Weinberger, J; Goldman, M
1985-01-01
Patients with symptoms of cerebral ischemia are often evaluated with non-invasive carotid artery testing. An abnormal carotid Doppler ultrasound frequency shift pattern of early systolic flutter (ESF) was demonstrated by auscultation and velocity wave form analysis in patients with normal carotid bifurcations. Ten of these patients were studied with echocardiography (echo) and eight had mitral valve prolapse (MVP). To evaluate the association between ESF and MVP, a prospective blinded study was performed, recording carotid Doppler frequency shift in 50 patients referred for routine echocardiography. A total of 18 patients had ESF: 9/12 patients with MVP by echocardiography had ESF. Nine additional patients without MVP had ESF (two with mitral regurgitation and two with redundant mitral valves). The association of ESF with MVP was significant (p less than 0.001). The findings of ESF with a normal carotid artery by non-invasive testing suggests a possible mitral valve origin for symptoms of cerebrovascular disease.
Dissolution and regeneration of non-mulberry Eriogyna Pyretorum silk fibroin
NASA Astrophysics Data System (ADS)
Guo, Yuhang; Li, Xiufang; Zhang, Qiang; Yan, Shuqin; You, Renchuan
2017-10-01
Protein-based materials have been actively pursued as biomaterials because of their nontoxicity, biocompatibility and biodegradability. In this work, we demonstrated the potential of Eriogyna pyretorum silk fibroin (ESF), a non-mulberry silk protein, as biomaterials. The degummed ESF fibers could be dissolved completely by Ca(NO3)2/H2O/C2H5OH solution to produce regenerated ESF. The solubility was strongly dependent on the addition of C2H5OH, heating temperature and dissolving time. α-helix and random coil are main molecular conformation in aqueous ESF solution. The sol-gel transition behavior of regenerated ESF was also studied, indicating that the conformational transition of regenerated ESF from random coil/α-helix to β-sheet during gelation. Especially, ESF showed more rapid gelation than mulberry silk fibroin (BSF). Consequently, the gelation rate of BSF could be controlled ranging from tens of minutes to days by changing the ESF ratio, providing useful options for the fabrication of silk hydrogels. Water-stable regenerated ESF film could be achieved by using aqueous ethanol to induce structural transition. Tensile tests showed that the ESF films have a dry strength of approximate 31.0 MPa and a wet strength of approximate 3.3 MPa. This study provides new opportunities as an alternative natural protein material for biomedical applications.
Leitch, B J; Worth, A J
2018-05-01
To provide veterinarians with confidence when using a commercially available epoxy resin in external skeletal fixators (ESF), testing was conducted to determine exothermia during curing of the epoxy resin compared to polymethylmethacrylate (PMMA), the hardness of the epoxy resin as a bar over 16 weeks, and the strength of the epoxy resin bar compared with metal clamps in similarly constructed Type 1a ESF constructs simulating the repair of feline long bone fractures. Exothermia of the epoxy resin during curing was tested against PMMA with surface temperatures recorded over the first 15 minutes of curing, using four samples of each product. The hardness of 90 identical epoxy resin bars was tested by subjecting them to cyclic loads (1,000 cycles of 20.5 N, every 7 days) over a 16-week period and impact testing 10 bars every 2 weeks. Ten bars that were not subjected to cyclic loads were impact tested at 0 weeks and another 10 at 16 weeks. Strength of the epoxy resin product, as a bar and clamp composite, was tested against metal SK and Kirschner-Ehmer (KE) clamps and bars in Type 1a, tied-in intramedullary pin, ESF constructs with either 90° or 75° pin placement, subjected to compressive and bending loads to 75 N. The maximum temperature during curing of the epoxy resin (min 39.8, max 43.0)°C was less than the PMMA (min 85.2, max 98.5)°C (p<0.001). There was no change in hardness of the epoxy resin bars over the 16 weeks of cyclic loading (p=0.58). There were no differences between the median strength of the epoxy resin, SK or KE ESF constructs in compression or bending when tested to 75 N (p>0.05). Stiffness of constructs with 75° pin placement was greater for SK than epoxy resin constructs in compression (p=0.046), and was greater for KE than epoxy resin constructs in bending (p=0.033). The epoxy resin tested was found to be less exothermic than PMMA; bars made from the epoxy resin showed durability over an expected fracture healing timeframe and had mechanical strength characteristics comparable to metal bar and clamp ESF constructs. The epoxy resin ESF construct tested in this study can be considered a suitable replacement for SK or KE ESF constructs in the treatment of feline long-bone fractures, in terms of mechanical strength.
Evaluation of a nontoxic rigid polymer as connecting bar in external skeletal fixators.
Störk, Christoph K; Canivet, Philippe; Baidak, Alexandre A; Balligand, Marc H
2003-01-01
To investigate the mechanical characteristics of a nontoxic, low-cost, rigid polymer (RP) and to compare the structural and mechanical properties of a full-frame external skeletal fixator (ESF) with either RP connecting bars, polymethylmethacrylate (PMMA) connecting bars, or stainless-steel (SS) clamps and connecting bars. In vitro mechanical evaluation. Mechanical properties were assessed using an in vitro bone fracture model with a bilateral uniplanar ESF (type II). Identical ESF were built with connecting bars using RP (n = 8), PMMA (n = 8), and SS connecting bars and clamps (System Meynard; n = 3). Nondestructive mechanical tests were performed in uniaxial compression (AC) and craniocaudal (CC) 4-point bending, as well as fatigue AC. Composite stiffness for each specimen and for each loading mode was calculated from 6 replicate measures using the slope of the load displacement curve at small displacements. RP, PMMA, and SS ESF constructs yielded mean +/- SD composite stiffness values of 227 +/- 15, 381 +/- 30, and 394 +/- 9 N/mm in AC and of 35 +/- 2, 24 +/- 2, and 15 +/- 0 N/mm in CC, respectively. Structural and mechanical properties of RP are satisfactorily rigid and fatigue resistant for its use as a connecting bar in ESF. RP connecting bars in an ESF are a reliable, versatile, nontoxic and inexpensive option for the veterinary surgeon. Copyright 2003 by The American College of Veterinary Surgeons
Army Support during the Hurricane Katrina Disaster
2009-01-01
Human Capital Reform Act of 2004. 3. John D. Banusiewicz, “Bush Calls for Broader Military Disaster Response Role,” American Forces Press Service...Management (DHS/FEMA) ESF #6, Mass Care, Housing, and Human Services (DHS/FEMA) ESF #7, Resource Support (Government Services Administration) ESF #8...Public Health and Medical Services (Department of Health and Human Services) ESF #9, Urban Search and Rescue (DHS/FEMA) ESF #10, Oil and Hazardous
Alves, Romulo Nepomuceno; Mariz, Célio Freire; Paulo, Driele Ventura de; Carvalho, Paulo S M
2017-07-01
Used petroleum hydrocarbons and gasoline stations runoff are significant sources of polycyclic aromatic hydrocarbons (PAHs) to aquatic ecosystems. Samples of the final effluent of oil-water-separators were collected at gasoline stations in the metropolitan region of Recife, Brazil, before release to sewage or rainwater systems. Effluent soluble fractions (ESF) were prepared and bioassays were performed according to the Fish Embryo Toxicity Test. The test involved exposing zebrafish Danio rerio embryos to dilutions of the ESFs for 96 h, with daily examination of lethality and sublethal morphological effects integrated through the General Morphology Score (GMS), based on the achievement of developmental hallmarks. Frequencies of abnormalities were recorded after exposures. ESF LC50-96h (lethal concentration to 50% of exposed embryos) in the most toxic effluent achieved 8.9% (v/v), equivalent to 11 μg phenanthrene equivalents L -1 . GMS scores indicated significantly delayed embryo-larval development at ESF dilutions of 10% and 20% from effluents of all gas stations. Major abnormalities detected after the 96 h exposure included the presence of a yolk sac not fully absorbed coupled with the lack of an inflated swim bladder, lack of both pectoral fins, and the failure to develop a protruding mouth. Effective equivalent PAH concentrations that induce a 50% frequency of larvae without an inflated swim bladder (EC50) were 4.9 μg phenanthrene L -1 , 21.8 μg naphthalene L -1 , and 34.1 μg chrysene L -1 . This study shows that PAHs in ESFs from gas stations oil water separators are toxic to zebrafish, contributing to the toxicity of urban storm waters. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
