Science.gov

Sample records for escherichia coli strains

  1. Hydrogen production by recombinant Escherichia coli strains

    PubMed Central

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Wood, Thomas K.

    2012-01-01

    Summary The production of hydrogen via microbial biotechnology is an active field of research. Given its ease of manipulation, the best‐studied bacterium Escherichia coli has become a workhorse for enhanced hydrogen production through metabolic engineering, heterologous gene expression, adaptive evolution, and protein engineering. Herein, the utility of E. coli strains to produce hydrogen, via native hydrogenases or heterologous ones, is reviewed. In addition, potential strategies for increasing hydrogen production are outlined and whole‐cell systems and cell‐free systems are compared. PMID:21895995

  2. Thymineless death in Escherichia coli: strain specificity.

    PubMed

    Cummings, D J; Mondale, L

    1967-06-01

    Thymineless death of various ultraviolet (UV)-sensitive strains of Escherichia coli B and K-12 was investigated. It was found that E. coli B, B(s-12), K-12 rec-21, and possibly K-12 Lon(-), all sensitive to UV, were also sensitive to thymine starvation. However, other UV-sensitive strains of E. coli were found to display the typical resistant-type kinetics of thymineless death. The correlation of these results with various other cellular processes suggested that the filament-forming ability of the bacteria might be involved in the mechanism of thymineless death. It was apparent from the present results that capacity for host-cell reactivation, recombination ability, thymine dimer excision, and probably induction of a defective prophage had little to do with determining sensitivity to thymine deprivation.

  3. Thymineless Death in Escherichia coli: Strain Specificity

    PubMed Central

    Cummings, Donald J.; Mondale, Lee

    1967-01-01

    Thymineless death of various ultraviolet (UV)-sensitive strains of Escherichia coli B and K-12 was investigated. It was found that E. coli B, Bs−12, K-12 rec-21, and possibly K-12 Lon−, all sensitive to UV, were also sensitive to thymine starvation. However, other UV-sensitive strains of E. coli were found to display the typical resistant-type kinetics of thymineless death. The correlation of these results with various other cellular processes suggested that the filament-forming ability of the bacteria might be involved in the mechanism of thymineless death. It was apparent from the present results that capacity for host-cell reactivation, recombination ability, thymine dimer excision, and probably induction of a defective prophage had little to do with determining sensitivity to thymine deprivation. Images PMID:5337772

  4. Cyclomodulins in urosepsis strains of Escherichia coli.

    PubMed

    Dubois, Damien; Delmas, Julien; Cady, Anne; Robin, Frédéric; Sivignon, Adeline; Oswald, Eric; Bonnet, Richard

    2010-06-01

    Determinants of urosepsis in Escherichia coli remain incompletely defined. Cyclomodulins (CMs) are a growing functional family of toxins that hijack the eukaryotic cell cycle. Four cyclomodulin types are actually known in E. coli: cytotoxic necrotizing factors (CNFs), cycle-inhibiting factor (Cif), cytolethal distending toxins (CDTs), and the pks-encoded toxin. In the present study, the distribution of CM-encoding genes and the functionality of these toxins were investigated in 197 E. coli strains isolated from patients with community-acquired urosepsis (n = 146) and from uninfected subjects (n = 51). This distribution was analyzed in relation to the phylogenetic background, clinical origin, and antibiotic resistance of the strains. It emerged from this study that strains harboring the pks island and the cnf1 gene (i) were strongly associated with the B2 phylogroup (P, <0.001), (ii) frequently harbored both toxin-encoded genes in phylogroup B2 (33%), and (iii) were predictive of a urosepsis origin (P, <0.001 to 0.005). However, the prevalences of the pks island among phylogroup B2 strains, in contrast to those of the cnf1 gene, were not significantly different between fecal and urosepsis groups, suggesting that the pks island is more important for the colonization process and the cnf1 gene for virulence. pks- or cnf1-harboring strains were significantly associated with susceptibility to antibiotics (amoxicillin, cotrimoxazole, and quinolones [P, <0.001 to 0.043]). Otherwise, only 6% and 1% of all strains harbored the cdtB and cif genes, respectively, with no particular distribution by phylogenetic background, antimicrobial susceptibility, or clinical origin.

  5. Electrophoretic Mobilities of Escherichia coli O157:H7 and Wild-Type Escherichia coli Strains

    PubMed Central

    Lytle, Darren A.; Rice, Eugene W.; Johnson, Clifford H.; Fox, Kim R.

    1999-01-01

    The electrophoretic mobilities (EPMs) of a number of Escherichia coli O157:H7 and wild-type E. coli strains were measured. The effects of pH and ionic strength on the EPMs were investigated. The EPMs of E. coli O157:H7 strains differed from those of wild-type strains. As the suspension pH decreased, the EPMs of both types of strains increased. PMID:10388724

  6. ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS

    EPA Science Inventory

    The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...

  7. Genome Sequence of Enterotoxigenic Escherichia coli Strain FMU073332.

    PubMed

    Saldaña-Ahuactzi, Zeus; Cruz-Córdova, Ariadnna; Rodea, Gerardo E; Porta, Helena; Navarro-Ocaña, Armando; Eslava-Campos, Carlos; Cevallos, Miguel A; Xicohtencatl-Cortes, Juan

    2017-02-23

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of bacterial diarrheal illness, affecting practically every population worldwide, and was estimated to cause 120,800 deaths in 2010. Here, we report the genome sequence of ETEC strain FMU073332, isolated from a 25-month-old girl from Tlaltizapán, Morelos, México.

  8. Genome Sequence of Enterotoxigenic Escherichia coli Strain FMU073332

    PubMed Central

    Saldaña-Ahuactzi, Zeus; Cruz-Córdova, Ariadnna; Rodea, Gerardo E.; Porta, Helena; Navarro-Ocaña, Armando; Eslava-Campos, Carlos

    2017-01-01

    ABSTRACT   Enterotoxigenic Escherichia coli (ETEC) is an important cause of bacterial diarrheal illness, affecting practically every population worldwide, and was estimated to cause 120,800 deaths in 2010. Here, we report the genome sequence of ETEC strain FMU073332, isolated from a 25-month-old girl from Tlaltizapán, Morelos, México. PMID:28232434

  9. Cytotoxic Escherichia coli strains encoding colibactin colonize laboratory mice.

    PubMed

    García, Alexis; Mannion, Anthony; Feng, Yan; Madden, Carolyn M; Bakthavatchalu, Vasudevan; Shen, Zeli; Ge, Zhongming; Fox, James G

    2016-12-01

    Escherichia coli strains have not been fully characterized in laboratory mice and are not currently excluded from mouse colonies. Colibactin (Clb), a cytotoxin, has been associated with inflammation and cancer in humans and animals. We performed bacterial cultures utilizing rectal swab, fecal, and extra intestinal samples from clinically unaffected or affected laboratory mice. Fifty-one E. coli were isolated from 45 laboratory mice, identified biochemically, and selected isolates were serotyped. The 16S rRNA gene was amplified and sequenced for specific isolates, PCR used for clbA and clbQ gene amplification, and phylogenetic group identification was performed on all 51 E. coli strains. Clb genes were sequenced and selected E. coli isolates were characterized using a HeLa cell cytotoxicity assay. Forty-five of the 51 E. coli isolates (88%) encoded clbA and clbQ and belonged to phylogenetic group B2. Mouse E. coli serotypes included: O2:H6, O-:H-, OM:H+, and O22:H-. Clb-encoding O2: H6 mouse E. coli isolates were cytotoxic in vitro. A Clb-encoding E. coli was isolated from a clinically affected genetically modified mouse with cystic endometrial hyperplasia. Our findings suggest that Clb-encoding E. coli colonize laboratory mice and may induce clinical and subclinical diseases that may impact experimental mouse models.

  10. Shigella strains are not clones of Escherichia coli but sister species in the genus Escherichia.

    PubMed

    Zuo, Guanghong; Xu, Zhao; Hao, Bailin

    2013-02-01

    Shigella species and Escherichia coli are closely related organisms. Early phenotyping experiments and several recent molecular studies put Shigella within the species E. coli. However, the whole-genome-based, alignment-free and parameter-free CVTree approach shows convincingly that four established Shigella species, Shigella boydii, Shigella sonnei, Shigella felxneri and Shigella dysenteriae, are distinct from E. coli strains, and form sister species to E. coli within the genus Escherichia. In view of the overall success and high resolution power of the CVTree approach, this result should be taken seriously. We hope that the present report may promote further in-depth study of the Shigella-E. coli relationship.

  11. Gentamicin resistance among Escherichia coli strains isolated in neonatal sepsis.

    PubMed

    Hasvold, J; Bradford, L; Nelson, C; Harrison, C; Attar, M; Stillwell, T

    2013-01-01

    Neonatal sepsis is a significant cause of morbidity and mortality among term and preterm infants. Ampicillin and gentamicin are standard empiric therapy for early onset sepsis. Four cases of neonatal sepsis secondary to Escherichia coli (E. coli) found to be gentamicin resistant occurred within a five week period in one neonatal intensive care unit (NICU). To determine whether these cases could be tied to a single vector of transmission, and to more broadly evaluate the incidence of gentamicin resistant strains of E. coli in the neonatal population at our institution compared to other centers, we reviewed the charts of the four neonates (Infants A through D) and their mothers. The E. coli isolates were sent for Pulse Field Gel Electrophoresis (PFGE) to evaluate for genetic similarity between strains. We also reviewed all positive E. coli cultures from one NICU over a two year period. Infants A and B had genetically indistinguishable strains which matched that of urine and placental cultures of Infant B's mother. Infant C had a genetically distinct organism. Infant D, the identical twin of Infant C, did not have typing performed. Review of all cultures positive for E. coli at our institution showed a 12.9 percent incidence of gentamicin-resistance. A review of other studies showed that rates of resistance vary considerably by institution. We conclude that gentamicin-resistant E. coli is a relatively uncommon cause of neonatal sepsis, but should remain a consideration in patients who deteriorate despite initiation of empiric antibiotics.

  12. Identification of diarrheagenic Escherichia coli strains from avian organic fertilizers.

    PubMed

    Puño-Sarmiento, Juan; Gazal, Luis Eduardo; Medeiros, Leonardo P; Nishio, Erick K; Kobayashi, Renata K T; Nakazato, Gerson

    2014-08-28

    The Brazilian poultry industry generates large amounts of organic waste, such as chicken litter, which is often used in agriculture. Among the bacteria present in organic fertilizer are members of the Enterobacteriaceae family. The objective of this study was to detect the presence of diarrheagenic Escherichia coli (DEC) strains in avian organic fertilizer, and assess the potential damage they can cause in humans due to antimicrobial resistance. The presence of DEC pathotypes and phylogenetic groups were detected by multiplex-PCR. Phenotypic assays, such as tests for adhesion, cytotoxicity activity, biofilm formation and especially antimicrobial susceptibility, were performed. Fifteen DEC strains from 64 E. coli were isolated. Among these, four strains were classified as enteropathogenic (EPEC; 6.2%), three strains as Shiga toxin-producing (STEC; 4.7%), 10 strains as enteroaggregative (EAEC; 12.5%), but two of these harbored the eaeA gene too. The low number of isolated strains was most likely due to the composting process, which reduces the number of microorganisms. These strains were able to adhere to HEp-2 and HeLa cells and produce Shiga-toxins and biofilms; in addition, some of the strains showed antimicrobial resistance, which indicates a risk of the transfer of resistance genes to human E. coli. These results showed that DEC strains isolated from avian organic fertilizers can cause human infections.

  13. Characterization of urinary Escherichia coli O75 strains.

    PubMed Central

    Nimmich, W; Voigt, W; Seltmann, G

    1997-01-01

    Forty-four Escherichia coli O75 strains from patients with urinary tract infections were characterized by a variety of methods to obtain evidence of their clonal distribution and uropathogenic properties. By K and H antigen typing, the strains were divided into the following serotypes: O75:K5:H- (18 strains), O75:K95:H- (10 strains), O75:K95:H5 (7 strains), O75:K100:H5 (4 strains), and O75:K-:H55 (5 strains). Generally, biotyping proved to be of no discriminative value. With two exceptions the strains were found to be sensitive to the bactericidal effect of normal human serum. As shown by multilocus enzyme electrophoresis, the whole-cell protein profile (WCPP), and the patterns of the outer membrane proteins and lipopolysaccharides, all but the five O75:H55 strains were genetically closely related to each other and could be classified into one clonal group. The O75:K-:H55 strains proved to be quite different and lacked type 1 fimbriae. All 17 K95 (H-, H5) strains produced hemolysin and P fimbriae. Five of the O75:K5:H- strains were different from the other K5 strains by showing hemagglutinating properties, on the basis of the presence of the OX adhesin. The last two groups are suggested to be uropathogenic and are proposed to represent separate clonal groups or subgroups. PMID:9114391

  14. [Sensitivity to drugs of Escherichia coli strains isolated from poultry with coli septicemia].

    PubMed

    Giurov, B

    1985-01-01

    Investigations were carried out into the susceptibility of a total of 223 strains of Escherichia coli to therapeutic agents with the employment of the disk diffusion method. The organisms were isolated from internal organs and bone marrow of birds died of coli septicaemia. The serologic classification of the strains was defined with the use of 88 anti-group OK-agglutinating sera obtained through hyperimmunization of rabbits with the following Escherichia coli serotypes: 01-063, 068, 071, 073, 075, 078, 086, 0101, 0103, 0111-0114, 0119, 0124, 0129, 0135-0141, 0146, 0147, and 0149. It was found that serologically the strains referred as follows: 01-41 strains, 02-70 strains, 04-2 strains, 08-3 strains, 026-1 strain, 078-70 strains, 0111-2 strains, 0103-1 strain, 0141-1 strain. The number of untypable strains amounted to 32. Highest number of strains proved sensitive to colistin--96.06%, the remaining drugs following in a descending order: flumequine--95.65%, apramycin - 95.5%, gentamycin--93.72%, amoxicillin--93,8%, amikacin--88.57%, carbenicillin--86.88%, furazolidone--83,13%, and kanamycin--79.36%. High was the percent of strains resistant to tetracycline--66.17%, spectinomycin--61.67%, ampicillin--51.12%, chloramphenicol--50.23%, and streptomycin--44.84%.

  15. Unusual "flesh-eating" strains of Escherichia coli.

    PubMed

    Shaked, Hila; Samra, Zmira; Paul, Michal; Madar-Shapiro, Liora; Cohen, Jonathan; Pitlik, Silvio; Bishara, Jihad

    2012-12-01

    Monomicrobial necrotizing fasciitis (type II) is typically caused by group A streptococcus alone or in combination with Staphylococcus aureus. Escherichia coli has been isolated from polymicrobial or Fournier's gangrene but has rarely been reported in monomicrobial necrotizing fasciitis. We describe the clinical characteristics and outcomes of seven cases of monomicrobial E. coli necrotizing fasciitis and/or severe soft tissue infection diagnosed at a single institution during an 18-month period. Four isolates from three patients and two isolates from two patients with type I polymicrobial severe soft tissue infection (controls) were assayed by the randomly amplified polymorphic DNA (RAPD) analysis for fingerprinting and PCR amplification of primers in order to detect cytotoxic necrotizing factor 1 and 2 (cnf1 and cnf2) genes. All patients had some type of immune suppression. The limb was the most commonly involved organ. In all cases, E. coli was isolated as a monomicrobial pathogen from blood, fascia, or both. All patients died during hospitalization, three within the first 48 h. The RAPD amplification assay showed a high degree of genetic diversity among the "flesh-eating" strains and controls. The cnf1 toxin gene was identified in two out of three cases, but not in the controls. cnf2 was not detected in any of the patients. E. coli may be responsible for life-threatening necrotizing fasciitis. Further research is needed to reveal relevant risk factors, reservoirs, and modes of transmission of cnf1 E. coli.

  16. Diarrhea, Urosepsis and Hemolytic Uremic Syndrome Caused by the Same Heteropathogenic Escherichia coli Strain.

    PubMed

    Ang, C Wim; Bouts, Antonia H M; Rossen, John W A; Van der Kuip, Martijn; Van Heerde, Marc; Bökenkamp, Arend

    2016-09-01

    We describe an 8-month-old girl with diarrhea, urosepsis and hemolytic uremic syndrome caused by Escherichia coli. Typing of cultured E. coli strains from urine and blood revealed the presence of virulence factors from multiple pathotypes of E. coli. This case exemplifies the genome plasticity of E. coli and the resulting heteropathogenic strains.

  17. Ultraviolet-Sensitive Mutator Strain of Escherichia coli K-12

    PubMed Central

    Siegel, Eli C.

    1973-01-01

    An ultraviolet (UV)-sensitive mutator gene, mutU, was identified in Escherichia coli K-12. The mutation mutU4 is very close to uvrD, between metE and ilv, on the E. coli chromosome. It was recessive as a mutator and as a UV-sensitive mutation. The frequency of reversion of trpA46 on an F episome was increased by mutU4 on the chromosome. The mutator gene did not increase mutation frequencies in virulent phages or in lytically grown phage λ. The mutU4 mutation predominantly induced transitional base changes. Mutator strains were normal for recombination and host-cell reactivation of UV-irradiated phage T1. They were normally resistant to methyl methanesulfonate and were slightly more sensitive to gamma irradiation than Mut+ strains. UV irradiation induced mutations in a mutU4 strain, and phage λ was UV-inducible. Double mutants containing mutU4 and recA, B, or C were extremely sensitive to UV irradiation; a mutU4 uvrA6 double mutant was only slightly more sensitive than a uvrA6 strain. The mutU4 uvrA6 and mutU4 recA, B, or C double mutants had mutation rates similar to that of a mutU4 strain. Two UV-sensitive mutators, mut-9 and mut-10, isolated by Liberfarb and Bryson in E. coli B/UV, were found to be co-transducible with ilv in the same general region as mutU4. PMID:4345920

  18. Impact of diversity of colonizing strains on strategies for sampling Escherichia coli from fecal specimens.

    PubMed

    Lautenbach, Ebbing; Bilker, Warren B; Tolomeo, Pam; Maslow, Joel N

    2008-09-01

    Of 49 subjects, 21 were colonized with more than one strain of Escherichia coli and 12 subjects had at least one strain present in fewer than 20% of colonies. The ability to accurately characterize E. coli strain diversity is directly related to the number of colonies sampled and the underlying prevalence of the strain.

  19. Draft Genome Sequence of Uropathogenic Escherichia coli Strain NB8

    PubMed Central

    Mi, Zu-huang; Wang, Chun-xin; Zhu, Jian-ming

    2016-01-01

    Escherichia coli NB8 is a clinical pyelonephritis isolate. Here, we report the draft genome sequence of uropathogenic E. coli NB8, which contains drug resistance genes encoding resistance to beta-lactams, aminoglycosides, quinolones, macrolides, colistin, sulfonamide-trimethoprim, and tetracycline. NB8 infects the kidney and bladder, making it an important tool for studying E. coli pathogenesis. PMID:27609920

  20. Binding of collagens to an enterotoxigenic strain of Escherichia coli

    SciTech Connect

    Visai, L.; Speziale, P.; Bozzini, S. )

    1990-02-01

    An enterotoxigenic strain of Escherichia coli, B34289c, has been shown to bind the N-terminal region of fibronectin with high affinity. We now report that this strain also binds collagen. The binding of 125I-labeled type II collagen to bacteria was time dependent and reversible. Bacteria expressed a limited number of collagen receptors (2.2 x 10(4) per cell) and bound collagen with a Kd of 20 nM. All collagen types tested (I to V) as well as all tested cyanogen bromide-generated peptides (alpha 1(I)CB2, alpha 1(I)CB3, alpha 1(I)CB7, alpha 1(I)CB8, and alpha 2(I)CB4) were recognized by bacterial receptors, as demonstrated by the ability of these proteins to inhibit the binding of 125I-labeled collagen to bacteria. Of several unlabeled proteins tested in competition experiments, fibronectin and its N-terminal region strongly inhibited binding of the radiolabeled collagen to E. coli cells. Conversely, collagen competed with an 125I-labeled 28-kilodalton fibronectin fragment for bacterial binding. Collagen bound to bacteria could be displaced by excess amounts of either unlabeled fibronectin or its N-terminal fragment. Similarly, collagen could displace 125I-labeled N-terminal peptide of fibronectin bound to the bacterial cell surface. Bacteria grown at 41 degrees C or in the presence of glucose did not express collagen or fibronectin receptors. These results indicate the presence of specific binding sites for collagen on the surface of E. coli cells and furthermore that the collagen and fibronectin binding sites are located in close proximity, possibly on the same structure.

  1. Enhanced succinate production from glycerol by engineered Escherichia coli strains.

    PubMed

    Li, Qing; Wu, Hui; Li, Zhimin; Ye, Qin

    2016-10-01

    In this study, an engineered strain Escherichia coli MLB (ldhA(-)pflB(-)) was constructed for production of succinate from glycerol. The succinate yield was 0.37mol/mol in anaerobic culture, however, the growth and glycerol consumption rates were very slow, resulting in a low succinate level. Two-stage fermentation was performed in flasks, and the succinate yield reached 0.93mol/mol, but the succinate titer was still low. Hence, overexpression of malate dehydrogenase, malic enzyme, phosphoenolpyruvate (PEP) carboxylase and PEP carboxykinase (PCK) from E. coli, and pyruvate carboxylase from Corynebacterium glutamicum in MLB was investigated for improving succinate production. Overexpression of PCK resulted in remarkable enhancement of glycerol consumption and succinate production. In flask experiments, the succinate concentration reached 118.1mM, and in a 1.5-L bioreactor the succinate concentration further increased to 360.2mM. The highest succinate yield achieved 0.93mol/mol, which was 93% of the theoretical yield, in the anaerobic stage.

  2. In vitro evolution of an archetypal enteropathogenic Escherichia coli strain.

    PubMed

    Nisa, Shahista; Hazen, Tracy H; Assatourian, Lillian; Nougayrède, Jean-Philippe; Rasko, David A; Donnenberg, Michael S

    2013-10-01

    Enteropathogenic Escherichia coli (EPEC) is a leading cause of infantile diarrhea in developing countries. EPEC strain E2348/69 is used worldwide as a prototype to study EPEC genetics and disease. However, isolates of E2348/69 differ phenotypically, reflecting a history of in vitro selection. To identify the genomic and phenotypic changes in the prototype strain, we sequenced the genome of the nalidixic acid-resistant (Nal(r)) E2348/69 clone. We also sequenced a recent nleF mutant derived by one-step PCR mutagenesis from the Nal(r) strain. The sequencing results revealed no unintended changes between the mutant and the parent strain. However, loss of the pE2348-2 plasmid and 3 nonsynonymous mutations were found in comparison to the published streptomycin-resistant (Str(r)) E2348/69 reference genome. One mutation is a conservative amino acid substitution in ftsK. Another, in gyrA, is a mutation known to result in resistance to nalidixic acid. The third mutation converts a stop codon to a tryptophan, predicted to result in the fusion of hflD, the lysogenization regulator, to purB. The purB gene encodes an adenylosuccinate lyase involved in purine biosynthesis. The Nal(r) clone has a lower growth rate than the Str(r) isolate when cultured in minimal media, a difference which is corrected upon addition of adenine or by genetic complementation with purB. Addition of adenine or genetic complementation also restored the invasion efficiency of the Nal(r) clone. This report reconciles longstanding inconsistencies in phenotypic properties of an archetypal strain and provides both reassurance and cautions regarding intentional and unintentional evolution in vitro.

  3. Escherichia coli strain diversity: Selecting isolates for use as pathogen surrogates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Escherichia coli (E. coli) is commonly used as a surrogate for pathogens in research to identify sources of agricultural contamination and to characterize how pathogens persist on plant surfaces. However, E. coli strains are highly diverse, exhibiting differences in physical, chemical and...

  4. Comparison of whole genome sequences from human and non-human Escherichia coli O26 strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) O26 is the second leading E. coli serogroup responsible for human illness outbreaks behind E. coli O157:H7. Recent outbreaks have been linked to emerging pathogenic O26:H11 strains harboring stx2 only. Cattle have been recognized as an important reserv...

  5. Proteomic differences between Escherichia coli strains that cause transient versus persistent intramammary infections [abstract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli is a leading cause of bacterial mastitis in dairy cattle. Typically this infection is transient in nature and lasts 2-3 days. However, in a minority of cases, E. coli can cause a persistent intramammary infection. The mechanisms that enable certain strains of E. coli to cause a p...

  6. Draft Genome Sequence of Enterotoxigenic Escherichia coli Strain W25K.

    PubMed

    Ren, Wenkai; Liu, Gang; Yin, Jie; Chen, Shuai; Li, Tiejun; Kong, Xiangfeng; Peng, Yuanyi; Yin, Yulong; Hardwidge, Philip R

    2014-06-26

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrheal disease in humans and newly weaned pigs. Here, we report the draft genome sequence of ETEC strain W25K, which causes diarrhea in piglets.

  7. Draft Genome Sequence of Enterotoxigenic Escherichia coli Strain W25K

    PubMed Central

    Ren, Wenkai; Liu, Gang; Yin, Jie; Chen, Shuai; Li, Tiejun; Kong, Xiangfeng; Peng, Yuanyi; Hardwidge, Philip R.

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrheal disease in humans and newly weaned pigs. Here, we report the draft genome sequence of ETEC strain W25K, which causes diarrhea in piglets. PMID:24970825

  8. Strain level differences in Escherichia coli transport, cell surface and adhesion characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Given the importance of Escherichia coli as both an indicator of fecal contamination and a potential pathogen, it is imperative that genotypic and phenotypic variability among strains of E. coli from the same host and/or environmental niche are understood. Strain survival and variation are regulated...

  9. Synanthropic rodents as possible reservoirs of shigatoxigenic Escherichia coli strains

    PubMed Central

    Blanco Crivelli, Ximena; Rumi, María V.; Carfagnini, Julio C.; Degregorio, Osvaldo; Bentancor, Adriana B.

    2012-01-01

    Shigatoxigenic Escherichia coli (STEC) strains are worldwide zoonotic pathogen responsible for different cases of human disease including hemolytic uremic syndrome (HUS). Transmission of STEC to humans occurs through the consumption of food and water contaminated by faeces of carriers and by person-to-person contact. The objective of this study was two-fold: (1) to investigate whether synanthropic rodents are possible reservoirs of STEC in the urban area and (2) whether a particular genus out of synanthropic rodent is the principal carrier of STEC. One hundred and forty-five rodents were captured in Buenos Aires City. Screening for stx1/stx2 and rfbO157 was done by PCR from the confluence zone. STEC isolates were further characterized with biochemical tests by standard methods. Additional virulence factors (eae, ehxA, and saa) were also determined by PCR. Forty-one of the rodents were necropsied and sample of kidney and small and large intestine were taken for histopathological diagnosis. The samples sections were stained with hematoxylin-eosin, and observed by light microscopy to evaluate the systemic involvement of these species in natural infections. STEC was isolated from seven out of 27 suspect animals at screening. The following genotypes were found in the STEC strains: stx1/stx2/ehxA (1), stx2 (4), stx2/ehxA (1), stx2/ehxA/eae (1). Neither gross nor microscopic lesions compatible with those produced by Shiga toxin were observed in the studied organs of necropsied rodents. The bivariate analysis including the 145 rodent's data showed that the isolation of STEC is associated positively to Rattus genus. This synanthropic species may play a role in the transmissibility of the agent thus being a risk to the susceptible population. Their control should be included specifically in actions to dismiss the contamination of food and water by STEC in the urban area, as additional strategies for epidemiological control. PMID:23125967

  10. Transport of Escherichia coli strains isolated from natural spring water.

    PubMed

    Lutterodt, G; Foppen, J W A; Uhlenbrook, S

    2012-10-01

    We present a new methodology to scale up bacteria transport experiments carried out in the laboratory to practical field situations. The key component of the methodology is to characterize bacteria transport not by a constant sticking efficiency, but by a range of sticking efficiency values determined from laboratory column experiments. In this study, initially, we harvested six Escherichia coli strains from springs in Kampala, the capital of Uganda, and then we carried out a number of experiments with 1.5m high columns of quartz sand with various sampling ports in order to determine the fraction of bacteria as a function of sticking efficiency. Furthermore, we developed a simple mathematical formulation, based on the steady-state analytical solution for the transport of mass in the subsurface, to arrive at bacteria concentrations as a function of transport distance. The results of the quartz sand column experiments indicated that the fractional bacteria mass and sticking efficiency of most of the strains we harvested could be adequately described by a power law. When applying the power distributions to the field situation in Kampala, we found that the transport distance required to reduce bacteria concentrations with five log units ranged from 1.5 to 23m, and this was up to three times more than when using a constant sticking efficiency. The methodology we describe is simple, can be carried out in a spreadsheet, and in addition to parameters describing transport, like pore water flow velocity and dispersion, only two constants are required, which define the relation between sticking efficiency and percentage of bacteria mass.

  11. [Factor of salinity and adaptive capacity of recombinant strains of Escherichia coli and Bacillus subtilis].

    PubMed

    Boiandin, A N; Lobova, T I; Krylova, T Iu; Kargatova, T V; Popova, L Iu; Pechurkin, N S

    2000-01-01

    Effect of different concentrations of salts on natural and recombinant strains of Bacillus subtilis and Escherichia coli was studied. The recombinant strain of B. subtilis was found to be more osmotolerant than the wild-type strain of this bacterium, whereas the opposite situation was observed for the recombinant and wild-type strains of E. coli. Some salts exerted a bacteriostatic effect on E. coli and B. subtilis. The adaptive capacity of recombinant strains depended on the number of plasmid copies in the cells. The introduction of recombinant bacteria into model ecosystems resulted in the generation of their variants with increased osmotolerance.

  12. Survival, Deoxyribonucleic Acid Breakdown, and Synthesis in Salmonella typhimurium as Compared with Escherichia coli B Strains

    PubMed Central

    Hudnik-Plevnik, Tamara A.; Djordjević, Nadežda

    1970-01-01

    Salmonella typhimurium LT-2 was compared with radioresistant (B/r) and radiosensitive (Bs−2) strains of Escherichia coli in respect to the survival, deoxyribonucleic acid (DNA) breakdown, and DNA synthesis after X irradiation. It is shown that S. typhimurium LT-2 is about four times more sensitive than E. coli B/r but less sensitive than Bs−2. The DNA breakdown is in S. typhimurium LT-2 lower than the postirradiation breakdown of DNA in both E. coli strains and DNA synthesis proceeds in this bacterium in spite of a much lower survival, as in the radioresistant E. coli B/r. PMID:4916313

  13. Mutant Strains of Escherichia coli K-12 Unable to Form Ubiquinone

    PubMed Central

    Cox, G. B.; Gibson, F.; Pittard, James

    1968-01-01

    A strain of Escherichia coli was isolated which was unable to form ubiquinone. This mutant was obtained by selecting strains unable to grow on malate as sole source of carbon. Such strains were further screened by examination of the quinone content of cells grown on a glucose medium. A mutant unable to form vitamin K was also isolated by this procedure. A genetic analysis of the ubiquinoneless strain showed that it possessed two mutations affecting ubiquinone biosynthesis. Images PMID:4870277

  14. Colonization with Escherichia coli Strains among Female Sex Partners of Men with Febrile Urinary Tract Infection

    PubMed Central

    Sandberg, Torsten; Scheutz, Flemming; Clabots, Connie; Johnston, Brian D.; Thuras, Paul; Johnson, James R.

    2015-01-01

    Of 23 unique Escherichia coli strains from 10 men with febrile urinary tract infections (UTIs) and their female sex partners, 6 strains (all UTI causing) were shared between partners. Molecularly, the 6 shared strains appeared more virulent than the 17 nonshared strains, being associated with phylogenetic group B2, sequence types ST73 and ST127, and multiple specific virulence genes. This indicates that UTIs are sometimes sexually transmitted. PMID:25832302

  15. Escherichia Coli

    ERIC Educational Resources Information Center

    Goodsell, David S.

    2009-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. I describe the scientific results that support a recent textbook illustration of an "Escherichia coli cell". The image magnifies a portion of the bacterium at one million times, showing the location and form of individual macromolecules. Results…

  16. Persistence of Escherichia coli O157 and non-O157 strains in agricultural soils.

    PubMed

    Ma, Jincai; Mark Ibekwe, A; Crowley, David E; Yang, Ching-Hong

    2014-08-15

    Shiga toxin producing Escherichia coli O157 and non-O157 serogroups are known to cause serious diseases in human. However, research on the persistence of E. coli non-O157 serogroups in preharvest environment is limited. In the current study, we compared the survival behavior of E. coli O157 to that of non-O157 E. coli strains in agricultural soils collected from three major fresh produce growing areas of California (CA) and Arizona (AZ). Results showed that the nonpathogenic E. coli O157:H7 4554 survived longer than the pathogenic E. coli O157:H7 EDL933 in Imperial Valley CA and Yuma AZ, but not in soils from the Salinas area. However, E. coli O157:NM was found to persist significantly longer than E. coli O157:H7 EDL933 in all soil tested from the three regions. Furthermore, two non-O157 (E. coli O26:H21 and E. coli O103:H2) survived significantly longer than E. coli O157:H7 EDL933 in all soils tested. Pearson correlation analysis showed that survival of the E. coli strains was affected by different environmental factors. Our data suggest that survival of E. coli O157 and non-O157 may be strain and soil specific, and therefore, care must be taken in data interpretation with respect to survival of this pathogen in different soils.

  17. Molecular analysis of cytolysin A (ClyA) in pathogenic Escherichia coli strains.

    PubMed

    Ludwig, Albrecht; von Rhein, Christine; Bauer, Susanne; Hüttinger, Christian; Goebel, Werner

    2004-08-01

    Cytolysin A (ClyA) of Escherichia coli is a pore-forming hemolytic protein encoded by the clyA (hlyE, sheA) gene that was first identified in E. coli K-12. In this study we examined various clinical E. coli isolates with regard to the presence and integrity of clyA. PCR and DNA sequence analyses demonstrated that 19 of 23 tested Shiga toxin-producing E. coli (STEC) strains, all 7 tested enteroinvasive E. coli (EIEC) strains, 6 of 8 enteroaggregative E. coli (EAEC) strains, and 4 of 7 tested enterotoxigenic E. coli (ETEC) strains possess a complete clyA gene. The remaining STEC, EAEC, and ETEC strains and 9 of the 17 tested enteropathogenic E. coli (EPEC) strains were shown to harbor mutant clyA derivatives containing 1-bp frameshift mutations that cause premature termination of the coding sequence. The other eight EPEC strains and all tested uropathogenic and new-born meningitis-associated E. coli strains (n = 14 and 3, respectively) carried only nonfunctional clyA fragments due to the deletion of two sequences of 493 bp and 204 or 217 bp at the clyA locus. Expression of clyA from clinical E. coli isolates proved to be positively controlled by the transcriptional regulator SlyA. Several tested E. coli strains harboring a functional clyA gene produced basal amounts of ClyA when grown under standard laboratory conditions, but most of them showed a clyA-dependent hemolytic phenotype only when SlyA was overexpressed. The presented data indicate that cytolysin A can play a role only for some of the pathogenic E. coli strains.

  18. Lytic and lysogenic infection of diverse Escherichia coli and Shigella strains with a verocytotoxigenic bacteriophage.

    PubMed

    James, C E; Stanley, K N; Allison, H E; Flint, H J; Stewart, C S; Sharp, R J; Saunders, J R; McCarthy, A J

    2001-09-01

    A verocytotoxigenic bacteriophage isolated from a strain of enterohemorrhagic Escherichia coli O157, into which a kanamycin resistance gene (aph3) had been inserted to inactivate the verocytotoxin gene (vt2), was used to infect Enterobacteriaceae strains. A number of Shigella and E. coli strains were susceptible to lysogenic infection, and a smooth E. coli isolate (O107) was also susceptible to lytic infection. The lysogenized strains included different smooth E. coli serotypes of both human and animal origin, indicating that this bacteriophage has a substantial capacity to disseminate verocytotoxin genes. A novel indirect plaque assay utilizing an E. coli recA441 mutant in which phage-infected cells can enter only the lytic cycle, enabling detection of all infective phage, was developed.

  19. Molecular characterization of diarrheagenic Escherichia coli strains from stools samples and food products in Colombia.

    PubMed

    Rúgeles, Laura Cristina; Bai, Jing; Martínez, Aída Juliana; Vanegas, María Consuelo; Gómez-Duarte, Oscar Gilberto

    2010-04-15

    The prevalence of diarrheagenic Escherichia coli in childhood diarrhea and the role of contaminated food products in disease transmission in Colombia are largely unknown. The aim of this study is to identify E. coli pathotypes, including E. coli O157:H7, from 108 stool samples from children with acute diarrhea, 38 meat samples and 38 vegetable samples. Multiplex PCR and Bax Dupont systems were used for E. coli pathotype detection. Eighteen (9.8%) E. coli diarrheagenic pathotypes were detected among all clinical and food product samples tested. Four different pathotypes were identified from clinical samples, including enteroaggregative E. coli, enterotoxigenic E. coli, shiga-toxin producing E. coli, and enteropathogenic E. coli. Food product samples were positive for enteroaggregative and shiga-toxin producing E. coli, suggesting that meat and vegetables may be involved in transmission of these E. coli pathotypes in the community. Most E. coli strains identified belong to the phylogenetic groups A and B1, known to be associated with intestinal rather than extraintestinal E. coli clones. Our data is the first molecular E. coli report that confirms the presence of E. coli pathotypes circulating in Colombia among children with diarrhea and food products for human consumption. Implementation of multiplex PCR technology in Latin America and other countries with limited resources may provide an important epidemiological tool for the surveillance of E. coli pathotypes from clinical isolates as well as from water and food product samples.

  20. Metabolic Modeling of Common Escherichia coli Strains in Human Gut Microbiome

    PubMed Central

    Huang, Jingfei

    2014-01-01

    The recent high-throughput sequencing has enabled the composition of Escherichia coli strains in the human microbial community to be profiled en masse. However, there are two challenges to address: (1) exploring the genetic differences between E. coli strains in human gut and (2) dynamic responses of E. coli to diverse stress conditions. As a result, we investigated the E. coli strains in human gut microbiome using deep sequencing data and reconstructed genome-wide metabolic networks for the three most common E. coli strains, including E. coli HS, UTI89, and CFT073. The metabolic models show obvious strain-specific characteristics, both in network contents and in behaviors. We predicted optimal biomass production for three models on four different carbon sources (acetate, ethanol, glucose, and succinate) and found that these stress-associated genes were involved in host-microbial interactions and increased in human obesity. Besides, it shows that the growth rates are similar among the models, but the flux distributions are different, even in E. coli core reactions. The correlations between human diabetes-associated metabolic reactions in the E. coli models were also predicted. The study provides a systems perspective on E. coli strains in human gut microbiome and will be helpful in integrating diverse data sources in the following study. PMID:25126572

  1. Diarrheagenic Escherichia coli

    PubMed Central

    Nataro, James P.; Kaper, James B.

    1998-01-01

    Escherichia coli is the predominant nonpathogenic facultative flora of the human intestine. Some E. coli strains, however, have developed the ability to cause disease of the gastrointestinal, urinary, or central nervous system in even the most robust human hosts. Diarrheagenic strains of E. coli can be divided into at least six different categories with corresponding distinct pathogenic schemes. Taken together, these organisms probably represent the most common cause of pediatric diarrhea worldwide. Several distinct clinical syndromes accompany infection with diarrheagenic E. coli categories, including traveler’s diarrhea (enterotoxigenic E. coli), hemorrhagic colitis and hemolytic-uremic syndrome (enterohemorrhagic E. coli), persistent diarrhea (enteroaggregative E. coli), and watery diarrhea of infants (enteropathogenic E. coli). This review discusses the current level of understanding of the pathogenesis of the diarrheagenic E. coli strains and describes how their pathogenic schemes underlie the clinical manifestations, diagnostic approach, and epidemiologic investigation of these important pathogens. PMID:9457432

  2. Comparative sequence analysis of enteroaggregative Escherichia coli heat-stable enterotoxin 1 identified in Korean and Japanese Escherichia coli strains.

    PubMed

    Seo, Dong Joo; Choi, SunKeum; Jeon, Su Been; Jeong, Suntak; Park, Hyunkyung; Lee, Bog-Hieu; Kim, Geun-Bae; Yang, Soo-Jin; Nishikawa, Yoshikazu; Choi, Changsun

    2017-02-21

    The aim of this study was to compare the sequence of the astA gene found in 8 Korean and 11 Japanese Escherichia coli isolates. Conventional PCR was used to amplify the astA gene from the chromosomal and plasmid DNA preparation samples of each isolate using commercial DNA extraction kits. Cloning of the PCR products, sequence analysis, and pulse field gel electrophoresis (PFGE) were sequentially performed. An identical copy of astA in each isolate were found for 8 Korean and 8 Japanese E. coli strains isolated from bovine, porcine, and healthy human carriers. Among these, 1 Korean and 4 Japanese isolates carried a stop mutation at residue 16. Three Japanese outbreak strains (V199, V638, and 96-127-23) carried multiple clones of astA gene with multiple amino acids changes at residues 11, 16, 20, 23, 30, 33, and 34. Compared with the non-diarrheal isolates, clonal diversity and sequence variations of the astA gene in outbreak isolates may be associated with virulence potential of EAST1.

  3. Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Diedrich, Jonathan; Rehse, Steven J.; Palchaudhuri, Sunil

    2007-07-01

    A pathogenic strain of bacteria, Escherichia coli O157:H7 (enterohemorrhagic E. coli or EHEC), has been analyzed by laser-induced breakdown spectroscopy (LIBS) with nanosecond pulses and compared to three nonpathogenic E. coli strains: a laboratory strain of K-12 (AB), a derivative of the same strain termed HF4714, and an environmental strain, E. coli C (Nino C). A discriminant function analysis (DFA) was performed on the LIBS spectra obtained from live colonies of all four strains. Utilizing the emission intensity of 19 atomic and ionic transitions from trace inorganic elements, the DFA revealed significant differences between EHEC and the Nino C strain, suggesting the possibility of identifying and discriminating the pathogenic strain from commonly occurring environmental strains. EHEC strongly resembled the two K-12 strains, in particular, HF4714, making discrimination between these strains difficult. DFA was also used to analyze spectra from two of the nonpathogenic strains cultured in different media: on a trypticase soy (TS) agar plate and in a liquid TS broth. Strains cultured in different media were identified and effectively discriminated, being more similar than different strains cultured in identical media. All bacteria spectra were completely distinct from spectra obtained from the nutrient medium or ablation substrate alone. The ability to differentiate strains prepared and tested in different environments indicates that matrix effects and background contaminations do not necessarily preclude the use of LIBS to identify bacteria found in a variety of environments or grown under different conditions.

  4. Use of optical mapping to sort uropathogenic Escherichia coli strains into distinct subgroups

    PubMed Central

    Schwan, William R.; Briska, Adam; Stahl, Buffy; Wagner, Trevor K.; Zentz, Emily; Henkhaus, John; Lovrich, Steven D.; Agger, William A.; Callister, Steven M.; DuChateau, Brian; Dykes, Colin W.

    2010-01-01

    Optical maps were generated for 33 uropathogenic Escherichia coli (UPEC) isolates. For individual genomes, the NcoI restriction fragments aligned into a unique chromosome map for each individual isolate, which was then compared with the in silico restriction maps of all of the sequenced E. coli and Shigella strains. All of the UPEC isolates clustered separately from the Shigella strains as well as the laboratory and enterohaemorrhagic E. coli strains. Moreover, the individual strains appeared to cluster into distinct subgroups based on the dendrogram analyses. Phylogenetic grouping of these 33 strains showed that 32/33 were the B2 subgroup and 1/33 was subgroup A. To further characterize the similarities and differences among the 33 isolates, pathogenicity island (PAI), haemolysin and virulence gene comparisons were performed. A strong correlation was observed between individual subgroups and virulence factor genes as well as haemolysis activity. Furthermore, there was considerable conservation of sequenced-strain PAIs in the specific subgroups. Strains with different antibiotic-resistance patterns also appeared to sort into separate subgroups. Thus, the optical maps distinguished the UPEC strains from other E. coli strains and further subdivided the strains into distinct subgroups. This optical mapping procedure holds promise as an alternative way to subgroup all E. coli strains, including those involved in infections outside of the intestinal tract and epidemic strains with distinct patterns of antibiotic resistance. PMID:20378655

  5. Studying the features of 57 confirmed CRISPR loci in 29 strains of Escherichia coli.

    PubMed

    Rahmatabadi, Seyyed Soheil; Nezafat, Navid; Negahdaripour, Manica; Hajighahramani, Nasim; Morowvat, Mohammad Hossein; Ghasemi, Younes

    2016-06-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) system is a novel type of innate defense system in prokaryotes for destruction of exogenous elements. To gain further insight into behavior and organization of the system, the extensive analysis of the available sequenced genomes is necessary. The dynamic nature of CRISPR loci is possibly valuable for typing and relative analyses of strains and microbial population. There are a few orderly bioinformatics investigations about the structure of CRISPR sequences in the Escherichia coli strains. In this study, 57 CRISPR loci were selected from 32 Escherichia coli strains to investigate their structural characteristics and potential functions using bioinformatics tools. Our results showed that most strains contained several loci that mainly included conserved direct repeats, while the spacers were highly variable. Moreover, RNA analysis of the sequences indicated that all loci could form stable RNA secondary structures and showed homology mostly with phages compared to plasmids. Only three strains included cas genes around their loci.

  6. In Vitro Activities of Cephalosporins and Quinolones against Escherichia coli Strains Isolated from Diarrheic Dairy Calves

    PubMed Central

    Orden, José Antonio; Ruiz-Santa-Quiteria, José Antonio; García, Silvia; Cid, Dolores; de la Fuente, Ricardo

    1999-01-01

    The in vitro activities of several cephalosporins and quinolones against 195 strains of Escherichia coli isolated from dairy calves affected by neonatal diarrhea were determined. One hundred thirty-seven of these strains produced one or more potential virulence factors (F5, F41, F17, cytotoxic necrotizing factor, verotoxin, and the eae gene), but the remaining 58 strains did not produce any of these factors. From 11 to 18% of the E. coli strains were resistant to cephalothin, nalidixic acid, enoxacin, and enrofloxacin. However, cefuroxime, cefotaxime, and cefquinome were highly effective against the E. coli isolates tested. Some significant differences (P < 0.05) in resistance to quinolones between the strains producing potential virulence factors and nonfimbriated, nontoxigenic, eae-negative strains were found. Thus, eae-positive, necrotoxigenic, and verotoxigenic (except for nalidixic acid) E. coli strains were significantly more sensitive to nalidixic acid, enoxacin, and enrofloxacin than nonfimbriated, nontoxigenic, eae-negative strains. Moreover, eae-positive strains were significantly more sensitive to enoxacin and enrofloxacin than F5-positive strains. Thus, the results of this study suggest that the bovine E. coli strains that produce some potential virulence factors are more sensitive to quinolones than those that do not express these factors. PMID:10049259

  7. Draft Whole-Genome Sequences of 10 Enterotoxigenic Escherichia coli Serogroup O6 Strains

    PubMed Central

    Bopp, Cheryl A.

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in children under the age of 5 years and in adults living in developing countries, as well as in travelers to these countries. In this announcement, we release the draft whole-genome sequences of 10 ETEC serogroup O6 strains. PMID:26044422

  8. Pathogenic Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli, a member of the Enterobacteriaceae family, is a part of the normal flora of the intestinal tract of humans and a variety of animals. E. coli strains are classified on the basis of antigenic differences in two surface components (serotyping), the somatic antigen (O) of the lipopoly...

  9. Rapid biochemical test to identify verocytotoxin-positive strains of Escherichia coli serotype O157.

    PubMed Central

    Thompson, J S; Hodge, D S; Borczyk, A A

    1990-01-01

    Fluorogenic procedures were used with the substrate 4-methylumbelliferyl-beta-D-glucuronide (MUG) to identify Escherichia coli. Most strains produced beta-glucuronidase and, thus, were MUG positive. A 20-min procedure was developed to detect glucuronidase activity in 1,295 bacterial cultures, representing 23 genera, of strains that were isolated from clinical specimens. Very few organisms other than E. coli were MUG positive. Of 682 E. coli strains that were isolated, 630 (92.4%) were MUG positive. When an additional 188 E. coli serotype O157 isolates were examined, 155 E. coli O157:H7, 10 E. coli O157:H-, and 1 E. coli O157:H (rough) isolate were MUG negative. All 166 cultures were verocytotoxin positive. Of the remaining 22 E. coli O157 isolates, 2 isolates were O157:H-, 1 isolate was O157:H (rough), and 19 isolates were other H types (H6, H16, H19, H25, H42, and H45); these 22 isolates were MUG positive. All 22 cultures were verocytotoxin negative. The rapid MUG procedure can be used to predict verocytotoxin-positive isolates of E. coli O157; that is, there is a very good likelihood that MUG-negative E. coli O157 isolates are verocytotoxin positive. PMID:2229338

  10. O serogroups, biotypes, and eae genes in Escherichia coli strains isolated from diarrheic and healthy rabbits.

    PubMed Central

    Blanco, J E; Blanco, M; Blanco, J; Mora, A; Balaguer, L; Mouriño, M; Juarez, A; Jansen, W H

    1996-01-01

    A total of 305 Escherichia coli strains isolated from diarrheic and healthy rabbits in 10 industrial fattening farms from different areas of Spain were serotyped, biotyped, and tested for the presence of the eae gene and toxin production. The characteristics found in strains isolated from healthy rabbits were generally different from those observed in E. coli strains associated with disease. Thus, strains with the eae gene (74% versus 22%); strains belonging to serogroups O26, O49, O92, O103, and O128 (64% versus 12%); rhamnose-negative strains (51% versus 5%); and rhamnose-negative O103 strains with eae genes present (41% versus 1%) were significantly (P < 0.001 in all cases) more frequently detected in isolates from diarrheic animals than in those from healthy rabbits. Whereas a total of 35 serogroups and 17 biotypes were distinguished, the majority of the strains obtained from diarrheic rabbits belonged to only four serobiotypes, which in order of frequency were O103:B14 (72 strains), O103:B6 (16 strains), O26:B13 (12 strains), and O128:B30 (12 strains). These four serobiotypes accounted for 48% (112 of 231) and 5% (4 of 74) of the E. coli strains isolated from diarrheic and healthy rabbits, respectively. Only six strains were toxigenic (three CNF1+, two CNF2+, and one VT1+). We conclude that enteropathogenic E. coli strains that possess the eae gene are a common cause of diarrhea in Spanish rabbit farms and that the rhamnose-negative highly pathogenic strains of serotype O103:K-:H2 and biotype B14 are especially predominant. Detection of the eae gene is a useful method for the identification of enteropathogenic E. coli strains from rabbits. However, a combination of serogrouping and biotyping may be sufficient to accurately identify the highly pathogenic strains for rabbits. PMID:8940455

  11. Biochemical aspects of the resistance to nourseothricin (streptothricin) of Escherichia coli strains.

    PubMed

    Seltmann, G

    1989-01-01

    In most cases Escherichia coli strains phenotypically resistant against nourseothricin (streptothricin) harbour a plasmid which codes for an acetyltransferase. This enzyme transfers an acetyl group from acetyl-coenzyme A to an amino group of the beta-lysine (peptide) chain of the antibiotic, thus inactivating it. Additionally, the penetrability for nourseothricin of the cell wall is drastically reduced in a high percentage of the resistant strains. Both resistance mechanisms seem to be independent of each other.

  12. Isolation of atypical enteropathogenic and shiga toxin encoding Escherichia coli strains from poultry in Tehran, Iran

    PubMed Central

    Doregiraee, Fatemeh; Alebouyeh, Masoud; Nayeri Fasaei, Bahar; Charkhkar, Saeed; Tajedin, Elahe; Zali, Mohammad Reza

    2016-01-01

    Aim: The purpose of this study was to investigate the prevalence of enteropathogenic Escherichia coli (EPEC) and shiga toxin producing E. coli (STEC) strains in healthy broilers in Iran. Background: STEC and EPEC strains as diarrheagenic E. coli are among the most prevalent causative agents in acute diarrhea. Domestic animals, mainly cattle and sheep, have been implicated as the principal reservoirs of these pathotypes; however their prevalence among the broilers is varied among different countries. Patients and methods: A total of 500 cloacal swab samples from broilers of five different poultry houses (A-E) were collected to investigate the presence of stx1, stx2, hly, eae, and bfp virulence genes among the E. coli isolates by polymerase chain reaction. The shiga toxin encoding strains were evaluated serologically to detect their interaction with a commercial antiserum against O157 antigen. Results: Out of the 500 collected samples, 444 E. coli strains were isolated. Three strains (0.67%) presented at least one of the studied virulence genes (stx2, hly and eae), two strains were identified as STEC (stx2+, O157:nonH7) and one as an atypical EPEC strains (eae+ bfp-). Conclusion: The study established the presence of STEC and atypical EPEC in healthy broilers in Iran. Poultry might serve as vectors for transmission of pathogenic E. coli to human populations. PMID:26744615

  13. Isolation of Escherichia coli 0157:H7 Strain from Fecal Samples of Zoo Animal

    PubMed Central

    Mohammed Hamzah, Aseel; Mohammed Hussein, Aseel; Mahmoud Khalef, Jenan

    2013-01-01

    The isolation and characterization of Escherichia coli O157:H7 strains from 22 out of 174 fecal samples from petting zoo animals representing twenty-two different species (camel, lion, goats, zebra, bear, baboon monkey, Siberian monkey, deer, elk, llama, pony, horses, fox, kangaroo, wolf, porcupine, chickens, tiger, ostrich, hyena, dogs, and wildcats) were investigated. One petting Al-Zawraa zoological society of Baghdad was investigated for E. coli O157:H7 over a 16-month period that spanned two summer and two autumn seasons. Variation in the occurrence of E. coli O157:H7-positive petting zoo animals was observed, with animals being culture positive only in the summer months but not in the spring, autumn, or winter. E. coli O157:H7 isolates were distinguished by agglutination with E. coli O157:H7 latex reagent (Oxoid), identified among the isolates, which showed that multiple E. coli strains were isolated from one petting zoo animal, in which a single animal simultaneously shed multiple E. coli strains; E. coli O157:H7 was isolated only by selective enrichment culture of 2 g of petting zoo animal feces. In contrast, strains other than O157:H7 were cultured from feces of petting zoo animals without enrichment. PMID:24489514

  14. Pathogenic potential of Escherichia coli clinical strains from orthopedic implant infections towards human osteoblastic cells

    PubMed Central

    Crémet, Lise; Broquet, Alexis; Brulin, Bénédicte; Jacqueline, Cédric; Dauvergne, Sandie; Brion, Régis; Asehnoune, Karim; Corvec, Stéphane; Heymann, Dominique; Caroff, Nathalie

    2015-01-01

    Escherichia coli is one of the first causes of Gram-negative orthopedic implant infections (OII), but little is known about the pathogenicity of this species in such infections that are increasing due to the ageing of the population. We report how this pathogen interacts with human osteoblastic MG-63 cells in vitro, by comparing 20 OII E. coli strains to two Staphylococcus aureus and two Pseudomonas aeruginosa strains. LDH release assay revealed that 6/20 (30%) OII E. coli induced MG-63 cell lysis whereas none of the four control strains was cytotoxic after 4 h of coculture. This high cytotoxicity was associated with hemolytic properties and linked to hlyA gene expression. We further showed by gentamicin protection assay and confocal microscopy that the non-cytotoxic E. coli were not able to invade MG-63 cells unlike S. aureus strains (internalization rate <0.01% for the non-cytotoxic E. coli versus 8.88 ± 2.31% and 4.60 ± 0.42% for both S. aureus). The non-cytotoxic E. coli also demonstrated low adherence rates (<7%), the most adherent E. coli eliciting higher IL-6 and TNF-α mRNA expression in the osteoblastic cells. Either highly cytotoxic or slightly invasive OII E. coli do not show the same infection strategies as S. aureus towards osteoblasts. PMID:26333570

  15. Escherichia coli strains from pregnant women and neonates: intraspecies genetic distribution and prevalence of virulence factors.

    PubMed

    Watt, Stéphane; Lanotte, Philippe; Mereghetti, Laurent; Moulin-Schouleur, Maryvonne; Picard, Bertrand; Quentin, Roland

    2003-05-01

    To determine the extent to which the vagina, endocervix, and amniotic fluid screen the Escherichia coli strains responsible for neonatal infections, we studied the genetic relationships among 105 E. coli strains isolated from all of the ecosystems involved in this infectious process. Twenty-four strains were isolated from the intestinal flora, and 25 strains were isolated from the vaginas of pregnant women. Twenty-seven strains were isolated from the amniotic fluid, blood, and cerebrospinal fluid (CSF) of infected neonates. The intraspecies genetic characteristics of all of the isolates were determined by random amplified polymorphic DNA (RAPD) analysis, PCR ECOR (E. coli reference) grouping, and PCR virulence genotyping. A correlation was found between the intraspecies distributions of the strains in the A, B1, B2, and D ECOR groups and in the two major RAPD groups (I and II). Nevertheless, the distribution of the E. coli strains in the RAPD groups according to their anatomical origins was more significant than their distribution in the ECOR groups. This may be explained by the existence of an E. coli subpopulation, defined by the RAPD I group, within the ECOR B2 group. This RAPD I group presents a major risk for neonates: 75% of the strains isolated from patients with meningitis and 100% of the strains isolated from patients with bacteremia were in this group. The vagina and the amniotic fluid are two barriers that favor colonization by highly infectious strains. Indeed, only 17% of fecal strains belonged to the RAPD I group, whereas 52% of vaginal strains and 67% of amniotic fluid strains belonged to this subpopulation. The ibeA and iucC genes were significantly associated with CSF strains, whereas the hly and sfa/foc genes were more frequent in blood strains. These findings could serve as a basis for developing tools to recognize vaginal strains, which present a high risk for neonates, for use in prophylaxis programs.

  16. Risk factors for fecal colonization with multiple distinct strains of Escherichia coli among long-term care facility residents.

    PubMed

    Lautenbach, Ebbing; Tolomeo, Pam; Black, Nicole; Maslow, Joel N

    2009-05-01

    Of 49 long-term care facility residents, 21 (43%) were colonized with 2 or more distinct strains of Escherichia coli. There were no significant risk factors for colonization with multiple strains of E. coli. These results suggest that future efforts to efficiently identify the diversity of colonizing strains will be challenging.

  17. Efficient recovery of fluoroquinolone-susceptible and fluoroquinolone-resistant Escherichia coli strains from frozen samples.

    PubMed

    Lautenbach, Ebbing; Santana, Evelyn; Lee, Abby; Tolomeo, Pam; Black, Nicole; Babson, Andrew; Perencevich, Eli N; Harris, Anthony D; Smith, Catherine A; Maslow, Joel

    2008-04-01

    We assessed the rate of recovery of fluoroquinolone-resistant and fluoroquinolone-susceptible Escherichia coli isolates from culture of frozen perirectal swab samples compared with the results for culture of the same specimen before freezing. Recovery rates for these 2 classes of E. coli were 91% and 83%, respectively. The majority of distinct strains recovered from the initial sample were also recovered from the frozen sample. The strains that were not recovered were typically present only in low numbers in the initial sample. These findings emphasize the utility of frozen surveillance samples.

  18. Rapid Multiplex Creation of Escherichia coli Strains Capable of Interfering with Phage Infection Through CRISPR.

    PubMed

    Strotksaya, Alexandra; Semenova, Ekaterina; Savitskaya, Ekaterina; Severinov, Konstantin

    2015-01-01

    In Escherichia coli, acquisition of new spacers in the course of CRISPR-Cas adaptation is dramatically stimulated by preexisting partial matches between a bacterial CRISPR cassette spacer and a protospacer sequence in the DNA of the infecting bacteriophage or plasmid. This phenomenon, which we refer to as "priming," can be used for very simple and rapid construction of multiple E. coli strains capable of targeting, through CRISPR interference, any phage or plasmid of interest. Availability of such strains should allow rapid progress in the analysis of CRISPR-Cas system function against diverse mobile genetic elements.

  19. High turnover rate of Escherichia coli strains in the intestinal flora of infants in Pakistan.

    PubMed Central

    Adlerberth, I.; Jalil, F.; Carlsson, B.; Mellander, L.; Hanson, L. A.; Larsson, P.; Khalil, K.; Wold, A. E.

    1998-01-01

    The Escherichia coli flora of infants in developed countries is dominated by one or a few strains which persist for prolonged periods of time, but no longitudinal studies have been performed in developing countries. To this end, we studied the rectal enterobacterial flora in 22 home-delivered Pakistani infants during their first 6 months of life. Three colonies were isolated and species typed on each of 11 sampling occasions. E. coli isolates were strain typed using electromorphic typing of cytoplasmic enzymes, and their O serogroups were determined. There was a very rapid turnover of enterobacterial strains in the rectal flora of individual infants. On average, 8.5 different E. coli strains were found per infant, and several biotypes of other enterobacteria. Less than 50% of the infants were colonized with E. coli from their mothers, but strains of maternal origin were four times more likely to persists in the infants' flora than other E. coli strains. Enterobacteria other than E. coli were always of non-maternal origin, and Enterobacter cloacae and Klebsiella pneumoniae biotypes recovered from contaminated feeds were later identified in the infants' rectal flora. An early colonization with klebsiella or enterobacter was significantly associated with diarrhoea during the neonatal period, although these bacteria were not likely to be the cause of the disease. The results suggest that poor hygienic conditions result in an unstable and diverse enterobacterial flora, which may influence infant health. PMID:10030708

  20. Fermentation of raffinose by lactose-fermenting strains of Yersinia enterocolitica and by sucrose-fermenting strains of Escherichia coli.

    PubMed Central

    Cornelis, G; Luke, R K; Richmond, M H

    1978-01-01

    Introduction of plasmids carrying the lacY gene (lactose permease gene) into Yersinia enterocolitica results in cells being able to ferment both lactose and raffinose. Transfer of such plasmids into Escherichia coli C600 (lacY) confers ability to ferment lactose but not raffinose. Derivatives of C600 that ferment both lactose and sucrose (Lac+ Scr+ strains) are able to ferment raffinose, but do not grow well on raffinose minimal medium. Fermentation of raffinose by Lac+ strains of Y. enterocolitica, and by Lac+ Scr+ strains of E. coli, is explained in terms of transport of raffinose via the lac permease and subsequent breakdown catalyzed by invertase. PMID:344338

  1. EcoR phylogenetic analysis and virulence genotyping of avian pathogenic Escherichia coli strains and Escherichia coli isolates from commercial chicken carcasses in southern Brazil.

    PubMed

    Kobayashi, Renata K T; Aquino, Ivani; Ferreira, Ana Lívia da S; Vidotto, Marilda C

    2011-05-01

    Escherichia coli strains designated as avian pathogenic E. coli (APEC) are responsible for avian colibacillosis, an acute and largely systemic disease that promotes significant economic losses in poultry industry worldwide because of mortality increase, medication costs, and condemnation of carcasses. APEC is a subgroup of extraintestinal pathogenic E. coli pathotype, which includes uropathogenic E. coli, neonatal meningitis E. coli, and septicemic E. coli. We isolated E. coli from commercial chicken carcasses in a Brazilian community and compared by polymerase chain reaction-defined phylogenetic group (A, B1, B2, or D) with APEC strains isolated from sick chickens from different poultry farms. A substantial number of strains assigned to phylogenetic E. coli reference collection group B2, which is known to harbor potent extraintestinal human and animal E. coli pathogens, were identified as APEC (26.0%) in both commercial chicken carcasses and retail poultry meat (retail poultry E. coli [RPEC]) (21.25%). The majority of RPEC were classified as group A (35%), whereas the majority of APEC were groups B1 (30.8) and A (27.6%). APEC and RPEC presented the genes pentaplex, iutA, hly, iron, ompT, and iss, but with different virulence profiles. The similarity between APEC and RPEC indicates RPEC as potentially pathogenic strains and supports a possible zoonotic risk for humans.

  2. Escherichia coli strains colonising the gastrointestinal tract protect germfree mice against Salmonella typhimurium infection

    PubMed Central

    Hudault, S; Guignot, J; Servin, A

    2001-01-01

    BACKGROUND—Escherichia coli is part of the normal gastrointestinal microflora which exerts a barrier effect against enteropathogens. Several E coli strains develop a protective effect against other Enterobacteriaceae.
AIMS—Two E coli strains, EM0, a human faecal strain, and JM105 K-12 were tested for their ability to prevent in vivo and in vitro infection by Salmonella typhimurium C5.
METHODS—Inhibition of C5 cell invasion by E coli was investigated in vitro using Caco-2/TC7 cells. The protective effect of E coli was examined in vivo in germfree or conventional C3H/He/Oujco mice orally infected by the lethal strain C5.
RESULTS—EMO expresses haemolysin and cytotoxic necrotising factor in vitro. In vitro, the two strains did not prevent the growth of C5 by secreted microcins or modified cell invasion of C5. In vivo, establishment of EM0 or JM105 in the gut of germfree mice resulted in a significant increase in the number of surviving mice: 11/12 and 9/12, respectively, at 58 days after infection (2×106/mouse) versus 0/12 in control germfree group at 13 days after infection. Colonisation level and translocation rate of C5 were significantly reduced during the three days after infection. In contrast, no reduction in faecal C5 excretion was observed in C5 infected conventional mice (1×108/mouse) receiving the EM0 or JM105 cultures daily.
CONCLUSIONS—Establishment of E coli strains, which do not display antimicrobial activity, protects germfree mice against infection and delays the establishment of C5 in the gut. Possible mechanisms of defence are discussed.


Keywords: Escherichia coli; gastrointestinal infection; Salmonella; germfree mice; bacterial antagonism PMID:11413110

  3. Comparative Genomics and Characterization of Hybrid Shigatoxigenic and Enterotoxigenic Escherichia coli (STEC/ETEC) Strains

    PubMed Central

    Nyholm, Outi; Halkilahti, Jani; Wiklund, Gudrun; Okeke, Uche; Paulin, Lars; Auvinen, Petri; Haukka, Kaisa; Siitonen, Anja

    2015-01-01

    Background Shigatoxigenic Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) cause serious foodborne infections in humans. These two pathogroups are defined based on the pathogroup-associated virulence genes: stx encoding Shiga toxin (Stx) for STEC and elt encoding heat-labile and/or est encoding heat-stable enterotoxin (ST) for ETEC. The study investigated the genomics of STEC/ETEC hybrid strains to determine their phylogenetic position among E. coli and to define the virulence genes they harbor. Methods The whole genomes of three STEC/ETEC strains possessing both stx and est genes were sequenced using PacBio RS sequencer. Two of the strains were isolated from the patients, one with hemolytic uremic syndrome, and one with diarrhea. The third strain was of bovine origin. Core genome analysis of the shared chromosomal genes and comparison with E. coli and Shigella spp. reference genomes was performed to determine the phylogenetic position of the STEC/ETEC strains. In addition, a set of virulence genes and ETEC colonization factors were extracted from the genomes. The production of Stx and ST were studied. Results The human STEC/ETEC strains clustered with strains representing ETEC, STEC, enteroaggregative E. coli, and commensal and laboratory-adapted E. coli. However, the bovine STEC/ETEC strain formed a remote cluster with two STECs of bovine origin. All three STEC/ETEC strains harbored several other virulence genes, apart from stx and est, and lacked ETEC colonization factors. Two STEC/ETEC strains produced both toxins and one strain Stx only. Conclusions This study shows that pathogroup-associated virulence genes of different E. coli can co-exist in strains originating from different phylogenetic lineages. The possibility of virulence genes to be associated with several E. coli pathogroups should be taken into account in strain typing and in epidemiological surveillance. Development of novel hybrid E. coli strains may cause a new public health risk, which

  4. [An avian strain of Escherichia coli with antigens common to the genus Salmonella].

    PubMed

    Terzolo, H R; Zoratti de Verona, A; d'Empaire, M; Furowicz, A J

    1977-01-01

    On a commercial poultry farm, a large percentage (9%) of clinically healthy fowls had positive reaction to the plate test, with commercial polyvalent pullorum antigens. We could not isolate Salmonella from the positive birds. An strain, of Escherichia coli Balcarce (E. coli B) was isolated from the feces of one of the birds. The isolate was identified biochemically and the antigenic study showed correlation with E. coli 044 and the somatic fraction 1, 2, 8, 14 and 23 of the Salmonella genus. The common antigens were studied by agglutination, absorption and crossed immunodiffusion tests, comparing the isolated strain and the different Salmonella serotypes. Four pullorum polyvalent commercial antigens reacted with sera containing somatic agglutinins 1, and with the E. coli B antiserum. These observations confirm the high antigenic correlation between the genus of the Enterobacteriaceae family. It is indicated that for the diagnosis of avian salmonelosis rather than using a single serological tests, the isolation and identification of the etiological agent is required.

  5. Virulence and antimicrobial resistance profiles among Escherichia coli strains isolated from human and animal wastewater.

    PubMed

    Sabaté, Montserrat; Prats, Guillem; Moreno, Eva; Ballesté, Elisenda; Blanch, Anicet R; Andreu, Antonia

    2008-05-01

    To gain insight into whether Escherichia coli isolated from humans and resistant to some common antimicrobial agents are derived from animals, 85 E. coli strains were selected by ERIC-PCR from human and animal wastewater samples. Phylogroup, pathogenicity islands (PAIs), resistance to quinolones, fluoroquinolones and presence of extended-spectrum beta-lactamases (ESBLs) were analyzed. Among the total, 55% were resistant to nalidixic acid and 38% to ciprofloxacin; 12% produced ESBLs. Chicken-derived strains were associated with quinolone and fluoroquinolone resistance and presence of ESBLs, while human strains were associated with susceptibility. Group B2 E. coli strains were associated with human origin, susceptibility to fluoroquinolones and presence of PAIs, whereas groups A, B1 and D showed a low virulence profile and a high level of antimicrobial resistance. In both human and animal wastewater, E. coli A, B1 and D were prevalent, and strains from both origins showed a similar virulence profile in each phylogroup. These findings led us to hypothesize that abusive antibiotic use in food animal production may promote the development of resistance among these intestinal E. coli phylogroups, which could later be transmitted to humans through the food supply. The low prevalence of E. coli group B2 in the animal gut may explain, at least in part, the absence of emergence of resistant B2 isolates.

  6. Strains of Escherichia coli O157:H8 from human diarrhoea belong to attaching and effacing class of E coli.

    PubMed Central

    Scotland, S M; Willshaw, G A; Cheasty, T; Rowe, B

    1992-01-01

    AIMS: To determine whether 17 Escherichia coli O157:H8 strains isolated from patients with diarrhoea in the United Kingdom were putative pathogens. METHODS: The strains had been isolated by the use of O157 antiserum, available for the detection of Vero cytotoxin (VT) producing strains of E coli O157 that are usually of flagellar (H) type 7, but may also be non-motile. The strains were examined for VT production, for their ability to adhere to HEp-2 cells, and for hybridisation with several DNA probes that recognise pathogenic properties of E coli. Their ability to ferment sorbitol and to produce beta-glucuronidase was also investigated, as these tests are used to discriminate VT positive O157 strains. RESULTS: The O157:H8 strains did not produce VT. All gave localised attachment to HEp-2 cells, associated with a positive fluorescence-actin staining test, and all hybridised with the E coli attaching and effacing (eae) probe. In addition to the difference in VT production, O157:H8 strains could be distinguished from VT positive O157 strains by their beta-glucuronidase activity, their failure to produce enterohaemolysin, and their lack of hybridisation with the CVD419 probe derived from a plasmid in an O157:H7 strain. CONCLUSIONS: The 0157:H8 strains had in vitro properties characteristic of the class of E coli that causes attaching and effacing lesions in epithelial intestinal cells. They may therefore be considered a putative cause of diarrhoea but their prevalence remains to be established. Several O157:H8 strains failed to ferment sorbitol in agar plates and therefore could be misidentified as VT positive O157 strains. Confirmatory tests for VT production are needed when O157 strains are isolated from faeces. PMID:1479033

  7. Antimicrobial activity of selected synbiotics targeted for the elderly against pathogenic Escherichia coli strains.

    PubMed

    Likotrafiti, E; Tuohy, K M; Gibson, G R; Rastall, R A

    2016-01-01

    The aim of the present study was to evaluate the antimicrobial activity of two synbiotic combinations, Lactobacillus fermentum with short-chain fructooligosaccharides (FOS-LF) and Bifidobacterium longum with isomaltooligosaccharides (IMO-BL), against enterohaemorrhagic Escherichia coli O157:H7 and enteropathogenic E. coli O86. Antimicrobial activity was determined (1) by co-culturing the synbiotics and pathogens in batch cultures, and (2) with the three-stage continuous culture system (gut model), inoculated with faecal slurry from an elderly donor. In the co-culture experiments, IMO-BL was significantly inhibitory to both E. coli strains, while FOS-LF was slightly inhibitory or not inhibitory. Factors other than acid production appeared to play a role in the inhibition. In the gut models, both synbiotics effectively inhibited E. coli O157 in the first vessel, but not in vessels 2 and 3. E. coli O86 was not significantly inhibited.

  8. Strain-Level Discrimination of Shiga Toxin-Producing Escherichia coli in Spinach Using Metagenomic Sequencing

    PubMed Central

    Leonard, Susan R.; Mammel, Mark K.; Lacher, David W.; Elkins, Christopher A.

