. Results: The cDNA for the cyclophilin of P. orientalis pollen was cloned, and a specific reactivity of recombinant cyclophin was confirmed by immunoblotting using sera from patients allergic to P. orientalis pollen. Conclusion: The recombinant cyclophilin has a potential for immunologic assays for evaluation of allergy to P. orientalis pollen. PMID:26989705

  11. Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli W.

    PubMed

    Noh, Myung Hyun; Lim, Hyun Gyu; Woo, Sung Hwa; Song, Jinyi; Jung, Gyoo Yeol

    2018-03-01

    Utilization of abundant and cheap carbon sources can effectively reduce the production cost and enhance the economic feasibility. Acetate is a promising carbon source to achieve cost-effective microbial processes. In this study, we engineered an Escherichia coli strain to produce itaconic acid from acetate. As acetate is known to inhibit cell growth, we initially screened for a strain with a high tolerance to 10 g/L of acetate in the medium, and the W strain was selected as the host. Subsequently, the WC strain was obtained by overexpression of cad (encoding cis-aconitate decarboxylase) using a synthetic promoter and 5' UTR. However, the WC strain produced only 0.13 g/L itaconic acid because of low acetate uptake. To improve the production, the acetate assimilating pathway and glyoxylate shunt pathway were amplified by overexpression of pathway genes as well as its deregulation. The resulting strain, WCIAG4 produced 3.57 g/L itaconic acid (16.1% of theoretical maximum yield) after 88 hr of fermentation with rapid acetate assimilation. These efforts support that acetate can be a potential feedstock for biochemical production with engineered E. coli. © 2017 Wiley Periodicals, Inc.

  12. DNA Cloning of Plasmodium falciparum Circumsporozoite Gene: Amino Acid Sequence of Repetitive Epitope

    NASA Astrophysics Data System (ADS)

    Enea, Vincenzo; Ellis, Joan; Zavala, Fidel; Arnot, David E.; Asavanich, Achara; Masuda, Aoi; Quakyi, Isabella; Nussenzweig, Ruth S.

    1984-08-01

    A clone of complementary DNA encoding the circumsporozoite (CS) protein of the human malaria parasite Plasmodium falciparum has been isolated by screening an Escherichia coli complementary DNA library with a monoclonal antibody to the CS protein. The DNA sequence of the complementary DNA insert encodes a four-amino acid sequence: proline-asparagine-alanine-asparagine, tandemly repeated 23 times. The CS β -lactamase fusion protein specifically binds monoclonal antibodies to the CS protein and inhibits the binding of these antibodies to native Plasmodium falciparum CS protein. These findings provide a basis for the development of a vaccine against Plasmodium falciparum malaria.

  13. Identification of a penicillin-sensitive carboxypeptidase in the cellular slime mold Dictyostelium discoideum.

    PubMed

    Yasukawa, Hiro; Kuroita, Toshihiro; Tamura, Kentaro; Yamaguchi, Kazuo

    2003-07-01

    Penicillin binding proteins (PBPs) are penicillin-sensitive DD-peptidases catalyzing the terminal stages of bacterial cell wall assembly. We identified a Dictyostelium discoideum gene that encodes a protein of 522 amino acids showing similarity to Escherichia coli PBP4. The D. discoideum protein conserves three consensus sequences (SXXK, SXN and KTG) that are responsible for the catalytic activities of PBPs. The gene product prepared in the cell-free translation system showed carboxypeptidase activity but the activity was not detected in the presence of penicillin G. These results demonstrate that the D. discoideum gene encodes a eukaryotic form of penicillin-sensitive carboxypeptidase.

  14. Mechanosensing regulates virulence in Escherichia coli O157:H7.

    PubMed

    Islam, Md Shahidul; Krachler, Anne Marie

    2016-01-01

    Enterohemorrhagic Escherichia coli O157:H7 is a food-borne pathogen transmitted via the fecal-oral route, and can cause bloody diarrhea and hemolytic uremic syndrome (HUS) in the human host. Although a range of colonization factors, Shiga toxins and a type III secretion system (T3SS) all contribute to disease development, the locus of enterocyte effacement (LEE) encoded T3SS is responsible for the formation of lesions in the intestinal tract. While a variety of chemical cues in the host environment are known to up-regulate LEE expression, we recently demonstrated that changes in physical forces at the site of attachment are required for localized, full induction of the system and thus spatial regulation of virulence in the intestinal tract. Here, we discuss our findings in the light of other recent studies describing mechanosensing of the host and force-dependent induction of virulence mechanisms. We discuss potential mechanisms of mechanosensing and mechanotransduction, and the level of conservation across bacterial species.

  15. Overproduction in Escherichia coli and Characterization of a Soybean Ferric Leghemoglobin Reductase.

    PubMed Central

    Ji, L.; Becana, M.; Sarath, G.; Shearman, L.; Klucas, R. V.

    1994-01-01

    We previously cloned and sequenced a cDNA encoding soybean ferric leghemoglobin reductase (FLbR), an enzyme postulated to play an important role in maintaining leghemoglobin in a functional ferrous state in nitrogen-fixing root nodules. This cDNA was sub-cloned into an expression plasmid, pTrcHis C, and overexpressed in Escherichia coli. The recombinant FLbR protein, which was purified by two steps of column chromatography, was catalytically active and fully functional. The recombinant FLbR cross-reacted with antisera raised against native FLbR purified from soybean root nodules. The recombinant FLbR, the native FLbR purified from soybean (Glycine max L.) root nodules, and dihydrolipoamide dehydrogenases from pig heart and yeast had similar but not identical ultraviolet-visible absorption and fluorescence spectra, cofactor binding, and kinetic properties. FLbR shared common structural features in the active site and prosthetic group binding sites with other pyridine nucleotide-disulfide oxidoreductases such as dihydrolipoamide dehydrogenases, but displayed different microenvironments for the prosthetic groups. PMID:12232320

  16. Purification and properties of poliovirus RNA polymerase expressed in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plotch, S.J.; Palant, O.; Gluzman, Y.

    1989-01-01

    A cDNA clone encoding the RNA polymerase of poliovirus has been expressed in Escherichia coli under the transcriptional control of a T7 bacteriophage promoter. This poliovirus enzyme was designed to contain only a single additional amino acid, the N-terminal methionine. The recombinant enzyme has been purified to near homogeneity, and polyclonal antibodies have been prepared against it. The enzyme exhibits poly(A)-dependent oligo(U)-primed ply(U) polymerase activity as well as RNA polymerase activity. In the presence of an oligo(U) primer, the enzyme catalyzes the synthesis of a full-length copy of either poliovirus or globin RNA templates. In the absence of added primer,more » RNA products up to twice the length of the template are synthesized. When incubated in the presence of a single nucleoside triphosphate, (..cap alpha..-/sup 32/P)UTP, the enzyme catalyzes the incorporation of radioactive label into template RNA. These results are discussed in light of previously proposed models of poliovirus RNA synthesis in vitro.« less

  17. Designed Proteins as Novel Imaging Reagents in Living Escherichia coli.

    PubMed

    Pratt, Susan E; Speltz, Elizabeth B; Mochrie, Simon G J; Regan, Lynne

    2016-09-02

    Fluorescence imaging is a powerful tool to study protein function in living cells. Here, we introduce a novel imaging strategy that is fully genetically encodable, does not require the use of exogenous substrates, and adds a minimally disruptive tag to the protein of interest (POI). Our method was based on a set of designed tetratricopeptide repeat affinity proteins (TRAPs) that specifically and reversibly interact with a short, extended peptide tag. We co-expressed the TRAPs fused to fluorescent proteins (FPs) and the peptide tags fused to the POIs. We illustrated the method using the Escherichia coli protein FtsZ and showed that our system could track distinct FtsZ structures under both low and high expression conditions in live cells. We anticipate that our imaging strategy will be a useful tool for imaging the subcellular localization of many proteins, especially those recalcitrant to imaging by direct tagging with FPs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Proliferative Enterocolitis Associated with Dual Infection with Enteropathogenic Escherichia coli and Lawsonia intracellularis in Rabbits

    PubMed Central

    Schauer, David B.; McCathey, Sonya N.; Daft, Barbara M.; Jha, Sharda S.; Tatterson, Lisa E.; Taylor, Nancy S.; Fox, James G.

    1998-01-01

    Both enteropathogenic Escherichia coli (EPEC) and an obligate intracellular bacterium, previously referred to as an intracellular Campylobacter-like organism and now designated Lawsonia intracellularis, have been reported as causes of enterocolitis in rabbits. An outbreak of enterocolitis in a group of rabbits, characterized by an unusually high rate of mortality, was found to be associated with dual infection with EPEC and L. intracellularis. The EPEC strain was found to have eaeA gene homology but was negative for afrA homology. The absence of the afrA gene, which encodes the structural subunit for the AF/R1 pilus, indicates that this rabbit EPEC strain is distinct from the prototypic RDEC-1 strain. This finding suggests that rabbit EPEC strains widely reported in Western Europe, which lack AF/R1 pili, are also present in rabbits in the United States. Dual infection with these two pathogens in rabbits has not been previously reported and may have contributed to the unusually high mortality observed in this outbreak. PMID:9620403

  19. Construction and heterologous expression of a truncated Haemagglutinin (HA) protein from the avian influenza virus H5N1 in Escherichia coli.

    PubMed

    Chee Wei, T; Nurul Wahida, A G; Shaharum, S

    2014-12-01

    Malaysia first reported H5N1 poultry case in 2004 and subsequently outbreak in poultry population in 2007. Here, a recombinant gene encoding of peptide epitopes, consisting fragments of HA1, HA2 and a polybasic cleavage site of H5N1 strain Malaysia, was amplified and cloned into pET-47b(+) bacterial expression vector. DNA sequencing and alignment analysis confirmed that the gene had no alteration and in-frame to the vector. Then, His-tagged truncated HA protein was expressed in Escherichia coli BL21 (DE3) under 1 mM IPTG induction. The protein expression was optimized under a time-course induction study and further purified using Ni-NTA agarose under reducing condition. Migration size of protein was detected at 15 kDa by Western blot using anti-His tag monoclonal antibody and demonstrated no discrepancy compared to its calculated molecular weight.

  20. Virulence characteristics of extraintestinal pathogenic Escherichia coli deletion of gene encoding the outer membrane protein X.

    PubMed

    Meng, Xianrong; Liu, Xueling; Zhang, Liyuan; Hou, Bo; Li, Binyou; Tan, Chen; Li, Zili; Zhou, Rui; Li, Shaowen

    2016-09-01

    Outer membrane protein X (OmpX) and its homologues have been proposed to contribute to the virulence in various bacterial species. But, their role in virulence of extraintestinal pathogenic Escherichia coli (ExPEC) is yet to be determined. This study evaluates the role of OmpX in ExPEC virulence in vitro and in vivo using a clinical strain PPECC42 of porcine origin. The ompX deletion mutant exhibited increased swimming motility and decreased adhesion to, and invasion of pulmonary epithelial A549 cell, compared to the wild-type strain. A mild increase in LD50 and distinct decrease in bacterial load in such organs as heart, liver, spleen, lung and kidney were observed in mice infected with the ompX mutant. Complementation of the complete ompX gene in trans restored the virulence of mutant strain to the level of wild-type strain. Our results reveal that OmpX contributes to ExPEC virulence, but may be not an indispensable virulence determinant.

  1. Occurrence and antimicrobial drug susceptibility patterns of commensal and diarrheagenic Escherichia coli in fecal microbiota from children with and without acute diarrhea.

    PubMed

    Garcia, Patrícia G; Silva, Vânia L; Diniz, Cláudio G

    2011-02-01

    Acute diarrhea is a public health problem and an important cause of morbidity and mortality, especially in developing countries. The etiology is varied, and the diarrheagenic Escherichia coli pathotypes are among the most important. Our objectives were to determine the occurrence of commensal and diarrheagenic E. coli strains in fecal samples from children under five years old and their drug susceptibility patterns. E. coli were isolated from 141 fresh fecal samples; 84 were obtained from clinically injured donors with acute diarrhea (AD) and 57 from clinically healthy donors without diarrhea (WD). Presumptive phenotypic species identification was carried out and confirmed by amplification of specific 16S ribosomal RNA encoding DNA. Multiplex PCR was performed to characterize the diarrheagenic E. coli strains. Drug susceptibility patterns were determined by the disc-diffusion method. In total, 220 strains were recovered from the fecal specimens (61.8% from AD and 38.2% from WD). Diarrheagenic E. coli was identified at a rate of 36.8% (n=50) in diarrheic feces and 29.8% (n=25) in non-diarrheic feces. Enteroaggregative E. coli was the most frequently identified pathotype in the AD group (16.2%) and the only pathotype identified in the WD group (30.9%). Enteropathogenic E. coli was the second most isolated pathotype (10.3%), followed by Shiga toxin-producing E. coli (7.4%) and enterotoxigenic E. coli (2.9%). No enteroinvasive E. coli strains were recovered. The isolates showed high resistance rates against ampicillin, tetracycline, and sulfamethoxazole-trimethoprim. The most effective drugs were ceftazidime, ceftriaxone, imipenem and piperacillin-tazobactam, for which no resistance was observed. Differentiation between the diarrheagenic E. coli pathotypes is of great importance since they are involved in acute diarrheal diseases and may require specific antimicrobial chemotherapy. The high antimicrobial resistance observed in our study raises a broad discussion on the indiscriminate or improper use of antimicrobials, besides the risks of self-medication.

  2. Cloning and sequence of the gene encoding a cefotaxime-hydrolyzing class A beta-lactamase isolated from Escherichia coli.

    PubMed Central

    Ishii, Y; Ohno, A; Taguchi, H; Imajo, S; Ishiguro, M; Matsuzawa, H

    1995-01-01

    Escherichia coli TUH12191, which is resistant to piperacillin, cefazolin, cefotiam, ceftizoxime, cefuzonam, and aztreonam but is susceptible to cefoxitin, latamoxef, flomoxef, and imipenem, was isolated from the urine of a patient treated with beta-lactam antibiotics. The beta-lactamase (Toho-1) purified from the bacteria had a pI of 7.8, had a molecular weight of about 29,000, and hydrolyzed beta-lactam antibiotics such as penicillin G, ampicillin, oxacillin, carbenicillin, piperacillin, cephalothin, cefoxitin, cefotaxime, ceftazidime, and aztreonam. Toho-1 was markedly inhibited by beta-lactamase inhibitors such as clavulanic acid and tazobactam. Resistance to beta-lactams, streptomycin, spectinomycin, sulfamethoxazole, and trimethoprim was transferred by conjugational transfer from E. coli TUH12191 to E. coli ML4903, and the transferred plasmid was about 58 kbp, belonging to incompatibility group M. The cefotaxime resistance gene for Toho-1 was subcloned from the 58-kbp plasmid by transformation of E. coli MV1184. The sequence of the gene for Toho-1 was determined, and the open reading frame of the gene consisted of 873 or 876 bases (initial sequence, ATGATG). The nucleotide sequence of the gene (DDBJ accession number D37830) was found to be about 73% homologous to the sequence of the gene encoding a class A beta-lactamase produced by Klebsiella oxytoca E23004. According to the amino acid sequence deduced from the DNA sequence, the precursor consisted of 290 or 291 amino acid residues, which contained amino acid motifs common to class A beta-lactamases (70SXXK, 130SDN, and 234KTG). Toho-1 was about 83% homologous to the beta-lactamase mediated by the chromosome of K. oxytoca D488 and the beta-lactamase mediated by the plasmid of E. coli MEN-1. Therefore, the newly isolated beta-lactamase Toho-1 produced by E. coli TUH12191 is similar to beta-lactamases produced by K. oxytoca D488, K. oxytoca E23004, and E. coli MEN-1 rather than to mutants of TEM or SHV enzymes. Toho-1 has shown the highest degree of similarity to K. oxytoca class A beta-lactamase. Detailed comparison of Toho-1 with other beta-lactamases implied that replacement of Asn-276 by Arg with the concomitant substitution of Thr for Arg-244 is an important mutation in the extension of the substrate specificity. PMID:8619581

  3. Expression of the functional recombinant human glycosyltransferase GalNAcT2 in Escherichia coli.

    PubMed

    Lauber, Jennifer; Handrick, René; Leptihn, Sebastian; Dürre, Peter; Gaisser, Sabine

    2015-01-13

    Recombinant protein-based therapeutics have become indispensable for the treatment of many diseases. They are produced using well-established expression systems based on bacteria, yeast, insect and mammalian cells. The majority of therapeutic proteins are glycoproteins and therefore the post-translational attachment of sugar residues is required. The development of an engineered Escherichia coli-based expression system for production of human glycoproteins could potentially lead to increased yields, as well as significant decreases in processing time and costs. This work describes the expression of functional human-derived glycosyltransferase UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 2 (GalNAcT2) in a recombinant E. coli strain. For expression, a codon-optimised gene encoding amino acids 52-571 of GalNAcT2 lacking the transmembrane N-terminal domain was inserted into a pET-23 derived vector encoding a polyhistidine-tag which was translationally fused to the N-terminus of the glycosyltransferase (HisDapGalNAcT2). The glycosyltransferase was produced in E. coli using a recently published expression system. Soluble HisDapGalNAcT2 produced in SHuffle® T7 host cells was purified using nickel affinity chromatography and was subsequently analysed by size exclusion chromatography coupled to multi-angle light scattering (SEC-MALS) and circular dichroism spectroscopy to determine molecular mass, folding state and thermal transitions of the protein. The activity of purified HisDapGalNAcT2 was monitored using a colorimetric assay based on the release of phosphate during transfer of glycosyl residues to a model acceptor peptide or, alternatively, to the granulocyte-colony stimulating growth factor (G-CSF). Modifications were assessed by Matrix Assisted Laser Desorption Ionization Time-of-flight Mass Spectrometry analysis (MALDI-TOF-MS) and Electrospray Mass Spectrometry analysis (ESI-MS). The results clearly indicate the glycosylation of the acceptor peptide and of G-CSF. In the present work, we isolated a human-derived glycosyltransferase by expressing soluble HisDapGalNAcT2 in E. coli. The functional activity of the enzyme was shown in vitro. Further investigations are needed to assess the potential of in vivo glycosylation in E. coli.

  4. Genotypes and virulence characteristics of Shiga toxin-producing Escherichia coli O104 strains from different origins and sources.

    PubMed

    Miko, Angelika; Delannoy, Sabine; Fach, Patrick; Strockbine, Nancy A; Lindstedt, Björn Arne; Mariani-Kurkdjian, Patricia; Reetz, Jochen; Beutin, Lothar

    2013-12-01

    Sixty-two Escherichia coli strains carrying the wzxO104-gene from different sources, origins and time periods were analyzed for their serotypes, virulence genes and compared for genomic similarity by pulsed-field gel-electrophoresis (PFGE). The O104 antigen was present in 55 strains and the structurally and genetically related capsular antigen K9 in five strains. The presence of 49 genes associated with enteropathogenic E. coli (EPEC), enteroaggregative E. coli (EAEC) and enterohemorrhagic E. coli (EHEC) was investigated. Fifty-four strains of serotypes O104:H2 (n=1), O104:H4 (n=37), O104:H7 (n=5) and O104:H21 (n=11) produced Shiga-toxins (Stx). Among STEC O104, a close association between serotype, virulence gene profile and genomic similarity was found. EAEC virulence genes were only present in STEC O104:H4 strains. EHEC-O157 plasmid-encoded genes were only found in STEC O104:H2, O104:H7 and O104:H21 strains. None of the 62 O104 or K9 strains carried an eae-gene involved in the attaching and effacing phenotype. The 38 O104:H4 strains formed a single PFGE-cluster (>83.7% similarity). Thirty-one of these strains were from the European O104:H4 outbreak in 2011. The outbreak strains and older O104:H4 strains from Germany (2001), Georgia and France (2009) clustered together at>86.2% similarity. O104:H4 strains isolated between 2001 and 2009 differed for some plasmid-encoded virulence genes compared to the outbreak strains from 2011. STEC O104:H21 and STEC O104:H7 strains isolated in the U.S. and in Europe showed characteristic differences in their Stx-types, virulence gene and PFGE profiles indicating that these have evolved separately. E. coli K9 strains were not associated with virulence and were heterogeneous for their serotypes and PFGE profiles. Copyright © 2013 Elsevier GmbH. All rights reserved.