This report presents the results of instrumentation measurements and observations made during construction of the North Ramp Starter Tunnel (NRST) of the Exploratory Studies Facility (ESF). The information in this report was developed as part of the Design Verification Study, Section 8.3.1.15.1.8 of the Yucca Mountain Site Characterization Plan (DOE 1988). The ESF is being constructed by the US Department of Energy (DOE) to evaluate the feasibility of locating a potential high-level nuclear waste repository on lands within and adjacent to the Nevada Test Site (NTS), Nye County, Nevada. The Design Verification Studies are performed to collect information during constructionmore » of the ESF that will be useful for design and construction of the potential repository. Four experiments make up the Design Verification Study: Evaluation of Mining Methods, Monitoring Drift Stability, Monitoring of Ground Support Systems, and The Air Quality and Ventilation Experiment. This report describes Sandia National Laboratories` (SNL) efforts in the first three of these experiments in the NRST.« less
NASA Astrophysics Data System (ADS)
Baumgardner, J. L.; Mendillo, M.; Martinis, C. R.; Hickey, D. A.; Wroten, J.
2017-12-01
We explore the concept of using an all-sky-imager (ASI) in one hemisphere to provide now-casting of ionospheric perturbations in the opposite hemisphere. The specific example deals with low-latitude plasma instabilities known as equatorial spread-F (ESF) that depend on geomagnetic field controlled electrodynamics. ASI observations of 630.0 nm airglow from 300 km exhibit regions of low emission ("airglow depletions") that correlate highly with ESF patterns of radiowave disruptions, e.g., from GPS satellites. For both oceanographic and geopolitical reasons, there are vast regions of the globe that cannot be used for ground-based now-casting of local ESF effects. For such area-denied locations, it is possible for observations of airglow depletions from the opposite hemisphere to be used to specify both local and conjugate location environmental impacts. We use fifteen months of ASI observations from the El Leoncito Observatory (Argentina) to predict simultaneous conditions at its trans-equatorial geomagnetic conjugate point in Villa de Leyva (Colombia)—validated by independent ASI observations at that location. We find the success rate of conjugate point now-casting to be greater than 95% for large-scale ESF occurrence patterns. For a different pair of stations at higher magnetic latitudes, three years of observations from the Arecibo Observatory (Puerto Rico) were used to make ESF now-casting at its conjugate point in Mercedes (Argentina) with a 85% success rate.
Aguayo-Ulloa, L A; Pascual-Alonso, M; Olleta, J L; Sañudo, C; Miranda-de la Lama, G C; María, G A
2015-07-01
We analysed the effect of a modified pen using a wooden screen with flaps and cereal straw as forage and bedding, on behaviour, stress response, performance and meat quality variables of lambs housed in feedlots. Sixty male lambs were placed in enriched (ESF) or conventional (CO) pens (3 pens/treatment, 10 lambs/pen). The CO environment was barren. The ESF lambs showed a great preference for the provided items, which encouraged more natural and richer behaviour, reducing stereotypies and lamb aggressions, and increasing affiliations (P ≤ 0.05), which improves group cohesion. However, ESF lambs also developed a more natural coping style to the handling, evidenced by the higher cortisol levels (65.4 vs. 43.8 nmol/L) and a higher eye temperature as response to the reactivity test (38.1 vs. 37.8 °C). The ESF lambs had a higher (P ≤ 0.05) slaughter weight (27.2 vs. 26.3 kg), conformation score (7.38 vs. 6.07) and pH 24 (5.63 vs. 5.56) but lower cooking losses (12.9 vs. 14.9%) than CO lambs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chlorine-36 data at Yucca Mountain: Statistical tests of conceptual models for unsaturated-zone flow
Campbell, K.; Wolfsberg, A.; Fabryka-Martin, J.; Sweetkind, D.
2003-01-01
An extensive set of chlorine-36 (36Cl) data has been collected in the Exploratory Studies Facility (ESF), an 8-km-long tunnel at Yucca Mountain, Nevada, for the purpose of developing and testing conceptual models of flow and transport in the unsaturated zone (UZ) at this site. At several locations, the measured values of 36Cl/Cl ratios for salts leached from rock samples are high enough to provide strong evidence that at least a small component of bomb-pulse 36Cl, fallout from atmospheric testing of nuclear devices in the 1950s and 1960s, was measured, implying that some fraction of the water traveled from the ground surface through 200-300 m of unsaturated rock to the level of the ESF during the last 50 years. These data are analyzed here using a formal statistical approach based on log-linear models to evaluate alternative conceptual models for the distribution of such fast flow paths. The most significant determinant of the presence of bomb-pulse 36Cl in a sample from the welded Topopah Spring unit (TSw) is the structural setting from which the sample was collected. Our analysis generally supports the conceptual model that a fault that cuts through the nonwelded Paintbrush tuff unit (PTn) that overlies the TSw is required in order for bomb-pulse 36Cl to be transmitted to the sample depth in less than 50 years. Away from PTn-cutting faults, the ages of water samples at the ESF appear to be a strong function of the thickness of the nonwelded tuff between the ground surface and the ESF, due to slow matrix flow in that unit. ?? 2002 Elsevier Science B.V. All rights reserved.
A method to measure the presampling MTF in digital radiography using Wiener deconvolution
NASA Astrophysics Data System (ADS)
Zhou, Zhongxing; Zhu, Qingzhen; Gao, Feng; Zhao, Huijuan; Zhang, Lixin; Li, Guohui
2013-03-01
We developed a novel method for determining the presampling modulation transfer function (MTF) of digital radiography systems from slanted edge images based on Wiener deconvolution. The degraded supersampled edge spread function (ESF) was obtained from simulated slanted edge images with known MTF in the presence of poisson noise, and its corresponding ideal ESF without degration was constructed according to its central edge position. To meet the requirements of the absolute integrable condition of Fourier transformation, the origianl ESFs were mirrored to construct the symmetric pattern of ESFs. Then based on Wiener deconvolution technique, the supersampled line spread function (LSF) could be acquired from the symmetric pattern of degraded supersampled ESFs in the presence of ideal symmetric ESFs and system noise. The MTF is then the normalized magnitude of the Fourier transform of the LSF. The determined MTF showed a strong agreement with the theoritical true MTF when appropriated Wiener parameter was chosen. The effects of Wiener parameter value and the width of square-like wave peak in symmetric ESFs were illustrated and discussed. In conclusion, an accurate and simple method to measure the presampling MTF was established using Wiener deconvolution technique according to slanted edge images.