    2016-01-01

    Consumption of fresh bagged spinach contaminated with Shiga toxin-producing Escherichia coli (STEC) has led to severe illness and death; however current culture-based methods to detect foodborne STEC are time consuming. Since not all STEC strains are considered pathogenic to humans, it is crucial to incorporate virulence characterization of STEC in the detection method. In this study, we assess the comprehensiveness of utilizing a shotgun metagenomics approach for detection and strain-level identification by spiking spinach with a variety of genomically disparate STEC strains at a low contamination level of 0.1 CFU/g. Molecular serotyping, virulence gene characterization, microbial community analysis, and E. coli core gene single nucleotide polymorphism (SNP) analysis were performed on metagenomic sequence data from enriched samples. It was determined from bacterial community analysis that E. coli, which was classified at the phylogroup level, was a major component of the population in most samples. However, in over half the samples, molecular serotyping revealed the presence of indigenous E. coli which also contributed to the percent abundance of E. coli. Despite the presence of additional E. coli strains, the serotype and virulence genes of the spiked STEC, including correct Shiga toxin subtype, were detected in 94% of the samples with a total number of reads per sample averaging 2.4 million. Variation in STEC abundance and/or detection was observed in replicate spiked samples, indicating an effect from the indigenous microbiota during enrichment. SNP analysis of the metagenomic data correctly placed the spiked STEC in a phylogeny of related strains in cases where the indigenous E. coli did not predominate in the enriched sample. Also, for these samples, our analysis demonstrates that strain-level phylogenetic resolution is possible using shotgun metagenomic data for determining the genomic relatedness of a contaminating STEC strain to other closely related E

  9. Expression of cytotoxicity by potential pathogens in the standard Escherichia coli collection of reference (ECOR) strains.

    PubMed

    Lai, X H; Wang, S Y; Uhlin, B E

    1999-11-01

    The standard Escherichia coli collection of reference (ECOR) strains was examined for ability to exert cytotoxicity towards mammalian cells. A group of strains with functional haemolysin expression caused strong cytotoxicity and detachment in J774 macrophage cells as measured by lactate dehydrogenase release and as observed under a microscope. The expression of haemolysin was monitored by using antisera recognizing the E. coli alpha-haemolysin, the HlyA protein, and by quantitative haemolysis assays. The presence of the hlyA gene, which may be part of a pathogenicity island, was also confirmed. These analyses revealed that different ECOR strains express quantitatively different levels of haemolysin. One putative enteroaggregative E. coli (EAEC) strain was also found in the ECOR collection. The EAEC strain was characterized by the clump formation assay, PCR amplification of the EAEC DNA probe sequence and confirmative sequence analysis of the amplified fragment. The EAEC heat-stable enterotoxin 1 gene, astA, was found in 14% (10/72) of the ECOR strains and a consensus sequence for astA was proposed by comparing these sequences with those from pathogens. The astA gene appeared to be plasmid-located. Based on evidence from the work of other laboratories and from the present findings, it is concluded that the ECOR collection contains strains that may represent pathogenic E. coli. It is noted that caution is necessary when handling or disposing of those potentially pathogenic ECOR strains.

  10. Molecular screening of pathogenic Escherichia coli strains isolated from dairy neonatal calves in Cordoba province, Argentina.

    PubMed

    Picco, Natalia Y; Alustiza, Fabrisio E; Bellingeri, Romina V; Grosso, María C; Motta, Carlos E; Larriestra, Alejandro J; Vissio, Claudina; Tiranti, Karina I; Terzolo, Horacio R; Moreira, Ana R; Vivas, Adriana B

    2015-01-01

    The aim of this study was to perform a current molecular characterization of bovine pathogenic Escherichia coli strains isolated from random samplings in Argentinean dairy farms. Rectal swabs were obtained from 395 (63.7%) healthy and 225 (36.3%) diarrheic calves, belonging to 45 dairy farms in Cordoba Province, Argentina. E. coli isolates were examined for virulence genes (f5, f41, f17, sta, stb, lt, eae, vt) using PCR and the prevalence of E. coli virulence profiles was spatially described in terms of spatial distribution. A total of 30.1% isolates were found to be positive for at least one of the virulence genes. Depending on the different gene combinations present, 11 virulence profiles were found. Most of the isolates analyzed had a single gene, and no combination of fimbrial and enterotoxin gene was predominant. There was no association between the frequency and distribution of E. coli virulence genes and calf health status. Most of the virulence profiles were compatible with ETEC strains and showed a homogeneous distribution over the sampled area. A clustering pattern for E. coli virulence profiles could not be recognized. This work provides updated information on the molecular characterization of pathogenic E. coli strains from dairy herds in Cordoba, Argentina. These findings would be important to formulate prevention programs and effective therapies for diarrhea in calves caused by E. coli.

  11. Prevalence of avian-pathogenic Escherichia coli strain O1 genomic islands among extraintestinal and commensal E. coli isolates.

    PubMed

    Johnson, Timothy J; Wannemuehler, Yvonne; Kariyawasam, Subhashinie; Johnson, James R; Logue, Catherine M; Nolan, Lisa K

    2012-06-01

    Escherichia coli strains that cause disease outside the intestine are known as extraintestinal pathogenic E. coli (ExPEC) and include pathogens of humans and animals. Previously, the genome of avian-pathogenic E. coli (APEC) O1:K1:H7 strain O1, from ST95, was sequenced and compared to those of several other E. coli strains, identifying 43 genomic islands. Here, the genomic islands of APEC O1 were compared to those of other sequenced E. coli strains, and the distribution of 81 genes belonging to 12 APEC O1 genomic islands among 828 human and avian ExPEC and commensal E. coli isolates was determined. Multiple islands were highly prevalent among isolates belonging to the O1 and O18 serogroups within phylogenetic group B2, which are implicated in human neonatal meningitis. Because of the extensive genomic similarities between APEC O1 and other human ExPEC strains belonging to the ST95 phylogenetic lineage, its ability to cause disease in a rat model of sepsis and meningitis was assessed. Unlike other ST95 lineage strains, APEC O1 was unable to cause bacteremia or meningitis in the neonatal rat model and was significantly less virulent than uropathogenic E. coli (UPEC) CFT073 in a mouse sepsis model, despite carrying multiple neonatal meningitis E. coli (NMEC) virulence factors and belonging to the ST95 phylogenetic lineage. These results suggest that host adaptation or genome modifications have occurred either in APEC O1 or in highly virulent ExPEC isolates, resulting in differences in pathogenicity. Overall, the genomic islands examined provide targets for further discrimination of the different ExPEC subpathotypes, serogroups, phylogenetic types, and sequence types.

  12. Rapid and simple determination of ciprofloxacin resistance in clinical strains of Escherichia coli.

    PubMed

    Santiso, Rebeca; Tamayo, María; Fernández, José Luis; del Carmen Fernández, María; Molina, Francisca; Villanueva, Rosa; Gosálvez, Jaime; Bou, Germán

    2009-08-01

    We recently reported a simple new in situ diffusion assay, developed as a kit, to visualize DNA fragmentation in single bacterial cells. Use of this assay in a collection of 95 genetically unrelated Escherichia coli clinical strains resulted in correct identification of all of the isolates as resistant or susceptible to ciprofloxacin, consistent with the MIC results. This relevant information is obtained in 80 min.

  13. Whole-Genome Sequence of Escherichia coli Serotype O157:H7 Strain PA20

    PubMed Central

    Paoli, George C.; Zhang, Xinmin; Dudley, Edward G.; Figler, Hillary M.; Cottrell, Bryan J.; Andreozzi, Elisa

    2017-01-01

    ABSTRACT Escherichia coli serotype O157:H7 strain PA20 is a Pennsylvania Department of Health clinical isolate. It has been used to study biofilm formation in O157:H7 clinical isolates, where the high incidence of prophage insertions in the mlrA transcription factor disrupts traditional csgD biofilm regulation. Here, we report the complete PA20 genome sequence. PMID:28082498

  14. Whole-genome sequence of Escherichia coli serotype O157:H7 strain EDL932 (ATCC 43894)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli serotype O157:H7 EDL 933 is a ground beef isolate associated with a 1983 hemorrhagic colitis outbreak. Considered the prototype O157:H7 strain, its derived genome sequence is a standard reference strain for comparative genomic studies of Shiga toxin-producing E. coli (STEC). Here we...

  15. Whole-Genome Sequence of Escherichia coli Serotype O157:H7 Strain EDL932 (ATCC 43894)

    PubMed Central

    Paoli, George C.; Chen, Chin-Yi; Cottrell, Bryan J.; Zhang, Xinmin; Yan, Xianghe

    2016-01-01

    The genome sequence of Escherichia coli serotype O157:H7 EDL933, a ground beef isolate from a 1983 hemorrhagic colitis outbreak, is a standard reference for comparative genomic studies of Shiga toxin-producing E. coli strains. Here, we report the genome sequence of a patient stool isolate from that outbreak, strain EDL932. PMID:27417834

  16. Phenotypic characterization of ipaH+ Escherichia coli strains associated with yolk sac infection.

    PubMed

    Rosario, C C; Puente, J L; Verdugo-Rodríguez, A; Anderson, R C; Eslava, C C

    2005-09-01

    Seventy-six Escherichia coli serotypes possessing the ipaH gene typical of enteroinvasive E. coli (EIEC) strains were characterized. Biochemical identification of our strains shows positive reactions for lactose fermentation (100% of strains), lysine decarboxylase (98.7% of strains) and motility (67.1% of strains), properties that do not correspond with those described to the EIEC group. The serotypes agree with an initial classification. In this, some common O antigens identified among ipaH+ strains were O2 (n=20), OR (n=11) and non-determined O? (n=10). The O2:NM serotype was the most common. Sixty-six percent (n=50) of the ipaH+ E. coli strains were colicin producers, of them, 26 (34%) produced Col V and other colicins, 13 (17%) produced colicins other than Col V, and 11 (14.5%) produced Col V only. Trimethoprim/Sulfa (72%), ampicillin (64.5%), enrofloxacin (55.3%), and ciprofloxacin (47.4%) were the major antimicrobial resistance frequencies observed. Twenty-five different multiresistance patterns were observed, where sixty-six strains (86.8%) were included. A MIC test showed that most of the strains were sensitive to low gentamicin and kanamycin concentrations, whereas most of the strains were resistant to tetracycline. An invasiveness assay showed that the predominant alterations caused to HEp-2 cells were changes in shape and staining, and in most of the specimens, a partial monolayer detachment was also seen. Fifteen strains invaded more than 30% of the monolayer cells, causing the formation of intercellular bridges or filipoidal-like protrusions. The results suggest the existence of specific clone complexes derived from EIEC strains adapted to the avian host. To our knowledge, this is the first study that demonstrates the presence of extraintestinal invasive E. coli (ExIEC) strains.

  17. Natural Escherichia coli strains undergo cell-to-cell plasmid transformation.

    PubMed

    Matsumoto, Akiko; Sekoguchi, Ayuka; Imai, Junko; Kondo, Kumiko; Shibata, Yuka; Maeda, Sumio

    2016-12-02

    Horizontal gene transfer is a strong tool that allows bacteria to adapt to various environments. Although three conventional mechanisms of horizontal gene transfer (transformation, transduction, and conjugation) are well known, new variations of these mechanisms have also been observed. We recently reported that DNase-sensitive cell-to-cell transfer of nonconjugative plasmids occurs between laboratory strains of Escherichia coli in co-culture. We termed this phenomenon "cell-to-cell transformation." In this report, we found that several combinations of Escherichia coli collection of reference (ECOR) strains, which were co-cultured in liquid media, resulted in DNase-sensitive cell-to-cell transfer of antibiotic resistance genes. Plasmid isolation of these new transformants demonstrated cell-to-cell plasmid transfer between the ECOR strains. Natural transformation experiments, using a combination of purified plasmid DNA and the same ECOR strains, revealed that cell-to-cell transformation occurs much more frequently than natural transformation under the same culture conditions. Thus, cell-to-cell transformation is both unique and effective. In conclusion, this study is the first to demonstrate cell-to-cell plasmid transformation in natural E. coli strains.

  18. Characterization of a Shiga-Like Toxin Converting Phage Isolated from an Escherichia coli Strain Responsible for Hemorrhagic Colitis in Humans

    DTIC Science & Technology

    1985-01-01

    Specific Airs 12 METHODS AND MATERIALS 14 Bacterial Strains 14 Culture Media and Diluents 15 Ultraviolet Light Bacteriophage Induction 15 Plaque...coli 026 strain H-19 were carried on a bacteriophage . Escherichia coli 026 strain H-19 does not produce heat-labile or heat-stable enterotoxin and is...strain that had become toxinogenic after coculti- vation with Escherichia coli 026 strain H-19. Attempts to isolate the bacteriophage from Escherichia

  19. Diarrheagenic Escherichia coli.

    PubMed

    Gomes, Tânia A T; Elias, Waldir P; Scaletsky, Isabel C A; Guth, Beatriz E C; Rodrigues, Juliana F; Piazza, Roxane M F; Ferreira, Luís C S; Martinez, Marina B

    2016-12-01

    Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.

  20. Survival of Escherichia coli strains in Mediterranean brackish water in the Bizerte lagoon in northern Tunisia.

    PubMed

    Boukef, I; El Bour, M; Al Gallas, N; El Bahri, O; Mejri, S; Mraouna, R; Ben Aissa, R; Boudabous, A; Got, P; Troussellier, M

    2010-11-01

    This study investigated survival and virulence of Escherichia coli strains exposed to natural conditions in brackish water. Two E. coli strains (O126:B16 and O55:B5) were incubated in water microcosms in the Bizerte lagoon in northern Tunisia and exposed for 12 days to natural sunlight in June (231 to 386 W/m2, 26 +/- 1 degrees C, 30 g/L) and in April (227 to 330 W/m2, 17 +/- 1 degrees C, 27 g/L) or maintained in darkness for 21 days (17 +/- 1 degrees C, 27 g/L). The results revealed that sunlight was the most significant inactivating factor (decrease of 3 Ulog within 48 hours for the two strains) compared to salinity and temperature (in darkness). Survival time of the strains was prolonged as they were maintained in darkness. Local strain (E. coli O55:B5) showed better survival capacity (T90 = 52 hours) than E. coli O126:B16 (T90 = 11 h). For both, modifications were noted only for some metabolic activities of carbohydrates hydrolysis. Cytotoxicity of the two strains, tested on Vero cell, was maintained during the period of survival.

  1. Experimental infection of gnotobiotic piglets with Escherichia coli strains positive for EAST1 and AIDA.

    PubMed

    Zajacova, Zuzana Sramkova; Faldyna, Martin; Kulich, Pavel; Kummer, Vladimir; Maskova, Jarmila; Alexa, Pavel

    2013-03-15

    The virulence factors EAST1 and AIDA are often detected in ETEC/VTEC strains isolated from pigs and their role in diarrhoeal infections is discussed. In order to elucidate the pathogenesis of AIDA, the colonisation patterns of F4 positive and AIDA positive strains were investigated. Two wild-type Escherichia coli strains AIDA/EAST1 and F4/EAST1 isolated from diarrhoeal piglets were used for animal experiment to evaluate the ability of the EAST1 toxin to be involved in induction of diarrhoea. Gnotobiotic piglets were supplemented with normal porcine serum and orally inoculated with the strains. Faecal bacterial shedding of the challenge strains was observed during the experiment. Light microscopy and scanning electron microscopy were used to detect the colonisation pattern of both challenge strains. Although bacterial isolation demonstrated shedding of the challenge strains until the end of the experiment, diarrhoea did not develop in any piglet. Based on histological examination, piglets were more heavily colonised in the case of infection with E. coli O149/F4/EAST1 strain. Scanning electron microscopy showed bacterial cells of F4/EAST1 E. coli adhering to enterocytes, in contrast to AIDA/EAST1 which were poorly present on the intestinal surface. The EAST1 toxin alone was not able to induce diarrhoea in animals. Therefore our results demonstrate that the function/role of EAST1 and AIDA in colibacillosis of pigs remains to be elucidated.

  2. Virulence genes, antibiotic resistance and integrons in Escherichia coli strains isolated from synanthropic birds from Spain.

    PubMed

    Sacristán, C; Esperón, F; Herrera-León, S; Iglesias, I; Neves, E; Nogal, V; Muñoz, M J; de la Torre, A

    2014-01-01

    The aim of this study was to determine the presence of virulence genes and antibiotic resistance profiles in 164 Escherichia coli strains isolated from birds (feral pigeons, hybrid ducks, house sparrows and spotless starlings) inhabiting urban and rural environments. A total of eight atypical enteropathogenic E. coli strains were identified: one in a house sparrow, four in feral pigeons and three in spotless starlings. Antibiotic resistance was present in 32.9% (54) of E. coli strains. The dominant type of resistance was to tetracycline (21.3%), ampicillin (19.5%) and sulfamethoxazole (18.9%). Five isolates had class 1 integrons containing gene cassettes encoding for dihydrofolate reductase A (dfrA) and aminoglycoside adenyltransferase A (aadA), one in a feral pigeon and four in spotless starlings. To our knowledge, the present study constitutes the first detection of virulence genes from E. coli in spotless starlings and house sparrows, and is also the first identification worldwide of integrons containing antibiotic resistance gene cassettes in E. coli strains from spotless starlings and pigeons.

  3. Mechanistic platform knowledge of concomitant sugar uptake in Escherichia coli BL21(DE3) strains

    PubMed Central

    Wurm, David J.; Hausjell, Johanna; Ulonska, Sophia; Herwig, Christoph; Spadiut, Oliver

    2017-01-01

    When producing recombinant proteins, the use of Escherichia coli strain BL21(DE3) in combination with the T7-based pET-expression system is often the method of choice. In a recent study we introduced a mechanistic model describing the correlation of the specific glucose uptake rate (qs,glu) and the corresponding maximum specific lactose uptake rate (qs,lac,max) for a pET-based E. coli BL21(DE3) strain producing a single chain variable fragment (scFv). We showed the effect of qs,lac,max on productivity and product location underlining its importance for recombinant protein production. In the present study we investigated the mechanistic qs,glu/qs,lac,max correlation for four pET-based E. coli BL21(DE3) strains producing different recombinant products and thereby proved the mechanistic model to be platform knowledge for E. coli BL21(DE3). However, we found that the model parameters strongly depended on the recombinant product. Driven by this observation we tested different dynamic bioprocess strategies to allow a faster investigation of this mechanistic correlation. In fact, we succeeded and propose an experimental strategy comprising only one batch cultivation, one fed-batch cultivation as well as one dynamic experiment, to reliably determine the mechanistic model for qs,glu/qs,lac,max and get trustworthy model parameters for pET-based E. coli BL21(DE3) strains which are the basis for bioprocess development. PMID:28332595

  4. Cytolethal distending toxin-producing Escherichia coli strains causing severe diarrhoea in young Mexican children

    PubMed Central

    Maldonado-Puga, Samantha; Huerta-Cantillo, Jazmin; Chavez-Dueñas, Lucia; Navarro-Garcia, Fernando

    2017-01-01

    Introduction. Cytolethal distending toxins (CDTs), encoded by cdt genes, have DNase activity leading to cellular and nuclear distension, resulting in irreversible cell cycle arrest and apoptosis of target cells. cdt-positive Escherichia coli strains have been isolated from children with diarrhoea. There is, however, scant information on the prevalence and clinical presentation of diarrhoeal disease caused by these strains. Furthermore, toxin production of cdt-positive strains is rarely confirmed. We report five young children with diarrhoea caused by CDT-producing E. coli in whom stools were negative for other bacterial or enteric pathogens. Case presentation. On admission to hospital, all children presented watery diarrhoea with high stool output (range 7–20 stools/24 h); five had fever of 38 °C or more and four presented vomiting. Dehydration was present in four patients, one of whom had hypovolaemic shock; one child also presented hyponatraemia and hypokalaemia. In two children, cdt-positive strains were classified as typical and atypical enteropathogenic E. coli, and the remaining three harboured cdt-positive strains that did not belong to any diarrhoeagenic pathogroup. One cdt-positive strain from each case was characterized by a CDT cytotoxic assay and a cdt type-specific PCR. All strains produced the characteristic cellular intoxication due to CDT. Two strains carried the cdt-I, one cdt-III, one cdt-IV, and one concurrently had cdt-I, cdt-II and cdt-III genes. Conclusion. Our results suggest that CDT-producing E. coli strains are an infrequent, albeit significant, cause of severe diarrhoeal illness in children. Future research should measure the true burden of cdt-positive E. coli diarrhoea among children. PMID:28348804

  5. Natural and experimental infection with an attaching and effacing strain of Escherichia coli in calves.

    PubMed Central

    Moxley, R A; Francis, D H

    1986-01-01

    Gnotobiotic calves were inoculated with an O5:K4:H-, urease-positive strain of Escherichia coli isolated from a 2-day-old calf with diarrhea. The calves developed elevated temperatures and passed loose mucoid feces, with or without blood. The E. coli strain was negative for heat-stable and heat-labile enterotoxins but produced high levels of Shiga-like toxin. Bacteria attached diffusely to the epithelium of the large intestine and multifocally to the epithelium of the ileum. The duodenum and jejunum were not affected. At the sites of bacterial attachment, microvilli were effaced, enterocytes were degenerate, and necrosis and exfoliation had occurred. These results confirm a previous report from England that calves may naturally contract infections similar to those caused by enteropathogenic E. coli strains pathogenic to humans or rabbits. This suggests that the calf bacterial strains, like some enteropathogenic E. coli strains, produce high levels of Shiga-like toxin and cause attachment and effacement lesions in the colonic epithelium of the infected host. Images PMID:3525410

  6. (13)C-metabolic flux analysis for mevalonate-producing strain of Escherichia coli.

    PubMed

    Wada, Keisuke; Toya, Yoshihiro; Banno, Satomi; Yoshikawa, Katsunori; Matsuda, Fumio; Shimizu, Hiroshi

    2017-02-01

    Mevalonate (MVA) is used to produce various useful products such as drugs, cosmetics and food additives. An MVA-producing strain of Escherichia coli (engineered) was constructed by introducing mvaES genes from Enterococcus faecalis. The engineered strain produced 1.84 mmol/gDCW/h yielding 22% (C-mol/C-mol) of MVA from glucose in the aerobic exponential growth phase. The mass balance analysis revealed that the MVA yield of the engineered strain was close to the upper limit at the biomass yield. Since MVA is synthesized from acetyl-CoA using NADPH as a cofactor, the production of MVA affects central metabolism in terms of carbon utilization and NADPH requirements. The reason for this highly efficient MVA production was investigated based on (13)C-metabolic flux analysis. The estimated flux distributions revealed that the fluxes of acetate formation and the TCA cycle in the engineered strain were lower than those in the control strain. Although the oxidative pentose phosphate pathway is considered as the NADPH generating pathway in E. coli, no difference of the flux was observed between the control and engineered strains. The production/consumption balance of NADPH suggested that additional requirement of NADPH for MVA synthesis was obtained from the transhydrogenase reaction in the engineered strain. Comparison between the measured flux distribution and the ideal values for MVA production proposes a strategy for further engineering to improve the MVA production in E. coli.

  7. A simple and effective method for construction of Escherichia coli strains proficient for genome engineering.

    PubMed

    Ryu, Young Shin; Biswas, Rajesh Kumar; Shin, Kwangsu; Parisutham, Vinuselvi; Kim, Suk Min; Lee, Sung Kuk

    2014-01-01

    Multiplex genome engineering is a standalone recombineering tool for large-scale programming and accelerated evolution of cells. However, this advanced genome engineering technique has been limited to use in selected bacterial strains. We developed a simple and effective strain-independent method for effective genome engineering in Escherichia coli. The method involves introducing a suicide plasmid carrying the λ Red recombination system into the mutS gene. The suicide plasmid can be excised from the chromosome via selection in the absence of antibiotics, thus allowing transient inactivation of the mismatch repair system during genome engineering. In addition, we developed another suicide plasmid that enables integration of large DNA fragments into the lacZ genomic locus. These features enable this system to be applied in the exploitation of the benefits of genome engineering in synthetic biology, as well as the metabolic engineering of different strains of E. coli.

  8. Aerobic fermentation of D-glucose by an evolved cytochrome oxidase-deficient Escherichia coli strain.

    PubMed

    Portnoy, Vasiliy A; Herrgård, Markus J; Palsson, Bernhard Ø

    2008-12-01

    Fermentation of glucose to D-lactic acid under aerobic growth conditions by an evolved Escherichia coli mutant deficient in three terminal oxidases is reported in this work. Cytochrome oxidases (cydAB, cyoABCD, and cbdAB) were removed from the E. coli K12 MG1655 genome, resulting in the ECOM3 (E. coli cytochrome oxidase mutant) strain. Removal of cytochrome oxidases reduced the oxygen uptake rate of the knockout strain by nearly 85%. Moreover, the knockout strain was initially incapable of growing on M9 minimal medium. After the ECOM3 strain was subjected to adaptive evolution on glucose M9 medium for 60 days, a growth rate equivalent to that of anaerobic wild-type E. coli was achieved. Our findings demonstrate that three independently adaptively evolved ECOM3 populations acquired different phenotypes: one produced lactate as a sole fermentation product, while the other two strains exhibited a mixed-acid fermentation under oxic growth conditions with lactate remaining as the major product. The homofermenting strain showed a D-lactate yield of 0.8 g/g from glucose. Gene expression and in silico model-based analyses were employed to identify perturbed pathways and explain phenotypic behavior. Significant upregulation of ygiN and sodAB explains the remaining oxygen uptake that was observed in evolved ECOM3 strains. E. coli strains produced in this study showed the ability to produce lactate as a fermentation product from glucose and to undergo mixed-acid fermentation during aerobic growth.

  9. Virulence factors of lactose-negative Escherichia coli strains isolated from children with diarrhea in Somalia.

    PubMed Central

    Nicoletti, M; Superti, F; Conti, C; Calconi, A; Zagaglia, C

    1988-01-01

    Lactose-negative Escherichia coli strains were isolated at high frequency from children with diarrhea in Somalia during a 2-year study on diarrheal diseases. Sixty-four of these strains, considered to be a representative sample, were characterized for virulence factors, plasmid profiles, and antibiotic resistance. Of these strains, 5 were recognized as enteroinvasive E. coli (they were serotyped as O135:K-:H-), 6 belonged to classical enteropathogenic E. coli serotypes, 9 were able to adhere to tissue culture cells (of these, 4 showed a pattern of localized adherence and 1 was an enteropathogenic strain), 18 were both adherent and hemolytic, and 8 were simply hemolytic. None hybridized with 32P-labeled heat-labile or heat-stable (a and b) enterotoxin gene probes or produced moderate or high-level cytotoxic effects on HeLa cells. Of the 64 strains examined, 24 produced mannose-resistant hemagglutination with human, chicken, and monkey erythrocytes. One of these was serotyped as O4:K-:H8, and a rabbit O antiserum raised against this strain allowed us to establish that 23 strains had the same O antigen. The 23 O4 strains were hemolytic and were not enterotoxic for rabbit ileal loops, and intact bacteria were able to destroy tissue culture cell monolayers very rapidly. The uniformity of the antibiotic resistance pattern and of the plasmid DNA content, together with the fact that they were isolated in different years and in different children, suggests that the O4 strains must be epidemiologically relevant in Somalia. A possible diarrheagenic role for the adherent-hemolytic E. coli strains is also discussed. Images PMID:3281977

  10. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin

    PubMed Central

    2011-01-01

    Background The xanthophyll astaxanthin is a high-value compound with applications in the nutraceutical, cosmetic, food, and animal feed industries. Besides chemical synthesis and extraction from naturally producing organisms like Haematococcus pluvialis, heterologous biosynthesis in non-carotenogenic microorganisms like Escherichia coli, is a promising alternative for sustainable production of natural astaxanthin. Recent achievements in the metabolic engineering of E. coli strains have led to a significant increase in the productivity of carotenoids like lycopene or β-carotene by increasing the metabolic flux towards the isoprenoid precursors. For the heterologous biosynthesis of astaxanthin in E. coli, however, the conversion of β-carotene to astaxanthin is obviously the most critical step towards an efficient biosynthesis of astaxanthin. Results Here we report the construction of the first plasmid-free E. coli strain that produces astaxanthin as the sole carotenoid compound with a yield of 1.4 mg/g cdw (E. coli BW-ASTA). This engineered E. coli strain harbors xanthophyll biosynthetic genes from Pantoea ananatis and Nostoc punctiforme as individual expression cassettes on the chromosome and is based on a β-carotene-producing strain (E. coli BW-CARO) recently developed in our lab. E. coli BW-CARO has an enhanced biosynthesis of the isoprenoid precursor isopentenyl diphosphate (IPP) and produces β-carotene in a concentration of 6.2 mg/g cdw. The expression of crtEBIY along with the β-carotene-ketolase gene crtW148 (NpF4798) and the β-carotene-hydroxylase gene (crtZ) under controlled expression conditions in E. coli BW-ASTA directed the pathway exclusively towards the desired product astaxanthin (1.4 mg/g cdw). Conclusions By using the λ-Red recombineering technique, genes encoding for the astaxanthin biosynthesis pathway were stably integrated into the chromosome of E. coli. The expression levels of chromosomal integrated recombinant biosynthetic genes were

  11. The majority of enteroaggregative Escherichia coli strains produce the E. coli common pilus when adhering to cultured epithelial cells.

    PubMed

    Avelino, Fabiola; Saldaña, Zeus; Islam, Sohidul; Monteiro-Neto, Valerio; Dall'Agnol, Monique; Eslava, Carlos A; Girón, Jorge A

    2010-11-01

    Enteroaggregative Escherichia coli (EAEC) have emerged as a significant worldwide cause of chronic diarrhea in the pediatric population and in HIV patients. The vast majority of EAEC strains do not produce the aggregative adherence fimbriae I-III (AAFs) so far reported and thus, what adherence factors are present in these strains remains unknown. Here, we investigated the prevalence of the chromosomal E. coli common pilus (ECP) genes and ECP production amongst 130 EAEC strains of diverse origin as well as the role of ECP in EAEC adherence. Through multiplex PCR analysis we found that 96% of EAEC strains contained the ecpA structural pilin gene whereas only 3.1% and 5.4% were positive for AAF fimbrial genes aggA or aafA, respectively. Among the ecpA(+) strains, 63% produced ECP when adhering to cultured epithelial cells. An ecpA mutant derived from prototypic strain 042 (AAF/II(+)) was not altered in adherence suggesting that the AAF/II, and not ECP, plays a major role in this strain. In contrast, strain 278-1 (AAF(-)) deleted of the ecpA gene was significantly reduced in adherence to cultured epithelial cells. In all, these data indicate a potential role of ECP in adherence for EAEC strains lacking the known AAFs and that in association with other adhesive determinants, ECP may contribute to their survival and persistence within the host and in the environment.

  12. Adhesion of enterotoxigenic Escherichia coli strains to neoglycans synthesised with prebiotic galactooligosaccharides.

    PubMed

    Sarabia-Sainz, Hector Manuel; Armenta-Ruiz, Carolina; Sarabia-Sainz, Jose Andre-i; Guzmán-Partida, Ana María; Ledesma-Osuna, Ana Irene; Vázquez-Moreno, Luz; Ramos-Clamont Montfort, Gabriela

    2013-12-01

    Enterotoxigenic (ETEC) Escherichia coli (E. coli) causes traveller's diarrhoea and high mortality among baby animals. ETEC adhesion is mediated by lectins (adhesins) that bind to glycoconjugates on the surface of host cells. Glycans that compete for adhesion could be used for disease prevention. Neoglycans of porcine albumin (PSA) that were conjugated with prebiotic galactooligosaccharides (GOS) were synthesised using the Maillard reaction. PSA glycation was confirmed by a reduction in the number of available free amino groups, decreased tryptophan intrinsic fluorescence, increased molecular mass and Ricinus communis lectin recognition. The adhesion of four ETEC strains (E. coli H10407, CFA(+), K99 and K88) to PSA-GOS was examined by an enzyme-linked lectin assay. E. coli K88 bound to PSA-GOS with greater affinity (P<0.05) than did E. coli H10407, CFA(+) and K99. In addition, PSA-GOS partially inhibited the adherence of the K88 strain to intestinal mucins. Pig ETEC strain was unable to ferment galactooligosaccharide-neoglycans. These results suggest that neoglycans obtained by the Maillard reaction may serve in the prophylaxis of ETEC K88 diarrhoea.

  13. Characterization of Escherichia coli O157:H7 strains isolated from supershedding cattle.

    PubMed

    Arthur, Terrance M; Ahmed, Rafiq; Chase-Topping, Margo; Kalchayanand, Norasak; Schmidt, John W; Bono, James L

    2013-07-01

    Previous reports have indicated that a small proportion of cattle shedding high levels of Escherichia coli O157:H7 is the main source for transmission of this organism between animals. Cattle achieving a fecal shedding status of 10(4) CFU of E. coli O157:H7/gram or greater are now referred to as supershedders. The aim of this study was to investigate the contribution of E. coli O157:H7 strain type to supershedding and to determine if supershedding was restricted to a specific set of E. coli O157:H7 strains. Fecal swabs (n = 5,086) were collected from cattle at feedlots or during harvest. Supershedders constituted 2.0% of the bovine population tested. Supershedder isolates were characterized by pulsed-field gel electrophoresis (PFGE), phage typing, lineage-specific polymorphism assay (LSPA), Stx-associated bacteriophage insertion (SBI) site determination, and variant analysis of Shiga toxin, tir, and antiterminator Q genes. Isolates representing 52 unique PFGE patterns, 19 phage types, and 12 SBI clusters were obtained from supershedding cattle, indicating that there is no clustering to E. coli O157:H7 genotypes responsible for supershedding. While being isolated directly from cattle, this strain set tended to have higher frequencies of traits associated with human clinical isolates than previously collected bovine isolates with respect to lineage and tir allele, but not for SBI cluster and Q type. We conclude that no exclusive genotype was identified that was common to all supershedder isolates.

  14. Evidence of Naturalized Stress-Tolerant Strains of Escherichia coli in Municipal Wastewater Treatment Plants

    PubMed Central

    Zhi, Shuai; Banting, Graham; Li, Qiaozhi; Edge, Thomas A.; Topp, Edward; Sokurenko, Mykola; Scott, Candis; Braithwaite, Shannon; Ruecker, Norma J.; Yasui, Yutaka; McAllister, Tim; Chui, Linda

    2016-01-01

    ABSTRACT Escherichia coli has been proposed to have two habitats—the intestines of mammals/birds and the nonhost environment. Our goal was to assess whether certain strains of E. coli have evolved toward adaptation and survival in wastewater. Raw sewage samples from different treatment plants were subjected to chlorine stress, and ∼59% of the surviving E. coli strains were found to contain a genetic insertion element (IS30) located within the uspC-flhDC intergenic region. The positional location of the IS30 element was not observed across a library of 845 E. coli isolates collected from various animal hosts or within GenBank or whole-genome reference databases for human and animal E. coli isolates (n = 1,177). Phylogenetics clustered the IS30 element-containing wastewater E. coli isolates into a distinct clade, and biomarker analysis revealed that these wastewater isolates contained a single nucleotide polymorphism (SNP) biomarker pattern that was specific for wastewater. These isolates belonged to phylogroup A, possessed generalized stress response (RpoS) activity, and carried the locus of heat resistance, features likely relevant to nonhost environmental survival. Isolates were screened for 28 virulence genes but carried only the fimH marker. Our data suggest that wastewater contains a naturalized resident population of E. coli. We developed an endpoint PCR targeting the IS30 element within the uspC-flhDC intergenic region, and all raw sewage samples (n = 21) were positive for this marker. Conversely, the prevalence of this marker in E. coli-positive surface and groundwater samples was low (≤5%). This simple PCR assay may represent a convenient microbial source-tracking tool for identification of water samples affected by municipal wastewater. IMPORTANCE The results of this study demonstrate that some strains of E. coli appear to have evolved to become naturalized populations in the wastewater environment and possess a number of stress-related genetic

  15. Biosynthesis of trans-4-hydroxyproline by recombinant strains of Corynebacterium glutamicum and Escherichia coli

    PubMed Central

    2014-01-01

    Background Trans-4-hydroxy-L-proline (trans-Hyp), one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals. Although there are some natural biosynthetic pathways of trans-Hyp existing in microorganisms, the yield is still too low to be scaled up for industrial applications. Until now the production of trans-Hyp is mainly from the acid hydrolysis of collagen. Due to the increasing environmental concerns on those severe chemical processes and complicated downstream separation, it is essential to explore some environment-friendly processes such as constructing new recombinant strains to develop efficient process for trans-Hyp production. Result In this study, the genes of trans-proline 4-hydroxylase (trans-P4H) from diverse resources were cloned and expressed in Corynebacterium glutamicum and Escherichia coli, respectively. The trans-Hyp production by these recombinant strains was investigated. The results showed that all the genes from different resources had been expressed actively. Both the recombinant C. glutamicum and E. coli strains could produce trans-Hyp in the absence of proline and 2-oxoglutarate. Conclusions The whole cell microbial systems for trans-Hyp production have been successfully constructed by introducing trans-P4H into C. glutamicum and E. coli. Although the highest yield was obtained in recombinant E. coli, using recombinant C. glutamicum strains to produce trans-Hyp was a new attempt. PMID:24885047

  16. A longitudinal study of Escherichia coli strains isolated from captive mammals, birds, and reptiles in Trinidad.

    PubMed

    Gopee, N V; Adesiyun, A A; Caesar, K

    2000-09-01

    A longitudinal study was conducted of the prevalence and characteristics of Escherichia coli in mammals, birds, and reptiles housed at the Emperor Valley Zoo, Trinidad. During a 6-mo study period, swabs were obtained from fecal samples that were randomly collected from the enclosures of animals from these three taxonomic groups every 3 wk. With snakes, both cloacal and fecal swabs were obtained. Fecal and cloacal swabs were cultured for E. coli on eosin methylene blue agar. The production of mucoid colonies and hemolytic colonies and non-sorbitol fermenter status were identified. The occurrence of O157 strains was determined amongst E. coli isolates that were non-sorbitol fermenters, and the disc diffusion method was used to determine the antibiograms of isolates. The frequency of E. coli isolation was significantly higher in mammals compared with birds and reptiles. Overall, the frequencies of isolation of E. coli from omnivores. herbivores, and carnivores, 87.2%, 70.0%, and 57.3%, respectively, regardless of animal class, were significantly different. Most (99.6%) of the E. coli isolates tested for antibiotic sensitivity exhibited resistance to one or more of the eight antimicrobial agents used. The possession of phenotypic virulence markers by the E. coli isolates studied and the generally high resistance to antimicrobial agents may have health implications for the zoological collection.

  17. Rapid identification of enterovirulent Escherichia coli strains using polymerase chain reaction from shrimp farms.

    PubMed

    Roy, Debashis; Biswas, Bhabananda; Islam, H M Rakibul; Ahmed, Md Shamim; Rasheduzzaman, Md; Sarower, Md Golam

    2013-11-01

    Although, Escherichia coli is widely distributed in the environment, only a small percentage is pathogenic to humans. The most commonly encountered are those belonging to the Enterotoxigenic (ETEC), Enteroinvasive (EIEC), Enterohaemorrhagic (EHEC) and Enteropathogenic (EPEC) subtypes. Aquaculture premises specially shrimp farm in tropical and subtropical countries largely susceptive to different types of E. coli strains. With the PCR system, an attempt was taken to identify the virulent E. coli in a rapid basis from water, sediment and live shrimp from different shrimp farms established in the shrimp production areas of southwest part of Bangladesh. The target genes chosen for this investigation included the PhoA, a housekeeping gene in all E. coli and thereafter the virulent genes LT1, LT1 and ST1 of ETEC, the VT of EHEC and EAE of EPEC, which were amplified with the primers designed for their specific genes. The restriction enzyme conformation and the gel electrophoresis bands showed the presence of E. coli, among which ETEC and EPEC groups were present in the environmental and biological samples of shrimp farms, brings up into the human health concern. The sanitation conditions amid farm were also investigated to find the link of pathogenic E. coli, which came into the result of less infection if the farm maintains improved sanitation. This study has clearly urged the exigency of periodical quick check of virulent E. coli with the versatile PCR system from brood management to post-harvest handling of shrimp.

  18. Diffusely adherent Escherichia coli strains isolated from children and adults constitute two different populations

    PubMed Central

    2013-01-01

    Background Diffusely adherent Escherichia coli (DAEC) have been considered a diarrheagenic category of E. coli for which several potential virulence factors have been described in the last few years. Despite this, epidemiological studies involving DAEC have shown inconsistent results. In this work, two different collections of DAEC possessing Afa/Dr genes, from children and adults, were studied regarding characteristics potentially associated to virulence. Results DAEC strains were recovered in similar frequencies from diarrheic and asymptomatic children, and more frequently from adults with diarrhea (P < 0.01) than from asymptomatic adults. Association with diarrhea (P < 0.05) was found for SAT-positive strains recovered from children and for curli-positive strains recovered from adults. Mixed biofilms involving DAEC and a Citrobacter freundii strain have shown an improved ability to form biofilms in relation to the monocultures. Control strains have shown a greater diversity of Afa/Dr adhesins and higher frequencies of cellulose, TTSS, biofilm formation and induction of IL-8 secretion than strains from cases of diarrhea in children. Conclusions DAEC strains possessing Afa/Dr genes isolated from children and adults represent two different bacterial populations. DAEC strains carrying genes associated to virulence can be found as part of the normal microbiota present in asymptomatic children. PMID:23374248

  19. Development of glycerol-utilizing Escherichia coli strain for the production of bioethanol.

    PubMed

    Thapa, Laxmi Prasad; Lee, Sang Jun; Yoo, Hah Young; Choi, Han Suk; Park, Chulhwan; Kim, Seung Wook

    2013-08-15

    The production of bioethanol was studied using recombinant Escherichia coli with glycerol as a carbon source. Glycerol is an attractive feedstock for biofuels production since it is generated as a major byproduct in biodiesel industry; therefore, we investigated the conversion of glycerol to bioethanol using E. coli BL21 (DE3) which harbors several genes in ethanol production pathway of Enterobacter aerogenes KCTC 2190. Fermentation was carried out at 34°C for 42h, pH 7.6, using defined production medium. Under optimal conditions, bioethanol production by the recombinant E. coli BL21 (DE3), strain pEB, was two-fold (3.01g/L) greater than that (1.45g/L) by the wild-type counterpart. The results obtained in this study will provide valuable guidelines for engineering bioethanol producers.

  20. Enhancement of xylose utilization from corn stover by a recombinant Escherichia coli strain for ethanol production.

    PubMed

    Saha, Badal C; Qureshi, Nasib; Kennedy, Gregory J; Cotta, Michael A

    2015-08-01

    Effects of substrate-selective inoculum prepared by growing on glucose, xylose, arabinose, GXA (glucose, xylose, arabinose, 1:1:1) and corn stover hydrolyzate (dilute acid pretreated and enzymatically hydrolyzed, CSH) on ethanol production from CSH by a mixed sugar utilizing recombinant Escherichia coli (strain FBR5) were investigated. The initial ethanol productivity was faster for the seed grown on xylose followed by GXA, CSH, glucose and arabinose. Arabinose grown seed took the longest time to complete the fermentation. Delayed saccharifying enzyme addition in simultaneous saccharification and fermentation of dilute acid pretreated CS by the recombinant E. coli strain FBR5 allowed the fermentation to finish in a shorter time than adding the enzyme simultaneously with xylose grown inoculum. Use of substrate selective inoculum and fermenting pentose sugars first under glucose limited condition helped to alleviate the catabolite repression of the recombinant bacterium on ethanol production from lignocellulosic hydrolyzate.

  1. Growth and productivity impacts of periplasmic nuclease expression in an Escherichia coli Fab' fragment production strain.

    PubMed

    Nesbeth, Darren N; Perez-Pardo, Miguel-Angel; Ali, Shaukat; Ward, John; Keshavarz-Moore, Eli

    2012-02-01

    Host cell engineering is becoming a realistic option in whole bioprocess strategies to maximize product manufacturability. High molecular weight (MW) genomic DNA currently hinders bioprocessing of Escherichia coli by causing viscosity in homogenate feedstocks. We previously showed that co-expressing Staphylococcal nuclease and human Fab' fragment in the periplasm of E. coli enables auto-hydrolysis of genomic DNA upon cell disruption, with a consequent reduction in feedstock viscosity and improvement in clarification performance. Here we report the impact of periplasmic nuclease expression on stability of DNA and Fab' fragment in homogenates, host-strain growth kinetics, cell integrity at harvest and Fab' fragment productivity. Nuclease and Fab' plasmids were shown to exert comparable levels of growth burden on the host W3110 E. coli strain. Nuclease co-expression did not compromise either the growth performance or volumetric yield of the production strain. 0.5 g/L Fab' fragment (75 L scale) and 0.7 g/L (20 L scale) was achieved for both unmodified and cell-engineered production strains. Unexpectedly, nuclease-modified cells achieved maximum Fab' levels 8-10 h earlier than the original, unmodified production strain. Scale-down studies of homogenates showed that nuclease-mediated hydrolysis of high MW DNA progressed to completion within minutes of homogenization, even when homogenates were chilled on ice, with no loss of Fab' product and no need for additional co-factors or buffering.

  2. Posttranslationally caused bioluminescence burst of the Escherichia coli luciferase reporter strain.

    PubMed

    Ideguchi, Yamato; Oshikoshi, Yuta; Ryo, Masashi; Motoki, Shogo; Kuwano, Takashi; Tezuka, Takafumi; Aoki, Setsuyuki

    2016-01-01

    We continuously monitored bioluminescence from a wild-type reporter strain of Escherichia coli (lacp::luc+/WT), which carries the promoter of the lac operon (lacp) fused with the firefly luciferase gene (luc+). This strain showed a bioluminescence burst when shifted into the stationary growth phase. Bioluminescence profiles of other wild-type reporter strains (rpsPp::luc+ and argAp::luc+) and gene-deletion reporter strains (lacp::luc+/crp- and lacp::luc+/lacI-) indicate that transcriptional regulation is not responsible for generation of the burst. Consistently, changes in the luciferase protein levels did not recapitulate the profile of the burst. On the other hand, dissolved oxygen levels increased over the period across the burst, suggesting that the burst is, at least partially, caused by an increase in intracellular oxygen levels. We discuss limits of the firefly luciferase when used as a reporter for gene expression and its potential utility for monitoring metabolic changes in cells.

  3. Virulence from vesicles: Novel mechanisms of host cell injury by Escherichia coli O104:H4 outbreak strain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The highly virulent Escherichia coli O104:H4 that caused the large 2011 outbreak of diarrhoea and haemolytic uraemic syndrome secretes blended virulence factors of enterohaemorrhagic and enteroaggregative E. coli, but their secretion pathways are unknown. We demonstrate that the outbreak strain rele...

  4. Molecular Profiling of Shiga Toxin-Producing Escherichia coli and Enteropathogenic E. coli Strains Isolated from French Coastal Environments

    PubMed Central

    Balière, C.; Rincé, A.; Delannoy, S.; Fach, P.

    2016-01-01

    ABSTRACT Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) strains may be responsible for food-borne infections in humans. Twenty-eight STEC and 75 EPEC strains previously isolated from French shellfish-harvesting areas and their watersheds and belonging to 68 distinguishable serotypes were characterized in this study. High-throughput real-time PCR was used to search for the presence of 75 E. coli virulence-associated gene targets, and genes encoding Shiga toxin (stx) and intimin (eae) were subtyped using PCR tests and DNA sequencing, respectively. The results showed a high level of diversity between strains, with 17 unique virulence gene profiles for STEC and 56 for EPEC. Seven STEC and 15 EPEC strains were found to display a large number or a particular combination of genetic markers of virulence and the presence of stx and/or eae variants, suggesting their potential pathogenicity for humans. Among these, an O26:H11 stx1a eae-β1 strain was associated with a large number of virulence-associated genes (n = 47), including genes carried on the locus of enterocyte effacement (LEE) or other pathogenicity islands, such as OI-122, OI-71, OI-43/48, OI-50, OI-57, and the high-pathogenicity island (HPI). One O91:H21 STEC strain containing 4 stx variants (stx1a, stx2a, stx2c, and stx2d) was found to possess genes associated with pathogenicity islands OI-122, OI-43/48, and OI-15. Among EPEC strains harboring a large number of virulence genes (n, 34 to 50), eight belonged to serotype O26:H11, O103:H2, O103:H25, O145:H28, O157:H7, or O153:H2. IMPORTANCE The species E. coli includes a wide variety of strains, some of which may be responsible for severe infections. This study, a molecular risk assessment study of E. coli strains isolated from the coastal environment, was conducted to evaluate the potential risk for shellfish consumers. This report describes the characterization of virulence gene profiles and stx/eae polymorphisms of E. coli

  5. Cross-protection between controlled acid-adaptation and thermal inactivation for 48 Escherichia coli strains.

    PubMed

    Haberbeck, Leticia Ungaretti; Wang, Xiang; Michiels, Chris; Devlieghere, Frank; Uyttendaele, Mieke; Geeraerd, Annemie H

    2017-01-16

    Given the importance of pH reduction and thermal treatment in food processing and food preservation strategies, the cross-protection between acid adaptation and subsequent thermal inactivation for 48 Escherichia coli strains was investigated. Those strains were selected among 188 E. coli strains according to their odds of growth under low pH conditions as determined by Haberbeck et al. (2015) [Haberbeck, L.U., Oliveira, R.C., Vivijs, B., Wenseleers, T., Aertsen, A., Michiels, C., Geeraerd, A.H., 2015. Variability in growth/no growth boundaries of 188 different Escherichia coli strains reveals that approximately 75% have a higher growth probability under low pH conditions than E. coli O157:H7 strain ATCC 43888. Food Microbiol. 45, 222-230]. E. coli cells were acid and nonacid-adapted during overnight growth in controlled acidic pH (5.5) and neutral pH (7.0), respectively, in buffered Lysogenic Broth (LB). Then, they were heat inactivated at 58°C in non-buffered LB adjusted to pH6.2 and 7.0. Thus, four conditions were tested in total by combining the different pH values during growth/thermal inactivation: 5.5/6.2, 5.5/7.0, 7.0/6.2 and 7.0/7.0. Acid adaptation in buffered LB at pH5.5 increased the heat resistance of E. coli strains in comparison with nonacid-adaptation at pH7.0. For instance, the median D58-value of strains inactivated at pH7.0 was approximately 6 and 4min for acid-adapted and nonacid-adapted strains, respectively. For the nonacid-adapted strains, the thermal inactivation at pH6.2 and 7.0 was not significantly (p=0.06) different, while for the acid-adapted strains, the thermal treatment at pH6.2 showed a higher heat resistance than at pH7.0. The correlation between the odds of growth under low pH previously determined and the heat resistance was significant (p<0.05). Remarkably, a great variability in heat resistance among the strains was observed for all pH combinations, with D58-values varying between 1.0 and 69.0min. In addition, highly heat

  6. Behavior of non-O157 Shiga toxin-producing Escherichia coli, enteroinvasive E. coli, enteropathogenic E. coli, and enterotoxigenic E. coli strains on alfalfa sprouts.

    PubMed

    Gómez-Aldapa, Carlos A; Rangel-Vargas, Esmeralda; Torres-Vitela, M Del Refugio; Villarruel-López, Angélica; Castro-Rosas, Javier

    2013-08-01

    Data about the behavior of non-O157 Shiga toxin-producing Escherichia coli (non-O157 STEC), enteroinvasive E. coli (EIEC), enterotoxigenic E. coli (ETEC), and enteropathogenic E. coli (EPEC) on seeds and alfalfa sprouts are not available. The behavior of STEC, EIEC, ETEC, and EPEC was determined during germination and sprouting of alfalfa seeds at 20 ± 2°C and 30 ± 2°C and on alfalfa sprouts at 3 ± 2°C. When alfalfa seeds were inoculated with STEC, EIEC, ETEC, or EPEC strains, all these diarrheagenic E. coli pathotypes (DEPs) grew during germination and sprouting of seeds, reaching counts of approximately 5 and 6 log CFU/g after 1 day at 20 ± 2°C and 30 ± 2°C, respectively. However, when the sprouts were inoculated after 1 day of seed germination and stored at 20 ± 2°C or 30 ± 2°C, no growth was observed for any DEP during sprouting at 20 ± 2°C or 30 ± 2°C for 9 days. Refrigeration reduced significantly (P < 0.0.5) the number of viable DEPs on sprouts after 20 days in storage; nevertheless, these decreases have no practical significance for the safety of the sprouts.

  7. Sensitivity of antibiotic resistant and antibiotic susceptible Escherichia coli, Enterococcus and Staphylococcus strains against ozone.

    PubMed

    Heß, Stefanie; Gallert, Claudia

    2015-12-01

    Tolerance of antibiotic susceptible and antibiotic resistant Escherichia coli, Enterococcus and Staphylococcus strains from clinical and wastewater samples against ozone was tested to investigate if ozone, a strong oxidant applied for advanced wastewater treatment, will affect the release of antibiotic resistant bacteria into the aquatic environment. For this purpose, the resistance pattern against antibiotics of the mentioned isolates and their survival after exposure to 4 mg/L ozone was determined. Antibiotic resistance (AR) of the isolates was not correlating with higher tolerance against ozone. Except for ampicillin resistant E. coli strains, which showed a trend towards increased resistance, E. coli strains that were also resistant against cotrimoxazol, ciprofloxacin or a combination of the three antibiotics were similarly or less resistant against ozone than antibiotic sensitive strains. Pigment-producing Enterococcus casseliflavus and Staphylococcus aureus seemed to be more resistant against ozone than non-pigmented species of these genera. Furthermore, aggregation or biofilm formation apparently protected bacteria in subsurface layers from inactivation by ozone. The relatively large variance of tolerance against ozone may indicate that resistance to ozone inactivation most probably depends on several factors, where AR, if at all, does not play a major role.

  8. Enumeration and identification of IS3 elements in Escherichia coli strains.

    PubMed Central

    Deonier, R C; Hadley, R G; Hu, M

    1979-01-01

    Escherichia coli K-12 strains ordinarily contain five IS3 elements. Three of these correspond to previously mapped IS3 elements (R. C. Deonier, G. R. Oh, and M. Hu, J. Bacteriol. 129:1129--1140, 1977; S. Hu, E. Ohtsubo, and N. Davidson, J. Bacteriol. 122:749--763, 1975), and two additional IS3 elements are identified. The distribution of IS3 elements among deoxyribonucleic acid fragments generated by digestion with EcoRI indicates a basic pattern from which deviation is detected. Images PMID:374349

  9. Characteristics of Escherichia coli strains belonging to enteropathogenic E. coli serogroups isolated in Italy from children with diarrhea.

    PubMed Central

    Giammanco, A; Maggio, M; Giammanco, G; Morelli, R; Minelli, F; Scheutz, F; Caprioli, A

    1996-01-01

    Fifty-five Escherichia coli strains belonging to enteropathogenic E. coli (EPEC) serogroups were examined for phenotypic and genetic factors associated with virulence. The strains were isolated in Italy from children with diarrhea and identified as EPEC by clinical laboratories using commercially available antisera. O:H serotyping showed that 35 strains (27 of O26, O111, and O128 serogroups) belonged to 11 serotypes considered to be classical EPEC O:H serotypes. The other 20 isolates were classified as 15 nonclassical EPEC O:H serotypes. All the potential EPEC virulence factors associated with bacterial adhesion (localized adherence, fluorescentactin staining test positivity, presence of the attaching and effacing [eaeA] gene), the production of verotoxin, and the positivity with the enterohemorrhagic E. coli probe were significantly more frequent among isolates belonging to classical than nonclassical serotypes. Strains displaying an aggregative adhesion and hybridizing with the enteroaggregative DNA probe were found in serogroups O86, O111, and O126. Verotoxin-producing isolates belonged to serogroups O26, O111, and O128. Only one of the isolates hybridized with the EPEC adherence factor (EAF) probe, but 33 strains gave positive results with the eae probe, confirming that the former is more suitable in epidemiological studies in European countries. These results indicate that up to 75% of strains identified as EPEC by commercial antisera may possess potential virulence properties and/or belong to classical EPEC O:H serotypes and suggest that O grouping is still a useful diagnostic tool for presumptive identification of diarrheagenic E. coli in clinical laboratories. PMID:8904439

  10. Detection of diarrheagenic Escherichia coli strains isolated from dogs and cats in Brazil.

    PubMed

    Puño-Sarmiento, Juan; Medeiros, Leonardo; Chiconi, Carolina; Martins, Fernando; Pelayo, Jacinta; Rocha, Sérgio; Blanco, Jorge; Blanco, Miguel; Zanutto, Marcelo; Kobayashi, Renata; Nakazato, Gerson

    2013-10-25

    Escherichia coli are gut microbiota bacteria that can cause disease in some humans and other animals, including dogs and cats that humans often keep as pets. Diarrheagenic E. coli (DEC) strains are classified into six categories: enteropathogenic (EPEC), enterotoxigenic (ETEC), Shiga toxin-producing (STEC), enteroinvasive (EIEC), enteroaggregative (EAEC), and diffuse-adhering E. coli (DAEC). In this study 144 and 163 E. coli colonies were isolated from the fecal samples of 50 dogs and 50 cats, respectively, with and without diarrhea from a Veterinary Hospital (clinical isolates). The virulence factors were determined using multiplex Polymerase Chain Reaction. Adherence assays, antibacterial susceptibility and serotyping (somatic or flagellar antigens) were performed on DEC isolates. We found 25 (17.4%) and 4 (2.5%) DEC strains isolated from dogs and cats, respectively. Only the EPEC and EAEC pathotypes were found in both animals. Meanwhile, genes from other pathotypes (STEC, EIEC, and ETEC) were not found in these clinical isolates. All of the DEC strains showed mannose-resistant adherence to HEp-2 and HeLa cells, and aggregative adherence was predominant in these isolates. Multiresistant strains to antimicrobials were found in most DEC strains including usual and unusual antimicrobials in veterinary practices. The serotypes of these DEC isolates were variable. The ONT serotype was predominant in these isolates. Some serotypes found in our study were described to human DEC. Here, we demonstrate that pets carry virulent DEC genes, which are mainly strains of EPECs and EAECs. The presence of these virulence factors in isolates from animals without diarrhea suggests that pets can act as a reservoir for human infection.

  11. Phenotypical characterization and adhesin identification in Escherichia coli strains isolated from dogs with urinary tract infections

    PubMed Central

    Maluta, Renato Pariz; Stella, Ariel Eurides; Riccardi, Kátia; Rigobelo, Everlon Cid; Marin, José Moacir; Carvalho, Marileda Bonafim; de Ávila, Fernando Antonio

    2012-01-01

    Pathogenic strains of Escherichia coli are the most common bacteria associated with urinary tract infections in both humans and companion animals. Standard biochemical tests may be useful in demonstrating detailed phenotypical characteristics of these strains. Thirteen strains of E. coli isolated from dogs with UTIs were submitted to biochemical tests, serotyping for O and H antigens and antimicrobial resistance testing. Furthermore, the presence of papC, sfa, and afa genes was evaluated by PCR, and genetic relationships were established using enterobacterial repetitive intergenic consensus PCR (ERIC-PCR). The antimicrobial that showed the highest resistance rate among the isolates was nalidixic acid (76.9%), followed by cephalotin (69.2%), sulfamethoxazole + trimethoprim (61.5%), tetracycline (61.5%), streptomycin (53.8%), ciprofloxacin (53.8%), ampicillin (46.2%), gentamicin (30.8%) and chloramphenicol (23.1%). No isolate was resistant either to meropenem or nitrofurantoin. Among the five clusters that were identified using ERIC-PCR, one cluster (A) had only one strain, which belonged to a serotype with zoonotic potential (O6:H31) and showed the genes papC+, sfa+, afa-. Strains with the genes papC-, sfa+, afa- were found in two other clusters (C and D), whereas all strains in clusters B and E possessed papC-, sfa-, afa- genes. Sucrose and raffinose phenotypic tests showed some ability in discriminating clusters A, B and C from clusters D and E. PMID:24031842

  12. Heterogeneity among Strains of Diffusely Adherent Escherichia coli Isolated in Brazil

    PubMed Central

    Lopes, Lucia M.; Fabbricotti, Sandra H.; Ferreira, Antonio J. P.; Kato, Maria A. M. F.; Michalski, Jane; Scaletsky, Isabel C. A.

    2005-01-01

    One hundred twelve diffusely adherent Escherichia coli strains isolated from children in a case control study were evaluated for virulence-associated characteristics, serotyping, antibiotic resistance, and plasmid profiles. Half of the strains hybridized with the probes for icuA (aerobactin) and fimH (type 1 pili); daaE (F1845 fimbriae), afa (afimbrial Dr adhesin), agg-3A (aggregative adhesion fimbria type III fimbriae), pap (P fimbriae), astA (EAST1 toxin), and shET1 (Shigella enterotoxin 1) sequences were present in <20% of the strains. The shET1 gene was noted most frequently in strains isolated from patients. A minority (7%) of the strains produced hemolysin or colicin or showed cytotoxic effects on Vero cells. Forty-five different serotypes were found. The majority (70%) of the strains presented multiple antibiotic resistance. Antibiotic resistance and diffuse adherence were located on the same conjugative plasmids. These results suggest that the transfer of these potential virulence markers could be important in the epidemiology of diffusely adherent E. coli. PMID:15815034

  13. A versatile Escherichia coli strain for identification of biotin transporters and for biotin quantification.

    PubMed

    Finkenwirth, Friedrich; Kirsch, Franziska; Eitinger, Thomas

    2014-01-01

    Biotin is an essential cofactor of carboxylase enzymes in all kingdoms of life. The vitamin is produced by many prokaryotes, certain fungi, and plants. Animals depend on biotin uptake from their diet and in humans lack of the vitamin is associated with serious disorders. Many aspects of biotin metabolism, uptake, and intracellular transport remain to be elucidated. In order to characterize the activity of novel biotin transporters by a sensitive assay, an Escherichia coli strain lacking both biotin synthesis and its endogenous high-affinity biotin importer was constructed. This strain requires artificially high biotin concentrations for growth. When only trace levels of biotin are available, it is viable only if equipped with a heterologous high-affinity biotin transporter. This feature was used to ascribe transport activity to members of the BioY protein family in previous work. Here we show that this strain together with its parent is also useful as a diagnostic tool for wide-concentration-range bioassays.

  14. Complete Genome Sequences of Escherichia coli O157:H7 Strains SRCC 1675 and 28RC, Which Vary in Acid Resistance

    PubMed Central

    Baranzoni, Gian Marco; Reichenberger, Erin R.; Kim, Gwang-Hee; Breidt, Frederick; Kay, Kathryn; Oh, Deog-Hwan

    2016-01-01

    The level of acid resistance among Escherichia coli O157:H7 strains varies, and strains with higher resistance to acid may have a lower infectious dose. The complete genome sequences belonging to two strains of Escherichia coli O157:H7 with different levels of acid resistance are presented here. PMID:27469964

  15. Complete Genome Sequences of Escherichia coli O157:H7 Strains SRCC 1675 and 28RC, Which Vary in Acid Resistance.

    PubMed

    Baranzoni, Gian Marco; Fratamico, Pina M; Reichenberger, Erin R; Kim, Gwang-Hee; Breidt, Frederick; Kay, Kathryn; Oh, Deog-Hwan

    2016-07-28

    The level of acid resistance among Escherichia coli O157:H7 strains varies, and strains with higher resistance to acid may have a lower infectious dose. The complete genome sequences belonging to two strains of Escherichia coli O157:H7 with different levels of acid resistance are presented here.

  16. Complete genome sequences of Escherichia coli O157:H7 strains SRCC 1675 and 28RC that vary in acid resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The level of acid resistance among Escherichia coli O157:H7 strains varies, and strains with higher resistance to acid may have a lower infectious dose. The complete genome sequences belonging to two strains of Escherichia coli O157:H7 with different levels of acid resistance are presented....

  17. ANTIMICROBIAL RESISTANCE OF ESCHERICHIA COLI STRAINS ISOLATED FROM URINE AT OUTPATIENT POPULATION: A SINGLE LABORATORY EXPERIENCE

    PubMed Central

    Vranic, Sabina Mahmutovic; Uzunovic, Aida

    2016-01-01

    Objectives: The aim of this study was to examine antimicrobial resistance of Escherichia coli strains isolated from urine in outpatient population. Material and methods: We performed a retrospective study for tree months period, between January 1st and March 31st, 2015, at the Department of Microbiology and Parasitology, Faculty of Medicine, University of Sarajevo. We determined the E. coli antimicrobial resistance in 556 first urine samples from outpatient population of Hrasno community in Sarajevo, Bosnia and Herzegovina. E. coli is the most frequent agent causing urinary tract infections in outpatients as well. The standard methods of descriptive statistics were performed for data analysis. Results: We observed the highest antimicrobial resistance of E. coli for ampicillin (82,79%), followed by trimethoprim-sulfamethoxazole (40,86%), nalidixic acid (19,35%), cephazolin (7,52%), nitrofurantoin (5,37%), gentamicin (2,15%) and ciprofloxacin (4,30%). Conclusions: The results of study showed that E. coli has the highest resistance to ampicillin and trimethoprim-sulfamethoxazole in outpatient population of Hrasno community. PMID:27147918

  18. Infections with Avian Pathogenic and Fecal Escherichia coli Strains Display Similar Lung Histopathology and Macrophage Apoptosis

    PubMed Central

    Horn, Fabiana; Corrêa, André Mendes Ribeiro; Barbieri, Nicolle Lima; Glodde, Susanne; Weyrauch, Karl Dietrich; Kaspers, Bernd; Driemeier, David; Ewers, Christa; Wieler, Lothar H.

    2012-01-01

    The purpose of this study was to compare histopathological changes in the lungs of chickens infected with avian pathogenic (APEC) and avian fecal (Afecal) Escherichia coli strains, and to analyze how the interaction of the bacteria with avian macrophages relates to the outcome of the infection. Chickens were infected intratracheally with three APEC strains, MT78, IMT5155, and UEL17, and one non-pathogenic Afecal strain, IMT5104. The pathogenicity of the strains was assessed by isolating bacteria from lungs, kidneys, and spleens at 24 h post-infection (p.i.). Lungs were examined for histopathological changes at 12, 18, and 24 h p.i. Serial lung sections were stained with hematoxylin and eosin (HE), terminal deoxynucleotidyl dUTP nick end labeling (TUNEL) for detection of apoptotic cells, and an anti-O2 antibody for detection of MT78 and IMT5155. UEL17 and IMT5104 did not cause systemic infections and the extents of lung colonization were two orders of magnitude lower than for the septicemic strains MT78 and IMT5155, yet all four strains caused the same extent of inflammation in the lungs. The inflammation was localized; there were some congested areas next to unaffected areas. Only the inflamed regions became labeled with anti-O2 antibody. TUNEL labeling revealed the presence of apoptotic cells at 12 h p.i in the inflamed regions only, and before any necrotic foci could be seen. The TUNEL-positive cells were very likely dying heterophils, as evidenced by the purulent inflammation. Some of the dying cells observed in avian lungs in situ may also be macrophages, since all four avian E. coli induced caspase 3/7 activation in monolayers of HD11 avian macrophages. In summary, both pathogenic and non-pathogenic fecal strains of avian E. coli produce focal infections in the avian lung, and these are accompanied by inflammation and cell death in the infected areas. PMID:22848424

  19. Effect of growth rate on plasmid DNA production and metabolic performance of engineered Escherichia coli strains.

    PubMed

    Wunderlich, Martin; Taymaz-Nikerel, Hilal; Gosset, Guillermo; Ramírez, Octavio T; Lara, Alvaro R

    2014-03-01

    Two engineered Escherichia coli strains, designated VH33 and VH34, were compared to their parent strain W3110 in chemostat mode during plasmid DNA (pDNA) production. In strain VH33 the glucose uptake system was modified with the aim of reducing overflow metabolism. The strain VH34 has an additional deletion of the pyruvate kinase A gene (pykA) to increase pDNA formation. pDNA formation rates as well as kinetic and stoichiometric parameters were investigated in dependence of the growth rate within a range from 0.02 to 0.25 h(-1). Differences between strains were found in terms of the biomass yields on nitrogen and oxygen, as well as on the cell maintenance coefficients. The deletion of pykA led to a significantly increased pDNA yield and productivity. At an optimal growth rate of 0.20 h(-1) it was nearly 60% higher than that of W3110 and VH33. Metabolic fluxes calculated by metabolite balance analysis showed differences mainly in reactions catalyzed by pyruvate kinase and glucose 6-phosphate dehydrogenase. The obtained data are useful for the design of cultivation schemes for pDNA production by E. coli.

  20. Virulence Factors and Phenotypical Traits of Verotoxin-Producing Escherichia coli Strains Isolated from Asymptomatic Human Carriers

    PubMed Central

    Stephan, R.; Untermann, F.

    1999-01-01

    Fourteen verotoxin-producing Escherichia coli strains isolated from stool samples of 14 different asymptomatic human carriers were further characterized. A variety of serotypes was found, but none of the strains belonged to serogroup O157. Only one isolate carried most of the virulence genes that are associated with increased pathogenicity. PMID:10203524

  1. Genome Sequences of 64 Non-O157:H7 Shiga Toxin-Producing Escherichia coli Strains

    PubMed Central

    Toro, Magaly; Cao, Guojie; Rump, Lydia; Nagaraja, T. G.; Meng, Jianghong

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) strains are human pathogens. Although >400 non-O157 serotypes have been involved in human disease, whole-genome sequencing information is missing for many serotypes. We sequenced 64 STEC strains comprising 38 serotypes, isolated from clinical sources, animals, and environmental samples, to improve the phylogenetic understanding of these important foodborne pathogens. PMID:26430026

  2. Rapid latex particle agglutination test for Escherichia coli strains of porcine origin producing heat-labile enterotoxin.

    PubMed Central

    Finkelstein, R A; Yang, Z S; Moseley, S L; Moon, H W

    1983-01-01

    A latex particle agglutination test previously shown to be suitable for the rapid identification of Escherichia coli strains of human origin producing heat-labile enterotoxin (R. A. Finkelstein and Z. Yang, J. Clin. Microbiol. 18:23-28) is equally applicable to strains of porcine origin. PMID:6361056

  3. Transcriptional analysis of different stress response genes in Escherichia coli strains subjected to sodium chloride and lactic acid stress.

    PubMed

    Peng, Silvio; Stephan, Roger; Hummerjohann, Jörg; Tasara, Taurai

    2014-12-01

    Survival of Escherichia coli in food depends on its ability to adapt against encountered stress typically involving induction of stress response genes. In this study, the transcriptional induction of selected acid (cadA, speF) and salt (kdpA, proP, proW, otsA, betA) stress response genes was investigated among five E. coli strains, including three Shiga toxin-producing strains, exposed to sodium chloride or lactic acid stress. Transcriptional induction upon lactic acid stress exposure was similar in all but one E. coli strain, which lacked the lysine decarboxylase gene cadA. In response to sodium chloride stress exposure, proW and otsA were similarly induced, while significant differences were observed between the E. coli strains in induction of kdpA, proP and betA. The kdpA and betA genes were significantly induced in four and three strains, respectively, whereas one strain did not induce these genes. The proP gene was only induced in two E. coli strains. Interestingly, transcriptional induction differences in response to sodium chloride stress exposure were associated with survival phenotypes observed for the E. coli strains in cheese as the E. coli strain lacking significant induction in three salt stress response genes investigated also survived poorly compared to the other E. coli strains in cheese.

  4. Phenotypic Diversity of Escherichia coli O157:H7 Strains Associated With the Plasmid O157

    PubMed Central

    Lim, Ji Youn; Hong, Joon Bae; Sheng, Haiqing; Shringi, Smriti; Kaul, Rajinder; Hovde, Carolyn J.

    2010-01-01

    Escherichia coli O157:H7, a food-borne pathogen, causes hemorrhagic colitis and the hemolytic-uremic syndrome. A putative virulence factor of E. coli O157:H7 is a 60-MDa plasmid (pO157) found in 99% of all clinical isolates and many bovine-derived strains. The well characterized E. coli O157:H7 Sakai strain (Sakai) and its pO157-cured derivative (Sakai-Cu) were compared for phenotypic differences. Sakai-Cu had enhanced survival in synthetic gastric fluid, did not colonize cattle as well as wild-type Sakai, and had unchanged growth rates and tolerance to salt and heat. These results are consistent with our previous findings with another E. coli O157:H7 disease outbreak isolate ATCC 43894 and its pO157-cured (43894-Cu). However, despite the essentially sequence identical pO157 in these strains, Sakai-Cu had changes in antibiotic susceptibility and motility that did not occur in the 43894-Cu strain. This unexpected result was systematically analyzed using phenotypic microarrays testing 1,920 conditions with Sakai, 43894, and the plasmid-cured mutants. The influence of the pO157 differed between strains on a wide number of growth/survival conditions. Relative expression of genes related to acid resistance (gadA, gadX, and rpoS) and flagella production (fliC and flhD) were tested using quantitative real-time PCR and gadA and rpoS expression differed between Sakai-Cu and 43894-Cu. The strain-specific differences in phenotype that resulted from the loss of essentially DNA-sequence identical pO157 were likely due to the chromosomal genetic diversity between strains. The O157:H7 serotype diversity was further highlighted by phenotypic microarray comparisons of the two outbreak strains with a genotype 6 bovine E. coli O157:H7 isolate, rarely associated with human disease. PMID:20571953

  5. Phylogeny and Strain Typing of Escherichia coli, Inferred from Variation at Mononucleotide Repeat Loci

    PubMed Central

    Diamant, Eran; Palti, Yniv; Gur-Arie, Riva; Cohen, Helit; Hallerman, Eric M.; Kashi, Yechezkel

    2004-01-01

    Multilocus sequencing of housekeeping genes has been used previously for bacterial strain typing and for inferring evolutionary relationships among strains of Escherichia coli. In this study, we used shorter intergenic sequences that contained simple sequence repeats (SSRs) of repeating mononucleotide motifs (mononucleotide repeats [MNRs]) to infer the phylogeny of pathogenic and commensal E. coli strains. Seven noncoding loci (four MNRs and three non-SSRs) were sequenced in 27 strains, including enterohemorrhagic (six isolates of O157:H7), enteropathogenic, enterotoxigenic, B, and K-12 strains. The four MNRs were also sequenced in 20 representative strains of the E. coli reference (ECOR) collection. Sequence polymorphism was significantly higher at the MNR loci, including the flanking sequences, indicating a higher mutation rate in the sequences flanking the MNR tracts. The four MNR loci were amplifiable by PCR in the standard ECOR A, B1, and D groups, but only one (yaiN) in the B2 group was amplified, which is consistent with previous studies that suggested that B2 is the most ancient group. High sequence compatibility was found between the four MNR loci, indicating that they are in the same clonal frame. The phylogenetic trees that were constructed from the sequence data were in good agreement with those of previous studies that used multilocus enzyme electrophoresis. The results demonstrate that MNR loci are useful for inferring phylogenetic relationships and provide much higher sequence variation than housekeeping genes. Therefore, the use of MNR loci for multilocus sequence typing should prove efficient for clinical diagnostics, epidemiology, and evolutionary study of bacteria. PMID:15066845

  6. Cloning and expression in Escherichia coli of Pseudomonas strain LB400 genes encoding polychlorinated biphenyl degradation.