  5. Highly conserved type 1 pili promote enterotoxigenic E. coli pathogen-host interactions

    PubMed Central

    Rashu, Rasheduzzaman; Begum, Yasmin Ara; Ciorba, Matthew A.; Hultgren, Scott J.; Qadri, Firdausi

    2017-01-01

    Enterotoxigenic Escherichia coli (ETEC), defined by their elaboration of heat-labile (LT) and/or heat-stable (ST) enterotoxins, are a common cause of diarrheal illness in developing countries. Efficient delivery of these toxins requires ETEC to engage target host enterocytes. This engagement is accomplished using a variety of pathovar-specific and conserved E. coli adhesin molecules as well as plasmid encoded colonization factors. Some of these adhesins undergo significant transcriptional modulation as ETEC encounter intestinal epithelia, perhaps suggesting that they cooperatively facilitate interaction with the host. Among genes significantly upregulated on cell contact are those encoding type 1 pili. We therefore investigated the role played by these pili in facilitating ETEC adhesion, and toxin delivery to model intestinal epithelia. We demonstrate that type 1 pili, encoded in the E. coli core genome, play an essential role in ETEC virulence, acting in concert with plasmid-encoded pathovar specific colonization factor (CF) fimbriae to promote optimal bacterial adhesion to cultured intestinal epithelium (CIE) and to epithelial monolayers differentiated from human small intestinal stem cells. Type 1 pili are tipped with the FimH adhesin which recognizes mannose with stereochemical specificity. Thus, enhanced production of highly mannosylated proteins on intestinal epithelia promoted FimH-mediated ETEC adhesion, while conversely, interruption of FimH lectin-epithelial interactions with soluble mannose, anti-FimH antibodies or mutagenesis of fimH effectively blocked ETEC adhesion. Moreover, fimH mutants were significantly impaired in delivery of both heat-stable and heat-labile toxins to the target epithelial cells in vitro, and these mutants were substantially less virulent in rabbit ileal loop assays, a classical model of ETEC pathogenesis. Collectively, our data suggest that these highly conserved pili play an essential role in virulence of these diverse pathogens. PMID:28531220

  6. Distribution of putative adhesins in different seropathotypes of Shiga toxin-producing Escherichia coli.

    PubMed

    Toma, Claudia; Martínez Espinosa, Estela; Song, Tianyan; Miliwebsky, Elizabeth; Chinen, Isabel; Iyoda, Sunao; Iwanaga, Masaaki; Rivas, Marta

    2004-11-01

    The distribution of eight putative adhesins that are not encoded in the locus for enterocyte effacement (LEE) in 139 Shiga toxin-producing Escherichia coli (STEC) of different serotypes was investigated by PCR. Five of the adhesins (Iha, Efa1, LPF(O157/OI-141), LPF(O157/OI-154), and LPF(O113)) are encoded in regions corresponding to genomic O islands of E. coli EDL933, while the other three adhesins have been reported to be encoded in the STEC megaplasmid of various serotypes (ToxB [O157:H7], Saa [O113:H21], and Sfp [O157:NM]). STEC strains were isolated from humans (n = 54), animals (n = 52), and food (n = 33). They were classified into five seropathotypes (A through E) based on the reported occurrence of STEC serotypes in human disease, in outbreaks, and in the hemolytic-uremic syndrome (M. A. Karmali, M. Mascarenhas, S. Shen, K. Ziebell, S. Johnson, R. Reid-Smith, J. Isaac-Renton, C. Clark, K. Rahn, and J. B. Kaper, J. Clin. Microbiol. 41:4930-4940, 2003). The most prevalent adhesin was that encoded by the iha gene (91%; 127 of 139 strains), which was distributed in all seropathotypes. toxB and efa1 were present mainly in strains of seropathotypes A and B, which were LEE positive. saa was present only in strains of seropathotypes C, D, and E, which were LEE negative. Two fimbrial genes, lpfA(O157/OI-141) and lpfA(O157/OI-154), were strongly associated with seropathotype A. The fimbrial gene lpfA(O113) was present in all seropathotypes except for seropathotype A, while sfpA was not present in any of the strains studied. The distribution of STEC adhesins depends mainly on serotypes and not on the source of isolation. Seropathotype A, which is associated with severe disease and frequently is involved in outbreaks, possesses a unique adhesin profile which is not present in the other seropathotypes. The wide distribution of iha in STEC strains suggested that it could be a candidate for vaccine development.

  7. Chlorophyll a is a favorable substrate for Chlamydomonas Mg-dechelatase encoded by STAY-GREEN.

    PubMed

    Matsuda, Kaori; Shimoda, Yousuke; Tanaka, Ayumi; Ito, Hisashi

    2016-12-01

    Mg removal from chlorophyll by Mg-dechelatase is the first step of chlorophyll degradation. Recent studies showed that in Arabidopsis, Stay Green (SGR) encodes Mg-dechelatase. Though the Escherichia coli expression system is advantageous for investigating the properties of Mg-dechelatase, Arabidopsis Mg-dechelatase is not successfully expressed in E. coli. Chlamydomonas reinhardtii SGR (CrSGR) has a long, hydrophilic tail, suggesting that active CrSGR can be expressed in E. coli. After the incubation of chlorophyll a with CrSGR expressed in E. coli, pheophytin a accumulated, indicating that active CrSGR was expressed in E. coli. Substrate specificity of CrSGR against chlorophyll b and an intermediate molecule of the chlorophyll b degradation pathway was examined. CrSGR exhibited no activity against chlorophyll b and low activity against 7-hydroxymethyl chlorophyll a, consistent with the fact that chlorophyll b is degraded only after conversion to chlorophyll a. CrSGR exhibited low activity against divinyl chlorophyll a and chlorophyll a', and no activity against chlorophyllide a, protochlorophyll a, chlorophyll c 2 , and Zn-chlorophyll a. These observations indicate that chlorophyll a is the most favorable substrate for CrSGR. When CrSGR was expressed in Arabidopsis cells, the chlorophyll content decreased, further confirming that SGR has Mg-dechelating activity in chloroplasts. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. [Cloning, prokaryotic expression and antibacterial assay of Tenecin gene encoding an antibacterial peptide from Tenebrio molitor].

    PubMed

    Liu, Ying; Jiang, Yu-xin; Li, Chao-pin

    2011-12-01

    To clone tenecin gene, an antibacterial peptide gene, from Tenebrio molitor for its prokaryotic expression and explore the molecular mechanism for regulating the expression of antibacterial peptide in Tenebrio molitor larvae. The antibacterial peptide was induced from the larvae of Tenebrio molitor by intraperitoneal injection of Escherichia coli DH-5α (1×10(8)/ml). RT-PCR was performed 72 h after the injection to clone Tenecin gene followed by sequencing and bioinformatic analysis. The recombinant expression vector pET-28a(+)-Tenecin was constructed and transformed into E. coli BL21(DE3) cells and the expression of tenecin protein was observed after IPTG induction. Tenecin expression was detected in transformed E.coli using SDS-PAGE after 1 mmol/L IPTG induction. Tenecin gene, which was about 255 bp in length, encoded Tenecin protein with a relative molecular mass of 9 kD. Incubation of E.coli with 80, 60, 40, and 20 µg/ml tenecin for 18 h resulted in a diameter of the inhibition zone of 25.1∓0.03, 20.7∓0.06, 17.2∓0.11 and 9.3∓0.04 mm, respectively. Tenecin protein possesses strong antibacterial activity against E. coli DH-5α, which warrants further study of this protein for its potential as an antibacterial agent in clinical application.

  9. Effects of bfp Mutations on Biogenesis of Functional Enteropathogenic Escherichia coli Type IV Pili

    PubMed Central

    Anantha, Ravi P.; Stone, Kelly D.; Donnenberg, Michael S.

    2000-01-01

    Enteropathogenic Escherichia coli expresses a type IV fimbria known as the bundle-forming pilus (BFP) that is required for autoaggregation and localized adherence (LA) to host cells. A cluster of 14 genes is sufficient to reconstitute BFP biogenesis in a laboratory strain of E. coli. We have undertaken a systematic mutagenesis of the individual genes to determine the effect of each mutation on BFP biogenesis and LA. Here we report the construction and analysis of nonpolar mutations in six genes of the bfp cluster, bfpG, bfpB, bfpC, bfpD, bfpP, and bfpH, as well as the further analysis of a previously described bfpA mutant strain that is unable to express bundlin, the pilin protein. We found that mutations in bfpB, which encodes an outer membrane protein; bfpD, which encodes a putative nucleotide-binding protein; and bfpG and bfpC, which do not have sequence homologues in other type IV pilus systems, do not affect prebundlin expression or processing but block both BFP biogenesis and LA. The mutation in bfpP, the prepilin peptidase gene, does not affect prebundlin expression but blocks signal sequence cleavage of prebundlin, BFP biogenesis, and LA. The mutation in bfpH, which is predicted to encode a lytic transglycosylase, has no effect on prebundlin expression, prebundlin processing, BFP biogenesis, or LA. For each mutant for which altered phenotypes were detected, complementation with a plasmid containing the corresponding wild-type allele restored the wild-type phenotypes. We also found that association of prebundlin or bundlin with sucrose density flotation gradient fractions containing both inner and outer membrane proteins does not require any accessory proteins. These studies indicate that many bfp gene products are required for biogenesis of functional type IV pili but that mutations in the individual genes do not lead to the identification of new phases of pilus assembly. PMID:10762251

  10. Escherichia coli DinB inhibits replication fork progression without significantly inducing the SOS response.

    PubMed

    Mori, Tetsuya; Nakamura, Tatsuro; Okazaki, Naoto; Furukohri, Asako; Maki, Hisaji; Akiyama, Masahiro Tatsumi

    2012-01-01

    The SOS response is readily triggered by replication fork stalling caused by DNA damage or a dysfunctional replicative apparatus in Escherichia coli cells. E. coli dinB encodes DinB DNA polymerase and its expression is upregulated during the SOS response. DinB catalyzes translesion DNA synthesis in place of a replicative DNA polymerase III that is stalled at a DNA lesion. We showed previously that DNA replication was suppressed without exogenous DNA damage in cells overproducing DinB. In this report, we confirm that this was due to a dose-dependent inhibition of ongoing replication forks by DinB. Interestingly, the DinB-overproducing cells did not significantly induce the SOS response even though DNA replication was perturbed. RecA protein is activated by forming a nucleoprotein filament with single-stranded DNA, which leads to the onset of the SOS response. In the DinB-overproducing cells, RecA was not activated to induce the SOS response. However, the SOS response was observed after heat-inducible activation in strain recA441 (encoding a temperature-sensitive RecA) and after replication blockage in strain dnaE486 (encoding a temperature-sensitive catalytic subunit of the replicative DNA polymerase III) at a non-permissive temperature when DinB was overproduced in these cells. Furthermore, since catalytically inactive DinB could avoid the SOS response to a DinB-promoted fork block, it is unlikely that overproduced DinB takes control of primer extension and thus limits single-stranded DNA. These observations suggest that DinB possesses a feature that suppresses DNA replication but does not abolish the cell's capacity to induce the SOS response. We conclude that DinB impedes replication fork progression in a way that does not activate RecA, in contrast to obstructive DNA lesions and dysfunctional replication machinery.

  11. Development of a codon optimization strategy using the efor RED reporter gene as a test case

    NASA Astrophysics Data System (ADS)

    Yip, Chee-Hoo; Yarkoni, Orr; Ajioka, James; Wan, Kiew-Lian; Nathan, Sheila

    2018-04-01

    Synthetic biology is a platform that enables high-level synthesis of useful products such as pharmaceutically related drugs, bioplastics and green fuels from synthetic DNA constructs. Large-scale expression of these products can be achieved in an industrial compliant host such as Escherichia coli. To maximise the production of recombinant proteins in a heterologous host, the genes of interest are usually codon optimized based on the codon usage of the host. However, the bioinformatics freeware available for standard codon optimization might not be ideal in determining the best sequence for the synthesis of synthetic DNA. Synthesis of incorrect sequences can prove to be a costly error and to avoid this, a codon optimization strategy was developed based on the E. coli codon usage using the efor RED reporter gene as a test case. This strategy replaces codons encoding for serine, leucine, proline and threonine with the most frequently used codons in E. coli. Furthermore, codons encoding for valine and glycine are substituted with the second highly used codons in E. coli. Both the optimized and original efor RED genes were ligated to the pJS209 plasmid backbone using Gibson Assembly and the recombinant DNAs were transformed into E. coli E. cloni 10G strain. The fluorescence intensity per cell density of the optimized sequence was improved by 20% compared to the original sequence. Hence, the developed codon optimization strategy is proposed when designing an optimal sequence for heterologous protein production in E. coli.

  12. Molecular Characterization of Lactobacillus plantarum Genes for β-Ketoacyl-Acyl Carrier Protein Synthase III (fabH) and Acetyl Coenzyme A Carboxylase (accBCDA), Which Are Essential for Fatty Acid Biosynthesis

    PubMed Central

    Kiatpapan, Pornpimon; Kobayashi, Hajime; Sakaguchi, Maki; Ono, Hisayo; Yamashita, Mitsuo; Kaneko, Yoshinobu; Murooka, Yoshikatsu

    2001-01-01

    Genes for subunits of acetyl coenzyme A carboxylase (ACC), which is the enzyme that catalyzes the first step in the synthesis of fatty acids in Lactobacillus plantarum L137, were cloned and characterized. We identified six potential open reading frames, namely, manB, fabH, accB, accC, accD, and accA, in that order. Nucleotide sequence analysis suggested that fabH encoded β-ketoacyl-acyl carrier protein synthase III, that the accB, accC, accD, and accA genes encoded biotin carboxyl carrier protein, biotin carboxylase, and the β and α subunits of carboxyltransferase, respectively, and that these genes were clustered. The organization of acc genes was different from that reported for Escherichia coli, for Bacillus subtilis, and for Pseudomonas aeruginosa. E. coli accB and accD mutations were complemented by the L. plantarum accB and accD genes, respectively. The predicted products of all five genes were confirmed by using the T7 expression system in E. coli. The gene product of accB was biotinylated in E. coli. Northern and primer extension analyses demonstrated that the five genes in L. plantarum were regulated polycistronically in an acc operon. PMID:11133475

  13. Escherichia coli pathotypes

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli strains are important commensals of the intestinal tract of humans and animals; however, pathogenic strains, including diarrhea-inducing E. coli and extraintestinal pathogenic E. coli. Intestinal E. coli pathotypes may cause a dehydrating watery diarrhea, or more severe diseases su...

  14. Unexpected Diversity of Escherichia coli Sialate O-Acetyl Esterase NanS

    PubMed Central

    Rangel, Ariel; Steenbergen, Susan M.

    2016-01-01

    ABSTRACT The sialic acids (N-acylneuraminates) are a group of nine-carbon keto-sugars existing mainly as terminal residues on animal glycoprotein and glycolipid carbohydrate chains. Bacterial commensals and pathogens exploit host sialic acids for nutrition, adhesion, or antirecognition, where N-acetyl- or N-glycolylneuraminic acids are the two predominant chemical forms of sialic acids. Each form may be modified by acetyl esters at carbon position 4, 7, 8, or 9 and by a variety of less-common modifications. Modified sialic acids produce challenges for colonizing bacteria, because the chemical alterations to N-acetylneuraminic acid (Neu5Ac) confer increased resistance to sialidase and aldolase activities essential for the catabolism of host sialic acids. Bacteria with O-acetyl sialate esterase(s) utilize acetylated sialic acids for growth, thereby gaining a presumed metabolic advantage over competitors lacking this activity. Here, we demonstrate the esterase activity of Escherichia coli NanS after purifying it as a C-terminal HaloTag fusion. Using a similar approach, we show that E. coli strain O157:H7 Stx prophage or prophage remnants invariably include paralogs of nanS often located downstream of the Shiga-like toxin genes. These paralogs may include sequences encoding N- or C-terminal domains of unknown function where the NanS domains can act as sialate O-acetyl esterases, as shown by complementation of an E. coli strain K-12 nanS mutant and the unimpaired growth of an E. coli O157 nanS mutant on O-acetylated sialic acid. We further demonstrate that nanS homologs in Streptococcus spp. also encode active esterase, demonstrating an unexpected diversity of bacterial sialate O-acetyl esterase. IMPORTANCE The sialic acids are a family of over 40 naturally occurring 9-carbon keto-sugars that function in a variety of host-bacterium interactions. These sugars occur primarily as terminal carbohydrate residues on host glycoproteins and glycolipids. Available evidence indicates that diverse bacterial species use host sialic acids for adhesion or as sources of carbon and nitrogen. Our results show that the catabolism of the diacetylated form of host sialic acid requires a specialized esterase, NanS. Our results further show that nanS homologs exist in bacteria other than Escherichia coli, as well as part of toxigenic E. coli prophage. The unexpected diversity of these enzymes suggests new avenues for investigating host-bacterium interactions. Therefore, these original results extend our previous studies of nanS to include mucosal pathogens, prophage, and prophage remnants. This expansion of the nanS superfamily suggests important, although as-yet-unknown, functions in host-microbe interactions. PMID:27481927

  15. The Serum Resistome of a Globally Disseminated Multidrug Resistant Uropathogenic Escherichia coli Clone

    PubMed Central

    Phan, Minh-Duy; Peters, Kate M.; Sarkar, Sohinee; Lukowski, Samuel W.; Allsopp, Luke P.; Moriel, Danilo Gomes; Achard, Maud E. S.; Totsika, Makrina; Marshall, Vikki M.; Upton, Mathew; Beatson, Scott A.; Schembri, Mark A.

    2013-01-01

    Escherichia coli ST131 is a globally disseminated, multidrug resistant clone responsible for a high proportion of urinary tract and bloodstream infections. The rapid emergence and successful spread of E. coli ST131 is strongly associated with antibiotic resistance; however, this phenotype alone is unlikely to explain its dominance amongst multidrug resistant uropathogens circulating worldwide in hospitals and the community. Thus, a greater understanding of the molecular mechanisms that underpin the fitness of E. coli ST131 is required. In this study, we employed hyper-saturated transposon mutagenesis in combination with multiplexed transposon directed insertion-site sequencing to define the essential genes required for in vitro growth and the serum resistome (i.e. genes required for resistance to human serum) of E. coli EC958, a representative of the predominant E. coli ST131 clonal lineage. We identified 315 essential genes in E. coli EC958, 231 (73%) of which were also essential in E. coli K-12. The serum resistome comprised 56 genes, the majority of which encode membrane proteins or factors involved in lipopolysaccharide (LPS) biosynthesis. Targeted mutagenesis confirmed a role in serum resistance for 46 (82%) of these genes. The murein lipoprotein Lpp, along with two lipid A-core biosynthesis enzymes WaaP and WaaG, were most strongly associated with serum resistance. While LPS was the main resistance mechanism defined for E. coli EC958 in serum, the enterobacterial common antigen and colanic acid also impacted on this phenotype. Our analysis also identified a novel function for two genes, hyxA and hyxR, as minor regulators of O-antigen chain length. This study offers novel insight into the genetic make-up of E. coli ST131, and provides a framework for future research on E. coli and other Gram-negative pathogens to define their essential gene repertoire and to dissect the molecular mechanisms that enable them to survive in the bloodstream and cause disease. PMID:24098145

  16. The serum resistome of a globally disseminated multidrug resistant uropathogenic Escherichia coli clone.

    PubMed

    Phan, Minh-Duy; Peters, Kate M; Sarkar, Sohinee; Lukowski, Samuel W; Allsopp, Luke P; Gomes Moriel, Danilo; Achard, Maud E S; Totsika, Makrina; Marshall, Vikki M; Upton, Mathew; Beatson, Scott A; Schembri, Mark A

    2013-01-01

    Escherichia coli ST131 is a globally disseminated, multidrug resistant clone responsible for a high proportion of urinary tract and bloodstream infections. The rapid emergence and successful spread of E. coli ST131 is strongly associated with antibiotic resistance; however, this phenotype alone is unlikely to explain its dominance amongst multidrug resistant uropathogens circulating worldwide in hospitals and the community. Thus, a greater understanding of the molecular mechanisms that underpin the fitness of E. coli ST131 is required. In this study, we employed hyper-saturated transposon mutagenesis in combination with multiplexed transposon directed insertion-site sequencing to define the essential genes required for in vitro growth and the serum resistome (i.e. genes required for resistance to human serum) of E. coli EC958, a representative of the predominant E. coli ST131 clonal lineage. We identified 315 essential genes in E. coli EC958, 231 (73%) of which were also essential in E. coli K-12. The serum resistome comprised 56 genes, the majority of which encode membrane proteins or factors involved in lipopolysaccharide (LPS) biosynthesis. Targeted mutagenesis confirmed a role in serum resistance for 46 (82%) of these genes. The murein lipoprotein Lpp, along with two lipid A-core biosynthesis enzymes WaaP and WaaG, were most strongly associated with serum resistance. While LPS was the main resistance mechanism defined for E. coli EC958 in serum, the enterobacterial common antigen and colanic acid also impacted on this phenotype. Our analysis also identified a novel function for two genes, hyxA and hyxR, as minor regulators of O-antigen chain length. This study offers novel insight into the genetic make-up of E. coli ST131, and provides a framework for future research on E. coli and other Gram-negative pathogens to define their essential gene repertoire and to dissect the molecular mechanisms that enable them to survive in the bloodstream and cause disease.