Statistical characteristics of locally generated ESF during equinoctial months over Sanya
NASA Astrophysics Data System (ADS)
Meng, Xing; Fang, Hanxian; Li, Guozhu; Weng, Libin
2018-05-01
Understanding the local generation rate of equatorial spread-F (ESF) is important for forecasting ionospheric scintillation. Using the GPS ionospheric scintillation/TEC and VHF radar data during March-April and September-October from 2010 to 2014, the occurrence of ionospheric scintillation, TEC fast fluctuation, and backscatter plume were studied. Through analyzing the simultaneous occurrence of ionospheric scintillation, TEC fast fluctuation and backscatter plume, the local generation rate of ESF over Sanya was investigated. The results show that the monthly generation rate varies between 0% and 68%. A significant equinoctial asymmetry of local generation rate of ESF can be found in 2010, 2013 and 2014. The local generation rate of ESF increases from 2010 to 2014 during March-April, while it does not have similar trend during September-October. The plasma vertical drift influenced by solar activity has a significant impact on the monthly generation rate. The equinoctial asymmetry of plasma vertical drift may contribute a lot to the equinoctial asymmetry of the generation rate of ESF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brechtel, C.E.; Lin, Ming; Martin, E.
1995-05-01
This report presents the results of the geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavations of the Exploratory Studies Facility (ESF) North Ramp. The information in this report was developed to support the design of the ESF North Ramp. The ESF is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the potential to locate the national high-level nuclear waste repository on land within and adjacent to themore » Nevada Test Site (NTS), Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan to Provide Soil and Rock Properties. This is volume 2 which contains NRG Corehole Data for each of the NRG Holes.« less
NASA Astrophysics Data System (ADS)
Thampi, Smitha V.; Ravindran, Sudha; Pant, Tarun Kumar; Devasia, C. V.; Sreelatha, P.; Sridharan, R.
2006-07-01
This paper provides the first observations of EIA asymmetry by receiving beacon transmissions onboard low earth orbiting satellites from a single station ground-based receiver. The EIA strength and asymmetry are derived from the latitudinal profiles of TEC obtained from a radio beacon receiver at Trivandrum (8.5°N, 77°E, diplat ~0.5°N). These two parameters, obtained well ahead of the onset time of ESF, are shown to have a definite role on the subsequent ESF activity. In the present paper, both these factors are combined to define a new `threshold parameter' for the generation of ESF. It has been shown that this parameter can define the state of the `background ionosphere' conducive for the generation of ESF irregularities much prior to its onset.
Janssens, Lizanne; Tüzün, Nedim; Stoks, Robby
2017-11-01
Under global change organisms are exposed to multiple, potentially interacting stressors. Especially interactions between successive stressors are poorly understood and recently suggested to depend on their timing of exposure. We particularly need studies assessing the impact of exposure to relevant stressors at various life stages and how these interact. We investigated the single and combined impacts of a heat wave (mild [25 °C] and extreme [30 °C]) during the egg stage, followed by successive exposure to esfenvalerate (ESF) and a heat wave during the larval stage in damselflies. Each stressor caused mortality. The egg heat wave and larval ESF exposure had delayed effects on survival, growth and lipid peroxidation (MDA). This resulted in deviations from the prediction that stressors separated by a long time interval would not interact: the egg heat wave modulated the interaction between the stressors in the larval stage. Firstly, ESF caused delayed mortality only in larvae that had been exposed to the extreme egg heat wave and this strongly depended upon the larval heat wave treatment. Secondly, ESF only increased MDA in larvae not exposed to the egg heat wave. We found little support for the prediction that when there is limited time between stressors, synergistic interactions should occur. The intermediate ESF concentration only caused delayed mortality when combined with the larval heat wave, and the lowest ESF concentrations only increased oxidative damage when followed by the mild larval heat wave. Survival selection mitigated the interaction patterns between successive stressors that are individually lethal, and therefore should be included in a predictive framework for the time-scale dependence of the outcome of multistressor studies with pollutants. The egg heat wave shaping the interaction pattern between successive pesticide exposure and a larval heat wave highlights the connectivity between the concepts of 'heat-induced pesticide sensitivity' and 'pesticide-induced heat sensitivity'. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, C.-C.; Liu, J.-Y.; Reinisch, B. W.; Chen, W.-S.; Chu, F.-D.
2005-03-01
We use a digisonde at Jicamarca and a chain of GPS receivers on the west side of South America to investigate the effects of the pre-reversal enhancement (PRE) in ExB drift, the asymmetry (Ia) of equatorial ionization anomaly (EIA), and the magnetic activity (Kp) on the generation of equatorial spread F (ESF). Results show that the ESF appears frequently in summer (November, December, January, and February) and equinoctial (March, April, September, and October) months, but rarely in winter (May, June, July, and August) months. The seasonal variation in the ESF is associated with those in the PRE ExB drift and Ia. The larger ExB drift (>20m/s) and smaller |Ia| (<0.3) in summer and equinoctial months provide a preferable condition to development the ESF. Conversely, the smaller ExB drift and larger |Ia| are responsible for the lower ESF occurrence in winter months. Regarding the effects of magnetic activity, the ESF occurrence decreases with increasing Kp in the equinoctial and winter months, but not in the summer months. Furthermore, the larger and smaller ExB drifts are presented under the quiet (Kp<3) and disturbed (Kp≥3) conditions, respectively. These results indicate that the suppression in ESF and the decrease in ExB drifts are mainly caused by the decrease in the eastward electric field.
NASA Astrophysics Data System (ADS)
Sreekumar, Sreeba; Sripathi, S.
2017-08-01
In this paper, we present the seasonal variation of nighttime thermospheric meridional winds over Hyderabad as derived using dual ionosonde observations located at Tirunelveli (8.7°N, 77.7°E, Dip Lat = 0.3°N), an equatorial station and Hyderabad (17.38°N, 78.45°E, Dip Lat = 12°N), a low latitude station, respectively, over the period of April-December 2013 using h'F data as discussed in (Sreekumar and Sripathi, 2016). The calculated winds has been compared with HWM14 wind model. The results show that trends of the derived winds from the ionosonde h'F data matches well with model wind near to midnight hours in all the seasons. However, some dissimilarities were observed during early night hours. Especially, the poleward winds during early night hours for different seasons were not well reproduced by the model. Later, the study is extended to understand the role of meridional winds in causing the variability of ESF occurrence vis a vis h'F. The histogram analysis of h'F vs wind values just before ESF onset reveals that the most probable combination of wind and h'F on the ESF days are centered around 350 km and 50 m/s. Additionally, we also performed Superposed Epoch Analysis (SEA) based on longer and shorter duration ESF events. The analysis reveals the distinct differences in the longer and shorter duration ESF events of Summer and Autumn equinox where the values of h'F as well as meridional winds where such that a steep change in reduction of poleward winds prior to ESF onset supported the longer duration ESF events in both seasons. However, this steep reduction is not so significant for the shorter duration ESF events indicating that meridional winds could play a crucial role in extending the spread F durations in longer duration events. The observations clearly demonstrate the reduction of poleward wind velocities during vernal equinox as compared to Autumn equinox, where larger poleward winds were present around ESF onset times. These observations are consistent with the equinoctial asymmetry as seen during year 2013 where more number of ESF occurrences were observed during vernal equinox as compared to Autumn equinox. Additionally on seasonal basis, analysis of the significance of meridional wind magnitudes during scintillation and non scintillation days were performed. The result suggests that non scintillation days were characterized with larger poleward wind magnitudes than scintillation days during vernal equinox and summer season. However, such a trend was not seen in the Autumn equinox season. This might indicate the possible role of poleward meridional wind in reducing the number of scintillation occurences during this season in addition to weakening of PRE height.