    PubMed Central

    Mondello, F J

    1989-01-01

    Pseudomonas strain LB400 is able to degrade an unusually wide variety of polychlorinated biphenyls (PCBs). A genomic library of LB400 was constructed by using the broad-host-range cosmid pMMB34 and introduced into Escherichia coli. Approximately 1,600 recombinant clones were tested, and 5 that expressed 2,3-dihydroxybiphenyl dioxygenase activity were found. This enzyme is encoded by the bphC gene of the 2,3-dioxygenase pathway for PCB-biphenyl metabolism. Two recombinant plasmids encoding the ability to transform PCBs to chlorobenzoic acids were identified, and one of these, pGEM410, was chosen for further study. The PCB-degrading genes (bphA, -B, -C, and -D) were localized by subcloning experiments to a 12.4-kilobase region of pGEM410. The ability of recombinant strains to degrade PCBs was compared with that of the wild type. In resting-cell assays, PCB degradation by E. coli strain FM4560 (containing a pGEM410 derivative) approached that of LB400 and was significantly greater than degradation by the original recombinant strain. High levels of PCB metabolism by FM4560 did not depend on the growth of the organism on biphenyl, as it did for PCB metabolism by LB400. When cells were grown with succinate as the carbon source, PCB degradation by FM4560 was markedly superior to that by LB400. Images PMID:2493454

  7. Diarrhea, bacteremia and multiorgan dysfunction due to an extraintestinal pathogenic Escherichia coli strain with enteropathogenic E. coli genes.

    PubMed

    Kessler, Robert; Nisa, Shahista; Hazen, Tracy H; Horneman, Amy; Amoroso, Anthony; Rasko, David A; Donnenberg, Michael S

    2015-11-01

    A 55-year-old man with well-controlled HIV had severe diarrhea for 3 weeks and developed multiorgan dysfunction and bacteremia due to Escherichia coli. The genome of the patient's isolate had features characteristic of extraintestinal pathogenic E. coli and genes distantly related to those defining enteropathogenic E. coli.

  8. Surveillance of antimicrobial resistance in Escherichia coli strains isolated from pigs at Spanish slaughterhouses.

    PubMed

    Teshager, T; Herrero, I A; Porrero, M C; Garde, J; Moreno, M A; Domínguez, L

    2000-07-01

    Antimicrobial resistance can make the efficient treatment of bacterial infections in humans and animals more difficult. Antimicrobial use in food animals may be one of the factors contributing to resistance. The Spanish surveillance network VAV has established a baseline of antimicrobial resistance in Escherichia coli strains from healthy pigs. Minimum inhibitory concentration and patterns of resistance to antimicrobials used in animals and humans were determined for 205 faecal strains isolated in a sampling frame of four slaughterhouses in Spain from 220 pigs in 1998. Higher levels of resistance were seen against antimicrobial agents authorised for use in food animals especially tetracycline, sulphonamides, trimethoprim and amoxycillin. All isolates were susceptible to antimicrobials employed mainly in humans such as ceftazidime, cefotaxime, imipenem, aztreonam and amikacin.

  9. Detection of pap-, sfa- and afa-specific DNA sequences in Escherichia coli strains isolated from extraintestinal material.

    PubMed

    Bogyiová, E; Kmetová, M; Biros, E; Siegfried, L

    2002-01-01

    P-fimbriae, S-fimbriae and AFA-adhesins are virulence factors responsible for adherence of Escherichia coli strains to extraintestinal host-cell surface. Detection of pap-, sfa- and afa-specific sequences performed by PCR revealed 74% pap+, 65% sfa+, and 8.3% afa+ strains in a group of 84 extraintestinal E. coli isolates. Detection in a group of fecal strains showed 29% pap+, 21% sfa+ and 4% afa+ strains. pap together with sfa were found as the most frequent combination (56%) among extraintestinal isolates probably due to localization of pap- and sfa-operons on a common pathogenicity island. The occurrence of afa-specific sequence among 56 urine strains was 11%, although no afa+ strain was detected among 28 gynecological isolates. No strains with detected adhesin operons were found among twenty (24%) extraintestinal E. coli strains.

  10. Strain dependent UV degradation of Escherichia coli DNA monitored by Fourier transform infrared spectroscopy.

    PubMed

    Muntean, Cristina M; Lapusan, Alexandra; Mihaiu, Liora; Stefan, Razvan

    2014-01-05

    In this work we present a method for detection of DNA isolated from nonpathogenic Escherichia coli strains, respectively. Untreated and UV irradiated bacterial DNAs were analyzed by FT-IR spectroscopy, to investigate their screening characteristic features and their structural radiotolerance at 253.7nm. FT-IR spectra, providing a high molecular structural information, have been analyzed in the wavenumber range 800-1800cm(-1). FT-IR signatures, spectroscopic band assignments and structural interpretations of these DNAs are reported. Also, UV damage at the DNA molecular level is of interest. Strain dependent UV degradation of DNA from E. coli has been observed. Particularly, alterations in nucleic acid bases, base pairing and base stacking have been found. Also changes in the DNA conformation and deoxyribose were detected. Based on this work, specific E. coli DNA-ligand interactions, drug development and vaccine design for a better understanding of the infection mechanism caused by an interference between pathogenic and nonpathogenic bacteria and for a better control of disease, respectively, might be further investigated using Fourier transform infrared spectroscopy. Besides, understanding the pathways for UV damaged DNA response, like nucleic acids repair mechanisms is appreciated.

  11. Prevalence of genes encoding virulence factors among Escherichia coli with K1 antigen and non-K1 E. coli strains.

    PubMed

    Kaczmarek, Agnieszka; Budzynska, Anna; Gospodarek, Eugenia

    2012-10-01

    Multiplex PCR was used to detect genes encoding selected virulence determinants associated with strains of Escherichia coli with K1 antigen (K1(+)) and non-K1 E. coli (K1(-)). The prevalence of the fimA, fimH, sfa/foc, ibeA, iutA and hlyF genes was studied for 134 (67 K1(+) and 67 K1(-)) E. coli strains isolated from pregnant women and neonates. The fimA gene was present in 83.6 % of E. coli K1(+) and in 86.6 % of E. coli K1(-) strains. The fimH gene was present in all tested E. coli K1(+) strains and in 97.0 % of non-K1 strains. E. coli K1(+) strains were significantly more likely to possess the following genes than E. coli K1(-) strains: sfa/foc (37.3 vs 16.4 %, P = 0.006), ibeA (35.8 vs 4.5 %, P<0.001), iutA (82.1 vs 35.8 %, P<0.001) and hlyF (28.4 vs 6.0 %, P<0.001). In conclusion, E. coli K1(+) seems to be more virulent than E. coli K1(-) strains in developing severe infections, thereby increasing possible sepsis or neonatal bacterial meningitis.

  12. Whole-Genome Characterization and Strain Comparison of VT2f-Producing Escherichia coli Causing Hemolytic Uremic Syndrome

    PubMed Central

    Michelacci, Valeria; Bondì, Roslen; Gigliucci, Federica; Franz, Eelco; Badouei, Mahdi Askari; Schlager, Sabine; Minelli, Fabio; Tozzoli, Rosangela; Caprioli, Alfredo; Morabito, Stefano

    2016-01-01

    Verotoxigenic Escherichia coli infections in humans cause disease ranging from uncomplicated intestinal illnesses to bloody diarrhea and systemic sequelae, such as hemolytic uremic syndrome (HUS). Previous research indicated that pigeons may be a reservoir for a population of verotoxigenic E. coli producing the VT2f variant. We used whole-genome sequencing to characterize a set of VT2f-producing E. coli strains from human patients with diarrhea or HUS and from healthy pigeons. We describe a phage conveying the vtx2f genes and provide evidence that the strains causing milder diarrheal disease may be transmitted to humans from pigeons. The strains causing HUS could derive from VT2f phage acquisition by E. coli strains with a virulence genes asset resembling that of typical HUS-associated verotoxigenic E. coli. PMID:27584691

  13. Antagonistic effect of Lactobacillus strains against Escherichia coli and Listeria monocytogenes in milk.

    PubMed

    Aguilar, Catalina; Vanegas, Consuelo; Klotz, Bernadette

    2011-05-01

    The current work studied four types of binary antagonist/pathogen bacterial culture system, in order to determine the effect of interaction between two strains of Lactobacillus plantarum and two food-borne pathogens, Listeria monocytogenes and Escherichia coli, in whole UHT milk at 37°C. To determine the type of interaction between the two bacterial populations in co-cultures and to evaluate the antagonistic activity of the lactic acid bacteria (LAB) on the pathogenic bacteria, the growth curves, the kinetic parameters, and the pH profiles of mono- and co-cultures were compared. The Lb. plantarum strains showed different bacteriocin-like inhibitory substance (BLIS) production, auto- and co-inducible. The antibacterial effect of neutralized supernatants of mono and co-cultures harvested at different times of incubation was assessed in order to establish the presence of bacteriocin-like inhibitory-substances (BLIS) and their possible relation to the growth inhibition of the pathogen. The LAB reduced the growth of Esch. coli and of List. monocytogenes by 4 and ∼5 log cycles, respectively and influenced other growth kinetic parameters, such as μ(max) and lag phase, in the different binary combinations. The growth of the LAB was not relevantly altered by simultaneous growth with the pathogenic strains showing an interaction of amensalism. The pattern of inhibition exerted by the LAB on the pathogens was different; Lb. plantarum LB279 inhibited the growth of List. monocytogenes more effectively than that of Esch. coli. The behaviour of Esch. coli in co-culture with Lb. plantarum WS4174 suggested the presence of metabolic crowding in the mechanism of growth suppression. This exploratory study showed the complexity and specific particularities of the inhibition phenomena between bacterial communities.

  14. Impact of individual mutations on increased fitness in adaptively evolved strains of Escherichia coli.

    PubMed

    Applebee, M Kenyon; Herrgård, Markus J; Palsson, Bernhard Ø

    2008-07-01

    We measured the relative fitness among a set of experimentally evolved Escherichia coli strains differing by a small number of adaptive mutations by directly measuring allelic frequencies in head-to-head competitions using a mass spectrometry-based method. We compared the relative effects of mutations to the same or similar genes acquired in multiple strains when expressed in allele replacement strains. We found that the strongest determinant of fitness among the evolved strains was the impact of beneficial mutations to the RNA polymerase beta and beta' subunit genes. We also identified several examples of epistatic interactions between rpoB/C and glpK mutations and identified two other mutations that are beneficial only in the presence of previously acquired mutations but that have little or no adaptive benefit to the wild-type strain. Allele frequency estimation is shown to be a highly sensitive method for measuring selection rates during competitions between strains differing by as little as a single-nucleotide polymorphism and may be of great use for investigating epistatic interactions.

  15. TleA, a Tsh-Like Autotransporter Identified in a Human Enterotoxigenic Escherichia coli Strain

    PubMed Central

    Gutiérrez, Daniela; Pardo, Mirka; Montero, David; Oñate, Angel; Farfán, Mauricio J.; Ruiz-Pérez, Fernando

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC), a leading cause of acute diarrhea, colonizes the intestine by means of adhesins. However, 15 to 50% of clinical isolates are negative for known adhesins, making it difficult to identify antigens for broad-coverage vaccines. The ETEC strain 1766a, obtained from a child with watery diarrhea in Chile, harbors the colonization factor CS23 but is negative for other known adhesins. One clone, derived from an ETEC 1766a genomic library (clone G10), did not produce CS23 yet was capable of adhering to Caco-2 cells. The goal of this study was to identify the gene responsible for this capacity. Random transposon-based mutagenesis allowed the identification of a 4,110-bp gene that codes for a homologue of the temperature-sensitive hemagglutinin (Tsh) autotransporter described in avian E. coli strains (97% identity, 90% coverage) and that is called TleA (Tsh-like ETEC autotransporter) herein. An isogenic ETEC 1766a strain with a tleA mutation showed an adhesion level similar to that of the wild-type strain, suggesting that the gene does not direct attachment to Caco-2 cells. However, expression of tleA conferred the capacity for adherence to nonadherent E. coli HB101. This effect coincided with the detection of TleA on the surface of nonpermeabilized bacteria, while, conversely, ETEC 1766a seems to secrete most of the produced autotransporter to the medium. On the other hand, TleA was capable of degrading bovine submaxillary mucin and leukocyte surface glycoproteins CD45 and P-selectin glycoprotein ligand 1 (PSGL-1). These results suggest that TleA promotes colonization of the intestinal epithelium and that it may modulate the host immune response. PMID:25712927

  16. Construction of Escherichia coli Strains for Conversion of Nitroacetophenones to ortho-Aminophenols

    PubMed Central

    Kadiyala, Venkateswarlu; Nadeau, Lloyd J.; Spain, Jim C.

    2003-01-01

    The predominant bacterial pathway for nitrobenzene (NB) degradation uses an NB nitroreductase and hydroxylaminobenzene (HAB) mutase to form the ring-fission substrate ortho-aminophenol. We tested the hypothesis that constructed strains might accumulate the aminophenols from nitroacetophenones and other nitroaromatic compounds. We constructed a recombinant plasmid carrying NB nitroreductase (nbzA) and HAB mutase A (habA) genes, both from Pseudomonas pseudoalcaligenes JS45, and expressed the enzymes in Escherichia coli JS995. IPTG (isopropyl-β-d-thiogalactopyranoside)-induced cells of strain JS995 rapidly and stoichiometrically converted NB to 2-aminophenol, 2-nitroacetophenone (2NAP) to 2-amino-3-hydroxyacetophenone (2AHAP), and 3-nitroacetophenone (3NAP) to 3-amino-2-hydroxyacetophenone (3AHAP). We constructed another recombinant plasmid containing the nitroreductase gene (nfs1) from Enterobacter cloacae and habA from strain JS45 and expressed the enzymes in E. coli JS996. Strain JS996 converted NB to 2-aminophenol, 2-nitrotoluene to 2-amino-3-methylphenol, 3-nitrotoluene to 2-amino-4-methylphenol, 4-nitrobiphenyl ether to 4-amino-5-phenoxyphenol, and 1-nitronaphthalene to 2-amino-1-naphthol. In larger-scale biotransformations catalyzed by strain JS995, 75% of the 2NAP transformed was converted to 2AHAP, whereas 3AHAP was produced stoichiometrically from 3NAP. The final yields of the aminophenols after extraction and recovery were >64%. The biocatalytic synthesis of ortho-aminophenols from nitroacetophenones suggests that strain JS995 may be useful in the biocatalytic production of a variety of substituted ortho-aminophenols from the corresponding nitroaromatic compounds.   PMID:14602609

  17. Genomic Comparison of Escherichia coli K1 Strains Isolated from the Cerebrospinal Fluid of Patients with Meningitis †

    PubMed Central

    Yao, Yufeng; Xie, Yi; Kim, Kwang Sik

    2006-01-01

    Escherichia coli is a major cause of enteric/diarrheal diseases, urinary tract infections, and sepsis. E. coli K1 is the leading gram-negative organism causing neonatal meningitis, but the microbial basis of E. coli K1 meningitis is incompletely understood. Here we employed comparative genomic hybridization to investigate 11 strains of E. coli K1 isolated from the cerebrospinal fluid (CSF) of patients with meningitis. These 11 strains cover the majority of common O serotypes in E. coli K1 isolates from CSF. Our data demonstrated that these 11 strains of E. coli K1 can be categorized into two groups based on their profile for putative virulence factors, lipoproteins, proteases, and outer membrane proteins. Of interest, we showed that some open reading frames (ORFs) encoding the type III secretion system apparatus were found in group 2 strains but not in group 1 strains, while ORFs encoding the general secretory pathway are predominant in group 1 strains. These findings suggest that E. coli K1 strains isolated from CSF can be divided into two groups and these two groups of E. coli K1 may utilize different mechanisms to induce meningitis. PMID:16552050

  18. Arbitrarily primed PCR DNA fingerprinting of Escherichia coli O157:H7 strains by using templates from boiled cultures.

    PubMed Central

    Madico, G; Akopyants, N S; Berg, D E

    1995-01-01

    Arbitrarily primed PCR allows genetically different bacterial strains to be distinguished with great sensitivity and efficiency. We report that informative, reproducible arbitrarily primed PCR profiles can be obtained from Escherichia coli O157:H7 strains by using boiled stationary-phase cultures, without the need for time-consuming phenol extraction. This simple template preparation procedure should be especially useful in large epidemiologic studies when many strains must be typed. PMID:7650181

  19. Transcriptome analysis of parallel-evolved Escherichia coli strains under ethanol stress

    PubMed Central

    2010-01-01

    Background Understanding ethanol tolerance in microorganisms is important for the improvement of bioethanol production. Hence, we performed parallel-evolution experiments using Escherichia coli cells under ethanol stress to determine the phenotypic changes necessary for ethanol tolerance. Results After cultivation of 1,000 generations under 5% ethanol stress, we obtained 6 ethanol-tolerant strains that showed an approximately 2-fold increase in their specific growth rate in comparison with their ancestor. Expression analysis using microarrays revealed that common expression changes occurred during the adaptive evolution to the ethanol stress environment. Biosynthetic pathways of amino acids, including tryptophan, histidine, and branched-chain amino acids, were commonly up-regulated in the tolerant strains, suggesting that activating these pathways is involved in the development of ethanol tolerance. In support of this hypothesis, supplementation of isoleucine, tryptophan, and histidine to the culture medium increased the specific growth rate under ethanol stress. Furthermore, genes related to iron ion metabolism were commonly up-regulated in the tolerant strains, which suggests the change in intracellular redox state during adaptive evolution. Conclusions The common phenotypic changes in the ethanol-tolerant strains we identified could provide a fundamental basis for designing ethanol-tolerant strains for industrial purposes. PMID:20955615

  20. Characterization and Molecular Subtyping of Shiga Toxin-Producing Escherichia coli Strains in Butcher Shops.

    PubMed

    Brusa, Victoria; Costa, Magdalena; Londero, Alejandra; Leotta, Gerardo A; Galli, Lucía

    2017-01-19

    Shiga toxin-producing Escherichia coli (STEC) are important emerging foodborne human pathogens. Ruminants are the main animal reservoir of STEC currently known, and meat can become contaminated at different stages of the production chain. The aim of this work was to subtype and establish the epidemiological relatedness of non-O157 STEC strains isolated from ground beef and the environment in butcher shops before (evaluation stage, 2010-2011 period) and after (verification stage, 2013) implementing improvement actions. Sixty-eight non-O157 STEC strains were tested for eae, saa, ehxA, iha, efa1, toxB, subAB, cdt-V, astA, aggR, and aaiC genes, and stx1 and stx2 variants were determined. Pulsed-field gel electrophoresis (PFGE) was carried out with XbaI and XmaJI. From the 68 strains, 92.6%, 75.0%, 58.8%, 53.5%, 10.3%, 7.3%, and 4.4% were positive for iha, ehxA, subAB, saa, cdt-V, astA, and eae, respectively. All strains were aggR/aaiC-negative. PFGE showed that 19 strains grouped in 9 clusters and 41 showed unique XbaI patterns. During the evaluation stage (2010-2011), we identified clonal strains in different samples, circulating clones in different butcher shops, and more than one different strain in the same butcher shop. The bovine origin of meat and its manufacturing process could not ensure the total absence of all non-O157 STEC serotypes in this foodstuff. Most strains isolated during the evaluation (2010-2011) and verification (2013) stages did not exhibit a genotypic profile associated with human disease. It is necessary to conduct periodic reviews of the new epidemiological information and verify that the analyses of non-O157 STEC in food are appropriate to identify strains affecting the population.

  1. AFA and F17 adhesins produced by pathogenic Escherichia coli strains in domestic animals.

    PubMed

    Le Bouguénec, C; Bertin, Y

    1999-01-01

    AFA and F17 are afimbrial and fimbrial adhesins, respectively, produced by pathogenic Escherichia coli strains in domestic animals. F17-related fimbriae are mainly detected on bovine and ovine E. coli associated with diarrhoea or septicaemia. The F17-G adhesin subunits recognize N-acetyl-D-glucosamine (GlcNAc) receptors present on bovine intestinal cells. Some F17 subtypes also bind to GlcNAc receptors present on human uroepithelial and intestinal Caco-2 cells or to the laminin contained in the basement of mammalian membranes. F17 is often associated with other virulence factors (aerobactin, serum resistance, CNF2 toxin, K99, CS31A or AFA adhesins) on pathogenic E. coli. A cluster of only four genes is required to synthesize functional F17-related fimbrial structures. The hypothesis of multifunctional F17 fimbrial subunits is supported by the fact that: i) the N-terminal part of the adhesin subunit participates in receptor recognition, whereas the C-terminal part is required for biogenesis of the fimbrial filament; and ii) the interaction between structural and adhesin subunits seems to be crucial for the initiation of monomer polymerization. Recently, determinants related to the afa gene clusters from human pathogenic E. coli associated with intestinal and extra-intestinal infections were identified in strains isolated from calves and piglets with diarrhoea and septicaemia. Two afa-related gene clusters, designated afa-7 and afa-8, that encode afimbrial adhesins were cloned and characterized from bovine pathogenic E. coli. These animal afa gene clusters were plasmid and chromosome borne and were expressed by strains that produced other virulence factors such as CNF toxins, F17, PAP and CS31A adhesins. A high frequency of afa-8 and a low prevalence of afa-7 among bovine E. coli isolates were suggested by preliminary epidemiological studies. As with the human afa gene clusters, the animal ones encode an adhesive structure composed of two proteins: AfaE which

  2. Ciliates rapidly enhance the frequency of conjugation between Escherichia coli strains through bacterial accumulation in vesicles.

    PubMed

    Matsuo, Junji; Oguri, Satoshi; Nakamura, Shinji; Hanawa, Tomoko; Fukumoto, Tatsuya; Hayashi, Yasuhiro; Kawaguchi, Kouhei; Mizutani, Yoshihiko; Yao, Takashi; Akizawa, Kouzi; Suzuki, Haruki; Simizu, Chikara; Matsuno, Kazuhiko; Kamiya, Shigeru; Yamaguchi, Hiroyuki

    2010-10-01

    The mechanism underlying bacterial conjugation through protozoa was investigated. Kanamycin-resistant Escherichia coli SM10λ+ carrying pRT733 with TnphoA was used as donor bacteria and introduced by conjugation into ciprofloxacin-resistant E. coli clinical isolate recipient bacteria. Equal amounts of donor and recipient bacteria were mixed together in the presence or absence of protozoa (ciliates, free-living amoebae, myxamoebae) in Page's amoeba saline for 24 h. Transconjugants were selected with Luria broth agar containing kanamycin and ciprofloxacin. The frequency of conjugation was estimated as the number of transconjugants for each recipient. Conjugation frequency in the presence of ciliates was estimated to be approximately 10⁻⁶, but in the absence of ciliates, or in the presence of other protozoa, it was approximately 10⁻⁸. Conjugation also occurred in culture of ciliates at least 2 h after incubation. Successful conjugation was confirmed by the polymerase chain reaction. Addition of cycloheximide or latrunculin B resulted in suppression of conjugation. Heat killing the ciliates or bacteria had no effect on conjugation frequency. Co-localization of green fluorescent protein-expressing E. coli and PKH-67-vital-stained E. coli was observed in the same ciliate vesicles, suggesting that both donor and recipient bacteria had accumulated in the same vesicle. In this study, the conjugation frequency of bacteria was found to be significantly higher in vesicles purified from ciliates than those in culture suspension. We conclude that ciliates rapidly enhance the conjugation of E. coli strains through bacterial accumulation in vesicles.

  3. Prevalence of Antimicrobial Resistance in Escherichia coli Strains Isolated from Fishery Workers

    PubMed Central

    Shin, Hyun-Ho; Cho, Seung-Hak

    2013-01-01

    Objectives: This study aimed to characterize the prevalence of antibiotic resistance in Escherichia coli isolates from the fecal samples of fishery workers who work in fish farms and often use antibiotics for the feeding fishes. Methods: Seventy-three E. coli strains isolated from the fecal samples of fishery workers and 180 isolates from a control group of restaurant workers were tested for antibiotic resistance by agar disk diffusion with 16 antimicrobial agents. Results: About 30% of isolates from each group showed antimicrobial resistance to ampicillin, and 60% of isolates from fishery workers and 41% from restaurant workers were resistant to tetracycline. The isolates showed higher resistance to cephalothin and cefoxitin than to other cephem antibiotics and to gentamicin than to other aminogycosides. Our data indicated that fecal E. coli isolates from fishery workers showed higher antibiotic resistance than those of non-fishery workers (restaurant workers), especially to cephalothin, tetracycline, and trimethoprim–sulfamethoxazole (p < 0.05). However, rates of multidrug resistance were similar among the fishery workers and restaurant workers. Conclusion: Frequent use of antibiotics may cause increased antibiotic resistance in the human microbiome. PMID:24159534

  4. Purification and characterization of two fructose diphosphate aldolases from Escherichia coli (Crookes' strain)

    PubMed Central

    Stribling, Donald; Perham, Richard N.

    1973-01-01

    Two fructose diphosphate aldolases (EC 4.1.2.13) were detected in extracts of Escherichia coli (Crookes' strain) grown on pyruvate or lactate. The two enzymes can be resolved by chromatography on DEAE-cellulose at pH7.5, or by gel filtration on Sephadex G-200, and both have been obtained in a pure state. One is a typical bacterial aldolase (class II) in that it is strongly inhibited by metal-chelating agents and is reactivated by bivalent metal ions, e.g. Ca2+, Zn2+. It is a dimer with a molecular weight of approx. 70000, and the Km value for fructose diphosphate is about 0.85mm. The other aldolase is not dependent on metal ions for its activity, but is inhibited by reduction with NaBH4 in the presence of substrate. The Km value for fructose diphosphate is about 20μm (although the Lineweaver–Burk plot is not linear) and the enzyme is probably a tetramer with molecular weight approx. 140000. It has been crystallized. On the basis of these properties it is tentatively assigned to class I. The appearance of a class I aldolase in bacteria was unexpected, and its synthesis in E. coli is apparently favoured by conditions of gluconeogenesis. Only aldolase of class II was found in E. coli that had been grown on glucose. The significance of these results for the evolution of fructose diphosphate aldolases is briefly discussed. PMID:4198624

  5. Streptomycin Accumulation in Susceptible and Resistant Strains of Escherichia coli and Pseudomonas aeruginosa

    PubMed Central

    Bryan, L. E.; Elzen, H. M. Van Den

    1976-01-01

    Streptomycin accumulation by susceptible strains of Escherichia coli and Pseudomonas aeruginosa has been shown to be prevented or inhibited by inhibitors of electron transport, sulfhydryl groups and protein synthesis, and agents that uncouple oxidative phosphorylation. Streptomycin is recovered from cells in an unchanged form and is intracellularly concentrated above extracellular concentrations. Accumulation kinetics are multiphasic; an initial phase which cannot be prevented by the above inhibitors is unable to cause inhibition of cell growth or loss of cell viability. Prevention of further phases of uptake does prevent these events. Inhibitor-susceptible accumulation is time dependent and begins almost immediately upon exposure of cells to streptomycin. Streptomycin accumulation remains energy dependent even when cells are losing acid-soluble [3H]adenine, presumably through loss of permeability control. These results demonstrate that streptomycin accumulation necessary for inhibition of cell growth or cell death requires energy and is not a process of diffusion or secondary to membrane leakage. Streptomycin accumulation in ribosomally resistant mutants of E. coli and P. aeruginosa is similar in that both energy-independent and energy-dependent accumulation can be demonstrated. The total energy-dependent accumulation is, however, significantly lower than that in streptomycin-susceptible cells due to the absence of an additional energy-dependent phase of accumulation, which seems dependent on ribosomal binding of streptomycin. Ribosomally resistant strains can be shown to concentrate streptomycin accumulated by the energy-dependent process above the external concentration in nutrient broth but not in Trypticase soy broth. The energy-dependent accumulation can be saturated in the Strr strain of E. coli in nutrient broth, implying limited accumulation sites. PMID:820248

  6. Effect of Nalidixic Acid and Hydroxyurea on Division Ability of Escherichia coli fil+ and lon− Strains

    PubMed Central

    Kantor, George J.; Deering, R. A.

    1968-01-01

    Short periods of incubation in medium containing nalidixic acid or hydroxyurea, followed by a return to normal growth conditions, induced filament formation in Escherichia coli B (fil+) and AB1899NM (lon−) but not in B/r (fil−) and AB1157 (lon+). These drugs reversibly stopped deoxyribonucleic acid (DNA) synthesis with little or no effect on ribonucleic acid (RNA) synthesis or mass increase. The initial imbalance caused by incubation in these drugs was the same for B and B/r as was macromolecular synthesis following a return to normal growth conditions. DNA degradation caused by nalidixic acid was measured and found to be the same for B and B/r. Hydroxyurea caused no DNA degradation in these two strains. Survival curves as determined under various conditions by colony formation suggested that the property of filament formation was responsible for the extrasensitivity of fil+ and lon− strains to either nalidixic acid or hydroxyurea. E. coli B was more sensitive to either drug than was B/r or Bs-1. Pantoyl lactone or liquid holding treatment aided division and colony formation of nalidixic acid-treated B but had no effect on B/r. Likewise, the filament-former AB1899NM was more sensitive to nalidixic acid than was the non-filament-former AB1157. The sensitivity of B/r and Bs-1 to nalidixic acid was nearly the same except at longer times in nalidixic acid, when Bs-1 appeared more resistant. Even though nalidixic acid, hydroxyurea, and ultraviolet light may produce quite different molecular alterations in E. coli, they all cause a metabolic imbalance resulting in a lowered ratio of DNA to RNA and protein. We propose that it is this imbalance per se rather than any specific primary chemical or photochemical alterations which leads to filament formation by some genetically susceptible bacterial strains such as lon− and fil+. PMID:4867744

  7. Draft Genome Sequence of Extended-Spectrum-β-Lactamase-Producing Escherichia coli Strain CCUG 62462, Isolated from a Urine Sample

    PubMed Central

    Johnning, Anna; Jakobsson, Hedvig E.; Boulund, Fredrik; Salvà-Serra, Francisco; Åhrén, Christina; Kristiansson, Erik

    2016-01-01

    The draft genome sequence has been determined for an extended-spectrum-β-lactamase (ESBL)-producing (blaCTX-M-15) Escherichia coli strain (CCUG 62462), composed of 119 contigs and a total size of 5.27 Mb. This E. coli is serotype O25b and sequence type 131, a pandemic clonal group, causing worldwide antimicrobial-resistant infections. PMID:27979938

  8. Colonization of gnotobiotic piglets by a luxS mutant strain of Escherichia coli O157:H7.

    PubMed

    Jordan, Dianna M; Sperandio, Vanessa; Kaper, James B; Dean-Nystrom, Evelyn A; Moon, Harley W

    2005-02-01

    Gnotobiotic piglets inoculated with Escherichia coli O157:H7, its luxS mutant derivative, or nonpathogenic E. coli were evaluated for attaching and effacing lesions. Although no differences in clinical symptoms were seen between pigs inoculated with the parent and those inoculated with the luxS mutant, the luxS mutant-inoculated pigs had a lower frequency of attaching and effacing lesions in the spiral colon than parent strain-inoculated pigs.

  9. Isolating tryptophan regulatory mutants in Escherichia coli by using a trp-lac fusion strain.

    PubMed

    Reznikoff, W S; Thornton, K P

    1972-02-01

    A trp-lac fusion strain of Escherichia coli in which the lac structural genes are part of the tryptophan operon has been used to isolate trp regulatory mutants. This was accomplished by isolating lac(+) colonies on either lactose-minimal agar or lactose-MacConkey indicator agar. Seventy-seven of 78 lac(+) isolates contained mutations which mapped near the ara locus and most of these isolates were found to be 5-methyltryptophan-resistant after introduction of an F-trp episome. The lac(+) phenotypes of these 77 isolates were therefore probably the result of trpR(-) mutations. The one remaining isolate carried a mutation which was not part of the trp regulatory system.

  10. Expression of the cloned Escherichia coli O9 rfb gene in various mutant strains of Salmonella typhimurium.

    PubMed Central

    Sugiyama, T; Kido, N; Komatsu, T; Ohta, M; Kato, N

    1991-01-01

    To investigate the effect of chromosomal mutation on the synthesis of rfe-dependent Escherichia coli O9 lipopolysaccharide (LPS), the cloned E. coli O9 rfb gene was introduced into Salmonella typhimurium strains defective in various genes involved in the synthesis of LPS. When E. coli O9 rfb was introduced into S. typhimurium strains possessing defects in rfb or rfc, they synthesized E. coli O9 LPS on their cell surfaces. The rfe-defective mutant of S. typhimurium synthesized only very small amounts of E. coli O9 LPS after the introduction of E. coli O9 rfb. These results confirmed the widely accepted idea that the biosynthesis of E. coli O9-specific polysaccharide does not require rfc but requires rfe. By using an rfbT mutant of the E. coli O9 rfb gene, the mechanism of transfer of the synthesized E. coli O9-specific polysaccharide from antigen carrier lipid to the R-core of S. typhimurium was investigated. The rfbT mutant of the E. coli O9 rfb gene failed to direct the synthesis of E. coli O9 LPS in the rfc mutant strain of S. typhimurium, in which rfaL and rfbT functions are intact, but directed the synthesis of the precursor. Because the intact E. coli O9 rfb gene directed the synthesis of E. coli O9 LPS in the same strain, it was suggested that the rfaL product of S. typhimurium and rfbT product of E. coli O9 cooperate to synthesize E. coli O9 LPS in S. typhimurium. Images PMID:1987133

  11. Genotypic Characterization of Shiga Toxin-Producing Escherichia coli (STEC) Strains Recovered from Farm Animal Feces in Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract and Interpretive Summary: Provide electronically in Word. Sixty-three strains of Shiga toxin-producing Escherichia coli (STEC) were recovered from farm animal feces in distinct regions in the Culiacan Valley, an important agricultural region in Mexico for horticultural crops that...

  12. Multiple mechanisms responsible for strong Congo red-binding variants of Escherichia coli O157:H7 strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High variability in the expression of csgD-dependent, biofilm-forming and adhesive properties is common among Shiga toxin-producing Escherichia coli (STEC). Although many strains of serotype O157:H7 form little biofilm, conversion to stronger biofilm phenotypes has been observed. In this study we sc...

  13. Draft Genome Sequence of Enterotoxigenic Escherichia coli Strain E24377A, Obtained from a Tribal Drinking Water Source in India

    PubMed Central

    Nerkar, Sandeep S.; Khadake, Prashant P.; Akolkar, Dadasaheb B.; Apurwa, Sachin R.; Deshpande, Uday; Khedkar, Smita U.; Stålsby-Lundborg, Cecilia

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrheal disease in humans and animals. Its dissemination can occur through water sources contaminated by it. Here, we report for the first time the draft genome sequence of ETEC strain E24377A, obtained from a tribal drinking water source in India. PMID:25838484

  14. Draft Genome Sequence of Five Shiga Toxin-Producing Escherichia coli Strains Isolated from Wild Deer in Japan

    PubMed Central

    Ikeda, Tetsuya; Yamamoto, Shiori; Kabeya, Hidenori; Sugiyama, Hiromu; Takai, Shinji

    2017-01-01

    ABSTRACT Shiga toxin-producing Escherichia coli (STEC) is one of the major foodborne pathogens. Having observed the wide distribution of this pathogen in wild deer, we report here the draft genome sequence of five STEC strains isolated from wild deer (Cervus nippon yesoensis) in Hokkaido, Japan. PMID:28254967

  15. Simultaneous direct detection of Shiga-toxin producing Escherichia coli (STEC) strains by gold nanoparticle optical sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga-toxin producing Escherichia coli (STEC) strains (“Big Six” – O26, O45, O103, O111, O121, O145, and O157) represent significant groups of pathogens responsible for foodborne diseases. The objective of this study was to develop a colorimetric optical sensing assay that can simultaneously detect ...

  16. Resistance Pattern and Molecular Characterization of Enterotoxigenic Escherichia coli (ETEC) Strains Isolated in Bangladesh

    PubMed Central

    Begum, Yasmin A.; Talukder, K. A.; Azmi, Ishrat J.; Shahnaij, Mohammad; Sheikh, A.; Sharmin, Salma; Svennerholm, A.-M.; Qadri, Firdausi

    2016-01-01

    Background Enterotoxigenic Escherichia coli (ETEC) is a common cause of bacterial infection leading to acute watery diarrhea in infants and young children as well as in travellers to ETEC endemic countries. Ciprofloxacin is a broad-spectrum antimicrobial agent nowadays used for the treatment of diarrhea. This study aimed to characterize ciprofloxacin resistant ETEC strains isolated from diarrheal patients in Bangladesh. Methods A total of 8580 stool specimens from diarrheal patients attending the icddr,b Dhaka hospital was screened for ETEC between 2005 and 2009. PCR and Ganglioside GM1- Enzyme Linked Immuno sorbent Assay (ELISA) was used for detection of Heat labile (LT) and Heat stable (ST) toxins of ETEC. Antimicrobial susceptibilities for commonly used antibiotics and the minimum inhibitory concentration (MIC) of nalidixic acid, ciprofloxacin and azithromycin were examined. DNA sequencing of representative ciprofloxacin resistant strains was performed to analyze mutations of the quinolone resistance-determining region of gyrA, gyrB, parC and parE. PCR was used for the detection of qnr, a plasmid mediated ciprofloxacin resistance gene. Clonal variations among ciprofloxacin resistant (CipR) and ciprofloxacin susceptible (CipS) strains were determined by Pulsed-field gel electrophoresis (PFGE). Results Among 1067 (12%) ETEC isolates identified, 42% produced LT/ST, 28% ST and 30% LT alone. Forty nine percent (n = 523) of the ETEC strains expressed one or more of the 13 tested colonization factors (CFs) as determined by dot blot immunoassay. Antibiotic resistance of the ETEC strains was observed as follows: ampicillin 66%, azithromycin 27%, ciprofloxacin 27%, ceftriazone 13%, cotrimaxazole 46%, doxycycline 44%, erythromycin 96%, nalidixic acid 83%, norfloxacin 27%, streptomycin 48% and tetracycline 42%. Resistance to ciprofloxacin increased from 13% in 2005 to 34% in 2009. None of the strains was resistant to mecillinam. The MIC of the nalidixic acid and

  17. Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli.

    PubMed

    Zhang, Xueli; Shanmugam, K T; Ingram, Lonnie O

    2010-04-01

    The fermentative metabolism of Escherichia coli was reengineered to efficiently convert glycerol to succinate under anaerobic conditions without the use of foreign genes. Formate and ethanol were the dominant fermentation products from glycerol in wild-type Escherichia coli ATCC 8739, followed by succinate and acetate. Inactivation of pyruvate formate-lyase (pflB) in the wild-type strain eliminated the production of formate and ethanol and reduced the production of acetate. However, this deletion slowed growth and decreased cell yields due to either insufficient energy production or insufficient levels of electron acceptors. Reversing the direction of the gluconeogenic phosphoenolpyruvate carboxykinase reaction offered an approach to solve both problems, conserving energy as an additional ATP and increasing the pool of electron acceptors (fumarate and malate). Recruiting this enzyme through a promoter mutation (pck*) to increase expression also increased the rate of growth, cell yield, and succinate production. Presumably, the high NADH/NAD(+) ratio served to establish the direction of carbon flow. Additional mutations were also beneficial. Glycerol dehydrogenase and the phosphotransferase-dependent dihydroxyacetone kinase are regarded as the primary route for glycerol metabolism under anaerobic conditions. However, this is not true for succinate production by engineered strains. Deletion of the ptsI gene or any other gene essential for the phosphotranferase system was found to increase succinate yield. Deletion of pflB in this background provided a further increase in the succinate yield. Together, these three core mutations (pck*, ptsI, and pflB) effectively redirected carbon flow from glycerol to succinate at 80% of the maximum theoretical yield during anaerobic fermentation in mineral salts medium.

  18. Comparative genetic characterization of Enteroaggregative Escherichia coli strains recovered from clinical and non-clinical settings

    PubMed Central

    Zhang, Rong; Gu, Dan-xia; Huang, Yong-lu; Chan, Edward Wai-Chi; Chen, Gong-Xiang; Chen, Sheng

    2016-01-01

    The origin of pathogenic Enteroaggregative Escherichia coli (EAEC), a major causative agent of childhood diarrhea worldwide, remains ill-defined. The objective of this study was to determine the relative prevalence of EAEC in clinical and non-clinical sources and compare their genetic characteristics in order to identify strains that rarely and commonly cause human diarrhea. The virulence gene astA was commonly detectable in both clinical and non-clinical EAEC, while clinical isolates, but not the non-clinical strains, were consistently found to harbor other virulence factors such as aap (32%), aatA (18%) and aggR (11%). MLST analysis revealed the extremely high diversity of EAEC ST types, which can be grouped into three categories including: (i) non-clinical EAEC that rarely cause human infections; (ii) virulent strains recoverable in diarrhea patients that are also commonly found in the non-clinical sources; (iii) organisms causing human infections but rarely recoverable in the non-clinical setting. In addition, the high resistance in these EAEC isolates in particular resistance to fluoroquinolones and cephalosporins raised a huge concern for clinical EAEC infection control. The data from this study suggests that EAEC strains were diversely distributed in non-clinical and clinical setting and some of the clinical isolates may originate from the non-clinical setting. PMID:27062991

  19. Functional genotypes are associated with commensal Escherichia coli strain abundance within-host individuals and populations.

    PubMed

    Blyton, Michaela D J; Banks, Sam C; Peakall, Rod; Gordon, David M

    2013-08-01

    The selective pressures that determine genotype abundance and distribution frequently vary between ecological levels. Thus, it is often unclear whether the same functional genotypes will become abundant at different levels and how selection acting at these different scales is linked. In this study, we examined whether particular functional genotypes, defined by the presence or absence of 34 genes, of commensal Escherichia coli strains were associated with within-host abundance and/or host population abundance in a wild population of 54 adult mountain brushtail possums (Trichosurus cunninghami). Our results revealed that there was a positive correlation between a strain's relative abundance within individuals and the strain's abundance in the host population. We also found that strain abundance at both ecological levels was predicted by the same group of functional genes (agn43, focH, micH47, iroN, ygiL, ompT, kspmT2 and K1) that had associated patterns of occurrence. We propose that direct selection on the same functional genes at both levels may in part be responsible for the observed correlation between the ecological levels. However, a potential link between abundance within the host and excretion rate may also contribute.

  20. Escherichia coli strains expressing H12 antigens demonstrate an increased ability to attach to abiotic surfaces as compared with E. coli strains expressing H7 antigens.

    PubMed

    Goulter, Rebecca M; Taran, Elena; Gentle, Ian R; Gobius, Kari S; Dykes, Gary A

    2014-07-01

    The role of Escherichia coli H antigens in hydrophobicity and attachment to glass, Teflon and stainless steel (SS) surfaces was investigated through construction of fliC knockout mutants in E. coli O157:H7, O1:H7 and O157:H12. Loss of FliC(H12) in E. coli O157:H12 decreased attachment to glass, Teflon and stainless steel surfaces (p<0.05). Complementing E. coli O157:H12 ΔfliC(H12) with cloned wildtype (wt) fliC(H12) restored attachment to wt levels. The loss of FliCH7 in E. coli O157:H7 and O1:H7 did not always alter attachment (p>0.05), but complementation with cloned fliC(H12), as opposed to cloned fliCH7, significantly increased attachment for both strains compared with wt counterparts (p<0.05). Hydrophobicity determined using bacterial adherence to hydrocarbons and contact angle measurements differed with fliC expression but was not correlated to the attachment to materials included in this study. Purified FliC was used to functionalise silicone nitride atomic force microscopy probes, which were used to measure adhesion forces between FliC and substrates. Although no significant difference in adhesion force was observed between FliC(H12) and FliCH7 probes, differences in force curves suggest different mechanism of attachment for FliC(H12) compared with FliCH7. These results indicate that E. coli strains expressing flagellar H12 antigens have an increased ability to attach to certain abiotic surfaces compared with E. coli strains expressing H7 antigens.

  1. THE WIDESPREAD OCCURRENCE OF THE ENTEROHEMOLYSIN GENE EHLYA AMONG ENVIRONMENTAL STRAINS OF ESCHERICHIA COLI

    EPA Science Inventory

    The putative virulence factor enterohemolysin, encoded for by the ehlyA gene, has been closely associated with the pathogenic enterohemorrhagic Escherichia coli (EHEC) group. E. coli isolates from effluents from seven geographically dispersed municipal ...

  2. Characterization of Escherichia coli 0157:H7 strains isolated from supershedding cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous reports have indicated that a small proportion of cattle shedding high levels of Escherichia coli O157:H7 is the main source for transmission of this organism between animals. Cattle achieving a fecal shedding status of 10**4 CFU of E. coli O157: H7/gram or greater are now referred to as su...

  3. Proteomic analysis reveals protein expression differences in Escherichia coli strains associated with persistent versus transient mastitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli is a leading cause of bacterial mastitis in dairy cattle. Typically this infection is transient in nature, causing an infection that lasts 2-3 days. However, in a minority of cases, E. coli has been shown to cause a persistent intramammary infection. The mechanisms that allow for...

  4. Genetic features of human and bovine Escherichia coli O157:H7 strains isolated in Argentina.

    PubMed

    Pianciola, L; D'Astek, B A; Mazzeo, M; Chinen, I; Masana, M; Rivas, M

    2016-02-01

    Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens associated with human diseases. In Argentina, O157:H7 is the dominant serotype in hemolytic uremic syndrome (HUS) cases. Previously, we have described the almost exclusive circulation of human E. coli O157 strains belonging to the hypervirulent clade 8 in Neuquén Province. The aim of the present study was to investigate, by a broad molecular characterization, if this particular distribution of E. coli O157 clades in Neuquén is similar to the situation in other regions of the country and if it may be originated in a similar profile in cattle, its main reservoir. Two-hundred and eighty O157 strains (54 bovine and 226 human) isolated between 2006 and 2008 in different regions of Argentina were studied. All strains harbored rfbO157, fliCH7, eae, and ehxA genes. The predominant genotype was stx2a/stx2c in human (76.1%) and bovine (55.5%) strains. All human isolates tested by Lineage-Specific Polymorphism Assay (LSPA-6), were lineage I/II; among bovine strains, 94.1% belonged to lineage I/II and 5.9% to lineage I. No LSPA-6 lineage II isolates were detected. Single nucleotide polymorphism (SNP) analysis has revealed the existence of nine clade phylogenetic groups. In our clinical strains collection, 87.6% belonged to the hypervirulent clade 8, and 12.4% were classified as clade 4/5. In bovine isolates, 59.3% strains were clade 8, 33.3% clade 4/5 and 7.4% clade 3. More than 80% of human strains showed the presence of 6 of the 7 virulence determinants described in the TW14359 O157 strain associated with the raw spinach outbreak in the U.S. in 2006. More than 80% of bovine strains showed the presence of 3 of these factors. The q933 allele, which has been related to high toxin production, was present in 98.2% of clinical strains and 75.9% of the bovine isolates. The molecular characterization of human STEC O157 strains allows us to conclude that the particular situation previously described

  5. Pathogenicity of Vietnamese enterotoxigenic Escherichia coli strains in colostrum-deprived one-day-old piglets.

    PubMed

    Do, T N; Wilkie, I; Driesen, S J; Fahy, V A; Trott, D J

    2006-03-01

    Preweaning colibacillosis is a major cause of economic loss to the swine industry in Vietnam. The aim of this study was to examine the enteropathogenicity of representative enterotoxigenic Escherichia coli (ETEC) strains obtained during an earlier epidemiologic survey conducted in five provinces in North Vietnam. This included isolates belonging to serotype O8 that produced heat-stable and heat-labile enterotoxins but did not produce any of the recognized fimbriae (F4, F5, F6, F41, F18). In vitro hemagglutination (unique mannose-resistant hemagglutination activity with guinea pig, sheep, human, and chicken red blood cells at 37 degrees C, but not at 18 degrees C) and enterocyte brush border attachment assays suggested that the F- ETEC strains produced an unidentified colonization factor that promoted adherence to the intestinal epithelium. Colostrum-deprived 1-day-old piglets challenged with an F- strain (1-2 x 10(9) bacteria) developed acute watery diarrhea within 4 hours of inoculation and suffered up to 20% weight loss, with comparable severity to piglets challenged with conventional F4 and F5 strains. At necropsy, viable counts and histopathologic examination of intestinal sections demonstrated colonization of the duodenum, jejunum, and ileum by F4-positive strains. In comparison, the F- and F5-positive strains attached exclusively to the ileum. Transmission electron micrographs of negatively stained F- cells grown at 37 degrees C demonstrated the presence of fimbriae. These results confirm the presence of a potentially new pathogenic ETEC fimbrial type in piggeries in Vietnam, with a unique hemagglutination property and attachment characteristics similar to ETEC bearing F5 fimbriae.

  6. A versatile Escherichia coli strain for identification of biotin transporters and for biotin quantification

    PubMed Central

    Finkenwirth, Friedrich; Kirsch, Franziska; Eitinger, Thomas

    2014-01-01

    Biotin is an essential cofactor of carboxylase enzymes in all kingdoms of life. The vitamin is produced by many prokaryotes, certain fungi, and plants. Animals depend on biotin uptake from their diet and in humans lack of the vitamin is associated with serious disorders. Many aspects of biotin metabolism, uptake, and intracellular transport remain to be elucidated. In order to characterize the activity of novel biotin transporters by a sensitive assay, an Escherichia coli strain lacking both biotin synthesis and its endogenous high-affinity biotin importer was constructed. This strain requires artificially high biotin concentrations for growth. When only trace levels of biotin are available, it is viable only if equipped with a heterologous high-affinity biotin transporter. This feature was used to ascribe transport activity to members of the BioY protein family in previous work. Here we show that this strain together with its parent is also useful as a diagnostic tool for wide-concentration-range bioassays. PMID:24256712

  7. The persistence of drug resistant Escherichia coli strains in the majority faecal flora of calves.

    PubMed Central

    Hinton, M.; Rixson, P. D.; Allen, V.; Linton, A. H.

    1984-01-01

    Two groups of calves, one of three and the other of two animals, were purchased in markets and reared initially on a commercial veal unit for 1 month and 4 months respectively. They were then moved to the Veterinary School, Langford, and kept for a further 6 and 4 months respectively. The animals were sampled weekly and a continual turnover in the strains forming the majority Escherichia coli faecal flora was demonstrated for all calves. Antibacterial-drug resistance, as measured by an Antibiotic Resistance Index (ARI), increased after arrival on the veal unit and persisted at high levels during the whole of their stay. After moving to Langford the ARI fell. Initially there was a reduction in the average number of resistance determinants per resistant strain and then, after a delay of up to 8 weeks, by an increase in the proportion of isolates that were fully sensitive. The source of the sensitive strains was not ascertained, although their appearance was not associated specifically with either weaning or turning out to pasture. PMID:6392420

  8. A Modular, Tn7-Based System for Making Bioluminescent or Fluorescent Salmonella and Escherichia coli Strains

    PubMed Central

    Shivak, Dylan J.; MacKenzie, Keith D.; Watson, Nikole L.; Pasternak, J. Alex; Jones, Brian D.; Wang, Yejun; DeVinney, Rebekah; Wilson, Heather L.; Surette, Michael G.

    2016-01-01

    ABSTRACT Our goal was to develop a robust tagging method that can be used to track bacterial strains in vivo. To address this challenge, we adapted two existing systems: a modular plasmid-based reporter system (pCS26) that has been used for high-throughput gene expression studies in Salmonella and Escherichia coli and Tn7 transposition. We generated kanamycin- and chloramphenicol-resistant versions of pCS26 with bacterial luciferase, green fluorescent protein (GFP), and mCherry reporters under the control of σ70-dependent promoters to provide three different levels of constitutive expression. We improved upon the existing Tn7 system by modifying the delivery vector to accept pCS26 constructs and moving the transposase genes from a nonreplicating helper plasmid into a temperature-sensitive plasmid that can be conditionally maintained. This resulted in a 10- to 30-fold boost in transposase gene expression and transposition efficiencies of 10−8 to 10−10 in Salmonella enterica serovar Typhimurium and E. coli APEC O1, whereas the existing Tn7 system yielded no successful transposition events. The new reporter strains displayed reproducible signaling in microwell plate assays, confocal microscopy, and in vivo animal infections. We have combined two flexible and complementary tools that can be used for a multitude of molecular biology applications within the Enterobacteriaceae. This system can accommodate new promoter-reporter combinations as they become available and can help to bridge the gap between modern, high-throughput technologies and classical molecular genetics. IMPORTANCE This article describes a flexible and efficient system for tagging bacterial strains. Using our modular plasmid system, a researcher can easily change the reporter type or the promoter driving expression and test the parameters of these new constructs in vitro. Selected constructs can then be stably integrated into the chromosomes of desired strains in two simple steps. We demonstrate the

  9. Engineering of Escherichia coli strains for plasmid biopharmaceutical production: scale-up challenges.

    PubMed

    Gonçalves, Geisa A L; Prather, Kristala L J; Monteiro, Gabriel A; Prazeres, Duarte M F

    2014-05-19

    Plasmid-based vaccines and therapeutics have been making their way into the clinic in the last years. The existence of cost-effective manufacturing processes capable of delivering high amounts of high-quality plasmid DNA (pDNA) is essential to generate enough material for trials and support future commercialization. However, the development of pDNA manufacturing processes is often hampered by difficulties in predicting process scale performance of Escherichia coli cultivation on the basis of results obtained at lab scale. This paper reports on the differences observed in pDNA production when using shake flask and bench-scale bioreactor cultivation of E. coli strains MG1655ΔendAΔrecA and DH5α in complex media with 20 g/L of glucose. MG1655ΔendAΔrecA produced 5-fold more pDNA (9.8 mg/g DCW) in bioreactor than in shake flask (1.9 mg/g DCW) and DH5α produced 4-fold more pDNA (8 mg/g DCW) in bioreactor than in shake flask (2 mg/g DCW). Accumulation of acetate was also significant in shake flasks but not in bioreactors, a fact that was attributed to a lack of control of pH.

  10. Characterization of heat-shock proteins in Escherichia coli strains under thermal stress in vitro.

    PubMed

    Urban-Chmiel, Renata; Dec, Marta; Puchalski, Andrzej; Wernicki, Andrzej

    2013-12-01

    The aim of this study was to evaluate the effect of heat stress in in vitro conditions on the induction of heat-shock protein (Hsp)70 by Escherichia coli cells, and to determine the localization of Hsps in cell fractions. The material consisted of wild strains of E. coli isolated from the digestive tract of calves, suspended in an exponential-phase culture and subjected to 41.5 °C for 2 h. Individual fractions were analysed by SDS-PAGE and two-dimensional electrophoresis. Western blotting with mouse anti-Hsp70 and anti-Hsp60 mAbs was used to identify the proteins. Electrophoretic analysis of the heat-treated cells detected Hsp70 in all three fractions, cytoplasmic, periplasmic and membrane, which was confirmed by Western blotting. The proteins obtained had diverse localizations in the pH gradient in two-dimensional electrophoresis, which may indicate changes in their conformation and physical properties leading to stabilization and protection of intracellular structures in stress conditions. The presence of these Hsps in different cell fractions indicates a very strong protective adaptation in the bacteria in unfavourable conditions, which is critical for the organism infected by them.

  11. Clonal spread in Eastern Asia of ciprofloxacin-resistant Escherichia coli serogroup O25 strains, and associated virulence factors.

    PubMed

    Uchida, Yujiro; Mochimaru, Tomomi; Morokuma, Yuiko; Kiyosuke, Makiko; Fujise, Masako; Eto, Fujiko; Eriguchi, Yoshihiro; Nagasaki, Yoji; Shimono, Nobuyuki; Kang, Dongchon

    2010-05-01

    A significant problem in the field of infectious diseases is the increase in fluoroquinolone (FQ)-resistant Escherichia coli. Although mutation of strains and clonal dissemination are supposed to be the cause of this increase, little is known about the prevalence of this organism. We investigated 219 FQ-resistant E. coli strains in Japan and nine Asian countries by serotyping and genotyping. Seventy-one strains (32.4%) were serogroup O25, which was prevalent in South Korea, China and Japan, especially in the southwest part of Japan. Aerobactin, a virulence factor in uropathogenic and avian pathogenic E. coli, was associated with the presence of FQ-resistant O25 strains of E. coli. Seven of the seventy-one FQ-resistant E. coli O25 had extended-spectrum beta-lactamase genes (six CTX-M-14 and one SHV-12), however, we were unable to find any E. coli O25-ST131 clone that produced CTX-M-15, which was previously reported to have emerged across continents. These data demonstrate that a clonal group of FQ-resistant and virulent E. coli recently became prevalent at least in East Asia and suggest that this might become a public health problem because the strains may acquire resistance to other antimicrobial agents.

  12. Phenotypic characterization and genomic DNA polymorphisms of Escherichia coli strains isolated as the sole micro-organism from vaginal infections.

    PubMed

    Lobos, Olga; Padilla, Carlos

    2009-03-01

    Vaginal infections such as vulvovaginal candiadiasis, trichomoniasis and bacterial vaginosis are common worldwide. Accurate diagnosis and prescription of appropriate treatments are important since these infections are linked to adverse outcomes for women during pregnancy and for newborns. Several aetiological agents are responsible for these infectious diseases; however, the presence of Escherichia coli in these infections is controversial. Thus, it is important to identify some phenotypic and genotypic properties of E. coli strains isolated from vaginal infections. Forty-six E. coli strains isolated from vaginal fluid as the sole micro-organism, and 20 other E. coli strains isolated from other samples (urinary tract infections, otitis and septicaemia) were analysed by several phenotypic tests. In addition, genotypic features were studied by RAPD-PCR techniques. Biochemical tests showed that the E. coli strains isolated from vaginal fluid could be grouped into a single cluster which is subdivided into two phenogroups. Analysis of the dendrogram based on fragment length polymorphisms of genomic DNA indicated that E. coli isolates from vaginal infections form a single cluster with two subdivisions. Further studies are needed to analyse the molecular structure and virulence characteristics of these E. coli strains in order to determine their potential role in vaginal infections.

  13. Molecular characterization of diarrheagenic Escherichia coli strains from stools samples and food products in Colombia

    PubMed Central

    Rúgeles, Laura Cristina; Bai, Jing; Martínez, Aída Juliana; Vanegas, María Consuelo; Gómez-Duarte, Oscar Gilberto

    2010-01-01

    The prevalence of diarrheagenic E. coli in childhood diarrhea and the role of contaminated food products in disease transmission in Colombia are largely unknown. The aim of this study is to identify E. coli pathotypes, including E. coli O157:H7, from 108 stool samples from children with acute diarrhea, 38 meat samples and 38 vegetable samples. Multiplex PCR and Bax Dupont systems were used for E. coli pathotype detection. Eighteen (9.8%) E. coli diarrheagenic pathotypes were detected among all clinical and food product samples tested. Four different pathotypes were identified from clinical samples, including enteroaggregative E. coli, enterotoxigenic E. coli, shiga-toxin producing E. coli, and enteropathogenic E. coli. Food product samples were positive for enteroaggregative and shiga-toxin producing E. coli, suggesting that meat and vegetables may be involved in transmission of these E. coli pathotypes in the community. Most E. coli strains identified belong to the phylogenetic groups A and B1, known to be associated with intestinal rather than extraintestinal E. coli clones. Our data is the first molecular E. coli report that confirms the presence of E. coli pathotypes circulating in Colombia among children with diarrhea and food products for human consumption. Implementation of multiplex PCR technology in Latin America and other countries with limited resources may provide an important epidemiological tool for the surveillance of E. coli pathotypes from clinical isolates as well as from water and food product samples. PMID:20153069

  14. Comprehensive expression analysis of pathogenicity genes in uropathogenic Escherichia coli strains.

    PubMed

    Paniagua-Contreras, Gloria Luz; Hernández-Jaimes, Tania; Monroy-Pérez, Eric; Vaca-Paniagua, Felipe; Díaz-Velásquez, Clara; Uribe-García, Alina; Vaca, Sergio

    2017-02-01

    In this study, we investigated distinct expression patterns of genes encoding iron-acquisition systems, adhesins, protectins, and toxins in human uroepithelial cells infected with 194 uropathogenic Escherichia coli (UPEC) strains in vitro. We assessed the association of these genes with antibiotic resistance genes in this group of UPEC strains, previously characterised by polymerase chain reaction (PCR). Strains were isolated from patients with urinary tract infections (UTIs) from Unidad Médica Familiar de Salud Pública, located in Estado de México, México. Antibiotic resistance genes were identified by PCR, and the expression of virulence genes was detected by reverse-transcriptase-PCR after in vitro infection of cultured A431 human keratinocytes derived from a vulvar epidermoid carcinoma. The most frequently expressed virulence genotypes among the investigated UPEC strains included usp (68%), iha (64.9%), kpsMT (61.3%), fim (58.2%), irp2 (48.4), papC (33.5%), set (31.4%) and astA (30.9%), whereas the most frequently detected antibiotic resistance genes were tet(A) (34%), sul1 (31.4%) and TEM (26.3%). Furthermore, the most abundant pattern of gene expression (irp2/fim/iha/kpsMT/usp), associated with 8 different combinations of antibiotic resistance genotypes, was exhibited by 28 strains (14.4%). Taken together, these results indicate collective participation of distinct virulence UPEC genotypes during in vitro infection of cultured human epithelial cells, suggesting their potential involvement in UTI pathogenesis.

  15. Investigation of carbon storage regulation network (csr genes) and phenotypic differences between acid sensitive and resistant Escherichia coli O157:H7 strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Escherichia coli O157:H7 and related serotype strains have previously been shown to vary in acid resistance, however, little is known about strain specific mechanisms of acid resistance. We examined sensitive and resistant E. coli strains to determine the effects of growth in minimal and...

  16. [Sensitivity assessment of thyme and lavender essential oils against clinical strains of Escherichia coli for their resistance].

    PubMed

    Sienkiewicz, Monika; Kalemba, Danuta; Wasiela, Małgorzata

    2011-01-01

    Strong antiseptic activity of plant essential oils and extracts has been known for a long time. The antibacterial activity of thyme and lavender essential oils were tested against 30 clinical bacterial strains of Escherichia coli from patients with different clinical conditions. The agar diffusion method was used for microbial growth inhibition at various concentrations of the oils from Thymus vulgaris and Lavandula angustifolia. Susceptibility testing to antibiotics and chemotherapeutics was carried out using disc-diffusion method. The results of experiments showed that the both oils, from T. vulgaris and L. angustifolia were active against all of the clinical strains, but thyme oil demonstrated the highest activity. Thyme and lavender essential oils were active against multi drug resistant clinical strains of Escherichia coli genera. The results of experiments justify a study related to activity other essential oils against different genus of bacteria.

  17. Deciphering the Magainin Resistance Process of Escherichia coli Strains in Light of the Cytosolic Proteome

    PubMed Central

    Maria-Neto, Simone; Cândido, Elizabete de Souza; Rodrigues, Diana Ribas; de Sousa, Daniel Amaro; da Silva, Ezequiel Marcelino; de Moraes, Lidia Maria Pepe; Otero-Gonzalez, Anselmo de Jesus; Magalhães, Beatriz Simas; Dias, Simoni Campos

    2012-01-01

    Antimicrobial peptides (AMPs) are effective antibiotic agents commonly found in plants, animals, and microorganisms, and they have been suggested as the future of antimicrobial chemotherapies. It is vital to understand the molecular details that define the mechanism of action of resistance to AMPs for a rational planning of the next antibiotic generation and also to shed some light on the complex AMP mechanism of action. Here, the antibiotic resistance of Escherichia coli ATCC 8739 to magainin I was evaluated in the cytosolic subproteome. Magainin-resistant strains were selected after 10 subsequent spreads at subinhibitory concentrations of magainin I (37.5 mg · liter−1), and their cytosolic proteomes were further compared to those of magainin-susceptible strains through two-dimensional electrophoresis analysis. As a result, 41 differentially expressed proteins were detected by in silico analysis and further identified by tandem mass spectrometry de novo sequencing. Functional categorization indicated an intense metabolic response mainly in energy and nitrogen uptake, stress response, amino acid conversion, and cell wall thickness. Indeed, data reported here show that resistance to cationic antimicrobial peptides possesses a greater molecular complexity than previously supposed, resulting in cell commitment to several metabolic pathways. PMID:22290970

  18. Characterization of spontaneous mutation in the oxyR strain of Escherichia coli.

    PubMed

    Yamamura, E; Nunoshiba, T; Kawata, M; Yamamoto, K

    2000-12-20

    Escherichia coli K-12 strain EY5, deficient in oxyR, was constructed to assess the role of oxyR and oxyR-regulated regulon in spontaneous mutagenesis. Mutagenesis was monitored by selecting two forward mutations of colicin B-sensitive to resistance and valine-sensitive to resistance, one base substitution mutation of rifampicin-sensitive to resistance and one reversion of argE3 his-4 to Arg(+) His(+). Deficiency of oxyR did not lead to the enhancement of spontaneous mutation frequencies of the four markers tested. By DNA sequence analysis, we determined 49 colicin B-resistant mutants derived from EY5 and found that 37% were base substitutions, 29% IS element insertions, 20% deletions, and 14% single base frameshifts. Among the base substitutions, G:C-->T:A transversions predominated followed by G:C-->A:T transitions and A:T-->T:A transversions. These spectra were essentially the same as those from oxyR(+) strains. The results indicate that oxyR and oxyR-regulated genes do not play a significant role in the defense against spontaneous mutagenesis.

  19. Antimicrobial resistance profiles and molecular characterization of Escherichia coli strains isolated from healthy adults in Ho Chi Minh City, Vietnam

    PubMed Central

    HOANG, Phuong Hoai; AWASTHI, Sharda Prasad; DO NGUYEN, Phuc; NGUYEN, Ngan Ly Hoang; NGUYEN, Dao Thi Anh; LE, Ninh Hoang; VAN DANG, Chinh; HINENOYA, Atsushi; YAMASAKI, Shinji

    2017-01-01

    In this study, we attempted to isolate Escherichia coli from healthy adults in Ho Chi Minh City, Vietnam, and characterized its antimicrobial resistance profile, extended-spectrum β-lactamase (ESBL) genotype, phylogenetic grouping and virulence gene profile. A total of 103 E. coli isolates were obtained, and most of them were antimicrobial resistant such to streptomycin (80.6%), tetracycline (67.0%), ampicillin (65.0%), sulfamethoxsazole/trimethoprim (48.5%), nalidixic acid (43.7%), chloramphenicol (34.0%), cefotaxime (15.5%), ciprofloxacin (15.5%), kanamycin (12.6%), ceftazidime (10.7%), fosfomycin (4.9%) and gentamicin (2.9%). However, all these E. coli strains were susceptible to imipenem. Surprisingly, of 103 strains, 74 (71.8%) and 43 (41.7%) strains showed resistance to more than 3 and 5 classes of antimicrobials, respectively. Furthermore, 10 E. coli strains were ESBL-producers and positive for blaCTX-M genes (7 for blaCTX-M-9 and 3 for blaCTX-M-1), while five were additionally positive for blaTEM genes. S1-nuclease pulsed-field gel electrophoresis analysis revealed that 7 and 3 strains of E. coli carry blaCTX-M genes on their large plasmid and chromosome, respectively. Phylogenetic analysis exhibited that majority of the E. coli strains was grouped into A (44.7%), followed by B1 (23.3%), B2 (18.4%) and D (13.6%). Virulence genes associated with diarrheagenic E. coli, such as astA, EAF, eaeA, elt and eagg were also detected in ESBL-producing E. coli as well as antimicrobial resistant strains. These data suggest that commensal E. coli of healthy human could be a reservoir for antimicrobial resistance determinants and some of them might be harmful to human. PMID:28123141

  20. Antimicrobial resistance profiles and molecular characterization of Escherichia coli strains isolated from healthy adults in Ho Chi Minh City, Vietnam.

    PubMed

    Hoang, Phuong Hoai; Awasthi, Sharda Prasad; DO Nguyen, Phuc; Nguyen, Ngan Ly Hoang; Nguyen, Dao Thi Anh; LE, Ninh Hoang; VAN Dang, Chinh; Hinenoya, Atsushi; Yamasaki, Shinji

    2017-03-18

    In this study, we attempted to isolate Escherichia coli from healthy adults in Ho Chi Minh City, Vietnam, and characterized its antimicrobial resistance profile, extended-spectrum β-lactamase (ESBL) genotype, phylogenetic grouping and virulence gene profile. A total of 103 E. coli isolates were obtained, and most of them were antimicrobial resistant such to streptomycin (80.6%), tetracycline (67.0%), ampicillin (65.0%), sulfamethoxsazole/trimethoprim (48.5%), nalidixic acid (43.7%), chloramphenicol (34.0%), cefotaxime (15.5%), ciprofloxacin (15.5%), kanamycin (12.6%), ceftazidime (10.7%), fosfomycin (4.9%) and gentamicin (2.9%). However, all these E. coli strains were susceptible to imipenem. Surprisingly, of 103 strains, 74 (71.8%) and 43 (41.7%) strains showed resistance to more than 3 and 5 classes of antimicrobials, respectively. Furthermore, 10 E. coli strains were ESBL-producers and positive for blaCTX-M genes (7 for blaCTX-M-9 and 3 for blaCTX-M-1), while five were additionally positive for blaTEM genes. S1-nuclease pulsed-field gel electrophoresis analysis revealed that 7 and 3 strains of E. coli carry blaCTX-M genes on their large plasmid and chromosome, respectively. Phylogenetic analysis exhibited that majority of the E. coli strains was grouped into A (44.7%), followed by B1 (23.3%), B2 (18.4%) and D (13.6%). Virulence genes associated with diarrheagenic E. coli, such as astA, EAF, eaeA, elt and eagg were also detected in ESBL-producing E. coli as well as antimicrobial resistant strains. These data suggest that commensal E. coli of healthy human could be a reservoir for antimicrobial resistance determinants and some of them might be harmful to human.

  1. Biofilm formation and sanitizer resistance of Escherichia coli O157:H7 strains isolated from "high event period" meat contamination.

    PubMed

    Wang, Rong; Kalchayanand, Norasak; King, David A; Luedtke, Brandon E; Bosilevac, Joseph M; Arthur, Terrance M

    2014-11-01

    In the meat industry, a "high event period" (HEP) is defined as a time period during which commercial meat plants experience a higher than usual rate of Escherichia coli O157:H7 contamination. Genetic analysis indicated that within a HEP, most of the E. coli O157:H7 strains belong to a singular dominant strain type. This was in disagreement with the current beef contamination model stating that contamination occurs when incoming pathogen load on animal hides, which consists of diverse strain types of E. coli O157:H7, exceeds the intervention capacity. Thus, we hypothesize that the HEP contamination may be due to certain in-plant colonized E. coli O157:H7 strains that are better able to survive sanitization through biofilm formation. To test our hypothesis, a collection of 45 E. coli O157:H7 strains isolated from HEP beef contamination incidents and a panel of 47 E. coli O157:H7 strains of diverse genetic backgrounds were compared for biofilm formation and sanitizer resistance. Biofilm formation was tested on 96-well polystyrene plates for 1 to 6 days. Biofilm cell survival and recovery growth after sanitization were compared between the two strain collections using common sanitizers, including quaternary ammonium chloride, chlorine, and sodium chlorite. No difference in "early stage" biofilms was observed between the two strain collections after incubation at 22 to 25°C for 1 or 2 days. However, the HEP strains demonstrated significantly higher potency of "mature" biofilm formation after incubation for 4 to 6 days. Biofilms of the HEP strains also exhibited significantly stronger resistance to sanitization. These data suggest that biofilm formation and sanitization resistance could have a role in HEP beef contamination by E. coli O157:H7, which highlights the importance of proper and complete sanitization of food contact surfaces and food processing equipment in commercial meat plants.

  2. Inhibition profiles of mono- and polyvalent FimH antagonists against 10 different Escherichia coli strains.

    PubMed

    Chalopin, T; Brissonnet, Y; Sivignon, A; Deniaud, D; Cremet, L; Barnich, N; Bouckaert, J; Gouin, S G

    2015-12-14

    Mono- and polyvalent ligands with strong affinities for the mannose-binding adhesin FimH were synthesised, and their anti-adhesive properties against ten E. coli strains were compared in two cell-based assays. The compounds were assessed against the non-pathogenic E. coli K12 and nine strains isolated by coproculture or from patients with osteoarticular infections (OIs), Crohn's disease (CD) and urinary tract infections (UTIs). The results showed that the compounds could inhibit the whole set of bacterial strains but with marked differences in terms of effective concentrations. The relative inhibitory potency of the monovalent compounds was also conserved for the ten strains and in the two assays. These results clearly suggest that a potent monovalent anti-adhesive assessed on a single E. coli strain will probably be effective on a broad range of strains and may treat diverse E. coli infections (OIs, CD and UTIs). In contrast, the polyvalent compounds showed a significant strain-dependancy in preventing E. coli attachment to intestinal cells. The multivalent antiadhesive effect may therefore vary depending on the E. coli strain tested.

  3. High-virulence CMY-2- and CTX-M-2-producing avian pathogenic Escherichia coli strains isolated from commercial turkeys.