  17. Modification of glucose import capacity in Escherichia coli: physiologic consequences and utility for improving DNA vaccine production

    PubMed Central

    2013-01-01

    Background The bacterium Escherichia coli can be grown employing various carbohydrates as sole carbon and energy source. Among them, glucose affords the highest growth rate. This sugar is nowadays widely employed as raw material in industrial fermentations. When E. coli grows in a medium containing non-limiting concentrations of glucose, a metabolic imbalance occurs whose main consequence is acetate secretion. The production of this toxic organic acid reduces strain productivity and viability. Solutions to this problem include reducing glucose concentration by substrate feeding strategies or the generation of mutant strains with impaired glucose import capacity. In this work, a collection of E. coli strains with inactive genes encoding proteins involved in glucose transport where generated to determine the effects of reduced glucose import capacity on growth rate, biomass yield, acetate and production of an experimental plasmid DNA vaccine (pHN). Results A group of 15 isogenic derivatives of E. coli W3110 were generated with single and multiple deletions of genes encoding glucose, mannose, beta-glucoside, maltose and N-acetylglucosamine components of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), as well as the galactose symporter and the Mgl galactose/glucose ABC transporter. These strains were characterized by growing them in mineral salts medium supplemented with 2.5 g/L glucose. Maximum specific rates of glucose consumption (qs) spanning from 1.33 to 0.32 g/g h were displayed by the group of mutants and W3110, which resulted in specific growth rates ranging from 0.65-0.18 h-1. Acetate accumulation was reduced or abolished in cultures with all mutant strains. W3110 and five selected mutant derivatives were transformed with pHN. A 3.2-fold increase in pHN yield on biomass was observed in cultures of a mutant strain with deletion of genes encoding the glucose and mannose PTS components, as well as Mgl. Conclusions The group of E. coli mutants generated in this study displayed a reduction or elimination of overflow metabolism and a linear correlation between qs and the maximum specific growth rate as well as the acetate production rate. By comparing DNA vaccine production parameters among some of these mutants, it was possible to identify a near-optimal glucose import rate value for this particular application. The strains employed in this study should be a useful resource for studying the effects of different predefined qs values on production capacity for various biotechnological products. PMID:23638701

  18. Characterization of P fimbriae on O1, O7, O75, rough, and nontypable strains of Escherichia coli.

    PubMed Central

    Pere, A; Selander, R K; Korhonen, T K

    1988-01-01

    P fimbriae of 37 uropathogenic Escherichia coli O1:K1, O7:K1, O22, O75, rough:K1, and nontypable strains were characterized by immunoprecipitation with 14 fimbria-specific rabbit antisera. The fimbrial composition of these strains, as reflected by the apparent molecular weights of the fimbrial peptides, was correlated with the O serogroup of the strains, but serological cross-reactivity of P fimbriae of different E. coli serogroups was frequently observed. The genetic clonal relationships of the strains were analyzed by determining the electrophoretic types, based on 18 chromosomally encoded enzymes. Among the O1:K1 strains, the same P-fimbrial variants occurred on strains that were either closely related or very distinct in their electrophoretic types, indicating that the P fimbriae have evolved in association with the O and K antigens. In contrast, certain O7:K1 and R:K1 strains as well as some O22 and O75 strains were genotypically identical and shared similar P-fimbrial variants, which differed serologically from those of other E. coli serogroups. Our results show that, despite the structural variability seen in electrophoretic analysis of P fimbriae of different serogroups, many P-fimbrial variants share common antigenic determinants that are recognized by rabbit antisera. Based on immunoprecipitation analyses, three anti-P-fimbria sera have now been identified that react with P fimbriae of 82 of 84 uropathogenic E. coli strains characterized in Finland. Images PMID:2895742

  19. Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT): potatoes expressing a synthetic LT-B gene.

    PubMed

    Mason, H S; Haq, T A; Clements, J D; Arntzen, C J

    1998-08-01

    The authors have designed and constructed a plant-optimize synthetic gene encoding the Escherichia coli heat-labile enterotoxin B subunit (LT-B), for use in transgenic plants as an edible vaccine against enterotoxigenic E. coli. Expression of the synthetic LT-B gene in potato plants under the control of a constitutive promoter yielded increased accumulation of LT-B in leaves and tubers, as compared to the bacterial LT-B gene. The plant-derived LT-B assembled into native pentameric structures as evidenced by its ability to bind ganglioside. The authors demonstrated immunogenicity by feeding mice the raw tubers and comparing the anti-LT-B serum IgG and faecal IgA to that produced in mice gavaged with bacterial LT-B. Mice were fed three weekly doses of 5 g tuber tissue containing either 20 or 50 micrograms LT-B, or gavaged weekly with 5 micrograms of LT-B from recombinant E. coli. One week after the third dose, mice immunized with potato LT-B had higher levels of serum and mucosal anti-LT-B than those gavaged with bacterial LT-B. Mice were challenged by oral administration of 25 micrograms LT, and protection assessed by comparing the gut/carcass mass ratios. Although none of the mice were completely protected, the higher dose potato vaccine compared favourably with the bacterial vaccine. These findings show that an edible vaccine against E. coli LT-B is feasible.

  20. Ferredoxin is involved in secretion of cytotoxic necrotizing factor 1 across the cytoplasmic membrane in Escherichia coli K1.

    PubMed

    Yu, Hao; Kim, Kwang Sik

    2010-02-01

    We previously showed that cytotoxic necrotizing factor 1 (CNF1) contributes to Escherichia coli K1 invasion of human brain microvascular endothelial cells (HBMEC) and interacts with the receptor on the surface of HBMEC. CNF1 is the cytoplasmic protein, and it remains incompletely understood how CNF1 is secreted across the inner and outer membranes in E. coli K1. In order to investigate the genetic determinants for secretion of CNF1 in E. coli K1, we performed Tn5 mutagenesis screening by applying beta-lactamase as a reporter to monitor secretion of CNF1. We identified a Tn5 mutant that exhibited no beta-lactamase activity in the culture supernatant and in which the mutated gene encodes a ferredoxin gene (fdx). In the fdx deletion mutant, there was no evidence of translocation of CNF1 into HBMEC. Western blot analysis of the fdx deletion mutant revealed that ferredoxin is involved in translocation of CNF1 across the cytoplasmic membrane. The fdx mutant exhibited significantly decreased invasion of HBMEC, similar to the decreased HBMEC invasion observed with the CNF1 mutant. The failures to secrete CNF1 and invade HBMEC of the fdx mutant were restored to the levels of the parent strain by complementation with fdx. These findings demonstrate for the first time that ferredoxin is involved in secretion of CNF1 across the inner membrane in meningitis-causing E. coli K1.

  1. Emergence of Escherichia coli encoding Shiga toxin 2f in human Shiga toxin-producing E. coli (STEC) infections in the Netherlands, January 2008 to December 2011.

    PubMed

    Friesema, I; van der Zwaluw, K; Schuurman, T; Kooistra-Smid, M; Franz, E; van Duynhoven, Y; van Pelt, W

    2014-05-01

    The Shiga toxins of Shiga toxin-producing Escherichia coli (STEC) can be divided into Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2) with several sub-variants. Variant Stx2f is one of the latest described, but has been rarely associated with symptomatic human infections. In the enhanced STEC surveillance in the Netherlands, 198 STEC O157 cases and 351 STEC non-O157 cases, including 87 stx2f STEC isolates, were reported between 2008 and 2011. Most stx2f strains belonged to the serogroups O63:H6 (n=47, 54%), O113:H6 (n=12, 14%) and O125:H6 (n=12, 14%). Of the 87 stx2f isolates, 84 (97%) harboured the E. coli attaching and effacing (eae) gene, but not the enterohaemorrhagic E. coli haemolysin (hly) gene. stx2f STEC infections show milder symptoms and a less severe clinical course than STEC O157 infections. Almost all infections with stx2f (n=83, 95%) occurred between June and December, compared to 170/198 (86%) of STEC O157 and 173/264 (66%) of other STEC non-O157. stx2f STEC infections in the Netherlands are more common than anticipated, and form a distinct group within STEC with regard to virulence genes and the relatively mild disease.

  2. Cloning and expression of Tenebrio molitor antifreeze protein in Escherichia coli.

    PubMed

    Yue, Chang-Wu; Zhang, Yi-Zheng

    2009-03-01

    A novel antifreeze protein cDNA was cloned by RT-PCR from the larva of the yellow mealworm Tenebrio molitor. The coding fragment of 339 bp encodes a protein of 112 amino acid residues and was fused to the expression vectors pET32a and pTWIN1. The resulted expression plasmids were transformed into Escherischia coli strains BL21 (DE3), ER2566, and Origami B (DE3), respectively. Several strategies were used for expression of the highly disulfide-bonded beta-helix-contained protein with the activity of antifreeze in different expression systems. A protocol for production of refolded and active T. molitor antifreeze protein in bacteria was obtained.

  3. Metronidazole Activation Is Mutagenic and Causes DNA Fragmentation in Helicobacter pylori and in Escherichia coli Containing a Cloned H. pylori rdxA+ (Nitroreductase) Gene

    PubMed Central

    Sisson, Gary; Jeong, Jin-Yong; Goodwin, Avery; Bryden, Louis; Rossler, Norma; Lim-Morrison, Sabrina; Raudonikiene, Ausra; Berg, Douglas E.; Hoffman, Paul S.

    2000-01-01

    Much of the normal high sensitivity of wild-type Helicobacter pylori to metronidazole (Mtz) depends on rdxA (HP0954), a gene encoding a novel nitroreductase that catalyzes the conversion of Mtz from a harmless prodrug to a bactericidal agent. Here we report that levels of Mtz that partially inhibit growth stimulate forward mutation to rifampin resistance in rdxA+ (Mtzs) and also in rdxA (Mtzr) H. pylori strains, and that expression of rdxA in Escherichia coli results in equivalent Mtz-induced mutation. A reversion test using defined lac tester strains of E. coli carrying rdxA+ indicated that CG-to-GC transversions and AT-to-GC transitions are induced more frequently than other base substitutions. Alkaline gel electrophoretic tests showed that Mtz concentrations near or higher than the MIC for growth also caused DNA breakage in H. pylori and in E. coli carrying rdxA+, suggesting that this damage may account for most of the bactericidal action of Mtz. Coculture of Mtzs H. pylori with E. coli (highly resistant to Mtz) in the presence of Mtz did not stimulate forward mutation in E. coli, indicating that the mutagenic and bactericidal products of Mtz metabolism do not diffuse significantly to neighboring (bystander) cells. Our results suggest that the widespread use of Mtz against other pathogens in people chronically infected with H. pylori may stimulate mutation and recombination in H. pylori, thereby speeding host-specific adaptation, the evolution of virulence, and the emergence of resistance against Mtz and other clinically useful antimicrobials. PMID:10960092

  4. Insertion Sequence-Caused Large Scale-Rearrangements in the Genome of Escherichia coli

    DTIC Science & Technology

    2016-07-18

    rearrangements in the genome of Escherichia coli Heewook Lee1,2, Thomas G. Doak3,4, Ellen Popodi3, Patricia L. Foster3 and Haixu Tang1,* 1School of...and excisions of IS elements and recombi- nation between homologous IS elements identified in a large collection of Escherichia coli mutation accu...scale rear- rangements arose in the Escherichia coli genome during a long-term evolution experiment in a recent study (8). Com- bining WGSS with

  5. Toward Development of an Oral, Plant-Based Vaccine Against Escherichia coli O157:H7

    DTIC Science & Technology

    2004-01-01

    Mason, H. S., Haq, T. A., Clements, J. D., and Arntzen, C. J. (1998). Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT...based Vaccine Against Escherichia coli O157:H7.” beyond brief excerpts is with the permission of the copyright owner, and will save and hold...4. TITLE AND SUBTITLE Toward Development of an Oral, Plant-based Vaccine Against Escherichia coli O157:H7 5a. CONTRACT NUMBER 5b. GRANT

  6. Over-expression of phage HK022 Nun protein is toxic for Escherichia coli

    PubMed Central

    Uc-Mass, Augusto; Khodursky, Arkady; Brown, Lewis; Gottesman, Max E.

    2008-01-01

    The Nun protein of coliphage HK022 excludes superinfecting λ phage. Nun recognizes and binds to the N utilization (nut) sites on phage λ nascent RNA and induces transcription termination. Over-expression of Nun from a high-copy plasmid is toxic for E.coli, despite the fact that nut sites are not encoded in the E.coli genome. Cells expressing Nun cannot exit stationary phase. Toxicity is related to transcription termination, since host and nun mutations that block termination also suppress cell killing. Nun inhibits expression of wild-type lacZ, but not lacZ expressed from the Crp/cAMP–independent lacUV5 promoter. Microarray and proteomics analyses show Nun down-regulates crp and tnaA. Crp over-expression and high indole concentrations partially reverse Nun-mediated toxicity and restore lacZ expression. PMID:18571198

  7. Detection of hepatitis B virus X product using an open reading frame Escherichia coli expression vector.

    PubMed Central

    Elfassi, E; Haseltine, W A; Dienstag, J L

    1986-01-01

    The genome of the hepatitis B virus (HBV) contains a sequence, designated X, capable of encoding a protein of 154 amino acids. To determine whether the putative protein synthesized from this region is antigenic, we examined the sera of HBV-infected patients for the ability to react with a hybrid protein that contained 133 amino acids encoded by the X region and portions of the bacterial ompF and beta-galactosidase genes. Some HBV-positive sera tested contained antibodies that specifically recognized the hybrid protein. All sera were from patients diagnosed as suffering from chronic active hepatitis. We conclude that the X region of HBV encodes a protein and that this protein is antigenic in some patients. Images PMID:3515347

  8. Cloning, expression, crystallization and preliminary X-ray analysis of the XMT and DXMT N-methyltransferases from Coffea canephora (robusta)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, Andrew A., E-mail: andrewmc@embl.fr; Biget, Laurent; Lin, Chenwei

    2007-04-01

    The genes encoding XMT and DXMT, the enzymes from Coffea canephora (robusta) that catalyse the three independent N-methyl transfer reactions in the caffeine-biosynthesis pathway, have been cloned and the proteins have been expressed in Escherichia coli. Both proteins have been crystallized in the presence of the demethylated cofactor S-adenosyl-l-cysteine (SAH) and substrate (xanthosine for XMT and theobromine for DXMT). Caffeine is a secondary metabolite produced by a variety of plants including Coffea canephora (robusta) and there is growing evidence that caffeine is part of a chemical defence strategy protecting young leaves and seeds from potential predators. The genes encoding XMTmore » and DXMT, the enzymes from Coffea canephora (robusta) that catalyse the three independent N-methyl transfer reactions in the caffeine-biosynthesis pathway, have been cloned and the proteins have been expressed in Escherichia coli. Both proteins have been crystallized in the presence of the demethylated cofactor S-adenosyl-l-cysteine (SAH) and substrate (xanthosine for XMT and theobromine for DXMT). The crystals are orthorhombic, with space group P2{sub 1}2{sub 1}2{sub 1} for XMT and C222{sub 1} for DXMT. X-ray diffraction to 2.8 Å for XMT and to 2.5 Å for DXMT have been collected on beamline ID23-1 at the ESRF.« less

  9. Switching between nitrogen and glucose limitation: Unraveling transcriptional dynamics in Escherichia coli.

    PubMed

    Löffler, Michael; Simen, Joana Danica; Müller, Jan; Jäger, Günter; Laghrami, Salaheddine; Schäferhoff, Karin; Freund, Andreas; Takors, Ralf

    2017-09-20

    Transcriptional control under nitrogen and carbon-limitation conditions have been well analyzed for Escherichia coli. However, the transcriptional dynamics that underlie the shift in regulatory programs from nitrogen to carbon limitation is not well studied. In the present study, cells were cultivated at steady state under nitrogen (ammonia)-limited conditions then shifted to carbon (glucose) limitation to monitor changes in transcriptional dynamics. Nitrogen limitation was found to be dominated by sigma 54 (RpoN) and sigma 38 (RpoS), whereas the "housekeeping" sigma factor 70 (RpoD) and sigma 38 regulate cellular status under glucose limitation. During the transition, nitrogen-mediated control was rapidly redeemed and mRNAs that encode active uptake systems, such as ptsG and manXYZ, were quickly amplified. Next, genes encoding facilitators such as lamB were overexpressed, followed by high affinity uptake systems such as mglABC and non-specific porins such as ompF. These regulatory programs are complex and require well-equilibrated and superior control. At the metabolome level, 2-oxoglutarate is the likely component that links carbon- and nitrogen-mediated regulation by interacting with major regulatory elements. In the case of dual glucose and ammonia limitation, sigma 24 (RpoE) appears to play a key role in orchestrating these complex regulatory networks. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. DNA sequence and characterization of GcvA, a LysR family regulatory protein for the Escherichia coli glycine cleavage enzyme system.

    PubMed Central

    Wilson, R L; Stauffer, G V

    1994-01-01

    The gene encoding GcvA, the trans-acting regulatory protein for the Escherichia coli glycine cleavage enzyme system, has been sequenced. The gcvA locus contains an open reading frame of 930 nucleotides that could encode a protein with a molecular mass of 34.4 kDa, consistent with the results of minicell analysis indicating that GcvA is a polypeptide of approximately 33 kDa. The deduced amino acid sequence of GcvA revealed that this protein shares similarity with the LysR family of activator proteins. The transcription start site was found to be 72 bp upstream of the presumed translation start site. A chromosomal deletion of gcvA resulted in the inability of cells to activate the expression of a gcvT-lacZ gene fusion when grown in the presence of glycine and an inability to repress gcvT-lacZ expression when grown in the presence of inosine. The regulation of gcvA was examined by constructing a gcvA-lacZ gene fusion in which beta-galactosidase synthesis is under the control of the gcvA regulatory region. Although gcvA expression appears to be autogenously regulated over a two- to threefold range, it is neither induced by glycine nor repressed by inosine. Images PMID:8188587

  11. Adaptation of Escherichia coli Traversing From the Faecal Environment to the Urinary Tract

    PubMed Central

    Nielsen, Karen L.; Stegger, Marc; Godfrey, Paul A.; Feldgarden, Michael; Andersen, Paal S.; Frimodt-Møller, Niels

    2016-01-01

    The majority of extraintestinal pathogenic Escherichia coli (ExPEC) causing urinary tract infections (UTI) are found in the patient's own gut flora, but only limited knowledge is available on the potential adaptation that may occur in the bacteria for them to traverse the perineum and successfully infect the urinary tract. Here, matching faecal and UTI isolates from 42 patients were compared pairwise using in-depth whole-genome sequencing to investigate whether genetic changes were evident for successful colonization in these two different environments. The identified non-synonymous mutations (0-12 substitutions in each pair) were primarily associated to genes encoding virulence factors and nutrient metabolism; and indications of parallel evolution were observed in genes encoding the major phase-variable protein antigen 43, a toxin/antitoxin locus and haemolysin B. No differences in virulence potential were observed in a mouse UTI model for five matching faecal and UTI isolates with or without mutations in antigen 43 and haemolysin B. Variations in plasmid content were observed in only four of the 42 pairs. Although, we observed mutations in known UTI virulence genes for a few pairs, the majority showed no detectable differences in mutations or mobilome changes when compared to their faecal counterpart. The results show that UPECs are successful in colonizing both the bladder and gut without adaptation. PMID:27825516

  12. Adaptation of Escherichia coli traversing from the faecal environment to the urinary tract.

    PubMed

    Nielsen, Karen L; Stegger, Marc; Godfrey, Paul A; Feldgarden, Michael; Andersen, Paal S; Frimodt-Møller, Niels

    2016-12-01

    The majority of extraintestinal pathogenic Escherichia coli (ExPEC) causing urinary tract infections (UTI) are found in the patient's own gut flora, but only limited knowledge is available on the potential adaptation that may occur in the bacteria in order to traverse the perineum and successfully infect the urinary tract. Here, matching pairs of faecal and UTI isolates from 42 patients were compared pairwise using in-depth whole-genome sequencing to investigate whether genetic changes were evident for successful colonization in these two different environments. The identified non-synonymous mutations (0-12 substitutions in each pair) were primarily associated to genes encoding virulence factors and nutrient metabolism; and indications of parallel evolution were observed in genes encoding the major phase-variable protein antigen 43, a toxin/antitoxin locus and haemolysin B. No differences in virulence potential were observed in a mouse UTI model for five matching faecal and UTI isolates with or without mutations in antigen 43 and haemolysin B. Variations in plasmid content were observed in only four of the 42 pairs. Although, we observed mutations in known UTI virulence genes for a few pairs, the majority showed no detectable differences with respect to mutations or mobilome when compared to their faecal counterpart. The results show that UPECs are successful in colonizing both the bladder and gut without adaptation. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Chromosomal instability in enterohaemorrhagic Escherichia coli O157:H7: impact on adherence, tellurite resistance and colony phenotype

    PubMed Central

    Bielaszewska, Martina; Middendorf, Barbara; Tarr, Phillip I; Zhang, Wenlan; Prager, Rita; Aldick, Thomas; Dobrindt, Ulrich; Karch, Helge; Mellmann, Alexander

    2011-01-01

    Tellurite (Tel) resistant enterohaemorrhagic Escherichia coli (EHEC) O157:H7 is a global pathogen. In strain EDL933 Tel resistance (TelR) is encoded by duplicate ter cluster in O islands (OI) 43 and 48, which also harbour iha, encoding the adhesin and siderophore receptor Iha. We identified five EHEC O157:H7 strains that differentiate into large (L) colonies and small (S) colonies with high and low Tel minimal inhibitory concentrations (MICs) respectively. S colonies (Tel-MICs ≤ 4 µg ml−1) sustained large internal deletions within the TelR OIs via homologous recombination between IS elements and lost ter and iha. Moreover, complete excision of the islands occurred by site-specific recombination between flanking direct repeats. Complete excision of OI 43 and OI 48 occurred in 1.81 × 10−3 and 1.97 × 10−4 cells in culture, respectively; internal deletion of OI 48 was more frequent (9.7 × 10−1 cells). Under iron limitation that promotes iha transcription, iha-negative derivatives adhered less well to human intestinal epithelial cells and grew slower than did their iha-positive counterparts. Experiments utilizing iha deletion and complementation mutants identified Iha as the major factor responsible for these phenotypic differences. Spontaneous deletions affecting TelR OIs contribute to EHEC O157 genome plasticity and might impair virulence and/or fitness. PMID:21299654

  14. Transcription factor DecR (YbaO) controls detoxification of L-cysteine in Escherichia coli.

    PubMed

    Shimada, Tomohiro; Tanaka, Kan; Ishihama, Akira

    2016-09-01

    YbaO is an uncharacterized AsnC-family transcription factor of Escherichia coli. In both Salmonella enterica and Pantoea ananatis, YbaO homologues were identified to regulate the adjacent gene encoding cysteine desulfhydrase for detoxification of cysteine. Using the genomic SELEX (systematic evolution of ligands by exponential enrichment) screening system, we identified the yhaOM operon, located far from the ybaO gene on the E. coli genome, as a single regulatory target of YbaO. In both gel shift assay in vitro and reporter and Northern blot assays in vivo, YbaO was found to regulate the yhaOM promoter. The growth of mutants lacking either ybaO or its targets yhaOM was delayed in the presence of cysteine, indicating involvement of these genes in cysteine detoxification. In the major pathway of cysteine degradation, hydrogen sulfide is produced in wild-type E. coli, but its production was not observed in each of the ybaO, yhaO and yhaM mutants. The yhaOM promoter was activated in the presence of cysteine, implying the role of cysteine in activation of YbaO. Taken together, we propose that YbaO is the cysteine-sensing transcriptional activator of the yhaOM operon, which is involved in the detoxification of cysteine. We then propose the naming of ybaO as decR (regulator of detoxification of cysteine).