Morgan, Sara J.; McDonald, Cody L.; Halsne, Elizabeth G.; Cheever, Sarah M.; Salem, Rana; Kramer, Patricia A.
2018-01-01
Contemporary prosthetic feet are generally optimized for either daily or high-level activities. Prosthesis users, therefore, often require multiple prostheses to participate in activities that span a range of mobility. Crossover feet (XF) are designed to increase the range of activities that can be performed with a single prosthesis. However, little evidence exists to guide clinical prescription of XF relative to traditional energy storing feet (ESF). The objective of this study was to assess the effects of XF and ESF on health outcomes in people with transtibial amputation. A randomized crossover study was conducted to assess changes in laboratory-based (endurance, perceived exertion, walking performance) and community-based (step activity and self-reported mobility, fatigue, balance confidence, activity restrictions, and satisfaction) outcomes. Twenty-seven participants were fit with XF and ESF prostheses with standardized sockets, interfaces, and suspensions. Participants were not blinded to the intervention, and wore each prosthesis for one month while their steps were counted with an activity monitor. After each accommodation period, participants returned for data collection. Endurance and perceived exertion were measured with the Six-Minute Walk Test and Borg-CR100, respectively. Walking performance was measured using an electronic walkway. Self-reported mobility, fatigue, balance confidence, activity restrictions, and satisfaction were measured with survey instruments. Participants also reported foot preferences upon conclusion of the study. Differences between feet were assessed with a crossover analysis. While using XF, users experienced improvements in most community-based outcomes, including mobility (p = .001), fatigue (p = .001), balance confidence (p = .005), activity restrictions (p = .002), and functional satisfaction (p < .001). Participants also exhibited longer sound side steps in XF compared to ESF (p < .001). Most participants (89%) reported an overall preference for XF; others (11%) reported no preference. Results indicate that XF may be a promising alternative to ESF for people with transtibial amputation who engage in a range of mobility activities. Trial registration: ClinicalTrials.gov NCT02440711 PMID:29414988
NASA Astrophysics Data System (ADS)
Madhav Haridas, M. K.; Manju, G.; Arunamani, T.
2018-05-01
A comprehensive analysis using nearly two decades of ionosonde data is carried out on the seasonal and solar cycle variations of Equatorial Spread F (ESF) irregularities over magnetic equatorial location Trivandrum (8.5°N, 77°E). The corresponding Rayleigh Taylor (RT) instability growth rates (γ) are also estimated. A seasonal pattern of ESF occurrence and the corresponding γ is established for low solar (LSA), medium solar (MSA) and high solar (HSA) activity periods. For LSA, it is seen that the γ maximizes during post sunset time with comparable magnitudes for autumnal equinox (AE), vernal equinox (VE) and winter solstice (WS), while for summer solstice (SS) it maximizes in the post-midnight period. Concurrent responses are seen in the ESF occurrence pattern. For MSA, γ maximizes during post-sunset for VE followed by WS and AE while SS maximises during post-midnight period. The ESF occurrence for MSA is highest for VE (80%), followed by AE (70%), WS (60%) and SS (50%). In case of HSA, maximum γ occurs for VE followed by AE, WS and SS. The concurrent ESF occurrence maximizes for VE and AE (90%), WS and SS at 70%. The solar cycle variation of γ is examined. γ shows a linear variation with F10.7 cm flux. Further, ESF percentage occurrence and duration show an exponential and linear variation respectively with γ. An empirical model on the solar activity dependence of ESF occurrence and sustenance time over Indian longitudes is arrived at using the database spanning two solar cycles for the first time.
A Primer on a Domestic Catastrophic Disaster Response for the Joint Logistics Enterprise
2017-04-30
USACE U.S. Army Corp of Engineers USDA U.S. Department of Agriculture USGS U.S. Geological Survey USNORTHCOM U.S. Northern Command 1...Medical Services ESF #9: Search and Rescue ESF #10: Oil and Hazardous Materials Response ESF #11: Agriculture and Natural Resources...commodities (e.g., fuel, food and agriculture , communications) [7]. The NRF encourages local, state, and federal agencies to build relationships
Postoperative complications associated with external skeletal fixators in cats.
Beever, Lee; Giles, Kirsty; Meeson, Richard
2017-07-01
The objective of this study was to quantify complications associated with external skeletal fixators (ESFs) in cats and to identify potential risk factors. A retrospective review of medical records and radiographs following ESF placement was performed. Case records of 140 cats were reviewed; fixator-associated complications (FACs) occurred in 19% of cats. The region of ESF placement was significantly associated with complication development. Complications developed most frequently in the femur (50%), tarsus (35%) and radius/ulna (33%). Superficial pin tract infection (SPTI) and implant failure accounted for 45% and 41% of all FACs, respectively. SPTI occurred more frequently in the femur, humerus and tibia, with implant failure more frequent in the tarsus. No association between breed, age, sex, weight, fracture type (open vs closed), ESF classification, number of pins per bone segment, degree of fracture load sharing, and the incidence or type of FAC was identified. No association between region of placement, breed, age, sex, weight, fracture type (open vs closed), ESF classification, number of pins per bone segment, fracture load sharing and the time to complication development was identified. Complication development is not uncommon in cats following ESF placement. The higher complication rate in the femur, tarsus and radius/ulna should be considered when reviewing options for fracture management. However, cats appear to have a lower rate of pin tract infections than dogs.
NASA Astrophysics Data System (ADS)
Thampi, S. V.; Ravindran, S.; Devasia, C. V.; Pant, T. K.; Sreelatha, P.; Sridharan, R.