    PubMed

    da Silva, Ketrin Cristina; Cunha, Marcos Paulo Vieira; Cerdeira, Louise; de Oliveira, Maria Gabriela Xavier; de Oliveira, Mirela Caroline Vilela; Gomes, Cleise Ribeiro; Lincopan, Nilton; Knöbl, Terezinha; Moreno, Andrea Micke

    2017-01-01

    This study reports the high-virulence phylogenetic backgrounds of CMY-2- and CTX-M-2-producing avian pathogenic Escherichia coli strains isolated from turkeys sent to slaughter and condemned by airsacculitis in Brazil. Among 300 air sac samples, seven E. coli strains produced plasmid-mediated CMY-2-type AmpC, of which three carried also the blaCTX-M-2 Extended Spectrum Beta-Lactamase encoding gene. Interestingly, the transfer of the blaCMY-2 gene was positive for three E. coli strains, being associated with the presence of IncI1 plasmids. The complete sequence of the representative pJB10 plasmid revealed that the blaCMY-2 gene was within a transposon-like element in the classical genetic environment consisting of tnpA-blaCMY-2-blc-sugE structure. This plasmid with 94-kb belonged to the sequence type (ST) 12 among IncI1 plasmids, which has been associated with the worldwide spread of blaCMY-2 among Salmonella enterica and E. coli. Furthermore, to the best of our knowledge, this is the first complete sequence of a CMY-2-encoding plasmid derived from an Escherichia coli isolated from food-producing animals in Latin America.

  4. Ethanol production from lignocellulosic biomass by recombinant Escherichia coli strain FBR5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignocellulosic biomass, upon pretreatment and enzymatic hydrolysis, generates a mixture of hexose and pentose sugars such as glucose, xylose, arabinose and galactose. Escherichia coli utilizes all these sugars well but it lacks the ability to produce ethanol from them. Recombinant ethanologenic E...

  5. Comparative genomic analysis and adherence characteristics of supershedder strains of Escherichia coli O157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli O157:H7 (O157) is a zoonotic foodborne pathogen of major public health concern that results in considerable intestinal and extra-intestinal illness in humans. Asymptomatic cattle are the primary reservoir of O157 and harbor the pathogen at the terminal recto-an...

  6. Changes in the proteome of Mastitis-causing escherichia coli strains that affect pathogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli is a leading cause of bacterial mastitis in dairy cattle. Milk is the environment in which bacteria must grow to establish an infection of the mammary gland. However, milk is not a rich growth media for bacteria. In fact, milk naturally contains many mechanisms to inhibit bacterial ...

  7. Development of a Multiplex PCR Assay for Detection of Shiga Toxin-Producing Escherichia coli, Enterohemorrhagic E. coli, and Enteropathogenic E. coli Strains

    PubMed Central

    Botkin, Douglas J.; Galli, Lucía; Sankarapani, Vinoth; Soler, Michael; Rivas, Marta; Torres, Alfredo G.

    2012-01-01

    Escherichia coli O157:H7 and other pathogenic E. coli strains are enteric pathogens associated with food safety threats and which remain a significant cause of morbidity and mortality worldwide. In the current study, we investigated whether enterohemorrhagic E. coli (EHEC), Shiga toxin-producing E. coli (STEC), and enteropathogenic E. coli (EPEC) strains can be rapidly and specifically differentiated with multiplex PCR (mPCR) utilizing selected biomarkers associated with each strain’s respective virulence genotype. Primers were designed to amplify multiple intimin (eae) and long polar fimbriae (lpfA) variants, the bundle-forming pilus gene bfpA, and the Shiga toxin-encoding genes stx1 and stx2. We demonstrated consistent amplification of genes specific to the prototype EHEC O157:H7 EDL933 (lpfA1-3, lpfA2-2, stx1, stx2, and eae-γ) and EPEC O127:H6 E2348/69 (eae-α, lpfA1-1, and bfpA) strains using the optimized mPCR protocol with purified genomic DNA (gDNA). A screen of gDNA from isolates in a diarrheagenic E. coli collection revealed that the mPCR assay was successful in predicting the correct pathotype of EPEC and EHEC clones grouped in the distinctive phylogenetic disease clusters EPEC1 and EHEC1, and was able to differentiate EHEC1 from EHEC2 clusters. The assay detection threshold was 2 × 104 CFU per PCR reaction for EHEC and EPEC. mPCR was also used to screen Argentinean clinical samples from hemolytic uremic syndrome and diarrheal patients, resulting in 91% sensitivity and 84% specificity when compared to established molecular diagnostic procedures. In conclusion, our mPCR methodology permitted differentiation of EPEC, STEC and EHEC strains from other pathogenic E. coli; therefore, the assay becomes an additional tool for rapid diagnosis of these organisms. PMID:22919600

  8. Influence of sanitizers on the lipopolysaccharide toxicity of Escherichia coli strains cultivated in the presence of Zygosaccharomyces bailii.

    PubMed

    Mogotsi, Lerato; De Smidt, Olga; Venter, Pierre; Groenewald, Willem

    2014-01-01

    The influence of sublethal concentrations of two sanitizers, liquid iodophor and liquid hypochlorite (LH), on the growth rates and toxicity of food-borne pathogenic Escherichia coli strains grown in the presence of spoilage yeast Zygosaccharomyces bailii was assessed. When grown in combination with Z. bailii both E. coli O113 and E. coli O26 exhibited slower growth rates, except when E. coli O113 was grown in combination with Z. bailii at 0.2% LH. The growth rate of Z. bailii was not impacted by the addition of the sanitizers or by communal growth with E. coli strains. LAL and IL-6 results indicated a decrease in toxicity of pure E. coli cultures with comparable profiles for control and sanitizer exposed samples, although the LAL assay proved to be more sensitive. Interestingly, pure cultures of Z. bailii showed increased toxicity measured by LAL and decreased toxicity measured by IL-6. LAL analysis showed a decrease in toxicity of both E. coli strains grown in combination with Z. bailii, while IL-6 analysis of the mixed cultures showed an increase in toxicity. The use of LAL for toxicity determination in a mixed culture overlooks the contribution made by spoilage yeast, thus demonstrating the importance of using the appropriate method for toxicity testing in mixed microbe environments.

  9. Comparison of antimicrobial resistance in Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes strains isolated from organic and conventional poultry meat.

    PubMed

    Miranda, J M; Vázquez, B I; Fente, C A; Calo-Mata, P; Cepeda, A; Franco, C M

    2008-12-01

    The presence of Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes was determined in 55 samples of organic poultry meat and in 61 samples of conventional poultry meat. A total of 220 E. coli, 192 S. aureus, and 71 L. monocytogenes strains were analyzed by an agar disk diffusion assay for their resistance to ampicillin, cephalothin, chloramphenicol, ciprofloxacin, doxycycline, fosfomycin, gentamicin, nitrofurantoin, streptomycin, and sulfisoxazole (E. coli); chloramphenicol, ciprofloxacin, clindamycin, doxycycline, erythromycin, gentamicin, nitrofurantoin, oxacillin, and sulfisoxazole (S. aureus); and chloramphenicol, doxycycline, erythromycin, gentamicin, sulfisoxazole, and vancomycin (L. monocytogenes). The results indicated a significantly higher (P < 0.0001) prevalence of E. coli but not of S. aureus and L. monocytogenes in organic poultry meat as compared with conventional poultry meat. E. coli isolated from organic poultry meat exhibited lower levels of antimicrobial resistance against 7 of the 10 antimicrobials tested as compared with isolates recovered from conventional meat. In the case of S. aureus and L. monocytogenes isolated from conventional poultry, antimicrobial resistance was significantly higher only for doxycycline as compared with strains isolated from organic poultry. In the case of E. coli, the presence of multiresistant strains was significantly higher (P < 0.0001) in conventional poultry meat as compared with organic poultry meat. Organically farmed poultry samples showed significantly lower development of antimicrobial resistance in intestinal bacteria such as E. coli.

  10. Influence of Sanitizers on the Lipopolysaccharide Toxicity of Escherichia coli Strains Cultivated in the Presence of Zygosaccharomyces bailii

    PubMed Central

    Mogotsi, Lerato; De Smidt, Olga; Venter, Pierre; Groenewald, Willem

    2014-01-01

    The influence of sublethal concentrations of two sanitizers, liquid iodophor and liquid hypochlorite (LH), on the growth rates and toxicity of food-borne pathogenic Escherichia coli strains grown in the presence of spoilage yeast Zygosaccharomyces bailii was assessed. When grown in combination with Z. bailii both E. coli O113 and E. coli O26 exhibited slower growth rates, except when E. coli O113 was grown in combination with Z. bailii at 0.2% LH. The growth rate of Z. bailii was not impacted by the addition of the sanitizers or by communal growth with E. coli strains. LAL and IL-6 results indicated a decrease in toxicity of pure E. coli cultures with comparable profiles for control and sanitizer exposed samples, although the LAL assay proved to be more sensitive. Interestingly, pure cultures of Z. bailii showed increased toxicity measured by LAL and decreased toxicity measured by IL-6. LAL analysis showed a decrease in toxicity of both E. coli strains grown in combination with Z. bailii, while IL-6 analysis of the mixed cultures showed an increase in toxicity. The use of LAL for toxicity determination in a mixed culture overlooks the contribution made by spoilage yeast, thus demonstrating the importance of using the appropriate method for toxicity testing in mixed microbe environments. PMID:24977173

  11. Uropathogenic Escherichia coli strain CFT073 disrupts NLRP3 inflammasome activation

    PubMed Central

    Waldhuber, Anna; Puthia, Manoj; Wieser, Andreas; Cirl, Christine; Dürr, Susanne; Neumann-Pfeifer, Silke; Albrecht, Simone; Römmler, Franziska; Müller, Tina; Zheng, Yunji; Schubert, Sören; Groß, Olaf; Svanborg, Catharina

    2016-01-01

    Successful bacterial pathogens produce an array of virulence factors that allow subversion of the immune system and persistence within the host. For example, uropathogenic Escherichia coli strains, such as CFT073, express Toll/IL-1 receptor–containing (TIR-containing) protein C (TcpC), which impairs TLR signaling, thereby suppressing innate immunity in the urinary tract and enhancing persistence in the kidneys. Here, we have reported that TcpC also reduces secretion of IL-1β by directly interacting with the NACHT leucin-rich repeat PYD protein 3 (NLRP3) inflammasome, which is crucial for recognition of pathogens within the cytosol. At a low MOI, IL-1β secretion was minimal in CFT073-infected macrophages; however, IL-1β release was markedly increased in macrophages infected with CFT073 lacking tcpC. Induction of IL-1β secretion by CFT073 and tcpC–deficient CFT073 required the NLRP3 inflammasome. TcpC attenuated activation of the NLRP3 inflammasome by binding both NLRP3 and caspase-1 and thereby preventing processing and activation of caspase-1. Moreover, in a murine urinary tract infection model, CFT073 infection rapidly induced expression of the NLRP3 inflammasome in the bladder mucosa; however, the presence of TcpC in WT CFT073 reduced IL-1β levels in the urine of infected mice. Together, these findings illustrate how uropathogenic E. coli use the multifunctional virulence factor TcpC to attenuate innate immune responses in the urinary tract. PMID:27214553

  12. Molecular Epidemiology of ESBL Genes and Multi-Drug Resistance in Diarrheagenic Escherichia Coli Strains Isolated from Adults in Iran

    PubMed Central

    Ghorbani-Dalini, Sadegh; Kargar, Mohammad; Doosti, Abbas; Abbasi, Pejman; Sarshar, Meysam

    2015-01-01

    Resistance to oxyimino cephalosporins antibiotics in Enterobacteriaceae is primarily done by the extended spectrum β-lactamases (ESBLs). Clear identification of risk factors for ESBLs-producing infections is necessary. Therefore, efficient strategies can be developed to decrease outbreak of these infections. The aim of this study was to determine the antibacterial susceptibility and ESBLs pattern of diarrhogenic Escherichia coli (E. coli) strains isolated from adult patients. In the present study, diarrheogenic E. coli strains were isolated from 54 patients from the University of Medical Sciences hospitals in Shiraz. Antimicrobial susceptibility testing was done by disk diffusion method by CLSI criteria. The presence of blaTEM, blaSHV and blaCTX-M genes was investigated by PCR using designated primers. The prevalence of ESBLs-producer E. coli strains was 12.96%. Antimicrobial resistance testing showed a high resistance to cefexime, trimethoprim-sulfamethoxazole, ampicillin and penicillin. Overall, β-lactamase genes were identified in 52 (96.30%) isolates which were identified as 45 (83.33%) blaTEM, 17 (31.48%) blaSHV and 11 (20.37%) blaCTX-M. ESBLs-producer E. coli is very prevalent in Diarrheogenic strains isolated from adult patients. Also, this study clearly showed that the blaTEM gene for ESBLs-producer E. coli was widespread in Iran. PMID:26664394

  13. Antimicrobial Susceptibility of Escherichia coli Strains Isolated from Alouatta spp. Feces to Essential Oils

    PubMed Central

    Carregaro, Adriano Bonfim; Santurio, Deise Flores; de Sá, Mariangela Facco; Santurio, Janio Moraes; Alves, Sydney Hartz

    2016-01-01

    This study evaluated the in vitro antibacterial activity of essential oils from Lippia graveolens (Mexican oregano), Origanum vulgaris (oregano), Thymus vulgaris (thyme), Rosmarinus officinalis (rosemary), Cymbopogon nardus (citronella), Cymbopogon citratus (lemongrass), and Eucalyptus citriodora (eucalyptus) against Escherichia coli (n = 22) strains isolated from Alouatta spp. feces. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined for each isolate using the broth microdilution technique. Essential oils of Mexican oregano (MIC mean = 1818 μg mL−1; MBC mean = 2618 μg mL−1), thyme (MIC mean = 2618 μg mL−1; MBC mean = 2909 μg mL−1), and oregano (MIC mean = 3418 μg mL−1; MBC mean = 4800 μg mL−1) showed the best antibacterial activity, while essential oils of eucalyptus, rosemary, citronella, and lemongrass displayed no antibacterial activity at concentrations greater than or equal to 6400 μg mL−1. Our results confirm the antimicrobial potential of some essential oils, which deserve further research. PMID:27313638

  14. Antimicrobial Susceptibility of Escherichia coli Strains Isolated from Alouatta spp. Feces to Essential Oils.

    PubMed

    Lara, Valéria Maria; Carregaro, Adriano Bonfim; Santurio, Deise Flores; de Sá, Mariangela Facco; Santurio, Janio Moraes; Alves, Sydney Hartz

    2016-01-01

    This study evaluated the in vitro antibacterial activity of essential oils from Lippia graveolens (Mexican oregano), Origanum vulgaris (oregano), Thymus vulgaris (thyme), Rosmarinus officinalis (rosemary), Cymbopogon nardus (citronella), Cymbopogon citratus (lemongrass), and Eucalyptus citriodora (eucalyptus) against Escherichia coli (n = 22) strains isolated from Alouatta spp. feces. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined for each isolate using the broth microdilution technique. Essential oils of Mexican oregano (MIC mean = 1818 μg mL(-1); MBC mean = 2618 μg mL(-1)), thyme (MIC mean = 2618 μg mL(-1); MBC mean = 2909 μg mL(-1)), and oregano (MIC mean = 3418 μg mL(-1); MBC mean = 4800 μg mL(-1)) showed the best antibacterial activity, while essential oils of eucalyptus, rosemary, citronella, and lemongrass displayed no antibacterial activity at concentrations greater than or equal to 6400 μg mL(-1). Our results confirm the antimicrobial potential of some essential oils, which deserve further research.

  15. Technical-Scale Production of Cyanophycin with Recombinant Strains of Escherichia coli

    PubMed Central

    Frey, Kay M.; Oppermann-Sanio, Fred B.; Schmidt, Holger; Steinbüchel, Alexander

    2002-01-01

    By the use of Escherichia coli DH1 harboring cphA from Synechocystis sp. strain PCC6803, large-scale production of cyanophycin at 30- and 500-liter culture volumes was established. Transcription of cphA was controlled by the thermosensitive cI857 repressor, which enabled induction of cphA by a simple temperature shift in the culture fluid. Maximum cyanophycin cell content of up to 24% (wt/wt) of cellular dry matter was obtained by induction in the early exponential growth phase and cultivation of the cells in terrific broth complex medium. Synthesis of cyanophycin was found to be strongly dependent on the presence of complex components, and in mineral salts medium the cells synthesized and accumulated cyanophycin only if Casamino Acids were added. Cultivations were done at the 500-liter scale, allowing the provision of cell mass for the preparation of cyanophycin at the kilogram scale. Isolation of cyanophycin was achieved by a new acid extraction procedure which allowed large-scale purification of the polyamide from whole cells. PMID:12089018

  16. Detection and identification by PCR of a highly virulent phylogenetic subgroup among extraintestinal pathogenic Escherichia coli B2 strains.

    PubMed

    Bidet, Philippe; Metais, Arnaud; Mahjoub-Messai, Farah; Durand, Lionel; Dehem, Marie; Aujard, Yannick; Bingen, Edouard; Nassif, Xavier; Bonacorsi, Stéphane

    2007-04-01

    Closely related Escherichia coli B2 strains O1:K1, O2:K1, O18:K1, and O45:K1 constitute a major subgroup causing extraintestinal infections. A DNA pathoarray analysis was used to develop a PCR specific for this subgroup that was included in the multiplex phylogenetic-grouping PCR method. Our PCR may serve to identify this virulent subgroup among different ecological niches.

  17. Localization of polyamine enhancement of protein synthesis to subcellular components of Escherichia coli and Pseudomonas sp. strain Kim.

    PubMed Central

    Rosano, C L; Bunce, S C; Hurwitz, C

    1983-01-01

    At 5 mM Mg2+, spermidine stimulation of polyphenylalanine synthesis by cell-free extracts of Escherichia coli was found to be about 30 times greater than that by extracts of Pseudomonas sp. strain Kim, a unique organism which lacks detectable levels of spermidine. By means of reconstitution experiments, the target of spermidine stimulation was localized to the protein fraction of the highspeed supernatant component (S-100) of E. coli and was absent from, or deficient in, the S-100 fraction of Pseudomonas sp. strain Kim. The spermidine stimulation did not appear to be due to the presence in the E. coli S-100 fraction of ribosomal protein S1, elongation factors, or E. coli aminoacyl-tRNA synthetases. The failure to observe spermidine stimulation by the Pseudomonas sp. strain Kim S-100 fraction was also not due to a spermidine-enhanced polyuridylic acid degradation. The synthesis of polyphenylalanine by Pseudomonas sp. strain Kim extracts was stimulated by putrescine and by S-(+)-2-hydroxyputrescine to a greater degree than was synthesis by E. coli extracts. The enhancement by putrescine and by S-(+)-2-hydroxyputrescine with Pseudomonas sp. strain Kim extracts was found to be due to effects on its ribosomes. PMID:6336736

  18. Molecular typing of Escherichia coli strains associated with threatened sea ducks and near-shore marine habitats of southwest Alaska

    USGS Publications Warehouse

    Schamber, Jason L.

    2011-01-01

    In Alaska, sea ducks winter in coastal habitats at remote, non-industrialized areas, as well as in proximity to human communities and industrial activity. We evaluated prevalence and characteristics of Escherichia coli strains in faecal samples of Steller's eiders (Polysticta stelleri; n = 122) and harlequin ducks (Histrionicus histrionicus; n = 21) at an industrialized site and Steller's eiders (n = 48) at a reference site, and compared these strains with those isolated from water samples from near-shore habitats of ducks. The overall prevalence of E. coli was 16% and 67% in Steller's eiders and harlequin ducks, respectively, at the industrialized study site, and 2% in Steller's eiders at the reference site. Based on O and H antigen subtyping and genetic characterization by enterobacterial repetitive intergenic consensus polymerase chain reaction and pulsed-field gel electrophoresis, we found evidence of avian pathogenic E. coli (APEC) strains associated with both species and detected E. coli strains carrying virulence genes associated with mammals in harlequin ducks. Steller's eiders that carried APEC had lower serum total protein and albumin concentrations, providing further evidence of pathogenicity. The genetic profile of two E. coli strains from water matched an isolate from a Steller's eider providing evidence of transmission between near-shore habitats and birds.

  19. Reduced microbial diversity and high numbers of one single Escherichia coli strain in the intestine of colitic mice.

    PubMed

    Wohlgemuth, Steffen; Haller, Dirk; Blaut, Michael; Loh, Gunnar

    2009-06-01

    Commensal bacteria play a role in the aetiology of inflammatory bowel diseases (IBD). High intestinal numbers of Escherichia coli in IBD patients suggest a role of this organism in the initiation or progression of chronic gut inflammation. In addition, some E. coli genotypes are more frequently detected in IBD patients than others. We aimed to find out whether gut inflammation in an IBD mouse model is associated with a particular E. coli strain. Intestinal contents and tissue material were taken from 1-, 8-, 16- and 24-week-old interleukin 10-deficient (IL-10(-/-)) mice and the respective wild-type animals. Caecal and colonic inflammation was observed in IL-10(-/-) animals from the 8 weeks of life on accompanied by a lower intestinal microbial diversity than in the respective wild-type animals. Culture- based and molecular approaches revealed that animals with gut inflammation harboured significantly higher numbers of E. coli than healthy controls. Phylogenetic grouping according to the E. coli Reference Collection (ECOR) system and strain typing by random-amplified polymorphic DNA and pulsed-field gel electrophoresis revealed that all mice were colonized by one single E. coli strain. The strain was shown to have the O7:H7:K1 serotype and to belong to the virulence-associated phylogenetic group B2. In a co-association experiment with gnotobiotic mice, the strain outnumbered E. coli ECOR strains belonging to the phylogenetic group A and B2 respectively. A high number of virulence- and fitness-associated genes were detected in the strain's genome possibly involved in the bacterial adaptation to the murine intestine.

  20. Characterization of a single mutation in TraQ in a strain of Escherichia coli partially resistant to Qβ infection.

    PubMed

    Kashiwagi, Akiko; Kitamura, Hikari; Sano Tsushima, Fumie

    2015-01-01

    Bacteria and virulent bacteriophages are in a prey-predator relationship. Experimental models under simplified conditions with the presence of bacteria and bacteriophages have been used to elucidate the mechanisms that have enabled both prey and predator to coexist over long periods. In experimental coevolution conducted with Escherichia coli and the virulent RNA bacteriophage Qβ in serial transfer, both coexisted for at least for 54 days, during which time they continued to change genetically and phenotypically. By day 16, an E. coli strain partially resistant to Qβ appeared and caused an approximately 10(4)-fold decrease in Qβ amplification. Whole-genome analysis of this strain suggested that a single mutation in TraQ was responsible for the partially resistant phenotype. TraQ interacts with propilin, encoded by the traA gene and a precursor of pilin, which is a component of the F pilus. The present study was performed to elucidate the mechanism underlying the coexistence of E. coli and Qβ by investigating how a mutation in TraQ altered the physiological state of E. coli, and thus the amplification of Qβ. Overexpression of wild-type TraQ in the partially resistant E. coli strain resulted in recovery of both TraA protein content, including propilin and pilin, and Qβ amplification to levels comparable to those observed in the susceptible strain. Intriguingly, overexpression of the mutant TraQ in the partially resistant strains also increased the levels of TraA protein and Qβ amplification, but these increases were smaller than those observed in the wild-type strain or the partially resistant strain expressing wild-type TraQ. The results of this study represent an example of how E. coli can become partially resistant to RNA bacteriophage infection via changes in a protein involved in maturation of a receptor rather than in the receptor itself and of how E. coli can stably coexist with virulent RNA bacteriophages.

  1. Draft Genome Sequences of Escherichia coli Strains Isolated at Calving from the Uterus, Vagina, Vulva, and Rectoanal Junction of a Dairy Cow That Later Developed Metritis

    PubMed Central

    Jeon, Soo Jin; Cunha, Federico; Ginn, Amber; Jeong, KwangCheol Casey

    2017-01-01

    ABSTRACT Escherichia coli is involved in the pathogenicity of metritis in cows. We report here the genome sequences of E. coli strains isolated at calving from the uterus, vagina, vulva, and rectoanal junction of a dairy cow that later developed metritis. The genomic similarities will give an insight into phylogenetic relationships among strains. PMID:28302783

  2. Differences in virulence gene expression between atypical enteropathogenic Escherichia coli strains isolated from diarrheic and healthy ruminants.

    PubMed

    Horcajo, Pilar; Domínguez-Bernal, Gustavo; Carrión, Javier; De La Fuente, Ricardo; Ruiz-Santa-Quiteria, José A; Orden, José A

    2013-04-01

    Differences in the pathogenicity of atypical enteropathogenic Escherichia coli (EPEC) strains may be due, at least partially, to different expression patterns of some virulence genes. To investigate this hypothesis, the virulence gene expression patterns of 6 atypical EPEC strains isolated from healthy and diarrheic ruminants were compared using quantitative real-time reverse transcription polymerase chain reaction after growing the bacteria in culture medium alone or after binding it to HeLa epithelial cells. Some virulence genes in strains from diarrheic animals were upregulated relative to their expression in strains from healthy animals. When bacteria were cultured in the presence of HeLa cells, the ehxA and efa1/lifA genes, previously associated with the production of diarrhea, were expressed at higher levels in strains from diarrheic animals than in strains from healthy animals. Thus, the expression levels of some virulence genes may help determine which atypical EPEC strains cause diarrhea in ruminants.

  3. Differences in virulence gene expression between atypical enteropathogenic Escherichia coli strains isolated from diarrheic and healthy ruminants

    PubMed Central

    Horcajo, Pilar; Domínguez-Bernal, Gustavo; Carrión, Javier; De La Fuente, Ricardo; Ruiz-Santa-Quiteria, José A.; Orden, José A.

    2013-01-01

    Differences in the pathogenicity of atypical enteropathogenic Escherichia coli (EPEC) strains may be due, at least partially, to different expression patterns of some virulence genes. To investigate this hypothesis, the virulence gene expression patterns of 6 atypical EPEC strains isolated from healthy and diarrheic ruminants were compared using quantitative real-time reverse transcription polymerase chain reaction after growing the bacteria in culture medium alone or after binding it to HeLa epithelial cells. Some virulence genes in strains from diarrheic animals were upregulated relative to their expression in strains from healthy animals. When bacteria were cultured in the presence of HeLa cells, the ehxA and efa1/lifA genes, previously associated with the production of diarrhea, were expressed at higher levels in strains from diarrheic animals than in strains from healthy animals. Thus, the expression levels of some virulence genes may help determine which atypical EPEC strains cause diarrhea in ruminants. PMID:24082409

  4. Characterization of a Dipartite Iron Uptake System from Uropathogenic Escherichia coli Strain F11*

    PubMed Central

    Koch, Doreen; Chan, Anson C. K.; Murphy, Michael E. P.; Lilie, Hauke; Grass, Gregor; Nies, Dietrich H.

    2011-01-01

    In the uropathogenic Escherichia coli strain F11, in silico genome analysis revealed the dicistronic iron uptake operon fetMP, which is under iron-regulated control mediated by the Fur regulator. The expression of fetMP in a mutant strain lacking known iron uptake systems improved growth under iron depletion and increased cellular iron accumulation. FetM is a member of the iron/lead transporter superfamily and is essential for iron uptake by the Fet system. FetP is a periplasmic protein that enhanced iron uptake by FetM. Recombinant FetP bound Cu(II) and the iron analog Mn(II) at distinct sites. The crystal structure of the FetP dimer reveals a copper site in each FetP subunit that adopts two conformations: CuA with a tetrahedral geometry composed of His44, Met90, His97, and His127, and CuB, a second degenerate octahedral geometry with the addition of Glu46. The copper ions of each site occupy distinct positions and are separated by ∼1.3 Å. Nearby, a putative additional Cu(I) binding site is proposed as an electron source that may function with CuA/CuB displacement to reduce Fe(III) for transport by FetM. Together, these data indicate that FetMP is an additional iron uptake system composed of a putative iron permease and an iron-scavenging and potentially iron-reducing periplasmic protein. PMID:21596746

  5. Characterization of integrons-mediated antimicrobial resistance among Escherichia coli strains isolated from bovine mastitis.

    PubMed

    Wang, Gui-Qin; Wu, Cong-Ming; Du, Xiang-Dang; Shen, Zhang-Qi; Song, Li-Hua; Chen, Xia; Shen, Jian-Zhong

    2008-02-05

    To assess the prevalence of antimicrobial resistance and class I integrons in Escherichia coli strains (n=58) isolated from bovine mastitis in Inner Mongolia, antimicrobial susceptibility and the presence of various types of integrons were characterized. Most isolates were susceptible to amikacin, colistin, ceftazidime, gentamicin and kanamycin, while those also exhibited high resistant incidence rates to ampicillin, amoxicillin, sulfadiazine and sulfamethoxydiazine. The integrase gene of integrons was amplified by PCR using degenerate primers. The integrons were confirmed by restriction fragment length polymorphism (RFLP) analysis of positive PCR products. Neither class II nor class III integron was detected, while 56.90% (n=33) of the isolates were positive for the presence of intI1 gene. Sequencing analysis of gene cassettes revealed that seven gene cassettes were found, which encoded resistance to trimethoprim (dfrA1 and dfrA17), aminoglycosides (aacA4, aadA1 and aadA5) and chloramphenicol (catB3), respectively. Of them, the gene cassette array dfrA17-aadA5 was found most prevalent (62.96%). The percentage of positive-integron among the isolates whose resistant profile was relatively broad (n> or =7) is 100.00%, while the one in narrow-profile isolates (n=2-6) is 30.56%. The correlation analysis revealed the incidence of integrons among the isolates were highly related to the resistant profile, indicating integrons play an important role in the dissemination and spread of the antimicrobial resistant strains.

  6. Development and validation of a surrogate strain cocktail to evaluate bactericidal effects of pressure on verotoxigenic Escherichia coli.

    PubMed

    Garcia-Hernandez, Rigoberto; McMullen, Lynn; Gänzle, Michael G

    2015-07-16

    Many strains of verotoxigenic Escherichia coli (VTEC) are highly resistant to pressure. To facilitate future studies to improve the elimination of VTEC by pressure processing of food, this study developed and validated a cocktail of non-pathogenic strains of E. coli with equal or higher resistance to pressure when compared to pressure resistant strains of VTEC. Strains of E. coli obtained from a beef processing plant were screened for their resistance to heat and pressure. Treatments were carried out in LB broth. Cell counts of 3 out of 16 strains were reduced by 5-6 log (cfu/mL) after 30 min at 60 °C, and cell counts of 10 out of 16 strains were reduced by 5-6 log (cfu/mL) after 30 min at 40 °C and 400 MPa. All highly heat resistant strains were also pressure resistant but not all pressure resistant strains were also heat resistant. Pressure resistant and -sensitive strains of E. coli were treated in presence of 0 or 2% NaCl and at 3, 20, or 40 °C. The effect of these parameters on the lethality of pressure treatments was comparable for all strains. The addition of 2% NaCl did not increase pressure resistance. The bactericidal effect of treatments at 3 and 20 °C and 600 MPa was comparable but inactivation of E. coli was faster at 40 °C and 600 MPa. The resistance to treatment with 600 MPa at 20 °C of a cocktail of 5 non-pathogenic strains of E. coli was compared to a 5 strain cocktail of pressure resistant VTEC. Treatments were performed in ground beef containing 15% fat. Survival and sublethal injury of the two cocktails was comparable; cell counts of beef inoculated with either cocktail were reduced by about 4 log (cfu/mL) after 30 min of treatment. In conclusion, this study validated a cocktail of non-pathogenic strains of E. coli for use as surrogate organisms in studies on the elimination of E. coli by pressure.

  7. Detection and sequences of the enteroaggregative Escherichia coli heat-stable enterotoxin 1 gene in enterotoxigenic E. coli strains isolated from piglets and calves with diarrhea.

    PubMed

    Yamamoto, T; Nakazawa, M

    1997-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains isolated from piglets and calves with diarrhea were tested for the presence of the enteroaggregative E. coli enterotoxin 1 (EAST1) gene sequences by PCR and colony hybridization. The EAST1 gene was found in most porcine ETEC strains with adherence factor K88, especially in those elaborating heat-labile enterotoxin. One porcine ETEC strain with adherence factor K99 was also positive for the EAST1 gene. In contrast, 987P-positive (987P+) ETEC strains from piglets, K99+ ETEC strains from calves, and K99+ F41+ or F41+ ETEC strains from piglets and calves were negative for the EAST1 gene. The K88ab+ or K88ac+ ETEC strains tested possessed the EAST1 gene on a plasmid that was distinct from a K88-encoding plasmid. The EAST1 gene sequences of the K88+ ETEC strains were identical to each other and 99.1 and 98.3% homologous to the previously reported sequences of ETEC strains colonizing humans and enteroaggregative E. coli strains, respectively. The data indicate that the EAST1 gene is distributed among porcine ETEC strains in association with the adherence factor type.

  8. Pulsed-field gel electrophoresis typing, antibiotic resistance, and plasmid profiles of Escherichia coli strains isolated from foods.

    PubMed

    Uysal, Ahmet; Durak, Yusuf

    2012-11-01

    Bacterial contamination in foods and antimicrobial resistance levels of common pathogenic strains causing food-borne disease are important in human health. Thus, typing technologies are important tools to determine primary sources of bacterial contamination. In this study, 40 Escherichia coli strains isolated from 85 food samples were evaluated in terms of genetic diversity, susceptibility to certain antibiotics, and plasmid profiles. Pulsed-field gel electrophoresis was used to identify the genetic relations of E. coli isolates. It was determined that the 40 E. coli strains revealed 32 different pulsotypes represented by 6 subtypes. Antibiotic susceptibility tests conducted by using a disc diffusion method against 15 antibiotics showed that although the isolates revealed 14 different types of resistance profiles, the strains showed the greatest resistance to ampicillin (77.5%), followed by ticarcillin-clavulanic acid (30%), tetracycline (22.5%), and cephalothin (14.5%). Plasmid isolations studies of the strains conducted by the method of alkaline lysis revealed that 18 (45%) of 40 E. coli strains contain 31 different plasmid bands ranging between 64.4 and 1 kb. The results showed that PFGE was a powerful method in tracking sources of food contamination and that the antibiotic resistance levels of food isolates were high and should be monitored.

  9. Exploring the proteomic characteristics of the Escherichia coli B and K-12 strains in different cellular compartments.

    PubMed

    Han, Mee-Jung

    2016-07-01

    Escherichia coli, one of the well-characterized prokaryotes, has been the most widely used bacterial host in scientific studies and industrial applications. Many different strains have been developed for the widespread use of E. coli in biotechnology, and selecting an ideal host to produce a specific protein of interest is a critical step in developing a production process. The E. coli B and K-12 strains are among the most frequently used bacterial hosts for the production of recombinant proteins as well as small-molecule metabolites such as amino acids, biofuels, carboxylic acids, diamines, and others. However, both strains have distinctive differences in genotypic and phenotypic attributes, and their behaviors can still be unpredictable at times, especially while expressing a recombinant protein. Therefore, in this review, an in-depth analysis of the physiological behavior on the proteomic level was performed, wherein the particularly distinct proteomic differences between the E. coli B and K-12 strains were investigated in the four distinctive cellular compartments. Interesting differences in the proteins associated with key cellular properties including cell growth, protein production and quality, cellular tolerance, and motility were observed between the two representative strains. The resulting enhancement of knowledge regarding host physiology that is summarized herein is expected to contribute to the acceleration of strain improvements and optimization for biotechnology-related processes.

  10. Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157:H7 in the mouse intestine.

    PubMed

    Maltby, Rosalie; Leatham-Jensen, Mary P; Gibson, Terri; Cohen, Paul S; Conway, Tyrrell

    2013-01-01

    Escherichia coli is a single species consisting of many biotypes, some of which are commensal colonizers of mammals and others that cause disease. Humans are colonized on average with five commensal biotypes, and it is widely thought that the commensals serve as a barrier to infection by pathogens. Previous studies showed that a combination of three pre-colonized commensal E. coli strains prevents colonization of E. coli O157:H7 in a mouse model (Leatham, et al., 2010, Infect Immun 77: 2876-7886). The commensal biotypes included E. coli HS, which is known to successfully colonize humans at high doses with no adverse effects, and E. coli Nissle 1917, a human commensal strain that is used in Europe as a preventative of traveler's diarrhea. We hypothesized that commensal biotypes could exert colonization resistance by consuming nutrients needed by E. coli O157:H7 to colonize, thus preventing this first step in infection. Here we report that to colonize streptomycin-treated mice E. coli HS consumes six of the twelve sugars tested and E. coli Nissle 1917 uses a complementary yet divergent set of seven sugars to colonize, thus establishing a nutritional basis for the ability of E. coli HS and Nissle 1917 to occupy distinct niches in the mouse intestine. Together these two commensals use the five sugars previously determined to be most important for colonization of E. coli EDL933, an O157:H7 strain. As predicted, the two commensals prevented E. coli EDL933 colonization. The results support a model in which invading pathogenic E. coli must compete with the gut microbiota to obtain the nutrients needed to colonize and establish infection; accordingly, the outcome of the challenge is determined by the aggregate capacity of the native microbiota to consume the nutrients required by the pathogen.

  11. Recovery of electric energy from formate by using a recombinant strain of Escherichia coli.

    PubMed

    Ojima, Yoshihiro; Kawata, Teruyoshi; Matsuo, Nahoko; Nishinoue, Yosuke; Taya, Masahito

    2014-10-01

    Recombinant Escherichia coli cells were applied for the recovery of electric energy from formate. Initially, the fdh gene, which encodes formate dehydrogenase (FDH) of Mycobacterium vaccae, was introduced into E. coli cells to allow efficient degradation of formate. The constructed microbial fuel cell (MFC) with E. coli BW25113 cells carrying fdh gene showed appreciable generation of current density in the presence of formate as a substrate. Current density and polarization curves revealed that the performance of MFC under examined conditions was limited by the electron transfer from bulk liquid to the electrode surface; accordingly, agitation resulted in an increase in the current density and achieved a coulombic efficiency of 21.7 % on the basis of formate consumed. Thus, gene recombination enables E. coli cells to utilize formate as a fuel for MFC.

  12. Identification of pathogens and virulence profile of Rhodococcus equi and Escherichia coli strains obtained from sand of parks

    PubMed Central

    Fernandes, M.C.; Takai, S.; Leite, D.S.; Pinto, J.P.A.N.; Brandão, P.E.; Santarém, V.A.; Listoni, F.J.P.; Da Silva, A.V.; Ribeiro, M.G.

    2013-01-01

    The identification of pathogens of viral (Rotavirus, Coronavirus), parasitic (Toxocara spp.) and bacterial (Escherichia coli, Salmonella spp., Rhodococcus equi) origin shed in feces, and the virulence profile of R. equi and E. coli isolates were investigated in 200 samples of sand obtained from 40 parks, located in central region of state of Sao Paulo, Brazil, using different diagnostic methods. From 200 samples analyzed, 23 (11.5%) strains of R. equi were isolated. None of the R. equi isolates showed a virulent (vapA gene) or intermediately virulent (vapB gene) profiles. Sixty-three (31.5%) strains of E. coli were identified. The following genes encoding virulence factors were identified in E. coli: eae, bfp, saa, iucD, papGI, sfa and hly. Phylogenetic classification showed that 63 E. coli isolates belonged to groups B1 (52.4%), A (25.4%) and B2 (22.2%). No E. coli serotype O157:H7 was identified. Eggs of Toxocara sp. were found in three parks and genetic material of bovine Coronavirus was identified in one sample of one park. No Salmonella spp. and Rotavirus isolates were identified in the samples of sand. The presence of R. equi, Toxocara sp, bovine Coronavirus and virulent E. coli isolates in the environment of parks indicates that the sanitary conditions of the sand should be improved in order to reduce the risks of fecal transmission of pathogens of zoonotic potential to humans in these places. PMID:24294244

  13. Virulence markers of Shiga-like toxin-producing Escherichia coli strains originating from healthy domestic animals of different species.

    PubMed Central

    Beutin, L; Geier, D; Zimmermann, S; Karch, H

    1995-01-01

    Shiga-like toxin (verotoxin)-producing strains of Escherichia coli (SLTEC) originating from healthy cattle, sheep, goats, pigs, cats, and dogs were investigated for properties which are related to virulence of E. coli for humans. The slt-II (Shiga-like toxin II) and slt-IIc genes were frequent in SLTEC from healthy cattle and dogs but were rarely found in SLTEC from other animals. The slt-IIe gene was detected only in porcine SLTEC. SLTEC from goats and SLTEC from sheep were found to carry different SLT-II determinants which were not further characterized genetically. Sixty (28.8%) of 208 SLTEC from healthy animals showed diffuse adherence to HEp-2 cells. However, none of the strains was positive for genes specific for the local adherence (eaf), diffuse adherence (daa), or enteroaggregative (EAggEC) E. coli type. Only 3 (1.4%) of the 208 SLTEC were positive for attaching and effacing E. coli (eae) sequences. The enterohemolytic phenotype was present in 128 of the 208 SLTEC. Almost all enterohemolytic animal SLTEC were found to carry DNA sequences specific for the plasmid-encoded enterohemorrhagic E. coli hemolysin of E. coli O157. Bacteriophage-associated enterohemolysin (Ehly1 and Ehly2)-specific sequences were detected only in 14.4% of the 208 SLTEC and were linked with certain serotypes. The SLTEC from healthy animals constitute a very heterogeneous group of E. coli, and many of these strains appeared to be specific for their hosts. The absence of eae sequences in most animal SLTEC could indicate that these strains are less virulent for humans than the classical eae-positive enterohemorrhagic E. coli types. PMID:7538509

  14. PATHOGENIC ESCHERICHIA COLI

    EPA Science Inventory

    Escherichia coli is a bacterial species which inhabits the gastrointestinal tract of man and warm-blooded animals. Because of the ubiquity of this bacterium in the intestinal flora, it serves as an important indicator organism of fecal contamination. E. coli, aside from serving a...

  15. Virulence factors and antimicrobial resistance in Escherichia coli strains isolated from hen egg shells.

    PubMed

    Grande Burgos, María José; Fernández Márquez, Maria Luisa; Pérez Pulido, Rubén; Gálvez, Antonio; Lucas López, Rosario

    2016-12-05

    Eggs may contain extraintestinal pathogenic (ExPEC) and diarrheogenic (DEC) Escherichia coli which in addition may carry antibiotic resistance. The wide use of biocides and disinfectants in the food industry may induce biocide tolerance in bacteria. The aim of the present study was to evaluate biocide tolerance and antibiotic resistance in E. coli from hen egg shells. A total of 27 isolates obtained from a screening of 180 eggs were studied. Seven isolates carried both eae and bfpA genes of typical enteropathogenic E. coli (EPEC) strains, while 14 isolates only carried eae associated with atypical EPEC strains. Shiga toxin genes stx and stx2 were detected in four isolates. Heat-stable and heat-labile enterotoxin genes as well as aggR were also detected. Several isolates had minimum inhibitory concentrations (MICs) that were higher than the wild-type for the biocide hexadecylpyridinium chloride (HDP, 18.52%) or the commercial disinfectant P3 oxonia (OX, 14.81%). Antibiotic resistance was detected for ampicillin (37.03%), streptomycin (37.03%), tetracycline (37.03%), chloramphenicol (11.11%), nalidixic acid (18.51%) and trimethoprim-sulfamethoxazole (14.81%). Eight isolates (29.63%) were biocide tolerant and antibiotic resistant. Efflux pump genes detected included acrB (96.29%), mdfA (85.18%) and oxqA (37.03%), in addition to quaternary ammonium compound (QAC) resistance genes qacA/B (11.11%) and qacE (7.40%). Antibiotic resistance genes detected included blaCTX-M-2 (22.22%), blaTEM (3.70%), blaPSE (3.70%), tet(A) (29.63%), tet(B) (29.63%), tet(C) (7.40%), tet(E) (11.11%), aac(6')-Ib (3.70%), sul1 (14.81%), dfrA12 (3.70%) and dfrA15 (3.70%). Most isolates (96.30%) carried more than one genetic determinant of resistance. The most frequent combinations were efflux pump components acrB and mdfA with tetracycline resistance genes (33.33% of isolates). Isolates carrying QAC resistance genes also carried between 4 and 8 of the additional antimicrobial resistance genes

  16. A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli.

    PubMed Central

    Singer, M; Baker, T A; Schnitzler, G; Deischel, S M; Goel, M; Dove, W; Jaacks, K J; Grossman, A D; Erickson, J W; Gross, C A

    1989-01-01

    We present a collection of 182 isogenic strains containing genetically linked antibiotic resistance elements located at approximately 1-min intervals around the Escherichia coli chromosome. At most positions both Tn10 (Tetr) and TN10kan (Kanr) elements are available, so that the collection contains a linked set of alternating antibiotic resistance markers. The map position of each insertion has been aligned to the E. coli genetic map as well as to the Kohara ordered clone bank. These strains are designed to be used in a rapid two-step mapping system in E. coli. In the first step, the mutation is localized to a 5- to 15-min region of the chromosome by Hfr mapping with a set of Hfr strains containing either Tn10 or Tn10kan elements located 20 min from their respective origins of transfer. In the second step, the mutation is localized to a 1-min region by P1 transduction, with a collection of isogenic insertion strains as donors. We discuss the uses of this collection of strains to map and eventually to clone a variety of mutations in E. coli. PMID:2540407

  17. Hydrogen-producing Escherichia coli strains overexpressing lactose permease: FT-IR analysis of the lactose-induced stress.

    PubMed

    Grube, Mara; Dimanta, Ilze; Gavare, Marita; Strazdina, Inese; Liepins, Janis; Juhna, Talis; Kalnenieks, Uldis

    2014-01-01

    The lactose permease gene (lacY) was overexpressed in the septuple knockout mutant of Escherichia coli, previously engineered for hydrogen production from glucose. It was expected that raising the lactose transporter activity would elevate the intracellular lactose concentration, inactivate the lactose repressor, induce the lactose operon, and as a result stimulate overall lactose consumption and conversion. However, overexpression of the lactose transporter caused a considerable growth delay in the recombinant strain on lactose, resembling to some extent the "lactose killing" phenomenon. Therefore, the recombinant strain was subjected to selection on lactose-containing media. Selection on plates with 3% lactose yielded a strain with a decreased content of the recombinant plasmid but with an improved ability to grow and produce hydrogen on lactose. Macromolecular analysis of its biomass by means of Fourier transform-infrared spectroscopy demonstrated that increase of the cellular polysaccharide content might contribute to the adaptation of E. coli to lactose stress.

  18. Construction of non-toxic Escherichia coli and Vibrio cholerae strains expressing high and immunogenic levels of enterotoxigenic E. coli colonization factor I fimbriae.

    PubMed

    Tobias, Joshua; Lebens, Michael; Bölin, Ingrid; Wiklund, Gudrun; Svennerholm, Ann-Mari

    2008-02-06

    To express high quantities of colonization factor antigen I (CFA/I) derived from enterotoxigenic Escherichia coli (ETEC) for use in ETEC vaccines, the entire CFA/I operon consisting of four genes (cfa-A, -B, -C, -E) was cloned into plasmid expression vectors that could be maintained either with or without antibiotic selection. Expression from the powerful tac promoter was under the control of the lacIq repressor present on the plasmids. Fimbriae were expressed on the surface of both a non-toxigenic E. coli K12 strain and a non-toxigenic strain of Vibrio cholerae following induction with isopropyl-beta-D-thiogalactopyranoside (IPTG). It was found that the recombinant E. coli strains expressed up to 16-fold higher levels of CFA/I fimbriae compared to a reference strain which had previously been shown to be among the highest natural producers of the CFA/I fimbriae among tested wild type ETEC strains. Oral immunization with formalin-killed recombinant E. coli bacteria over-expressing CFA/I induced significantly higher serum IgA and IgG+M antibodies responses compared to the reference strain. Oral immunization with formalin-killed recombinant V. cholerae bacteria also induce strong CFA/I-specific serum IgA and IgG+M responses. We conclude that our constructs may be useful as candidate strains in an oral killed CF-ETEC vaccine.

  19. Genotypic and Phenotypic Characterization of Enterotoxigenic Escherichia coli Strains Isolated from Peruvian Children

    DTIC Science & Technology

    2010-09-01

    potential coverage of children in Peru by investigational vaccines . Enterotoxigenic Escherichia coli (ETEC) is one of the main causes of diarrhea in...important target for vaccine development (11). Diarrhea due to ETEC develops between 8 and 72 h after initial infection, usually due to the ingestion of...products in clinical specimens. Currently, derivatives of LT and the CFs are targets for the development of vaccines against ETEC. However, the great

  20. Development of stable, genetically well-defined conditionally viable Escherichia coli strains.

    PubMed

    Degryse, E

    1991-05-01

    The diaminopimelate (DAP) pathway provides the cell with lysine and with DAP, a vital cell wall constituent. Mutations in the DAP pathway of lysine biosynthesis are lethal for cells exposed to lysine in the absence of DAP. In this paper, the substitution of the dapD gene of Escherichia coli with the kanamycin resistance gene from Tn903 is described and its possible uses are discussed.

  1. Antimicrobial resistance in Escherichia coli strains isolated from Swiss weaned pigs and sows.

    PubMed

    Stannarius, C; Bürgi, E; Regula, G; Zychowska, M A; Zweifel, C; Stephan, R

    2009-03-01

    Based on Directive (EC) No 99/2003, monitoring programs on the development of antimicrobial resistance in bacteria from livestock are implemented in many European countries. The aim of the present study was (i) to establish comprehensive baseline data on the antimicrobial resistance situation in Escherichia coli isolates obtained from healthy pigs (pooled fecal samples) originating from 60 Swiss pig-breeding farms, and (ii) to analyze differences in the resistance frequency between Escherichia coli isolates from weaned pigs and sows. Susceptibility testing (disc diffusion method) was performed on 429 isolates from weaned pigs and 431 isolates from sows. Overall, 17.7% of the isolates from weaned pigs and 22.5% of the Escherichia coli isolates from sows were susceptible to all antibiotics tested. Low resistance prevalence was found for amoxicillin, amoxicillin/clavulanic acid, ampicillin, cefquinome, ciprofloxacin, colistin, florfenicol, and gentamicin. The most frequently found resistances were against streptomycin (60.6% of the isolates from weaners and 64.3% of the isolates from sows), sulfonamide (51.5% and 26.9%), tetracycline (35.2% and 22.0%), and trimethoprim (27.5% and 11.1%). With exception of colistin, most resistances were found for those antibiotics commonly used on the farms. Except for ciprofloxacin and streptomycin, isolates from weaned pigs showed higher resistance prevalence than those from sows. This difference was significant for cefquinome, florfenicol, sulfonamide, tetracycline, and trimethoprim (p<0.05).

  2. Colicins U and Y inhibit growth of Escherichia coli strains via recognition of conserved OmpA extracellular loop 1.

    PubMed

    Bosák, Juraj; Micenková, Lenka; Doležalová, Magda; Šmajs, David

    2016-11-01

    Interactions of colicins U and Y with the OmpA (Outer membrane protein A) receptor molecule were studied using site-directed mutagenesis and colicin binding assay. A systematic mutagenesis of the colicin-susceptible OmpA sequence from Escherichia coli (OmpAEC) to the colicin-resistant OmpA sequence from Serratia marcescens (OmpASM) was performed in regions corresponding to extracellular OmpA loops 1-4. Susceptibility to colicins U and Y was significantly affected by the OmpA mutation in loop 1. As with functional analysis, a decrease in binding capacity of His-tagged colicin U was found for recombinant OmpA with a mutated segment in loop 1 compared to control OmpAEC. To verify the importance of the identified amino acid residues in OmpA loop 1, we introduced loop 1 from OmpAEC into OmpASM, which resulted in the substantial increase of susceptibility to colicins U and Y. In addition, colicins U and Y were tested against a panel of 118 bacteriocin non-producing strains of four Escherichia species, including E. coli (39 strains), E. fergusonii (10 strains), E. hermannii (42 strains), and E. vulneris (27 strains). A majority (82%) of E. coli strains was susceptible to colicins U and Y. Interestingly, colicins U and Y also inhibited all of the 30 tested multidrug-resistant E. coli O25b-ST131 isolates. These findings, together with the fact that OmpA loop 1 is important for bacterial virulence and is evolutionary conserved, offer the potential of using colicins U and Y as specific anti-OmpA loop 1 directed antibacterial proteins.

  3. A Fatal Case of Necrotizing Fasciitis Caused by a Highly Virulent Escherichia coli Strain

    PubMed Central

    Vincent, André; Lin, Alex; Harel, Josée; Côté, Jean-Charles; Tremblay, Cécile

    2016-01-01

    Necrotizing fasciitis is a serious disease characterized by the necrosis of the subcutaneous tissues and fascia. E. coli as the etiologic agent of necrotizing fasciitis is a rare occurrence. A 66-year-old woman underwent total abdominal hysterectomy with bilateral salpingo-oophorectomy. She rapidly developed necrotizing fasciitis which led to her death 68 hours following surgery. An E. coli strain was isolated from blood and fascia cultures. DNA microarray revealed the presence of 20 virulence genes. PMID:27366162

  4. Killing of an encapsulated strain of Escherichia coli by human serum.

    PubMed Central

    Taylor, P W; Kroll, H P

    1983-01-01

    Changes in cell viability and in factors affecting metabolic integrity were examined after exposure of Escherichia coli LP1092 to human serum. Antibody-dependent classical pathway activity accounted for the rapid killing of strain LP1092 by complement. Removal of serum lysozyme by bentonite absorption or by neutralization with anti-human lysozyme immunoglobulin G resulted in a reduction in the rate of killing; optimal activity could be restored by the addition of physiological amounts of egg-white lysozyme. The pattern of 86Rb+ and alkaline phosphatase release obtained after serum treatment did not support the view that complement simultaneously disrupts cytoplasmic and outer membrane integrity. Macromolecular synthesis was affected late in the reaction sequence; complete inhibition of precursor incorporation into RNA, DNA, and protein occurred only after almost total loss of bacterial colony-forming ability. Addition of chloramphenicol, an inhibitor of protein synthesis, to the bactericidal system resulted in a marked reduction in the rate of serum killing. Killing was completely inhibited by an inhibitor (KCN) and an uncoupler (2,4-dinitrophenol) of oxidative phosphorylation. Exposure of LP1092 cells to serum was followed by a rapid and large increase in intracellular ATP levels; ATP synthesis did not occur when bacteria were exposed to dialyzed serum, which killed LP1092 cells at a much reduced rate. Addition of glucose or serum ultrafiltrate to dialyzed serum restored optimal bactericidal activity. We suggest that optimal killing of gram-negative bacteria is an energy-dependent process requiring an input of bacterially generated ATP. PMID:6185430

  5. Clonal relations of atypical enteropathogenic Escherichia coli O157:H16 strains isolated from various sources from several countries.

    PubMed

    Feng, Peter C H; Keys, Christine; Lacher, David W; Beutin, Lothar; Bentancor, Adriana; Heuvelink, Annet; Afset, Jan E; Rumi, Valeria; Monday, Steven

    2012-12-01

    Atypical enteropathogenic Escherichia coli (aEPEC) is comprised of a large heterogeneous group of strains and serotypes that carry the intimin gene (eae) but no other EPEC virulence factors. In a previous study, we examined a few aEPEC strains of O157:H16 serotype from the U.S. and France and found these to be nearly homologous, and speculated that the same strain had been disseminated or perhaps they are part of a large clonal group that exists worldwide. To test that hypothesis, we examined additional 45 strains isolated from various sources from 4 other countries and determined that although there are a few eae-negative O157:H16 strains, most are aEPEC that carried eae and specifically, the ε-eae allele. Analysis by pulsed field gel electrophoresis (PFGE) and multilocus sequence typing showed that as a whole, O157:H16 strains are phylogenetically diverse and have different sequence types and PFGE profiles. But the aEPEC strains within the O157:H16 serotype, regardless of the eae allele carried, are a highly conserved and homologous group of sequence type (ST)-171 strains that shared similar PFGE profiles. These aEPEC strains of O157:H16 serotype are not closely related to any of the major EPEC and enterohemorrhagic E. coli clonal lineages and appear to be part of a large clonal group that are prevalent worldwide.

  6. Experimental Infection of Calves with Escherichia coli O104:H4 outbreak strain

    PubMed Central

    Hamm, K.; Barth, S. A.; Stalb, S.; Geue, L.; Liebler-Tenorio, E.; Teifke, J. P.; Lange, E.; Tauscher, K.; Kotterba, G.; Bielaszewska, M.; Karch, H.; Menge, C.

    2016-01-01

    In 2011, a severe outbreak of hemolytic-uremic syndrome was caused by an unusual, highly virulent enterohemorrhagic E. coli (EHEC) O104:H4 strain, which possessed EHEC virulence traits in the genetic background of human-adapted enteroaggregative E. coli. To determine magnitude of fecal shedding and site of colonization of EHEC O104:H4 in a livestock host, 30 (ten/strain) weaned calves were inoculated with 1010 CFU of EHEC O104:H4, EHEC O157:H7 (positive control) or E. coli strain 123 (negative control) and necropsied (4 or 28 d.p.i.). E. coli O157:H7 was recovered until 28 d.p.i. and O104:H4 until 24 d.p.i. At 4 d.p.i., EHEC O104:H4 was isolated from intestinal content and detected associated with the intestinal mucosa. These results are the first evidence that cattle, the most important EHEC reservoir, can also carry unusual EHEC strains at least transiently, questioning our current understanding of the molecular basis of host adaptation of this important E. coli pathovar. PMID:27600997

  7. Detergents enhance EspB secretion from Escherichia coli strains harboring the locus for the enterocyte effacement (LEE) gene.

    PubMed

    Nakasone, Noboru; Toma, Claudia; Higa, Naomi; Koizumi, Yukiko; Ogura, Yasunori; Suzuki, Toshihiko

    2011-02-01

    The effects of detergents (cholic acid, deoxycholic acid, Triton X-100, and Nonidet P-40) on the secretion of EspB from the locus for enterocyte effacement (LEE) gene-positive Escherichia coli strains were examined. Clinical isolates of eight EPEC strains and seven STEC strains were used to detect EspB after they had been cultivated in Luria-Bertani (LB) broth containing one of the detergents. When the bacteria were cultured in LB broth supplemented with one of the detergents, the amount of EspB produced was increased by 2-32-fold depending on the detergent and the strain used. EspB was detected in all strains when they were cultured in LB broth containing all of the detergents. The results obtained in this study can be applied to immunological diagnostic methods for detecting EspB and also to the production of EspB for research purposes.

  8. Characterization of heat-stable enterotoxin from a hypertoxigenic Escherichia coli strain that is pathogenic for cattle.

    PubMed Central

    Saeed, A M; Magnuson, N S; Gay, C C; Greenberg, R N

    1986-01-01

    An enterotoxigenic Escherichia coli (ETEC) strain isolated from a calf with clinical scours was found to produce over 17- to 60-fold more heat-stable enterotoxin (STa) than four laboratory-adapted bovine ETEC strains. The purified STa of this strain was identical to those produced by other ETEC strains. A severe form of scours was induced in 5- to 15-day-old colostrum-fed calves and in 1- to 2-week-old piglets by oral administration of the purified STa. This study demonstrates that STa is a mediator of diarrhea in newborn calves and piglets and that under identical growth conditions diverse strains of bovine ETEC may produce variable amounts of homologous STa's. PMID:3525417

  9. Efficacy of an Escherichia coli O157:H7 SRP Vaccine in Orally Challenged Goats and Strain Persistence Over Time.

    PubMed

    Swift, Jacob M; Foster, Derek M; Rogers, Anna T; Sylvester, Hannah J; Griffith, Emily H; Jacob, Megan E

    2017-03-01

    Small ruminants have been implicated in outbreaks of Escherichia coli O157:H7 at livestock exhibitions throughout the United States. Additionally, goat meat or milk may serve as a reservoir for foodborne transmission of the organism. These associations highlight the public health importance of an effective strategy to reduce E. coli O157:H7 shedding in goats. We examined the efficacy of the SRP(®) vaccine in goats orally challenged with E. coli O157:H7. Mixed-breed goats (n = 14) were randomly allocated into vaccinated and unvaccinated treatments (n = 7 per treatment). Goats were housed with a vaccinated and unvaccinated animal in each pen. Feces were collected for 3 weeks, then at necropsy, gastrointestinal contents were collected to determine the concentration of E. coli O157:H7. Three isolates per positive sample were saved and evaluated by pulsed-field gel electrophoresis (PFGE) to assess strain persistence over time. The mean concentration of E. coli O157:H7 in the feces of goats was numerically reduced in the vaccinated treatment; however, it was not statistically significant. In addition, the total number of days goats were fecal positive for E. coli O157:H7 were not different between vaccinated and unvaccinated treatments. Pulsotypes of isolates revealed that goats initially shed two of the four challenge strains of E. coli O157:H7, after which there was a distinct shift to two different strains. Further work is needed to evaluate cost-effective intervention strategies that reliably reduce E. coli O157:H7 shedding in goats, particularly those that may reduce the risk of transmission at public events, including petting zoos and fairs.

  10. The Escherichia coli argW-dsdCXA Genetic Island Is Highly Variable, and E. coli K1 Strains Commonly Possess Two Copies of dsdCXA

    PubMed Central

    Moritz, Rebecca L.; Welch, Rodney A.

    2006-01-01

    The genome sequences of Escherichia coli pathotypes reveal extensive genetic variability in the argW-dsdCXA island. Interestingly, the archetype E. coli K1 neonatal meningitis strain, strain RS218, has two copies of the dsdCXA genes for d-serine utilization at the argW and leuX islands. Because the human brain contains d-serine, an epidemiological study emphasizing K1 isolates surveyed the dsdCXA copy number and function. Forty of 41 (97.5%) independent E. coli K1 isolates could utilize d-serine. Southern blot hybridization revealed physical variability within the argW-dsdC region, even among 22 E. coli O18:K1:H7 isolates. In addition, 30 of 41 K1 strains, including 21 of 22 O18:K1:H7 isolates, had two dsdCXA loci. Mutational analysis indicated that each of the dsdA genes is functional in a rifampin-resistant mutant of RS218, mutant E44. The high percentage of K1 strains that can use d-serine is in striking contrast to our previous observation that only 4 of 74 (5%) isolates in the diarrheagenic E. coli (DEC) collection have this activity. The genome sequence of diarrheagenic E. coli isolates indicates that the csrRAKB genes for sucrose utilization are often substituted for dsdC and a portion of dsdX present at the argW-dsdCXA island of extraintestinal isolates. Among DEC isolates there is a reciprocal pattern of sucrose fermentation versus d-serine utilization. The ability to use d-serine is a trait strongly selected for among E. coli K1 strains, which have the ability to infect a wide range of extraintestinal sites. Conversely, diarrheagenic E. coli pathotypes appear to have substituted sucrose for d-serine as a potential nutrient. PMID:17088369

  11. Binding Specificity of Piliated Strains of Escherichia coli and Salmonella typhimurium to Epithelial Cells, Saccharomyces cerevisiae Cells, and Erythrocytes

    PubMed Central

    Korhonen, Timo K.; Leffler, Hakon; Edén, Catharina Svanborg

    1981-01-01

    The binding to mammalian cells of piliated enteric bacteria and the inhibition of the binding by antibodies to purified pili were studied. The target cells were epithelial cells from human bucca and human and rat urinary tracts, erythrocytes from various species, and Saccharomyces cerevisiae cells. The strains were selected to represent the two main agglutination patterns of enteric bacteria: mannose-resistant agglutination of human and other erythrocytes and mannose-sensitive agglutination of guinea pig and other erythrocytes. Escherichia coli 3669 caused only mannose-resistant agglutination, E. coli 6013 caused only mannose-sensitive agglutination, and E. coli 3048 caused both types of agglutination simultaneously. Salmonella typhimurium SH6749 exhibited only mannose-sensitive hemagglutination and was included to allow comparison of its pili with those of E. coli strains. The range of epithelial cells to which the bacteria adhered was related to their agglutination patterns. All four strains attached to human buccal cells. Only E. coli strains 3669 and 3048, which caused mannose-resistant agglutination, adhered to human urinary tract epithelial cells, and only those strains that caused mannose-sensitive agglutination adhered to rat urinary tract epithelial cells. The binding of S. typhimurium SH6749, but not of the other strains with mannose-sensitive agglutination, was significantly inhibited by d-mannose. Globotetraosylceramide, a glycolipid present in the human urinary tract epithelium, inhibited attachment to human uroepithelial cells of the two strains with mannose-resistant hemagglutination. As tested by the enzyme-linked immunosorbent assay, cross-reactions between type 1 pili of the E. coli strains were strong, but those between S. typhimurium and E. coli mannose-sensitive pili were weak. The two pili that induced mannose-resistant hemagglutination on E. coli did not cross-react. Significant inhibition of adhesion of all four strains was obtained with the

  12. Escherichia coli Probiotic Strain ED1a in Pigs Has a Limited Impact on the Gut Carriage of Extended-Spectrum-β-Lactamase-Producing E. coli.

    PubMed

    Mourand, G; Paboeuf, F; Fleury, M A; Jouy, E; Bougeard, S; Denamur, E; Kempf, I

    2017-01-01

    Four trials were conducted to evaluate the impact of Escherichia coli probiotic strain ED1a administration to pigs on the gut carriage or survival in manure of extended-spectrum-β-lactamase-producing E. coli Groups of pigs were orally inoculated with strain E. coli M63 carrying the blaCTX-M-1 gene (n = 84) or used as a control (n = 26). In the first two trials, 24 of 40 E. coli M63-inoculated pigs were given E. coli ED1a orally for 6 days starting 8 days after oral inoculation. In the third trial, 10 E. coli M63-inoculated pigs were given either E. coli ED1a or probiotic E. coli Nissle 1917 for 5 days. In the fourth trial, E. coli ED1a was given to a sow and its 12 piglets, and these 12 piglets plus 12 piglets that had not received E. coli ED1a were then inoculated with E. coli M63. Fecal shedding of cefotaxime-resistant Enterobacteriaceae (CTX-RE) was studied by culture, and blaCTX-M-1 genes were quantified by PCR. The persistence of CTX-RE in manure samples from inoculated pigs or manure samples inoculated in vitro with E. coli M63 with or without probiotics was studied. The results showed that E. coli M63 and ED1a were good gut colonizers. The reduction in the level of fecal excretion of CTX-RE in E. coli ED1a-treated pigs compared to that in nontreated pigs was usually less than 1 log10 CFU and was mainly observed during the probiotic administration period. The results obtained with E. coli Nissle 1917 did not differ significantly from those obtained with E. coli ED1a. CTX-RE survival did not differ significantly in manure samples with or without probiotic treatment. In conclusion, under our experimental conditions, E. coli ED1a and E. coli Nissle 1917 could not durably prevent CTX-RE colonization of the pig gut.

  13. Distribution of strain type and antimicrobial susceptibility of Escherichia coli isolates causing meningitis in a large urban setting in Brazil.

    PubMed

    Berman, Hillary; Barberino, Maria Goreth; Moreira, Edson Duarte; Riley, Lee; Reis, Joice N

    2014-05-01

    The clinical management of meningitis caused by Escherichia coli is greatly complicated when the organism becomes resistant to broad-spectrum antibiotics. We sought to characterize the antimicrobial susceptibilities, sequence types (ST), and presence of known drug resistance genes of E. coli isolates that caused meningitis between 1996 and 2011 in Salvador, Brazil. We then compared these findings to those for E. coli isolates from community-acquired urinary tract infections (UTI) that occurred during the same time period and in the same city. We found that 19% of E. coli isolates from cases of meningitis and less than 1% of isolates from UTI were resistant to third-generation cephalosporins. The sequence types of E. coli isolates from cases of meningitis included ST131, ST69, ST405, and ST62, which were also found among isolates from UTI. Additionally, among the E. coli isolates that were resistant to third-generation cephalosporins, we found genes that encode the extended-spectrum beta-lactamases CTX-M-2, CTX-M-14, and CTX-M-15. These observations demonstrate that compared to E. coli strains isolated from cases of community-acquired UTI, those isolated from cases of meningitis are more resistant to third-generation cephalosporins, even though the same sequence types are shared between the two forms of extraintestinal infections.

  14. Genotypes and virulence characteristics of Shiga toxin-producing Escherichia coli O104 strains from different origins and sources.

    PubMed

    Miko, Angelika; Delannoy, Sabine; Fach, Patrick; Strockbine, Nancy A; Lindstedt, Björn Arne; Mariani-Kurkdjian, Patricia; Reetz, Jochen; Beutin, Lothar

    2013-12-01

    Sixty-two Escherichia coli strains carrying the wzxO104-gene from different sources, origins and time periods were analyzed for their serotypes, virulence genes and compared for genomic similarity by pulsed-field gel-electrophoresis (PFGE). The O104 antigen was present in 55 strains and the structurally and genetically related capsular antigen K9 in five strains. The presence of 49 genes associated with enteropathogenic E. coli (EPEC), enteroaggregative E. coli (EAEC) and enterohemorrhagic E. coli (EHEC) was investigated. Fifty-four strains of serotypes O104:H2 (n=1), O104:H4 (n=37), O104:H7 (n=5) and O104:H21 (n=11) produced Shiga-toxins (Stx). Among STEC O104, a close association between serotype, virulence gene profile and genomic similarity was found. EAEC virulence genes were only present in STEC O104:H4 strains. EHEC-O157 plasmid-encoded genes were only found in STEC O104:H2, O104:H7 and O104:H21 strains. None of the 62 O104 or K9 strains carried an eae-gene involved in the attaching and effacing phenotype. The 38 O104:H4 strains formed a single PFGE-cluster (>83.7% similarity). Thirty-one of these strains were from the European O104:H4 outbreak in 2011. The outbreak strains and older O104:H4 strains from Germany (2001), Georgia and France (2009) clustered together at>86.2% similarity. O104:H4 strains isolated between 2001 and 2009 differed for some plasmid-encoded virulence genes compared to the outbreak strains from 2011. STEC O104:H21 and STEC O104:H7 strains isolated in the U.S. and in Europe showed characteristic differences in their Stx-types, virulence gene and PFGE profiles indicating that these have evolved separately. E. coli K9 strains were not associated with virulence and were heterogeneous for their serotypes and PFGE profiles.

  15. Prevalence and antibiotic resistance profiles of diarrheagenic Escherichia coli strains isolated from food items in northwestern Mexico.

    PubMed

    Canizalez-Roman, Adrian; Gonzalez-Nuñez, Edgar; Vidal, Jorge E; Flores-Villaseñor, Héctor; León-Sicairos, Nidia

    2013-06-03

    Diarrheogenic Escherichia coli (DEC) strains are an important cause of intestinal syndromes in the developing world mainly affecting children. DEC strains often infect tourists from developed countries traveling to Mexico, causing so-called "traveler diarrhea". DEC strains are typically transmitted by contaminated food and water; however, the prevalence of these strains in food items that are produced, consumed and sometimes exported in northwestern Mexico has not been evaluated. In this study, we conducted a large microbiological survey of DEC strains in 5162 food items and beverages consumed throughout Sinaloa state during 2008 and 2009. We developed a panel of eight sequential PCR reactions that detected the presence of all DEC categories, including typical or atypical variants. Thermotolerant coliforms (also known as fecal coliforms) and E. coli were detected by conventional bacteriology in 13.4% (692/5162) and 7.92% (409/5162) of food items, respectively. Among 409 E. coli isolates, 13.6% (56/409) belonged to DEC strains. Dairy products (2.8%) were the most contaminated with DEC, while DEC strains were not detected in beverages and ice samples. The pathogenic type that was most commonly isolated was EPEC (78.5%), followed by EAEC (10.7%), STEC (8.9%) and ETEC (1.7%). EHEC, DAEC and EIEC strains were not detected. Approximately 80% of EPEC and EAEC strains were classified as atypical variants; they did not adhere to a culture of HEp-2 cell. Of the isolated DEC strains, 66% showed resistance to at least one commonly prescribed antibiotic. In conclusion, the presence of DEC strains in food items and beverages available in northwestern Mexico is low and may not represent a threat for the general population or those traveling to tourist areas.

  16. Resistance profiles and genetic diversity of Escherichia coli strains isolated from acute bovine mastitis.

    PubMed

    Moser, A; Stephan, R; Corti, S; Lehner, A

    2013-06-01

    Between March 2011 and February 2012 83 E. coli strains were isolated from mastitis milk samples from 83 different animals (67 farms) and tested for their sensitivity to various antibiotics by means of disk diffusion method and genotyped by determination of the phylogenetic groups as well as by pulsed field gel electrophoresis (PFGE). The antibiotics were chosen on the basis of their licenses for intramammary application in Switzerland. As many as 16.9 % of the isolates were resistant to one or more antimicrobial agents. Amoxicillin-clavulanic acid, gentamicin and third generation cephalosporins proved effective against the majority of these strains. Nevertheless, one blaCTX-M-14 harbouring extended-spectrum-beta-lactamase producing strain was found. Genetic analysis grouped most of the strains (87 %) into phylogenetic groups A and B1. PFGE genotyping demonstrated that E. coli from cows with mastitis even from the same farm were genotypically very diverse.

  17. Coculture of Escherichia coli O157:H7 with a Nonpathogenic E. coli Strain Increases Toxin Production and Virulence in a Germfree Mouse Model.

    PubMed

    Goswami, Kakolie; Chen, Chun; Xiaoli, Lingzi; Eaton, Kathryn A; Dudley, Edward G

    2015-11-01

    Escherichia coli O157:H7 is a notorious foodborne pathogen due to its low infectious dose and the disease symptoms it causes, which include bloody diarrhea and severe abdominal cramps. In some cases, the disease progresses to hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS), due to the expression of one or more Shiga toxins (Stx). Isoforms of Stx, including Stx2a, are encoded within temperate prophages. In the presence of certain antibiotics, phage induction occurs, which also increases the expression of toxin genes. Additionally, increased Stx2 accumulation has been reported when O157:H7 was cocultured with phage-susceptible nonpathogenic E. coli. This study characterized an E. coli O157:H7 strain, designated PA2, that belongs to the hypervirulent clade 8 cluster. Stx2a levels after ciprofloxacin induction were lower for PA2 than for the prototypical outbreak strains Sakai and EDL933. However, during coculture with the nonpathogenic strain E. coli C600, PA2 produced Stx2a levels that were 2- to 12-fold higher than those observed during coculture with EDL933 and Sakai, respectively. Germfree mice cocolonized by PA2 and C600 showed greater kidney damage, increased Stx2a accumulation in feces, and more visible signs of disease than mice given PA2 or C600 alone. These data suggest one mechanism by which microorganisms associated with the colonic microbiota could enhance the virulence of E. coli O157:H7, particularly a subset of clade 8 strains.