  15. Suppression of the Escherichia coli dnaA46 mutation by changes in the activities of the pyruvate-acetate node links DNA replication regulation to central carbon metabolism.

    PubMed

    Tymecka-Mulik, Joanna; Boss, Lidia; Maciąg-Dorszyńska, Monika; Matias Rodrigues, João F; Gaffke, Lidia; Wosinski, Anna; Cech, Grzegorz M; Szalewska-Pałasz, Agnieszka; Węgrzyn, Grzegorz; Glinkowska, Monika

    2017-01-01

    To ensure faithful transmission of genetic material to progeny cells, DNA replication is tightly regulated, mainly at the initiation step. Escherichia coli cells regulate the frequency of initiation according to growth conditions. Results of the classical, as well as the latest studies, suggest that the DNA replication in E. coli starts at a predefined, constant cell volume per chromosome but the mechanisms coordinating DNA replication with cell growth are still not fully understood. Results of recent investigations have revealed a role of metabolic pathway proteins in the control of cell division and a direct link between metabolism and DNA replication has also been suggested both in Bacillus subtilis and E. coli cells. In this work we show that defects in the acetate overflow pathway suppress the temperature-sensitivity of a defective replication initiator-DnaA under acetogenic growth conditions. Transcriptomic and metabolic analyses imply that this suppression is correlated with pyruvate accumulation, resulting from alterations in the pyruvate dehydrogenase (PDH) activity. Consequently, deletion of genes encoding the pyruvate dehydrogenase subunits likewise resulted in suppression of the thermal-sensitive growth of the dnaA46 strain. We propose that the suppressor effect may be directly related to the PDH complex activity, providing a link between an enzyme of the central carbon metabolism and DNA replication.

  16. Immune response to recombinant Escherichia coli Iss protein in poultry.

    PubMed

    Lynne, Aaron M; Foley, Steven L; Nolan, Lisa K

    2006-06-01

    Colibacillosis accounts for significant losses to the poultry industry, and control efforts are hampered by limited understanding of the mechanisms used by avian pathogenic Escherichia coli (APEC) to cause disease. We have found that the presence of the increased serum survival gene (iss) is strongly associated with APEC but not with commensal E. coli, making iss, and the protein it encodes (Iss), candidate targets of colibacillosis control procedures. To assess the potential of Iss to elicit a protective response in chickens against APEC challenge, Iss fusion proteins were produced and administered subcutaneously to four groups of 2-wk-old specific-pathogen-free leghorn chickens. At 4 wk postimmunization, birds were challenged with APEC from serogroups 02 and 078 via intramuscular injection. At 2 wk postchallenge, birds were necropsied, and lesions consistent with colibacillosis were scored. Also, sera were collected from the birds pre- and postimmunization, and antibody titers to Iss were determined. Immunized birds produced a humoral response to Iss, and they had significantly lower lesion scores than the unimmunized control birds following challenge with both APEC strains. Birds that received the smallest amount of immunogen had the lowest lesion scores. Although further study will be needed to confirm the value of Iss as an immunoprotective antigen, these preliminary data suggest that Iss may have the potential to elicit significant protection in birds against heterologous E. coli challenge.

  17. Deficiency in L-serine deaminase interferes with one-carbon metabolism and cell wall synthesis in Escherichia coli K-12.

    PubMed

    Zhang, Xiao; El-Hajj, Ziad W; Newman, Elaine

    2010-10-01

    Escherichia coli K-12 provided with glucose and a mixture of amino acids depletes L-serine more quickly than any other amino acid even in the presence of ammonium sulfate. A mutant without three 4Fe4S L-serine deaminases (SdaA, SdaB, and TdcG) of E. coli K-12 is unable to do this. The high level of L-serine that accumulates when such a mutant is exposed to amino acid mixtures starves the cells for C(1) units and interferes with cell wall synthesis. We suggest that at high concentrations, L-serine decreases synthesis of UDP-N-acetylmuramate-L-alanine by the murC-encoded ligase, weakening the cell wall and producing misshapen cells and lysis. The inhibition by high L-serine is overcome in several ways: by a large concentration of L-alanine, by overproducing MurC together with a low concentration of L-alanine, and by overproducing FtsW, thus promoting septal assembly and also by overexpression of the glycine cleavage operon. S-Adenosylmethionine reduces lysis and allows an extensive increase in biomass without improving cell division. This suggests that E. coli has a metabolic trigger for cell division. Without that reaction, if no other inhibition occurs, other metabolic functions can continue and cells can elongate and replicate their DNA, reaching at least 180 times their usual length, but cannot divide.

  18. The ferric yersiniabactin uptake receptor FyuA is required for efficient biofilm formation by urinary tract infectious Escherichia coli in human urine.

    PubMed

    Hancock, Viktoria; Ferrières, Lionel; Klemm, Per

    2008-01-01

    Urinary tract infection (UTI) is the most common infection in patients with indwelling urinary catheters, and bacterial biofilm formation is a major problem in this type of infection. Escherichia coli is responsible for the large majority of UTIs. Free iron is strictly limited in the human urinary tract and there is fierce competition between the host and infectious bacteria for this essential metal. Urinary tract infectious E. coli have highly efficient mechanisms of iron acquisition, one of which is the yersiniabactin system. The fyuA gene, encoding the yersiniabactin receptor, is one of the most upregulated genes in biofilm; it was upregulated 63-fold in the E. coli UTI strain VR50. FyuA was found to be highly important for biofilm formation in iron-poor environments such as human urine. Mutants in fyuA show aberrant biofilm formation and the cells become filamentous; a VR50fyuA mutant showed a 92 % reduction in biofilm formation in urine flow-cell chambers compared with the wild-type. The FyuA/yersiniabactin system is known to be important for virulence. Here we demonstrate a direct link between FyuA and biofilm formation in iron-poor environments. We also show that the availability of iron greatly influences UTI strains' ability to form biofilm.

  19. Distribution of serine protease autotransporters of Enterobacteriaceae in typical and atypical enteroaggregative Escherichia coli.

    PubMed

    Andrade, Fernanda B; Abreu, Afonso G; Nunes, Kamila O; Gomes, Tânia A T; Piazza, Roxane M F; Elias, Waldir P

    2017-06-01

    Enteroaggregative Escherichia coli (EAEC) is an agent of acute and persistent diarrhea worldwide, categorized in typical or atypical subgroups. Some EAEC virulence factors are members of the serine protease autotransporters of Enterobacteriaceae (SPATE). The presence of SPATE-encoding genes of different E. coli pathotypes was searched in a large collection of EAEC strains, and a possible association between SPATEs and E. coli phylogroups was investigated. Among 108 typical and 85 atypical EAEC, pic was the most prevalent gene, detected in 47.1% of the strains, followed by sat (24.3%), espI (21.2%), pet (19.2%), sepA (13.5%), sigA (4.1%), eatA (4.1%), vat (1.0%), espP and tsh, detected in one strain (0.5%) each; while epeA and espC were not detected. Phylogenetic analysis demonstrated that 39.9% of the strains belonged to group A, 23.3% to B1, 10.9% to B2, 7.8% to D, 8.8% to E and 1.5% to F. The majority of the SPATE genes were distributed in typical and atypical strains without association with any phylogroup. In addition, pic and pet were strongly associated with typical EAEC and sepA was detected in close association with atypical EAEC. Our data indicate that SPATEs may represent important virulence traits in both subgroups of EAEC. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Elimination of the vitamin B12 uptake or synthesis pathway does not diminish the virulence of Escherichia coli K1 or Salmonella typhimurium in three model systems.

    PubMed

    Sampson, B A; Gotschlich, E C

    1992-09-01

    The role of iron in infection is of great importance and is well understood. During infection, both the host and the pathogen go through many complicated changes to regulate iron levels. Iron and vitamin B12 share certain features. For example, Escherichia coli has similar transport systems for both nutrients, and binding proteins for both are located in gastric juice, liver, saliva, granulocytes, and milk. It is because of such parallels between iron and B12 that we have explored the role of B12 in virulence. A btuB::Tn10 insertion which disrupts the gene encoding the vitamin B12 receptor from E. coli K-12 was P1 transduced into a virulent E. coli K1 strain. In both an infant-rat model and a chicken embryo model, no difference in virulence between the wild-type and the mutant strains was found. Strains of Salmonella typhimurium with mutations in the cobalamin synthesis pathway (Cob) and in btuB were used in a mouse model of virulence. Mutation of the Cob locus or of btuB does not decrease virulence. Interestingly, the inability to synthesize vitamin B12 actually increases virulence compared with the wild type in the S. typhimurium model. This effect is independent of the B12 intake of the mice.

  1. Effect of RNase E deficiency on translocon protein synthesis in an RNase E-inducible strain of enterohemorrhagic Escherichia coli O157:H7.

    PubMed

    Lodato, Patricia B; Thuraisamy, Thujitha; Richards, Jamie; Belasco, Joel G

    2017-07-06

    Enterohemorrhagic Escherichia coli (EHEC) is a food-borne pathogen that assembles a type III secretion system (T3SS) on its surface. The last portion of the T3SS, called the 'translocon', is composed of a filament and a pore complex that is inserted into the membrane of intestinal epithelial cells. The genes encoding the translocon (espADB) are part of the LEE4 operon. Their expression is regulated by a complex post-transcriptional mechanism that involves the processing of LEE4 mRNA by the essential endoribonuclease RNase E. Here, we report the construction of an EHEC strain (TEA028-rne) in which RNase E can be induced by adding IPTG to the culture medium. EHEC cells deficient in RNase E displayed an abnormal morphology and slower growth, in agreement with published observations in E. coli K-12. Under those conditions, EspA and EspB were produced at higher concentrations, and protein secretion still occurred. These results indicate that RNase E negatively regulates translocon protein synthesis and demonstrate the utility of E. coli strain TEA028-rne as a tool for investigating the influence of this ribonuclease on EHEC gene expression in vitro. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. A genome-wide inducible phenotypic screen identifies antisense RNA constructs silencing Escherichia coli essential genes

    PubMed Central

    Meng, Jia; Kanzaki, Gregory; Meas, Diane; Lam, Christopher K.; Crummer, Heather; Tain, Justina; Xu, H. Howard

    2013-01-01

    Regulated antisense RNA (asRNA) expression has been employed successfully in Gram-positive bacteria for genome-wide essential gene identification and drug target determination. However, there have been no published reports describing the application of asRNA gene silencing for comprehensive analyses of essential genes in Gram-negative bacteria. In this study, we report the first genome-wide identification of asRNA constructs for essential genes in Escherichia coli. We screened 250,000 library transformants for conditional growth-inhibitory recombinant clones from two shot-gun genomic libraries of E. coli using a paired-termini expression vector (pHN678). After sequencing plasmid inserts of 675 confirmed inducer-sensitive cell clones, we identified 152 separate asRNA constructs of which 134 inserts came from essential genes while 18 originated from non-essential genes (but share operons with essential genes). Among the 79 individual essential genes silenced by these asRNA constructs, 61 genes (77%) engage in processes related to protein synthesis. The cell-based assays of an asRNA clone targeting fusA (encoding elongation factor G) showed that the induced cells were sensitized 12 fold to fusidic acid, a known specific inhibitor. Our results demonstrate the utility of the paired-termini expression vector and feasibility of large-scale gene silencing in E. coli using regulated asRNA expression. PMID:22268863

  3. Comparative genomics of transport proteins in probiotic and pathogenic Escherichia coli and Salmonella enterica strains.

    PubMed

    Do, Jimmy; Zafar, Hassan; Saier, Milton H

    2017-06-01

    Escherichia coli is a genetically diverse species that can be pathogenic, probiotic, commensal, or a harmless laboratory strain. Pathogenic strains of E. coli cause urinary tract infections, diarrhea, hemorrhagic colitis, and pyelonephritis, while the two known probiotic E. coli strains combat inflammatory bowel disease and play a role in immunomodulation. Salmonella enterica, a close relative of E. coli, includes two important pathogenic serovars, Typhi and Typhimurium, causing typhoid fever and enterocolitis in humans, respectively, with the latter strain also causing a lethal typhoid fever-like disease in mice. In this study, we identify the transport systems and their substrates within seven E. coli strains: two probiotic strains, two extracellular pathogens, two intracellular pathogens, and K-12, as well as the two intracellular pathogenic S. enterica strains noted above. Transport systems characteristic of each probiotic or pathogenic species were thus identified, and the tabulated results obtained with all of these strains were compared. We found that the probiotic and pathogenic strains generally contain more iron-siderophore and sugar transporters than E. coli K-12. Pathogens have increased numbers of pore-forming toxins, protein secretion systems, decarboxylation-driven Na + exporters, electron flow-driven monovalent cation exporters, and putative transporters of unknown function compared to the probiotic strains. Both pathogens and probiotic strains encode metabolite transporters that reflect their intracellular versus extracellular environments. The results indicate that the probiotic strains live extracellularly. It seems that relatively few virulence factors can convert a beneficial or commensal microorganism into a pathogen. Taken together, the results reveal the distinguishing features of these strains and provide a starting point for future engineering of beneficial enteric bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. ENTEROAGGREGATIVE ESCHERICHIA COLI O104 FROM THAI AND IMPORTED MALAYSIAN RAW BEEF.

    PubMed

    Wameadesa, Nureesan; Sae-lim, Aphisara; Hayeebilan, Fadeeya; Rattanachuay, Pattamarat; Sukhumungoon, Pharanai

    2017-03-01

    Local Thai and imported Malaysian beef in southern Thailand area carry several Shiga toxin-producing Escherichia coli (STEC) serotypes. STEC O104 is an important pathogen capable of causing outbreaks with considerable morbidity and mortality. This study investigated the presence of E. coli O104 from local Thai and imported Malaysian beef obtained from markets in Hat Yai City, Songkhla Province during August 2015 - February 2016. Thirty-one E. coli O104 strains were isolated from 12 beef samples (16% and 23% Thai and imported Malaysian, respectively). Thirty strains possessed aggA (coding for a major component of AAF/I fimbriae), a gene associated with enteroaggregative E. coli (EAEC) pathotype, and all strains carried fimH (encoding Type 1 fimbriae). Thirty strains belonged to phylogenetic group B1 and one strain (from Malaysian beef) to group A. Agglutination of yeast cells was observed among 29 E. coli O104 strains. Investigation of stx2 phage occupancy loci demonstrated that sbcB was occupied in 12 strains. Antimicrobial susceptibility assay revealed that 7 strains were resistant to at least one antimicrobial agent and two were multi-drug resistant. One strain carried extended spectrum β-lactamase gene blaCTX-M and three carried blaTEM. PFGE-generated DNA profiling showed identical DNA pattern between that of one EAEC O104 strain from Thai beef and another from Malaysian beef, indicating that these two strains originated from the same clone. This is the first report in Thailand describing the presence of EAEC O104 from both Thai and imported Malaysian beef and their transfer between both countries. Thorough surveillance of this pathogen in fresh meats and vegetables should help to prevent any possible outbreak of E. coli O104.

  5. Cross-reactive protection against enterohemorrhagic Escherichia coli infection by enteropathogenic E. coli in a mouse model.

    PubMed

    Calderon Toledo, Carla; Arvidsson, Ida; Karpman, Diana

    2011-06-01

    Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are related attaching and effacing (A/E) pathogens. The genes responsible for the A/E pathology are carried on a chromosomal pathogenicity island termed the locus of enterocyte effacement (LEE). Both pathogens share a high degree of homology in the LEE and additional O islands. EHEC prevalence is much lower in areas where EPEC is endemic. This may be due to the development of antibodies against common EPEC and EHEC antigens. This study investigated the hypothesis that EPEC infections may protect against EHEC infections. We used a mouse model to inoculate BALB/c mice intragastrically, first with EPEC and then with EHEC (E. coli O157:H7). Four control groups received either a nonpathogenic E. coli (NPEC) strain followed by EHEC (NPEC/EHEC), phosphate-buffered saline (PBS) followed by EHEC (PBS/EHEC), EPEC/PBS, or PBS/PBS. Mice were monitored for weight loss and symptoms. EPEC colonized the intestine after challenge, and mice developed serum antibodies to intimin and E. coli secreted protein B (encoded in the LEE). Prechallenge with an EPEC strain had a protective effect after EHEC infection, as only a few mice developed mild symptoms, from which they recovered. These mice had an increase in body weight similar to that in control animals, and tissue morphology exhibited mild intestinal changes and normal renal histology. All mice that were not prechallenged with the EPEC strain developed mild to severe symptoms after EHEC infection, with weight loss as well as intestinal and renal histopathological changes. These data suggest that EPEC may protect against EHEC infection in this mouse model.

  6. Characterization of a Large Antibiotic Resistance Plasmid Found in Enteropathogenic Escherichia coli Strain B171 and Its Relatedness to Plasmids of Diverse E. coli and Shigella Strains.

    PubMed

    Hazen, Tracy H; Michalski, Jane; Nagaraj, Sushma; Okeke, Iruka N; Rasko, David A

    2017-09-01

    Enteropathogenic Escherichia coli (EPEC) is a leading cause of severe infantile diarrhea in developing countries. Previous research has focused on the diversity of the EPEC virulence plasmid, whereas less is known regarding the genetic content and distribution of antibiotic resistance plasmids carried by EPEC. A previous study demonstrated that in addition to the virulence plasmid, reference EPEC strain B171 harbors a second, larger plasmid that confers antibiotic resistance. To further understand the genetic diversity and dissemination of antibiotic resistance plasmids among EPEC strains, we describe the complete sequence of an antibiotic resistance plasmid from EPEC strain B171. The resistance plasmid, pB171_90, has a completed sequence length of 90,229 bp, a GC content of 54.55%, and carries protein-encoding genes involved in conjugative transfer, resistance to tetracycline ( tetA ), sulfonamides ( sulI ), and mercury, as well as several virulence-associated genes, including the transcriptional regulator hha and the putative calcium sequestration inhibitor ( csi ). In silico detection of the pB171_90 genes among 4,798 publicly available E. coli genome assemblies indicates that the unique genes of pB171_90 ( csi and traI ) are primarily restricted to genomes identified as EPEC or enterotoxigenic E. coli However, conserved regions of the pB171_90 plasmid containing genes involved in replication, stability, and antibiotic resistance were identified among diverse E. coli pathotypes. Interestingly, pB171_90 also exhibited significant similarity with a sequenced plasmid from Shigella dysenteriae type I. Our findings demonstrate the mosaic nature of EPEC antibiotic resistance plasmids and highlight the need for additional sequence-based characterization of antibiotic resistance plasmids harbored by pathogenic E. coli . Copyright © 2017 American Society for Microbiology.