The Coherent Radio Beacon Experiment (CRABEX) is aimed at investigating the equatorial ionospheric processes like the Equatorial Ionization Anomaly (EIA) and Equatorial Spread F (ESF) and their inter relationships. As a part of CRABEX program, a network of six stations covering the region from Trivandrum (8.5°N) to Nainital (29.3°N) is set up along the 77-78° E meridian. These ground receivers basically measure the slant Total Electron Content (TEC) along the line of sight from the Low Earth Orbiting satellites (NIMS). These simultaneous TEC measurements are inverted to obtain the tomographic image of the latitudinal distribution of electron densities in the meridional plane. In this paper, the tomographic images of the equatorial ionosphere along the 77-78°E meridian are presented. The crest intensities in the southern and northern hemispheres also show significant differences with seasons, showing the variability in the EIA asymmetry. The evening images give an indication of the prevailing electrodynamical conditions on different days, preceding the occurrence/non-occurrence of ESF. Apart from this, the single station TEC measurements from the Trivandrum station itself is used to estimate the EIA strength and asymmetry. Since this station is situated at the trough of the EIA, right over the dip equator, the latitudinal gradients on both northern (N) and southern (S) sides can be used to compute the EIA strength and asymmetry. These two parameters, obtained well ahead of the onset time of ESF, are shown to have a definite role on the subsequent ESF activity. Hence, both these factors are combined to define a new `forecast parameter' for the generation of ESF. It has been shown that this parameter can uniquely define the state of the `background ionosphere' conducive for the generation of ESF irregularities as early as 1600 IST. A critical value for the `forecast parameter' has been identified such that when the estimated value for `forecast parameter' exceeds it, the ESF is seen to occur. It is also observed that this critical value varies with season. All these aspects are studied in detail and the results are presented.
Xu, Shuozhi; Xiong, Liming; Chen, Youping; ...
2017-04-26
Dislocation/stacking fault interactions play an important role in the plastic deformation of metallic nanocrystals and polycrystals. These interactions have been explored in atomistic models, which are limited in scale length by high computational cost. In contrast, multiscale material modeling approaches have the potential to simulate the same systems at a fraction of the computational cost. In this paper, we validate the concurrent atomistic-continuum (CAC) method on the interactions between a lattice screw dislocation and a stacking fault (SF) in three face-centered cubic metallic materials—Ni, Al, and Ag. Two types of SFs are considered: intrinsic SF (ISF) and extrinsic SF (ESF).more » For the three materials at different strain levels, two screw dislocation/ISF interaction modes (annihilation of the ISF and transmission of the dislocation across the ISF) and three screw dislocation/ESF interaction modes (transformation of the ESF into a three-layer twin, transformation of the ESF into an ISF, and transmission of the dislocation across the ESF) are identified. Here, our results show that CAC is capable of accurately predicting the dislocation/SF interaction modes with greatly reduced DOFs compared to fully-resolved atomistic simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Shuozhi; Xiong, Liming; Chen, Youping
Dislocation/stacking fault interactions play an important role in the plastic deformation of metallic nanocrystals and polycrystals. These interactions have been explored in atomistic models, which are limited in scale length by high computational cost. In contrast, multiscale material modeling approaches have the potential to simulate the same systems at a fraction of the computational cost. In this paper, we validate the concurrent atomistic-continuum (CAC) method on the interactions between a lattice screw dislocation and a stacking fault (SF) in three face-centered cubic metallic materials—Ni, Al, and Ag. Two types of SFs are considered: intrinsic SF (ISF) and extrinsic SF (ESF).more » For the three materials at different strain levels, two screw dislocation/ISF interaction modes (annihilation of the ISF and transmission of the dislocation across the ISF) and three screw dislocation/ESF interaction modes (transformation of the ESF into a three-layer twin, transformation of the ESF into an ISF, and transmission of the dislocation across the ESF) are identified. Here, our results show that CAC is capable of accurately predicting the dislocation/SF interaction modes with greatly reduced DOFs compared to fully-resolved atomistic simulations.« less
NASA Astrophysics Data System (ADS)
Huang, C.
2017-12-01
We will present two distinct phenomena related to the postsunset vertical plasma drift and equatorial spread F (ESF) observed by the Communication/Navigation Outage Forecasting System satellite over six years. The first phenomenon is the behavior of the prereversal enhancement (PRE) of the vertical plasma drift during geomagnetic storms. Statistically, storm-time disturbance dynamo electric fields cause the PRE to decrease from 30 to 0 m/s when Dst changes from -60 to -100 nT, but the PRE does not show obvious variations when Dst varies from 0 to -60 nT. The observations show that the storm activities affect the evening equatorial ionosphere only for Dst < -60 nT and that the dynamo electric field becomes dominant during the storm recovery phase. The second phenomenon is the relationship between the PRE and the generation of ESF. It is found that the occurrence of large-amplitude ESF irregularities is well correlated with the PRE and that the occurrence of small-amplitude ESF irregularities does not show a clear pattern at low solar activity but is anti-correlated with large-amplitude irregularities and the PRE at moderate solar activity. That is, the months and longitudes with high occurrence probability of large-amplitude irregularities are exactly those with low occurrence probability of small-amplitude irregularities, and vice versa. The generation of large-amplitude ESF irregularities is controlled by the PRE, and the generation of small-amplitude ESF irregularities may be caused by gravity waves and other disturbances, rather than by the PRE.
The Embassy Science Fellow (ESF) program provides U.S. embassies access to the expertise of U.S. government officers in science and technology fields. U.S. embassies request Fellows to assist on science, technology, environment or health issues and related policy development and collaboration.
Electrospun Fiber Pads of Cellulose Acetate and Essential Oils with Antimicrobial Activity.
Liakos, Ioannis L; Holban, Alina Maria; Carzino, Riccardo; Lauciello, Simone; Grumezescu, Alexandru Mihai
2017-04-12
The method of electrospinning was used to create nanofibers made of cellulose acetate (CA) and essential oils (EOs). CA polymer at 15% w / v was dissolved in acetone and then 1% or 5% v / v of EOs was added to the polymer solution. The utilized essential oils were rosemary and oregano oils. Then, the CA/EOs in acetone solution were electrospun, creating micro/nanofibers, approximately 700-1500 nm in diameter. Raman spectroscopy was used to detect the attachment of the EOs in the CA electrospun fibers (ESFs). Scanning electron microscopy was used to study the morphology, topography and dimensions of the ESFs. The formed CA/EOs ESFs are found to have good antimicrobial properties against three common microbial species, frequently found in difficult to treat infections: Bacteria species Staphylococcus aureus , Escherichia coli and the yeast Candida albicans . ESFs with 5% v / v oregano oil with respect to the initial solution, showed the best antimicrobial and anti-biofilm effects due to the potency of this EO against bacteria and fungi, especially for Escherichia coli and Candida albicans . This work describes an effective and simple method to prepare CA/EOs ESFs and opens up many new applications of micro/nanofibers such as improved antimicrobial wound dressings, anti-biofilm surfaces, sensors and packaging alternatives.
ESF-X: a low-cost modular experiment computer for space flight experiments
NASA Astrophysics Data System (ADS)
Sell, Steven; Zapetis, Joseph; Littlefield, Jim; Vining, Joanne
2004-08-01
The high cost associated with spaceflight research often compels experimenters to scale back their research goals significantly purely for budgetary reasons; among experiment systems, control and data collection electronics are a major contributor to total project cost. ESF-X was developed as an architecture demonstration in response to this need: it is a highly capable, radiation-protected experiment support computer, designed to be configurable on demand to each investigator's particular experiment needs, and operational in LEO for missions lasting up to several years (e.g., ISS EXPRESS) without scheduled service or maintenance. ESF-X can accommodate up to 255 data channels (I/O, A/D, D/A, etc.), allocated per customer request, with data rates up to 40kHz. Additionally, ESF-X can be programmed using the graphical block-diagram based programming languages Simulink and MATLAB. This represents a major cost saving opportunity for future investigators, who can now obtain a customized, space-qualified experiment controller at steeply reduced cost compared to 'new' design, and without the performance compromises associated with using preexisting 'generic' systems. This paper documents the functional benchtop prototype, which utilizes a combination of COTS and space-qualified components, along with unit-gravity-specific provisions appropriate to laboratory environment evaluation of the ESF-X design concept and its physical implementation.