  18. Metaproteomics analyses as diagnostic tool for differentiation of Escherichia coli strains in outbreaks

    NASA Astrophysics Data System (ADS)

    Jabbour, Rabih E.; Wright, James D.; Deshpande, Samir V.; Wade, Mary; McCubbin, Patrick; Bevilacqua, Vicky

    2013-05-01

    The secreted proteins of the enterohemorrhagic and enteropathogenic E. coli (EHEC and EPEC) are the most common cause of hemorrhagic colitis, a bloody diarrhea with EHEC infection, which often can lead to life threatening hemolytic-uremic syndrome (HUS).We are employing a metaproteomic approach as an effective and complimentary technique to the current genomic based approaches. This metaproteomic approach will evaluate the secreted proteins associated with pathogenicity and utilize their signatures as differentiation biomarkers between EHEC and EPEC strains. The result showed that the identified tryptic peptides of the secreted proteins extracted from different EHEC and EPEC growths have difference in their amino acids sequences and could potentially utilized as biomarkers for the studied E. coli strains. Analysis of extract from EHEC O104:H4 resulted in identification of a multidrug efflux protein, which belongs to the family of fusion proteins that are responsible of cell transportation. Experimental peptides identified lies in the region of the HlyD haemolysin secretion protein-D that is responsible for transporting the haemolysin A toxin. Moreover, the taxonomic classification of EHEC O104:H4 showed closest match with E. coli E55989, which is in agreement with genomic sequencing studies that were done extensively on the mentioned strain. The taxonomic results showed strain level classification for the studied strains and distinctive separation among the strains. Comparative proteomic calculations showed separation between EHEC O157:H7 and O104:H4 in replicate samples using cluster analysis. There are no reported studies addressing the characterization of secreted proteins in various enhanced growth media and utilizing them as biomarkers for strain differentiation. The results of FY-2012 are promising to pursue further experimentation to statistically validate the results and to further explore the impact of environmental conditions on the nature of the secreted

  19. Fate in water of a recombinant Escherichia coli K-12 strain used in the commercial production of bovine somatotropin.

    PubMed

    Bogosian, G; Morris, P J; Hale, M D; Kane, J F

    1992-01-01

    The fate in water of Escherichia coli K-12 strain LBB269, both plasmid-free and carrying the recombinant plasmid pBGH1, was studied. E. coli K-12 strain LBB269 (pBGH1) is a nalidixic acid resistant derivative of W3110G (pBGH1), the microorganism used by Monsanto Company for the commercial production of bovine somatotropin. Water samples were obtained from the Missouri River and from the Monsanto Life Sciences Research Center aqueous waste basin. Strains LBB269 and LBB269 (pBGH1) were grown in fermentation vessel under bovine somatotropin (BST) production conditions, and inoculated into the water samples. The inoculated water samples were incubated at 26 degrees C, and the number of viable E. coli cells was determined as a function of time. In sterile water from both sources, the two strains remained at a constant level for at least 28 days; LBB269 (pBGH1) remained at a constant level in sterile water for at least 300 days. In non-sterile water from both sources, the two strains declined from an initial concentration of about 3.0 x 10(6) cells per ml to less than 10 cells per ml in 147 h. The study conditions did not adversely affect the populations of indigenous microorganisms. The selective loss of strains LBB269 and LBB269 (pBGH1) demonstrates that these E. coli strains do not survive in environmental sources of water. In addition, it was observed that the presence of pBGH1 had essentially no effect on the disappearance of strain LBB269 from either source of water.

  20. Escherichia coli biofilms

    PubMed Central

    Beloin, Christophe; Roux, Agnès; Ghigo, Jean-Marc

    2008-01-01

    Escherichia coli is a predominant species among facultative anaerobic bacteria of the gastrointestinal tract. Both its frequent community lifestyle and the availability of a wide array of genetic tools contributed to establish E. coli as a relevant model organism for the study of surface colonization. Several key factors, including different extracellular appendages, are implicated in E. coli surface colonization and their expression and activity are finely regulated, both in space and time, to ensure productive events leading to mature biofilm formation. This chapter will present known molecular mechanisms underlying biofilm development in both commensal and pathogenic E. coli. PMID:18453280

  1. Association of Escherichia coli with the Small Intestinal Epithelium I. Comparison of Enteropathogenic and Nonenteropathogenic Porcine Strains in Pigs

    PubMed Central

    Bertschinger, Hans U.; Moon, Harley W.; Whipp, Shannon C.

    1972-01-01

    Two enteropathogenic strains of Escherichia coli (EEC) differed from a nonenteropathogenic strain of E. coli (NEEC) in their association with porcine small intestinal epithelium. The EEC characteristically were found along villi from tip to base and contiguous to the brush border. They were not in crypts. In contrast, the NEEC characteristically remained in the central lumen near the tips of villi and was only occasionally contiguous to the brush border. No organisms were detected within epithelial cells. The difference in distribution between EEC and NEEC was apparent in ligated jejunal loops 45 min postexposure. The association between host and bacterial cells was most consistently demonstrated on frozen sections of intestine, as other histological techniques removed many bacteria. However, cellular details of the association were best demonstrated in chemically fixed tissues. Images PMID:4564680

  2. Biotypes and O serogroups of Escherichia coli involved in intestinal infections of weaned rabbits: clues to diagnosis of pathogenic strains.

    PubMed Central

    Camguilhem, R; Milon, A

    1989-01-01

    A total of 575 Escherichia coli strains isolated from weaned rabbits experiencing diarrhea in 119 French commercial farms were tested for O serogroups. The results showed a strong predominance of serogroup O103 strains. A sample of 126 strains were further checked for simplified biotypes by using five carbohydrate fermentation reactions. Of 72 O103 strains, 70 were shown to belong to biotypes characterized by a rhamnose-negative reaction. Four of nine serogroup O68 strains also showed this type of reaction. Thirty-nine strains, representative of the serotypes and biotypes found, were further tested for experimental pathogenicity in weaned rabbits and for antibiotic susceptibility. All the rhamnose-negative strains produced life-threatening watery or hemorrhagic diarrhea, whereas rhamnose-positive strains induced only mild diarrheic syndrome without any mortality or no clinical signs at all. Rhamnose-negative, highly pathogenic strains did not belong to related antibiotypes. We think that O serogrouping together with biotyping, or even rhamnose fermentation testing, may be an important clue in the diagnosis of enteropathogenic strains from rabbits in France, permitting rapid identification of highly pathogenic strains and leading to improved prognosis and treatment. PMID:2656746

  3. Creation of a Cellooligosaccharide-Assimilating Escherichia coli Strain by Displaying Active Beta-Glucosidase on the Cell Surface via a Novel Anchor Protein ▿

    PubMed Central

    Tanaka, Tsutomu; Kawabata, Hitomi; Ogino, Chiaki; Kondo, Akihiko

    2011-01-01

    We demonstrated direct assimilation of cellooligosaccharide using Escherichia coli displaying beta-glucosidase (BGL). BGL from Thermobifida fusca YX (Tfu0937) was displayed on the E. coli cell surface using a novel anchor protein named Blc. This strain was grown successfully on 0.2% cellobiose, and the optical density at 600 nm (OD600) was 1.05 after 20 h. PMID:21742905

  4. Antimicrobial resistance profiles among Escherichia coli strains isolated from commercial and cooked foods.

    PubMed

    Ryu, Seung-Hee; Lee, Jip-Ho; Park, Sang-Hoon; Song, Mi-Ok; Park, Sun-Hee; Jung, Hyo-Won; Park, Geon-Yong; Choi, Sung-Min; Kim, Moo-Sang; Chae, Young-Zoo; Park, Seog-Gee; Lee, Young-Ki

    2012-10-15

    A total of 4330 food samples of which microbiological standard for Escherichia coli is negative in Korea were determined for the frequency of E. coli. Ninety six samples (2.2%) were positive for E. coli. Detection rate of E. coli varied significantly by food type and ranged from 0.3% to 10.9%. Seasoned raw meat (yukhoe) and cold bean-soup had the highest prevalence for E. coli (10.9%) followed by gimbap (5.2%), meat broth for cold noodle (2.9%) and sprout (2.1%). E. coli isolates (n=96) were investigated for their phenotypic and genotypic antimicrobial resistance patterns. Seventeen E. coli isolates (17.7%) were resistant to one or more antimicrobial agents tested. High rates of resistance to the following drugs were observed: tetracycline (15.6%), streptomycin (12.5%), ampicillin (10.4%), nalidixic acid (9.4%) and ticarcillin (9.4%). All ampicillin resistant isolates were screened for extended-spectrum β-lactamase (ESBL) production by the combination disk test. None of the E. coli isolates produced ESBLs. Seventeen out of 96 E. coli isolates which were resistant to at least one antibiotic were investigated by PCR for the presence of 3 classes of antimicrobial resistance genes (tetracycline, aminoglycosides and beta-lactams). The tetracycline resistance genes tetA and tetB were found in 7 and 5 isolates, respectively. The aminoglycoside resistance genes, strA/B, aphA1, aadA and aac(3)-IV were found in 9, 5, 2 and 2 isolates, respectively. The beta-lactam resistance gene, bla(TEM) was found in 7 isolates. Results of this study show that 13 E. coli isolates were multidrug resistant (to three or more antibiotics) and 12 isolates carried at least one antimicrobial resistance gene. These isolates can act as the reservoir for antimicrobial resistance genes and facilitate the dissemination of these genes to other pathogenic and commensal bacteria. Adequate intervention to reduce microbial contamination of these foods is strongly recommended.

  5. MECHANISMS OF RESISTANCE TO CIPROFLOXACIN AND GENETIC DIVERSITY OF ESCHERICHIA COLI STRAINS ORIGINATING FROM URINE CULTURES PERFORMED FOR ROMANIAN ADULTS.

    PubMed

    Cristea, Violeta Corina; Oprea, Mihaela; Neacşu, Gabriela; Gîlcă, Ramona; Popa, Mircea Ioan; Usein, Codruţa-Romaniţa

    2015-01-01

    Urinary tract infections (UTI) with Escherichia coli are among the most common infections presenting in general practice. Fluoroquinolones (FQs) are relied on for their empirical therapy but recent reports indicate a concerning increase in the percentage of FQ-resistant E. coli isolates in many countries, including Romania. Sixty E. coli strains with ciprofloxacin resistance and cephalosporin susceptibility isolated from urine specimens of non-hospitalized patients during a five-month period (October 2014 - February 2015) were further analyzed to determine the molecular basis of FQ resistance (i.e. mutations in chromosomal gyrA, gyrB, parC genes and presence of plasmid-borne qnrA, qnrB, qnrS, and aac(6'-Ib-cr genes), the phylogenetic background (i.e. phylogenetic groups A, B1, B2, C, D, E, F or clade I), O25b/ST131 status, and genetic relatedness inferred from the XbaI pulsed-field gel electrophoresis (PFGE) profiles as a measure of isolate-specific genetic composition. The PCR-based phylotyping showed that most strains were assigned to non-B2 phylogenetic groups (i.e. group A/21 strains, group B1/14 strains, group B2/10 strains, group C/8 strains, group D/3 strains, group F/4 strains). Already described chromosomal mutations associated to FQ resistance were found, the strains being double gyrA mutants (i.e. Ser83Leu, Asp87Asn) with one or two parC mutations (e.g. Ala56Thr, Ser80Ile, Glu84Gly). Seven percent of the strains harboured plasmid-borne genes qnrS1 (2 strains) and aac(6'-Ib-cr (2 strains). Based on the PCR results, 15% of the strains were members of the O25b/ST131 clone and possessed the gyrA/parC allele combination which is considered as hallmark of H30 subclone. PFGE genotyping revealed a genetically diverse population of FQ-resistant E. coli. ST131 strains displayed more homogeneous PFGE profiles than non-ST131. The ST131 cluster extended to 77.74% similarity versus 60% overall. These findings underscore the need for ongoing surveillance to capture the

  6. Behavior of enteroaggregative Escherichia coli, non-O157-shiga toxin-producing E. coli, enteroinvasive E. coli, enteropathogenic E. coli and enterotoxigenic E. coli strains on mung bean seeds and sprout.

    PubMed

    Gómez-Aldapa, Carlos A; Rangel-Vargas, Esmeralda; Bautista-De León, Haydee; Vázquez-Barrios, Ma Estela; Gordillo-Martínez, Alberto J; Castro-Rosas, Javier

    2013-09-16

    The behavior of enteroaggregative Escherichia coli (EAEC), non-O157 shiga toxin-producing E. coli (non-O157-STEC), enteroinvasive E. coli (EIEC), enterotoxigenic E. coli (ETEC) and enteropathogenic E. coli (EPEC) on mung bean seeds at 25±2 °C and during germination and sprouting of mung bean seeds at 20±2 ° and 30±2 °C and on mung bean sprouts at 3±2 °C was determined. When mung bean seeds were inoculated with EAEC, non-O157 STEC, EIEC, EPEC or ETEC strains, all these diarrheagenic E. coli pathotypes (DEPs) survived at least 90 days on mung bean seeds at 25±2 °C. All DEPs grew during germination and sprouting of seeds, reaching counts of approximately 5 Log and 7 Log CFU/g after 2 days at 20±2 ° and 30±2 °C, respectively. However, when the sprouts were inoculated after 1 day of seeds germination and stored at 20±2 ° or 30±2 °C, no growth was observed for any DEPs during sprouting at 20±2 °C per 9 d; however, a significant increase in the concentration of DEPs of approximately 0.7 log CFU/g was observed during sprouting at 30±2 °C after 1 day of sprout contamination. Refrigeration reduced the number of viable DEPs strains on sprouts after 10 days in storage; nevertheless, these decreases have no practical significance in the safety of the sprouts.

  7. Phylogenetic analysis of Salmonella, Shigella, and Escherichia coli strains on the basis of the gyrB gene sequence.

    PubMed

    Fukushima, Masao; Kakinuma, Kenichi; Kawaguchi, Ryuji

    2002-08-01

    Phylogenetic analysis of about 200 strains of Salmonella, Shigella, and Escherichia coli was carried out using the nucleotide sequence of the gene for DNA gyrase B (gyrB), which was determined by directly sequencing PCR fragments. The results establish a new phylogenetic tree for the classification of Salmonella, Shigella, and Escherichia coli in which Salmonella forms a cluster separate from but closely related to Shigella and E. coli. In comparison with 16S rRNA analysis, the gyrB sequences indicated a greater evolutionary divergence for the bacteria. Thus, in screening for the presence of bacteria, the gyrB gene might be a useful tool for differentiating between closely related species of bacteria such as Shigella spp. and E. coli. At present, 16S rRNA sequence analysis is an accurate and rapid method for identifying most unknown bacteria to the genus level because the highly conserved 16S rRNA region is easy to amplify; however, analysis of the more variable gyrB sequence region can identify unknown bacteria to the species level. In summary, we have shown that gyrB sequence analysis is a useful alternative to 16S rRNA analysis for constructing the phylogenetic relationships of bacteria, in particular for the classification of closely related bacterial species.

  8. Broad and efficient control of major foodborne pathogenic strains of Escherichia coli by mixtures of plant-produced colicins

    PubMed Central

    Schulz, Steve; Stephan, Anett; Hahn, Simone; Bortesi, Luisa; Jarczowski, Franziska; Bettmann, Ulrike; Paschke, Anne-Katrin; Tusé, Daniel; Stahl, Chad H.; Giritch, Anatoli; Gleba, Yuri

    2015-01-01

    Enterohemorrhagic Escherichia coli (EHEC) is one of the leading causes of bacterial enteric infections worldwide, causing ∼100,000 illnesses, 3,000 hospitalizations, and 90 deaths annually in the United States alone. These illnesses have been linked to consumption of contaminated animal products and vegetables. Currently, other than thermal inactivation, there are no effective methods to eliminate pathogenic bacteria in food. Colicins are nonantibiotic antimicrobial proteins, produced by E. coli strains that kill or inhibit the growth of other E. coli strains. Several colicins are highly effective against key EHEC strains. Here we demonstrate very high levels of colicin expression (up to 3 g/kg of fresh biomass) in tobacco and edible plants (spinach and leafy beets) at costs that will allow commercialization. Among the colicins examined, plant-expressed colicin M had the broadest antimicrobial activity against EHEC and complemented the potency of other colicins. A mixture of colicin M and colicin E7 showed very high activity against all major EHEC strains, as defined by the US Department of Agriculture/Food and Drug Administration. Treatments with low (less than 10 mg colicins per L) concentrations reduced the pathogenic bacterial load in broth culture by 2 to over 6 logs depending on the strain. In experiments using meats spiked with E. coli O157:H7, colicins efficiently reduced the population of the pathogen by at least 2 logs. Plant-produced colicins could be effectively used for the broad control of pathogenic E. coli in both plant- and animal-based food products and, in the United States, colicins could be approved using the generally recognized as safe (GRAS) regulatory approval pathway. PMID:26351689

  9. Engineering Escherichia coli BL21(DE3) derivative strains to minimize E. coli protein contamination after purification by immobilized metal affinity chromatography.

    PubMed

    Robichon, Carine; Luo, Jianying; Causey, Thomas B; Benner, Jack S; Samuelson, James C

    2011-07-01

    Recombinant His-tagged proteins expressed in Escherichia coli and purified by immobilized metal affinity chromatography (IMAC) are commonly coeluted with native E. coli proteins, especially if the recombinant protein is expressed at a low level. The E. coli contaminants display high affinity to divalent nickel or cobalt ions, mainly due to the presence of clustered histidine residues or biologically relevant metal binding sites. To improve the final purity of expressed His-tagged protein, we engineered E. coli BL21(DE3) expression strains in which the most recurring contaminants are either expressed with an alternative tag or mutated to decrease their affinity to divalent cations. The current study presents the design, engineering, and characterization of two E. coli BL21(DE3) derivatives, NiCo21(DE3) and NiCo22(DE3), which express the endogenous proteins SlyD, Can, ArnA, and (optionally) AceE fused at their C terminus to a chitin binding domain (CBD) and the protein GlmS, with six surface histidines replaced by alanines. We show that each E. coli CBD-tagged protein remains active and can be efficiently eliminated from an IMAC elution fraction using a chitin column flowthrough step, while the modification of GlmS results in loss of affinity for nickel-containing resin. The "NiCo" strains uniquely complement existing methods for improving the purity of recombinant His-tagged protein.

  10. Effects of the Probiotic Enterococcus faecium and Pathogenic Escherichia coli Strains in a Pig and Human Epithelial Intestinal Cell Model

    PubMed Central

    Lodemann, Ulrike; Strahlendorf, Julia; Schierack, Peter; Klingspor, Shanti; Aschenbach, Jörg R.

    2015-01-01

    The aim of this study has been to elucidate the effect of the probiotic Enterococcus faecium NCIMB 10415 on epithelial integrity in intestinal epithelial cells and whether pre- and coincubation with this strain can reproducibly prevent damage induced by enterotoxigenic (ETEC) and enteropathogenic Escherichia coli (EPEC). Porcine (IPEC-J2) and human (Caco-2) intestinal epithelial cells were incubated with bacterial strains and epithelial integrity was assessed by measuring transepithelial electrical resistance (TEER) and mannitol flux rates. E. faecium alone increased TEER of Caco-2 cells without affecting mannitol fluxes whereas the E. coli strains decreased TEER and concomitantly increased mannitol flux rates in both cell lines. Preincubation with E. faecium had no effect on the TEER decrease induced by E. coli in preliminary experiments. However, in a second set of experiments using a slightly different protocol, E. faecium ameliorated the TEER decrease induced by ETEC at 4 h in IPEC-J2 and at 2, 4, and 6 h in Caco-2 cells. We conclude that E. faecium positively affected epithelial integrity in monoinfected Caco-2 cells and could ameliorate the damage on TEER induced by an ETEC strain. Reproducibility of the results is, however, limited when experiments are performed with living bacteria over longer periods. PMID:25883829

  11. Evaluation of three industrial Escherichia coli strains in fed-batch cultivations during high-level SOD protein production

    PubMed Central

    2013-01-01

    Background In the biopharmaceutical industry, Escherichia coli (E. coli) strains are among the most frequently used bacterial hosts for producing recombinant proteins because they allow a simple process set-up and they are Food and Drug Administration (FDA)-approved for human applications. Widespread use of E. coli in biotechnology has led to the development of many different strains, and selecting an ideal host to produce a specific protein of interest is an important step in developing a production process. E. coli B and K–12 strains are frequently employed in large-scale production processes, and therefore are of particular interest. We previously evaluated the individual cultivation characteristics of E. coli BL21 and the K–12 hosts RV308 and HMS174. To our knowledge, there has not yet been a detailed comparison of the individual performances of these production strains in terms of recombinant protein production and system stability. The present study directly compared the T7-based expression hosts E. coli BL21(DE3), RV308(DE3), and HMS174(DE3), focusing on evaluating the specific attributes of these strains in relation to high-level protein production of the model protein recombinant human superoxide dismutase (SOD). The experimental setup was an exponential carbon-limited fed-batch cultivation with minimal media and single-pulse induction. Results The host strain BL21(DE3) produced the highest amounts of specific protein, followed by HMS174(DE3) and RV308(DE3). The expression system HMS174(DE3) exhibited system stability by retaining the expression vector over the entire process time; however, it entirely stopped growing shortly after induction. In contrast, BL21(DE3) and RV308(DE3) encountered plasmid loss but maintained growth. RV308(DE3) exhibited the lowest ppGpp concentration, which is correlated with the metabolic stress level and lowest degradation of soluble protein fraction compared to both other strains. Conclusions Overall, this study provides

  12. Functional complementation of Leishmania (Leishmania) amazonensis AP endonuclease gene (lamap) in Escherichia coli mutant strains challenged with DNA damage agents

    PubMed Central

    Verissimo-Villela, Erika; Kitahara-Oliveira, Milene Yoko; dos Reis, Ana Beatriz de Bragança; Albano, Rodolpho Mattos; Da-Cruz, Alda Maria; Bello, Alexandre Ribeiro

    2016-01-01

    During its life cycle Leishmania spp. face several stress conditions that can cause DNA damages. Base Excision Repair plays an important role in DNA maintenance and it is one of the most conserved mechanisms in all living organisms. DNA repair in trypanosomatids has been reported only for Old World Leishmania species. Here the AP endonuclease from Leishmania (L.) amazonensis was cloned, expressed in Escherichia coli mutants defective on the DNA repair machinery, that were submitted to different stress conditions, showing ability to survive in comparison to the triple null mutant parental strain BW535. Phylogenetic and multiple sequence analyses also confirmed that LAMAP belongs to the AP endonuclease class of proteins. PMID:27223868

  13. Colistin Resistance in Escherichia coli and Salmonella enterica Strains Isolated from Swine in Brazil

    PubMed Central

    Morales, Adriano Savoia; Fragoso de Araújo, Juliana; de Moura Gomes, Vasco Túlio; Reis Costa, Adrienny Trindade; dos Prazeres Rodrigues, Dália; Porfida Ferreira, Thais Sebastiana; de Lima Filsner, Pedro Henrique Nogueira; Felizardo, Maria Roberta; Micke Moreno, Andrea

    2012-01-01

    Reports about acquired resistance to colistin in different bacteria species are increasing, including E. coli of animal origin, but reports of resistance in wild S. enterica of different serotypes from swine are not found in the literature. Results obtained with one hundred and twenty-six E. coli strains from diseased swine and one hundred and twenty-four S. enterica strains from diseased and carrier swine showed a frequency of 6.3% and 21% of colistin-resistant strains, respectively. When comparing the disk diffusion test with the agar dilution test to evaluate the strains, it was confirmed that the disk diffusion test is not recommended to evaluate colistin resistance as described previously. The colistin MIC 90 and MIC 50 values obtained to E. coli were 0.25 μg/mL and 0.5 μg/mL, the MIC 90 and MIC 50 to S. enterica were 1 μg/mL and 8 μg/mL. Considering the importance of colistin in control of nosocomial human infections with Gram-negative multiresistant bacteria, and the large use of this drug in animal production, the colistin resistance prevalence in enterobacteriaceae of animal origin must be monitored more closely. PMID:22973166

  14. Colistin resistance in Escherichia coli and Salmonella enterica strains isolated from swine in Brazil.

    PubMed

    Morales, Adriano Savoia; Fragoso de Araújo, Juliana; de Moura Gomes, Vasco Túlio; Reis Costa, Adrienny Trindade; dos Prazeres Rodrigues, Dália; Porfida Ferreira, Thais Sebastiana; de Lima Filsner, Pedro Henrique Nogueira; Felizardo, Maria Roberta; Micke Moreno, Andrea

    2012-01-01

    Reports about acquired resistance to colistin in different bacteria species are increasing, including E. coli of animal origin, but reports of resistance in wild S. enterica of different serotypes from swine are not found in the literature. Results obtained with one hundred and twenty-six E. coli strains from diseased swine and one hundred and twenty-four S. enterica strains from diseased and carrier swine showed a frequency of 6.3% and 21% of colistin-resistant strains, respectively. When comparing the disk diffusion test with the agar dilution test to evaluate the strains, it was confirmed that the disk diffusion test is not recommended to evaluate colistin resistance as described previously. The colistin MIC 90 and MIC 50 values obtained to E. coli were 0.25 μg/mL and 0.5 μg/mL, the MIC 90 and MIC 50 to S. enterica were 1 μg/mL and 8 μg/mL. Considering the importance of colistin in control of nosocomial human infections with Gram-negative multiresistant bacteria, and the large use of this drug in animal production, the colistin resistance prevalence in enterobacteriaceae of animal origin must be monitored more closely.

  15. Kinetic modeling of free fatty acid production in Escherichia coli based on continuous cultivation of a plasmid free strain.

    PubMed

    Youngquist, J Tyler; Lennen, Rebecca M; Ranatunga, Don R; Bothfeld, William H; Marner, Wesley D; Pfleger, Brian F

    2012-06-01

    The microbial production of free fatty acids (FFAs) and reduced derivatives is an attractive process for the renewable production of diesel fuels. Toward this goal, a plasmid-free strain of Escherichia coli was engineered to produce FFAs by integrating three copies of a thioesterase gene from Umbellularia californica (BTE) under the control of an inducible promoter onto the chromosome. In batch culture, the resulting strain produced identical titers to a previously reported strain that expressed the thioesterase from a plasmid. The growth rate, glucose consumption rate, and FFA production rate of this strain were studied in continuous cultivation under carbon limitation. The highest yield of FFA on glucose was observed at a dilution rate of 0.05 h(-1) with the highest specific productivity observed at a dilution rate of 0.2 h(-1). The observed yields under the lowest dilution rate were 15% higher than that observed in batch cultures. An increase in both productivity and yield (≈ 40%) was observed when the composition of the nutrients was altered to shift the culture toward non-carbon limitation. A deterministic model of the production strain has been proposed and indicates that maintenance requirements for this strain are significantly higher than wild-type E. coli.

  16. Assessment of oxidative DNA damage in the oxyR-deficient SOS chromotest strain escherichia coli PQ300

    SciTech Connect

    Mueller, J. ); Janz, S. )

    1992-01-01

    The SOS chromotest is a simple short-term genotoxicity assay measuring the induction of gene sfiA in Escherichia coli K-12. The recent availability of SOS tester strains with additional mutations in DNA repair or protection systems allows testing of DNA damaging compounds for genotoxic specificity. E. coli PQ300 differs from the standard SOS tester strain PQ37 in that it contains an additional mutation in gene oxyR that renders it more sensitive to oxidative genotoxins. The generation of reactive oxygen intermediates (ROI) by hydroperoxides (H[sub 2]O[sub 2], t-butyl hydroperoxide, cumene hydroperoxide), [gamma]-radiation, glucose oxidase, and xanthine oxidase resulted in a more vigorous SOS response in strain PQ300 compared to strain PQ37. PQ300 was also more sensitive than PQ37 for the detection of reducing agents such as ascorbic acid, cysteine, and glutathione, which also alter the redox status of the bacterial cells. However, intercalating agents (adriamycin, bleomycin, and mitomycin C) and the UV- and radiomimetic compound 4-nitroquinoline-1-oxide whose DNA damaging potential are known also to involve ROI did not show significant differences between strains PQ37 and PQ300. It is concluded that the oxyR-deficient strain PQ300 is useful for detecting certain classes of genotoxins that change the oxidative/antioxidative balance of tester bacteria in the SOS chromotest. 70 refs., 4 figs., 1 tab.

  17. Close association of verotoxin (Shiga-like toxin) production with enterohemolysin production in strains of Escherichia coli.

    PubMed Central

    Beutin, L; Montenegro, M A; Orskov, I; Orskov, F; Prada, J; Zimmermann, S; Stephan, R

    1989-01-01

    Sixty-four verotoxin-producing (VT+) Escherichia coli strains were analyzed for VT1- and VT2-specific DNA sequences and for production of hemolysin. Strains of human origin were of the following serotypes: O157:H7 or H-, O111:H8 or H-, O26:H11, O114:H4, and rough:H7. Strains of serotypes O157:H7, O113:H21, O116:H21, and rough:H- were from cattle, while those of serotype O139:K12:H1 were from pigs. All 64 isolates carried either VT1 or VT2 or both genes. Sixty of the strains (93.8%) were hemolytic (Hly+). The three O139:K12:H1 strains examined produced alpha-hemolysin, as shown by their reaction with the alpha-hemolysin-specific monoclonal antibody h2A and by DNA hybridization with an alpha-hly gene probe. The remaining 57 Hly+ strains (95%) produced a different type of hemolysin (enterohemolysin), which is genetically and serologically unrelated to alpha-hemolysin. The two types of hemolysin are further distinguished by the appearance of the lysis zone on blood agar and by the time interval for the detection of hemolysis. In contrast to alpha-hemolysin, enterohemolysin can be detected only on blood plates containing washed erythrocytes. The frequent association of enterohemolysin with verotoxin production (89%) makes it useful as an epidemiological marker for rapid and simple detection of potential VT+ E. coli. Images PMID:2681256

  18. Comparative Genome Analysis of Extended-Spectrum-β-Lactamase-Producing Escherichia coli Sequence Type 131 Strains from Nepal and Japan

    PubMed Central

    Miyoshi-Akiyama, Tohru; Sherchan, Jatan Bahadur; Doi, Yohei; Nagamatsu, Maki; Sherchand, Jeevan B.; Tandukar, Sarmila; Ohmagari, Norio; Kirikae, Teruo; Ohara, Hiroshi

    2016-01-01

    ABSTRACT The global spread of extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli (ESBL-E. coli) has largely been driven by the pandemic sequence type 131 (ST131). This study aimed to determine the molecular epidemiology of their spread in two Asian countries with contrasting prevalence. We conducted whole-genome sequencing (WGS) of ESBL-E. coli ST131 strains collected prospectively from Nepal and Japan, two countries in Asia with a high and low prevalence of ESBL-E. coli, respectively. We also systematically compared these genomes with those reported from other regions using publicly available WGS data for E. coli ST131 strains. Further, we conducted phylogenetic analysis of these isolates and all genome sequence data for ST131 strains to determine sequence diversity. One hundred five unique ESBL-E. coli isolates from Nepal (February 2013 to July 2013) and 76 isolates from Japan (October 2013 to September 2014) were included. Of these isolates, 54 (51%) isolates from Nepal and 11 (14%) isolates from Japan were identified as ST131 by WGS. Phylogenetic analysis based on WGS suggested that the majority of ESBL-E. coli ST131 isolates from Nepal clustered together, whereas those from Japan were more diverse. Half of the ESBL-E. coli ST131 isolates from Japan belonged to virotype C, whereas half of the isolates from Nepal belonged to a virotype other than virotype A, B, C, D, or E (A/B/C/D/E). The dominant sublineage of E. coli ST131 was H30Rx, which was most prominent in ESBL-E. coli ST131 isolates from Nepal. Our results revealed distinct phylogenetic characteristics of ESBL-E. coli ST131 spread in the two geographical areas of Asia, indicating the involvement of multiple factors in its local spread in each region. IMPORTANCE The global spread of ESBL-E. coli has been driven in large part by pandemic sequence type 131 (ST131). A recent study suggested that, within E. coli ST131, certain sublineages have disseminated worldwide with little association

  19. Isolation and molecular characterization of multidrug-resistant strains of Escherichia coli and Salmonella from retail chicken meat in Japan.

    PubMed

    Ahmed, Ashraf M; Shimabukuro, Hirofumi; Shimamoto, Tadashi

    2009-09-01

    Sixty-nine Escherichia coli and 10 Salmonella isolates, recovered from retail chicken meat in Hiroshima prefecture, Japan, were assayed for antimicrobial susceptibility, the presence of integrons and antimicrobial resistance genes. Twenty-eight out of 69 (40.6%) of E. coli and all 10 Salmonella isolates were exhibited multidrug resistance phenotypes. The most commonly reported resistance phenotypes were against ampicillin, streptomycin, spectinomycin, kanamycin, tetracycline, and trimethoprim/sulfamethoxazole. PCR screening for integrons showed that 8 (11.6%) of the E. coli isolates were positive for the class 1 integrons and 1 isolate (1.4%) was positive for the class 2 integrons. Among the 10 Salmonella isolates, 9 were positive for class 1 integrons and none was positive for class 2 integrons. The identified antibiotic resistance gene cassettes within the class 1 integrons were dfrA1, dfrA7, aadA1, aadB, and catB3, while dfrA1, sat2, and aadA1 were identified within class 2 integron. The beta-lactamase resistance gene bla(TEM-1) was identified in 12 (17.3%) of E. coli isolates and in only one of the Salmonella isolates. The bla(CMY-2) gene, encoding AmpC beta-lactamase, was detected in 16 (23.2%) of the E. coli isolates only. Conjugation experiments demonstrated that there was plasmid-mediated transfer of bla(CMY-2) and bla(TEM-1). These results highlighted the role of retail chicken meat as a potential source for multidrug-resistant strains of E. coli and Salmonella. To the best of our knowledge, this is the 1st report of isolation and molecular characterization of multidrug-resistant strains of E. coli from retail chicken meat in Japan.

  20. Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains.

    PubMed

    Lee, Soojin; Oh, Younghoon; Kim, Donghyun; Kwon, Doyeon; Lee, Choulgyun; Lee, Jinwon

    2011-07-01

    Marine algae, which make up about 80% of the world's living organisms, contain many energy sources, such as sugars and lipids. Therefore, the possibility of utilizing structural carbohydrates from marine algae for bioethanol production has been studied. In order to obtain monosaccharides, Undaria pinnatifida, Chlorella vulgaris, and Chlamydomonas reinhardtii were used for the saccharification experiments. The pretreatment was carried out by dilute acid hydrolysis and enzymatic treatment. To find the optimal conditions, experiments were performed at several temperatures, acid concentrations, pH conditions and durations. To test bioethanol production, several ethanolic E. coli W3110 strains, which were developed previously, were used. The maximum yield of bioethanol, 0.4 g ethanol/g biomass, was achieved with pretreated C. vulgaris and E. coli SJL2526, derived from wild-type E. coli W3110 and which includes the adhB, pdc, galP, and glk genes.

  1. Metabolic regulation analysis of an ethanologenic Escherichia coli strain based on RT-PCR and enzymatic activities

    PubMed Central

    Orencio-Trejo, Montserrat; Flores, Noemí; Escalante, Adelfo; Hernández-Chávez, Georgina; Bolívar, Francisco; Gosset, Guillermo; Martinez, Alfredo

    2008-01-01

    Background A metabolic regulation study was performed, based upon measurements of enzymatic activities, fermentation performance, and RT-PCR analysis of pathways related to central carbon metabolism, in an ethanologenic Escherichia coli strain (CCE14) derived from lineage C. In comparison with previous engineered strains, this E coli derivative has a higher ethanol production rate in mineral medium, as a result of the elevated heterologous expression of the chromosomally integrated genes encoding PDCZm and ADHZm (pyruvate decarboxylase and alcohol dehydrogenase from Zymomonas mobilis). It is suggested that this behavior might be due to lineage differences between E. coli W and C. Results This study demonstrated that the glycolytic flux is controlled, in this case, by reactions outside glycolysis, i.e., the fermentative pathways. Changes in ethanol production rate in this ethanologenic strain result in low organic acid production rates, and high glycolytic and ethanologenic fluxes, that correlate with enhanced transcription and enzymatic activity levels of PDCZm and ADHZm. Furthermore, a higher ethanol yield (90% of the theoretical) in glucose-mineral media was obtained with CCE14 in comparison with previous engineered E. coli strains, such as KO11, that produces a 70% yield under the same conditions. Conclusion Results suggest that a higher ethanol formation rate, caused by ahigher PDCZm and ADHZm activities induces a metabolic state that cells compensate through enhanced glucose transport, ATP synthesis, and NAD-NADH+H turnover rates. These results show that glycolytic enzymatic activities, present in E. coli W and C under fermentative conditions, are sufficient to contend with increases in glucose consumption and product formation rates. PMID:18471274

  2. Occurrence of Hybrid Escherichia coli Strains Carrying Shiga Toxin and Heat-Stable Toxin in Livestock of Bangladesh.

    PubMed

    Johura, Fatema-Tuz; Parveen, Rozina; Islam, Atiqul; Sadique, Abdus; Rahim, Md Niaz; Monira, Shirajum; Khan, Anisur R; Ahsan, Sunjukta; Ohnishi, Makoto; Watanabe, Haruo; Chakraborty, Subhra; George, Christine M; Cravioto, Alejandro; Navarro, Armando; Hasan, Badrul; Alam, Munirul

    2016-01-01

    Shiga toxin-producing Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) are important causes of diarrhea in humans and animals worldwide. Although ruminant animals are the main source of STEC, diarrhea due to this pathotype is very low in Bangladesh where ETEC remains the predominant group associated with childhood diarrhea. In the present study, E. coli strains (n = 35) isolated from Bangladesh livestock (goats, sheep, and cattle) and poultry (chicken and ducks) were analyzed for the presence of major virulence factors, such as Shiga toxins (STX-1 and STX-2), heat-labile toxin, and heat-stable toxins (STa and STb). Multiplex polymerase chain reaction results revealed 23 (66%) E. coli strains to be virulent possessing either sta (n = 5), stx (stx1, n = 8; stx2, n = 2), or both (n = 8) genes in varying combinations. Thirty-four percent (8/23) of strains from livestock were hybrid type that carried both stx (either stx1 or stx2) and ETEC-specific enterotoxin gene sta. Serotyping results revealed that the ETEC strains belonged to five serotypes, namely O36:H5, O174:H-, O152:H8, O109:H51, and O8:H21, while the STEC-producing strains belonged to serotypes O76:H19 (n = 3), O43:H2 (n = 2), O87:H16 (n = 2), OR:H2 (n = 1), O110:H16 (n = 1), and O152:H8 (n = 1). The STEC-ETEC hybrid strains belonged to serotypes O76:H19 (n = 3), O43:H2 (n = 2), O87:H16, OR:H2, and O152:H8. Forty percent (2/5) of the ETEC and 20% (2/10) of the STEC strains were multidrug resistant with the highest drug resistance (50%) being found in the hybrid strains. Molecular fingerprinting determined by pulsed-field gel electrophoresis and cluster analyses by dendrogram revealed that, genetically, STEC-ETEC hybrid strains were highly heterogeneous. Multidrug-resistant E. coli STEC-ETEC hybrid strains in domesticated animals pose a public health threat for humans in Bangladesh.

  3. Occurrence of Hybrid Escherichia coli Strains Carrying Shiga Toxin and Heat-Stable Toxin in Livestock of Bangladesh

    PubMed Central

    Johura, Fatema-Tuz; Parveen, Rozina; Islam, Atiqul; Sadique, Abdus; Rahim, Md Niaz; Monira, Shirajum; Khan, Anisur R.; Ahsan, Sunjukta; Ohnishi, Makoto; Watanabe, Haruo; Chakraborty, Subhra; George, Christine M.; Cravioto, Alejandro; Navarro, Armando; Hasan, Badrul; Alam, Munirul

    2017-01-01

    Shiga toxin-producing Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) are important causes of diarrhea in humans and animals worldwide. Although ruminant animals are the main source of STEC, diarrhea due to this pathotype is very low in Bangladesh where ETEC remains the predominant group associated with childhood diarrhea. In the present study, E. coli strains (n = 35) isolated from Bangladesh livestock (goats, sheep, and cattle) and poultry (chicken and ducks) were analyzed for the presence of major virulence factors, such as Shiga toxins (STX-1 and STX-2), heat-labile toxin, and heat-stable toxins (STa and STb). Multiplex polymerase chain reaction results revealed 23 (66%) E. coli strains to be virulent possessing either sta (n = 5), stx (stx1, n = 8; stx2, n = 2), or both (n = 8) genes in varying combinations. Thirty-four percent (8/23) of strains from livestock were hybrid type that carried both stx (either stx1 or stx2) and ETEC-specific enterotoxin gene sta. Serotyping results revealed that the ETEC strains belonged to five serotypes, namely O36:H5, O174:H−, O152:H8, O109:H51, and O8:H21, while the STEC-producing strains belonged to serotypes O76:H19 (n = 3), O43:H2 (n = 2), O87:H16 (n = 2), OR:H2 (n = 1), O110:H16 (n = 1), and O152:H8 (n = 1). The STEC–ETEC hybrid strains belonged to serotypes O76:H19 (n = 3), O43:H2 (n = 2), O87:H16, OR:H2, and O152:H8. Forty percent (2/5) of the ETEC and 20% (2/10) of the STEC strains were multidrug resistant with the highest drug resistance (50%) being found in the hybrid strains. Molecular fingerprinting determined by pulsed-field gel electrophoresis and cluster analyses by dendrogram revealed that, genetically, STEC–ETEC hybrid strains were highly heterogeneous. Multidrug-resistant E. coli STEC–ETEC hybrid strains in domesticated animals pose a public health threat for humans in Bangladesh. PMID:28119905

  4. Surveillance of Diarrheagenic Escherichia coli Strains Isolated from Diarrhea Cases from Children, Adults and Elderly at Northwest of Mexico

    PubMed Central

    Canizalez-Roman, Adrian; Flores-Villaseñor, Héctor M.; Gonzalez-Nuñez, Edgar; Velazquez-Roman, Jorge; Vidal, Jorge E.; Muro-Amador, Secundino; Alapizco-Castro, Gerardo; Díaz-Quiñonez, J. Alberto; León-Sicairos, Nidia

    2016-01-01

    Diarrheagenic Escherichia coli (DEC) strains are a main cause of gastrointestinal disease in developing countries. In this study we report the epidemiologic surveillance in a 4-year period (January 2011 to December 2014) of DEC strains causing acute diarrhea throughout the Sinaloa State, Mexico. DEC strains were isolated from outpatients of all ages with acute diarrhea (N = 1,037). Specific DEC pathotypes were identified by PCR-amplification of genes encoding virulence factors. The adhesion phenotype and antibiotic resistance were also investigated. DEC strains were detected in 23.3% (242/1037) of cases. The most frequently DEC strain isolated was EAEC [(12.2%), 126/242] followed by EPEC [(5.1%), 53/242], ETEC [(4.3%), 43/242] DAEC [(1.4%), 15/242], STEC [(0.3%), 3/242], and EIEC [(0.2%), 2/242]. EHEC strains were not detected. Overall DEC strains were more prevalent in children ≤2 years of age with EPEC strains the most common of DEC pathotypes. While ∼65% of EAEC strains were classified as typical variant based on the aggregative adherence to in vitro cultures of HEp-2 cells, a high proportion of EPEC strains was classified as atypical strains. EAEC, EPEC, ETEC, and DAEC strains were distributed in the north, central and south regions of Sinaloa state. Among all DEC strains, >90% were resistant to at least one commonly prescribed antibiotic. Strains were commonly resistant to first-line antibiotics such as tetracycline, ampicillin, and sulfamethoxazole-trimethoprim. Furthermore, more than 80% of DEC isolates were multi-drug resistant and EPEC and DAEC were the categories with major proportion of this feature. In conclusion, in nearly one out of four cases of acute diarrhea in Northwestern Mexico a multi-drug resistant DEC strain was isolated, in these cases EAEC was the most prevalent (52%) pathotype. PMID:27965648

  5. Surveillance of Diarrheagenic Escherichia coli Strains Isolated from Diarrhea Cases from Children, Adults and Elderly at Northwest of Mexico.

    PubMed

    Canizalez-Roman, Adrian; Flores-Villaseñor, Héctor M; Gonzalez-Nuñez, Edgar; Velazquez-Roman, Jorge; Vidal, Jorge E; Muro-Amador, Secundino; Alapizco-Castro, Gerardo; Díaz-Quiñonez, J Alberto; León-Sicairos, Nidia

    2016-01-01

    Diarrheagenic Escherichia coli (DEC) strains are a main cause of gastrointestinal disease in developing countries. In this study we report the epidemiologic surveillance in a 4-year period (January 2011 to December 2014) of DEC strains causing acute diarrhea throughout the Sinaloa State, Mexico. DEC strains were isolated from outpatients of all ages with acute diarrhea (N = 1,037). Specific DEC pathotypes were identified by PCR-amplification of genes encoding virulence factors. The adhesion phenotype and antibiotic resistance were also investigated. DEC strains were detected in 23.3% (242/1037) of cases. The most frequently DEC strain isolated was EAEC [(12.2%), 126/242] followed by EPEC [(5.1%), 53/242], ETEC [(4.3%), 43/242] DAEC [(1.4%), 15/242], STEC [(0.3%), 3/242], and EIEC [(0.2%), 2/242]. EHEC strains were not detected. Overall DEC strains were more prevalent in children ≤2 years of age with EPEC strains the most common of DEC pathotypes. While ∼65% of EAEC strains were classified as typical variant based on the aggregative adherence to in vitro cultures of HEp-2 cells, a high proportion of EPEC strains was classified as atypical strains. EAEC, EPEC, ETEC, and DAEC strains were distributed in the north, central and south regions of Sinaloa state. Among all DEC strains, >90% were resistant to at least one commonly prescribed antibiotic. Strains were commonly resistant to first-line antibiotics such as tetracycline, ampicillin, and sulfamethoxazole-trimethoprim. Furthermore, more than 80% of DEC isolates were multi-drug resistant and EPEC and DAEC were the categories with major proportion of this feature. In conclusion, in nearly one out of four cases of acute diarrhea in Northwestern Mexico a multi-drug resistant DEC strain was isolated, in these cases EAEC was the most prevalent (52%) pathotype.

  6. β-Lactamases in amoxicillin-clavulanate-resistant Escherichia coli strains isolated from a Chinese tertiary hospital.

    PubMed

    Ding, Juanjuan; Ma, Xitao; Chen, Zhuochang; Feng, Keqing

    2013-08-01

    A total of 52 strains were resistant to amoxicillin-clavulanate by disk diffusion method in a Chinese tertiary hospital from July 2011 to December 2011. Among these isolates, 2 isolates possessed a phenotype consistent with production of inhibitor-resistant temoniera (TEM) (IRT) β-lactamase, and the TEM-type gene was cloned into strains of Escherichia coli JM109 cells. Both had no blaTEM mutations and were identified as TEM-1 β-lactamase producers. As a result, no IRT β-lactamase was detected. Multiplex PCR detected most of these strains produced TEM-1 enzymes, and plasmid-mediated AmpC β-lactamase and oxacillinase-1 β-lactamases are important mechanisms of resistance as well.

  7. [Revised prevalence of afa+ Escherichia coli strains in acute pyelonephritis of children].

    PubMed

    Licznar, P; Eychenne, I; Azéma, C; Decramer, S; Bouissou, F; Fayet, O; Prère, M-F

    2003-10-01

    Two hundred E. coli strains isolated from children with pyelonephritis were investigated for the presence of six virulence factors. The used primers amplified adhesin pap and sfa, toxin haemolysin (hly) and cytotoxic necrotizing factor 1 (cnf1) and aerobactin (aer). For afimbrial adhesin, the previously used set of primers could not allow to detect the newly reported afa operons (Le Bouguenec et al., 2001). With a new set of primers specific for the afa operon family the prevalence of afa+ strains increased from 3.5% to 13.5%. Combinations of three or more factors in a same strain were found in 48.5%. Thirty two different urovirulent genotypes were observed; two strains contained the six studied factors.

  8. Biotype, serotype, and pathogenicity of attaching and effacing enteropathogenic Escherichia coli strains isolated from diarrheic commercial rabbits.

    PubMed Central

    Peeters, J E; Geeroms, R; Orskov, F

    1988-01-01

    A total of 568 strains of Escherichia coli isolated from healthy and diarrheic rabbits were separated into 11 different biotypes according to the fermentation patterns of four carbohydrates. Strains belonging to biotypes 1 to 3, 6, and 8 induced lesions characteristic for attaching and effacing E. coli (AEEC). They attached to the intestinal epithelium of the terminal small intestine and the large intestine of 5-week-old rabbits after experimental infection and caused effacement of the microvillous brush border. However, pathogenicity for weaned rabbits, as judged by diarrhea score, anorexia, and reduced weight gain, varied according to the biotypes of the strains. Strains belonging to biotypes 1 and 6 produced only discrete clinical signs, strains belonging to biotypes 2 and 3+ (motile) induced diarrhea and growth depression, whereas strains belonging to biotypes 3- (immotile) and 8 caused severe clinical signs and high mortality. This confirms evidence from the field. Biotypes 3- and 8, accounting for 35.5 and 7.1% of AEEC strains in weaned diarrheic rabbits, respectively, were not detected in weaned healthy rabbits, while biotype 2 was the predominant strain in weaned healthy rabbits (62.3%). Finally, serotyping showed a close relationship between biotype and serotype of the AEEC examined. Most strains of biotypes 1+ and 2+ tested were O109:K-:H2 and O132:K-:H2, respectively, whereas all strains tested of biotype 3- were O15:K-:H- and those of biotype 8 were O103:K-:H2. These data indicate that specific clones of AEEC might be involved in juvenile rabbit enteritis. It was concluded that determination of biotypes allows the screening of highly pathogenic AEEC in weaned rabbits (biotypes 3- and 8). PMID:3286497

  9. Semi-automated rep-PCR for rapid differentiation of major clonal groups of Escherichia coli meningitis strains.

    PubMed

    Bonacorsi, Stéphane; Bidet, Philippe; Mahjoub, Farah; Mariani-Kurkdjian, Patricia; Ait-Ifrane, Shadia; Courroux, Céline; Bingen, Edouard

    2009-08-01

    DiversiLab, a semi-automated repetitive-sequence-based PCR (rep-PCR) device, is a highly integrated platform designed for rapid bacterial genotyping. Here, we evaluated the capacity of the DiversiLab system to determine the genetic relatedness of Escherichia coli neonatal meningitis (ECNM) strains and to identify clonal groups. We analyzed 80 isolates representative of the diversity of ECNM strains in Europe and North America and 52 E. coli reference (ECOR) strains belonging to phylogenetic groups A, D, and B2. All the strains had previously been characterized by means of multilocus sequence typing (MLST). The DiversiLab dendrogram clustered all but 8 of the strains according to their phylogenetic groups. After defining a rep-PCR type complex (RPTc) based on an average similarity threshold of 95% between rep-PCR types, we observed excellent agreement between RPTc and sequence type complexes (STc) in groups D and B2. In group A, rep-PCR typing was more discriminative than MLST, dividing the 25 ECOR group A strains into 19 RPTc, compared to only 10 STc. In the highly virulent clonal group B2(1), mainly composed of O1, O2, O18, and O45:K1 strains, the DiversiLab system individualized a particular subgroup of O2:K1 strains. In addition, among O18:K1 strains the system identified a particular genetic background associated with pathogenicity island II(J96)-like domains. Thus, the DiversiLab system is a rapid and powerful tool for identifying and discriminating clonal groups among ECNM strains.

  10. Avirulent K88 (F4)+ Escherichia coli strains constructed to express modified enterotoxins protect young piglets from challenge with a virulent enterotoxigenic Escherichia coli strain that expresses the same adhesion and enterotoxins.

    PubMed

    Santiago-Mateo, Kristina; Zhao, Mojun; Lin, Jun; Zhang, Weiping; Francis, David H

    2012-10-12

    Virulence of enterotoxigenic Escherichia coli (ETEC) is associated with fimbrial adhesins and enterotoxins such as heat-labile (LT) and/or heat-stable (ST) enterotoxins. Previous studies using a cell culture model suggest that exclusion of ETEC from attachment to epithelial cells requires expression of both an adhesin such as K88 (F4) fimbriae, and LT. To test the ability of non-pathogenic E. coli constructs to exclude virulent ETEC sufficiently to prevent clinical disease, we utilized a piglet ETEC challenge model. Thirty-nine 5-day-old piglets were inoculated with a placebo (control), or with either of the three K88(+)E. coli strains isogenic with regard to modified LT expression: 8017 (pBR322 plasmid vector control), non-toxigenic mutant 8221 (LT(R192G)) in pBR322, or 8488, with the LT gene fused to the STb gene in pBR322 (LT(R192G)-STb). Piglets were challenged with virulent ETEC Strain 3030-2 (K88(+)/LT/STb) 24h post-inoculation. K88ac receptor-positive piglets in the control group developed diarrhea and became dehydrated 12-24h post-challenge. Piglets inoculated with 8221 or 8488 did not exhibit clinical signs of ETEC disease; most piglets inoculated with 8017 showed diarrhea. Control pigs exhibited significant weight loss, increased blood total protein, and higher numbers of colony-forming units of 3030-2 E. coli in washed ileum and jejunum than treated pigs. This study shows for the first time that pre-inoculation with an avirulent strain expressing adhesive fimbriae and a non-toxic form of LT provides significant short term protection from challenge with a virulent ETEC strain that expresses the same fimbrial adhesion and enterotoxin.

  11. Suitability of recombinant Escherichia coli and Pseudomonas putida strains for selective biotransformation of m-nitrotoluene by xylene monooxygenase.

    PubMed

    Meyer, Daniel; Witholt, Bernard; Schmid, Andreas

    2005-11-01

    Escherichia coli JM101(pSPZ3), containing xylene monooxygenase (XMO) from Pseudomonas putida mt-2, catalyzes specific oxidations and reductions of m-nitrotoluene and derivatives thereof. In addition to reactions catalyzed by XMO, we focused on biotransformations by native enzymes of the E. coli host and their effect on overall biocatalyst performance. While m-nitrotoluene was consecutively oxygenated to m-nitrobenzyl alcohol, m-nitrobenzaldehyde, and m-nitrobenzoic acid by XMO, the oxidation was counteracted by an alcohol dehydrogenase(s) from the E. coli host, which reduced m-nitrobenzaldehyde to m-nitrobenzyl alcohol. Furthermore, the enzymatic background of the host reduced the nitro groups of the reactants resulting in the formation of aromatic amines, which were shown to effectively inhibit XMO in a reversible fashion. Host-intrinsic oxidoreductases and their reaction products had a major effect on the activity of XMO during biocatalysis of m-nitrotoluene. P. putida DOT-T1E and P. putida PpS81 were compared to E. coli JM101 as alternative hosts for XMO. These promising strains contained an additional dehydrogenase that oxidized m-nitrobenzaldehyde to the corresponding acid but catalyzed the formation of XMO-inhibiting aromatic amines at a significantly lower level than E. coli JM101.

  12. Multidrug Resistance in Escherichia coli Strains Isolated from Infections in Dogs and Cats in Poland (2007–2013)

    PubMed Central

    Rzewuska, Magdalena; Czopowicz, Michał; Kizerwetter-Świda, Magdalena; Chrobak, Dorota; Błaszczak, Borys; Binek, Marian

    2015-01-01

    The antimicrobial susceptibility of Escherichia coli isolates associated with various types of infections in dogs and cats was determined. The studied isolates were most frequently susceptible to fluoroquinolones and the extended-spectrum cephalosporins (ESCs), antimicrobials commonly used in treatment of infections in companion animals. However, an increase in the percentage of strains resistant to β-lactam antibiotics including ESCs was noted between January 2007 and December 2013. The frequency of multidrug-resistant (MDR) E. coli isolation (66.8% of isolates) is alarming. Moreover, the statistically significant increase of the percentage of MDR isolates was observed during the study period. No difference in the prevalence of multidrug resistance was found between bacteria causing intestinal and extraintestinal infections and between canine and feline isolates. Nonhemolytic E. coli isolates were MDR more often than hemolytic ones. Our study showed the companion animals in Poland as an important reservoir of MDR bacteria. These results indicate that continuous monitoring of canine and feline E. coli antimicrobial susceptibility is required. Furthermore, introduction and application of recommendations for appropriate use of antimicrobials in small animal practice should be essential to minimize the emergence of multidrug resistance among E. coli in companion animals. PMID:25667937

  13. Comparative Survival of Free Shiga Toxin 2-Encoding Phages and Escherichia coli Strains outside the Gut

    PubMed Central

    Muniesa, Maite; Lucena, Francisco; Jofre, Juan

    1999-01-01

    The behavior outside the gut of seeded Escherichia coli O157:H7, naturally occurring E. coli, somatic coliphages, bacteriophages infecting O157:H7, and Shiga toxin 2 (Stx2)-encoding bacteriophages was studied to determine whether the last persist in the environment more successfully than their host bacteria. The ratios between the numbers of E. coli and those of the different bacteriophages were clearly lower in river water than in sewage of the area, whereas the ratios between the numbers of the different phages were similar. In addition, the numbers of bacteria decreased between 2 and 3 log units in in situ survival experiments performed in river water, whereas the numbers of phages decreased between 1 and 2 log units. Chlorination and pasteurization treatments that reduced by approximately 4 log units the numbers of bacteria reduced by less than 1 log unit the numbers of bacteriophages. Thus, it can be concluded that Stx2-encoding phages persist longer than their host bacteria in the water environment and are more resistant than their host bacteria to chlorination and heat treatment. PMID:10584029

  14. Diffusely adherent Escherichia coli strains expressing Afa/Dr adhesins (Afa/Dr DAEC): hitherto unrecognized pathogens.

    PubMed

    Le Bouguénec, Chantal; Servin, Alain L

    2006-03-01

    Diffusely adherent Escherichia coli (DAEC) strains are currently considered to constitute a putative sixth group of diarrheagenic E. coli. However, on the basis of their diffuse adherence to HEp-2 and HeLa cells, the detection of afa/dra/daa-related operons encoding this adherence phenotype, and the mobilization of decay-accelerating factor, both commensal and pathogenic strains can be classified as Afa/Dr DAEC isolates. Furthermore, strains associated with diarrheal diseases and strains causing extra-intestinal infections can also be identified as Afa/Dr DAEC strains. Although several cell signaling events that occur after epithelial cells have been infected by Afa/Dr DAEC have been reported, the pathophysiological processes that allow intestinal and extra-intestinal infections to develop are not fully understood. This review focuses on the genetic organization of the afa/dra/daa-related operons and on the virulence factors that trigger cellular responses, some of which are deleterious for the host cells. Finally, this review suggests future lines of research that could help to elucidate these questions.

  15. A multicopy phr-plasmid increases the ultraviolet resistance of a recA strain of Escherichia coli.

    PubMed

    Yamamoto, K; Satake, M; Shinagawa, H

    1984-01-01

    It has been previously reported that the ultraviolet sensitivity of recA strains of Escherichia coli in the dark is suppressed by a plasmid pKY1 which carries the phr gene, suggesting that this is due to a novel effect of photoreactivating enzyme (PRE) of E. coli in the dark (Yamamoto et al., 1983a). In this work, we observed that an increase of UV-resistance by pKY1 in the dark is not apparent in strains with a mutation in either uvrA, uvrB, uvrC, lexA, recBC or recF. The sensitivity of recA lexA and recA recBC multiple mutants to UV is suppressed by the plasmid but that of recA uvrA, recA uvrB and recA uvrC is not. Host-cell reactivation of UV-irradiated lambda phage is slightly more efficient in the recA/pKY1 strain compared with the parental recA strain. On the other hand, the recA and recA/pKY1 strains do not differ significantly in the following properties: Hfr recombination, induction of lambda by UV, and mutagenesis. We suggest that dark repair of PRE is correlated with its capacity of excision repair.

  16. Characterization of extended-spectrum-beta-lactamase-producing Escherichia coli strains involved in maternal-fetal colonization: prevalence of E. coli ST131.

    PubMed

    Birgy, André; Mariani-Kurkdjian, Patricia; Bidet, Philippe; Doit, Catherine; Genel, Nathalie; Courroux, Céline; Arlet, Guillaume; Bingen, Edouard

    2013-06-01

    Maternal-fetal Escherichia coli infections, such as neonatal bacteremia and meningitis, are important causes of morbidity and mortality. From 2006 to 2010, we studied newborns and their mothers who were colonized with E. coli in a French hospital in order to document (i) the epidemiology and genetic characteristics of extended-spectrum-beta-lactamase (ESBL)-producing E. coli strains, (ii) the prevalence of associated virulence genes, (iii) the prevalence of clone sequence type 131 (ST131), and (iv) the genetic relationship among ESBL-producing strains. Among the 2,755 E. coli cultures recovered from vaginal or neonatal samples, 68 were ESBL producers (2.46%). We found a wide diversity of ESBL genes, with the majority being bla(CTX-M-14), bla(CTX-M-1), and bla(CTX-M-15), distributed among the 4 main phylogenetic groups. Genes encoding virulence factors were found in 90.7% of the isolates, with ≥ 2 virulence genes present in 76% of cases. The prevalence of ST131 among ESBL-producing E. coli isolates was 9.4% (6/64). Five of these 6 ST131 isolates possessed bla(CTX-M-15) enzymes (and also were resistant to quinolones), and one possessed bla(CTX-M-2) enzymes. Two possessed virulence genes, suggesting the presence of pathogenicity island IIJ96 (PAI IIJ96)-like domains. Pulsed-field gel electrophoresis (PFGE) revealed a high level of genomic diversity overall, except for 3 closely related isolates belonging to clonal group ST131. Repetitive PCR showed that the six ST131 isolates were closely related to ST131 control strains (>95% similarity). This study shows a high prevalence of ESBL-producing E. coli strains and clonal group ST131 in the French maternal-fetal population. These results suggest a widespread distribution of ESBL enzymes in the community and highlight the early transmission between mothers and neonates. These findings are worrisome, especially for this particularly vulnerable population.

  17. Genome-Based Comparison of Cyclic Di-GMP Signaling in Pathogenic and Commensal Escherichia coli Strains

    PubMed Central

    Povolotsky, Tatyana L.

    2015-01-01

    ABSTRACT The ubiquitous bacterial second messenger cyclic di-GMP (c-di-GMP) has recently become prominent as a trigger for biofilm formation in many bacteria. It is generated by diguanylate cyclases (DGCs; with GGDEF domains) and degraded by specific phosphodiesterases (PDEs; containing either EAL or HD-GYP domains). Most bacterial species contain multiples of these proteins with some having specific functions that are based on direct molecular interactions in addition to their enzymatic activities. Escherichia coli K-12 laboratory strains feature 29 genes encoding GGDEF and/or EAL domains, resulting in a set of 12 DGCs, 13 PDEs, and four enzymatically inactive “degenerate” proteins that act by direct macromolecular interactions. We present here a comparative analysis of GGDEF/EAL domain-encoding genes in 61 genomes of pathogenic, commensal, and probiotic E. coli strains (including enteric pathogens such as enteroaggregative, enterohemorrhagic, enteropathogenic, enterotoxigenic, and adherent and invasive Escherichia coli and the 2011 German outbreak O104:H4 strain, as well as extraintestinal pathogenic E. coli, such as uropathogenic and meningitis-associated E. coli). We describe additional genes for two membrane-associated DGCs (DgcX and DgcY) and four PDEs (the membrane-associated PdeT, as well as the EAL domain-only proteins PdeW, PdeX, and PdeY), thus showing the pangenome of E. coli to contain at least 35 GGDEF/EAL domain proteins. A core set of only eight proteins is absolutely conserved in all 61 strains: DgcC (YaiC), DgcI (YliF), PdeB (YlaB), PdeH (YhjH), PdeK (YhjK), PdeN (Rtn), and the degenerate proteins CsrD and CdgI (YeaI). In all other GGDEF/EAL domain genes, diverse point and frameshift mutations, as well as small or large deletions, were discovered in various strains. IMPORTANCE Our analysis reveals interesting trends in pathogenic Escherichia coli that could reflect different host cell adherence mechanisms. These may either benefit from or be

  18. Differential analysis of bactericidal systems of blood serum with recombinant luminescent Escherichia coli and Bacillus subtilis strains.

    PubMed

    Deryabin, D G; Karimov, I F; Manukhov, I V; Tolmacheva, N A; Balabanov, V P

    2012-11-01

    Luminescence intensity of recombinant Escherichia coli and Bacillus subtilis strains with cloned luxCD(AB)E genes of the natural luminescent microorganism Photobacterium leiognathi was studied under the influence of 30 individual samples of human blood serum of different component composition. A relationship was found between the level of residual bioluminescence and degree of the bactericidal effect. Moreover, the inhibition of E. coli lux+ luminescence was shown to be related to activity of the complement-lysozyme system. The reaction of B. subtilis lux+ primarily depended on the presence of β-lysin in the blood serum. These data provide an experimental substantiation of a new method of differential analysis of humoral factors of nonspecific innate immunity with recombinant luminescent bacteria.

  19. Complete Genome Sequences of Curli-Negative and Curli-Positive Isolates of Foodborne Escherichia coli O157:H7 Strain 86-24

    PubMed Central

    Bayles, Darrell O.; Alt, David P.; Looft, Torey

    2016-01-01

    Escherichia coli O157:H7 strain 86-24 does not produce curli fimbriae, but gives rise to curli-positive isolates at a variable frequency. Here, we report the complete genome sequences of curli-negative and curli-positive isolates of strain 86-24. PMID:27979932

  20. Disinfectant and antimicrobial susceptibility profiles of the big six non-O157 Shiga toxin-producing Escherichia coli strains from food animals and humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The disinfectant and antimicrobial susceptibility profiles of 144 non-O157 Shiga toxin-producing Escherichia coli (STECs) from food animals and humans were determined. An overall moderate prevalence of 38.9% antimicrobial resistance (AMR) was observed in these strains. Animal strains had a lower p...

  1. Molecular and phenotypic characterization of Escherichia coli O26:H8 among diarrheagenic E. coli O26 strains isolated in Brazil.

    PubMed

    Piazza, Roxane M F; Delannoy, Sabine; Fach, Patrick; Saridakis, Halha O; Pedroso, Margareth Z; Rocha, Letícia B; Gomes, Tânia A T; Vieira, Mônica A M; Beutin, Lothar; Guth, Beatriz E C

    2013-11-01

    Escherichia coli strains of serogroup O26 comprise two distinct groups of pathogens, characterized as enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC). Among the several genes related to type III secretion system-secreted effector proteins, espK was found to be highly specific for EHEC O26:H11 and its stx-negative derivative strains isolated in European countries. E. coli O26 strains isolated in Brazil from infant diarrhea, foods, and the environment have consistently been shown to lack stx genes and are thus considered atypical EPEC. However, no further information related to their genetic background is known. Therefore, in this study, we aimed to discriminate and characterize these Brazilian O26 stx-negative strains by phenotypic, genetic, and biochemical approaches. Among 44 isolates confirmed to be O26 isolates, most displayed flagellar antigen H11 or H32. Out of the 13 nonmotile isolates, 2 tested positive for fliCH11, and 11 were fliCH8 positive. The identification of genetic markers showed that several O26:H11 and all O26:H8 strains tested positive for espK and could therefore be discriminated as EHEC derivatives. The presence of H8 among EHEC O26 and its stx-negative derivative isolates is described for the first time. The interaction of three isolates with polarized Caco-2 cells and with intestinal biopsy specimen fragments ex vivo confirmed the ability of the O26 strains analyzed to cause attaching-and-effacing (A/E) lesions. The O26:H32 strains, isolated mostly from meat, were considered nonvirulent. Knowledge of the virulence content of stx-negative O26 isolates within the same serotype helped to avoid misclassification of isolates, which certainly has important implications for public health surveillance.

  2. Antibiotic Resistance, RAPD- PCR Typing of Multiple Drug Resistant Strains of Escherichia Coli From Urinary Tract Infection (UTI)

    PubMed Central

    Marialouis, Xavier Alexander

    2016-01-01

    Introduction Global spreading of multidrug resistant strains of Escherichia coli is responsible for Urinary Tract Infection (UTI) which is a major health problem in of concern. Among the gram negative bacteria, the major contributors for UTI belongs to the family Enterobacteriaceae, which includes E. coli, Klebsiella, Citrobacter and Proteus. However, E. coli accounts for the major cause of Urinary tract infections (UTIs) and accounts for 75% to 90% of UTI isolates. Aim The main aim of this study is to analyse the phylogenetic grouping of clinical isolates of UTI E. coli. Materials and Methods In this study nearly 58 E. coli strains were isolated and confirmed through microbiological, biochemical characterization. The urine samples were collected from outpatients having symptoms of UTI, irrespective of age and sex in Tamil Nadu, India. The isolates were subjected to analyse for ESBL and AmpC β-lactamase production. To understand its genetic correlation, molecular typing was carried out using RAPD-PCR method. Results Here we noted phenotypically twenty seven isolates were positive for ESBL and seven for AmpC β-lactamase production. However, among the ESBL isolates higher sensitivity was noted for Nitrofurantoin and Cefoxitin. It is worth to note that the prevalence of UTIs was more common among female and elderly male. Phylogenetic grouping revealed the presence of 24 isolates belonged to B2 group followed by 19 isolates to group A, eight isolates to group B1 and Seven isolates to group D. Conclusion Phenotypically most of the strains were positive for ESBL and showed high sensitivity for Nitrofurantoin and cefoxitin. PMID:27134870

  3. Dissemination of Cephalosporin Resistance Genes between Escherichia coli Strains from Farm Animals and Humans by Specific Plasmid Lineages

    PubMed Central

    de Toro, María; Scharringa, Jelle; Dohmen, Wietske; Du, Yu; Hu, Juan; Lei, Ying; Li, Ning; Tooming-Klunderud, Ave; Heederik, Dick J. J.; Fluit, Ad C.; Bonten, Marc J. M.; Willems, Rob J. L.; de la Cruz, Fernando; van Schaik, Willem

    2014-01-01

    Third-generation cephalosporins are a class of β-lactam antibiotics that are often used for the treatment of human infections caused by Gram-negative bacteria, especially Escherichia coli. Worryingly, the incidence of human infections caused by third-generation cephalosporin-resistant E. coli is increasing worldwide. Recent studies have suggested that these E. coli strains, and their antibiotic resistance genes, can spread from food-producing animals, via the food-chain, to humans. However, these studies used traditional typing methods, which may not have provided sufficient resolution to reliably assess the relatedness of these strains. We therefore used whole-genome sequencing (WGS) to study the relatedness of cephalosporin-resistant E. coli from humans, chicken meat, poultry and pigs. One strain collection included pairs of human and poultry-associated strains that had previously been considered to be identical based on Multi-Locus Sequence Typing, plasmid typing and antibiotic resistance gene sequencing. The second collection included isolates from farmers and their pigs. WGS analysis revealed considerable heterogeneity between human and poultry-associated isolates. The most closely related pairs of strains from both sources carried 1263 Single-Nucleotide Polymorphisms (SNPs) per Mbp core genome. In contrast, epidemiologically linked strains from humans and pigs differed by only 1.8 SNPs per Mbp core genome. WGS-based plasmid reconstructions revealed three distinct plasmid lineages (IncI1- and IncK-type) that carried cephalosporin resistance genes of the Extended-Spectrum Beta-Lactamase (ESBL)- and AmpC-types. The plasmid backbones within each lineage were virtually identical and were shared by genetically unrelated human and animal isolates. Plasmid reconstructions from short-read sequencing data were validated by long-read DNA sequencing for two strains. Our findings failed to demonstrate evidence for recent clonal transmission of cephalosporin-resistant E

  4. Production of 3-Hydroxypropionic Acid via the Propionyl-CoA Pathway Using Recombinant Escherichia coli Strains

    PubMed Central

    Luo, Hui; Zhou, Dafeng; Liu, Xiaohui; Nie, Zhihua; Quiroga-Sánchez, Diego Leandro; Chang, Yanhong

    2016-01-01

    Our study aimed to produce the commercially promising platform chemical 3-hydroxypropionic acid (3-HP) via the propionyl-CoA pathway in genetically engineered Escherichia coli. Recombinant E. coli Ec-P overexpressing propionyl-CoA dehydrogenase (PACD, encoded by the pacd gene from Candida rugosa) under the T7 promoter produced 1.33 mM of 3-HP in a shake flask culture supplemented with 0.5% propionate. When propionate CoA-transferase (PCT, encoded by the pct gene from Megasphaera elsdenii) and 3-hydroxypropionyl-CoA dehydratase (HPCD, encoded by the hpcd gene from Chloroflexus aurantiacus) were expressed along with PACD, the 3-HP titer of the resulting E. coli Ec-PPH strain was improved by 6-fold. The effect of the cultivation conditions on the 3-HP yield from propionate in the Ec-PPH strain was also investigated. When cultured at 30°C with 1% glucose in addition to propionate, 3-HP production by Ec-PPH increased 2-fold and 12-fold compared to the cultivation at 37°C (4.23 mM) or without glucose (0.68 mM). Deletion of the ygfH gene encoding propionyl-CoA: succinate CoA-transferase from Ec-PPH (resulting in the strain Ec-△Y-PPH) led to increase of 3-HP production in shake flask experiments (15.04 mM), whereas the strain Ec-△Y-PPH with deletion of the prpC gene (encoding methylcitrate synthase in the methylcitrate cycle) produced 17.76 mM of 3-HP. The strain Ec-△Y-△P-PPH with both ygfH and prpC genes deleted produced 24.14 mM of 3-HP, thus showing an 18-fold increase in the 3-HP titer in compare to the strain Ec-P. PMID:27227837

  5. Monitoring and characterization of extended-spectrum beta-lactamases in Escherichia coli strains from healthy and sick animals in Spain in 2003.