  7. Coculture of Escherichia coli O157:H7 with a Nonpathogenic E. coli Strain Increases Toxin Production and Virulence in a Germfree Mouse Model.

    PubMed

    Goswami, Kakolie; Chen, Chun; Xiaoli, Lingzi; Eaton, Kathryn A; Dudley, Edward G

    2015-11-01

    Escherichia coli O157:H7 is a notorious foodborne pathogen due to its low infectious dose and the disease symptoms it causes, which include bloody diarrhea and severe abdominal cramps. In some cases, the disease progresses to hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS), due to the expression of one or more Shiga toxins (Stx). Isoforms of Stx, including Stx2a, are encoded within temperate prophages. In the presence of certain antibiotics, phage induction occurs, which also increases the expression of toxin genes. Additionally, increased Stx2 accumulation has been reported when O157:H7 was cocultured with phage-susceptible nonpathogenic E. coli. This study characterized an E. coli O157:H7 strain, designated PA2, that belongs to the hypervirulent clade 8 cluster. Stx2a levels after ciprofloxacin induction were lower for PA2 than for the prototypical outbreak strains Sakai and EDL933. However, during coculture with the nonpathogenic strain E. coli C600, PA2 produced Stx2a levels that were 2- to 12-fold higher than those observed during coculture with EDL933 and Sakai, respectively. Germfree mice cocolonized by PA2 and C600 showed greater kidney damage, increased Stx2a accumulation in feces, and more visible signs of disease than mice given PA2 or C600 alone. These data suggest one mechanism by which microorganisms associated with the colonic microbiota could enhance the virulence of E. coli O157:H7, particularly a subset of clade 8 strains. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Determination of gyrA and parC mutations and prevalence of plasmid-mediated quinolone resistance genes in Escherichia coli and Klebsiella pneumoniae isolated from patients with urinary tract infection in Iran.

    PubMed

    Mirzaii, Mehdi; Jamshidi, Sanaz; Zamanzadeh, Maryam; Marashifard, Masoud; Malek Hosseini, Seyed Ali Asghar; Haeili, Mehri; Jahanbin, Fariba; Mansouri, Fariba; Darban-Sarokhalil, Davood; Khoramrooz, Seyed Sajjad

    2018-06-01

    Fluoroquinolones (FQs) are recommended as the drugs of choice for the empirical treatment of urinary tract infections (UTIs). This study investigated the molecular determinants of FQ resistance in Escherichia coli and Klebsiella pneumoniae isolates in Iran. A total of 364 clinical isolates of E. coli (n=144) and K. pneumoniae (n=220) were collected from patients with UTI. Susceptibility of the isolates to ciprofloxacin, levofloxacin, gatifloxacin and nalidixic acid was evaluated by disk diffusion. The presence of qnrA, qnrB and qnrS genes was assessed by PCR. Nucleotide sequences of the gyrA and parC genes were determined. Eighty-seven (60.4%) and 15 (6.8%) E. coli and K. pneumoniae isolates, respectively, were resistant to at least one of the tested FQs. Plasmid-mediated quinolone resistance (PMQR) genes were detected in 12.6% and 60.0% of FQ-resistant E. coli and K. pneumoniae, respectively. Whilst qnrB predominated in K. pneumoniae, qnrS was the most prevalent PMQR gene in E. coli. S83L (98.9%) and D87N (59.8%) were the most frequent mutations identified in GyrA of E. coli, and 55.2% (n=48) of FQ-resistant E. coli isolates had mutation in ParC harbouring S80I and E84V substitutions. The GyrAS83L substitution was found in only one FQ-resistant K. pneumoniae isolate. FQ resistance was much more common in E. coli isolates than in K. pneumoniae. Whilst mutations in the drug target-encoding genes gyrA and parC were the major mechanisms involved in FQ resistance in E. coli, PMQR determinants commonly mediated FQ resistance in K. pneumoniae. Copyright © 2018. Published by Elsevier Ltd.

  9. Molecular characterization of diarrheagenic Escherichia coli isolated from vegetables in Argentina.

    PubMed

    González, Juliana; Cadona, Jimena S; Sanz, Marcelo; Bustamante, Ana V; Sanso, A Mariel

    2017-11-16

    The aim of this study was to investigate the prevalence of diarrheagenic E. coli strains in vegetables from the humid Pampa region, Argentina, and to determine the occurrence of serotypes and virulence genes in the isolates. A total of 373 fresh vegetable samples obtained from 41 different geographical points were examined. E. coli was detected in 38.6% of the samples. Ten isolates could be obtained from 14 samples presumptively positive for diarrheagenic E. coli: 8 were identified as atypical Enteropathogenic E. coli (aEPEC) and 2 as Verocytotoxigenic E. coli (VTEC). Lettuce and beet were the vegetables most frequently contaminated with pathogenic E. coli. The isolates belonged to serotypes O1:H7, O28:H19, O39:H40, O86:H31, O132:H8, O139:H20, O178:H7 and O178:H19, some of which reportedly have caused human illness, and one isolate resulted non typeable. Taking into account the distribution of 16 nle genes, 7 profiles were detected. On the other hand, all tested isolates harbored the gene encoding for the adhesin HcpA. Other adhesion related genes were also identified: ecpA and elfA were detected in 90%, lpfA 0113 in 60%, and ehaA in 50% of the isolates meanwhile ihaA was only observed in O178:H19 isolate. This VTEC isolate harbored, also, Cdt-V toxin and megaplasmid encoding genes such as espP, subA and epeA and exhibited a strong cytotoxic effect. These data is the first molecular E. coli report that confirms the presence of E. coli pathotypes circulating among vegetables in Argentina. Genetic characterization showed that in addition to eae or vtx genes, isolates obtained from vegetables harbored genes encoding other toxins, adhesins, and components related to the type III secretion system that could contribute to their virulence. In conclusion, this research shows that vegetables in Argentina may be the source of VTEC and EPEC infections in the community and therefore, they should be considered as vehicles for transmission of these potentially pathogenic bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cloning, sequence, and disruption of the Saccharomyces diastaticus DAR1 gene encoding a glycerol-3-phosphate dehydrogenase.

    PubMed Central

    Wang, H T; Rahaim, P; Robbins, P; Yocum, R R

    1994-01-01

    The Saccharomyces diastaticus DAR1 gene was cloned by complementation in an Escherichia coli strain auxogrophic for glycerol-3-phosphate. DAR1 encodes an NADH-dependent dihydroxyacetone phosphate reductase (sn-glycerol-3-phosphate dehydrogenase [G3PDase; EC 1.1.1.8]) homologous to several other eukaryotic G3PDases. DAR1 is distinct from GUT2, which encodes a glucose-repressed mitochondrial G3PDase, but is identical to GPD1 from S. cerevisiae, a close relative of S. diastaticus. The level of DAR1-encoded G3PDase was increased about threefold in a medium of high osmolarity. Disruption of DAR1 in a haploid S. cerevisiae was not lethal but led to a decrease in cytoplasmic NADH-dependent G3PDase activity, an increase in osmotic sensitivity, and a 25% reduction in glycerol secretion from cells grown anaerobically on glucose. PMID:7961476

  11. Cloning, sequence, and disruption of the Saccharomyces diastaticus DAR1 gene encoding a glycerol-3-phosphate dehydrogenase.

    PubMed

    Wang, H T; Rahaim, P; Robbins, P; Yocum, R R

    1994-11-01

    The Saccharomyces diastaticus DAR1 gene was cloned by complementation in an Escherichia coli strain auxogrophic for glycerol-3-phosphate. DAR1 encodes an NADH-dependent dihydroxyacetone phosphate reductase (sn-glycerol-3-phosphate dehydrogenase [G3PDase; EC 1.1.1.8]) homologous to several other eukaryotic G3PDases. DAR1 is distinct from GUT2, which encodes a glucose-repressed mitochondrial G3PDase, but is identical to GPD1 from S. cerevisiae, a close relative of S. diastaticus. The level of DAR1-encoded G3PDase was increased about threefold in a medium of high osmolarity. Disruption of DAR1 in a haploid S. cerevisiae was not lethal but led to a decrease in cytoplasmic NADH-dependent G3PDase activity, an increase in osmotic sensitivity, and a 25% reduction in glycerol secretion from cells grown anaerobically on glucose.

  12. Repression of small toxic protein synthesis by the Sib and OhsC small RNAs.

    PubMed

    Fozo, Elizabeth M; Kawano, Mitsuoki; Fontaine, Fanette; Kaya, Yusuf; Mendieta, Kathy S; Jones, Kristi L; Ocampo, Alejandro; Rudd, Kenneth E; Storz, Gisela

    2008-12-01

    The sequences encoding the QUAD1 RNAs were initially identified as four repeats in Escherichia coli. These repeats, herein renamed SIB, are conserved in closely related bacteria, although the number of repeats varies. All five Sib RNAs in E. coli MG1655 are expressed, and no phenotype was observed for a five-sib deletion strain. However, a phenotype reminiscent of plasmid addiction was observed for overexpression of the Sib RNAs, and further examination of the SIB repeat sequences revealed conserved open reading frames encoding highly hydrophobic 18- to 19-amino-acid proteins (Ibs) opposite each sib gene. The Ibs proteins were found to be toxic when overexpressed and this toxicity could be prevented by coexpression of the corresponding Sib RNA. Two other RNAs encoded divergently in the yfhL-acpS intergenic region were similarly found to encode a small hydrophobic protein (ShoB) and an antisense RNA regulator (OhsC). Overexpression of both IbsC and ShoB led to immediate changes in membrane potential suggesting both proteins affect the cell envelope. Whole genome expression analysis showed that overexpression of IbsC and ShoB, as well as the small hydrophobic LdrD and TisB proteins, has both overlapping and unique consequences for the cell.

  13. Repression of small toxic protein synthesis by the Sib and OhsC small RNAs

    PubMed Central

    Fozo, Elizabeth M.; Kawano, Mitsuoki; Fontaine, Fanette; Kaya, Yusuf; Mendieta, Kathy S.; Jones, Kristi L.; Ocampo, Alejandro; Rudd, Kenneth E.; Storz, Gisela

    2008-01-01

    Summary The sequences encoding the QUAD1 RNAs were initially identified as four repeats in Escherichia coli. These repeats, herein renamed SIB, are conserved in closely related bacteria, though the number of repeats varies. All five Sib RNAs in E. coli MG1655 are expressed, and no phenotype was observed for a five sib deletion strain. However, a phenotype reminiscent of plasmid addiction was observed for overexpression of the Sib RNAs, and further examination of the SIB repeat sequences revealed conserved open reading frames encoding highly hydrophobic 18–19 amino acid proteins (Ibs) opposite each sib gene. The Ibs proteins were found to be toxic when overexpressed and this toxicity could be prevented by co-expression of the corresponding Sib RNA. Two other RNAs encoded divergently in the yfhL-acpS intergenic region were similarly found to encode a small hydrophobic protein (ShoB) and an antisense RNA regulator (OhsC). Overexpression of both IbsC and ShoB led to immediate changes in membrane potential suggesting both proteins affect the cell envelope. Whole genome expression analysis showed that overexpression of IbsC and ShoB, as well as the small hydrophobic LdrD and TisB proteins, has both overlapping and unique consequences for the cell. PMID:18710431

  14. Analysis of expression of the argC and argD genes in the cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed Central

    Floriano, B; Herrero, A; Flores, E

    1994-01-01

    A cloned DNA fragment from Anabaena sp. strain PCC 7120 that complements an arginine auxotrophic mutant from the same organism was found to include an open reading frame encoding a 427-residue polypeptide that is homologous to N-acetylornithine aminotransferase from Bacillus subtilis, Escherichia coli, and Saccharomyces cerevisiae. The gene encoding N-acetylornithine aminotransferase in bacteria has been named argD. The expression of Anabaena sp. strain PCC 7120 argD, as well as of argC, was analyzed at the mRNA level. Both genes were transcribed as monocistronic mRNAs, and their expression was not affected by exogenously added arginine. Primer extension analysis identified transcription start points for both genes which were preceded by sequences similar to that of the E. coli RNA polymerase sigma 70 consensus promoter. A second transcription start point for the argD gene that is not preceded by a sigma 70 consensus promoter was detected in dinitrogen-grown cultures. Images PMID:7929012

  15. Co-Occurrence of Plasmid-Mediated AmpC β-Lactamase Activity Among Klebsiella pneumoniae and Escherichia Coli

    PubMed Central

    Zorgani, Abdulaziz; Daw, Hiyam; Sufya, Najib; Bashein, Abdullah; Elahmer, Omar; Chouchani, Chedly

    2017-01-01

    Introduction: Extended-spectrum β-lactamases (ESBLs), including the AmpC type, are important mechanisms of resistance among Klebsiella pneumoniae and Escherichia coli isolates. Objective: The aim of the study was to investigate the occurrence of AmpC-type β-lactamase producers isolated from two hospitals in Tripoli, Libya. Methods: All clinical isolates (76 K. pneumoniae and 75 E. coli) collected over two years (2013-2014) were evaluated for susceptibility to a panel of antimicrobials and were analyzed phenotypically for the ESBL and AmpC phenotype using E-test and ESBL and AmpC screen disc test. Both ESBL and AmpC-positive isolates were then screened for the presence of genes encoding plasmid-mediated AmpC β-lactamases by polymerase chain reaction (PCR). Results: Of the K. pneumoniae and E. coli tested, 75% and 16% were resistant to gentamicin, 74% and 1.3% to imipenem, 71% and 12% to cefoxitin, 80% and 12% to cefepime, 69% and 22.6% to ciprofloxacin, respectively. None of the E. coli isolates were multidrug resistant compared with K. pneumoniae (65.8%). K. pneumoniae ESBL producers were significantly higher (85.5%) compared with (17.3%) E. coli isolates (P <0.0001, OR=4.93). Plasmid-mediated AmpC genes were detected in 7.9% of K. pneumoniae, and 4% E. coli isolates. There was low agreement between phenotypic and genotypic methods, phenotypic testing underestimated detection of AmpC enzyme and did not correlate well with molecular results. The gene encoding CMY enzyme was the most prevalent (66.6%) of AmpC positive isolates followed by MOX, DHA and EBC. Only one AmpC gene was detected in 5/9 isolates, i.e, blaCMY (n=3), bla MOX (n=1), blaDHA (n=1). However, co-occurrence of AmpC genes were evident in 3/9 isolates with the following distribution: bla CMY and blaEBC (n=1), and blaCMY and blaMOX (n=2). Neither blaFOX nor blaACC was detected in all tested isolates. All AmpC positive strains were resistant to cefoxitin and isolated from patients admitted to intensive care units. Conclusion: Further studies are needed for detection of other AmpC variant enzyme production among such isolates. Continued surveillance and judicious antibiotic usage together with the implementation of efficient infection control measures are absolutely required. PMID:29151996

  16. Co-Occurrence of Plasmid-Mediated AmpC β-Lactamase Activity Among Klebsiella pneumoniae and Escherichia Coli.

    PubMed

    Zorgani, Abdulaziz; Daw, Hiyam; Sufya, Najib; Bashein, Abdullah; Elahmer, Omar; Chouchani, Chedly

    2017-01-01

    Extended-spectrum β-lactamases (ESBLs), including the AmpC type, are important mechanisms of resistance among Klebsiella pneumoniae and Escherichia coli isolates. The aim of the study was to investigate the occurrence of AmpC-type β-lactamase producers isolated from two hospitals in Tripoli, Libya. All clinical isolates (76 K. pneumoniae and 75 E. coli ) collected over two years (2013-2014) were evaluated for susceptibility to a panel of antimicrobials and were analyzed phenotypically for the ESBL and AmpC phenotype using E-test and ESBL and AmpC screen disc test. Both ESBL and AmpC-positive isolates were then screened for the presence of genes encoding plasmid-mediated AmpC β-lactamases by polymerase chain reaction (PCR). Of the K. pneumoniae and E. coli tested, 75% and 16% were resistant to gentamicin, 74% and 1.3% to imipenem, 71% and 12% to cefoxitin, 80% and 12% to cefepime, 69% and 22.6% to ciprofloxacin, respectively. None of the E. coli isolates were multidrug resistant compared with K. pneumoniae (65.8%). K. pneumoniae ESBL producers were significantly higher (85.5%) compared with (17.3%) E. coli isolates (P <0.0001, OR=4.93). Plasmid-mediated AmpC genes were detected in 7.9% of K. pneumoniae , and 4% E. coli isolates. There was low agreement between phenotypic and genotypic methods, phenotypic testing underestimated detection of AmpC enzyme and did not correlate well with molecular results. The gene encoding CMY enzyme was the most prevalent (66.6%) of AmpC positive isolates followed by MOX, DHA and EBC. Only one AmpC gene was detected in 5/9 isolates, i.e, bla CMY (n=3), bla MOX (n=1), bla DHA (n=1). However, co-occurrence of AmpC genes were evident in 3/9 isolates with the following distribution: bla CMY and bla EBC (n=1), and bla CMY and bla MOX (n=2). Neither bla FOX nor bla ACC was detected in all tested isolates. All AmpC positive strains were resistant to cefoxitin and isolated from patients admitted to intensive care units. Further studies are needed for detection of other AmpC variant enzyme production among such isolates. Continued surveillance and judicious antibiotic usage together with the implementation of efficient infection control measures are absolutely required.

  17. An investigation of the diversity of strains of enteroaggregative Escherichia coli isolated from cases associated with a large multi-pathogen foodborne outbreak in the UK.

    PubMed

    Dallman, Timothy J; Chattaway, Marie A; Cowley, Lauren A; Doumith, Michel; Tewolde, Rediat; Wooldridge, David J; Underwood, Anthony; Ready, Derren; Wain, John; Foster, Kirsty; Grant, Kathie A; Jenkins, Claire

    2014-01-01

    Following a large outbreak of foodborne gastrointestinal (GI) disease, a multiplex PCR approach was used retrospectively to investigate faecal specimens from 88 of the 413 reported cases. Gene targets from a range of bacterial GI pathogens were detected, including Salmonella species, Shigella species and Shiga toxin-producing Escherichia coli, with the majority (75%) of faecal specimens being PCR positive for aggR associated with the Enteroaggregative E. coli (EAEC) group. The 20 isolates of EAEC recovered from the outbreak specimens exhibited a range of serotypes, the most frequent being O104:H4 and O131:H27. None of the EAEC isolates had the Shiga toxin (stx) genes. Multilocus sequence typing and single nucleotide polymorphism analysis of the core genome confirmed the diverse phylogeny of the strains. The analysis also revealed a close phylogenetic relationship between the EAEC O104:H4 strains in this outbreak and the strain of E. coli O104:H4 associated with a large outbreak of haemolytic ureamic syndrome in Germany in 2011. Further analysis of the EAEC plasmids, encoding the key enteroaggregative virulence genes, showed diversity with respect to FIB/FII type, gene content and genomic architecture. Known EAEC virulence genes, such as aggR, aat and aap, were present in all but one of the strains. A variety of fimbrial genes were observed, including genes encoding all five known fimbrial types, AAF/1 to AAF/V. The AAI operon was present in its entirety in 15 of the EAEC strains, absent in three and present, but incomplete, in two isolates. EAEC is known to be a diverse pathotype and this study demonstrates that a high level of diversity in strains recovered from cases associated with a single outbreak. Although the EAEC in this study did not carry the stx genes, this outbreak provides further evidence of the pathogenic potential of the EAEC O104:H4 serotype.