Biswas, C; Mandal, C
1999-02-01
Achatina amoebocyte lysate (AAL) derived from amoebocytes of Achatina fulica was activated by Gram-negative bacterial endotoxins in a time-dependent manner resulting in gel formation/coagulation. The activation and maximum proliferation of amoebocytes was observed 40 min after intramuscular injection (20 microg/snail) of endotoxin. Endotoxin-mediated proteolytic activity of AAL towards a serine-protease-specific chromogenic substrate was maximum at pH 8.0, 37 degrees C and within 15 min in a divalent-cation-dependent manner. The AAL activity induced by the endotoxin was directly dependent on the endotoxin concentration, showed a high specificity and saturated at higher endotoxin concentrations. An endotoxin-sensitive factor (ESF) was purified from AAL to apparent homogeneity by single-step affinity chromatography on a heparin-Sepharose 4B column. Native ESF of molecular weight 140 000 was composed of two identical subunits of molecular weight 70 000 attached through non-covalent association. A strong binding to endotoxin (Escherichia coli 055:B5) was exhibited by ESF with a 40-fold higher biological activity than AAL. The ESF was shown to have a unique Phe-Ile active site with regard to its alternate activation by alpha-chymotrypsin instead of endotoxin. The ESF was characterized as a serine protease type as evidenced by potent inhibition with specific inhibitors.
Experimental Stream Facility: Design and Research
The Experimental Stream Facility (ESF) is a valuable research tool for the U.S. Environmental Protection Agency’s (EPA) Office of Research and Development’s (ORD) laboratories in Cincinnati, Ohio. This brochure describes the ESF, which is one of only a handful of research facilit...
NASA Astrophysics Data System (ADS)
Zhan, Weijia; S. Rodrigues, Fabiano
2018-01-01
Previous studies have suggested that weakening downward plasma drifts can produce favorable conditions for the ionospheric Generalized Rayleigh-Taylor (GRT) instability and explain the occurrence of postmidnight equatorial spread F (ESF). We evaluated this hypothesis using numerical simulations aided by measurements and attempted to explain ESF events observed in the American sector during June solstice, low solar flux conditions. We analyzed plasma drifts and ESF measurements made by the incoherent scatter radar of the Jicamarca Radio Observatory (11.95° S, 76.87° W, ˜1° dip). We found adequate measurements during a prototypical, quiet time event on 4-5 June 2008 when the downward drifts weakened and a fully developed ESF appeared. The measured drifts were used as input for the SAMI2 model. SAMI2 reproduced an "apparent" uplift of the ionosphere based on h'F measurements that was consistent with expectations and observations. SAMI2 also provided parameters for estimation of the flux tube linear growth rates of GRT instability associated with the weakening drift event. We found that the weakening drifts did produce unstable conditions with positive growth rates. The growth rates, however, were slower than those obtained for typical, premidnight ESF events and those obtained for similar drift conditions in other longitude sectors. We show, however, that departures in the wind pattern, from climatological model predictions, can produce favorable conditions for instability development. Following the hypothesis of Huba and Krall (2013) and using SAMI2 simulations, we show that equatorward winds, when combined with weakening drifts, could have contributed to the unstable conditions responsible for the postmidnight ESF events.
Jordan, Jaime; Yarris, Lalena M; Santen, Sally A; Guth, Todd A; Rougas, Steven; Runde, Daniel P; Coates, Wendy C
2017-08-01
Education leaders at the 2012 Academic Emergency Medicine Consensus Conference on education research proposed that dedicated postgraduate education scholarship fellowships (ESFs) might provide an effective model for developing future faculty as scholars. A formal needs assessment was performed to understand the training gap and inform the development of ESFs. A mixed-methods needs assessment was conducted of four emergency medicine national stakeholder groups in 2013: department chairs; faculty education/research leaders; existing education fellowship directors; and current education fellows/graduates. Descriptive statistics were reported for quantitative data. Qualitative data from semistructured interviews and free-text responses were analyzed using a thematic approach. Participants were 11/15 (73%) education fellowship directors, 13/20 (65%) fellows/graduates, 106/239 (44%) faculty education/research leaders, and a convenience sample of 26 department chairs. Department chairs expected new education faculty to design didactics (85%) and teach clinically (96%). Faculty education/research leaders thought new faculty were inadequately prepared for job tasks (83.7%) and that ESFs would improve the overall quality of education research (91.1%). Fellowship directors noted that ESFs provide skills, mentorship, and protected time for graduates to become productive academicians. Current fellows/graduates reported pursing an ESF to develop skills in teaching and research methodology. Stakeholder groups uniformly perceived a need for training in education theory, clinical teaching, and education research. These findings support dedicated, deliberate training in these areas. Establishment of a structure for scholarly pursuits prior to assuming a full-time position will effectively prepare new faculty. These findings may inform the development, implementation, and curricula of ESFs.
Ecological Realism of U.S. EPA Experimental Stream Facility Studies
The USEPA’s Experimental Stream Facility (ESF) conducts meso-scale ecotoxicology studies that account for both structural and functional responses of whole stream communities to contaminants or other stressors. The 16 mesocosms of ESF are indoors and consist of a tiled run sectio...
NASA Astrophysics Data System (ADS)
Duan, Yaxuan; Xu, Songbo; Yuan, Suochao; Chen, Yongquan; Li, Hongguang; Da, Zhengshang; Gao, Limin
2018-01-01
ISO 12233 slanted-edge method experiences errors using fast Fourier transform (FFT) in the camera modulation transfer function (MTF) measurement due to tilt angle errors in the knife-edge resulting in nonuniform sampling of the edge spread function (ESF). In order to resolve this problem, a modified slanted-edge method using nonuniform fast Fourier transform (NUFFT) for camera MTF measurement is proposed. Theoretical simulations for images with noise at a different nonuniform sampling rate of ESF are performed using the proposed modified slanted-edge method. It is shown that the proposed method successfully eliminates the error due to the nonuniform sampling of the ESF. An experimental setup for camera MTF measurement is established to verify the accuracy of the proposed method. The experiment results show that under different nonuniform sampling rates of ESF, the proposed modified slanted-edge method has improved accuracy for the camera MTF measurement compared to the ISO 12233 slanted-edge method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M.D. Stine
1996-01-23
The purpose of this analysis is to select the critical characteristics to be verified for steel sets and accessories and the verification methods to be implemented through a material dedication process for the procurement and use of commercial grade structural steel sets and accessories (which have a nuclear safety function) to be used in ground support (with the exception of alcove ground support and alcove opening framing, which are not addressed in this analysis) for the Exploratory Studies Facility (ESF) Topopah Spring (TS) Loop. The ESF TS Loop includes the North Ramp, Main Drift, and South Ramp underground openings.
EPA’s Experimental Stream Facility: Design and Research Supporting Watershed Management
The EPA’s Experimental Stream Facility (ESF) represents an important tool in research that is underway to further understanding of the relative importance of stream ecosystems and the services they provide for effective watershed management. The ESF is operated under the goal of ...