    PubMed

    Briñas, Laura; Moreno, Miguel Angel; Teshager, Tirushet; Sáenz, Yolanda; Porrero, María Concepción; Domínguez, Lucas; Torres, Carmen

    2005-03-01

    Genes encoding CTX-M-14, CTX-M-9, CTX-M-1, CTX-M-32, SHV-12, TEM-52, or CMY-2 beta-lactamases were detected in 21 Escherichia coli strains recovered during 2003 from sick animals (11 of 459 [2.4%] strains) and healthy animals (10 of 158 [6.3%] strains) in Spain. Twelve of these strains harbored bla(CTX-M) genes and showed unrelated pulsed-field gel electrophoresis patterns.

  6. Monitoring and Characterization of Extended-Spectrum β-Lactamases in Escherichia coli Strains from Healthy and Sick Animals in Spain in 2003

    PubMed Central

    Briñas, Laura; Moreno, Miguel Angel; Teshager, Tirushet; Sáenz, Yolanda; Porrero, María Concepción; Domínguez, Lucas; Torres, Carmen

    2005-01-01

    Genes encoding CTX-M-14, CTX-M-9, CTX-M-1, CTX-M-32, SHV-12, TEM-52, or CMY-2 β-lactamases were detected in 21 Escherichia coli strains recovered during 2003 from sick animals (11 of 459 [2.4%] strains) and healthy animals (10 of 158 [6.3%] strains) in Spain. Twelve of these strains harbored blaCTX-M genes and showed unrelated pulsed-field gel electrophoresis patterns. PMID:15728945

  7. Survival differences of Escherichia coli O157:H7 strains in apples of three varieties stored at various temperatures.

    PubMed

    Janes, M E; Cobbs, T; Kooshesh, S; Johnson, M G

    2002-07-01

    Differences in survival and growth among five different Escherichia coli O157:H7 strains in three apple varieties were determined at various temperatures. Jonathan, Golden Delicious, and Red Delicious apples were wounded and inoculated with E coli O157:H7 strains C7929 (apple cider isolate), 301C (chicken isolate), 204P (pork isolate), 933 (beef isolate), and 43890 (human isolate) at an initial level of 6 to 7 log CFU/g. The inoculated apples were stored at a constant temperature of 37, 25, 8, or 4 degrees C or at 37 degrees C for 24 h and then at 4 degrees C, and bacterial counts were determined every week for 28 days. By day 28, for Jonathan apples at 25 degrees C, the apple isolate counts were significantly higher than the chicken and human isolate counts. At 4 degrees C for 28 days, the human isolate inoculated into Jonathan, Golden Delicious, and Red Delicious apples was present in significantly smaller numbers than the other strains. The apple isolate survived significantly better at 4 degrees C, yielding the highest number of viable cells. By days 21 and 28, for apples stored at 37 degrees C for the first 24 h and then at 4 degrees C, the counts of viable E. coli O157:H7 apple and human isolates were 6.8 and 5.8 log CFU/g at the site of the wound, whereas for apples kept at 4 degrees C for the duration of storage, the respective counts were 5.6 and 1.5 log CFU/g. Our study shows that E. coli O157:H7 strains responded differentially to their ability to survive in these three apple varieties at 25 or 4 degrees C and produced higher viable counts when apples were temperature abused at 37 degrees C for 24 h and then stored at 4 degrees C for 27 days.

  8. Growth rate control of flagellar assembly in Escherichia coli strain RP437

    PubMed Central

    Sim, Martin; Koirala, Santosh; Picton, David; Strahl, Henrik; Hoskisson, Paul A.; Rao, Christopher V.; Gillespie, Colin S.; Aldridge, Phillip D.

    2017-01-01

    The flagellum is a rotary motor that enables bacteria to swim in liquids and swarm over surfaces. Numerous global regulators control flagellar assembly in response to cellular and environmental factors. Previous studies have also shown that flagellar assembly is affected by the growth-rate of the cell. However, a systematic study has not yet been described under controlled growth conditions. Here, we investigated the effect of growth rate on flagellar assembly in Escherichia coli using steady-state chemostat cultures where we could precisely control the cell growth-rate. Our results demonstrate that flagellar abundance correlates with growth rate, where faster growing cells produce more flagella. They also demonstrate that this growth-rate dependent control occurs through the expression of the flagellar master regulator, FlhD4C2. Collectively, our results demonstrate that motility is intimately coupled to the growth-rate of the cell. PMID:28117390

  9. Molecular Characterization of Enterotoxigenic Escherichia coli Strains Isolated from Diarrheal Patients in Korea during 2003–2011

    PubMed Central

    Oh, Kyung-Hwan; Kim, Dong Wook; Jung, Su-Mi; Cho, Seung-Hak

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC) is one of the major causes of infectious diarrhea in developing countries. In order to characterize the molecular features of human ETEC isolates from Korea, we investigated the profiles of enterotoxin and colonization factor (CF) genes by polymerase chain reaction (PCR) and performed multilocus sequence typing (MLST) with a total of 291 ETEC strains. The specimens comprised 258 domestic strains isolated from patients who had diarrhea and were from widely separated geographic regions in Korea and 33 inflow strains isolated from travelers visiting other Asian countries. Heat-stable toxin (STh)-possessing ETEC strains were more frequent than heat-labile toxin (LT)-possessing ETEC strains in the domestic isolates, while the detection rates of both enterotoxin genes were similar in the inflow isolates. The profile of CF genes of domestic isolates was similar to that of inflow isolates and the major CF types of the strains were CS3-CS21-CS1/PCF071 and CS2-CS3-CS21. Most of these 2 CF types were detected in ETEC strains that possess both lt and sth genes. The major MLSTST types of domestic isolates were ST171 and ST955. Moreover, the 2 major CF types were usually found concomitantly with the 2 major MLST STs, ST171 and ST955. In conclusion, our genotyping results may provide useful information for guiding the development of geographically specific vaccines against human ETEC isolates. PMID:24841334

  10. Some structures and processes of human epithelial cells involved in uptake of enterohemorrhagic Escherichia coli O157:H7 strains.

    PubMed Central

    Oelschlaeger, T A; Barrett, T J; Kopecko, D J

    1994-01-01

    Several enterohemorrhagic Escherichia coli (EHEC) strains of serotype O157:H7 isolated from patients with hemorrhagic colitis, ischemic colitis, or hemolytic uremic syndrome were all found to be able to invade certain human epithelial cell lines in vitro. Their ability to gain entry into epithelial cells was compared with those of known invasive Shigella flexneri and Salmonella typhi strains and the noninvasive E. coli strain HB101 in invasion assays utilizing gentamicin to kill extracellular bacteria. All EHEC strains under investigation were efficiently internalized into T24 bladder and HCT-8 ileocecal cells. In striking contrast to shigellae, the same EHEC strains were not taken up into human embryonic intestinal INT407 cells or HEp-2 cells any more than the noninvasive E. coli strain HB101. The mechanism(s) of EHEC internalization was characterized by comparing the invasion efficiencies in the absence and presence of a variety of inhibitors acting on structures and processes of prokaryotic or eukaryotic cells. Also, wild-type, plasmid-containing EHEC strains were compared with their plasmid-cured isogenic derivative strains to determine if plasmid genes affect invasion ability. Plasmid-cured EHEC invaded as well as wild-type EHEC, indicating that invasion ability is chromosomally encoded. Inhibition of bacterial protein synthesis by simultaneous addition of bacteria and chloramphenicol to the monolayer blocked EHEC uptake dramatically, suggesting the presence of an invasion protein(s) with a short half-life. Studies utilizing inhibitors which act on eukaryotic cells demonstrated a strong dependence on microfilaments in the process of uptake of all EHEC strains into both T24 and HCT-8 cells. In general, depolymerization of microtubules as well as inhibition of receptor-mediated endocytosis reduced the efficiency of EHEC invasion of T24 cells, whereas interference with endosome acidification reduced EHEC entry into only HCT-8 cells. Taxol-induced stabilization of

  11. Differential gene expression of three mastitis-causing Escherichia coli strains grown in planktonic, swimming, and swarming culture conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli is a leading cause of intramammary infections in dairy cattle and is typically transient in nature. However, in a minority of cases, E. coli can cause persistent infections. Although the mechanisms that allow for a persistent intramammary E. coli infection are not fully understood...

  12. Evidence that the phr+ gene enhances the ultraviolet resistance of Escherichia coli recA strains in the dark.

    PubMed

    Yamamoto, K; Fujiwara, Y; Shinagawa, H

    1983-01-01

    An Escherichia coli recA phr+ purA strain was more resistant to ultraviolet radiation than its isogenic derivative recA phr+ purA+ in the absence of photoreactivating light, whereas their nearly isogenic derivative recA phr showed most UV-induced lethality. The amounts of photoreactivating enzyme (PRE) per cell in the recA phr+ purA was higher than in the recA phr+ purA+. The recA phr is defective for photoreactivation. Thus, in the recA strain, UV resistance in the dark increased in proportion to the amounts of PRE per cell, suggesting that PRE participates in the process of dark repair of UV-damaged DNA.

  13. Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain.

    PubMed

    Huang, Qin; Lin, Yuheng; Yan, Yajun

    2013-12-01

    Caffeic acid is a plant-specific phenylpropanoic acid with multiple health-improving effects reported, and its therapeutic derivatives have also been studied throughout the last decade. To meet its market need and achieve high-level production, microbial production of caffeic acid approaches have been developed in metabolically engineered Escherichia coli. In our previous work, we have established the first artificial pathway that realized de novo production of caffeic acid using E. coli endogenous 4-hydroxyphenylacetate 3-hydroxylase (4HP3H). In this work, we exploited the catalytic potential of 4HPA3H in the whole-cell bioconversion study and produced 3.82 g/L (461.12 mg/L/OD) caffeic acid from p-coumaric acid, a direct precursor. We further engineered a phenylalanine over-producer into a tyrosine over-producer and then introduced the artificial pathway. After adjusting the expression strategy and optimizing the inoculants timing, de novo production of caffeic acid reached 766.68 mg/L. Both results from the direct precursor and simple carbon sources represent the highest titers of caffeic acid from microbial production so far.

  14. Nickel Promotes Biofilm Formation by Escherichia coli K-12 Strains That Produce Curli▿

    PubMed Central

    Perrin, Claire; Briandet, Romain; Jubelin, Gregory; Lejeune, Philippe; Mandrand-Berthelot, Marie-Andrée; Rodrigue, Agnès; Dorel, Corinne

    2009-01-01

    The survival of bacteria exposed to toxic compounds is a multifactorial phenomenon, involving well-known molecular mechanisms of resistance but also less-well-understood mechanisms of tolerance that need to be clarified. In particular, the contribution of biofilm formation to survival in the presence of toxic compounds, such as nickel, was investigated in this study. We found that a subinhibitory concentration of nickel leads Escherichia coli bacteria to change their lifestyle, developing biofilm structures rather than growing as free-floating cells. Interestingly, whereas nickel and magnesium both alter the global cell surface charge, only nickel promotes biofilm formation in our system. Genetic evidence indicates that biofilm formation induced by nickel is mediated by the transcriptional induction of the adhesive curli-encoding genes. Biofilm formation induced by nickel does not rely on efflux mechanisms using the RcnA pump, as these require a higher concentration of nickel to be activated. Our results demonstrate that the nickel-induced biofilm formation in E. coli is an adaptational process, occurring through a transcriptional effect on genes coding for adherence structures. The biofilm lifestyle is obviously a selective advantage in the presence of nickel, but the means by which it improves bacterial survival needs to be investigated. PMID:19168650

  15. Nickel promotes biofilm formation by Escherichia coli K-12 strains that produce curli.

    PubMed

    Perrin, Claire; Briandet, Romain; Jubelin, Gregory; Lejeune, Philippe; Mandrand-Berthelot, Marie-Andrée; Rodrigue, Agnès; Dorel, Corinne

    2009-03-01

    The survival of bacteria exposed to toxic compounds is a multifactorial phenomenon, involving well-known molecular mechanisms of resistance but also less-well-understood mechanisms of tolerance that need to be clarified. In particular, the contribution of biofilm formation to survival in the presence of toxic compounds, such as nickel, was investigated in this study. We found that a subinhibitory concentration of nickel leads Escherichia coli bacteria to change their lifestyle, developing biofilm structures rather than growing as free-floating cells. Interestingly, whereas nickel and magnesium both alter the global cell surface charge, only nickel promotes biofilm formation in our system. Genetic evidence indicates that biofilm formation induced by nickel is mediated by the transcriptional induction of the adhesive curli-encoding genes. Biofilm formation induced by nickel does not rely on efflux mechanisms using the RcnA pump, as these require a higher concentration of nickel to be activated. Our results demonstrate that the nickel-induced biofilm formation in E. coli is an adaptational process, occurring through a transcriptional effect on genes coding for adherence structures. The biofilm lifestyle is obviously a selective advantage in the presence of nickel, but the means by which it improves bacterial survival needs to be investigated.

  16. Identification and characterization of the first Escherichia coli strain carrying NDM-1 gene in China.

    PubMed

    Liu, Zhiyuan; Li, Wei; Wang, Jie; Pan, Jian; Sun, Shipeng; Yu, Yanhua; Zhao, Bing; Ma, Yuzhi; Zhang, Tingju; Qi, Jie; Liu, Guijian; Lu, Fengmin

    2013-01-01

    New Delhi metallo-β-lactamase-1 (NDM-1), an acquired class B carbapenemase, is a significant clinical threat due to its extended hydrolysis of β-lactams including carbapenems. In this study, we identified the first confirmed clinical isolate of Escherichia coli BJ01 harboring bla(NDM-1) in China. The isolate is highly resistant to all tested antimicrobials except polymyxin. bla(NDM-1), bla(CTX-M-57), and bla TEM-1 were identified in the isolate. bla(NDM-1) was transferable to E. coli EC600 and DH5α in both plasmid conjugation experiments and plasmid transformation tests. BJ01 was identified as a new sequence type, ST224, by multilocus sequence typing. Analysis of genetic environment shows complex transposon-like structures surrounding the bla NDM-1 gene. Genetic analysis revealed that the region flanking bla(NDM-1) was very similar to previously identified NDM-positive Acinetobacter spp. isolated in China. The findings of this study raise attention to the emergence and spread of NDM-1-carrying Enterobacteriaceae in China.

  17. Genotypes, antibiogram, and pulsed-field gel electrophoresis profiles of Escherichia coli strains from piglets in Korea.

    PubMed

    Lee, Su In; Rayamahji, Nabin; Lee, Won Jung; Cha, Seung Bin; Shin, Min Kyung; Roh, Yu Mi; Yoo, Han Sang

    2009-07-01

    Adherence factors and enterotoxins are major virulence factors of enterotoxigenic Escherichia coli (ETEC). Antibiotics have been used frequently for the treatment and prevention of ETEC infection in piggeries worldwide, including Korea. Therefore, data on both virulence profiles and antibiotic resistance patterns are useful in the epidemiological study of ETEC. A total number of 198 E. coli field isolates were examined. The most prevalent pathotype was F1, followed by a combination of F1 and EAST1. All of the 71 isolates were resistant to more than 2 antibiotics used in a disk diffusion test, and 87.94% of the isolates were found to be resistant to more than 4 antibiotics. Investigations were also conducted to correlate the virulence gene profiles with antibiogram and pulsed-field gel electrophoresis (PFGE). Although a high degree of polymorphism was noted among strains having the same virulence patterns, the highest similarity pattern was observed carrying the same virulence profiles and similar antibiogram. Thus, investigation of both virulence profiles and antibiogram is essential to the epidemiological study of ETEC. Moreover, the PFGE method might be applicable as a tool to reveal genetic relatedness among E. coli strains from piggeries in Korea.

  18. The General Stress Response Is Conserved in Long-Term Soil-Persistent Strains of Escherichia coli

    PubMed Central

    Abram, Florence; Brennan, Fiona

    2016-01-01

    ABSTRACT Although Escherichia coli is generally considered to be predominantly a commensal of the gastrointestinal tract, a number of recent studies suggest that it is also capable of long-term survival and growth in environments outside the host. As the extraintestinal physical and chemical conditions are often different from those within the host, it is possible that distinct genetic adaptations may be required to enable this transition. Several studies have shown a trade-off between growth and stress resistance in nutrient-poor environments, with lesions in the rpoS locus, which encodes the stress sigma factor RpoS (σS). In this study, we investigated a unique collection of long-term soil-persistent E. coli isolates to determine whether the RpoS-controlled general stress response is altered during adaptation to a nutrient-poor extraintestinal environment. The sequence of the rpoS locus was found to be highly conserved in these isolates, and no nonsense or frameshift mutations were detected. Known RpoS-dependent phenotypes, including glycogen synthesis and γ-aminobutyrate production, were found to be conserved in all strains. All strains expressed the full-length RpoS protein, which was fully functional using the RpoS-dependent promoter reporter fusion PgadX::gfp. RpoS was shown to be essential for long-term soil survival of E. coli, since mutants lacking rpoS lost viability rapidly in soil survival assays. Thus, despite some phenotypic heterogeneity, the soil-persistent strains all retained a fully functional RpoS-regulated general stress response, which we interpret to indicate that the stresses encountered in soil provide a strong selective pressure for maintaining stress resistance, despite limited nutrient availability. IMPORTANCE Escherichia coli has been, and continues to be, used as an important indicator species reflecting potential fecal contamination events in the environment. However, recent studies have questioned the validity of this, since E

  19. Development of Genetically Stable Escherichia coli Strains for Poly(3-Hydroxypropionate) Production

    PubMed Central

    Gao, Yongqiang; Liu, Changshui; Ding, Yamei; Sun, Chao; Zhang, Rubing; Xian, Mo; Zhao, Guang

    2014-01-01

    Poly(3-hydroxypropionate) (P3HP) is a biodegradable and biocompatible thermoplastic. In our previous study, a pathway for P3HP production was constructed in recombinant Esecherichia coli. Seven exogenous genes in P3HP synthesis pathway were carried by two plasmid vectors. However, the P3HP production was severely suppressed by strain instability due to plasmid loss. In this paper, two strategies, chromosomal gene integration and plasmid addiction system (PAS) based on amino acid anabolism, were applied to construct a genetically stable strain. Finally, a combination of those two methods resulted in the best results. The resultant strain carried a portion of P3HP synthesis genes on chromosome and the others on plasmid, and also brought a tyrosine-auxotrophy based PAS. In aerobic fed-batch fermentation, this strain produced 25.7 g/L P3HP from glycerol, about 2.5-time higher than the previous strain with two plasmids. To the best of our knowledge, this is the highest P3HP production from inexpensive carbon sources. PMID:24837211

  20. Molecular Analysis of Asymptomatic Bacteriuria Escherichia coli Strain VR50 Reveals Adaptation to the Urinary Tract by Gene Acquisition

    PubMed Central

    Ben Zakour, Nouri L.; Totsika, Makrina; Forde, Brian M.; Watts, Rebecca E.; Mabbett, Amanda N.; Szubert, Jan M.; Sarkar, Sohinee; Phan, Minh-Duy; Peters, Kate M.; Petty, Nicola K.; Alikhan, Nabil-Fareed; Sullivan, Mitchell J.; Gawthorne, Jayde A.; Stanton-Cook, Mitchell; Nhu, Nguyen Thi Khanh; Chong, Teik Min; Yin, Wai-Fong; Chan, Kok-Gan; Hancock, Viktoria; Ussery, David W.; Ulett, Glen C.

    2015-01-01

    Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder. PMID:25667270

  1. Molecular Analysis of Asymptomatic Bacteriuria Escherichia coli Strain VR50 Reveals Adaptation to the Urinary Tract by Gene Acquisition

    DOE PAGES

    Beatson, Scott A.; Ben Zakour, Nouri L.; Totsika, Makrina; ...

    2015-05-01

    Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. Here, to understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number ofmore » UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. In conlusion, our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder.« less

  2. Effect of the Escherichia coli EMO strain on experimental infection by Salmonella enterica serovar Typhimurium in gnotobiotic mice.

    PubMed

    Lima-Filho, J V M; Vieira, L Q; Arantes, R M E; Nicoli, J R

    2004-07-01

    An experimental infection with Salmonella enterica subsp. enterica serovar Typhimurium was evaluated in gnotobiotic mice previously exposed to a plasmid-free non-pathogenic Escherichia coli (EMO strain). Mice were exposed to EMO (experimental) or not (control) 10 days before challenge with Salmonella Typhimurium (10(2) colony forming units (CFU)/mouse). Survival after challenge was higher (P < 0.05) in the experimental group (16%) than in the control animals (0%). Histopathological examination of the colon and ileum mucosa of the experimental group showed less extensive lesions such as edema, cell inflammatory infiltration and hyperemia. The epithelial cells of the mucosal surface and the production of the mucous layer were also better preserved in the experimental group. The population levels of Salmonella Typhimurium in the feces were initially 10-fold lower (P < 0.05) in the experimental groups. However, 3 days after challenge both experimental and control groups showed similar population levels ranging from 10(8) to 10(9) CFU/g of feces. The intestinal contents of total and anti-Salmonella Typhimurium sIgA were higher in the experimental groups 10 days after inoculation of E. coli EMO strain. Translocation of Salmonella Typhimurium to the spleen was 10-fold lower (P < 0.05) in the experimental group only on day 3 after infection. This was not related to an increase in the bacterial blood clearance of the animals, as shown by experimental venous challenge with E. coli B41. In conclusion, treatment of mice with E. coli EMO strain promoted a relative protection against experimental infection with Salmonella Typhimurium. This protection was not due to the reduction of the population of pathogens in the intestine but was probably related to stimulation of the immune response.

  3. Use of ramification amplification assay for detection of Escherichia coli O157:H7 and other E. coli Shiga toxin-producing strains.

    PubMed

    Li, Fan; Zhao, Chunyan; Zhang, Wandi; Cui, Shenghui; Meng, Jianghong; Wu, Josephine; Zhang, David Y

    2005-12-01

    Escherichia coli O157:H7 and other Shiga toxin-producing E. coli (STEC) strains are important human pathogens that are mainly transmitted through the food chain. These pathogens have a low infectious dose and may cause life-threatening illnesses. However, detection of this microorganism in contaminated food or a patient's stool specimens presents a diagnostic challenge because of the low copy number in the sample. Often, a more sensitive nucleic acid amplification method, such as PCR, is required for rapid detection of this microorganism. Ramification amplification (RAM) is a recently introduced isothermal DNA amplification technique that utilizes a circular probe for target detection and achieves exponential amplification through the mechanism of primer extension, strand displacement, and ramification. In this study, we synthesized a circular probe specific for the Shiga toxin 2 gene (stx(2)). Our results showed that as few as 10 copies of stx(2) could be detected, indicating that the RAM assay was as sensitive as conventional PCR. We further tested 33 isolates of E coli O157:H7, STEC, Shigella dysenteriae, and nonpathogenic E. coli by RAM assay. Results showed that all 27 STEC isolates containing the stx(2) gene were identified by RAM assay, while S. dysenteriae and nonpathogenic E. coli isolates were undetected. The RAM results were 100% in concordance with those of PCR. Because of its simplicity and isothermal amplification, the RAM assay could be a useful method for detecting STEC in food and human specimens.

  4. [Investigation of plasmid-mediated quinolone resistance in Escherichia coli strains].

    PubMed

    Aktepe, Orhan Cem; Aşık, Gülşah; Cetinkol, Yeliz; Biçmen, Meral; Gülay, Zeynep

    2012-01-01

    Quinolones are widely used antimicrobial agents, particularly for the treatment of infections caused by gram-negative bacilli such as E.coli. As a consequence, quinolone resistance has been increasing among this species in recent years. Bacterial resistance to quinolones usually results from mutations in the chromosomal genes which encode topoisomerases and also the expression of efflux pumps and loss of porines contributed to development of quinolone resistance. However, recent studies have shown that the spread and increase of quinolone resistance may be due to the transfer of plasmid-mediated genes. To date, three groups of plasmid-mediated quinolone resistance genes, namely qnr, aac(6')-Ib-cr, and qepA, have been described. The aim of this study was to investigate the presence of plasmid-mediated quinolone resistance genes in E.coli clinical isolates. A total of 112 quinolone-resistant E.coli strains isolated from different clinical specimens (84 urine, 16 blood, 10 wound, 2 bronchoalveolar lavage) of which 78 (69.6%) were extended-spectrum beta-lactamase (ESBL) positive, in Afyon Kocatepe University Hospital, Microbiology Laboratory were included in the study. In the isolates, qnrA, qnrB, qnrS, qnrC, qepA, and aac(6')-1b-cr plasmid genes were analysed by polymerase chain reaction (PCR). After aac(6')- 1b determinant was amplified by PCR, all aac(6')-1b positive amplicons were analyzed by digestion with BseGI restriction enzyme to identify aac(6')-1b-cr variant. It was found that, none of the strains horboured qnrA, qnrB, qnrS, qnrC and qepA genes, however, plasmid-mediated quinolone resistance gene aac(6')-1b-cr was found positive in 59.8% (67/112) of the strains. It was notable that 86.6% (58/67) of those isolates were ESBL producers. The rates of quinolone resistance among E.coli isolates infections were high in our region and an increasing trend has been observed in recent years. Our data indicated that the presence of plasmid- mediated resistance genes

  5. Detection and genetic analysis of the enteroaggregative Escherichia coli heat-stable enterotoxin (EAST1) gene in clinical isolates of enteropathogenic Escherichia coli (EPEC) strains

    PubMed Central

    2014-01-01

    Background The enteroaggregative E. coli heat-stable enterotoxin 1 (EAST1) encoded by astA gene has been found in enteropathogenic E. coli (EPEC) strains. However, it is not sufficient to simply probe strains with an astA gene probe due to the existence of astA mutants (type 1 and type 2 SHEAST) and EAST1 variants (EAST1 v1-4). In this study, 222 EPEC (70 typical and 152 atypical) isolates were tested for the presence of the astA gene sequence by PCR and sequencing. Results The astA gene was amplified from 54 strains, 11 typical and 43 atypical. Sequence analysis of the PCR products showed that 25 strains, 7 typical and 18 atypical, had an intact astA gene. A subgroup of 7 atypical strains had a variant type of the astA gene sequence, with four non-synonymous nucleotide substitutions. The remaining 22 strains had mutated astA gene with nucleotide deletions or substitutions in the first 8 codons. The RT-PCR results showed that the astA gene was transcribed only by the strains carrying either the intact or the variant type of the astA gene sequence. Southern blot analysis indicated that astA is located in EAF plasmid in typical strains, and in plasmids of similar size in atypical strains. Strains carrying intact astA genes were more frequently found in diarrheic children than in non-diarrheic children (p < 0.05). Conclusion In conclusion, our data suggest that the presence of an intact astA gene may represent an additional virulence determinant in both EPEC groups. PMID:24884767

  6. Metabolic flux control at the pyruvate node in an anaerobic Escherichia coli strain with an active pyruvate dehydrogenase.

    PubMed

    Wang, Qingzhao; Ou, Mark S; Kim, Y; Ingram, L O; Shanmugam, K T

    2010-04-01

    During anaerobic growth of Escherichia coli, pyruvate formate-lyase (PFL) and lactate dehydrogenase (LDH) channel pyruvate toward a mixture of fermentation products. We have introduced a third branch at the pyruvate node in a mutant of E. coli with a mutation in pyruvate dehydrogenase (PDH*) that renders the enzyme less sensitive to inhibition by NADH. The key starting enzymes of the three branches at the pyruvate node in such a mutant, PDH*, PFL, and LDH, have different metabolic potentials and kinetic properties. In such a mutant (strain QZ2), pyruvate flux through LDH was about 30%, with the remainder of the flux occurring through PFL, indicating that LDH is a preferred route of pyruvate conversion over PDH*. In a pfl mutant (strain YK167) with both PDH* and LDH activities, flux through PDH* was about 33% of the total, confirming the ability of LDH to outcompete the PDH pathway for pyruvate in vivo. Only in the absence of LDH (strain QZ3) was pyruvate carbon equally distributed between the PDH* and PFL pathways. A pfl mutant with LDH and PDH* activities, as well as a pfl ldh double mutant with PDH* activity, had a surprisingly low cell yield per mole of ATP (Y(ATP)) (about 7.0 g of cells per mol of ATP) compared to 10.9 g of cells per mol of ATP for the wild type. The lower Y(ATP) suggests the operation of a futile energy cycle in the absence of PFL in this strain. An understanding of the controls at the pyruvate node during anaerobic growth is expected to provide unique insights into rational metabolic engineering of E. coli and related bacteria for the production of various biobased products at high rates and yields.

  7. Efficient free fatty acid production in engineered Escherichia coli strains using soybean oligosaccharides as feedstock.

    PubMed

    Wang, Dan; Wu, Hui; Thakker, Chandresh; Beyersdorf, Jared; Bennett, George N; San, Ka-Yiu

    2015-01-01

    To be competitive with current petrochemicals, microbial synthesis of free fatty acids can be made to rely on a variety of renewable resources rather than on food carbon sources, which increase its attraction for governments and companies. Industrial waste soybean meal is an inexpensive feedstock, which contains soluble sugars such as stachyose, raffinose, sucrose, glucose, galactose, and fructose. Free fatty acids were produced in this report by introducing an acyl-ACP carrier protein thioesterase and (3R)-hydroxyacyl-ACP dehydratase into E. coli. Plasmid pRU600 bearing genes involved in raffinose and sucrose metabolism was also transformed into engineered E. coli strains, which allowed more efficient utilization of these two kinds of specific oligosaccharide present in the soybean meal extract. Strain ML103 (pRU600, pXZ18Z) produced ~1.60 and 2.66 g/L of free fatty acids on sucrose and raffinose, respectively. A higher level of 2.92 g/L fatty acids was obtained on sugar mixture. The fatty acid production using hydrolysate obtained from acid or enzyme based hydrolysis was evaluated. Engineered strains just produced ~0.21 g/L of free fatty acids with soybean meal acid hydrolysate. However, a fatty acid production of 2.61 g/L with a high yield of 0.19 g/g total sugar was observed on an enzymatic hydrolysate. The results suggest that complex mixtures of oligosaccharides derived from soybean meal can serve as viable feedstock to produce free fatty acids. Enzymatic hydrolysis acts as a much more efficient treatment than acid hydrolysis to facilitate the transformation of industrial waste from soybean processing to high value added chemicals.

  8. Behavior of shiga toxin-producing Escherichia coli, enteroinvasive E. coli, enteropathogenic E. coli and enterotoxigenic E. coli strains on whole and sliced jalapeño and serrano peppers.

    PubMed

    Gómez-Aldapa, Carlos A; Rangel-Vargas, Esmeralda; Gordillo-Martínez, Alberto J; Castro-Rosas, Javier

    2014-06-01

    The behavior of enterotoxigenic Escherichia coli (ETEC), enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC) and non-O157 shiga toxin-producing E. coli (non-O157-STEC) on whole and slices of jalapeño and serrano peppers as well as in blended sauce at 25 ± 2 °C and 3 ± 2 °C was investigated. Chili peppers were collected from markets of Pachuca city, Hidalgo, Mexico. On whole serrano and jalapeño stored at 25 ± 2 °C or 3 ± 2 °C, no growth was observed for EPEC, ETEC, EIEC and non-O157-STEC rifampicin resistant strains. After twelve days at 25 ± 2 °C, on serrano peppers all diarrheagenic E. coli pathotypes (DEP) strains had decreased by a total of approximately 3.7 log, whereas on jalapeño peppers the strains had decreased by approximately 2.8 log, and at 3 ± 2 °C they decreased to approximately 2.5 and 2.2 log respectively, on serrano and jalapeño. All E. coli pathotypes grew onto sliced chili peppers and in blended sauce: after 24 h at 25 ± 2 °C, all pathotypes had grown to approximately 3 and 4 log CFU on pepper slices and sauce, respectively. At 3 ± 2 °C the bacterial growth was inhibited.

  9. Whole-Genome Shotgun Sequence of Escherichia coli Strain MN067 from India, a Commensal Bacterium with Potent Pathogenic Ability

    PubMed Central

    Nagarjuna, Daram; Gaind, Rajni; Dhanda, Rakesh Singh

    2017-01-01

    ABSTRACT Escherichia coli is one of the most frequently prevalent pathogens, causing infections in health care settings throughout the world. Here, we report the whole-genome sequence of MN067, a commensal bacterium with a pathogenic potential. PMID:28336596

  10. Survival, Biofilm Formation, and Growth Potential of Environmental and Enteric Escherichia coli Strains in Drinking Water Microcosms

    PubMed Central

    Abberton, Cathy L.; Bereschenko, Ludmila; van der Wielen, Paul W. J. J.

    2016-01-01

    ABSTRACT Escherichia coli is the most commonly used indicator for fecal contamination in drinking water distribution systems (WDS). The assumption is that E. coli bacteria are of enteric origin and cannot persist for long outside their host and therefore act as indicators of recent contamination events. This study investigates the fate of E. coli in drinking water, specifically addressing survival, biofilm formation under shear stress, and regrowth in a series of laboratory-controlled experiments. We show the extended persistence of three E. coli strains (two enteric isolates and one soil isolate) in sterile and nonsterile drinking water microcosms at 8 and 17°C, with T90 (time taken for a reduction in cell number of 1 log10 unit) values ranging from 17.4 ± 1.8 to 149 ± 67.7 days, using standard plate counts and a series of (reverse transcription-)quantitative PCR [(RT-)Q-PCR] assays targeting 16S rRNA, tuf, uidA, and rodA genes and transcripts. Furthermore, each strain was capable of attaching to a surface and replicating to form biofilm in the presence of nutrients under a range of shear stress values (0.6, 2.0, and 4.4 dynes [dyn] cm−2; BioFlux system; Fluxion); however, cell numbers did not increase when drinking water flowed over the biofilm (P > 0.05 by t test). Finally, E. coli regrowth within drinking water microcosms containing polyethylene PE-100 pipe wall material was not observed in the biofilm or water phase using a combination of culturing and Q-PCR methods for E. coli. The results of this work highlight that when E. coli enters drinking water it has the potential to survive and attach to surfaces but that regrowth within drinking water or biofilm is unlikely. IMPORTANCE The provision of clean, safe drinking water is fundamental to society. WDS deliver water to consumers via a vast network of pipes. E. coli is used as an indicator organism for recent contamination events based on the premise that it cannot survive for long outside its host. A key

  11. Isolation and characterization of Escherichia coli strains containing new gene fusions (soi::lacZ) inducible by superoxide radicals.

    PubMed Central

    Mito, S; Zhang, Q M; Yonei, S

    1993-01-01

    Gene fusions in Escherichia coli that showed increased beta-galactosidase expression in response to treatment with a superoxide radical (O2-) generator, methyl viologen (MV), were obtained. These fusions were constructed by using a Mud(Ap lac) phage to insert the lactose structural genes randomly into the E. coli chromosome. Ampicillin-resistant colonies were screened for increased expression of beta-galactosidase on X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside) plates containing MV at 1.25 micrograms/ml. Other O2- generators, menadione and plumbagin, also induced beta-galactosidase activity in these fusion strains. The induction by these drugs occurred only under aerobic conditions. Hyperoxygenation also elicited an induction of the fusions. On the other hand, no significant induction was observed with hydrogen peroxide and cumene hydroperoxide. The induction of these fusions by MV was not dependent on the peroxide stress control mediated by the oxyR gene or on the recA-dependent SOS system. These fusions were named soi (superoxide inducible)::lacZ. The induction of beta-galactosidase was significantly reduced by introducing a soxS::Tn10 locus into the fusion strains, indicating that the soi genes are members of the soxRS regulon. Five of the fusions were located in 6 to 26 min of the E. coli genetic map, while three fusions were located in 26 to 36 min, indicating that these fusions are not related to genes already known to be inducible by O2- under the control of soxRS. At least five mutants containing the soi::lacZ fusion were more sensitive to MV and menadione than the wild-type strain, suggesting that the products of these soi genes play an important role in protection against oxidative stress. PMID:8386722

  12. Usability and Performance of CHROMagar STEC Medium in Detection of Shiga Toxin-Producing Escherichia coli Strains

    PubMed Central

    Siitonen, Anja; Kaukoranta, Suvi-Sirkku

    2012-01-01

    The performance and usability of CHROMagar STEC medium (CHROMagar Microbiology, Paris, France) for routine detection of Shiga toxin-producing Escherichia coli (STEC) strains were examined. The ability of the medium to selectively propagate STEC strains differing by their serotypes and virulence genes was studied with a collection of diarrheagenic E. coli isolates (n = 365) consisting of 49 different serotypes and with non-STEC and other bacterial isolates (n = 264). A total of 272 diarrheagenic E. coli (75.0%) isolates covering 24 different serotypes grew on CHROMagar STEC. The highest detection sensitivities were observed within the STEC serogroups O26 (90.0%), O111 (100.0%), O121 (100.0%), O145 (100.0%), and O157 (84.9%), and growth on CHROMagar STEC was highly associated with the presence of the tellurite resistance gene (terD). The specificity of the medium was 98.9%. In addition, CHROMagar STEC was used in parallel with a Shiga toxin-detecting immunoassay (Ridaquick Verotoxin/O157 Combi; R-biopharm, Darmstadt, Germany) to screen fecal specimens (n = 47) collected from patients suffering from hemorrhagic diarrhea. Positive growth on CHROMagar STEC was confirmed by the Premier EHEC enzyme immunoassay (Meridian Bioscience, Inc., Cincinnati, OH), and discrepant results between the two screening methods were confirmed by stx gene-detecting PCR. All 16 of the 47 stool samples that showed positive growth on CHROMagar STEC were also positive in the confirmatory tests. CHROMagar STEC proved to be an interesting option for STEC screening, allowing good detection sensitivity and specificity and permitting strain isolation for further outbreak investigations when required. PMID:22933601

  13. Plasmid-encoded biosynthetic genes alleviate metabolic disadvantages while increasing glucose conversion to shikimate in an engineered Escherichia coli strain.

    PubMed

    Rodriguez, Alberto; Martínez, Juan A; Millard, Pierre; Gosset, Guillermo; Portais, Jean-Charles; Létisse, Fabien; Bolivar, Francisco

    2017-02-10

    Metabolic engineering strategies applied over the last two decades to produce shikimate (SA) in Escherichia coli have resulted in a battery of strains bearing many expression systems. However, the effects that these systems have on the host physiology and how they impact the production of SA are still not well understood. In this work we utilized an engineered E. coli strain to determine the consequences of carrying a vector that promotes SA production from glucose with a high yield but that is also expected to impose a significant cellular burden. Kinetic comparisons in fermentors showed that instead of exerting a negative effect, the sole presence of the plasmid increased glucose consumption without diminishing the growth rate. By constitutively expressing a biosynthetic operon from this vector, the more active glycolytic metabolism was exploited to redirect intermediates towards the production of SA, which further increased the glucose consumption rate and avoided excess acetate production. Fluxomics and metabolomics experiments revealed a global remodeling of the carbon and energy metabolism in the production strain, where the increased SA production reduced the carbon available for oxidative and fermentative pathways. Moreover, the results showed that the production of SA relies on a specific setup of the PPP, where both its oxidative and non-oxidative branches are strongly activated to supply E4P and balance the NADPH requirements. This work improves our understanding of the metabolic reorganization observed in E. coli in response to the plasmid-based expression of the SA biosynthetic pathway. This article is protected by copyright. All rights reserved.

  14. Purification and characterization of macrolide 2'-phosphotransferase from a strain of Escherichia coli that is highly resistant to erythromycin.

    PubMed Central

    O'Hara, K; Kanda, T; Ohmiya, K; Ebisu, T; Kono, M

    1989-01-01

    Macrolide 2'-phosphotransferase [MPH(2')] was purified 90-fold from an erythromycin-resistant strain of Escherichia coli, and its enzymatic properties were investigated. MPH(2') is an inducible intracellular enzyme which showed high levels of activity with 14-member-ring macrolides and extremely low levels with 16-member-ring macrolides. The optimum pH for inactivation of oleandomycin was 8.2, and the optimum temperature of the reaction was 40 degrees C. Enzyme activity was lost by heat treatment at 50 degrees C for 1 min. The isoelectric point and molecular weight of the enzyme were 5.3 and 34,000, respectively. Purine nucleotides, such as GTP, ITP, and ATP, were effective as cofactors in the inactivation of macrolides. Iodine, EDTA, or divalent cations inhibited MPH(2') activity. Images PMID:2478074

  15. The flagellin hypervariable region is a potential flagella display domain in probiotic Escherichia coli strain Nissle 1917.

    PubMed

    Yang, Ying; Yang, Yi; Ou, Bingming; Xia, Pengpeng; Zhou, Mingxu; Li, Luan; Zhu, Guoqiang

    2016-09-01

    The most studied probiotic, Escherichia coli strain Nissle 1917 (EcN) possesses flagella of serotype H1. To explore the potential to use EcN flagellin in flagella display applications, we investigated the effect of deleting amino acids in the hypervariable region of flagellin on EcNc (EcN cured of its two cryptic plasmids pMUT1 and pMUT2). Two EcNc flagellin isogenic mutants with deletions of amino acid residual from 277 to 286 and from 287 to 296 in the hypervariable domain were constructed. Both mutants were flagellated, adherent to IPEC-J2 cells, and colonized BALB/c mice. These hypervariable regions may have future utility in the display of heterologous epitopes.

  16. Fermentation and recovery of the EcoRl restriction enzyme with a genetically modified Escherichia coli strain

    SciTech Connect

    Botterman, J.H.; DeBuyser, D.R.; Spriet, J.A.; Vansteenkiste, G.C.; Zabeau, M.

    1985-09-01

    The fermentation and recovery of the EcoRl restriction endonuclease with a genetically modified Escherichia coli strain is investigated. Vast amounts of product could be obtained after cultivation in a 20-L computer-coupled pilot fermentor and purification of the recovered wet cells. It was found that in the end the product is at least inhibitory and probably lethal to the cells (the lethality has been proven with genetic experiments) so that optimum yield requires an optimized choice for the time instant of induction. Growth after induction and product formation require substantial amounts of oxyge, which must be supplied if a high population level is to be achieved. pH control may alleviate the burden of high oxygen supply. Quantitative assessment after the different purification stages indicate that approximately 15% active enzyme can be obtained from the total amount produced.

  17. The AfaR small RNA controls expression of the AfaD-VIII invasin in pathogenic Escherichia coli strains

    PubMed Central

    Pichon, Christophe; du Merle, Laurence; Lequeutre, Isabelle; Le Bouguénec, Chantal

    2013-01-01

    Pathogenic Escherichia coli strains carrying the afa-8 gene cluster are frequently associated with extra-intestinal infections in humans and animals. The afa-8 A to E genes determine the formation of an afimbrial adhesive sheath consisting of the AfaD-VIII invasin and the AfaE-VIII adhesin at the bacterial cell surface. This structure is thought to be required for host colonization. We characterized a new gene encoding the small RNA AfaR, which is transcribed in cis from the complementary strand of the 3′ untranslated region of the afaD messenger RNA, within the afaD–afaE intercistronic region. AfaR is a trans-acting Hfq-dependent antisense small RNA that binds the 5′ untranslated region of the afaD messenger RNA, initiating several ribonuclease E-dependent cleavages, thereby downregulating production of the AfaD-VIII invasin. AfaR transcription is dependent on σE, a member of the stress response family of extracytoplasmic alternative sigma factors. We found that the AfaR-dependent regulatory pathway was controlled by temperature, allowing the production of the AfaD-VIII invasin at temperatures above 37°C. Our findings suggest that the entry of afa-8-positive pathogenic E. coli strains into epithelial cells is tightly regulated by the AfaR small RNA. PMID:23563153

  18. Renal damage and death in weaned mice after oral infection with Shiga toxin 2-producing Escherichia coli strains

    PubMed Central

    Brando, R J F; Miliwebsky, E; Bentancor, L; Deza, N; Baschkier, A; Ramos, M V; Fernández, G C; Meiss, R; Rivas, M; Palermo, M S

    2008-01-01

    Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 infections are considered a public health problem in both developed and developing countries because of their increasing incidence and the severity of clinical presentation. Approximately 10% of infected patients develop complications such as haemolytic uraemic syndrome (HUS) characterized by acute renal failure, thrombocytopenia and haemolytic anaemia. The precise sequence of events leading to HUS is still understood incompletely. Because of the lack of a reproducible small animal model for EHEC infections, in vivo studies examining EHEC–host early interactions are limited and insufficient. The aim of this study was to characterize the weaned BALB/c mouse as a model of E. coli O157:H7 infection. In this paper we report that human Shiga toxin 2 (Stx2)-producing EHEC strains can adhere to the intestinal epithelium of weaned BALB/c mice, and produce local damage which leads to systemic disease and death in a percentage of infected mice. The lethality of the EHEC strain is closely age-dependent, and is related to the bacterial ability to colonize intestine and to produce Stx2. It can be concluded that the weaned BALB/c mouse can be used as a small animal model to study host early responses, and the role of bacterial pathogenic factors in the induction of systemic disease, thus providing a useful tool for the evaluation of therapeutic or vaccine approaches. PMID:18549440

  19. Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid.

    PubMed

    Prigent-Combaret, C; Prensier, G; Le Thi, T T; Vidal, O; Lejeune, P; Dorel, C

    2000-08-01

    This work was performed to establish a model describing bacterial surface structures involved in biofilm development, in curli-overproducing Escherichia coli K-12 strains, at 30 degrees C, and in minimal growth medium. Using a genetic approach, in association with observations of sessile communities by light and electron microscopic techniques, the role of protein surface structures, such as flagella and curli, and saccharidic surface components, such as the E. coli exopolysaccharide, colanic acid, was determined. We show that, in the context of adherent ompR234 strains, (i) flagellar motility is not required for initial adhesion and biofilm development; (ii) both primary adhesion to inert surfaces and development of multilayered cell clusters require curli synthesis; (iii) curli display direct interactions with the substratum and form interbacterial bundles, allowing a cohesive and stable association of cells; and (iv) colanic acid does not appear critical for bacterial adhesion and further biofilm development but contributes to the biofilm architecture and allows for the formation of voluminous biofilms.

  20. Draft Genome Sequences of Escherichia coli O157:H7 Strains Rafaela_II (Clade 8) and 7.1_Anguil (Clade 6) from Cattle in Argentina

    PubMed Central

    Amigo, Natalia; Puebla, Andrea Fabiana; Farber, Marisa Diana

    2015-01-01

    Escherichia coli O157:H7 is a major etiologic agent of diseases in humans that cause diarrhea, hemorrhagic colitis, and hemolytic-uremic syndrome. Here, we report the draft genome sequences of two strains isolated from cattle that had high levels of Shiga toxin 2 and high lethality in mice. PMID:26067964

  1. Draft Genome Sequences of Escherichia coli O157:H7 Strains Rafaela_II (Clade 8) and 7.1_Anguil (Clade 6) from Cattle in Argentina.

    PubMed

    Amadio, Ariel Fernando; Amigo, Natalia; Puebla, Andrea Fabiana; Farber, Marisa Diana; Cataldi, Angel Adrián

    2015-06-11

    Escherichia coli O157:H7 is a major etiologic agent of diseases in humans that cause diarrhea, hemorrhagic colitis, and hemolytic-uremic syndrome. Here, we report the draft genome sequences of two strains isolated from cattle that had high levels of Shiga toxin 2 and high lethality in mice.

  2. Stx1 prophage excision in Escherichia coli strain PA20 confers strong curli and biofilm formation by restoring native mlrA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prophage insertions in Escherichia coli O157:H7 mlrA contribute to the low expression of curli fimbriae and biofilm observed in many clinical isolates. Varying levels of CsgD-dependent curli/biofilm expression are restored to strains bearing prophage insertions in mlrA by mutation of regulatory gene...

  3. Linkage of heat-stable enterotoxin activity and ampicillin resistance in a plasmid isolated from an Escherichia coli strain of human origin.

    PubMed Central

    Stieglitz, H; Fonseca, R; Olarte, J; Kupersztoch-Portnoy, Y M

    1980-01-01

    In an Escherichia coli strain of human origin, ampicillin resistance and heat-stable enterotoxin activity were shown by EcoRI restriction endonuclease and genetic analysis to be in an 80-megadalton plasmid. Images Fig. 1 Fig. 2 PMID:6254890

  4. Investigation of environmental factors on the prevalence of free bacteriophages against Shiga toxin-producing Escherichia coli strains in produce pre-harvest environment in Salinas, California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Investigation of environmental factors on the prevalence of free bacteriophages against Shiga toxin-producing Escherichia coli strains in produce pre-harvest environment in Salinas, California Yen-Te Liaoa, Irwin Quintelab, Kimberly Nguyena, Alexandra Salvadora, Michael Cooleya, and Vivian C.H. Wu*a...

  5. Characterization and virulence potential of serogroup O113 Shiga toxin-producing Escherichia coli strains isolated from beef and cattle in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) of serotype O113:H21 have caused severe diseases but are unusual in that they do not produce the intimin protein required for adherence to intestinal epithelial cells. Strains of serogroup O113 are one of the most common STEC found in ground beef and be...

  6. Differential mutagenicity of N-methyl-N-nitrosocarbamate insectides in Escherichia coli strains having different DNA repair capacities.

    PubMed

    Yoshikawa, K; Uchino, H; Kurata, H

    1978-12-01

    Four isogenic strains of Escherichia coli with the same auxotrophic marker (arg Fam--namely wild-type, uvrA-, polA- and recA-) were used for testing the lethalities and mutagenicities of 1-naphthyl N-methyl-N-nitrosocarbamate (nitroso-NAC), 3-methylphenyl N-methyl-N-nitrosocarbamate (nitroso-MTMC), and 3,4-dimethylphenyl N-methyl-N-nitrosocarbamate (nitroso-MPMC). The strains recA- and polA- showed a similarly higher sensitivity to killing than wild-type and uvrA- after treatments with each of the three chemicals, whereas the strains wild-type, uvrA-, and polA- were equally mutable by these compounds at equal doses. The strain recA- was hardly mutable by nitroso-NAC, but significant levels of Arg+ mutations were observed after treatments with nitroso-MTMC and nitroso-MPMC. These and previous results suggest that both nitroso-MTMC and nitroso-MPMC are similar in their mutagenicity pattern to N-methyl-N'-nitro-N-nitrosoguanidine whereas nitroso-NAC is similar to methyl methanesulfonate or X-rays, and that the major damage to DNA of the three agents is not excisable by the uvrA+-dependent excision repair, probably methylation in DNA.

  7. Dissemination of Clonally Related Escherichia coli Strains Expressing Extended-Spectrum β-Lactamase CTX-M-15

    PubMed Central

    Novais, Ângela; Carattoli, Alessandra; Poirel, Laurent; Pitout, Johann; Peixe, Luísa; Baquero, Fernando; Cantón, Rafael; Nordmann, Patrice

    2008-01-01

    We analyzed 43 CTX-M-15–producing Escherichia coli isolates and 6 plasmids encoding the blaCTX-M-15 gene from Canada, India, Kuwait, France, Switzerland, Portugal, and Spain. Most isolates belonged to phylogroups B2 (50%) and D (25%). An EC-B2 strain of clonal complex sequence type (ST) 131 was detected in all countries; other B2 isolates corresponded to ST28, ST405, ST354, and ST695 from specific areas. EC-D strains were clonally unrelated but isolates from 3 countries belonged to ST405. All CTX-M-15 plasmids corresponded to IncFII group with overrepresentation of 3 HpaI-digested plasmid DNA profiles (A, B and C; 85–120kb, similarity >70%). Plasmid A was detected in EC-B2 strains (ST131, ST354, or ST405), plasmid C was detected in B2 and D strains, and plasmid B was confined to worldwide-disseminated ST131. Most plasmids contained blaOXA-1, aac(6′)-Ib-cr, and blaTEM-1. Worldwide dissemination of CTX-M-15 seems to be determined by clonal complexes ST131 and ST405 and multidrug-resistant IncFII plasmids. PMID:18258110

  8. Distribution of colonization factor antigens among enterotoxigenic Escherichia coli strains isolated from patients with diarrhea in Nepal, Indonesia, Peru, and Thailand.

    PubMed Central

    Nirdnoy, W; Serichantalergs, O; Cravioto, A; LeBron, C; Wolf, M; Hoge, C W; Svennerholm, A M; Taylor, D N; Echeverria, P

    1997-01-01

    Samples (1,318) of enterotoxigenic Escherichia coli (ETEC) isolated in 1994-1995 from children with diarrhea from Nepal, Indonesia, Peru, and Thailand were examined for colonization factor antigen (CFA) and coli surface (CS) antigens. Fifty-five percent of 361 heat-labile and heat-stable (LT-ST), 14% of 620 LT-only, and 48% of 337 ST-only ETEC had CFA/CS antigens. LT-ST ETEC strains were predominantly in the CFA II group, and ST only strains were in the CFA IV group. Additional studies are needed to identify ETEC strains that do not have CFA/CS antigens. PMID:9003636

  9. Molecular characterization of enterohemorrhagic Escherichia coli hemolysin gene (EHEC-hlyA)-harboring isolates from cattle reveals a diverse origin and hybrid diarrheagenic strains.

    PubMed

    Askari Badouei, Mahdi; Morabito, Stefano; Najafifar, Arash; Mazandarani, Emad

    2016-04-01

    In the present study we investigated the occurrence of Escherichia coli strains harboring the gene encoding enterohemorrhagic E. coli hemolysin (EHEC-HlyA) in cattle and the association of this gene with various diarrheagenic E. coli (DEC) pathotypes. First, the bovine E. coli isolates were screened for EHEC-hlyA gene by PCR, and then they were characterized for the phylogenetic groups and the presence of the major virulence genes of different DEC pathotypes. In total, 25 virulence gene profiles were observed in 54 EHEC-hlyA+ isolates that reflect a considerable heterogeneity. The EHEC-hlyA+ strains were mostly associated with EHEC (72%), while only 7.4% were enteropathogenic E. coli (EPEC). We also showed the presence of estA gene of enterotoxigenic E. coli (ETEC) in 6 isolates (11.1%). Interestingly, two of the estA+ strains showed hybrid pathotypes with one carrying eae/estA (EPEC/ETEC), and the other one stx2/astA/estA (EHEC/ETEC). None of the isolates were related to enteroaggregative E. coli (EAggEC), enteroinvasive E. coli (EIEC), and necrotoxigenic E. coli (NTEC). The EHEC-plasmid encoded genes occurred in seven different combinations with EHEC-hlyA/saa/subA/espP being the most prevalent (46.3%). All stx-/eae+ strains carried O island 57 (OI-57) molecular marker(s) that may indicate these to be the progenitors of EHEC or strains losing stx. The most prevalent phylogroup was B1 (61.1%), but the most heterogeneous strains including the hybrid strains belonged to A phylogroup. Overall, our results indicate that cattle EHEC-hlyA encoding E. coli isolates consist of diverse diarrheagenic strains with the possible existence of hybrid pathotypes. Future studies are required to clarify the evolutionary aspects and clinical significance of these strains in humans and domestic animals.

  10. Characterization of Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli Strains Involved in Maternal-Fetal Colonization: Prevalence of E. coli ST131

    PubMed Central

    Birgy, André; Mariani-Kurkdjian, Patricia; Bidet, Philippe; Doit, Catherine; Genel, Nathalie; Courroux, Céline; Bingen, Edouard

    2013-01-01

    Maternal-fetal Escherichia coli infections, such as neonatal bacteremia and meningitis, are important causes of morbidity and mortality. From 2006 to 2010, we studied newborns and their mothers who were colonized with E. coli in a French hospital in order to document (i) the epidemiology and genetic characteristics of extended-spectrum-beta-lactamase (ESBL)-producing E. coli strains, (ii) the prevalence of associated virulence genes, (iii) the prevalence of clone sequence type 131 (ST131), and (iv) the genetic relationship among ESBL-producing strains. Among the 2,755 E. coli cultures recovered from vaginal or neonatal samples, 68 were ESBL producers (2.46%). We found a wide diversity of ESBL genes, with the majority being blaCTX-M-14, blaCTX-M-1, and blaCTX-M-15, distributed among the 4 main phylogenetic groups. Genes encoding virulence factors were found in 90.7% of the isolates, with ≥2 virulence genes present in 76% of cases. The prevalence of ST131 among ESBL-producing E. coli isolates was 9.4% (6/64). Five of these 6 ST131 isolates possessed blaCTX-M-15 enzymes (and also were resistant to quinolones), and one possessed blaCTX-M-2 enzymes. Two possessed virulence genes, suggesting the presence of pathogenicity island IIJ96 (PAI IIJ96)-like domains. Pulsed-field gel electrophoresis (PFGE) revealed a high level of genomic diversity overall, except for 3 closely related isolates belonging to clonal group ST131. Repetitive PCR showed that the six ST131 isolates were closely related to ST131 control strains (>95% similarity). This study shows a high prevalence of ESBL-producing E. coli strains and clonal group ST131 in the French maternal-fetal population. These results suggest a widespread distribution of ESBL enzymes in the community and highlight the early transmission between mothers and neonates. These findings are worrisome, especially for this particularly vulnerable population. PMID:23515552

  11. Complete genome sequence of SS52, a strain of Escherichia coli O157:H7 recovered from supershedder cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli O157:H7 cause foodborne infections and cattle are the primary reservoir. Some animals, known as supershedders, excrete orders of magnitude more E. coli O157:H7 in the feces than normal. We here report the complete genome sequence of the SS52 supershedder stra...

  12. High genotypic and phenotypic similarity among Shiga toxin-producing Escherichia coli O111 environmental and outbreak strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    E. coli serogroup O111 is among the six most commonly reported non-O157:H7 Shiga toxin-producing Escherichia coli (STEC), which are emerging foodborne pathogens that have caused numerous outbreaks and sporadic cases of enteric illness in industrialized countries. We have assembled a collection of en...

  13. Shiga toxin-producing Escherichia coli strains isolated from dairy products - Genetic diversity and virulence gene profiles.

    PubMed

    Douëllou, T; Delannoy, S; Ganet, S; Mariani-Kurkdjian, P; Fach, P; Loukiadis, E; Montel, Mc; Thevenot-Sergentet, D

    2016-09-02

    Shiga toxin-producing Escherichia coli (STEC) are widely recognized as pathogens causing food borne disease. Here we evaluate the genetic diversity of 197 strains, mainly STEC, from serotypes O157:H7, O26:H11, O103:H2, O111:H8 and O145:28 and compared strains recovered in dairy products against strains from human, meat and environment cases. For this purpose, we characterized a set of reference-collection STEC isolates from dairy products by PFGE DNA fingerprinting and a subset of these by virulence-gene profiling. PFGE profiles of restricted STEC total DNA showed high genomic variability (0.9976 on Simpson's discriminatory index), enabling all dairy isolates to be differentiated. High-throughput real-time PCR screening of STEC virulence genes were applied on the O157:H7 and O26:H11 STEC isolates from dairy products and human cases. The virulence gene profiles of dairy and human STEC strains were similar. Nevertheless, frequency-wise, stx1 was more prevalent among dairy O26:H11 isolates than in human cases ones (87% vs. 44%) while stx2 was more prevalent among O26:H11 human isolates (23% vs. 81%). For O157:H7 isolates, stx1 (0% vs. 39%), nleF (40% vs 94%) and Z6065 (40% vs 100%) were more prevalent among human than dairy strains. Our data point to differences between human and dairy strains but these differences were not sufficient to associate PFGE and virulence gene profiles to a putative lower pathogenicity of dairy strains based on their lower incidence in disease. Further comparison of whole-genome expression and virulence gene profiles should be investigated in cheese and intestinal tract samples.

  14. Characterization of verotoxin-encoding phages from Escherichia coli O103:H2 strains of bovine and human origins.

    PubMed

    Karama, Musafiri; Gyles, Carlton L

    2008-08-01

    The objectives of this study were to induce and characterize verotoxin-encoding phages from a collection of 91 verotoxin-producing Escherichia coli (VTEC) O103:H2 strains of human and bovine origins. All the strains carried the vt1 gene, and two carried the vt2 gene as well. The phages were induced by UV irradiation and characterized by DNA restriction fragment length polymorphism (RFLP), genome size, morphology, and Q and P genes, characteristic of lambdoid phages. A total of 32 vt-positive phages were induced and isolated from 31 VTEC O103:H2 strains. Thirty phages were vt1 positive, and two were vt2 positive. Ten of the 30 vt1-positive phages (33.3%) were from cattle strains, and 20 (66.6%) were from human strains. The two vt2-positive phages were from human strains. Phages belonged to 21 RFLP profiles, of which 17 were single-phage profiles and 4 were multiple-phage profiles. The estimated genome size of the phages ranged from 34 to 84 kb. Two phages that were examined by electron microscopy possessed hexagonal heads with long tails, and one had an elongated head with a long tail. The Q and P genes were amplified in all 32 phages, and the Q-stxA(1) gene region yielded an amplicon in 19 phages (59.3%). It is concluded that the VTEC O103:H2 strains of human origin were more readily inducible than those of bovine origin and that the genotypic profiles of verotoxin-encoding phages were highly diverse, as revealed by their RFLP profiles.

  15. Mechanisms of Tolerance and High Degradation Capacity of the Herbicide Mesotrione by Escherichia coli Strain DH5-α

    PubMed Central

    Olchanheski, Luiz R.; Dourado, Manuella N.; Beltrame, Flávio L.; Zielinski, Acácio A. F.; Demiate, Ivo M.; Pileggi, Sônia A. V.; Azevedo, Ricardo A.; Sadowsky, Michael J.; Pileggi, Marcos

    2014-01-01

    The intensive use of agrochemicals has played an important role in increasing agricultural production. One of the impacts of agrochemical use has been changes in population structure of soil microbiota. The aim of this work was to analyze the adaptive strategies that bacteria use to overcome oxidative stress caused by mesotrione, which inhibits 4-hydroxyphenylpyruvate dioxygenase. We also examined antioxidative stress systems, saturation changes of lipid membranes, and the capacity of bacteria to degrade mesotrione. Escherichia coli DH5-á was chosen as a non-environmental strain, which is already a model bacterium for studying metabolism and adaptation. The results showed that this bacterium was able to tolerate high doses of the herbicide (10× field rate), and completely degraded mesotrione after 3 h of exposure, as determined by a High Performance Liquid Chromatography. Growth rates in the presence of mesotrione were lower than in the control, prior to the period of degradation, showing toxic effects of this herbicide on bacterial cells. Changes in the saturation of the membrane lipids reduced the damage caused by reactive oxygen species and possibly hindered the entry of xenobiotics in the cell, while activating glutathione-S-transferase enzyme in the antioxidant system and in the metabolizing process of the herbicide. Considering that E. coli DH5-α is a non-environmental strain and it had no previous contact with mesotrione, the defense system found in this strain could be considered non-specific. This bacterium system response may be a general adaptation mechanism by which bacterial strains resist to damage from the presence of herbicides in agricultural soils. PMID:24924203

  16. Genotoxicity of ochratoxin A and structurally related compounds in Escherichia coli strains: studies on their mode of action.

    PubMed

    Malaveille, C; Brun, G; Bartsch, H

    1991-01-01

    Ochratoxin A, ochratoxin alpha (its major metabolite in rodents) and seven structurally related substances were assayed for SOS DNA repair inducing activity in Escherichia coli PQ37 strain. At a concentration range of 0.1-4 mM, ochratoxin A, chloroxine, 5-chloro-8-quinolinol, 4-chloro-meta-cresol and chloroxylenol were found to induce SOS-DNA repair in the absence of an exogenous metabolic activation system. Ochratoxin B, ochratoxin alpha, 5-chlorosalicylic acid and citrinin were inactive, but all except ochratoxin alpha were cytotoxic. Thus, the presence of a chlorine at C-5 in ochratoxin A and in other analogues appears to be one determinant of their genotoxicity. In order to ascertain whether this reactivity involves a bacterial glutathione conjugation reaction, we investigated the modifying effect on the genotoxicity of ochratoxin A of amino oxyacetic acid, an inhibitor of cysteine conjugate beta-lyase. Amino oxyacetic acid decreased the cytotoxicity of ochratoxin A but did not alter its genotoxic activity, suggesting the formation of a cytotoxic thiol-containing derivative. The way in which ochratoxin A and some of its active analogues induce SOS DNA repair activity was further investigated in E. coli PQ37 and in three derived strains (PQ300, OG100 and OG400, containing deletions within the oxy R regulon). The response in PQ37 strain was measured in the absence and presence of Trolox C, a hydrosoluble form of vitamin E. Trolox C completely quenched the genotoxicity of ochratoxin A, which was no greater in mutated than in wild type strains. These results implicate an ochratoxin A-derived free radical rather than reduced oxygen species as genotoxic intermediate(s) in bacteria.

  17. Prevalence and Characteristics of eae- and stx-Positive Strains of Escherichia coli from Wild Birds in the Immediate Environment of Tokyo Bay ▿

    PubMed Central

    Kobayashi, Hideki; Kanazaki, Mika; Hata, Eiji; Kubo, Masanori

    2009-01-01

    The prevalence and characteristics of eae- and stx-positive Escherichia coli strains in wild birds in the immediate environment of Tokyo Bay, Japan, was examined using cloacal swab samples taken from 447 birds belonging to 62 species. PCR screening showed that the prevalences of stx- and eae-positive strains of Escherichia coli were 5% (23/447) and 25% (113/447), respectively. Four strains of stx2f-positive E. coli were isolated from two feral pigeons, an oriental turtle dove and a barn swallow. In contrast, 39 eae-positive E. coli strains were isolated, and most of the strains possessed a subtype of intimin that is classified as a minor group of human intimins, such as intimin υ, κ, and μ. Moreover, these strains did not possess any of the other pathogenic genes tested, such as stxs, ehxA, bfp, or irp. Thus, wild birds were considered to be a reservoir of atypical enteropathogenic E. coli. PMID:18997019

  18. Variability in growth/no growth boundaries of 188 different Escherichia coli strains reveals that approximately 75% have a higher growth probability under low pH conditions than E. coli O157:H7 strain ATCC 43888.

    PubMed

    Haberbeck, L U; Oliveira, R C; Vivijs, B; Wenseleers, T; Aertsen, A; Michiels, C; Geeraerd, A H

    2015-02-01

    This study investigated the variation in growth/no growth boundaries of 188 Escherichia coli strains. Experiments were conducted in Luria-Bertani media under 36 combinations of lactic acid (LA) (0 and 25 mM), pH (3.8, 3.9, 4.0, 4.1, 4.2 and 4.3 for 0 mM LA and 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 for 25 mM LA) and temperature (20, 25 and 30 °C). After 3 days of incubation, growth was monitored through optical density measurements. For each strain, a so-called purposeful selection approach was used to fit a logistic regression model that adequately predicted the likelihood for growth. Further, to assess the growth/no growth variability for all the strains at once, a generalized linear mixed model was fitted to the data. Strain was fitted as a fixed factor and replicate as a random blocking factor. E. coli O157:H7 strain ATCC 43888 was used as reference strain allowing a comparison with the other strains. Out of the 188 strains tested, 140 strains (∼75%) presented a significantly higher probability of growth under low pH conditions than the O157:H7 strain ATCC 43888, whereas 20 strains (∼11%) showed a significantly lower probability of growth under high pH conditions.

  19. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains

    PubMed Central

    Khodayari, Ali; Maranas, Costas D.

    2016-01-01

    Kinetic models of metabolism at a genome scale that faithfully recapitulate the effect of multiple genetic interventions would be transformative in our ability to reliably design novel overproducing microbial strains. Here, we introduce k-ecoli457, a genome-scale kinetic model of Escherichia coli metabolism that satisfies fluxomic data for wild-type and 25 mutant strains under different substrates and growth conditions. The k-ecoli457 model contains 457 model reactions, 337 metabolites and 295 substrate-level regulatory interactions. Parameterization is carried out using a genetic algorithm by simultaneously imposing all available fluxomic data (about 30 measured fluxes per mutant). The Pearson correlation coefficient between experimental data and predicted product yields for 320 engineered strains spanning 24 product metabolites is 0.84. This is substantially higher than that using flux balance analysis, minimization of metabolic adjustment or maximization of product yield exhibiting systematic errors with correlation coefficients of, respectively, 0.18, 0.37 and 0.47 (k-ecoli457 is available for download at http://www.maranasgroup.com). PMID:27996047

  20. Correlation between esterase electrophoretic polymorphism and virulence-associated traits in extra-intestinal invasive strains of Escherichia coli.

    PubMed Central

    Goullet, P.; Picard, B.; Contrepois, M.; De Rycke, J.; Barnouin, J.

    1994-01-01

    The electrophoretic variations of carboxylesterase B and of esterases A, C and I, the presence of mannose resistant haemagglutinin, alpha-haemolysin, cytotoxic necrotizing factor type 1 (CNF1) and certain O antigens were compared in 150 strains of Escherichia coli responsible for extra-intestinal infections. Electrophoretic mobilities of outer membrane proteins (OMP) were also studied for strains belonging to O4, O6, O7, O8 and O75 serogroups. Fast migrating allozymes of carboxylesterase B (pattern B1) were correlated with slow migrating allozymes of esterase C, serogroups O7 and O8, lack of virulence factor, and particular OMP patterns, whereas slow migrating allozymes of carboxylesterase B (pattern B2) were correlated with fast migrating allozymes of esterase C, serogroups O2, O4, O6, O18 and O75, virulence factor production, and distinct OMP patterns. Allozymes of esterases A and I were not clearly correlated with the distribution of virulence factors. The pattern B2 was more strongly associated with CNF1 than with alpha-haemolysin and mannose resistant haemagglutinin. These results substantiate the view that the electrophoretic pattern B2 of carboxylesterase B identified most of the highly pathogenic strains implicated in extra-intestinal infection of humans. Images Fig. 2 PMID:7509755

  1. Succinate Overproduction: A Case Study of Computational Strain Design Using a Comprehensive Escherichia coli Kinetic Model.

    PubMed

    Khodayari, Ali; Chowdhury, Anupam; Maranas, Costas D

    2014-01-01

    Computational strain-design prediction accuracy has been the focus for many recent efforts through the selective integration of kinetic information into metabolic models. In general, kinetic model prediction quality is determined by the range and scope of genetic and/or environmental perturbations used during parameterization. In this effort, we apply the k-OptForce procedure on a kinetic model of E. coli core metabolism constructed using the Ensemble Modeling (EM) method and parameterized using multiple mutant strains data under aerobic respiration with glucose as the carbon source. Minimal interventions are identified that improve succinate yield under both aerobic and anaerobic conditions to test the fidelity of model predictions under both genetic and environmental perturbations. Under aerobic condition, k-OptForce identifies interventions that match existing experimental strategies while pointing at a number of unexplored flux re-directions such as routing glyoxylate flux through the glycerate metabolism to improve succinate yield. Many of the identified interventions rely on the kinetic descriptions that would not be discoverable by a purely stoichiometric description. In contrast, under fermentative (anaerobic) condition, k-OptForce fails to identify key interventions including up-regulation of anaplerotic reactions and elimination of competitive fermentative products. This is due to the fact that the pathways activated under anaerobic condition were not properly parameterized as only aerobic flux data were used in the model construction. This study shed light on the importance of condition-specific model parameterization and provides insight on how to augment kinetic models so as to correctly respond to multiple environmental perturbations.

  2. Structural Characterization of a Model Gram-Negative Bacterial Surface Using Lipopolysaccharides from Rough Strains of Escherichia coli

    PubMed Central

    2013-01-01

    Lipopolysaccharides (LPS) make up approximately 75% of the Gram-negative bacterial outer membrane (OM) surface, but because of the complexity of the molecule, there are very few model OMs that include LPS. The LPS molecule consists of lipid A, which anchors the LPS within the OM, a core polysaccharide region, and a variable O-antigen polysaccharide chain. In this work we used RcLPS (consisting of lipid A plus the first seven sugars of the core polysaccharide) from a rough strain of Escherichia coli to form stable monolayers of LPS at the air–liquid interface. The vertical structure RcLPS monolayers were characterized using neutron and X-ray reflectometry, while the lateral structure was investigated using grazing incidence X-ray diffraction and Brewster angle microscopy. It was found that RcLPS monolayers at surface pressures of 20 mN m–1 and above are resolved as hydrocarbon tails, an inner headgroup, and an outer headgroup of polysaccharide with increasing solvation from tails to outer headgroups. The lateral organization of the hydrocarbon lipid chains displays an oblique hexagonal unit cell at all surface pressures, with only the chain tilt angle changing with surface pressure. This is in contrast to lipid A, which displays hexagonal or, above 20 mN m–1, distorted hexagonal packing. This work provides the first complete structural analysis of a realistic E. coli OM surface model. PMID:23617615

  3. Improved method for expression and isolation of the Mycoplasma hominis arginine deiminase from the recombinant strain of Escherichia coli.

    PubMed

    Fayura, Lyubov R; Boretsky, Yuriy R; Pynyaha, Yuriy V; Wheatley, Denys N; Sibirny, Andriy A

    2013-09-20

    Arginine deiminase is a promising anticancer drug active against melanoma, hepatocarcinoma and other tumors. Recombinant strains of Escherichia coli that express arginine deiminase from pathogenic bacteria Mycoplasma have been developed. However, production costs of heterologous arginine deiminase are high due to use of an expensive inducer and extraction buffer, as well as using diluted culture for enzyme induction. We report on a new advanced protocol for Mycoplasma hominis arginine deiminase expression, extraction and renaturation. The main improvements include manipulation with dense suspensions of E. coli, use of lactose instead of isopropyl β-D-1-thiogalactopyranoside as an inducer and a cheaper but not less efficient buffer for solubilization of arginine deiminase inclusion bodies. In addition, supplementation of the storage culture medium with glucose and substrate (arginine) significantly stabilized the recombinant arginine deiminase producer. Homogenous preparations of recombinant arginine deiminase were obtained using anion-exchange and hydrophobic chromatography. The purified enzyme retained a specific activity of 30-34 U/mg for 12 months when stored at 4°C in 20 mM sodium phosphate buffer pH 7.2 containing 1 M NaCl.