  18. Adaptive mutations and replacements of virulence traits in the Escherichia coli O104:H4 outbreak population.

    PubMed

    Guy, Lionel; Jernberg, Cecilia; Arvén Norling, Jenny; Ivarsson, Sofie; Hedenström, Ingela; Melefors, Öjar; Liljedahl, Ulrika; Engstrand, Lars; Andersson, Siv G E

    2013-01-01

    The sequencing of highly virulent Escherichia coli O104:H4 strains isolated during the outbreak of bloody diarrhea and hemolytic uremic syndrome in Europe in 2011 revealed a genome that contained a Shiga toxin encoding prophage and a plasmid encoding enteroaggregative fimbriae. Here, we present the draft genome sequence of a strain isolated in Sweden from a patient who had travelled to Tunisia in 2010 (E112/10) and was found to differ from the outbreak strains by only 38 SNPs in non-repetitive regions, 16 of which were mapped to the branch to the outbreak strain. We identified putatively adaptive mutations in genes for transporters, outer surface proteins and enzymes involved in the metabolism of carbohydrates. A comparative analysis with other historical strains showed that E112/10 contained Shiga toxin prophage genes of the same genotype as the outbreak strain, while these genes have been replaced by a different genotype in two otherwise very closely related strains isolated in the Republic of Georgia in 2009. We also present the genome sequences of two enteroaggregative E. coli strains affiliated with phylogroup A (C43/90 and C48/93) that contain the agg genes for the AAF/I-type fimbriae characteristic of the outbreak population. Interestingly, C43/90 also contained a tet/mer antibiotic resistance island that was nearly identical in sequence to that of the outbreak strain, while the corresponding island in the Georgian strains was most similar to E. coli strains of other serotypes. We conclude that the pan-genome of the outbreak population is shared with strains of the A phylogroup and that its evolutionary history is littered with gene replacement events, including most recently independent acquisitions of antibiotic resistance genes in the outbreak strains and its nearest neighbors. The results are summarized in a refined evolutionary model for the emergence of the O104:H4 outbreak population.

  19. Adaptive Mutations and Replacements of Virulence Traits in the Escherichia coli O104:H4 Outbreak Population

    PubMed Central

    Guy, Lionel; Jernberg, Cecilia; Arvén Norling, Jenny; Ivarsson, Sofie; Hedenström, Ingela; Melefors, Öjar; Liljedahl, Ulrika; Engstrand, Lars; Andersson, Siv G. E.

    2013-01-01

    The sequencing of highly virulent Escherichia coli O104:H4 strains isolated during the outbreak of bloody diarrhea and hemolytic uremic syndrome in Europe in 2011 revealed a genome that contained a Shiga toxin encoding prophage and a plasmid encoding enteroaggregative fimbriae. Here, we present the draft genome sequence of a strain isolated in Sweden from a patient who had travelled to Tunisia in 2010 (E112/10) and was found to differ from the outbreak strains by only 38 SNPs in non-repetitive regions, 16 of which were mapped to the branch to the outbreak strain. We identified putatively adaptive mutations in genes for transporters, outer surface proteins and enzymes involved in the metabolism of carbohydrates. A comparative analysis with other historical strains showed that E112/10 contained Shiga toxin prophage genes of the same genotype as the outbreak strain, while these genes have been replaced by a different genotype in two otherwise very closely related strains isolated in the Republic of Georgia in 2009. We also present the genome sequences of two enteroaggregative E. coli strains affiliated with phylogroup A (C43/90 and C48/93) that contain the agg genes for the AAF/I-type fimbriae characteristic of the outbreak population. Interestingly, C43/90 also contained a tet/mer antibiotic resistance island that was nearly identical in sequence to that of the outbreak strain, while the corresponding island in the Georgian strains was most similar to E. coli strains of other serotypes. We conclude that the pan-genome of the outbreak population is shared with strains of the A phylogroup and that its evolutionary history is littered with gene replacement events, including most recently independent acquisitions of antibiotic resistance genes in the outbreak strains and its nearest neighbors. The results are summarized in a refined evolutionary model for the emergence of the O104:H4 outbreak population. PMID:23675451

  20. Molecular Characterization of Human Atypical Sorbitol-Fermenting Enteropathogenic Escherichia coli O157 Reveals High Diversity.

    PubMed

    Kossow, Annelene; Zhang, Wenlan; Bielaszewska, Martina; Rhode, Sophie; Hansen, Kevin; Fruth, Angelika; Rüter, Christian; Karch, Helge; Mellmann, Alexander

    2016-05-01

    Alongside the well-characterized enterohemorrhagic Escherichia coli (EHEC) O157:H7, serogroup O157 comprises sorbitol-fermenting typical and atypical enteropathogenic E. coli (EPEC/aEPEC) strains that carry the intimin-encoding gene eae but not Shiga toxin-encoding genes (stx). Since little is known about these pathogens, we characterized 30 clinical isolates from patients with hemolytic uremic syndrome (HUS) or uncomplicated diarrhea with respect to their flagellin gene (fliC) type and multilocus sequence type (MLST). Moreover, we applied whole-genome sequencing (WGS) to determine the phylogenetic relationship with other eae-positive EHEC serotypes and the composition of the rfbO157 region. fliC typing resulted in five fliC types (H7, H16, H34, H39, and H45). Isolates of each fliC type shared a unique ST. In comparison to the 42 HUS-associated E. coli (HUSEC) strains, only the stx-negative isolates with fliCH7 shared their ST with EHEC O157:H7/H(-) strains. With the exception of one O157:H(-) fliCH16 isolate, HUS was exclusively associated with fliCH7. WGS corroborated the separation of the fliCH7 isolates, which were closely related to the EHEC O157:H7/H(-) isolates, and the diverse group of isolates exhibiting different fliC types, indicating independent evolution of the different serotypes. This was also supported by the heterogeneity within the rfbO157 region that exhibited extensive recombinations. The genotypic subtypes and distribution of clinical symptoms suggested that the stx-negative O157 strains with fliCH7 were originally EHEC strains that lost stx The remaining isolates form a distinct and diverse group of atypical EPEC isolates that do not possess the full spectrum of virulence genes, underlining the importance of identifying the H antigen for clinical risk assessment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS

    EPA Science Inventory

    The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...

  2. Expression of ayu (Plecoglossus altivelis) Pit-1 in Escherichia coli: its purification and immunohistochemical detection using monoclonal antibody.

    PubMed

    Chiu, Chi-Chien; John, Joseph Abraham Christopher; Hseu, Tzong-Hsiung; Chang, Chi-Yao

    2002-03-01

    The pituitary-specific transcription factor Pit-1 belongs to the family of POU-domain proteins and is known to play an important role in the differentiation of pituitary cells. Here we report the complete nucleotide sequence of cDNA encoding Pit-1 from the brackish water fish, ayu (Plecoglossus altivelis). Nucleotide sequence analysis of 1910 bp of ayu Pit-1 cDNA revealed an open reading frame of 1074 bp that encodes a protein of 358 amino acids containing a POU-specific domain, POU homeodomain, and an STA (Ser/Thr-rich activation) transactivation domain. We inserted the coding region of Pit-1 cDNA, obtained by PCR, into a pET-20b(+) plasmid to produce recombinant Pit-1 in Escherichia coli BL21 (DE3) pLysS cells. Upon induction with isopropyl beta-D-thiogalactopyranoside, Pit-1 was expressed and accumulated as inclusion bodies in E. coli. The protein was then purified in one step by affinity chromatography on a nickel-nitrilotriacetic acid agarose column under denaturing conditions. This method yielded 0.7 mg of highly pure and stable protein per 200 ml of bacterial culture. A band of 40 kDa, resolved as recombinant ayu Pit-1 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, agrees well with the molecular mass calculated from the translated cDNA sequence. The purified recombinant Pit-1 was confirmed in vitro through Western blot analysis, using its monoclonal antibody. This monoclonal antibody detected Pit-1 in the nuclei of ayu developing pituitary by immunohistochemical reaction. It serves as a good reagent for the detection of ayu Pit-1 in situ. Copyright 2002 Elsevier Science (USA).

  3. Interplay of the modified nucleotide phosphoadenosine 5'-phosphosulfate (PAPS) with global regulatory proteins in Escherichia coli: modulation of cyclic AMP (cAMP)-dependent gene expression and interaction with the HupA regulatory protein.

    PubMed

    Longo, Francesca; Motta, Sara; Mauri, Pierluigi; Landini, Paolo; Rossi, Elio

    2016-11-25

    In the bacterium Escherichia coli, some intermediates of the sulfate assimilation and cysteine biosynthesis pathway can act as signal molecules and modulate gene expression. In addition to sensing and utilization of sulphur sources, these signaling mechanisms also impact more global cell processes, such as resistance to antimicrobial agents and biofilm formation. In a recent work, we have shown that inactivation of the cysH gene, encoding phosphoadenosine-phosphosulfate (PAPS) reductase, and the consequent increase in intracellular PAPS concentration, strongly affect production of several cell surface-associated structures, enhancing surface adhesion and cell aggregation. In order to identify the molecular mechanism relaying intracellular PAPS concentration to regulation of cell surface-associated structures, we looked for mutations able to suppress the effects of cysH inactivation. We found that mutations in the adenylate cyclase-encoding cyaA gene abolished the effects of PAPS accumulation; consistent with this result, cyclic AMP (cAMP)-dependent gene expression appears to be increased in the cysH mutant. Experiments aimed at the direct identification of proteins interacting with either CysC or CysH, i.e. the PAPS-related proteins APS kinase and PAPS reductase, allowed us to identify several regulators, namely, CspC, CspE, HNS and HupA. Protein-protein interaction between HupA and CysH was confirmed by a bacterial two hybrid system, and inactivation of the hupA gene enhanced the effects of the cysH mutation in terms of production of cell surface-associated factors. Our results indicate that PAPS can modulate different regulatory systems, providing evidence that this molecule acts as a global signal molecule in E. coli. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Heterogeneity in Induction Level, Infection Ability, and Morphology of Shiga Toxin-Encoding Phages (Stx Phages) from Dairy and Human Shiga Toxin-Producing Escherichia coli O26:H11 Isolates

    PubMed Central

    Bonanno, Ludivine; Petit, Marie-Agnès; Loukiadis, Estelle; Michel, Valérie

    2016-01-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) bacteria are foodborne pathogens responsible for diarrhea and hemolytic-uremic syndrome (HUS). Shiga toxin, the main STEC virulence factor, is encoded by the stx gene located in the genome of a bacteriophage inserted into the bacterial chromosome. The O26:H11 serotype is considered to be the second-most-significant HUS-causing serotype worldwide after O157:H7. STEC O26:H11 bacteria and their stx-negative counterparts have been detected in dairy products. They may convert from the one form to the other by loss or acquisition of Stx phages, potentially confounding food microbiological diagnostic methods based on stx gene detection. Here we investigated the diversity and mobility of Stx phages from human and dairy STEC O26:H11 strains. Evaluation of their rate of in vitro induction, occurring either spontaneously or in the presence of mitomycin C, showed that the Stx2 phages were more inducible overall than Stx1 phages. However, no correlation was found between the Stx phage levels produced and the origin of the strains tested or the phage insertion sites. Morphological analysis by electron microscopy showed that Stx phages from STEC O26:H11 displayed various shapes that were unrelated to Stx1 or Stx2 types. Finally, the levels of sensitivity of stx-negative E. coli O26:H11 to six Stx phages differed among the 17 strains tested and our attempts to convert them into STEC were unsuccessful, indicating that their lysogenization was a rare event. PMID:26826235

  5. Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli.

    PubMed

    Kunjapur, Aditya M; Tarasova, Yekaterina; Prather, Kristala L J

    2014-08-20

    Aromatic aldehydes are useful in numerous applications, especially as flavors, fragrances, and pharmaceutical precursors. However, microbial synthesis of aldehydes is hindered by rapid, endogenous, and redundant conversion of aldehydes to their corresponding alcohols. We report the construction of an Escherichia coli K-12 MG1655 strain with reduced aromatic aldehyde reduction (RARE) that serves as a platform for aromatic aldehyde biosynthesis. Six genes with reported activity on the model substrate benzaldehyde were rationally targeted for deletion: three genes that encode aldo-keto reductases and three genes that encode alcohol dehydrogenases. Upon expression of a recombinant carboxylic acid reductase in the RARE strain and addition of benzoate during growth, benzaldehyde remained in the culture after 24 h, with less than 12% conversion of benzaldehyde to benzyl alcohol. Although individual overexpression results demonstrated that all six genes could contribute to benzaldehyde reduction in vivo, additional experiments featuring subset deletion strains revealed that two of the gene deletions were dispensable under the conditions tested. The engineered strain was next investigated for the production of vanillin from vanillate and succeeded in preventing formation of the byproduct vanillyl alcohol. A pathway for the biosynthesis of vanillin directly from glucose was introduced and resulted in a 55-fold improvement in vanillin titer when using the RARE strain versus the wild-type strain. Finally, synthesis of the chiral pharmaceutical intermediate L-phenylacetylcarbinol (L-PAC) was demonstrated from benzaldehyde and glucose upon expression of a recombinant mutant pyruvate decarboxylase in the RARE strain. Beyond allowing accumulation of aromatic aldehydes as end products in E. coli, the RARE strain expands the classes of chemicals that can be produced microbially via aldehyde intermediates.

  6. The first 30 years of Shiga toxin-producing Escherichia coli in cattle production: Incidence, preharvest ecology, and management

    USDA-ARS?s Scientific Manuscript database

    Of the 700 serotypes of Escherichia coli, most are commensal; however, some range from mildly to highly pathogenic and can cause death. The disease-causing enterovirulent E. coli are classified as: Enterotoxigenic E. coli (ETEC), Enteropathogenic E. coli (EPEC), Enteroinvasive E. coli (EIEC), and ...

  7. Phenotypic Profiles of Enterotoxigenic Escherichia coli Associated With Early Childhood Diarrhea in Rural Egypt

    DTIC Science & Technology

    2004-12-01

    2004, American Society for Microbiology. All Rights Reserved. Phenotypic Profiles of Enterotoxigenic Escherichia coli Associated with Early Childhood...Enterotoxigenic Escherichia coli (ETEC) causes substantial diarrheal morbidity and mortality in young children in countries with limited resources. We...expressed both toxins. The most common CF phenotypes were colonization factor antigen I (CFA/I) (10%), coli surface antigen 6 (CS6) (9%), CS14 (6%), and

  8. Overexpression and Initial Characterization of the Chromosomal Aminoglycoside 3′-O-Phosphotransferase APH(3′)-IIb from Pseudomonas aeruginosa▿†

    PubMed Central

    Hainrichson, Mariana; Yaniv, Orit; Cherniavsky, Marina; Nudelman, Igor; Shallom-Shezifi, Dalia; Yaron, Sima; Baasov, Timor

    2007-01-01

    The chromosomal gene aph(3′)-IIb, encoding an aminoglycoside 3′-phosphotransferase in Pseudomonas aeruginosa, was cloned and overexpressed in Escherichia coli. The APH(3′)-IIb enzyme was purified as a monomer in a two-step procedure and was shown to phosphorylate its substrates at the C-3′-OH position, with kcat/Km values of 0.4 × 104 to 36 × 104 M−1 s−1. PMID:17088479

  9. Occurrence of Diarrheagenic Virulence Genes and Genetic Diversity in Escherichia coli Isolates from Fecal Material of Various Avian Hosts in British Columbia, Canada

    PubMed Central

    Mazumder, Asit

    2014-01-01

    Contamination of surface water by fecal microorganisms originating from human and nonhuman sources is a public health concern. In the present study, Escherichia coli isolates (n = 412) from the feces of various avian host sources were screened for various virulence genes: stx1 and stx2 (Shiga toxin-producing E. coli [STEC]), eae (enteropathogenic E. coli [EPEC]), est-h, est-p, and elt (encoding heat-stable toxin [ST] variants STh and STp and heat-labile toxin [LT], respectively) (enterotoxigenic E. coli [ETEC]), and ipaH (enteroinvasive E. coli [EIEC]). None of the isolates were found to be positive for stx1, while 23% (n = 93) were positive for only stx2, representing STEC, and 15% (n = 63) were positive for only eae, representing EPEC. In addition, five strains obtained from pheasant were positive for both stx2 and eae and were confirmed as non-O157 by using an E. coli O157 rfb (rfbO157) TaqMan assay. Isolates positive for the virulence genes associated with ETEC and EIEC were not detected in any of the hosts. The repetitive element palindromic PCR (rep-PCR) fingerprint analysis identified 143 unique fingerprints, with an overall Shannon diversity index of 2.36. Multivariate analysis of variance (MANOVA) showed that the majority of the STEC and EPEC isolates were genotypically distinct from nonpathogenic E. coli and clustered independently. MANOVA analysis also revealed spatial variation among the E. coli isolates, since the majority of the isolates clustered according to the sampling locations. Although the presence of virulence genes alone cannot be used to determine the pathogenicity of strains, results from this study show that potentially pathogenic STEC and EPEC strains can be found in some of the avian hosts studied and may contaminate surface water and potentially impact human health. PMID:24441159

  10. 75 FR 32295 - Expedited Approval of Alternative Test Procedures for the Analysis of Contaminants Under the Safe...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... Identification of Coliform Bacteria and Escherichia coli in Finished Waters, January 2007, Version 1.1... Membrane Filter Test Method for Detection and Identification of Coliform Bacteria and Escherichia coli in... Detection and Identification of Coliform Bacteria and Escherichia coli in Finished Waters. November, 2000...

  11. Cloning, Expression, and Characterization of a Novel Thermophilic Monofunctional Catalase from Geobacillus sp. CHB1.

    PubMed

    Jia, Xianbo; Chen, Jichen; Lin, Chenqiang; Lin, Xinjian

    2016-01-01

    Catalases are widely used in many scientific areas. A catalase gene (Kat) from Geobacillus sp. CHB1 encoding a monofunctional catalase was cloned and recombinant expressed in Escherichia coli (E. coli), which was the first time to clone and express this type of catalase of genus Geobacillus strains as far as we know. This Kat gene was 1,467 bp in length and encoded a catalase with 488 amino acid residuals, which is only 81% similar to the previously studied Bacillus sp. catalase in terms of amino acid sequence. Recombinant catalase was highly soluble in E. coli and made up 30% of the total E. coli protein. Fermentation broth of the recombinant E. coli showed a high catalase activity level up to 35,831 U/mL which was only lower than recombinant Bacillus sp. WSHDZ-01 among the reported catalase production strains. The purified recombinant catalase had a specific activity of 40,526 U/mg and K m of 51.1 mM. The optimal reaction temperature of this recombinant enzyme was 60°C to 70°C, and it exhibited high activity over a wide range of reaction temperatures, ranging from 10°C to 90°C. The enzyme retained 94.7% of its residual activity after incubation at 60°C for 1 hour. High yield and excellent thermophilic properties are valuable features for this catalase in industrial applications.

  12. Engineering the Controlled Assembly of Filamentous Injectisomes in E. coli K-12 for Protein Translocation into Mammalian Cells.

    PubMed

    Ruano-Gallego, David; Álvarez, Beatriz; Fernández, Luis Ángel

    2015-09-18

    Bacterial pathogens containing type III protein secretion systems (T3SS) assemble large needle-like protein complexes in the bacterial envelope, called injectisomes, for translocation of protein effectors into host cells. The application of these "molecular syringes" for the injection of proteins into mammalian cells is hindered by their structural and genomic complexity, requiring multiple polypeptides encoded along with effectors in various transcriptional units (TUs) with intricate regulation. In this work, we have rationally designed the controlled expression of the filamentous injectisomes found in enteropathogenic Escherichia coli (EPEC) in the nonpathogenic strain E. coli K-12. All structural components of EPEC injectisomes, encoded in a genomic island called the locus of enterocyte effacement (LEE), were engineered in five TUs (eLEEs) excluding effectors, promoters and transcriptional regulators. These eLEEs were placed under the control of the IPTG-inducible promoter Ptac and integrated into specific chromosomal sites of E. coli K-12 using a marker-less strategy. The resulting strain, named synthetic injector E. coli (SIEC), assembles filamentous injectisomes similar to those in EPEC. SIEC injectisomes form pores in the host plasma membrane and are able to translocate T3-substrate proteins (e.g., translocated intimin receptor, Tir) into the cytoplasm of HeLa cells reproducing the phenotypes of intimate attachment and polymerization of actin-pedestals elicited by EPEC bacteria. Hence, SIEC strain allows the controlled expression of functional filamentous injectisomes for efficient translocation of proteins with T3S-signals into mammalian cells.