Jiang, Peng; Zhang, Xiuwen; Huang, Yutong; Cheng, Nengneng; Ma, Yueming
2017-10-25
Our previous study showed that kurarinone was the main hepatotoxic ingredient of Sophora flavescens , accumulating in the liver. This study characterized the mechanism of Sophora flavescens extract (ESF) hepatotoxicity and hepatic accumulation of kurarinone. ESF impaired hepatic function and caused fat accumulation in the liver after oral administration (1.25 and 2.5 g/kg for 14 days in rats). Serum metabolomics evaluation based on high-resolution mass spectrometry was conducted and real-time PCR was used to determine the expression levels of CPT-1, CPT-2, PPAR-α, and LCAD genes. Effects of kurarinone on triglyceride levels were evaluated in HL-7702 cells. Tissue distribution of kurarinone and kurarinone glucuronides was analyzed in rats receiving ESF (2.5 g/kg). Active uptake of kurarinone and kurarinone glucuronides was studied in OAT2-, OATP1B1-, OATP2B1-, and OATP1B3-transfected HEK293 cells. Our results revealed that after oral administration of ESF in rats, kurarinone glucuronides were actively transported into hepatocytes by OATP1B3 and hydrolyzed into kurarinone, which inhibited fatty acid β-oxidation through the reduction of l-carnitine and the inhibition of PPAR-α pathway, ultimately leading to lipid accumulation and liver injury. These findings contribute to understanding hepatotoxicity of kurarinone after oral administration of ESF.
Synthesis, Bioconjugation and Stability Studies of [18 F] Ethenesulfonyl Fluoride.
Zhang, Bo; Pascali, Giancarlo; Wyatt, Naomi; Matesic, Lidia; Klenner, Mitchell A; Sia, Tiffany R; Guastella, Adam J; Massi, Massimiliano; Robinson, Andrea J; Fraser, Benjamin H
2018-06-20
Fluorine-18 labelled prosthetic groups (PGs) are often necessary for radiolabelling sensitive biological molecules such as peptides and proteins. Several shortcomings, however, often diminish the final yield of radiotracer. In an attempt to provide higher yielding and operationally efficient tools for radiolabelling biological molecules, we describe herein the first radiochemical synthesis of [ 18 F] ethenesulfonylfluoride ([ 18 F] ESF) and its Michael conjugation with amino acids and proteins. The synthesis of [ 18 F] ESF was optimised using a microfluidic reactor under both carrier-added (c.a.) and no-carrier-added (n.c.a.) conditions, affording, in a straightforward procedure, 30-50% radiochemical yield (RCY) for c.a. [ 18 F] ESF and 60-70% RCY for n.c.a. [ 18 F] ESF. The conjugation reactions were performed at room temperature using 10 mg/mL precursor in aqueous/organic solvent mixtures for 15 min. The radiochemical stability of the final conjugates was evaluated in injectable formulation and rat serum, and resulted strongly substrate dependent and generally poor in rat serum. Therefore, in this work we have optimised a straightforward synthesis of [ 18 F] ESF and its Michael conjugation with model compounds, without requiring chromatographic purification. However, given the general low stability of the final products, further studies will be required for improving conjugate stability, before assessing the use of this PG for PET imaging. This article is protected by copyright. All rights reserved.
The ESF and New Technology Training for Unemployed Women.
ERIC Educational Resources Information Center
Brine, Jacky
The European Social Fund's (ESF's) emphasis on new technology training increased throughout the 1980s, but in the 1990s this emphasis disappears from policies toward "socially excluded" groups, including long-term unemployed women. Women are segregated into certain occupations and then further segregated by a hierarchical division that…
Chen, Joseph C; Johnson, Brittni A; Erikson, David W; Piltonen, Terhi T; Barragan, Fatima; Chu, Simon; Kohgadai, Nargis; Irwin, Juan C; Greene, Warner C; Giudice, Linda C; Roan, Nadia R
2014-06-01
How does seminal plasma (SP) affect the transcriptome of human primary endometrial epithelial cells (eEC) and stromal fibroblasts (eSF)? Exposure of eEC and eSF to SP in vitro increases expression of genes and secreted proteins associated with cellular migration, proliferation, viability and inhibition of cell death. Studies in both humans and animals suggest that SP can access and induce physiological changes in the upper female reproductive tract (FRT), which may participate in promoting reproductive success. This is a cross sectional study involving control samples versus treatment. SP (pooled from twenty donors) was first tested for dose- and time-dependent cytotoxic effects on eEC and eSF (n = 4). As exposure of eEC or eSF to 1% SP for 6 h proved to be non-toxic, a second set of eEC/eSF samples (n = 4) was treated under these conditions for transcriptome, protein and functional analysis. With a third set of samples (n = 3), we further compared the transcriptional response of the cells to SP versus fresh semen. eEC and eSF were isolated from endometrial biopsies from women of reproductive age undergoing benign gynecologic procedures and maintained in vitro. RNA was isolated and processed for microarray studies to analyze global transcriptomic changes. Secreted factors in conditioned media from SP-treated cells were analyzed by Luminex and for the ability to stimulate migration of CD14+ monocytes and CD4+ T cells. Pathway identifications were determined using the Z-scoring system in Ingenuity Pathways Analysis (Z scores ≥|1.5|). SP induced transcriptomic changes (P < 0.05) associated with promoting leukocyte and endothelial cell recruitment, and proliferation of eEC and eSF. Cell viability pathways were induced, while those associated with cell death were suppressed (P < 0.05). SP and fresh semen induced similar sets of pathways, suggesting that SP can model the signaling effects of semen in the endometrium. SP also induced secretion of pro-inflammatory and pro-chemotactic cytokines, as well as pro-angiogenic and proliferative growth factors (P < 0.05) in both eEC and eSF. Finally, functional assays revealed that conditioned media from SP-treated eEC and eSF significantly increased (P < 0.05) chemotaxis of CD14+ monocytes and CD4+ T cells. This study is limited to in vitro analyses of the effects of SP on endometrial cells. In addition, the measured response to SP was conducted in the absence of the ovarian hormones estradiol and progesterone, as well as epithelial-stromal paracrine signaling. While this study focused on establishing the baseline cellular response of endometrial cells to SP, future work should assess how hormone signaling in the presence of appropriate paracrine interactions affects SP-induced genes in these cells. The results of this study support previous findings that SP and semen contain bioactive factors capable of eliciting chemotactic responses in the uterus, which can lead to recruitment of leukocytes to the endometrium. Future directions will explore if similar changes in gene expression do indeed occur after coitus in vivo, and how the signaling cascades initiated by SP in the endometrium can affect reproductive success, female reproductive health and susceptibility to sexually transmitted diseases. The gene list provided by the transcriptome analysis reported here should prove a valuable resource for understanding the response of the upper FRT to SP exposure. This project was supported by NIH AI083050-04 (W.C.G./L.C.G.); NIH U54HD 055764 (L.C.G.); NIH 1F32HD074423-02 (J.C.C.); DOD W81XWH-11-1-0562 (W.C.G.); NIH 5K12-DK083021-04, NIH 1K99AI104262-01A1, The UCSF Hellman Award (N.R.R.). The authors have nothing to disclose.