  4. Scanning and transmission electron microscopic study of adherence of Escherichia coli O103 enteropathogenic and/or enterohemorrhagic strain GV in enteric infection in rabbits.

    PubMed Central

    Licois, D; Reynaud, A; Federighi, M; Gaillard-Martinie, B; Guillot, J F; Joly, B

    1991-01-01

    The GV strain (serotype O103:H2:K-), originally isolated from a diarrheic rabbit, is an enteropathogenic Escherichia coli strain that produces diarrhea without synthesizing the classical enterotoxins and that is not invasive. This strain is characterized by a 117-kb plasmid (pREC-1). Histological study of the gut by scanning electron microscopy and transmission electron microscopy was performed on the GV strain, on a derivative strain cured of pREC-1, and on transconjugants obtained by transfer of pREC-1 to nonpathogenic strains E. coli K-12 and 6100, not belonging to the O103 serogroup. The GV strain adhered to the epithelial cells of the ileum and large intestine, whereas the cured GV strain did not. Transfer of plasmid pREC-1 to E. coli K-12 or 6100 allowed the bacteria to attach to the intestinal mucosa in the same manner as that of the wild-type GV strain. Thus, pREC-1 seems to play an important role in attachment to and colonization of the intestinal tract of rabbits by E. coli serogroup O103. Scanning electron microscopy showed numerous bacteria attached together and closely associated with intestinal villi. Transmission electron microscopy revealed effacing lesions characteristic of enteropathogenic E. coli strains: effacing of microvilli and cuplike projections (pedestal formations) associated with an acute inflammatory and hemorrhagic response. In contrast with the results reported for rabbit pathogenic O15 strains, it appeared that the Peyer's patches were not involved in the early stages of infection with the O103 GV strain. This strain may represent a model for the study of the virulence and pathogenic effects of enteropathogenic and enterohemorrhagic E. coli strains. Images PMID:1894377

  5. Extended-spectrum beta-lactamase-producing Escherichia coli infections in children: are community-acquired strains different from nosocomial strains?

    PubMed

    Morgand, Marjolaine; Vimont, Sophie; Bleibtreu, Alexandre; Boyd, Anders; Thien, Hoang Vu; Zahar, Jean-Ralph; Denamur, Erick; Arlet, Guillaume

    2014-11-01

    Infections caused by extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli are an important cause of morbidity and mortality, especially in children. We compared 58 epidemiologically unrelated ESBL-producing E. coli strains that caused infections. They were isolated between 2008 and 2012 in two Parisian pediatric hospitals and grouped according to their origin into either community-acquired (CA) (n=37) or nosocomially acquired (NA) (n=21) strains. Molecular characteristics of the ESBLs, phylogenetic traits of the strains including their belonging to clone O25b-ST131, prevalence of associated virulence genes, growth capacities in different media, metabolic phenotype and biofilm formation abilities were studied. ESBL type, associated resistance and distribution of phylogenetic groups were similar in the CA and NA groups. More than 60% of the B2 phylogroup strains in both groups belonged to the ST131 clone. Interestingly, CA strains possessed more genes encoding virulence factors and the distribution of these genes differed significantly between the two groups: fyuA, hlyC, papC and papGII were more frequent in the CA group, whereas iroN was more frequent in the NA group. CA strains also showed enhanced growth capacities in Luria Bertani rich medium. They tended to produce more biofilm but the difference was not significant. This study confirms the wide spread of clone ST131 among infected children, regardless of whether their infections were community- or nosocomially acquired. It highlights genotypic and phenotypic differences according to the origin of the strains that could indicate adaptability of these multi-resistant bacteria to specific environmental and host factors.

  6. Construction of Escherichia coli strains with chromosomally integrated expression cassettes for the synthesis of 2′-fucosyllactose

    PubMed Central

    2013-01-01

    Background The trisaccharide 2′-fucosyllactose (2′-FL) is one of the most abundant oligosaccharides found in human milk. Due to its prebiotic and anti-infective properties, 2′-FL is discussed as nutritional additive for infant formula. Besides chemical synthesis and extraction from human milk, 2′-FL can be produced enzymatically in vitro and in vivo. The most promising approach for a large-scale formation of 2′-FL is the whole cell biosynthesis in Escherichia coli by intracellular synthesis of GDP-L-fucose and subsequent fucosylation of lactose with an appropriate α1,2-fucosyltransferase. Even though whole cell approaches have been demonstrated for the synthesis of 2′-FL, further improvements of the engineered E. coli host are required to increase product yields. Furthermore, an antibiotic-free method of whole cell synthesis of 2′-FL is desirable to simplify product purification and to avoid traces of antibiotics in a product with nutritional purpose. Results Here we report the construction of the first selection marker-free E. coli strain that produces 2′-FL from lactose and glycerol. To construct this strain, recombinant genes of the de novo synthesis pathway for GDP-L-fucose as well as the gene for the H. pylori fucosyltransferase futC were integrated into the chromosome of E. coli JM109 by using the λ-Red recombineering technique. Strains carrying additional copies of the futC gene and/or the gene fkp (from Bacteroides fragilis) for an additional salvage pathway for GDP-L-fucose production were used and shown to further improve production of 2′-FL in shake flask experiments. An increase of the intracellular GDP-L-fucose concentration by expression of fkp gene as well as an additional copy of the futC gene lead to an enhanced formation of 2′-FL. Using an improved production strain, feasibility of large scale 2′-FL production was demonstrated in an antibiotic-free fed-batch fermentation (13 l) with a final 2′-FL concentration of 20.28

  7. Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system

    PubMed Central

    2010-01-01

    Background Shikimic acid (SA) is utilized in the synthesis of oseltamivir-phosphate, an anti-influenza drug. In this work, metabolic engineering approaches were employed to produce SA in Escherichia coli strains derived from an evolved strain (PB12) lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS-) but with capacity to grow on glucose. Derivatives of PB12 strain were constructed to determine the effects of inactivating aroK, aroL, pykF or pykA and the expression of plasmid-coded genes aroGfbr, tktA, aroB and aroE, on SA synthesis. Results Batch cultures were performed to evaluate the effects of genetic modifications on growth, glucose consumption, and aromatic intermediate production. All derivatives showed a two-phase growth behavior with initial high specific growth rate (μ) and specific glucose consumption rate (qs), but low level production of aromatic intermediates. During the second growth phase the μ decreased, whereas aromatic intermediate production reached its maximum. The double aroK- aroL- mutant expressing plasmid-coded genes (strain PB12.SA22) accumulated SA up to 7 g/L with a yield of SA on glucose of 0.29 mol/mol and a total aromatic compound yield (TACY) of 0.38 mol/mol. Single inactivation of pykF or pykA was performed in PB12.SA22 strain. Inactivation of pykF caused a decrease in μ, qs, SA production, and yield; whereas TACY increased by 33% (0.5 mol/mol). Conclusions The effect of increased availability of carbon metabolites, their channeling into the synthesis of aromatic intermediates, and disruption of the SA pathway on SA production was studied. Inactivation of both aroK and aroL, and transformation with plasmid-coded genes resulted in the accumulation of SA up to 7 g/L with a yield on glucose of 0.29 mol/mol PB12.SA22, which represents the highest reported yield. The pykF and pykA genes were inactivated in strain PB12.SA22 to increase the production of aromatic compounds in the PTS- background. Results

  8. Use of the flagellar H7 gene as a target in multiplex PCR assays and improved specificity in identification of enterohemorrhagic Escherichia coli strains.

    PubMed Central

    Gannon, V P; D'Souza, S; Graham, T; King, R K; Rahn, K; Read, S

    1997-01-01

    PCR products of 1.8 kb were generated with DNAs from all Escherichia coli H7 strains tested by using oligonucleotide primers which flank the fliC gene. Three RsaI digestion profiles of these PCR products were evident on agarose gels; the first occurred with serotype O55:H7, O157:H7, or nonmotile (NM) strains, the second occurred with serotype O1:H7 and O18:H7 strains, and the third occurred with serotype O?:H7, O19:H7, O121:H7, O88:H7, and O156:H7 strains. Despite these differences, the nucleotide sequences of the E. coli E32511 (O157:NM) and U5-41 (O1:H7) fliC genes were 97% homologous. Two PCR primer pairs synthesized on the basis of the E32511 H7 fliC sequence amplified specific DNA fragments from all E. coli H7 strains, but did not amplify DNA fragments from the other bacterial strains. The H7-specific primers were used in combination with other primers which target the Verotoxin 1(VT1) and VT2 genes and the E. coli O157:H7 eaeA gene in multiplex PCR assays. In these assays, vt and eaeA PCR products were observed with DNAs from the majority of EHEC strains and vt, eaeA, and fliC PCR products were observed with DNAs from E. coli O157:H7 or NM strains. Only eaeA PCR products were present with DNA from enteropathogenic E. coli, and only vt PCR products occurred with VT-producing E. coli which are not EHEC. The multiplex PCR assays described allow for the specific identification of E. coli O157:H7 or NM and other EHEC strains. PMID:9041407

  9. [Epidemic of gastroenteritis in Noumea (New Caledonia) caused by an enterotoxinogenic strain of Escherichia coli (0l26:B16) believed to be enteropathogenic].

    PubMed

    Germani, Y; Amat, F; Brethes, B; Begaud, E; Plassart, H

    1985-01-01

    A strain of enteropathogenic Escherichia coli 0126:B16 has been isolated in fifteen children and one adult during a severe outbreak. One infant is dead. The strain produced heat-stable enterotoxin, attach to rabbit enterocytes but did not have colonization factor antigen CFA/I or CFA/II. Its hemagglutination type was the same that the E. coli H10407, CFA/I+. It presented a resistance at eight antibiotics and, with the loss of enterotoxigenicity, there was a loss of resistance at ampicillin and of the capacity to attach to enterocytes.

  10. Escherichia coli strains (ndk) lacking nucleoside diphosphate kinase are powerful mutators for base substitutions and frameshifts in mismatch-repair-deficient strains.

    PubMed

    Miller, Jeffrey H; Funchain, Pauline; Clendenin, Wendy; Huang, Tiffany; Nguyen, Anh; Wolff, Erika; Yeung, Annie; Chiang, Ju-Huei; Garibyan, Lilit; Slupska, Malgorzata M; Yang, Hanjing

    2002-09-01

    Nucleoside diphosphate (NDP) kinase is one of the enzymes that maintains triphosphate pools. Escherichia coli strains (ndk) lacking this enzyme have been shown to be modest base substitution mutators, and two members of the human family of NDP kinases act as tumor suppressors. We show here that in E. coli strains lacking NDP kinase high levels of mispairs are generated, but most of these are corrected by the mismatch-repair system. Double mutants that are ndk mutS, lacking both the NDP kinase and mismatch repair, have levels of base substitutions 15-fold higher and levels of certain frameshifts up to 10-fold higher than those of the respective mutations in mutS strains that are NDP kinase proficient. A sequence analysis of the specificity of base substitution mutations generated in ndk and ndk mutS backgrounds as well as other experiments suggests that NDP kinase deficiency stimulates polymerase errors that lead to A:T --> G:C transitions and that the editing capacity of cells may be affected, leading to additional uncorrected mispairs and to A:T --> T:A transversions.

  11. Analyses of intestinal commensal Escherichia coli strains from wild boars suggest adaptation to conventional pig production conditions.

    PubMed

    Römer, Antje; Wieler, Lothar H; Schierack, Peter

    2012-12-28

    To test the hypothesis that Escherichia coli populations have adapted to conventional pig production practices, we comparatively tested intestinal commensal E. coli from wild boars versus isolates from domestic pigs by analyzing virulence-associated factors, adhesion, and metabolic activities. Virulence-associated genes typical for intestinal pathogenic E. coli (inVAGs) were sporadically detected among E. coli from wild boars except the adhesion-related gene paa and the enterotoxin-encoding gene astA. In contrast, several VAGs typical for extraintestinal pathogenic E. coli (exVAGs) were common in E. coli from wild boars. The exVAG chuA occurred more often in E. coli from wild boars compared to E. coli from domestic pigs. 23.5% of E. coli from wild boars belonged to EcoR group B2 which is higher than observed for E. coli from clinically healthy domestic pigs. Furthermore, E. coli from wild boars were more efficient in fermentation of carbohydrate sources (dulcitol, inositol, d-sucrose, d-tagatose), and adhered better to the intestinal porcine epithelial cell line IPEC-J2. In conclusion, our findings point towards an adaptation of porcine intestinal E. coli to a specific intestinal milieu caused by different animal living conditions.

  12. The long polar fimbriae genes identified in Shiga toxin-producing Escherichia coli are present in other diarrheagenic E. coli and in the standard E. coli collection of reference (ECOR) strains.

    PubMed

    Toma, Claudia; Higa, Naomi; Iyoda, Sunao; Rivas, Marta; Iwanaga, Masaaki

    2006-03-01

    Long polar fimbriae (LPF) are related to type I fimbriae in genetic organization and were first identified in Salmonella enterica serovar Typhimurium. Four lpfA genetic variants designated lpfA(O157/OI-141), lpfA(O157/OI-154), lpfA(O26) and lpfA(O113) have been identified in Shiga toxin-producing Escherichia coli (STEC). In this study, PCR was employed to determine the distribution of STEC-lpfAs in enteropathogenic, enteroaggregative, enterotoxigenic and enteroinvasive E. coli (EPEC, EAEC, ETEC and EIEC) and in the standard E. coli collection of reference (ECOR). Among the 97 diarrheagenic strains from our collection, only 2 EPEC strains of serotypes O55:H7 and O119:NM were positive for both lpfA(O157/OI-141) and lpfA(O157/OI-154). lpfA(O157/OI-141) was also positive in 1 of 25 ETEC strains. lpfA(O113) was present in 51 of 97 strains and lpfA(O26) in 13 of 97 strains of diverse diarrheagenic categories. STEC-lpfAs were also present in non-pathogenic ECOR strains of all phylogenetic groups. This study showed that the lpfA genes identified in the genome of STEC strains are not specific to this category. Our results suggest that there is a relationship between the lpfA variant and the phylogenetic group.

  13. Cyclic AMP (cAMP) Receptor Protein-cAMP Complex Regulates Heparosan Production in Escherichia coli Strain Nissle 1917.

    PubMed

    Yan, Huihui; Bao, Feifei; Zhao, Liping; Yu, Yanying; Tang, Jiaqin; Zhou, Xianxuan

    2015-11-01

    Heparosan serves as the starting carbon backbone for the chemoenzymatic synthesis of heparin, a widely used clinical anticoagulant drug. The availability of heparosan is a significant concern for the cost-effective synthesis of bioengineered heparin. The carbon source is known as the pivotal factor affecting heparosan production. However, the mechanism by which carbon sources control the biosynthesis of heparosan is unclear. In this study, we found that the biosynthesis of heparosan was influenced by different carbon sources. Glucose inhibits the biosynthesis of heparosan, while the addition of either fructose or mannose increases the yield of heparosan. Further study demonstrated that the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex binds to the upstream region of the region 3 promoter and stimulates the transcription of the gene cluster for heparosan biosynthesis. Site-directed mutagenesis of the CRP binding site abolished its capability of binding CRP and eliminated the stimulative effect on transcription. (1)H nuclear magnetic resonance (NMR) analysis was further performed to determine the Escherichia coli strain Nissle 1917 (EcN) heparosan structure and quantify extracellular heparosan production. Our results add to the understanding of the regulation of heparosan biosynthesis and may contribute to the study of other exopolysaccharide-producing strains.

  14. A novel flavin-containing monooxygenase from Methylophaga sp strain SK1 and its indigo synthesis in Escherichia coli.

    PubMed

    Choi, Hack Sun; Kim, Jin Kwon; Cho, Eun Hee; Kim, Yong Chul; Kim, Jae Il; Kim, Si Wouk

    2003-07-11

    We cloned a gene from Methylophaga sp. strain SK1. This gene was responsible for producing, the blue pigment, indigo. The complete open reading frame was 1371 bp long, which encodes a protein of 456 amino acids. The molecular mass of the encoded protein was 105 kDa, consisting of homodimer of 54 kDa with an isoelectric point of 5.14. The deduced amino acid sequence from the gene showed approximately 30% identities with flavin-containing monooxygenases (FMOs) of human (FMO1-FMO5), Arabidopsis, and yeast. It contained three characteristic sequence motifs of FMOs: FAD binding domain, FMO-identifying sequence motif, and NADPH binding domain. In addition, the biochemical properties such as substrate specificities and absorption spectra were similar to the eukaryotic FMO families. Thus, we assigned the enzyme to be a bacterial FMO. The recombinant Escherichia coli expressing the bacterial FMO produced up to 160 mg of indigo per liter in the tryptophan medium after 12h cultivation. This suggests that the recombinant strain has a potential to be applied in microbial indigo production.

  15. Effects of antibiotics on Shiga toxin 2 production and bacteriophage induction by epidemic Escherichia coli O104:H4 strain.

    PubMed

    Bielaszewska, Martina; Idelevich, Evgeny A; Zhang, Wenlan; Bauwens, Andreas; Schaumburg, Frieder; Mellmann, Alexander; Peters, Georg; Karch, Helge

    2012-06-01

    The role of antibiotics in treatment of enterohemorrhagic Escherichia coli (EHEC) infections is controversial because of concerns about triggering hemolytic-uremic syndrome (HUS) by increasing Shiga toxin (Stx) production. During the recent large EHEC O104:H4 outbreak, antibiotic therapy was indicated for some patients. We tested a diverse panel of antibiotics to which the outbreak strain is susceptible to interrogate the effects of subinhibitory antibiotic concentrations on induction of stx(2)-harboring bacteriophages, stx(2) transcription, and Stx2 production in this emerging pathogen. Ciprofloxacin significantly increased stx(2)-harboring phage induction and Stx2 production in outbreak isolates (P values of <0.001 to <0.05), while fosfomycin, gentamicin, and kanamycin insignificantly influenced them (P > 0.1) and chloramphenicol, meropenem, azithromycin, rifaximin, and tigecycline significantly decreased them (P ≤ 0.05). Ciprofloxacin and chloramphenicol significantly upregulated and downregulated stx(2) transcription, respectively (P < 0.01); the other antibiotics had insignificant effects (P > 0.1). Meropenem, azithromycin, and rifaximin, which were used for necessary therapeutic or prophylactic interventions during the EHEC O104:H4 outbreak, as well as tigecycline, neither induced stx(2)-harboring phages nor increased stx(2) transcription or Stx2 production in the outbreak strain. These antibiotics might represent therapeutic options for patients with EHEC O104:H4 infection if antibiotic treatment is inevitable. We await further analysis of the epidemic to determine if usage of these agents was associated with an altered risk of developing HUS.

  16. Isolation of an Escherichia coli O157:H7 strain producing Shiga toxin 1 but not Shiga toxin 2 from a patient with hemolytic uremic syndrome in Korea.

    PubMed

    Kim, Y B; Okuda, J; Matsumoto, C; Morigaki, T; Asai, N; Watanabe, H; Nishibuchi, M

    1998-09-01

    Escherichia coli strains isolated from patients with diarrhea or hemolytic uremic syndrome (HUS) at Pusan University Hospital, South Korea, between 1990 and 1996 were examined for traits of the O157:H7 serogroup. One strain isolated from a patient with HUS belonged to the O157:H7 serotype, possessed a 60-MDa plasmid, the eae gene, and ability to produce Shiga toxin 1 but not Shiga toxin 2. Arbitrarily primed PCR analysis suggested that this strain is genetically very close to a O157:H7 strain isolated in Japan.

  17. Automated ribotyping provides rapid phylogenetic subgroup affiliation of clinical extraintestinal pathogenic Escherichia coli strains.

    PubMed

    Clermont, O; Cordevant, C; Bonacorsi, S; Marecat, A; Lange, M; Bingen, E

    2001-12-01

    Using the automated Riboprinter system, we have initiated the construction of an electronic Riboprint database composed of 72 ECOR reference strains and 15 archetypal virulent strains in order to provide a new simple molecular characterization method. More than 90% of the ECOR strains clustered in their original phylogenetic group. All but one of the archetypal virulent strains had a profile identical to that of one of the ECOR strains and could be easily affiliated with a phylogenetic group. This method appears to be an accurate and practical tool especially for investigating the genetic relationship between clinical extraintestinal pathogenic strains and B2 subgroup ECOR strains or archetypal pathotype strains.

  18. In vitro Effectiveness of Commercial Bacteriophage Cocktails on Diverse Extended-Spectrum Beta-Lactamase Producing Escherichia coli Strains

    PubMed Central

    Gundogdu, Aycan; Bolkvadze, Darajen; Kilic, Huseyin

    2016-01-01

    The objective of this study is to determine the in vitro susceptibility of Georgian bacteriophage cocktails on multidrug resistant (MDR) extended-spectrum beta-lactamase producing Escherichia coli (ESBL-EC) isolated from patients’ blood and urine cultures. A total of 615 E. coli isolates were included in this study. Phene Plate (PhP)-typing and phylogenetic grouping were used for the typing. Antimicrobial resistance profiles and ESBL production of all isolates were confirmed according to Clinical and Laboratory Standards Institute (CLSI) criteria. The activities of four bacteriophage cocktails (Enko-phage, SES-bacteriophage, Pyo-bacteriophage, and Intesti-bacteriophage) were determined against 142 ESBL-EC using in vitro spot tests. According to this, Enko-phage were active against 87.3% of the tested strains while that ratio was 81.7% for Intesti-bacteriophage, 81.7% for Pyo-bacteriophage, and 59.2% for SES-bacteriophage cocktails. Based on the contingency tests, the phage cocktails were observed to be statistically significantly (p < 0.001) more effective on ESBL-EC strains belonging to phylogenetic groups D and B2. The employed phage cocktails were found to be affective against all tested resistant types. These results are promising especially for the infections that are caused by MDR pathogens that are difficult to treat. As this is a preliminary step to the potential clinical trials to be designed for the country, in vitro confirmation of their success on a MDR ESBL-EC collection should be accepted as an initial action, which is encouraging to consider clinical trials of phage therapy especially in countries which are not introduce phage therapy. PMID:27857711

  19. Purification and characterization of lipopolysaccharides from six strains of non-O157 Shiga toxin-producing Escherichia coli.

    PubMed

    Stromberg, Loreen R; Stromberg, Zachary R; Banisadr, Afsheen; Graves, Steven W; Moxley, Rodney A; Mukundan, Harshini

    2015-09-01

    Certain Shiga toxin-producing Escherichia coli (STEC) are virulent human pathogens that are most often acquired through contaminated food. The United States Department of Agriculture, Food Safety and Inspection Service has declared several serogroups of STEC as adulterants in non-intact raw beef products. Hence, sensitive and specific tests for the detection of these STEC are a necessity for implementation in food safety programs. E. coli serogroups are identified by their respective O-antigen moiety on the lipopolysaccharide (LPS) macromolecule. We propose that the development of O-antigen-specific immunological assays can facilitate simple and rapid discriminatory detection of STEC in beef. However, the resources (antigens and antibodies) required for such development are not readily available. To overcome this, we extracted and characterized LPS and O-antigen from six STEC strains. Using hot phenol extraction, we isolated the LPS component from each strain and purified it using a series of steps to eliminate proteins, nucleic acids, and lipid A antigens. Antigens and crude LPS extracts were characterized using gel electrophoresis, immunoblotting, and modified Western blotting with commercially available antibodies, thus assessing the serogroup specificity and sensitivity of available ligands as well. The results indicate that, while many commercially available antibodies bind LPS, their activities and specificities are highly variable, and often not as specific as those required for serogroup discrimination. This variability could be minimized by the production of antibodies specific for the O-antigen. Additionally, the antigens generated from this study provide a source of characterized LPS and O-antigen standards for six serogroups of STEC.

  20. ANIMAL ENTEROTOXIGENIC ESCHERICHIA COLI

    PubMed Central

    Dubreuil, J. Daniel; Isaacson, Richard E.; Schifferli, Dieter M.

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) is the most common cause of E. coli diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors; adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17 and F18 fimbriae. Once established in the animal small intestine, ETEC produces enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes; heat-labile toxin that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This chapter describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics and the identification of potential new targets identified by genomics are presented in the context of animal ETEC. PMID:27735786

  1. Phenotypic and genotypic characteristics associated with biofilm formation in clinical isolates of atypical enteropathogenic Escherichia coli (aEPEC) strains

    PubMed Central

    2014-01-01

    Background Biofilm formation by enteropathogenic Escherichia coli (EPEC) have been recently described in the prototype typical EPEC E2348/69 strain and in an atypical EPEC O55:H7 strain. In this study, we sought to evaluate biofilm formation in a collection of 126 atypical EPEC strains isolated from 92 diarrheic and 34 nondiarrheic children, belonging to different serotypes. The association of biofilm formation and adhesin-related genes were also investigated. Results Biofilm formation occurred in 37 (29%) strains of different serotypes, when the assays were performed at 26°C and 37°C for 24 h. Among these, four strains (A79, A87, A88, and A111) formed a stronger biofilm than did the others. The frequency of biofilm producers was higher among isolates from patients compared with isolates from controls (34.8% vs 14.7%; P = 0.029). An association was found between biofilm formation and expression of type 1 fimbriae and curli (P < 0.05). Unlike the previously described aEPEC O55:H7, one aEPEC O119:HND strain (A111) formed a strong biofilm and pellicle at the air-liquid interface, but did not express curli. Transposon mutagenesis was used to identify biofilm-deficient mutants. Transposon insertion sequences of six mutants revealed similarity with type 1 fimbriae (fimC, fimD, and fimH), diguanylate cyclase, ATP synthase F1, beta subunit (atpD), and the uncharacterized YjiC protein. All these mutants were deficient in biofilm formation ability. Conclusion This study showed that the ability to adhere to abiotic surfaces and form biofilm is present in an array of aEPEC strains. Moreover, it seems that the ability to form biofilms is associated with the presence of type 1 fimbriae and diguanylate cyclase. Characterization of additional biofilm formation mutants may reveal other mechanisms involved in biofilm formation and bring new insights into aEPEC adhesion and pathogenesis. PMID:25012525

  2. Histopathological features in the small intestine of pigs infected with F4ac+ non-enterotoxigenic or enterotoxigenic strains of Escherichia coli.

    PubMed

    Vijtiuk, N; Curić, S; Lacković, G; Udovicić, I; Vrbanac, I; Valpotić, I

    1995-01-01

    Four porcine strains of Escherichia coli were examined for their effects on the small intestine of 4-week-old weaned pigs infected orogastrically. The strains used experimentally were: strain 1467 (adhesin negative, non-toxigenic); strains 2407 and 1466 (adhesin positive, non-toxigenic), derived by genetical engineering from strain 1467 and containing a wild type plasmid and a recombinant plasmid, respectively, encoding the F4 antigen (adhesin); and strain M1823 (adhesin positive, toxigenic). In addition, 2-week-old pigs that died from natural colibacillosis associated with two strains ("Ihan 1 and 2"; adhesin positive, toxigenic) were examined. Strain M1823 and the Ihan strains produced moderate and marked lesions, respectively. Strain 1467 did not cause mucosal damage or an inflammatory response. Strains 1466 and 2407 caused a mild to moderate leucocyte (mononuclear and polymorphonuclear) infiltration in the jejunal (but not ileal) lamina propria. However, unlike strain 1466, strain 2407 did not cause damage to the small intestinal mucosa and should be further studied as a potential oral vaccine strain for post-weaning E. coli diarrhoea.

  3. Correlation between uropathogenic properties of Escherichia coli from urinary tract infections and the antibody-coated bacteria test and comparison with faecal strains.

    PubMed Central

    Brooks, H. J.; Benseman, B. A.; Peck, J.; Bettelheim, K. A.

    1981-01-01

    Strains of Escherichia coli isolated from adult females with symptomatic urinary tract infection were found to possess the following properties significantly more frequently than faecal strains: (i) high K-antigen titre: (ii) haemolysin; (iii) type 1 pili; (iv) mannose-resistant haemagglutination; (v) fermentation of dulcitol and salicin; (vi) O serotype 2, 6 and 75; (vii) H serotype 1. E. coli isolated form urine specimens containing significant numbers of antibody-coated bacteria were richer in these seven properties than strains from urines without detectable antibody coated bacteria. The O and H serotypes of E. coli obtained from patients with urinary tract infection in two New Zealand cities were compared with those reported in the world literature and found to be similar. PMID:6114119

  4. Metabolic control of respiratory levels in coenzyme Q biosynthesis-deficient Escherichia coli strains leading to fine-tune aerobic lactate fermentation.

    PubMed

    Wu, Hui; Bennett, George N; San, Ka-Yiu

    2015-08-01

    A novel strategy to finely control the electron transfer chain (ETC) activity of Escherichia coli was established. In this study, the fine-tuning of the ubiquinone biosynthesis pathway was applied to further controlling ETC function in coenzyme Q8 biosynthesis-deficient E. coli strains, HW108 and HW109, which contain mutations in ubiE and ubiG, respectively. A competing pathway on the intermediate substrates of the Q8 synthesis pathway, catalyzed by diphosphate:4-hydroxybenzoate geranyltransferase (PGT-1) of Lithospermum erythrorhizon, was introduced into these mutant strains. A nearly theoretical yield of lactate production can be achieved under fully aerobic conditions via an in vivo, genetically fine-tunable means to further control the activity of the ETC of the Q8 biosynthesis-deficient E. coli strains.

  5. Escherichia coli and Sudden Infant Death Syndrome

    PubMed Central

    Bettelheim, Karl A.; Goldwater, Paul N.

    2015-01-01

    This review examines the association of strains of Escherichia coli with sudden infant death syndrome (SIDS) and the possible role these bacteria play in this enigmatic condition. The review addresses evidence for E. coli in SIDS infants, potential sources of E. coli in the environment, colonization by commensal and pathogenic strains, the variety of currently accepted pathotypes, and how these pathotypes could compromise intestinal integrity and induce inflammation. Both intestinal and extraintestinal pathotypes are compared in relation to the apparent liability in which virulence traits can be gained or lost by strains of E. coli. The way in which E. coli infections fit with current views on infant sleeping position and other SIDS risk factors is highlighted. PMID:26191064

  6. Specific detection of enteroaggregative hemorrhagic Escherichia coli O104:H4 strains by use of the CRISPR locus as a target for a diagnostic real-time PCR.

    PubMed

    Delannoy, Sabine; Beutin, Lothar; Burgos, Ylanna; Fach, Patrick

    2012-11-01

    In 2011, a large outbreak of an unusual bacterial strain occurred in Europe. This strain was characterized as a hybrid of an enteroaggregative Escherichia coli (EAEC) and a Shiga toxin-producing E. coli (STEC) strain of the serotype O104:H4. Here, we present a single PCR targeting the clustered regularly interspaced short palindromic repeats locus of E. coli O104:H4 (CRISPR(O104:H4)) for specific detection of EAEC STEC O104:H4 strains from different geographical locations and time periods. The specificity of the CRISPR(O104:H4) PCR was investigated using 1,321 E. coli strains, including reference strains for E. coli O serogroups O1 to O186 and flagellar (H) types H1 to H56. The assay was compared for specificity using PCR assays targeting different O104 antigen-encoding genes (wbwC(O104), wzx(O104), and wzy(O104)). The PCR assays reacted with all types of E. coli O104 strains (O104:H2, O104:H4, O104:H7, and O104:H21) and with E. coli O8 and O9 strains carrying the K9 capsular antigen and were therefore not specific for detection of the EAEC STEC O104:H4 type. A single PCR developed for the CRISPR(O104:H4) target was sufficient for specific identification and detection of the 48 tested EAEC STEC O104:H4 strains. The 35 E. coli O104 strains expressing H types other than H4 as well as 8 E. coli strains carrying a K9 capsular antigen tested all negative for the CRISPR(O104:H4) locus. Only 12 (0.94%) of the 1,273 non-O104:H4 E. coli strains (serotypes Ont:H2, O43:H2, O141:H2, and O174:H2) reacted positive in the CRISPR(O104:H4) PCR (99.06% specificity).

  7. Strain differences in fitness of Escherichia coli O157:H7 to resist protozoan predation and survival in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli O157:H7 (EcO157) associated with 2006 spinach outbreak appears to have persisted as the organism was later isolated from environmental samples in the produce production areas of central coast of California. Survival in harsh environments was often linked to the inherent fitness char...

  8. Effect of spinach cultivar and strain variation on survival of Escherichia coli O157:H7 on spinach leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Escherichia coli O157:H7 outbreaks of infections associated with the consumption of fresh produce have increased in recent years. Bacterial cell surface appendages such as curli and the spinach leaf structure topography influence pathogen attachment and subsequent survival on spinach ...

  9. Impact of metal ion homeostasis of genetically modified Escherichia coli Nissle 1917 and K12 (W3110) strains on colonization properties in the murine intestinal tract.

    PubMed

    Kupz, Andreas; Fischer, André; Nies, Dietrich H; Grass, Gregor; Göbel, Ulf B; Bereswill, Stefan; Heimesaat, Markus M

    2013-09-01

    Metal ions are integral parts of pro- as well as eukaryotic cell homeostasis. Escherichia coli proved a valuable in vitro model organism to elucidate essential mechanisms involved in uptake, storage, and export of metal ions. Given that E. coli Nissle 1917 is able to overcome murine colonization resistance, we generated several E. coli Nissle 1917 mutants with defects in zinc, iron, copper, nickel, manganese homeostasis and performed a comprehensive survey of the impact of metal ion transport and homeostasis for E. coli colonization capacities within the murine intestinal tract. Seven days following peroral infection of conventional mice with E. coli Nissle 1917 strains exhibiting defined defects in zinc or iron uptake, the respective mutant and parental strains could be cultured at comparable, but low levels from the colonic lumen. We next reassociated gnotobiotic mice in which the microbiota responsible for colonization resistance was abrogated by broad-spectrum antibiotics with six different E. coli K12 (W3110) mutants. Seven days following peroral challenge, each mutant and parental strain stably colonized duodenum, ileum, and colon at comparable levels. Taken together, defects in zinc, iron, copper, nickel, and manganese homeostasis do not compromise colonization capacities of E. coli in the murine intestinal tract.

  10. S-Fimbria-Encoding Determinant sfaI Is Located on Pathogenicity Island III536 of Uropathogenic Escherichia coli Strain 536

    PubMed Central

    Dobrindt, Ulrich; Blum-Oehler, Gabriele; Hartsch, Thomas; Gottschalk, Gerhard; Ron, Eliora Z.; Fünfstück, Reinhard; Hacker, Jörg

    2001-01-01

    The sfaI determinant encoding the S-fimbrial adhesin of uropathogenic Escherichia coli strains was found to be located on a pathogenicity island of uropathogenic E. coli strain 536. This pathogenicity island, designated PAI III536, is located at 5.6 min of the E. coli chromosome and covers a region of at least 37 kb between the tRNA locus thrW and yagU. As far as it has been determined, PAI III536 also contains genes which code for components of a putative enterochelin siderophore system of E. coli and Salmonella spp. as well as for colicin V immunity. Several intact or nonfunctional mobility genes of bacteriophages and insertion sequence elements such as transposases and integrases are present on PAI III536. The presence of known PAI III536 sequences has been investigated in several wild-type E. coli isolates. The results demonstrate that the determinants of the members of the S-family of fimbrial adhesins may be located on a common pathogenicity island which, in E. coli strain 536, replaces a 40-kb DNA region which represents an E. coli K-12-specific genomic island. PMID:11401961

  11. Prevalence of Escherichia coli strains with localized, diffuse, and aggregative adherence to HeLa cells in infants with diarrhea and matched controls.

    PubMed Central

    Gomes, T A; Blake, P A; Trabulsi, L R

    1989-01-01

    To determine the possible role of Escherichia coli strains with three different patterns of adherence to HeLa cells in causing diarrhea in infants in São Paulo, Brazil, we studied stool specimens from 100 infants up to 1 year of age with acute diarrheal illnesses and 100 age-matched control infants without recent diarrhea. E. coli with localized adherence to HeLa cells was much more common in patients (23%) than in controls (2%) (P less than 0.0001) and was detected more frequently than rotavirus (19%) was in patients, even though the study was conducted during the coldest months of the year. Most (80%) of the E. coli colonies with localized adherence were of traditional enteropathogenic E. coli serotypes. Little difference was found between patients and controls in the rate of isolation of E. coli with diffuse adherence (31 and 32%, respectively) or aggregative adherence (10 and 8%, respectively). A genetic probe used to detect a plasmid-mediated adhesin which confers expression of localized adherence proved to be 100% sensitive and 99.9% specific in detecting E. coli with localized adherence to HeLa cells. Although E. coli strains with localized adherence have now been shown to be enteric pathogens in several parts of the world, the role of strains showing diffuse adherence and aggregative adherence is still uncertain. PMID:2563383

  12. Characteristics of CTX-M Extended-Spectrum β-Lactamase-Producing Escherichia coli Strains Isolated from Multiple Rivers in Southern Taiwan

    PubMed Central

    Chen, Po-An; Hung, Chih-Hsin; Huang, Ping-Chih; Chen, Jung-Ren; Huang, I-Fei; Chen, Wan-Ling; Chiou, Yee-Hsuan; Hung, Wan-Yu

    2016-01-01

    Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli sequence type ST131 has emerged as the leading cause of community-acquired urinary tract infections and bacteremia worldwide. Whether environmental water is a potential reservoir of these strains remains unclear. River water samples were collected from 40 stations in southern Taiwan from February to August 2014. PCR assay and multilocus sequence typing (MLST) analysis were conducted to determine the CTX-M group and sequence type, respectively. In addition, we identified the seasonal frequency of ESBL-producing E. coli strains and their geographical relationship with runoffs from livestock and poultry farms between February and August 2014. ESBL-producing E. coli accounted for 30% of the 621 E. coli strains isolated from river water in southern Taiwan. ESBL-producing E. coli ST131 was not detected among the isolates. The most commonly detected strain was E. coli CTX-M group 9. Among the 92 isolates selected for MLST analysis, the most common ESBL-producing clonal complexes were ST10 and ST58. The proportion of ESBL-producing E. coli was significantly higher in areas with a lower river pollution index (P = 0.025) and regions with a large number of chickens being raised (P = 0.013). ESBL-producing E. coli strains were commonly isolated from river waters in southern Taiwan. The most commonly isolated ESBL-producing clonal complexes were ST10 and ST58, which were geographically related to chicken farms. ESBL-producing E. coli ST131, the major clone causing community-acquired infections in Taiwan and worldwide, was not detected in river waters. PMID:26773082

  13. Strain Differences in Fitness of Escherichia coli O157:H7 to Resist Protozoan Predation and Survival in Soil

    PubMed Central

    Ravva, Subbarao V.; Sarreal, Chester Z.; Mandrell, Robert E.

    2014-01-01

    Escherichia coli O157:H7 (EcO157) associated with the 2006 spinach outbreak appears to have persisted as the organism was isolated, three months after the outbreak, from environmental samples in the produce production areas of the central coast of California. Survival in harsh environments may be linked to the inherent fitness characteristics of EcO157. This study evaluated the comparative fitness of outbreak-related clinical and environmental strains to resist protozoan predation and survive in soil from a spinach field in the general vicinity of isolation of strains genetically indistinguishable from the 2006 outbreak strains. Environmental strains from soil and feral pig feces survived longer (11 to 35 days for 90% decreases, D-value) with Vorticella microstoma and Colpoda aspera, isolated previously from dairy wastewater; these D-values correlated (P<0.05) negatively with protozoan growth. Similarly, strains from cow feces, feral pig feces, and bagged spinach survived significantly longer in soil compared to clinical isolates indistinguishable by 11-loci multi-locus variable-number tandem-repeat analysis. The curli-positive (C+) phenotype, a fitness trait linked with attachment in ruminant and human gut, decreased after exposure to protozoa, and in soils only C− cells remained after 7 days. The C+ phenotype correlated negatively with D-values of EcO157 exposed to soil (rs = −0.683; P = 0.036), Vorticella (rs = −0.465; P = 0.05) or Colpoda (rs = −0.750; P = 0.0001). In contrast, protozoan growth correlated positively with C+ phenotype (Vorticella, rs = 0.730, P = 0.0004; Colpoda, rs = 0.625, P = 0.006) suggesting a preference for consumption of C+ cells, although they grew on C− strains also. We speculate that the C− phenotype is a selective trait for survival and possibly transport of the pathogen in soil and water environments. PMID:25019377

  14. Strain differences in fitness of Escherichia coli O157:H7 to resist protozoan predation and survival in soil.

    PubMed

    Ravva, Subbarao V; Sarreal, Chester Z; Mandrell, Robert E

    2014-01-01

    Escherichia coli O157:H7 (EcO157) associated with the 2006 spinach outbreak appears to have persisted as the organism was isolated, three months after the outbreak, from environmental samples in the produce production areas of the central coast of California. Survival in harsh environments may be linked to the inherent fitness characteristics of EcO157. This study evaluated the comparative fitness of outbreak-related clinical and environmental strains to resist protozoan predation and survive in soil from a spinach field in the general vicinity of isolation of strains genetically indistinguishable from the 2006 outbreak strains. Environmental strains from soil and feral pig feces survived longer (11 to 35 days for 90% decreases, D-value) with Vorticella microstoma and Colpoda aspera, isolated previously from dairy wastewater; these D-values correlated (P<0.05) negatively with protozoan growth. Similarly, strains from cow feces, feral pig feces, and bagged spinach survived significantly longer in soil compared to clinical isolates indistinguishable by 11-loci multi-locus variable-number tandem-repeat analysis. The curli-positive (C+) phenotype, a fitness trait linked with attachment in ruminant and human gut, decreased after exposure to protozoa, and in soils only C- cells remained after 7 days. The C+ phenotype correlated negatively with D-values of EcO157 exposed to soil (rs = -0.683; P = 0.036), Vorticella (rs = -0.465; P = 0.05) or Colpoda (rs = -0.750; P = 0.0001). In contrast, protozoan growth correlated positively with C+ phenotype (Vorticella, rs = 0.730, P = 0.0004; Colpoda, rs = 0.625, P = 0.006) suggesting a preference for consumption of C+ cells, although they grew on C- strains also. We speculate that the C- phenotype is a selective trait for survival and possibly transport of the pathogen in soil and water environments.

  15. Diversity of Escherichia coli strains producing extended-spectrum beta-lactamases in Spain: second nationwide study.

    PubMed

    Díaz, Miguel A; Hernández-Bello, José R; Rodríguez-Baño, Jesús; Martínez-Martínez, Luis; Calvo, Jorge; Blanco, Jorge; Pascual, Alvaro

    2010-08-01

    The prevalence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (ESBLEC) in Spain increased 8-fold from 2000 to 2006. ESBL type, clonal relationship, antimicrobial susceptibility, and clinical data about infections caused by ESBLEC are evaluated in a second nationwide study developed in 2006. From 1008 clinical isolates obtained over 2 months from 44 hospitals, 254 were used for further analysis. ESBL production was evaluated by synergy testing, PCR, and sequencing. Antimicrobial activity was evaluated by microdilution. The clonal relationship was evaluated by repetitive extragenic palindromic-PCR (REP-PCR). The O25b subtype and the new afa operon FM955459 were determined by triplex PCR in isolates producing CTX-M-15. Multilocus sequence typing was performed on these isolates. A total of 72% of all ESBLs were of the CTX-M type, 26.8% were of the SHV type, and 1.2% were of the TEM type. The most prevalent ESBLs were CTX-M-14 (119 isolates), SHV-12 (68 isolates), CTX-M-15 (37 isolates), and CTX-M-9 (21 isolates). By REP-PCR, 214 clones were detected. All but five CTX-M-15 ESBLEC isolates corresponded to the international O25b/ST131 clone. This clone had not been detected in the first study (published in 2000). Epidemiological and clinical features were studied in 304 representative patients. A total of 60% of the patients were older than 60 and had nonfatal underlying diseases, and 55% had recently received antibiotics. Urinary tract infections accounted for 71% of cases, and 9% were bacteremic. There has been a significant increase in the prevalence of ESBLEC in Spain, with most of these strains being CTX-M-producing isolates, including the pandemic O25b-ST131. SHV-12-producing E. coli remains an important cause of community-acquired infection.

  16. Genomic Analysis of Factors Associated with Low Prevalence of Antibiotic Resistance in Extraintestinal Pathogenic Escherichia coli Sequence Type 95 Strains

    PubMed Central

    Adams-Sapper, Sheila; Sekhon, Manraj; Johnson, James R.; Riley, Lee W.

    2017-01-01

    ABSTRACT Extraintestinal pathogenic Escherichia coli (ExPEC) strains belonging to multilocus sequence type 95 (ST95) are globally distributed and a common cause of infections in humans and domestic fowl. ST95 isolates generally show a lower prevalence of acquired antimicrobial resistance than other pandemic ExPEC lineages. We took a genomic approach to identify factors that may underlie reduced resistance. We fully assembled genomes for four ST95 isolates representing the four major fimH-based lineages within ST95 and also analyzed draft-level genomes from another 82 ST95 isolates, largely from the western United States. The fully assembled genomes of antibiotic-resistant isolates carried resistance genes exclusively on large (>90-kb) IncFIB/IncFII plasmids. These replicons were common in the draft genomes as well, particularly in antibiotic-resistant isolates, but we also observed multiple instances of a smaller (8.3-kb) ampicillin resistance plasmid that had been previously identified in Salmonella enterica. Among ST95 isolates, pansusceptibility to antibiotics was significantly associated with the fimH6 lineage and the presence of homologs of the previously identified 114-kb IncFIB/IncFII plasmid pUTI89, both of which were also associated with reduced carriage of other plasmids. Potential mechanistic explanations for lineage- and plasmid-specific effects on the prevalence of antibiotic resistance within the ST95 group are discussed. IMPORTANCE Antibiotic resistance in bacterial pathogens is a major public health concern. This work was motivated by the observation that only a small proportion of ST95 isolates, a major pandemic lineage of extraintestinal pathogenic E. coli, have acquired antibiotic resistance, in contrast to many other pandemic lineages. Understanding bacterial genetic factors that may prevent acquisition of resistance could contribute to the development of new biological, medical, or public health strategies to reduce antibiotic

  17. Characterization of Atypical Enteropathogenic Escherichia coli Strains Harboring the astA Gene That Were Associated with a Waterborne Outbreak of Diarrhea in Japan

    PubMed Central

    Yatsuyanagi, Jun; Saito, Shioko; Miyajima, Yoshimichi; Amano, Ken-Ichi; Enomoto, Katsuhiko

    2003-01-01

    The virulence traits of the Escherichia coli strain associated with a waterborne diarrhea outbreak were examined. Forty-one of 75 students (ages 12 to 15) in Akita Prefecture, Japan, showed clinical symptoms. Seven E. coli Ouk:K-:H45 isolates were isolated from the patients as the causative agent of this outbreak. One isolate (EC-3605) showed the presence of E. coli attaching-and-effacing (eaeA) and enteroaggregative E. coli heat-stable enterotoxin-1 (astA) genes and the absence of Shiga toxin (stx1 and stx2) genes. A polymorphic enteropathogenic E. coli (EPEC) adherence factor plasmid was detected in EC-3605 with a major structural gene deletion and a regulatory gene frameshift mutation, revealing that EC-3605 represents an atypical EPEC strain harboring the astA gene. The role that atypical EPEC strains harboring the astA gene play in human disease is unclear. Our results, along with those of others, present a possibility that these strains comprise a distinct category of diarrheagenic E. coli and that astA affects the age distribution of atypical-EPEC infection. PMID:12734245

  18. Clinical Implications of Enteroadherent Escherichia coli

    PubMed Central

    Arenas-Hernández, Margarita M.P.; Martínez-Laguna, Ygnacio; Torres, Alfredo G.

    2012-01-01

    Pathogenic Escherichia coli that colonize the small intestine primarily cause gastrointestinal illness in infants and travelers. The main categories of pathogenic E. coli that colonize the epithelial lining of the small intestine are enterotoxigenic E. coli enteropathogenic E. coli and enteroaggregative E. coli. These organisms accomplish their pathogenic process by a complex, coordinated multistage strategy, including non-intimate adherence mediated by various adhesins. These so called “enteroadherent E. coli ” categories subsequently produced toxins or effector proteins that are either secreted to the milieu or injected to the host cell. Finally, destruction of the intestinal microvilli results from the intimate adherence or the toxic effect exerted over the epithelia, resulting in water secretion and diarrhea. In this review, we summarize the current state of knowledge regarding these enteroadherent E. coli strains and the present clinical understanding of how these organisms colonize the human intestine and cause disease. PMID:22798032

  19. Expression of Curli by Escherichia coli O157:H7 Strains Isolated from Patients during Outbreaks Is Different from Similar Strains Isolated from Leafy Green Production Environments

    PubMed Central

    Ravva, Subbarao V.; Sarreal, Chester Z.; Cooley, Michael B.

    2016-01-01

    We previously reported that the strains of Escherichia coli O157:H7 (EcO157) that survived longer in austere soil environment lacked expression of curli, a fitness trait linked with intestinal colonization. In addition, the proportion of curli-positive variants of EcO157 decreased with repeated soil exposure. Here we evaluated 84 and 176 clinical strains from outbreaks and sporadic infections in the US, plus 211 animal fecal and environmental strains for curli expression. These shiga-toxigenic strains were from 328 different genotypes, as characterized by multi-locus variable-number tandem-repeat analysis (MLVA). More than half of the fecal strains (human and animal) and a significant proportion of environmental isolates (82%) were found to lack curli expression. EcO157 strains from several outbreaks linked with the consumption of contaminated apple juice, produce, hamburgers, steak, and beef were also found to lack curli expression. Phylogenetic analysis of fecal strains indicates curli expression is distributed throughout the population. However, a significant proportion of animal fecal isolates (84%) gave no curli expression compared to human fecal isolates (58%). In addition, analysis of environmental isolates indicated nearly exclusive clustering of curli expression to a single branch of the minimal spanning tree. This indicates that curli expression depends primarily upon the type of environmental exposure and the isolation source, although genotypic differences also contribute to clonal variation in curli. Furthermore, curli-deficient phenotype appears to be a selective trait for survival of EcO157 in agricultural environments. PMID:28066724

  20. Analysis of the production process of optically pure D-lactic acid from raw glycerol using engineered Escherichia coli strains.

    PubMed

    Posada, John A; Cardona, Carlos A; Gonzalez, Ramon

    2012-02-01

    Glycerol has become an ideal feedstock for producing fuels and chemicals. Here, five technological schemes for optically pure D: -lactic acid production from raw glycerol were designed, simulated, and economically assessed based on five fermentative scenarios using engineered Escherichia coli strains. Fermentative scenarios considered different qualities of glycerol (pure, 98 wt.%, and crude, 85 wt.%) with concentrations ranging from 20 to 60 g/l in the fermentation media, and two fermentation stages were also analyzed. Raw glycerol (60 wt.%) was considered as the feedstock feeding the production process in all cases; then a purification process of raw glycerol up to the required quality was required. Simulation processes were carried out using Aspen Plus, while economic assessments were performed using Aspen Icarus Process Evaluator. D: -Lactic acid recovery and purification processes were based on reactive extraction with tri-n-octylamine using dichloromethane as active extractant agent. The use of raw glycerol represents only between 2.4% and 7.8% of the total production costs. Also, the total production costs obtained of D: -lactic acid in all cases were lower than its sale price indicating that these processes are potentially profitable. Thus, the best configuration process requires the use of crude glycerol diluted at 40 g/l with total glycerol consumption and with D: -lactic acid recovering by reactive extraction. The lowest obtained total production cost was 1.015 US$/kg with a sale price/production cost ratio of 1.53.

  1. Influence of a high-glucose diet on the sensitivity of Caenorhabditis elegans towards Escherichia coli and Staphylococcus aureus strains.

    PubMed

    Lavigne, Jean-Philippe; Audibert, Sylvain; Molinari, Nicolas; O'Callaghan, David; Keriel, Anne

    2013-01-01

    It was recently observed that a glucose-enriched diet activates the insulin-like pathway in Caenorhabditis elegans, resulting in an inhibition of the FOXO transcription factor DAF-16. Because this signalling pathway is highly conserved from invertebrates to mammals and DAF-16 is a key player in innate immunity, we wondered whether a high-glucose diet, resembling the hyperglycaemic conditions in diabetic patients, would affect the susceptibility of C. elegans to bacterial pathogens isolated from different clinical situations (urinary tract or diabetic foot infections). We confirmed previous reports showing that such a diet decreases the lifespan of C. elegans fed with an avirulent Escherichia coli strain. However, glucose-fed nematodes appeared to be more resistant to most clinical isolates tested, showing that this invertebrate model does not mimic infections encountered in human diabetes, where patients show increased susceptibility to bacterial infections. This study also suggests that modulation of innate immunity in C. elegans, upon activation of the IGF1/insulin-like pathway by glucose, is not exclusively mediated by DAF-16, but also involves an additional factor that requires DAF-16 activity.

  2. Simplified process for ethanol production from sugarcane bagasse using hydrolysate-resistant Escherichia coli strain MM160.

    PubMed

    Geddes, C C; Mullinnix, M T; Nieves, I U; Peterson, J J; Hoffman, R W; York, S W; Yomano, L P; Miller, E N; Shanmugam, K T; Ingram, L O

    2011-02-01

    Hexose and pentose sugars from phosphoric acid pretreated sugarcane bagasse were co-fermented to ethanol in a single vessel (SScF), eliminating process steps for solid-liquid separation and sugar cleanup. An initial liquefaction step (L) with cellulase was included to improve mixing and saccharification (L+SScF), analogous to a corn ethanol process. Fermentation was enabled by the development of a hydrolysate-resistant mutant of Escherichia coli LY180, designated MM160. Strain MM160 was more resistant than the parent to inhibitors (furfural, 5-hydroxymethylfurfural, and acetate) formed during pretreatment. Bagasse slurries containing 10% and 14% dry weight (fiber plus solubles) were tested using pretreatment temperatures of 160-190°C (1% phosphoric acid, 10 min). Enzymatic saccharification and inhibitor production both increased with pretreatment temperature. The highest titer (30 g/L ethanol) and yield (0.21 g ethanol/g bagasse dry weight) were obtained after incubation for 122 h using 14% dry weight slurries of pretreated bagasse (180°C).

  3. Development of a biosensor for on-line detection of tributyltin with a recombinant bioluminescent Escherichia coli strain.

    PubMed

    Thouand, G; Horry, H; Durand, M J; Picart, P; Bendriaa, L; Daniel, P; DuBow, M S

    2003-08-01

    A biosensor was developed for the detection of tributyltin (TBT), using a bioluminescent recombinant Escherichia coli:: luxAB strain. Dedicated devices allowed the on-line measurement of bioluminescence, pH and dissolved oxygen values and the feed-back regulation of temperature. Bacterial physiology was monitored by the measurement of the cellular density, respiratory activity and the intracellular level of ATP, glucose and acetate levels. Our results showed that a synthetic glucose medium gave a better TBT detection limit than LB medium (respectively 0.02 micro M and 1.5 micro M TBT). High growth and dilution rates ( D=0.9 h(-1)) allowed maximum light emission from the bacterium. Moreover, simple atmospheric air bubbling was sufficient to provide oxygen for growth and the bioluminescence reaction. Real-time monitoring of bioluminescence after TBT induction occurred with continuous addition of decanal up to 300 micro M, which was not toxic throughout a 7-day experiment. The design of our biosensor and the optimization of the main parameters that influence microbial activity led to the capacity for the detection of TBT.

  4. Conditional gene silencing of multiple genes with antisense RNAs and generation of a mutator strain of Escherichia coli

    PubMed Central

    Nakashima, Nobutaka; Tamura, Tomohiro

    2009-01-01

    In this study, we describe a method of simultaneous conditional gene silencing of up to four genes in Escherichia coli by using antisense RNAs. We used antisense RNAs with paired termini, which carried flanking inverted repeats to create paired double-stranded RNA termini; these RNAs have been proven to have high silencing efficacy. To express antisense RNAs, we constructed four IPTG-inducible vectors carrying different but compatible replication origins. When the lacZ antisense RNA was expressed using these vectors, lacZ expression was successfully silenced by all the vectors, but the expression level of the antisense RNA and silencing efficacy differed depending on the used vectors. All the vectors were co-transformable; the antisense RNAs against lacZ, ackA, pta and pepN were co-expressed, and silencing of all the target genes was confirmed. Furthermore, when antisense RNAs were targeted to the mutator genes mutS, mutD (dnaQ) and ndk, which are involved in DNA replication or DNA mismatch repair, spontaneous mutation frequencies increased over 2000-fold. The resulting mutator strain is useful for random mutagenesis of plasmids. The method provides a robust tool for investigating functional relationships between multiple genes or altering cell phenotypes for biotechnological and industrial applications. PMID:19515932

  5. Evaluation of the Antibiotic Resistance and Virulence of Escherichia coli Strains Isolated from Chicken Carcasses in 2007 and 2013 from Paraná, Brazil.

    PubMed

    Koga, Vanessa L; Rodrigues, Gabriela R; Scandorieiro, Sara; Vespero, Eliana C; Oba, Alexandre; de Brito, Benito G; de Brito, Kelly C T; Nakazato, Gerson; Kobayashi, Renata K T

    2015-06-01

    The frequent use of antimicrobials in commercial poultry production has raised concerns regarding the potential impact of antimicrobials on human health due to selection for resistant bacteria. Several studies have reported similarities between extraintestinal pathogenic Escherichia coli (ExPEC) strains isolated from birds and humans, indicating that these contaminant bacteria in poultry may be linked to human disease. The aim of our study was to analyze the frequency of antimicrobial resistance and virulence factors among E. coli strains isolated from commercial chicken carcasses in Paraná, Brazil, in 2007 and 2013. A total of 84 E. coli strains were isolated from chicken carcasses in 2007, and 121 E. coli strains were isolated in 2013. Polymerase chain reaction was used to detect virulence genes (hlyF, iss, ompT, iron, and iutA) and to determine phylogenetic classification. Antimicrobial susceptibility testing was performed using 15 antimicrobials. The strains were also confirmed as extended-spectrum β-lactamase (ESBL)-producing E. coli with phenotypic and genotypic tests. The results indicated that our strains harbored virulence genes characteristic of ExPEC, with the iutA gene being the most prevalent. The phylogenetic groups D and B1 were the most prevalent among the strains isolated in 2007 and 2013, respectively. There was an increase in the frequency of resistance to a majority of antimicrobials tested. An important finding in this study was the large number of ESBL-producing E. coli strains isolated from chicken carcasses in 2013, primarily for the group 2 cefotaximase (CTX-M) enzyme. ESBL production confers broad-spectrum resistance and is a health risk because ESBL genes are transferable from food-producing animals to humans via poultry meat. These findings suggest that our strains harbored virulence and resistance genes, which are often associated with plasmids that can facilitate their transmission between bacteria derived from different hosts

  6. Influence of Apple Cultivars on Inactivation of Different Strains of Escherichia coli O157:H7 in Apple Cider by UV Irradiation

    PubMed Central

    Basaran, N.; Quintero-Ramos, A.; Moake, M. M.; Churey, J. J.; Worobo, R. W.

    2004-01-01

    This study examined the effect of different apple cultivars upon the UV inactivation of Escherichia coli O157:H7 strains within unfiltered apple cider. Apple cider was prepared from eight different apple cultivars, inoculated with approximately 106 to 107 CFU of three strains of E. coli O157:H7 per ml (933, ATCC 43889, and ATCC 43895), and exposed to 14 mJ of UV irradiation per cm2. Bacterial populations for treated and untreated samples were then enumerated by using nonselective media. E. coli O157:H7 ATCC 43889 showed the most sensitivity to this disinfection process with an average 6.63-log reduction compared to an average log reduction of 5.93 for both strains 933 and ATCC 43895. The highest log reduction seen, 7.19, occurred for strain ATCC 43889 in Rome cider. The same cider produced the lowest log reductions: 5.33 and 5.25 for strains 933 and ATCC 43895, respectively. Among the apple cultivars, an average log reduction range of 5.78 (Red Delicious) to 6.74 (Empire) was observed, with two statistically significant (α ≤ 0.05) log reduction groups represented. Within the paired cultivar-strain analysis, five of eight ciders showed statistically significant (α ≤ 0.05) differences in at least two of the E. coli strains used. Comparison of log reductions among the E. coli strains to the cider parameters of °Brix, pH, and malic acid content failed to show any statistically significant relationship (R2 ≥ 0.95). However, the results of this study indicate that regardless of the apple cultivar used, a minimum 5-log reduction is achieved for all of the strains of E. coli O157:H7 tested. PMID:15466551

  7. Influence of apple cultivars on inactivation of different strains of Escherichia coli O157:H7 in apple cider by UV irradiation.

    PubMed

    Basaran, N; Quintero-Ramos, A; Moake, M M; Churey, J J; Worobo, R W

    2004-10-01

    This study examined the effect of different apple cultivars upon the UV inactivation of Escherichia coli O157:H7 strains within unfiltered apple cider. Apple cider was prepared from eight different apple cultivars, inoculated with approximately 10(6) to 10(7) CFU of three strains of E. coli O157:H7 per ml (933, ATCC 43889, and ATCC 43895), and exposed to 14 mJ of UV irradiation per cm(2). Bacterial populations for treated and untreated samples were then enumerated by using nonselective media. E. coli O157:H7 ATCC 43889 showed the most sensitivity to this disinfection process with an average 6.63-log reduction compared to an average log reduction of 5.93 for both strains 933 and ATCC 43895. The highest log reduction seen, 7.19, occurred for strain ATCC 43889 in Rome cider. The same cider produced the lowest log reductions: 5.33 and 5.25 for strains 933 and ATCC 43895, respectively. Among the apple cultivars, an average log reduction range of 5.78 (Red Delicious) to 6.74 (Empire) was observed, with two statistically significant (alpha < or = 0.05) log reduction groups represented. Within the paired cultivar-strain analysis, five of eight ciders showed statistically significant (alpha < or = 0.05) differences in at least two of the E. coli strains used. Comparison of log reductions among the E. coli strains to the cider parameters of (o)Brix, pH, and malic acid content failed to show any statistically significant relationship (R(2) > or = 0.95). However, the results of this study indicate that regardless of the apple cultivar used, a minimum 5-log reduction is achieved for all of the strains of E. coli O157:H7 tested.

  8. Draft Genome Sequence of an Escherichia coli Strain Isolated from a Gallus gallus Broiler Producing the Novel CTX-M-166 Variant

    PubMed Central

    Clemente, Lurdes; Duarte, Sílvia; Vieira, Luís

    2016-01-01

    We report here the draft genome sequence of the CTX-M-166-harboring O6:H16 sequence type 48 (ST48)-fimH34 Escherichia coli strain recovered from a Gallus gallus broiler. Sequence analyses revealed the presence of an IncI1/ST103-ISEcp1-blaCTX-M-166-orf477 plasmid region and of diverse antibiotic resistance and virulence-acquired genes. PMID:27795239

  9. N-terminal amino acid sequences of D-serine deaminases of wild-type and operator-constitutive strains of Escherichia coli K-12.

    PubMed Central

    Heincz, M C; McFall, E

    1975-01-01

    The N-terminal amino acid sequences of the D-serine deaminases from strains of Escherichia coli K-12 that harbor wild-type and high-level constitutive catabolite-insensitive operator-initiator regions are identical: Met-Ser-GluNH2-Ser-Gly-Arg-His-Cys. This result indicates that the operator-initiator region is probably distinct from the D-serine deaminase structural gene. Images PMID:1099073

  10. Genetic analysis for the lack of expression of the O157 antigen in an O Rough:H7 Escherichia coli strain.

    PubMed

    Rump, Lydia V; Feng, Peter C H; Fischer, Markus; Monday, Steven R

    2010-02-01

    The O-antigen (rfb) operon and related genes of MA6, an O rough:H7 Shiga-toxigenic Escherichia coli strain, were examined to determine the cause of the lack of O157 expression. A 1,310-bp insertion, homologous to IS629, was observed within its gne gene. trans complementation with a functional gne gene from O157:H7 restored O157 antigen expression in MA6.

  11. Feeding the probiotic Enterococcus faecium strain NCIMB 10415 to piglets specifically reduces the number of Escherichia coli pathotypes that adhere to the gut mucosa.

    PubMed

    Bednorz, Carmen; Guenther, Sebastian; Oelgeschläger, Kathrin; Kinnemann, Bianca; Pieper, Robert; Hartmann, Susanne; Tedin, Karsten; Semmler, Torsten; Neumann, Konrad; Schierack, Peter; Bethe, Astrid; Wieler, Lothar H

    2013-12-01

    Feed supplementation with the probiotic Enterococcus faecium for piglets has been found to reduce pathogenic gut microorganisms. Since Escherichia coli is among the most important pathogens in pig production, we performed comprehensive analyses to gain further insight into the influence of E. faecium NCIMB 10415 on porcine intestinal E. coli. A total of 1,436 E. coli strains were isolated from three intestinal habitats (mucosa, digesta, and feces) of probiotic-supplemented and nonsupplemented (control) piglets. E. coli bacteria were characterized via pulsed-field gel electrophoresis (PFGE) for clonal analysis. The high diversity of E. coli was reflected by 168 clones. Multilocus sequence typing (MLST) was used to determine the phylogenetic backgrounds, revealing 79 sequence types (STs). Pathotypes of E. coli were further defined using multiplex PCR for virulence-associated genes. While these analyses discerned only a few significant differences in the E. coli population between the feeding groups, analyses distinguishing clones that were uniquely isolated in either the probiotic group only, the control group only, or both groups (shared group) revealed clear effects at the habitat level. Interestingly, extraintestinal pathogenic E. coli (ExPEC)-typical clones adhering to the mucosa were significantly reduced in the probiotic group. Our data show a minor influence of E. faecium on the overall population of E. coli in healthy piglets. In contrast, this probiotic has a profound effect on mucosa-adherent E. coli. This finding further substantiates a specific effect of E. faecium strain NCIMB 10415 in piglets against pathogenic E. coli in the intestine. In addition, these data question the relevance of data based on sampling fecal E. coli only.

  12. Feeding the Probiotic Enterococcus faecium Strain NCIMB 10415 to Piglets Specifically Reduces the Number of Escherichia coli Pathotypes That Adhere to the Gut Mucosa

    PubMed Central

    Guenther, Sebastian; Oelgeschläger, Kathrin; Kinnemann, Bianca; Pieper, Robert; Hartmann, Susanne; Tedin, Karsten; Semmler, Torsten; Neumann, Konrad; Schierack, Peter; Bethe, Astrid; Wieler, Lothar H.

    2013-01-01

    Feed supplementation with the probiotic Enterococcus faecium for piglets has been found to reduce pathogenic gut microorganisms. Since Escherichia coli is among the most important pathogens in pig production, we performed comprehensive analyses to gain further insight into the influence of E. faecium NCIMB 10415 on porcine intestinal E. coli. A total of 1,436 E. coli strains were isolated from three intestinal habitats (mucosa, digesta, and feces) of probiotic-supplemented and nonsupplemented (control) piglets. E. coli bacteria were characterized via pulsed-field gel electrophoresis (PFGE) for clonal analysis. The high diversity of E. coli was reflected by 168 clones. Multilocus sequence typing (MLST) was used to determine the phylogenetic backgrounds, revealing 79 sequence types (STs). Pathotypes of E. coli were further defined using multiplex PCR for virulence-associated genes. While these analyses discerned only a few significant differences in the E. coli population between the feeding groups, analyses distinguishing clones that were uniquely isolated in either the probiotic group only, the control group only, or both groups (shared group) revealed clear effects at the habitat level. Interestingly, extraintestinal pathogenic E. coli (ExPEC)-typical clones adhering to the mucosa were significantly reduced in the probiotic group. Our data show a minor influence of E. faecium on the overall population of E. coli in healthy piglets. In contrast, this probiotic has a profound effect on mucosa-adherent E. coli. This finding further substantiates a specific effect of E. faecium strain NCIMB 10415 in piglets against pathogenic E. coli in the intestine. In addition, these data question the relevance of data based on sampling fecal E. coli only. PMID:24123741

  13. Genetic Characterization and Immunogenicity of Coli Surface Antigen 4 from Enterotoxigenic Escherichia coli when It Is Expressed in a Shigella Live-Vector Strain

    PubMed Central

    Altboum, Zeev; Levine, Myron M.; Galen, James E.; Barry, Eileen M.

    2003-01-01

    The genes that encode the enterotoxigenic Escherichia coli (ETEC) CS4 fimbriae, csaA, -B, -C, -E, and -D′, were isolated from strain E11881A. The csa operon encodes a 17-kDa major fimbrial subunit (CsaB), a 40-kDa tip-associated protein (CsaE), a 27-kDa chaperone-like protein (CsaA), a 97-kDa usher-like protein (CsaC), and a deleted regulatory protein (CsaD′). The predicted amino acid sequences of the CS4 proteins are highly homologous to structural and assembly proteins of other ETEC fimbriae, including CS1 and CS2, and to CFA/I in particular. The csaA, -B, -C, -E operon was cloned on a stabilized plasmid downstream from an osomotically regulated ompC promoter. pGA2-CS4 directs production of CS4 fimbriae in both E. coli DH5α and Shigella flexneri 2a vaccine strain CVD 1204, as detected by Western blot analysis and bacterial agglutination with anti-CS4 immune sera. Electron-microscopic examination of Shigella expressing CS4 confirmed the presence of fimbriae on the bacterial surface. Guinea pigs immunized with CVD 1204(pGA2-CS4) showed serum and mucosal antibody responses to both the Shigella vector and the ETEC fimbria CS4. Among the seven most prevalent fimbrial antigens of human ETEC, CS4 is the last to be cloned and sequenced. These findings pave the way for CS4 to be included in multivalent ETEC vaccines, including an attenuated Shigella live-vector-based ETEC vaccine. PMID:12595452

  14. The Regulation of Expression of the Stx2d Toxins in Shiga Toxin-producing Escherichia coli O91:H21 Strain B2F1

    DTIC Science & Technology

    2002-01-01

    DH5α and its transposon mutants……….……...…….………...87 Figure 21. Genetic arrangement of the carnitine operon of Escherichia coli K...12 strain MG1655…………………….………………...92 Figure 22. Carnitine metabolism in Escherichia coli……………….……………….….93 Figure 23. Southern blots of EcoRV...necrosis factor alpha generated in response to the gastrointestinal infection. The result is loss of vascular integrity in the brain, hemorrhage

  15. Molecular typing of Escherichia coli strains associated with threatened sea ducks and near-shore marine habitats of south-west Alaska.

    PubMed

    Hollmén, Tuula E; Debroy, Chitrita; Flint, Paul L; Safine, David E; Schamber, Jason L; Riddle, Ann E; Trust, Kimberly A

    2011-04-01

    In Alaska, sea ducks winter in coastal habitats at remote, non-industrialized areas, as well as in proximity to human communities and industrial activity. We evaluated prevalence and characteristics of Escherichia coli strains in faecal samples of Steller's eiders (Polysticta stelleri; n = 122) and harlequin ducks (Histrionicus histrionicus; n = 21) at an industrialized site and Steller's eiders (n = 48) at a reference site, and compared these strains with those isolated from water samples from near-shore habitats of ducks. The overall prevalence of E. coli was 16% and 67% in Steller's eiders and harlequin ducks, respectively, at the industrialized study site, and 2% in Steller's eiders at the reference site. Based on O and H antigen subtyping and genetic characterization by enterobacterial repetitive intergenic consensus polymerase chain reaction and pulsed-field gel electrophoresis, we found evidence of avian pathogenic E. coli (APEC) strains associated with both species and detected E. coli strains carrying virulence genes associated with mammals in harlequin ducks. Steller's eiders that carried APEC had lower serum total protein and albumin concentrations, providing further evidence of pathogenicity. The genetic profile of two E. coli strains from water matched an isolate from a Steller's eider providing evidence of transmission between near-shore habitats and birds.

  16. Molecular typing of Escherichia coli strains associated with threatened sea ducks and near-shore marine habitats of south-west Alaska

    USGS Publications Warehouse

    Hollmén, Tuula E.; Debroy, C.; Flint, P.L.; Safine, D.E.; Schamber, J.L.; Riddle, A.E.; Trust, K.A.

    2011-01-01

    In Alaska, sea ducks winter in coastal habitats at remote, non-industrialized areas, as well as in proximity to human communities and industrial activity. We evaluated prevalence and characteristics of Escherichia coli strains in faecal samples of Steller's eiders (Polysticta stelleri; n=122) and harlequin ducks (Histrionicus histrionicus; n=21) at an industrialized site and Steller's eiders (n=48) at a reference site, and compared these strains with those isolated from water samples from near-shore habitats of ducks. The overall prevalence of E. coli was 16% and 67% in Steller's eiders and harlequin ducks, respectively, at the industrialized study site, and 2% in Steller's eiders at the reference site. Based on O and H antigen subtyping and genetic characterization by enterobacterial repetitive intergenic consensus polymerase chain reaction and pulsed-field gel electrophoresis, we found evidence of avian pathogenic E. coli (APEC) strains associated with both species and detected E. coli strains carrying virulence genes associated with mammals in harlequin ducks. Steller's eiders that carried APEC had lower serum total protein and albumin concentrations, providing further evidence of pathogenicity. The genetic profile of two E. coli strains from water matched an isolate from a Steller's eider providing evidence of transmission between near-shore habitats and birds. ?? 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  17. View of the bacterial strains of Escherichia coli M-17 and its interaction with the nanoparticles of zinc oxide by means of atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Sagitova, A.; Yaminsky, I.; Meshkov, G.

    2016-08-01

    Visualization of the structure of biological objects plays a key role in medicine, biotechnology, nanotechnology and IT-technology. Atomic force microscopy (AFM) is a promising method of studying of objects’ morphology and structure. In this work, AFM was used to determine the size and shape of the bacterial strains of Escherichia coli M-17 and visualization its interaction with the nanoparticles of zinc oxide. The suspension of E.coli bacteria was applied to natural mica and studied by contact mode using the FemtoScan multifunctional scanning probe microscope.

  18. Succinate production in Escherichia coli

    PubMed Central

    Thakker, Chandresh; Martínez, Irene; San, Ka-Yiu; Bennett, George N.