  13. Cloning, Expression, and Characterization of a Novel Thermophilic Monofunctional Catalase from Geobacillus sp. CHB1

    PubMed Central

    2016-01-01

    Catalases are widely used in many scientific areas. A catalase gene (Kat) from Geobacillus sp. CHB1 encoding a monofunctional catalase was cloned and recombinant expressed in Escherichia coli (E. coli), which was the first time to clone and express this type of catalase of genus Geobacillus strains as far as we know. This Kat gene was 1,467 bp in length and encoded a catalase with 488 amino acid residuals, which is only 81% similar to the previously studied Bacillus sp. catalase in terms of amino acid sequence. Recombinant catalase was highly soluble in E. coli and made up 30% of the total E. coli protein. Fermentation broth of the recombinant E. coli showed a high catalase activity level up to 35,831 U/mL which was only lower than recombinant Bacillus sp. WSHDZ-01 among the reported catalase production strains. The purified recombinant catalase had a specific activity of 40,526 U/mg and K m of 51.1 mM. The optimal reaction temperature of this recombinant enzyme was 60°C to 70°C, and it exhibited high activity over a wide range of reaction temperatures, ranging from 10°C to 90°C. The enzyme retained 94.7% of its residual activity after incubation at 60°C for 1 hour. High yield and excellent thermophilic properties are valuable features for this catalase in industrial applications. PMID:27579320

  14. Diversity of Survival Patterns among Escherichia coli O157:H7 Genotypes Subjected to Food-Related Stress Conditions.

    PubMed

    Elhadidy, Mohamed; Álvarez-Ordóñez, Avelino

    2016-01-01

    The purpose of this study was to evaluate the resistance patterns to food-related stresses of Shiga toxin producing Escherichia coli O157:H7 strains belonging to specific genotypes. A total of 33 E. coli O157:H7 strains were exposed to seven different stress conditions acting as potential selective pressures affecting the transmission of E. coli O157:H7 to humans through the food chain. These stress conditions included cold, oxidative, osmotic, acid, heat, freeze-thaw, and starvation stresses. The genotypes used for comparison included lineage-specific polymorphism, Shiga-toxin-encoding bacteriophage insertion sites, clade type, tir (A255T) polymorphism, Shiga toxin 2 subtype, and antiterminator Q gene allele. Bacterial resistance to different stressors was calculated by determining D-values (times required for inactivation of 90% of the bacterial population), which were then subjected to univariate and multivariate analyses. In addition, a relative stress resistance value, integrating resistance values to all tested stressors, was calculated for each bacterial strain and allowed for a ranking-type classification of E. coli O157:H7 strains according to their environmental robustness. Lineage I/II strains were found to be significantly more resistant to acid, cold, and starvation stress than lineage II strains. Similarly, tir (255T) and clade 8 encoding strains were significantly more resistant to acid, heat, cold, and starvation stress than tir (255A) and non-clade 8 strains. Principal component analysis, which allows grouping of strains with similar stress survival characteristics, separated strains of lineage I and I/II from strains of lineage II, which in general showed reduced survival abilities. Results obtained suggest that lineage I/II, tir (255T), and clade 8 strains, which have been previously reported to be more frequently associated with human disease cases, have greater multiple stress resistance than strains of other genotypes. The results from this study provide a better insight into how selective pressures encountered through the food chain may play a role in the epidemiology of STEC O157:H7 through controlling the transmission of highly adapted strains to humans.

  15. Diversity of Survival Patterns among Escherichia coli O157:H7 Genotypes Subjected to Food-Related Stress Conditions

    PubMed Central

    Elhadidy, Mohamed; Álvarez-Ordóñez, Avelino

    2016-01-01

    The purpose of this study was to evaluate the resistance patterns to food-related stresses of Shiga toxin producing Escherichia coli O157:H7 strains belonging to specific genotypes. A total of 33 E. coli O157:H7 strains were exposed to seven different stress conditions acting as potential selective pressures affecting the transmission of E. coli O157:H7 to humans through the food chain. These stress conditions included cold, oxidative, osmotic, acid, heat, freeze-thaw, and starvation stresses. The genotypes used for comparison included lineage-specific polymorphism, Shiga-toxin-encoding bacteriophage insertion sites, clade type, tir (A255T) polymorphism, Shiga toxin 2 subtype, and antiterminator Q gene allele. Bacterial resistance to different stressors was calculated by determining D-values (times required for inactivation of 90% of the bacterial population), which were then subjected to univariate and multivariate analyses. In addition, a relative stress resistance value, integrating resistance values to all tested stressors, was calculated for each bacterial strain and allowed for a ranking-type classification of E. coli O157:H7 strains according to their environmental robustness. Lineage I/II strains were found to be significantly more resistant to acid, cold, and starvation stress than lineage II strains. Similarly, tir (255T) and clade 8 encoding strains were significantly more resistant to acid, heat, cold, and starvation stress than tir (255A) and non-clade 8 strains. Principal component analysis, which allows grouping of strains with similar stress survival characteristics, separated strains of lineage I and I/II from strains of lineage II, which in general showed reduced survival abilities. Results obtained suggest that lineage I/II, tir (255T), and clade 8 strains, which have been previously reported to be more frequently associated with human disease cases, have greater multiple stress resistance than strains of other genotypes. The results from this study provide a better insight into how selective pressures encountered through the food chain may play a role in the epidemiology of STEC O157:H7 through controlling the transmission of highly adapted strains to humans. PMID:27014242

  16. Evolution of Bacterial Global Modulators: Role of a Novel H-NS Paralogue in the Enteroaggregative Escherichia coli Strain 042

    PubMed Central

    2018-01-01

    ABSTRACT Bacterial genomes sometimes contain genes that code for homologues of global regulators, the function of which is unclear. In members of the family Enterobacteriaceae, cells express the global regulator H-NS and its paralogue StpA. In Escherichia coli, out of providing a molecular backup for H-NS, the role of StpA is poorly characterized. The enteroaggregative E. coli strain 042 carries, in addition to the hns and stpA genes, a third gene encoding an hns paralogue (hns2). We present in this paper information about its biological function. Transcriptomic analysis has shown that the H-NS2 protein targets a subset of the genes targeted by H-NS. Genes targeted by H-NS2 correspond mainly with horizontally transferred (HGT) genes and are also targeted by the Hha protein, a fine-tuner of H-NS activity. Compared with H-NS, H-NS2 expression levels are lower. In addition, H-NS2 expression exhibits specific features: it is sensitive to the growth temperature and to the nature of the culture medium. This novel H-NS paralogue is widespread within the Enterobacteriaceae. IMPORTANCE Global regulators such as H-NS play key relevant roles enabling bacterial cells to adapt to a changing environment. H-NS modulates both core and horizontally transferred (HGT) genes, but the mechanism by which H-NS can differentially regulate these genes remains to be elucidated. There are several instances of bacterial cells carrying genes that encode homologues of the global regulators. The question is what the roles of these proteins are. We noticed that the enteroaggregative E. coli strain 042 carries a new hitherto uncharacterized copy of the hns gene. We decided to investigate why this pathogenic E. coli strain requires an extra H-NS paralogue, termed H-NS2. In our work, we show that H-NS2 displays specific expression and regulatory properties. H-NS2 targets a subset of H-NS-specific genes and may help to differentially modulate core and HGT genes by the H-NS cellular pool. PMID:29577085

  17. Evolution of Bacterial Global Modulators: Role of a Novel H-NS Paralogue in the Enteroaggregative Escherichia coli Strain 042.

    PubMed

    Prieto, A; Bernabeu, M; Aznar, S; Ruiz-Cruz, S; Bravo, A; Queiroz, M H; Juárez, A

    2018-01-01

    Bacterial genomes sometimes contain genes that code for homologues of global regulators, the function of which is unclear. In members of the family Enterobacteriaceae , cells express the global regulator H-NS and its paralogue StpA. In Escherichia coli , out of providing a molecular backup for H-NS, the role of StpA is poorly characterized. The enteroaggregative E. coli strain 042 carries, in addition to the hns and stpA genes, a third gene encoding an hns paralogue ( hns2 ). We present in this paper information about its biological function. Transcriptomic analysis has shown that the H-NS2 protein targets a subset of the genes targeted by H-NS. Genes targeted by H-NS2 correspond mainly with horizontally transferred (HGT) genes and are also targeted by the Hha protein, a fine-tuner of H-NS activity. Compared with H-NS, H-NS2 expression levels are lower. In addition, H-NS2 expression exhibits specific features: it is sensitive to the growth temperature and to the nature of the culture medium. This novel H-NS paralogue is widespread within the Enterobacteriaceae . IMPORTANCE Global regulators such as H-NS play key relevant roles enabling bacterial cells to adapt to a changing environment. H-NS modulates both core and horizontally transferred (HGT) genes, but the mechanism by which H-NS can differentially regulate these genes remains to be elucidated. There are several instances of bacterial cells carrying genes that encode homologues of the global regulators. The question is what the roles of these proteins are. We noticed that the enteroaggregative E. coli strain 042 carries a new hitherto uncharacterized copy of the hns gene. We decided to investigate why this pathogenic E. coli strain requires an extra H-NS paralogue, termed H-NS2. In our work, we show that H-NS2 displays specific expression and regulatory properties. H-NS2 targets a subset of H-NS-specific genes and may help to differentially modulate core and HGT genes by the H-NS cellular pool.

  18. A novel l-isoleucine-4′-dioxygenase and l-isoleucine dihydroxylation cascade in Pantoea ananatis

    PubMed Central

    Smirnov, Sergey V; Sokolov, Pavel M; Kotlyarova, Veronika A; Samsonova, Natalya N; Kodera, Tomohiro; Sugiyama, Masakazu; Torii, Takayoshi; Hibi, Makoto; Shimizu, Sakayu; Yokozeki, Kenzo; Ogawa, Jun

    2013-01-01

    A unique operon structure has been identified in the genomes of several plant- and insect-associated bacteria. The distinguishing feature of this operon is the presence of tandem hilA and hilB genes encoding dioxygenases belonging to the PF13640 and PF10014 (BsmA) Pfam families, respectively. The genes encoding HilA and HilB from Pantoea ananatis AJ13355 were cloned and expressed in Escherichia coli. The culturing of E. coli cells expressing hilA (E. coli-HilA) or both hilA and hilB (E. coli-HilAB) in the presence of l-isoleucine resulted in the conversion of l-isoleucine into two novel biogenic compounds: l-4′-isoleucine and l-4,4′-dihydroxyisoleucine, respectively. In parallel, two novel enzymatic activities were detected in the crude cell lysates of the E. coli-HilA and E. coli-HilAB strains: l-isoleucine, 2-oxoglutarate: oxygen oxidoreductase (4′-hydroxylating) (HilA) and l-4′-hydroxyisoleucine, 2-oxoglutarate: oxygen oxidoreductase (4-hydroxylating) (HilB), respectively. Two hypotheses regarding the physiological significance of C-4(4′)-hydroxylation of l-isoleucine in bacteria are also discussed. According to first hypothesis, the l-isoleucine dihydroxylation cascade is involved in synthesis of dipeptide antibiotic in P. ananatis. Another unifying hypothesis is that the C-4(4′)-hydroxylation of l-isoleucine in bacteria could result in the synthesis of signal molecules belonging to two classes: 2(5H)-furanones and analogs of N-acyl homoserine lactone. PMID:23554367

  19. A rapid and cost-effective method of producing recombinant proBNP and NT-proBNP variants in Escherichia coli for immunoassay of heart failure.

    PubMed

    Soleh, Muhammad Tarmizi; Foo, Jared Yong Yang; Bailey, Ulla-Maja; Tan, Nikki Yi; Wan, Yunxia; Cooper-White, Justin; Schulz, Benjamin Luke; Punyadeera, Chamindie

    2014-01-01

    The measurements of plasma natriuretic peptides (NT-proBNP, proBNP and BNP) are used to diagnose heart failure but these are expensive to produce. We describe a rapid, cheap and facile production of proteins for immunoassays of heart failure. DNA encoding N-terminally His-tagged NT-proBNP and proBNP were cloned into the pJexpress404 vector. ProBNP and NT-proBNP peptides were expressed in Escherichia coli, purified and refolded in vitro. The analytical performance of these peptides were comparable with commercial analytes (NT-proBNP EC50 for the recombinant is 2.6 ng/ml and for the commercial material is 5.3 ng/ml) and the EC50 for recombinant and commercial proBNP, are 3.6 and 5.7 ng/ml respectively). Total yield of purified refolded NT-proBNP peptide was 1.75 mg/l and proBNP was 0.088 mg/l. This approach may also be useful in expressing other protein analytes for immunoassay applications. To develop a cost effective protein expression method in E. coli to obtain high yields of NT-proBNP (1.75 mg/l) and proBNP (0.088 mg/l) peptides for immunoassay use.

  20. Genomic Comparison of Two O111:H- Enterohemorrhagic Escherichia coli Isolates from a Historic Hemolytic-Uremic Syndrome Outbreak in Australia.

    PubMed

    McAllister, Lauren J; Bent, Stephen J; Petty, Nicola K; Skippington, Elizabeth; Beatson, Scott A; Paton, James C; Paton, Adrienne W

    2016-01-04

    Enterohemorrhagic Escherichia coli (EHEC) is an important cause of diarrhea and hemolytic-uremic syndrome (HUS) worldwide. Australia's worst outbreak of HUS occurred in Adelaide in 1995 and was one of the first major HUS outbreaks attributed to a non-O157 Shiga-toxigenic E. coli (STEC) strain. Molecular analyses conducted at the time suggested that the outbreak was caused by an O111:H(-) clone, with strains from later in the outbreak harboring an extra copy of the genes encoding the potent Shiga toxin 2 (Stx2). Two decades later, we have used next-generation sequencing to compare two isolates from early and late in this important outbreak. We analyzed genetic content, single-nucleotide polymorphisms (SNPs), and prophage insertion sites; for the latter, we demonstrate how paired-end sequence data can be leveraged to identify such insertion sites. The two strains are genetically identical except for six SNP differences and the presence of not one but two additional Stx2-converting prophages in the later isolate. Isolates from later in the outbreak were associated with higher levels of morbidity, suggesting that the presence of the additional Stx2-converting prophages is significant in terms of the virulence of this clone. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Acute Limonene Toxicity in Escherichia coli Is Caused by Limonene Hydroperoxide and Alleviated by a Point Mutation in Alkyl Hydroperoxidase AhpC

    PubMed Central

    Chubukov, Victor; Mingardon, Florence; Schackwitz, Wendy; Baidoo, Edward E. K.; Alonso-Gutierrez, Jorge; Hu, Qijun; Lee, Taek Soon; Keasling, Jay D.

    2015-01-01

    Limonene, a major component of citrus peel oil, has a number of applications related to microbiology. The antimicrobial properties of limonene make it a popular disinfectant and food preservative, while its potential as a biofuel component has made it the target of renewable production efforts through microbial metabolic engineering. For both applications, an understanding of microbial sensitivity or tolerance to limonene is crucial, but the mechanism of limonene toxicity remains enigmatic. In this study, we characterized a limonene-tolerant strain of Escherichia coli and found a mutation in ahpC, encoding alkyl hydroperoxidase, which alleviated limonene toxicity. We show that the acute toxicity previously attributed to limonene is largely due to the common oxidation product limonene hydroperoxide, which forms spontaneously in aerobic environments. The mutant AhpC protein with an L-to-Q change at position 177 (AhpCL177Q) was able to alleviate this toxicity by reducing the hydroperoxide to a more benign compound. We show that the degree of limonene toxicity is a function of its oxidation level and that nonoxidized limonene has relatively little toxicity to wild-type E. coli cells. Our results have implications for both the renewable production of limonene and the applications of limonene as an antimicrobial. PMID:25934627

  2. Association of plasmid-mediated quinolone resistance and virulence markers in Escherichia coli isolated from water.

    PubMed

    Mendonça, Nuno; Ramalho, Joana; Vieira, Pedro; Da Silva, Gabriela Jorge

    2012-06-01

    This work aimed to investigate the association of the carriage of plasmid-mediated quinolone resistance (PMQR) genes, the virulence potential encoded in pathogenicity islands (PAIs) and the phylogenetic background in Escherichia coli strains isolated from waters of diverse origin. Antimicrobial susceptibilities were determined by the disc diffusion method. Screening for PMQR (qnr, aac(6')-Ib-variant and qepA) genes, PAIs and the determination of phylogroup was performed by PCR. Nineteen percent of strains were resistant to nalidixic acid, 11% to ciprofloxacin and 5% to gentamicin. qnrA was the only PMQR detected in 16% of strains, susceptible to quinolones and grouped in phylogenetic lineage B1. Sixty-seven percent of the isolates were assigned to the less-virulent groups A and B1. PAIs IV(536) and II(CFT073) were detected in 16 and 3% of the isolates, respectively. All PAIs were detected in the phylogroups D and B1. The presence of PAIs in isolates from waters may represent an increased risk for public health, as they were isolated from samples collected from surface and drinking waters. As E. coli is an important indicator of microbiological water quality, and also a potential pathogen, routine analysis for its detection could be complemented by screening for virulence factors and antimicrobial genes.

  3. Immunoproteomic Analysis To Identify Shiga Toxin-Producing Escherichia coli Outer Membrane Proteins Expressed during Human Infection

    PubMed Central

    Montero, David; Orellana, Paz; Gutiérrez, Daniela; Araya, Daniela; Salazar, Juan Carlos; Prado, Valeria; Oñate, Ángel; del Canto, Felipe

    2014-01-01

    Shiga-toxin producing Escherichia coli (STEC) is the etiologic agent of acute diarrhea, dysentery, and hemolytic-uremic syndrome (HUS). There is no approved vaccine for STEC infection in humans, and antibiotic use is contraindicated, as it promotes Shiga toxin production. In order to identify STEC-associated antigens and immunogenic proteins, outer membrane proteins (OMPs) were extracted from STEC O26:H11, O103, O113:H21, and O157:H7 strains, and commensal E. coli strain HS was used as a control. SDS-PAGE, two-dimensional-PAGE analysis, Western blot assays using sera from pediatric HUS patients and controls, and matrix-assisted laser desorption ionization–tandem time of flight analyses were used to identify 12 immunogenic OMPs, some of which were not reactive with control sera. Importantly, seven of these proteins have not been previously reported to be immunogenic in STEC strains. Among these seven proteins, OmpT and Cah displayed IgG and IgA reactivity with sera from HUS patients. Genes encoding these two proteins were present in a majority of STEC strains. Knowledge of the antigens produced during infection of the host and the immune response to those antigens will be important for future vaccine development. PMID:25156722

  4. Medicinal plant extracts variously modulate susceptibility of Escherichia coli to different antibiotics.

    PubMed

    Samoilova, Zoya; Smirnova, Galina; Muzyka, Nadezda; Oktyabrsky, Oleg

    2014-04-01

    Antioxidant activity of green and black tea and extracts of medicinal plants and their ability to modulate antibiotic susceptibility in Escherichia coli were studied. Among a number of extracts tested the maximal capacity to scavenge DPPH radicals and chelate iron in chemical tests was found in green and black tea, Arctostaphylos uva-ursi and Vaccinium vitis-idaea. These extracts contained high level of polyphenols and in aerobic conditions exhibited prooxidant features, producing H2O2 and inducing expression of the katG gene encoding catalase HPI in E. coli cells. A good correlation between the polyphenol content and the ability of extracts to protect bacteria against peroxide stress was observed (r = 0.88). Polyphenol-rich extracts and iron chelators demonstrated the highest modulating effect on the antibiotic susceptibility by changing the time period before lysis started and by influencing the colony-forming ability of bacteria. The direction of the modulating effect was dependent on nature of antibiotic applied: under treatment with ciprofloxacin and ampicillin the extracts predominantly provided protective effects, while under treatment with kanamycin a bactericidal action was enhanced. Mechanism of modulating action of extracts on bacterial antibiotic susceptibility probably involves antioxidant, preferentially iron-chelating, or prooxidant properties of polyphenols. Copyright © 2013 Elsevier GmbH. All rights reserved.

  5. Gene expression of Escherichia coli in continuous culture during adaptation to artificial sunlight.

    PubMed

    Berney, Michael; Weilenmann, Hans-Ulrich; Egli, Thomas

    2006-09-01

    Escherichia coli growing in continuous culture under continuous UVA irradiation exhibits growth inhibition with a subsequent adaptation to the stress. Transcriptome analysis was performed during transient growth inhibition and in the UVA light-adapted growth state. The results indicate that UVA light induces stringent response and an additional response that includes the upregulation of the synthesis of valine, isoleucine, leucine, phenylalanine, histidine and glutamate. The induction of several SOS response-genes strongly points to DNA damage as a result of UVA exposure. The involvement of oxidative stress was observed with the induction of ahpCF. Taken together it supports the hypothesis of the production of reactive oxygen species by UVA light. In the UVA-adapted cell population strong repression of the acid tolerance response was found. We identified the enzyme chorismate mutase as a possible chromophore for UVA light-inactivation and found strong repression of the pyrBI operon and the gene mgtA encoding for an ATP-dependent Mg2+ transporter. Furthermore, our results indicate that the role of RpoS may not be as important in the adaptation of E. coli to UVA light as it was implicated by previous results with starved cells, but that RpoS might be of crucial importance for the resistance under transient light exposure.

  6. The pgaABCD Locus of Escherichia coli Promotes the Synthesis of a Polysaccharide Adhesin Required for Biofilm Formation

    PubMed Central

    Wang, Xin; Preston, James F.; Romeo, Tony

    2004-01-01

    Production of a polysaccharide matrix is a hallmark of bacterial biofilms, but the composition of matrix polysaccharides and their functions are not widely understood. Previous studies of the regulation of Escherichia coli biofilm formation suggested the involvement of an unknown adhesin. We now establish that the pgaABCD (formerly ycdSRQP) locus affects biofilm development by promoting abiotic surface binding and intercellular adhesion. All of the pga genes are required for optimal biofilm formation under a variety of growth conditions. A pga-dependent cell-bound polysaccharide was isolated and determined by nuclear magnetic resonance analyses to consist of unbranched β-1,6-N-acetyl-d-glucosamine, a polymer previously unknown from the gram-negative bacteria but involved in adhesion by staphylococci. The pga genes are predicted to encode envelope proteins involved in synthesis, translocation, and possibly surface docking of this polysaccharide. As predicted, if poly-β-1,6-GlcNAc (PGA) mediates cohesion, metaperiodate caused biofilm dispersal and the release of intact cells, whereas treatment with protease or other lytic enzymes had no effect. The pgaABCD operon exhibits features of a horizontally transferred locus and is present in a variety of eubacteria. Therefore, we propose that PGA serves as an adhesin that stabilizes biofilms of E. coli and other bacteria. PMID:15090514

  7. A light-driven proton pump from Haloterrigena turkmenica: Functional expression in Escherichia coli membrane and coupling with a H{sup +} co-transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamo, Naoki; Hashiba, Tsuyoshi; Kikukawa, Takashi

    2006-03-10

    A gene encoding putative retinal protein was cloned from Haloterrigena turkmenica (JCM9743). The deduced amino acid sequence was most closely related to that of deltarhodopsin, which functions as a light-driven H{sup +} pump and was identified in a novel strain Haloterrigena sp. arg-4 (K. Ihara, T. Uemura, I. Katagiri, T. Kitajima-Ihara, Y. Sugiyama, Y. Kimura, Y. Mukohata, Evolution of the archaeal rhodopsins: Evolution rate changes by gene duplication and functional differentiation, J. Mol. Biol. 285 (1999) 163-174. GenBank Accession No. AB009620). Thus, we called the present protein H. turkmenica deltarhodopsin (HtdR) in this report. Differing from the Halobacterium salinarum bacteriorhodopsinmore » (bR), functional expression of HtdR was achieved in Escherichia coli membrane with a high yield of 10-15mg protein/L culture. The photocycle of purified HtdR was similar to that of bR. The photo-induced electrogenic proton pumping activity of HtdR was verified. We co-expressed both HtdR and EmrE, a proton-coupled multi-drug efflux transporter in E. coli, and the cells successfully extruded ethidium, a substrate of EmrE, on illumination.« less

  8. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of fructose-1,6-bisphosphate aldolase from Escherichia coli.

    PubMed

    Zhang, Li; Guo, Zheng; Huang, Jing; Liu, Meiruo; Wang, Yuandong; Ji, Chaoneng

    2014-10-01

    Fructose-1,6-bisphosphate aldolase is one of the most important enzymes in the glycolytic pathway and catalyzes the reversible cleavage of fructose-1,6-bisphosphate to dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. The full-length fbaB gene encoding fructose-1,6-bisphosphate aldolase class I (FBPA I) was cloned from Escherichia coli strain BL21. FBPA I was overexpressed in E. coli and purified. Biochemical analysis found that the optimum reaction temperature of FBPA I is 330.5 K and that the enzyme has a high temperature tolerance. Crystals of recombinant FBPA I were obtained by the sitting-drop vapour-diffusion technique in a condition consisting of 19 mg ml(-1) FBPA I in 0.1 M Tris pH 9.0, 10%(w/v) polyethylene glycol 8000 and diffracted to 2.0 Å resolution. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 217.7, b = 114.9, c = 183.9 Å, β = 124.6°. The asymmetric unit of these crystals may contain ten molecules, giving a Matthews coefficient of 2.48 Å(3) Da(-1) and a solvent content of 50.5%.

  9. Functional insights into the late embryogenesis abundant (LEA) protein family from Dendrobium officinale (Orchidaceae) using an Escherichia coli system

    PubMed Central

    Ling, Hong; Zeng, Xu; Guo, Shunxing

    2016-01-01

    Late embryogenesis abundant (LEA) proteins, a diverse family, accumulate during seed desiccation in the later stages of embryogenesis. LEA proteins are associated with tolerance to abiotic stresses, such as drought, salinity and high or cold temperature. Here, we report the first comprehensive survey of the LEA gene family in Dendrobium officinale, an important and widely grown medicinal orchid in China. Based on phylogenetic relationships with the complete set of Arabidopsis and Oryza LEA proteins, 17 genes encoding D. officinale LEAs (DofLEAs) were identified and their deduced proteins were classified into seven groups. The motif composition of these deduced proteins was correlated with the gene structure found in each LEA group. Our results reveal the DofLEA genes are widely distributed and expressed in tissues. Additionally, 11 genes from different groups were introduced into Escherichia coli to assess the functions of DofLEAs. Expression of 6 and 7 DofLEAs in E. coli improved growth performance compared with the control under salt and heat stress, respectively. Based on qPCR data, all of these genes were up-regulated in various tissues following exposure to salt and heat stresses. Our results suggest that DofLEAs play an important role in responses to abiotic stress. PMID:28004781

  10. Co-expression of tetanus toxin fragment C in Escherichia coli with thioredoxin and its evaluation as an effective subunit vaccine candidate.

    PubMed

    Yu, Yun-Zhou; Gong, Zheng-Wei; Ma, Yao; Zhang, Shu-Ming; Zhu, Heng-Qi; Wang, Wen-Bing; Du, Yun; Wang, Shuang; Yu, Wei-Yuan; Sun, Zhi-Wei

    2011-08-11

    The receptor-binding domain of tetanus toxin (THc), which mediates the binding of the toxin to the nerve cells, is a candidate subunit vaccine against tetanus. In this study one synthetic gene encoding the THc was constructed and highly expressed in Escherichia coli by co-expression with thioredoxin (Trx). The purified THc-vaccinated mice were completely protected against an active toxin challenge in mouse models of disease and the potency of two doses of THc was comparable to that of three doses of toxoid vaccine. And a solid-phase assay showed that the anti-THc sera inhibited the binding of THc or toxoid to the ganglioside GT1b as the anti-tetanus toxoid sera. Furthermore, mice were vaccinated once or twice at four different dosages of THc and a dose-response was observed in both the antibody titer and protective efficacy with increasing dosage of THc and number of vaccinations. The data presented in the report showed that the recombinant THc expressed in E. coli is efficacious in protecting mice against challenge with tetanus toxin suggesting that the THc protein may be developed into a human subunit vaccine candidate designed for the prevention of tetanus. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Cloning and expression of delta-1-pyrroline-5-carboxylate dehydrogenase in Escherichia coli DH5α improves phosphate solubilization.

    PubMed

    Gong, Mingbo; Tang, Chaoxi; Zhu, Changxiong

    2014-11-01

    A primary cDNA library of Penicillium oxalicum I1 was constructed using the switching mechanism at the 5' end of the RNA transcript (SMART) technique. A total of 106 clones showed halos in tricalcium phosphate (TCP) medium, and clone I-40 showed clear halos. The full-length cDNA of clone I-40 was 1355 bp with a complete open reading frame (ORF) of 1032 bp, encoding a protein of 343 amino acids. Multiple alignment analysis revealed a high degree of homology between the ORF of clone I-40 and delta-1-pyrroline-5-carboxylate dehydrogenase (P5CDH) of other fungi. The ORF expression vector was constructed and transformed into Escherichia coli DH5α. The transformant (ORF-1) with the P5CDH gene secreted organic acid in medium with TCP as the sole source of phosphate. Acetic acid and α-ketoglutarate were secreted in 4 and 24 h, respectively. ORF-1 decreased the pH of the medium from 6.62 to 3.45 and released soluble phosphate at 0.172 mg·mL(-1) in 28 h. Expression of the P. oxalicum I1 p5cdh gene in E. coli could enhance organic acid secretion and phosphate-solubilizing ability.

  12. CsrA Represses Translation of sdiA, Which Encodes the N-Acylhomoserine-l-Lactone Receptor of Escherichia coli, by Binding Exclusively within the Coding Region of sdiA mRNA ▿ †

    PubMed Central

    Yakhnin, Helen; Baker, Carol S.; Berezin, Igor; Evangelista, Michael A.; Rassin, Alisa; Romeo, Tony; Babitzke, Paul

    2011-01-01

    The RNA binding protein CsrA is the central component of a conserved global regulatory system that activates or represses gene expression posttranscriptionally. In every known example of CsrA-mediated translational control, CsrA binds to the 5′ untranslated region of target transcripts, thereby repressing translation initiation and/or altering the stability of the RNA. Furthermore, with few exceptions, repression by CsrA involves binding directly to the Shine-Dalgarno sequence and blocking ribosome binding. sdiA encodes the quorum-sensing receptor for N-acyl-l-homoserine lactone in Escherichia coli. Because sdiA indirectly stimulates transcription of csrB, which encodes a small RNA (sRNA) antagonist of CsrA, we further explored the relationship between sdiA and the Csr system. Primer extension analysis revealed four putative transcription start sites within 85 nucleotides of the sdiA initiation codon. Potential σ70-dependent promoters were identified for each of these primer extension products. In addition, two CsrA binding sites were predicted in the initially translated region of sdiA. Expression of chromosomally integrated sdiA′-′lacZ translational fusions containing the entire promoter and CsrA binding site regions indicates that CsrA represses sdiA expression. The results from gel shift and footprint studies demonstrate that tight binding of CsrA requires both of these sites. Furthermore, the results from toeprint and in vitro translation experiments indicate that CsrA represses translation of sdiA by directly competing with 30S ribosomal subunit binding. Thus, this represents the first example of CsrA preventing translation by interacting solely within the coding region of an mRNA target. PMID:21908661

  13. Determining the relative contribution and hierarchy of hha and qseBC in the regulation of flagellar motility of Escherichia coli O157:H7.

    PubMed

    Sharma, Vijay K; Casey, Thomas A

    2014-01-01

    In recent studies, we demonstrated that a deletion of hha caused increased secretion of locus of enterocyte encoded adherence proteins and reduced motility of enterohemorrhagic Escherichia coli (EHEC) O157:H7. In addition to the importance of hha in positive regulation of motility, a two-component quorum sensing pathway encoded by the qseBC genes has been shown to activate bacterial motility in response to mammalian stress hormones epinephrine and norepinephrine as well as bacterially produced autoinducer-3. In this study, we compared regulatory contribution and hierarchy of hha, a member of the Hha/YmoA family of nucleoid-associated proteins, to that of qseBC in the expression of EHEC O157:H7 motility. Since norepinephrine affects motility of EHEC O157:H7 through a qseBC-encoded two-component quorum sensing signaling, we also determined whether the hha-mediated regulation of motility is affected by norepinephrine and whether this effect is qseBC dependent. We used single (Δhha or ΔqseC) and double (Δhha ΔqseC) deletion mutants to show that hha exerts a greater positive regulatory effect in comparison to qseBC on the expression of motility by EHEC O157:H7. We also show that Hha is hierarchically superior in transcriptional regulation of motility than QseBC because transcription of qseC was significantly reduced in the hha deletion mutant compared to that in the parental and the hha-complemented mutant strains. These results suggest that hha regulates motility of EHEC O157:H7 directly as well as indirectly by controlling the transcription of qseBC.

  14. Determining the Relative Contribution and Hierarchy of hha and qseBC in the Regulation of Flagellar Motility of Escherichia coli O157:H7

    PubMed Central

    Sharma, Vijay K.; Casey, Thomas A.

    2014-01-01

    In recent studies, we demonstrated that a deletion of hha caused increased secretion of locus of enterocyte encoded adherence proteins and reduced motility of enterohemorrhagic Escherichia coli (EHEC) O157:H7. In addition to the importance of hha in positive regulation of motility, a two-component quorum sensing pathway encoded by the qseBC genes has been shown to activate bacterial motility in response to mammalian stress hormones epinephrine and norepinephrine as well as bacterially produced autoinducer-3. In this study, we compared regulatory contribution and hierarchy of hha, a member of the Hha/YmoA family of nucleoid-associated proteins, to that of qseBC in the expression of EHEC O157:H7 motility. Since norepinephrine affects motility of EHEC O157:H7 through a qseBC-encoded two-component quorum sensing signaling, we also determined whether the hha-mediated regulation of motility is affected by norepinephrine and whether this effect is qseBC dependent. We used single (Δhha or ΔqseC) and double (Δhha ΔqseC) deletion mutants to show that hha exerts a greater positive regulatory effect in comparison to qseBC on the expression of motility by EHEC O157:H7. We also show that Hha is hierarchically superior in transcriptional regulation of motility than QseBC because transcription of qseC was significantly reduced in the hha deletion mutant compared to that in the parental and the hha-complemented mutant strains. These results suggest that hha regulates motility of EHEC O157:H7 directly as well as indirectly by controlling the transcription of qseBC. PMID:24465756

  15. An ABC Transporter System of Yersinia pestis Allows Utilization of Chelated Iron by Escherichia coli SAB11

    PubMed Central

    Bearden, Scott W.; Staggs, Teanna M.; Perry, Robert D.

    1998-01-01

    The acquisition of iron is an essential component in the pathogenesis of Yersinia pestis, the agent of bubonic and pneumonic plague. A cosmid library derived from the genomic DNA of Y. pestis KIM6+ was used for transduction of an Escherichia coli mutant (SAB11) defective in the biosynthesis of the siderophore enterobactin. Recombinant plasmids which had a common 13-kb BamHI fragment were isolated from SAB11 transductants in which growth but not enterobactin synthesis was restored on media containing the iron chelator EDDA [ethylenediamine-di(o-hydroxyphenyl acetic acid)]. Subcloning and transposon mutagenesis revealed a 5.6-kb region, designated yfe, essential for SAB11 growth stimulation. In vitro transcription-translation analysis identified polypeptides of 18, 29.5, 32, and 33 kDa encoded by the yfe locus. Sequence analysis shows this locus to be comprised of five genes in two separate operons which have potential Fur-binding sequences in both promoters. A putative polycistronic operon, yfeABCD, is Fur regulated and responds to iron and manganese. A functional Fur protein is required for the observed manganese repression of this operon. This operon encodes polypeptides which have strong similarity to the ATP-binding cassette (ABC) family of transporters and include a periplasmic binding protein (YfeA), an ATP-binding protein (YfeB), and two integral membrane proteins (YfeC and -D), which likely function in the acquisition of inorganic iron and possibly other ions. The ∼21-kDa protein encoded by the separately transcribed yfeE gene may be located in the cell envelope, since a yfeE::TnphoA fusion is PhoA+. Mutations in this gene abrogate growth of SAB11 on iron-chelated media. PMID:9495751

  16. An ABC transporter system of Yersinia pestis allows utilization of chelated iron by Escherichia coli SAB11.

    PubMed

    Bearden, S W; Staggs, T M; Perry, R D

    1998-03-01

    The acquisition of iron is an essential component in the pathogenesis of Yersinia pestis, the agent of bubonic and pneumonic plague. A cosmid library derived from the genomic DNA of Y. pestis KIM6+ was used for transduction of an Escherichia coli mutant (SAB11) defective in the biosynthesis of the siderophore enterobactin. Recombinant plasmids which had a common 13-kb BamHI fragment were isolated from SAB11 transductants in which growth but not enterobactin synthesis was restored on media containing the iron chelator EDDA [ethylenediamine-di(o-hydroxyphenyl acetic acid)]. Subcloning and transposon mutagenesis revealed a 5.6-kb region, designated yfe, essential for SAB11 growth stimulation. In vitro transcription-translation analysis identified polypeptides of 18, 29.5, 32, and 33 kDa encoded by the yfe locus. Sequence analysis shows this locus to be comprised of five genes in two separate operons which have potential Fur-binding sequences in both promoters. A putative polycistronic operon, yfeABCD, is Fur regulated and responds to iron and manganese. A functional Fur protein is required for the observed manganese repression of this operon. This operon encodes polypeptides which have strong similarity to the ATP-binding cassette (ABC) family of transporters and include a periplasmic binding protein (YfeA), an ATP-binding protein (YfeB), and two integral membrane proteins (YfeC and -D), which likely function in the acquisition of inorganic iron and possibly other ions. The approximately 21-kDa protein encoded by the separately transcribed yfeE gene may be located in the cell envelope, since a yfeE::TnphoA fusion is PhoA+. Mutations in this gene abrogate growth of SAB11 on iron-chelated media.

  17. Antimicrobial properties of ternary eutectic aluminum alloys.

    PubMed

    Hahn, Claudia; Hans, Michael; Hein, Christina; Dennstedt, Anne; Mücklich, Frank; Rettberg, Petra; Hellweg, Christine Elisabeth; Leichert, Lars Ingo; Rensing, Christopher; Moeller, Ralf

    2018-06-27

    Several Escherichia coli deletion mutants of the Keio collection were selected for analysis to better understand which genes may play a key role in copper or silver homeostasis. Each of the selected E. coli mutants had a deletion of a single gene predicted to encode proteins for homologous recombination or contained functions directly linked to copper or silver transport or transformation. The survival of these strains on pure copper surfaces, stainless steel, and alloys of aluminum, copper and/or silver was investigated. When exposed to pure copper surfaces, E. coli ΔcueO was the most sensitive, whereas E. coli ΔcopA was the most resistant amongst the different strains tested. However, we observed a different trend in sensitivities in E. coli strains upon exposure to alloys of the system Al-Ag-Cu. While minor antimicrobial effects were detected after exposure of E. coli ΔcopA and E. coli ΔrecA to Al-Ag alloys, no effect was detected after exposure to Al-Cu alloys. The release of copper ions and cell-associated copper ion concentrations were determined for E. coli ΔcopA and the wild-type E. coli after exposure to pure copper surfaces. Altogether, compared to binary alloys, ternary eutectic alloys (Al-Ag-Cu) had the highest antimicrobial effect and thus, warrant further investigation.

  18. Cloning and characterization of ftsZ and pyrF from the archaeon Thermoplasma acidophilum

    NASA Technical Reports Server (NTRS)

    Yaoi, T.; Laksanalamai, P.; Jiemjit, A.; Kagawa, H. K.; Alton, T.; Trent, J. D.

    2000-01-01

    To characterize cytoskeletal components of archaea, the ftsZ gene from Thermoplasma acidophilum was cloned and sequenced. In T. acidophilum ftsZ, which is involved in cell division, was found to be in an operon with the pyrF gene, which encodes orotidine-5'-monophosphate decarboxylase (ODC), an essential enzyme in pyrimidine biosynthesis. Both ftsZ and pyrF from T. acidophilum were expressed in Escherichia coli and formed functional proteins. FtsZ expression in wild-type E. coli resulted in the filamentous phenotype characteristic of ftsZ mutants. T. acidophilum pyrF expression in an E. coli mutant lacking pyrF complemented the mutation and rescued the strain. Sequence alignments of ODCs from archaea, bacteria, and eukarya reveal five conserved regions, two of which have homology to 3-hexulose-6-phosphate synthase (HPS), suggesting a common substrate recognition and binding motif. Copyright 2000 Academic Press.

  19. The construction of a synthetic Escherichia coli trp promoter and its use in the expression of a synthetic interferon gene.

    PubMed Central

    Windass, J D; Newton, C R; De Maeyer-Guignard, J; Moore, V E; Markham, A F; Edge, M D

    1982-01-01

    An 82 base pair DNA fragment has been synthesised which contains the E. coli trp promoter and operator sequences and also encodes the first Shine Dalgarno sequence of the trp operon. This DNA fragment is flanked by EcoRI and ClaI/TaqI cohesive ends and is thus easy to clone, transfer between vector systems and couple to genes to drive their expression. It has been cloned into plasmid pAT153, producing a convenient trp promoter vector. We have also joined the fragment to a synthetic IFN-alpha 1 gene, using synthetic oligonucleotides to generate a completely natural, highly efficient bacterial translation initiation signal on the promoter proximal side of the IFN gene. Plasmids carrying this construction enable E. coli cells to express IFN-alpha 1 almost constitutively and with significantly higher efficiency than from a lacUV5 promoter based system. Images PMID:6184675

  20. Escherichia coli: a brief review of diarrheagenic pathotypes and their role in diarrheal diseases in Iran

    PubMed Central

    Jafari, A; Aslani, MM; Bouzari, S

    2012-01-01

    Diarrheagenic Escherichia coli have developed different strategies for establishment of infection in their host. Understanding these pathogenic mechanisms has led to the development of specific diagnostic tools for identification and categorization of E. coli strains into different pathotypes. This review aims to provide an overview of the various categories of diarrheagenic Escherichia coli and the data obtained in Iran pertaining to these pathotypes. PMID:23066484

Top