    2012-01-01

    Succinate has been recognized as an important platform chemical that can be produced from biomass. While a number of organisms are capable of succinate production naturally, this review focuses on the engineering of Escherichia coli for production of the four-carbon dicarboxylic acid. Important features of a succinate production system are to achieve optimal balance of reducing equivalents generated by consumption of the feedstock, while maximizing the amount of carbon that is channeled to the product. Aerobic and anaerobic production strains have been developed and applied to production from glucose as well as other abundant carbon sources. Metabolic engineering methods and strain evolution have been used and supplemented by the recent application of systems biology and in silico modeling tools to construct optimal production strains. The metabolic capacity of the production strain, as well as the requirement for efficient recovery of succinate and the reliability of the performance under scale-up are important in the overall process. The costs of the overall biorefinery compatible process will determine the economical commercialization of succinate and its impact in larger chemical markets. PMID:21932253

  19. Detection of genes for heat-stable enterotoxin I in Escherichia coli strains isolated in Brazil.

    PubMed Central

    Maas, R; Silva, R M; Gomes, T A; Trabulsi, L R; Maas, W K

    1985-01-01

    Heat-stable enterotoxin I (STI) can be assayed in intestinal loops of pigs and rabbits and in the gut of infant mice. To produce a simpler and more discriminating assay procedure, we used three gene probes corresponding to three forms of STI called STIa, STIb, and STIc. We tested 159 Brazilian isolates, of which 40 were positive in the infant mouse assay. The STIb and STIc probes are similar (93% DNA homology) and are both different from the STIa probe (70% DNA homology). Of 33 strains that were still active for STI 3 years after their isolation, 25 reacted with both the STIb and STIc probes, 4 reacted with the STIc probe only, and 7 reacted strongly with the STIa probe and weakly or not at all with the other probes. Two strains reacted with all three probes. Further analysis showed that each of these two strains contains a small plasmid that reacts with the STIa probe and a large plasmid that reacts with the STIc probe in one strain and weakly with both the STIa and STIc probes in the other strain. It was also shown that the STIa probe reacts with the cloning vehicle pACYC184 used for the cloning of STIc. We conclude that the gene probes used can identify most STI-producing strains and that in cases of positive responses with several probes careful scrutiny is necessary for analysis. Images PMID:3891629

  20. Comparison of the small 16S to 23S intergenic spacer region (ISR) of the rRNA operons of some Escherichia coli strains of the ECOR collection and E. coli K-12.

    PubMed

    García-Martínez, J; Martínez-Murcia, A; Antón, A I; Rodríguez-Valera, F

    1996-11-01

    Several 16S to 23S spacers of 354 bp have been sequenced from six Escherichia coli strains belonging to the ECOR collection. Four phylogenetically informative variable sites were identified. The results of their comparison confirm the existence of two major phylogenetic branches in this species, as previously reported. Remarkable intercistronic heterogeneity was found in strain ECOR35 and its closest relatives, in which at least one of the operons has suffered a major mutagenic event or has an independent phylogenetic origin.

  1. Identification of Extended-Spectrum β-Lactamases Escherichia coli Strains Isolated from Market Garden Products and Irrigation Water in Benin.

    PubMed

    Moussé, Wassiyath; Sina, Haziz; Baba-Moussa, Farid; Noumavo, Pacôme A; Agbodjato, Nadège A; Adjanohoun, Adolphe; Baba-Moussa, Lamine

    2015-01-01

    The present study aimed at biochemical and molecular characterization of Escherichia coli strains isolated from horticultural products and irrigation water of Cotonou. The samples were collected from 12 market gardeners of 4 different sites. Rapid' E. coli medium was used for identification of E. coli strains and the antimicrobial susceptibility was performed by the agar disk diffusion method. The β-lactamases production was sought by the liquid acidimetric method. The genes coding for β-lactamases and toxins were identified by PCR method. The results revealed that about 34.95% of the analyzed samples were contaminated by E. coli. Cabbages were the most contaminated by E. coli (28.26%) in dry season. All isolated strains were resistant to amoxicillin. The penicillinase producing E. coli carried blaTEM (67.50%), blaSHV (10%), and blaCTX-M (22.50%) genes. The study revealed that the resistance genes such as SLTI (35.71%), SLTII (35.71%), ETEC (7.15%), and VTEC (21.43%) were carried. Openly to the found results and considering the importance of horticultural products in Beninese food habits, it is important to put several strategies aiming at a sanitary security by surveillance and sensitization of all the actors on the risks of some practices.

  2. Dual-serotype biofilm formation by Shiga toxin-producing Escherichia coli 0157:H7 and 026:H11 strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial coexistence significantly affects cell growth and biofilm development. We demonstrated E. coli O26:H11 strains could outgrow O157:H7 companion strains in planktonic and biofilm phases, and also effectively compete with pre-colonized O157:H7 cells to establish themselves in mixed biofilms. ...

  3. Emergence and Outbreaks of CTX-M β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Strains in a Tunisian Hospital▿

    PubMed Central

    Mamlouk, Kelthoum; Boutiba-Ben Boubaker, Ilhem; Gautier, Valérie; Vimont, Sophie; Picard, Bertrand; Ben Redjeb, Saida; Arlet, Guillaume

    2006-01-01

    Sixty-two isolates of Enterobacteriaceae (35 Escherichia coli and 27 Klebsiella pneumoniae isolates) producing CTX-M-type β-lactamases were collected between March 2000 and June 2003 in different wards of Charles Nicolle Hospital in Tunis (Tunisia). Sequencing identified the blaCTX-M-15 determinant in 55 isolates and blaCTX-M-16 in 7 isolates. The CTX-M-15-producing strains were isolated in several wards and consisted mainly of two successive clonal groups of E. coli and a major clonal group of K. pneumoniae. The second clonal group of E. coli belonged to phylogenetic group B2 and harbored more virulence factors than the first clonal group. Among the 22 transconjugants or electroporants obtained with selected E. coli and K. pneumoniae CTX-M-15-producing strains, a predominant plasmid restriction pattern was obtained with 17 isolates. The four CTX-M-16-producing strains of E. coli yielded the same pulsed-field gel electrophoresis (PFGE) pattern, while the three CTX-M-16-producing strains of K. pneumoniae yielded two different PFGE patterns. All of the CTX-M-16-producing isolates were recovered in the pediatric ward and had the same plasmid restriction pattern. PMID:16957046

  4. Emergence and outbreaks of CTX-M beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae strains in a Tunisian hospital.

    PubMed

    Mamlouk, Kelthoum; Boutiba-Ben Boubaker, Ilhem; Gautier, Valérie; Vimont, Sophie; Picard, Bertrand; Ben Redjeb, Saida; Arlet, Guillaume

    2006-11-01

    Sixty-two isolates of Enterobacteriaceae (35 Escherichia coli and 27 Klebsiella pneumoniae isolates) producing CTX-M-type beta-lactamases were collected between March 2000 and June 2003 in different wards of Charles Nicolle Hospital in Tunis (Tunisia). Sequencing identified the bla(CTX-M-15) determinant in 55 isolates and bla(CTX-M-16) in 7 isolates. The CTX-M-15-producing strains were isolated in several wards and consisted mainly of two successive clonal groups of E. coli and a major clonal group of K. pneumoniae. The second clonal group of E. coli belonged to phylogenetic group B2 and harbored more virulence factors than the first clonal group. Among the 22 transconjugants or electroporants obtained with selected E. coli and K. pneumoniae CTX-M-15-producing strains, a predominant plasmid restriction pattern was obtained with 17 isolates. The four CTX-M-16-producing strains of E. coli yielded the same pulsed-field gel electrophoresis (PFGE) pattern, while the three CTX-M-16-producing strains of K. pneumoniae yielded two different PFGE patterns. All of the CTX-M-16-producing isolates were recovered in the pediatric ward and had the same plasmid restriction pattern.

  5. Complete genome sequence and comparative analysis of the wild-type commensal Escherichia coli strain SE11 isolated from a healthy adult.

    PubMed

    Oshima, Kenshiro; Toh, Hidehiro; Ogura, Yoshitoshi; Sasamoto, Hiroyuki; Morita, Hidetoshi; Park, Sang-Hee; Ooka, Tadasuke; Iyoda, Sunao; Taylor, Todd D; Hayashi, Tetsuya; Itoh, Kikuji; Hattori, Masahira

    2008-12-01

    We sequenced and analyzed the genome of a commensal Escherichia coli (E. coli) strain SE11 (O152:H28) recently isolated from feces of a healthy adult and classified into E. coli phylogenetic group B1. SE11 harbored a 4.8 Mb chromosome encoding 4679 protein-coding genes and six plasmids encoding 323 protein-coding genes. None of the SE11 genes had sequence similarity to known genes encoding phage- and plasmid-borne virulence factors found in pathogenic E. coli strains. The comparative genome analysis with the laboratory strain K-12 MG1655 identified 62 poorly conserved genes between these two non-pathogenic strains and 1186 genes absent in MG1655. These genes in SE11 were mostly encoded in large insertion regions on the chromosome or in the plasmids, and were notably abundant in genes of fimbriae and autotransporters, which are cell surface appendages that largely contribute to the adherence ability of bacteria to host cells and bacterial conjugation. These data suggest that SE11 may have evolved to acquire and accumulate the functions advantageous for stable colonization of intestinal cells, and that the adhesion-associated functions are important for the commensality of E. coli in human gut habitat.

  6. Complete Genome Sequence and Comparative Analysis of the Wild-type Commensal Escherichia coli Strain SE11 Isolated from a Healthy Adult

    PubMed Central

    Oshima, Kenshiro; Toh, Hidehiro; Ogura, Yoshitoshi; Sasamoto, Hiroyuki; Morita, Hidetoshi; Park, Sang-Hee; Ooka, Tadasuke; Iyoda, Sunao; Taylor, Todd D.; Hayashi, Tetsuya; Itoh, Kikuji; Hattori, Masahira

    2008-01-01

    We sequenced and analyzed the genome of a commensal Escherichia coli (E. coli) strain SE11 (O152:H28) recently isolated from feces of a healthy adult and classified into E. coli phylogenetic group B1. SE11 harbored a 4.8 Mb chromosome encoding 4679 protein-coding genes and six plasmids encoding 323 protein-coding genes. None of the SE11 genes had sequence similarity to known genes encoding phage- and plasmid-borne virulence factors found in pathogenic E. coli strains. The comparative genome analysis with the laboratory strain K-12 MG1655 identified 62 poorly conserved genes between these two non-pathogenic strains and 1186 genes absent in MG1655. These genes in SE11 were mostly encoded in large insertion regions on the chromosome or in the plasmids, and were notably abundant in genes of fimbriae and autotransporters, which are cell surface appendages that largely contribute to the adherence ability of bacteria to host cells and bacterial conjugation. These data suggest that SE11 may have evolved to acquire and accumulate the functions advantageous for stable colonization of intestinal cells, and that the adhesion-associated functions are important for the commensality of E. coli in human gut habitat. PMID:18931093

  7. SslE Elicits Functional Antibodies That Impair In Vitro Mucinase Activity and In Vivo Colonization by Both Intestinal and Extraintestinal Escherichia coli Strains

    PubMed Central

    Nesta, Barbara; Valeri, Maria; Spagnuolo, Angela; Rosini, Roberto; Mora, Marirosa; Donato, Paolo; Alteri, Christopher J.; Del Vecchio, Mariangela; Buccato, Scilla; Pezzicoli, Alfredo; Bertoldi, Isabella; Buzzigoli, Lapo; Tuscano, Giovanna; Falduto, Maria; Rippa, Valentina; Ashhab, Yaqoub; Bensi, Giuliano; Fontana, Maria Rita; Seib, Kate L.; Mobley, Harry L. T.; Pizza, Mariagrazia; Soriani, Marco; Serino, Laura

    2014-01-01

    SslE, the Secreted and surface-associated lipoprotein from Escherichia coli, has recently been associated to the M60-like extracellular zinc-metalloprotease sub-family which is implicated in glycan recognition and processing. SslE can be divided into two main variants and we recently proposed it as a potential vaccine candidate. By applying a number of in vitro bioassays and comparing wild type, knockout mutant and complemented strains, we have now demonstrated that SslE specifically contributes to degradation of mucin substrates, typically present in the intestine and bladder. Mutation of the zinc metallopeptidase motif of SslE dramatically impaired E. coli mucinase activity, confirming the specificity of the phenotype observed. Moreover, antibodies raised against variant I SslE, cloned from strain IHE3034 (SslEIHE3034), are able to inhibit translocation of E. coli strains expressing different variants through a mucin-based matrix, suggesting that SslE induces cross-reactive functional antibodies that affect the metallopeptidase activity. To test this hypothesis, we used well-established animal models and demonstrated that immunization with SslEIHE3034 significantly reduced gut, kidney and spleen colonization by strains producing variant II SslE and belonging to different pathotypes. Taken together, these data strongly support the importance of SslE in E. coli colonization of mucosal surfaces and reinforce the use of this antigen as a component of a broadly protective vaccine against pathogenic E. coli species. PMID:24809621

  8. Polymorphism, duplication, and IS1-mediated rearrangement in the chromosomal his-rfb-gnd region of Escherichia coli strains with group IA and capsular K antigens.

    PubMed

    Drummelsmith, J; Amor, P A; Whitfield, C

    1997-05-01

    Individual Escherichia coli strains produce several cell surface polysaccharides. In E. coli E69, the his region of the chromosome contains the rfb (serotype O9 lipopolysaccharide O-antigen biosynthesis) and cps (serotype K30 group IA capsular polysaccharide biosynthesis) loci. Polymorphisms in this region of the Escherichia coli chromosome reflect extensive antigenic diversity in the species. Previously, we reported a duplication of the manC-manB genes, encoding enzymes involved in GDP-mannose formation, upstream of rfb in strain E69 (P. Jayaratne et al., J. Bacteriol. 176:3126-3139, 1994). Here we show that one of the manC-manB copies is flanked by IS1 elements, providing a potential mechanism for the gene duplication. Adjacent to manB1 on the IS1-flanked segment is a further open reading frame (ugd), encoding uridine-5'-diphosphoglucose dehydrogenase. The Ugd enzyme is responsible for the production of UDP-glucuronic acid, a precursor required for K30 antigen synthesis. Construction of a chromosomal ugd::Gm(r) insertion mutation demonstrated the essential role for Ugd in the biosynthesis of the K30 antigen and confirmed that there is no additional functional ugd copy in strain E69. PCR amplification and Southern hybridization were used to examine the distribution of IS1 elements and ugd genes in the vicinity of rfb in other E. coli strains, producing different group IA K antigens. The relative order of genes and, where present, IS1 elements was established in these strains. The regions adjacent to rfb in these strains are highly variable in both size and gene order, but in all cases where a ugd homolog was present, it was found near rfb. The presence of IS1 elements in the rfb regions of several of these strains provides a potential mechanism for recombination and deletion events which could contribute to the antigenic diversity seen in surface polysaccharides.

  9. Detection of pap, sfa and afa adhesin-encoding operons in uropathogenic Escherichia coli strains: relationship with expression of adhesins and production of toxins.

    PubMed

    Blanco, M; Blanco, J E; Alonso, M P; Mora, A; Balsalobre, C; Muñoa, F; Juárez, A; Blanco, J

    1997-12-01

    A total of 243 Escherichia coli strains isolated from patients with urinary tract infections (UTI) were investigated for the presence of pap, sfa and afa adhesin-encoding operons by using the polymerase chain reaction. It was found that 54%, 53% and 2% of the strains exhibited the pap, sfa and afa genotypes, respectively. Pap+ and/or sfa+ strains were more frequent in cases of acute pyelonephritis (94%) than in cases of cystitis (67%) (P < 0.001) and asymptomatic bacteriuria (57%) (P < 0.001). The pap and/or sfa operons were found in 90% of strains expressing mannose-resistant haemagglutination (MRHA) versus 37% of MRHA-negative strains (P < 0.001). The presence of pap and sfa operons was especially significant in strains belonging to MRHA types III (100%) (without P adhesins) and IVa (97%) (expressing the specific Gal-Gal binding typical of P adhesins). Both pap and sfa operons were closely associated with toxigenic E. coli producing alpha-haemolysin (Hly+) and/or the cytotoxic necrotizing factor type 1. There was an apparent correlation between the pap and sfa operons and the O serogroups of the strains. Thus, 93% of strains belonging to O1, O2, O4, O6, O7, O14, O15, O18, O22, O75 and O83 possessed pap and/or sfa operons, versus only 32% of strains belonging to other serogroups (P < 0.001). The results obtained in this study confirm the usefulness of our MRHA typing system for presumptive identification of pathogenic E. coli exhibiting different virulence factors. Thus, 85% of strains that possessed both pap and sfa adhesin-encoding operons showed MRHA types III or IVa previously associated with virulence of E. coli strains that cause UTI and bacteraemia.

  10. Studies on the survival of enterohemorrhagic and environmental Escherichia coli strains in wastewater and in activated sludges from dairy sewage treatment plants.

    PubMed

    Czajkowska, Danuta; Boszczyk-Maleszak, Hanka; Sikorska, I Rena; Sochaj, Agnieszka

    2008-01-01

    Survival of Escherichia coli O157:H7 strain isolated from milk in Poland and an environmental E. coli strain in wastewater from Garwolin and Łowicz dairies and in activated sludges from dairy sewage treatment plants as well as in dairy wastewater with activated sludges was examined. Environmental materials were contaminated with about 10(8) of target bacteria/ml of sample. The experiments were performed under temperature conditions typical of autumn-winter (6 degrees) and spring-summer (24 degrees C) seasons. It was found that the non-pathogenic E. coli strain survived longer in all media than the enterohemorrhagic serotype. E. coli O157:H7 bacteria were not detected (in direct plating method) in activated sludges after 21-28 days; in dairy wastewater as well as in wastewater with activated sludges after 21-25 days. These periods for environmental E. coli strain were 35-42 days (activated sludges), 25-28 days (wastewater with activated sludges). At higher temperature environmental E. coli were not detected in wastewater from Łowicz dairy sewage treatment plant after 25 days, but the bacteria were still present in wastewater from Garwolin dairy sewage tratment plant after 34 days. The obtained results show that the lack of environmental E. coli bacteria (as a indicator bacteria of fecal contamination) in dairy wastewater and in dairy wastewater with activated sludges could indicate the absence of pathogenic E. coli bacteria. Prolonged existence of the enterohemorrhagic serotype in activated sludges shows the need to treat activated sludges prior to the utilization of these materials as fertilizer.

  11. Pathogenic Potential, Genetic Diversity, and Population Structure of Escherichia coli Strains Isolated from a Forest-Dominated Watershed (Comox Lake) in British Columbia, Canada

    PubMed Central

    Mazumder, Asit

    2014-01-01

    Escherichia coli isolates (n = 658) obtained from drinking water intakes of Comox Lake (2011 to 2013) were screened for the following virulence genes (VGs): stx1 and stx2 (Shiga toxin-producing E. coli [STEC]), eae and the adherence factor (EAF) gene (enteropathogenic E. coli [EPEC]), heat-stable (ST) enterotoxin (variants STh and STp) and heat-labile enterotoxin (LT) genes (enterotoxigenic E. coli [ETEC]), and ipaH (enteroinvasive E. coli [EIEC]). The only genes detected were eae and stx2, which were carried by 37.69% (n = 248) of the isolates. Only eae was harbored by 26.74% (n = 176) of the isolates, representing potential atypical EPEC strains, while only stx2 was detected in 10.33% (n = 68) of the isolates, indicating potential STEC strains. Moreover, four isolates were positive for both the stx2 and eae genes, representing potential EHEC strains. The prevalence of VGs (eae or stx2) was significantly (P < 0.0001) higher in the fall season, and multiple genes (eae plus stx2) were detected only in fall. Repetitive element palindromic PCR (rep-PCR) fingerprint analysis of 658 E. coli isolates identified 335 unique fingerprints, with an overall Shannon diversity (H′) index of 3.653. Diversity varied among seasons over the years, with relatively higher diversity during fall. Multivariate analysis of variance (MANOVA) revealed that the majority of the fingerprints showed a tendency to cluster according to year, season, and month. Taken together, the results indicated that the diversity and population structure of E. coli fluctuate on a temporal scale, reflecting the presence of diverse host sources and their behavior over time in the watershed. Furthermore, the occurrence of potentially pathogenic E. coli strains in the drinking water intakes highlights the risk to human health associated with direct and indirect consumption of untreated surface water. PMID:25548059

  12. Pathogenic potential, genetic diversity, and population structure of Escherichia coli strains isolated from a forest-dominated watershed (Comox Lake) in British Columbia, Canada.

    PubMed

    Chandran, Abhirosh; Mazumder, Asit

    2015-03-01

    Escherichia coli isolates (n = 658) obtained from drinking water intakes of Comox Lake (2011 to 2013) were screened for the following virulence genes (VGs): stx1 and stx2 (Shiga toxin-producing E. coli [STEC]), eae and the adherence factor (EAF) gene (enteropathogenic E. coli [EPEC]), heat-stable (ST) enterotoxin (variants STh and STp) and heat-labile enterotoxin (LT) genes (enterotoxigenic E. coli [ETEC]), and ipaH (enteroinvasive E. coli [EIEC]). The only genes detected were eae and stx2, which were carried by 37.69% (n = 248) of the isolates. Only eae was harbored by 26.74% (n = 176) of the isolates, representing potential atypical EPEC strains, while only stx2 was detected in 10.33% (n = 68) of the isolates, indicating potential STEC strains. Moreover, four isolates were positive for both the stx2 and eae genes, representing potential EHEC strains. The prevalence of VGs (eae or stx2) was significantly (P < 0.0001) higher in the fall season, and multiple genes (eae plus stx2) were detected only in fall. Repetitive element palindromic PCR (rep-PCR) fingerprint analysis of 658 E. coli isolates identified 335 unique fingerprints, with an overall Shannon diversity (H') index of 3.653. Diversity varied among seasons over the years, with relatively higher diversity during fall. Multivariate analysis of variance (MANOVA) revealed that the majority of the fingerprints showed a tendency to cluster according to year, season, and month. Taken together, the results indicated that the diversity and population structure of E. coli fluctuate on a temporal scale, reflecting the presence of diverse host sources and their behavior over time in the watershed. Furthermore, the occurrence of potentially pathogenic E. coli strains in the drinking water intakes highlights the risk to human health associated with direct and indirect consumption of untreated surface water.

  13. Association of IL-8-inducing strains of diffusely adherent Escherichia coli with sporadic diarrheal patients with less than 5 years of age.

    PubMed

    Meraz, Ismail Mustafa; Arikawa, Kentaro; Nakamura, Hiromi; Ogasawara, Jun; Hase, Atsushi; Nishikawa, Yoshikazu

    2007-02-01

    The role of diffusely adherent Escherichia coli (DAEC) in diarrheal disease has been controversial. However, DAEC strains were recently implicated in diarrheal disease in developing countries. To clarify whether DAEC are prevalent among sporadic cases of diarrheal illness in Osaka City, Japan, E. coli strains isolated between July 1997 and March 2000 during diarrheagenic E. coli (DEC) investigation were retrospectively examined. DAEC strains were recognized among 41 (4.4%) of 924 patients and formed the biggest subgroup of DEC. Previously, we reported that some DAEC strains caused epithelial cells to secrete as much IL-8 as enteroaggregative E. coli strains did. In this study, we attempted to evaluate epidemiologically whether the ability of DAEC to induce IL-8 was involved in the pathogenesis. Relationship among patient age, symptoms, Afa adhesins, season and IL-8 induction were examined. The subgroup of DAEC that possessed Afa genes and/or induced a high level of IL-8 was significantly prevalent among patients age 1 to 4 years; however total DAEC was not significantly high among the children compared to other age group. IL-8 inducing DAEC seems to play a role in causing sporadic diarrheal illnesses, particularly in pediatric fields. Investigations highlighting the relationship between IL-8 induction and enteropathogenicity are clearly necessary to confirm the role of DAEC in infectious enteritis.

  14. The evolution of the Escherichia coli phylogeny.

    PubMed

    Chaudhuri, Roy R; Henderson, Ian R

    2012-03-01

    Escherichia coli is familiar to biologists as a classical model system, ubiquitous in molecular biology laboratories around the world. Outside of the laboratory, E. coli strains exist as an almost universal component of the lower-gut flora of humans and animals. Although usually a commensal, E. coli has an alter ego as a pathogen, and is associated with diarrhoeal disease and extra-intestinal infections. The study of E. coli diversity predates the availability of molecular data, with strains initially distinguished by serotyping and metabolic profiling, and genomic diversity illustrated by DNA hybridisation. The quantitative study of E. coli diversity began with the application of multi-locus enzyme electrophoresis (MLEE), and has progressed with the accumulation of nucleotide sequence data, from single genes through multi-locus sequence typing (MLST) to whole genome sequencing. Phylogenetic methods have shed light on the processes of genomic evolution in this extraordinarily diverse species, and revealed the origins of pathogenic E. coli strains, including members of the phylogenetically indistinguishable "genus"Shigella. In May and June 2011, an outbreak of haemorrhagic uraemic syndrome in Germany was linked to a strain of enterohaemorrhagic E. coli (EHEC) O104:H4. Application of high-throughput sequencing technologies allowed the genome and origins of the outbreak strain to be characterised in real time as the outbreak was in progress.

  15. Characteristics of Emerging Human-Pathogenic Escherichia coli O26:H11 Strains Isolated in France between 2010 and 2013 and Carrying the stx2d Gene Only

    PubMed Central

    Delannoy, Sabine; Mariani-Kurkdjian, Patricia; Bonacorsi, Stephane; Liguori, Sandrine

    2014-01-01

    Strains of Escherichia coli O26:H11 that were positive for stx2 alone (n = 23), which were not epidemiologically related or part of an outbreak, were isolated from pediatric patients in France between 2010 and 2013. We were interested in comparing these strains with the new highly virulent stx2a-positive E. coli O26 clone sequence type 29 (ST29) that has emerged recently in Europe, and we tested them by multilocus sequence typing (MLST), stx2 subtyping, clustered regularly interspaced short palindromic repeat (CRISPR) sequencing, and plasmid (ehxA, katP, espP, and etpD) and chromosomal (Z2098, espK, and espV) virulence gene profiling. We showed that 16 of the 23 strains appeared to correspond to this new clone, but the characteristics of 12 strains differed significantly from the previously described characteristics, with negative results for both plasmid and chromosomal genetic markers. These 12 strains exhibited a ST29 genotype and related CRISPR arrays (CRISPR2a alleles 67 or 71), suggesting that they evolved in a common environment. This finding was corroborated by the presence of stx2d in 7 of the 12 ST29 strains. This is the first time that E. coli O26:H11 carrying stx2d has been isolated from humans. This is additional evidence of the continuing evolution of virulent Shiga toxin-producing E. coli (STEC) O26 strains. A new O26:H11 CRISPR PCR assay, SP_O26_E, has been developed for detection of these 12 particular ST29 strains of E. coli O26:H11. This test is useful to better characterize the stx2-positive O26:H11 clinical isolates, which are associated with severe clinical outcomes such as bloody diarrhea and hemolytic uremic syndrome. PMID:25428148

  16. Use of endogenous host plasmids for generation of Escherichia coli O157:H7 and Shigella sonnei strains that stably express the green fluorescent protein.

    PubMed

    Monday, Steven R; Weagant, Stephen D; Feng, Peter

    2003-09-01

    The gfp gene was manipulated from a commercially available, high copy vector into endogenous plasmids of Escherichia coli O157:H7 and Shigella sonnei to yield stable GFP strains that required neither high copy number for visualization nor antibiotics for stable maintenance of the phenotype. The GFP phenotype of these strains remained stable after repeated passages in media and conditions that enhance plasmid instability and loss from bacterial cells. These results demonstrate the utility of the endogenous plasmids in selectively marking bacteria without altering host cellular function or biochemical properties.

  17. Comparative genomic analysis of two novel sporadic Shiga toxin-producing Escherichia coli O104:H4 strains isolated 2011 in Germany.

    PubMed

    Tietze, Erhard; Dabrowski, Piotr Wojciech; Prager, Rita; Radonic, Aleksandar; Fruth, Angelika; Auraß, Philipp; Nitsche, Andreas; Mielke, Martin; Flieger, Antje

    2015-01-01

    A large outbreak of gastrointestinal disease occurred in 2011 in Germany which resulted in almost 4000 patients with acute gastroenteritis or hemorrhagic colitis, 855 cases of a hemolytic uremic syndrome and 53 deaths. The pathogen was an uncommon, multiresistant Escherichia coli strain of serotype O104:H4 which expressed a Shiga toxin characteristic of enterohemorrhagic E. coli and in addition virulence factors common to enteroaggregative E. coli. During post-epidemic surveillance of Shiga toxin-producing E. coli (STEC) all but two of O104:H4 isolates were indistinguishable from the epidemic strain. Here we describe two novel STEC O104:H4 strains isolated in close spatiotemporal proximity to the outbreak which show a virulence gene panel, a Shiga toxin-mediated cytotoxicity towards Vero cells and aggregative adherence to Hep-2 cells comparable to the outbreak strain. They differ however both from the epidemic strain and from each other, by their antibiotic resistance phenotypes and some other features as determined by routine epidemiological subtyping methods. Whole genome sequencing of these two strains, of ten outbreak strain isolates originating from different time points of the outbreak and of one historical sporadic EHEC O104:H4 isolate was performed. Sequence analysis revealed a clear phylogenetic distance between the two variant strains and the outbreak strain finally identifying them as epidemiologically unrelated isolates from sporadic cases. These findings add to the knowledge about this emerging pathogen, illustrating a certain diversity within the bacterial core genome as well as loss and gain of accessory elements. Our results do also support the view that distinct new variants of STEC O104:H4 repeatedly might originate from yet unknown reservoirs, rather than that there would be a continuous diversification of a single epidemic strain established and circulating in Germany after the large outbreak in 2011.

  18. The Adherent/Invasive Escherichia coli Strain LF82 Invades and Persists in Human Prostate Cell Line RWPE-1, Activating a Strong Inflammatory Response

    PubMed Central

    Aleandri, Marta; Marazzato, Massimiliano; Conte, Antonietta L.; Ambrosi, Cecilia; Nicoletti, Mauro; Zagaglia, Carlo; Gambara, Guido; Palombi, Fioretta; De Cesaris, Paola; Ziparo, Elio; Palamara, Anna T.; Riccioli, Anna

    2016-01-01

    Adherent/invasive Escherichia coli (AIEC) strains have recently been receiving increased attention because they are more prevalent and persistent in the intestine of Crohn's disease (CD) patients than in healthy subjects. Since AIEC strains show a high percentage of similarity to extraintestinal pathogenic E. coli (ExPEC), neonatal meningitis-associated E. coli (NMEC), and uropathogenic E. coli (UPEC) strains, here we compared AIEC strain LF82 with a UPEC isolate (strain EC73) to assess whether LF82 would be able to infect prostate cells as an extraintestinal target. The virulence phenotypes of both strains were determined by using the RWPE-1 prostate cell line. The results obtained indicated that LF82 and EC73 are able to adhere to, invade, and survive within prostate epithelial cells. Invasion was confirmed by immunofluorescence and electron microscopy. Moreover, cytochalasin D and colchicine strongly inhibited bacterial uptake of both strains, indicating the involvement of actin microfilaments and microtubules in host cell invasion. Moreover, both strains belong to phylogenetic group B2 and are strong biofilm producers. In silico analysis reveals that LF82 shares with UPEC strains several virulence factors: namely, type 1 pili, the group II capsule, the vacuolating autotransporter toxin, four iron uptake systems, and the pathogenic island (PAI). Furthermore, compared to EC73, LF82 induces in RWPE-1 cells a marked increase of phosphorylation of mitogen-activated protein kinases (MAPKs) and of NF-κB already by 5 min postinfection, thus inducing a strong inflammatory response. Our in vitro data support the hypothesis that AIEC strains might play a role in prostatitis, and, by exploiting host-cell signaling pathways controlling the innate immune response, likely facilitate bacterial multiplication and dissemination within the male genitourinary tract. PMID:27600504

  19. Clade 8 and Clade 6 Strains of Escherichia coli O157:H7 from Cattle in Argentina have Hypervirulent-Like Phenotypes

    PubMed Central

    Amigo, Natalia; Mercado, Elsa; Bentancor, Adriana; Singh, Pallavi; Vilte, Daniel; Gerhardt, Elisabeth; Zotta, Elsa; Ibarra, Cristina; Manning, Shannon D.; Larzábal, Mariano; Cataldi, Angel

    2015-01-01

    The hemolytic uremic syndrome (HUS) whose main causative agent is enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a disease that mainly affects children under 5 years of age. Argentina is the country with the highest incidence of HUS in the world. Cattle are a major reservoir and source of infection with E. coli O157:H7. To date, the epidemiological factors that contribute to its prevalence are poorly understood. Single nucleotide polymorphism (SNP) typing has helped to define nine E. coli O157:H7 clades and the clade 8 strains were associated with most of the cases of severe disease. In this study, eight randomly selected isolates of EHEC O157:H7 from cattle in Argentina were studied as well as two human isolates. Four of them were classified as clade 8 through the screening for 23 SNPs; the two human isolates grouped in this clade as well, while two strains were closely related to strains representing clade 6. To assess the pathogenicity of these strains, we assayed correlates of virulence. Shiga toxin production was determined by an ELISA kit. Four strains were high producers and one of these strains that belonged to a novel genotype showed high verocytotoxic activity in cultured cells. Also, these clade 8 and 6 strains showed high RBC lysis and adherence to epithelial cells. One of the clade 6 strains showed stronger inhibition of normal water absorption than E. coli O157:H7 EDL933 in human colonic explants. In addition, two of the strains showing high levels of Stx2 production and RBC lysis activity were associated with lethality and uremia in a mouse model. Consequently, circulation of such strains in cattle may partially contribute to the high incidence of HUS in Argentina. PMID:26030198

  20. The Adherent/Invasive Escherichia coli Strain LF82 Invades and Persists in Human Prostate Cell Line RWPE-1, Activating a Strong Inflammatory Response.

    PubMed

    Conte, Maria P; Aleandri, Marta; Marazzato, Massimiliano; Conte, Antonietta L; Ambrosi, Cecilia; Nicoletti, Mauro; Zagaglia, Carlo; Gambara, Guido; Palombi, Fioretta; De Cesaris, Paola; Ziparo, Elio; Palamara, Anna T; Riccioli, Anna; Longhi, Catia

    2016-11-01

    Adherent/invasive Escherichia coli (AIEC) strains have recently been receiving increased attention because they are more prevalent and persistent in the intestine of Crohn's disease (CD) patients than in healthy subjects. Since AIEC strains show a high percentage of similarity to extraintestinal pathogenic E. coli (ExPEC), neonatal meningitis-associated E. coli (NMEC), and uropathogenic E. coli (UPEC) strains, here we compared AIEC strain LF82 with a UPEC isolate (strain EC73) to assess whether LF82 would be able to infect prostate cells as an extraintestinal target. The virulence phenotypes of both strains were determined by using the RWPE-1 prostate cell line. The results obtained indicated that LF82 and EC73 are able to adhere to, invade, and survive within prostate epithelial cells. Invasion was confirmed by immunofluorescence and electron microscopy. Moreover, cytochalasin D and colchicine strongly inhibited bacterial uptake of both strains, indicating the involvement of actin microfilaments and microtubules in host cell invasion. Moreover, both strains belong to phylogenetic group B2 and are strong biofilm producers. In silico analysis reveals that LF82 shares with UPEC strains several virulence factors: namely, type 1 pili, the group II capsule, the vacuolating autotransporter toxin, four iron uptake systems, and the pathogenic island (PAI). Furthermore, compared to EC73, LF82 induces in RWPE-1 cells a marked increase of phosphorylation of mitogen-activated protein kinases (MAPKs) and of NF-κB already by 5 min postinfection, thus inducing a strong inflammatory response. Our in vitro data support the hypothesis that AIEC strains might play a role in prostatitis, and, by exploiting host-cell signaling pathways controlling the innate immune response, likely facilitate bacterial multiplication and dissemination within the male genitourinary tract.

  1. Clade 8 and Clade 6 Strains of Escherichia coli O157:H7 from Cattle in Argentina have Hypervirulent-Like Phenotypes.

    PubMed

    Amigo, Natalia; Mercado, Elsa; Bentancor, Adriana; Singh, Pallavi; Vilte, Daniel; Gerhardt, Elisabeth; Zotta, Elsa; Ibarra, Cristina; Manning, Shannon D; Larzábal, Mariano; Cataldi, Angel

    2015-01-01

    The hemolytic uremic syndrome (HUS) whose main causative agent is enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a disease that mainly affects children under 5 years of age. Argentina is the country with the highest incidence of HUS in the world. Cattle are a major reservoir and source of infection with E. coli O157:H7. To date, the epidemiological factors that contribute to its prevalence are poorly understood. Single nucleotide polymorphism (SNP) typing has helped to define nine E. coli O157:H7 clades and the clade 8 strains were associated with most of the cases of severe disease. In this study, eight randomly selected isolates of EHEC O157:H7 from cattle in Argentina were studied as well as two human isolates. Four of them were classified as clade 8 through the screening for 23 SNPs; the two human isolates grouped in this clade as well, while two strains were closely related to strains representing clade 6. To assess the pathogenicity of these strains, we assayed correlates of virulence. Shiga toxin production was determined by an ELISA kit. Four strains were high producers and one of these strains that belonged to a novel genotype showed high verocytotoxic activity in cultured cells. Also, these clade 8 and 6 strains showed high RBC lysis and adherence to epithelial cells. One of the clade 6 strains showed stronger inhibition of normal water absorption than E. coli O157:H7 EDL933 in human colonic explants. In addition, two of the strains showing high levels of Stx2 production and RBC lysis activity were associated with lethality and uremia in a mouse model. Consequently, circulation of such strains in cattle may partially contribute to the high incidence of HUS in Argentina.

  2. Similarly Lethal Strains of Extraintestinal Pathogenic Escherichia coli Trigger Markedly Diverse Host Responses in a Zebrafish Model of Sepsis

    PubMed Central

    Barber, Amelia E.; Fleming, Brittany A.

    2016-01-01

    ABSTRACT In individuals with sepsis, the infecting microbes are commonly viewed as generic inducers of inflammation while the host background is considered the primary variable affecting disease progression and outcome. To study the effects of bacterial strain differences on the maladaptive immune responses that are induced during sepsis, we employed a novel zebrafish embryo infection model using extraintestinal pathogenic Escherichia coli (ExPEC) isolates. These genetically diverse pathogens are a leading cause of sepsis and are becoming increasingly dangerous because of the rise of multidrug-resistant strains. Zebrafish infected with ExPEC isolates exhibit many of the pathophysiological features seen in septic human patients, including dysregulated inflammatory responses (cytokine storms), tachycardia, endothelial leakage, and progressive edema. However, only a limited subset of ExPEC isolates can trigger a sepsis-like state and death of the host when introduced into the bloodstream. Mirroring the situation in human patients, antibiotic therapy reduced ExPEC titers and improved host survival rates but was only effective within limited time frames that varied, depending on the infecting pathogen. Intriguingly, we find that phylogenetically distant but similarly lethal ExPEC isolates can stimulate markedly different host transcriptional responses, including disparate levels of inflammatory mediators. These differences correlate with the amounts of bacterial flagellin expression during infection, as well as differential activation of Toll-like receptor 5 by discrete flagellar serotypes. Altogether, this work establishes zebrafish as a relevant model of key aspects of human sepsis and highlights the ability of genetically distinct ExPEC isolates to induce divergent host responses independently of baseline host attributes. IMPORTANCE Sepsis is a life-threatening systemic inflammatory condition that is initiated by the presence of microorganisms in the bloodstream. In

  3. Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine

    PubMed Central

    Báez-Viveros, José Luis; Flores, Noemí; Juárez, Katy; Castillo-España, Patricia; Bolivar, Francisco; Gosset, Guillermo

    2007-01-01

    Background The rational design of L-phenylalanine (L-Phe) overproducing microorganisms has been successfully achieved by combining different genetic strategies such as inactivation of the phosphoenolpyruvate: phosphotransferase transport system (PTS) and overexpression of key genes (DAHP synthase, transketolase and chorismate mutase-prephenate dehydratase), reaching yields of 0.33 (g-Phe/g-Glc), which correspond to 60% of theoretical maximum. Although genetic modifications introduced into the cell for the generation of overproducing organisms are specifically targeted to a particular pathway, these can trigger unexpected transcriptional responses of several genes. In the current work, metabolic transcription analysis (MTA) of both L-Phe overproducing and non-engineered strains using Real-Time PCR was performed, allowing the detection of transcriptional responses to PTS deletion and plasmid presence of genes related to central carbon metabolism. This MTA included 86 genes encoding enzymes of glycolysis, gluconeogenesis, pentoses phosphate, tricarboxylic acid cycle, fermentative and aromatic amino acid pathways. In addition, 30 genes encoding regulatory proteins and transporters for aromatic compounds and carbohydrates were also analyzed. Results MTA revealed that a set of genes encoding carbohydrate transporters (galP, mglB), gluconeogenic (ppsA, pckA) and fermentative enzymes (ldhA) were significantly induced, while some others were down-regulated such as ppc, pflB, pta and ackA, as a consequence of PTS inactivation. One of the most relevant findings was the coordinated up-regulation of several genes that are exclusively gluconeogenic (fbp, ppsA, pckA, maeB, sfcA, and glyoxylate shunt) in the best PTS- L-Phe overproducing strain (PB12-ev2). Furthermore, it was noticeable that most of the TCA genes showed a strong up-regulation in the presence of multicopy plasmids by an unknown mechanism. A group of genes exhibited transcriptional responses to both PTS inactivation

  4. Differential effects of Escherichia coli Nissle and Lactobacillus rhamnosus strain GG on human rotavirus binding, infection, and B cell immunity

    PubMed Central

    Kandasamy, Sukumar; Vlasova, Anastasia N; Fischer, David; Kumar, Anand; Chattha, Kuldeep S; Rauf, Abdul; Shao, Lulu; Langel, Stephanie N; Rajashekara, Gireesh; Saif, Linda J

    2015-01-01

    Rotavirus (RV) causes significant morbidity and mortality in children worldwide. The intestinal microbiota plays an important role in modulating host-pathogen interactions, but little is known about the impact of commonly used probiotics on human RV (HRV) infection. In this study, we compared the immunomodulatory effects of Gram-positive [Lactobacillus rhamnosus strain GG (LGG)] and Gram-negative [Escherichia coli Nissle (EcN)] probiotic bacteria on virulent human rotavirus (VirHRV) infection and immunity using neonatal gnotobiotic (Gn) piglets. Gn piglets were colonized with EcN, LGG, EcN+LGG or uncolonized and challenged with VirHRV. Mean peak virus shedding titers and mean cumulative fecal scores were significantly lower in EcN-colonized compared to LGG-colonized or uncolonized piglets. Reduced viral shedding titers were correlated with significantly reduced small intestinal HRV IgA antibody responses in EcN-colonized compared to uncolonized piglets post-VirHRV challenge. However the total IgA levels post-VirHRV challenge in the intestine and pre-VirHRV challenge in serum were significantly higher in EcN-colonized than in LGG-colonized piglets. In vitro treatment of mononuclear cells (MNCs) with these probiotics demonstrated that EcN, but not LGG, induced IL-6, IL-10, and IgA, with the latter partially dependent on IL-10. However, addition of exogenous recombinant porcine IL-10 + IL-6 to MNCs co-cultured with LGG significantly enhanced IgA responses. The greater effectiveness of EcN in moderating HRV infection, may also be explained by the binding of EcN, but not LGG to Wa HRV particles or HRV 2/4/6 virus-like particles (VLP) but not 2/6 VLP. Results suggest that EcN and LGG differentially modulate RV infection and B cell responses. PMID:26800875

  5. Role of Tumor Necrosis Factor Alpha in Gnotobiotic Mice Infected with an Escherichia coli O157:H7 Strain

    PubMed Central

    Isogai, Emiko; Isogai, Hiroshi; Kimura, Koichi; Hayashi, Shunji; Kubota, Toru; Fujii, Nobuhiro; Takeshi, Koichi

    1998-01-01

    Gnotobiotic mice inoculated with an enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain developed a flaccid paresis, usually culminating in death. The bacteria colonized feces at 109 to 1010 CFU per g (inoculum size: 2.0 × 109 CFU/mouse), and Shiga-like toxins (SLTs) were detected in the feces. A microscopic examination of colons showed mild inflammatory cell infiltration, thinning of the intestinal wall, or necrotic foci. Necrosis of tubular cells was noted in these symptomatic mice. Microhemorrhage, thrombosis, and edematous changes of the brain were also seen. Inflammatory cytokines, tumor necrosis factor alpha (TNF-α), interleukin 1α (IL-1α), and IL-6, were detected in the kidney after EHEC infection, but not in the serum. In the brain, only TNF-α was detected. When 2.0 × 102 CFU of EHEC O157:H7 was fed to germ-free mice, the number of bacteria began to rise rapidly on day 1 and was maintained at 108 to 109 CFU/g of feces. SLTs were detected in the feces of the mice. However, the mice showed no histological changes and no cytokine responses, similar to what was found for controls. Treatment with TNF-α modified the clinical neural signs, histopathological changes, and cytokine responses; mice treated with TNF-α developed severe neurotoxic symptoms and had higher frequencies of systemic symptoms and glomerular pathology. Strong cytokine responses were seen in the kidney and brain. Serum cytokines were also detected in this group. In contrast, a TNF-α inhibitor (protease inhibitor) inhibited these responses, especially in the brain. However, local synthesis of the cytokines was observed in the kidney. Thus, TNF-α and the other proinflammatory cytokines could be important in modifying the disease caused by EHEC. PMID:9423858

  6. Escherichia coli as other Enterobacteriaceae: food poisoning and health effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many Escherichia coli strains are harmless, and they are an important commensal in the intestinal microflora; however, pathogenic strains also exist. The pathogenic strains can be divided into diarrhea-inducing strains and strains that reside in the intestines but only cause disease in bodily sites...

  7. An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria.

    PubMed

    Asai, T; Zaporojets, D; Squires, C; Squires, C L

    1999-03-02

    Current global phylogenies are built predominantly on rRNA sequences. However, an experimental system for studying the evolution of rRNA is not readily available, mainly because the rRNA genes are highly repeated in most experimental organisms. We have constructed an Escherichia coli strain in which all seven chromosomal rRNA operons are inactivated by deletions spanning the 16S and 23S coding regions. A single E. coli rRNA operon carried by a multicopy plasmid supplies 16S and 23S rRNA to the cell. By using this strain we have succeeded in creating microorganisms that contain only a foreign rRNA operon derived from either Salmonella typhimurium or Proteus vulgaris, microorganisms that have diverged from E. coli about 120-350 million years ago. We also were able to replace the E. coli rRNA operon with an E. coli/yeast hybrid one in which the GTPase center of E. coli 23S rRNA had been substituted by the corresponding domain from Saccharomyces cerevisiae. These results suggest that, contrary to common belief, coevolution of rRNA with many other components in the translational machinery may not completely preclude the horizontal transfer of rRNA genes.

  8. Variable number of tandem repeats and pulsed-field gel electrophoresis cluster analysis of enterohemorrhagic Escherichia coli serovar O157 strains.

    PubMed

    Yokoyama, Eiji; Uchimura, Masako

    2007-11-01

    Ninety-five enterohemorrhagic Escherichia coli serovar O157 strains, including 30 strains isolated from 13 intrafamily outbreaks and 14 strains isolated from 3 mass outbreaks, were studied by pulsed-field gel electrophoresis (PFGE) and variable number of tandem repeats (VNTR) typing, and the resulting data were subjected to cluster analysis. Cluster analysis of the VNTR typing data revealed that 57 (60.0%) of 95 strains, including all epidemiologically linked strains, formed clusters with at least 95% similarity. Cluster analysis of the PFGE patterns revealed that 67 (70.5%) of 95 strains, including all but 1 of the epidemiologically linked strains, formed clusters with 90% similarity. The number of epidemiologically unlinked strains forming clusters was significantly less by VNTR cluster analysis than by PFGE cluster analysis. The congruence value between PFGE and VNTR cluster analysis was low and did not show an obvious correlation. With two-step cluster analysis, the number of clustered epidemiologically unlinked strains by PFGE cluster analysis that were divided by subsequent VNTR cluster analysis was significantly higher than the number by VNTR cluster analysis that were divided by subsequent PFGE cluster analysis. These results indicate that VNTR cluster analysis is more efficient than PFGE cluster analysis as an epidemiological tool to trace the transmission of enterohemorrhagic E. coli O157.

  9. Epidemiology of Escherichia coli, Klebsiella species, and Proteus mirabilis strains producing extended-spectrum β-lactamases from clinical samples in the Kinki Region of Japan.

    PubMed

    Nakamura, Tatsuya; Komatsu, Masaru; Yamasaki, Katsutoshi; Fukuda, Saori; Miyamoto, Yugo; Higuchi, Takeshi; Ono, Tamotsu; Nishio, Hisaaki; Sueyoshi, Noriyuki; Kida, Kenji; Satoh, Kaori; Toda, Hirofumi; Toyokawa, Masahiro; Nishi, Isao; Sakamoto, Masako; Akagi, Masahiro; Nakai, Isako; Kofuku, Tomomi; Orita, Tamaki; Wada, Yasunao; Zikimoto, Takuya; Koike, Chihiro; Kinoshita, Shohiro; Hirai, Itaru; Takahashi, Hakuo; Matsuura, Nariaki; Yamamoto, Yoshimasa

    2012-04-01

    In the present study, nonduplicate, clinical isolates of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli, Klebsiella spp, and Proteus mirabilis were collected during a 10-year period from 2000 to 2009 at several hospitals in the Kinki region, Japan. The detection rate of E coli markedly increased from 0.24% to 7.25%. The detection rate of Klebsiella pneumoniae increased from 0% to 2.44% and that of P mirabilis from 6.97% to 12.85%. The most frequently detected genotypes were the CTX-M9 group for E coli, the CTX-M2 group for K pneumoniae, and the CTX-M2 group for P mirabilis. E coli clone O25:H4-ST131 producing CTX-M-15, which is spreading worldwide, was first detected in 2007. The most common replicon type of E coli was the IncF type, particularly FIB, detected in 466 strains (69.7%). Of the K pneumoniae strains, 47 (55.3%) were of the IncN type; 77 P mirabilis strains (96.3%) were of the IncT type. In the future, the surveillance of various resistant bacteria, mainly ESBL-producing Enterobacteriaceae, should be expanded to prevent their spread.

  10. Overexpressed Proteins in Hypervirulent Clade 8 and Clade 6 Strains of Escherichia coli O157:H7 Compared to E. coli O157:H7 EDL933 Clade 3 Strain

    PubMed Central

    Amigo, Natalia; Zhang, Qi; Amadio, Ariel; Zhang, Qunjie; Silva, Wanderson M.; Cui, Baiyuan; Chen, Zhongjian; Larzabal, Mariano; Bei, Jinlong; Cataldi, Angel

    2016-01-01

    Escherichia coli O157:H7 is responsible for severe diarrhea and hemolytic uremic syndrome (HUS), and predominantly affects children under 5 years. The major virulence traits are Shiga toxins, necessary to develop HUS and the Type III Secretion System (T3SS) through which bacteria translocate effector proteins directly into the host cell. By SNPs typing, E. coli O157:H7 was separated into nine different clades. Clade 8 and clade 6 strains were more frequently associated with severe disease and HUS. In this study, we aimed to identify differentially expressed proteins in two strains of E. coli O157:H7 (clade 8 and clade 6), obtained from cattle and compared them with the well characterized reference EDL933 strain (clade 3). Clade 8 and clade 6 strains show enhanced pathogenicity in a mouse model and virulence-related properties. Proteins were extracted and analyzed using the TMT-6plex labeling strategy associated with two dimensional liquid chromatography and mass spectrometry in tandem. We detected 2241 proteins in the cell extract and 1787 proteins in the culture supernatants. Attention was focused on the proteins related to virulence, overexpressed in clade 6 and 8 strains compared to EDL933 strain. The proteins relevant overexpressed in clade 8 strain were the curli protein CsgC, a transcriptional activator (PchE), phage proteins, Stx2, FlgM and FlgD, a dienelactone hydrolase, CheW and CheY, and the SPATE protease EspP. For clade 6 strain, a high overexpression of phage proteins was detected, mostly from Stx2 encoding phage, including Stx2, flagellin and the protease TagA, EDL933_p0016, dienelactone hydrolase, and Haemolysin A, amongst others with unknown function. Some of these proteins were analyzed by RT-qPCR to corroborate the proteomic data. Clade 6 and clade 8 strains showed enhanced transcription of 10 out of 12 genes compared to EDL933. These results may provide new insights in E. coli O157:H7 mechanisms of pathogenesis. PMID:27880834

  11. [Characterization of enteropathogenic Escherichia coli (EPEC) strains isolated during the chicken slaughtering process].

    PubMed

    Alonso, Mónica Z; Sanz, Marcelo E; Padola, Nora L; Lucchesi, Paula M A

    2014-01-01

    In Argentina, EPEC is one of the most prevalent agents isolated from children with diarrhea. Because contamination with this pathotype could occur during slaughter, the aim of this study was to isolate and characterize EPEC strains obtained from live animals (cloacae), eviscerated carcasses, washed carcasses and water from chillers. Twenty nine isolates of atypical EPEC were characterized. These isolates presented a wide variety of serotypes, some of which (O2:H40, O8:H19 and O108:H9) had been reported in other animal species. Serotype O45:H8, previously isolated from children with diarrhea was also found. Isolates of serotypes O2:H40, O108:H9 and O123:H32 were detected at different stages of the slaughtering process, suggesting that the process is not adequately performed. This latter fact highlights the importance of reinforcing control and hygienic measures at different stages of the chicken slaughtering process in order to reduce microbial contamination.

  12. Structural Diversity of Class 1 Integrons in Multiresistant Strains of Escherichia coli Isolated from Patients in a Hospital in Mexico City.

    PubMed

    Acosta-Pérez, Gabriel; Ibáñez-Cervantes, Gabriela; Bello-López, Juan Manuel; Hernández, José Manuel; Hernández-Montañez, Zahuiti; Giono-Cerezo, Silvia; León-García, Gregorio; León-Avila, Gloria

    2015-10-01

    Since a decade, Escherichia coli has been considered an important nosocomial pathogen due to the high number of isolates multiresistant to antimicrobials reported worldwide. In clinical and environmental strains, transposons, plasmids, and integrons are currently considered the principal genetic elements responsible for the acquisition of antibiotic resistance through horizontal transfer. The objective of this research was to correlate the resistance to antibiotics of E. coli clinical strains with the presence class I integrons. In the present study, one hundred E. coli strains were isolated and tested for susceptibility and resistance to antimicrobials. Class 1 integrons were detected by PCR, and the arrangement of gene cassettes was determined by sequencing. Twenty two strains were found to carry Class 1 integrons. Sequence analysis of the variable regions revealed the presence of several gene cassettes, such as dihydrofolate reductases (dfr2d, dfrA17, and dhfrXVb), adenylyl transferases (aadA2, addA5, and addA22), and chloramphenicol efflux pump (cmlA), and oxacillinase (bla OXA-1 ). The dfrA17-addA5 arrangement prevailed upon other integrons in the study. This is the first report of the presence of the dfr2d and dhfrXVb-aadA2 cassette arrangements in a Class 1 integrons from clinical strains of E. coli. In most of the strains, it was found a direct relationship between genetic arrangements and resistance phenotypes. Four integrons were detected in plasmids that might be involved in the resistance genes transfer to other bacteria of clinical importance. Our results confirm the presence of Class 1 integrons and their essential role in the dissemination of resistance cassettes among E. coli strains.

  13. Antibiotic resistance in Escherichia coli strains isolated from Antarctic bird feces, water from inside a wastewater treatment plant, and seawater samples collected in the Antarctic Treaty area

    NASA Astrophysics Data System (ADS)

    Rabbia, Virginia; Bello-Toledo, Helia; Jiménez, Sebastián; Quezada, Mario; Domínguez, Mariana; Vergara, Luis; Gómez-Fuentes, Claudio; Calisto-Ulloa, Nancy; González-Acuña, Daniel; López, Juana; González-Rocha, Gerardo

    2016-06-01

    Antibiotic resistance is a problem of global concern and is frequently associated with human activity. Studying antibiotic resistance in bacteria isolated from pristine environments, such as Antarctica, extends our understanding of these fragile ecosystems. Escherichia coli strains, important fecal indicator bacteria, were isolated on the Fildes Peninsula (which has the strongest human influence in Antarctica), from seawater, bird droppings, and water samples from inside a local wastewater treatment plant. The strains were subjected to molecular typing with pulsed-field gel electrophoresis to determine their genetic relationships, and tested for antibiotic susceptibility with disk diffusion tests for several antibiotic families: β-lactams, quinolones, aminoglycosides, tetracyclines, phenicols, and trimethoprim-sulfonamide. The highest E. coli count in seawater samples was 2400 cfu/100 mL. Only strains isolated from seawater and the wastewater treatment plant showed any genetic relatedness between groups. Strains of both these groups were resistant to β-lactams, aminoglycosides, tetracycline, and trimethoprim-sulfonamide.In contrast, strains from bird feces were susceptible to all the antibiotics tested. We conclude that naturally occurring antibiotic resistance in E. coli strains isolated from Antarctic bird feces is rare and the bacterial antibiotic resistance found in seawater is probably associated with discharged treated wastewater originating from Fildes Peninsula treatment plants.

  14. Diversity of Shiga Toxin-Producing Escherichia coli (STEC) O26:H11 Strains Examined via stx Subtypes and Insertion Sites of Stx and EspK Bacteriophages

    PubMed Central

    Bonanno, Ludivine; Loukiadis, Estelle; Mariani-Kurkdjian, Patricia; Oswald, Eric; Garnier, Lucille; Michel, Valérie

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) is a food-borne pathogen that may be responsible for severe human infections. Only a limited number of serotypes, including O26:H11, are involved in the majority of serious cases and outbreaks. The main virulence factors, Shiga toxins (Stx), are encoded by bacteriophages. Seventy-four STEC O26:H11 strains of various origins (including human, dairy, and cattle) were characterized for their stx subtypes and Stx phage chromosomal insertion sites. The majority of food and cattle strains possessed the stx1a subtype, while human strains carried mainly stx1a or stx2a. The wrbA and yehV genes were the main Stx phage insertion sites in STEC O26:H11, followed distantly by yecE and sbcB. Interestingly, the occurrence of Stx phages inserted in the yecE gene was low in dairy strains. In most of the 29 stx-negative E. coli O26:H11 strains also studied here, these bacterial insertion sites were vacant. Multilocus sequence typing of 20 stx-positive or stx-negative E. coli O26:H11 strains showed that they were distributed into two phylogenetic groups defined by sequence type 21 (ST21) and ST29. Finally, an EspK-carrying phage was found inserted in the ssrA gene in the majority of the STEC O26:H11 strains but in only a minority of the stx-negative E. coli O26:H11 strains. The differences in the stx subtypes and Stx phage insertion sites observed in STEC O26:H11 according to their origin might reflect that strains circulating in cattle and foods are clonally distinct from those isolated from human patients. PMID:25819955

  15. Diversity of Shiga Toxin-Producing Escherichia coli (STEC) O26:H11 Strains Examined via stx Subtypes and Insertion Sites of Stx and EspK Bacteriophages.

    PubMed

    Bonanno, Ludivine; Loukiadis, Estelle; Mariani-Kurkdjian, Patricia; Oswald, Eric; Garnier, Lucille; Michel, Valérie; Auvray, Frédéric

    2015-06-01

    Shiga toxin-producing Escherichia coli (STEC) is a food-borne pathogen that may be responsible for severe human infections. Only a limited number of serotypes, including O26:H11, are involved in the majority of serious cases and outbreaks. The main virulence factors, Shiga toxins (Stx), are encoded by bacteriophages. Seventy-four STEC O26:H11 strains of various origins (including human, dairy, and cattle) were characterized for their stx subtypes and Stx phage chromosomal insertion sites. The majority of food and cattle strains possessed the stx(1a) subtype, while human strains carried mainly stx(1a) or stx(2a). The wrbA and yehV genes were the main Stx phage insertion sites in STEC O26:H11, followed distantly by yecE and sbcB. Interestingly, the occurrence of Stx phages inserted in the yecE gene was low in dairy strains. In most of the 29 stx-negative E. coli O26:H11 strains also studied here, these bacterial insertion sites were vacant. Multilocus sequence typing of 20 stx-positive or stx-negative E. coli O26:H11 strains showed that they were distributed into two phylogenetic groups defined by sequence type 21 (ST21) and ST29. Finally, an EspK-carrying phage was found inserted in the ssrA gene in the majority of the STEC O26:H11 strains but in only a minority of the stx-negative E. coli O26:H11 strains. The differences in the stx subtypes and Stx phage insertion sites observed in STEC O26:H11 according to their origin might reflect that strains circulating in cattle and foods are clonally distinct from those isolated from human patients.

  16. An Escherichia coli strain, PGB01, isolated from feral pigeon Faeces, thermally fit to survive in pigeon, shows high level resistance to trimethoprim.

    PubMed

    Kumar, Arvind; Tiwary, Bipransh Kumar; Kachhap, Sangita; Nanda, Ashis Kumar; Chakraborty, Ranadhir

    2015-01-01

    In this study, of the hundred Escherichia coli strains isolated from feral Pigeon faeces, eighty five strains were resistant to one or more antibiotics and fifteen sensitive to all the antibiotics tested. The only strain (among all antibiotic-resistant E. coli isolates) that possessed class 1 integron was PGB01. The dihydrofolate reductase gene of the said integron was cloned, sequenced and expressed in E. coli JM109. Since PGB01 was native to pigeon's gut, we have compared the growth of PGB01 at two different temperatures, 42°C (normal body temperature of pigeon) and 37°C (optimal growth temperature of E. coli; also the human body temperature), with E. coli K12. It was found that PGB01 grew better than the laboratory strain E. coli K12 at 37°C as well as at 42°C. In the thermal fitness assay, it was observed that the cells of PGB01 were better adapted to 42°C, resembling the average body temperature of pigeon. The strain PGB01 also sustained more microwave mediated thermal stress than E. coli K12 cells. The NMR spectra of the whole cells of PGB01 varied from E. coli K12 in several spectral peaks relating some metabolic adaptation to thermotolerance. On elevating the growth temperature from 37°C to 42°C, susceptibility to kanamycin (both strains were sensitive to it) of E. coli K12 was increased, but in case of PGB01 no change in susceptibility took place. We have also attempted to reveal the basis of trimethoprim resistance phenotype conferred by the dfrA7 gene homologue of PGB01. Molecular Dynamics (MD) simulation study of docked complexes, PGB01-DfrA7 and E. coli TMP-sensitive-Dfr with trimethoprim (TMP) showed loss of some of the hydrogen and hydrophobic interaction between TMP and mutated residues in PGB01-DfrA7-TMP complex compared to TMP-sensitive-Dfr-TMP complex. This loss of interaction entails decrease in affinity of TMP for PGB01-DfrA7 compared to TMP-sensitive-Dfr.

  17. Molecular and Phylogenetic Characterization of Non-O157 Shiga Toxin-Producing Escherichia coli Strains in China

    PubMed Central

    Bai, Xiangning; Hu, Bin; Xu, Yanmei; Sun, Hui; Zhao, Ailan; Ba, Pengbin; Fu, Shanshan; Fan, Ruyue; Jin, Yujuan; Wang, Hong; Guo, Qiusheng; Xu, Xuebin; Lu, Shan; Xiong, Yanwen

    2016-01-01

    Shiga toxin-producing Escherichia coli (STEC) causes diarrhea and hemorrhagic colitis with life-threatening complications, such as hemolytic uremic syndrome. The aim of this study was to assess the molecular epidemiologic features of non-O157 STEC strains from different resources in China and illustrate the role of animal reservoirs or animal-derived foodstuffs in human STEC infections. A collection of 301 non-O157 STEC isolates from domestic and wild animals (i.e., cattle, goat, pig, yak, pika, and antelope), raw meats (i.e., beef, pork, mutton, chicken, and duck), diarrheal patients, and healthy carriers in different regions of China were selected in this study. Of the 301 analyzed STEC isolates, 67 serogroups, and 118 serotypes were identified; this included some predominant serogroups associated with human disease, such as O26, O45, O103, O111, and O121. Eighteen different combinations of stx subtypes were found. Eleven isolates carried the intimin gene eae, 93 isolates contained ehxA, and 73 isolates carried astA. The prevalence of other putative adhesion genes saa, paa, efa1, and toxB was 28.90% (87), 6.98% (21), 2.31% (7), and 1% (3), respectively. The phylogenetic distribution of isolates was analyzed by multilocus sequence typing (MLST). Ninety-four sequence types were assigned across the 301 isolates. A subset of isolates recovered from yak and pika residing in the similar wild environments, Qinghai-Tibetan plateau, showed similar genetic profiles and more tendencies to cluster together. Isolates from goat and mutton exhibited close genetic relatedness with those from human-derived isolates, providing evidence that transmission may have occurred locally within intraspecies or interspecies, and importantly, from animal reservoirs, or raw meats to humans. Comparing isolates in this study with highly virulent strains by MLST, along with serotyping and virulence profiles, it is conceivable that some of isolates from goat, yak, or raw meats may have potential

  18. Prevalence and risk factors for quinolone resistance among Escherichia coli strains isolated from males with community febrile urinary tract infection.

    PubMed

    Smithson, A; Chico, C; Ramos, J; Netto, C; Sanchez, M; Ruiz, J; Porron, R; Bastida, M T

    2012-04-01

    The purpose of this study was to evaluate the prevalence and clinical risk factors for quinolone resistance (QR) in E. coli strains from males with febrile urinary tract infection (FUTI). An ambispective cross-sectional study was performed in which we evaluated 153 males with a community FUTI caused by E. coli. Among the 153 FUTI episodes, 101 (66%) were due to quinolone susceptible E. coli strains while 52 (34%) were caused by QR E. coli strains. In the univariate analysis QR was associated with older age, higher Charlson scores, dementia, past UTI, urinary tract abnormalities, previous antibiotic use, particularly with fluoroquinolones (FQ), a healthcare-associated (HA)-UTI (HA-UTI) and to four of the components included in the definition of HA-UTI: hospital admission, nursing home residence, indwelling urethral catheter and invasive urinary instrumentation. In the multivariate analysis, HA-UTI (OR 3.82, 95% CI 1.3-11.24; P 0.015) and use of antimicrobials in the previous month (OR 5.82, 95% CI 2.3-14.88; P < 0.001) mainly with FQ (OR 13.97, 95% CI 2.73-71.53; P 0.002) were associated with QR. To have a HA-UTI and a previous use of FQ in the preceding month were strong risk factors for QR E. coli, and thus empirical antimicrobial treatment with quinolones should be avoided in these patients.

  19. WGS accurately predicts antimicrobial resistance in Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives: To determine the effectiveness of whole-genome sequencing (WGS) in identifying resistance genotypes of multidrug-resistant Escherichia coli (E. coli) and whether these correlate with observed phenotypes. Methods: Seventy-six E. coli strains were isolated from farm cattle and measured f...

  20. Characterization of a Shiga-like Toxin Converting Phage from an Escherichia coli Strain Responsible for Hemorrhagic Colitis in Humans

    DTIC Science & Technology

    1985-04-30

    strange but challenging and exciting world Mom and Dad - for having me My wife - for loving me vi TABLE OF CONTENTS Section Titles and...1980 was 744 million to 1 billion . cases and 4.6 million deaths in children under five years of age in developing nations (excluding China) (Merson...coli 015 strain RDEC-1 from several rabbits with diarrhea and found that when fed to young rabbits, the strain would cause diarrhea and death . Upon

  1. Persistence of Pathogenic and Non-Pathogenic Escherichia coli Strains in Various Tropical Agricultural Soils of India

    PubMed Central

    Naganandhini, S.; Kennedy, Z. John; Uyttendaele, M.; Balachandar, D.

    2015-01-01

    The persistence of Shiga-like toxin producing E. coli (STEC) strains in the agricultural soil creates serious threat to human health through fresh vegetables growing on them. However, the survival of STEC strains in Indian tropical soils is not yet understood thoroughly. Additionally how the survival of STEC strain in soil diverges with non-pathogenic and genetically modified E. coli strains is also not yet assessed. Hence in the present study, the survival pattern of STEC strain (O157-TNAU) was compared with non-pathogenic (MTCC433) and genetically modified (DH5α) strains on different tropical agricultural soils and on a vegetable growing medium, cocopeat under controlled condition. The survival pattern clearly discriminated DH5α from MTCC433 and O157-TNAU, which had shorter life (40 days) than those compared (60 days). Similarly, among the soils assessed, the red laterite and tropical latosol supported longer survival of O157-TNAU and MTCC433 as compared to wetland and black cotton soils. In cocopeat, O157 recorded significantly longer survival than other two strains. The survival data were successfully analyzed using Double-Weibull model and the modeling parameters were correlated with soil physico-chemical and biological properties using principal component analysis (PCA). The PCA of all the three strains revealed that pH, microbial biomass carbon, dehydrogenase activity and available N and P contents of the soil decided the survival of E. coli strains in those soils and cocopeat. The present research work suggests that the survival of O157 differs in tropical Indian soils due to varied physico-chemical and biological properties and the survival is much shorter than those reported in temperate soils. As the survival pattern of non-pathogenic strain, MTCC433 is similar to O157-TNAU in tropical soils, the former can be used as safe model organism for open field studies. PMID:26101887

  2. Persistence of Pathogenic and Non-Pathogenic Escherichia coli Strains in Various Tropical Agricultural Soils of India.

    PubMed

    Naganandhini, S; Kennedy, Z John; Uyttendaele, M; Balachandar, D

    2015-01-01

    The persistence of Shiga-like toxin producing E. coli (STEC) strains in the agricultural soil creates serious threat to human health through fresh vegetables growing on them. However, the survival of STEC strains in Indian tropical soils is not yet understood thoroughly. Additionally how the survival of STEC strain in soil diverges with non-pathogenic and genetically modified E. coli strains is also not yet assessed. Hence in the present study, the survival pattern of STEC strain (O157-TNAU) was compared with non-pathogenic (MTCC433) and genetically modified (DH5α) strains on different tropical agricultural soils and on a vegetable growing medium, cocopeat under controlled condition. The survival pattern clearly discriminated DH5α from MTCC433 and O157-TNAU, which had shorter life (40 days) than those compared (60 days). Similarly, among the soils assessed, the red laterite and tropical latosol supported longer survival of O157-TNAU and MTCC433 as compared to wetland and black cotton soils. In cocopeat, O157 recorded significantly longer survival than other two strains. The survival data were successfully analyzed using Double-Weibull model and the modeling parameters were correlated with soil physico-chemical and biological properties using principal component analysis (PCA). The PCA of all the three strains revealed that pH, microbial biomass carbon, dehydrogenase activity and available N and P contents of the soil decided the survival of E. coli strains in those soils and cocopeat. The present research work suggests that the survival of O157 differs in tropical Indian soils due to varied physico-chemical and biological properties and the survival is much shorter than those reported in temperate soils. As the survival pattern of non-pathogenic strain, MTCC433 is similar to O157-TNAU in tropical soils, the former can be used as safe model organism for open field studies.

  3. Plasmids from Shiga Toxin-Producing Escherichia coli Strains with Rare Enterohemolysin Gene (ehxA) Subtypes Reveal Pathogenicity Potential and Display a Novel Evolutionary Path

    PubMed Central

    Lorenz, Sandra C.; Monday, Steven R.; Hoffmann, Maria; Fischer, Markus

    2016-01-01

    ABSTRACT Most Shiga toxin-producing Escherichia coli (STEC) strains associated with severe disease, such as hemolytic-uremic syndrome (HUS), carry large enterohemolysin-encoding (ehxA) plasmids, e.g., pO157 and pO103, that contribute to STEC clinical manifestations. Six ehxA subtypes (A through F) exist that phylogenetically cluster into eae-positive (B, C, F), a mix of eae-positive (E) and eae-negative (A), and a third, more distantly related, cluster of eae-negative (D) STEC strains. While subtype B, C, and F plasmids share a number of virulence traits that are distinct from those of subtype A, sequence data have not been available for subtype D and E plasmids. Here, we determined and compared the genetic composition of four subtype D and two subtype E plasmids to establish their evolutionary relatedness among ehxA subtypes and define their potential role in pathogenicity. We found that subtype D strains carry one exceptionally large plasmid (>200 kbp) that carries a variety of virulence genes that are associated with enterotoxigenic and enterohemorrhagic E. coli, which, quite possibly, enables these strains to cause disease despite being food isolates. Our data offer further support for the hypothesis that this subtype D plasmid represents a novel virulence plasmid, sharing very few genetic features with other plasmids; we conclude that these plasmids have evolved from a different evolutionary lineage than the plasmids carrying the other ehxA subtypes. In contrast, the 50-kbp plasmids of subtype E (pO145), although isolated from HUS outbreak strains, carried only few virulence-associated determinants, suggesting that the clinical presentation of subtype E strains is largely a result of chromosomally encoded virulence factors. IMPORTANCE Bacterial plasmids are known to be key agents of change in microbial populations, promoting the dissemination of various traits, such as drug resistance and virulence. This study determined the genetic makeup of virulence

  4. Disinfectant and Antimicrobial Susceptibility Profiles of the Big Six Non-O157 Shiga Toxin-Producing Escherichia coli Strains from Food Animals and Humans.

    PubMed

    Beier, Ross C; Franz, Eelco; Bono, James L; Mandrell, Robert E; Fratamico, Pina M; Callaway, Todd R; Andrews, Kathleen; Poole, Toni L; Crippen, Tawni L; Sheffield, Cynthia L; Anderson, Robin C; Nisbet, David J

    2016-08-01

    The disinfectant and antimicrobial susceptibility profiles of 138 non-O157 Shiga toxin-producing Escherichia