Excessive Exoergicity Reduces Singlet Exciton Fission Efficiency of Heteroacenes in Solutions.
Zhang, You-Dan; Wu, Yishi; Xu, Yanqing; Wang, Qiang; Liu, Ke; Chen, Jian-Wei; Cao, Jing-Jing; Zhang, Chunfeng; Fu, Hongbing; Zhang, Hao-Li
2016-06-01
The energy difference between a singlet exciton and twice of a triplet exciton, ΔESF, provides the thermodynamic driving force for singlet exciton fission (SF). This work reports a systematic investigation on the effect of ΔESF on SF efficiency of five heteroacenes in their solutions. The low-temperature, near-infrared phosphorescence spectra gave the energy levels of the triplet excitons, allowing us to identify the values of ΔESF, which are -0.58, -0.34, -0.31, -0.32, and -0.34 eV for the thiophene, benzene, pyridine, and two tetrafluorobenzene terminated molecules, respectively. Corresponding SF efficiencies of the five heteroacenes in 0.02 M solutions were determined via femtosecond transient absorption spectroscopy to be 117%, 124%, 140%, 132%, and 135%, respectively. This result reveals that higher ΔESF is not, as commonly expected, always beneficial for higher SF efficiency in solution phase. On the contrary, excessive exoergicity results in reduction of SF efficiency in the heteroacenes due to the promotion of other competitive exciton relaxation pathways. Therefore, it is important to optimize thermodynamic driving force when designing organic materials for high SF efficiency.
Effects of bombesin on erythropoietin production in the anaesthetized dog.
Melchiorri, P; Sopranzi, N; Roseghini, M
1976-08-01
Bombesin, a tetradecapeptide isolated from the skin of some European discoglossid frogs, has been reported previously to reduce renal blood flow and glomerular filtration rate and to increase plasma renin activity in anaesthetized dogs. In the present study bombesin was infused intravenously in anaesthetized dogs at dose levels of 3, 6 and 12 ng/kg/min for 6 h and renal blood flow, glomerular filtration rate, oxygen consumption, oxygen extraction by the kidney tissue, as well as plasma erythropoietin levels (ESF) and plasma renin activity were measured. Plasma levels of ESF increased during bombesin infusion only when renal blood flow was reduced to a level of 1 ml/g/min or less. In this situation glomerular filtration was blocked, renal oxygen consumption was decreased to 10% of normal and oxygen extraction by the kidney was increased by 2 times. No correlation was found between plasma renin activity and ESF concentrations during bombesin infusion. It is concluded that the stimulant action of bombesin on ESF production is a consequence of the renal hypoxia induced by the reduction in renal blood flow.
Hindcasting of Equatorial Spread F Using Seasonal Empirical Models
NASA Astrophysics Data System (ADS)
Aswathy, R. P.; Manju, G.
2018-02-01
The role of gravity waves in modulating equatorial spread F (ESF) day-to-day variability is investigated using ionosonde data at Trivandrum (geographic coordinates, 8.5°N, 77°E; mean geomagnetic latitude -0.3°N) a magnetic equatorial location. A novel empirical model that incorporates the combined effects of electrodynamics and gravity waves in modulating ESF occurrence during autumnal equinox season was presented by Aswathy and Manju (2017). In the present study, the height variations of the requisite gravity wave seed perturbations for ESF are examined for the vernal equinoxes, summer solstices, and winter solstices of different years. Subsequently, the empirical model, incorporating the electrodynamical effects and the gravity wave modulation, valid for each of the seasons is developed. Accordingly, for each season, the threshold curve may be demarcated provided the solar flux index (F10.7) is known. The empirical models are validated using the data for high, moderate, and low solar activity years corresponding to each season. In the next stage, this model is to be fine tuned to facilitate the prediction of ESF well before its onset.
NASA Astrophysics Data System (ADS)
Thampi, S. V.; Ravindran, S.; Pant, T. K.; Devasia, C. V.; Sridharan, R.
2008-06-01
In an earlier study, Thampi et al. (2006) have shown that the strength and asymmetry of Equatorial Ionization Anomaly (EIA), obtained well ahead of the onset time of Equatorial Spread F (ESF) have a definite role on the subsequent ESF activity, and a new "forecast parameter" has been identified for the prediction of ESF. This paper presents the observations of EIA strength and asymmetry from the Indian longitudes during the period from August 2005 March 2007. These observations are made using the line of sight Total Electron Content (TEC) measured by a ground-based beacon receiver located at Trivandrum (8.5° N, 77° E, 0.5° N dip lat) in India. It is seen that the seasonal variability of EIA strength and asymmetry are manifested in the latitudinal gradients obtained using the relative TEC measurements. As a consequence, the "forecast parameter" also displays a definite seasonal pattern. The seasonal variability of the EIA strength and asymmetry, and the "forecast parameter" are discussed in the present paper and a critical value for has been identified for each month/season. The likely "skill factor" of the new parameter is assessed using the data for a total of 122 days, and it is seen that when the estimated value of the "forecast parameter" exceeds the critical value, the ESF is seen to occur on more than 95% of cases.
1976-01-01
Bone marrow from mature goats and sheep was cultured in plasma clots, and three erythropoietin (ESF)-dependent responses-growth (colony formation), differentiation (globin production), and initiation of hemoglobin C (alpha2beta2C) synthesis--were quantitated. ESF concentrations below 0.01 U/ml supported colony growth and adult hemoglobin production in cultures of goat marrow, while maximal hemoglobin C synthesis (70%), as measured between 72 and 96 h in culture, required a 100-fold higher ESF concentration. Sheep marrow was cultured in a medium enriched to enhance growth and to permit complete maturation of colonies. These colonies active in hemoglobin synthesis between 24 and 96 h produced mainly adult hemoglobin, and only between 96 and 120 h did sheep colonies develop which produced mainly hemoglobin C (up to 70%). A similar heterogeneity may exist among goat colonies. Thus, when goat bone marrow was fractionated by unit gravity sedimentation, more hemoglobin C synthesis was observed in colonies derived from cells of intermediate sedimentation velocity than in colonies derived from the most rapidly sedimenting cells. Brief exposure of sheep (in vivo) and goat (in vitro) bone marrow to a high ESF concentration committed precursor cells to the generation of colonies which, even at low ESF concentration, produced hemoglobin C. Committment to hemoglobin phenotype appears to be an early and probably irreversible event in the development of an erythroid cell. PMID:993267
Dutta, Rahul; Yoon, Renai; Patel, Roshan M; Spradling, Kyle; Okhunov, Zhamshid; Sohn, William; Lee, Hak J; Landman, Jaime; Clayman, Ralph V
2017-06-01
To compare conventional videocystoscopy (CVC) with a novel and affordable (approximately $45) mobile cystoscopy system, the Endockscope (ES). We evaluated the ES system using both fluid (Endockscope-Fluid [ES-F]) and air (Endockscope-Air [ES-A]) to fill the bladder in an effort to expand the global range of flexible cystoscopy. The ES system comprised a portable 1000 lumen LED self-contained cordless light source and a three-dimensional printed adaptor that connects a mobile phone to a flexible fiber-optic cystoscope. Patients undergoing in-office cystoscopic evaluation for either stent removal or bladder cancer surveillance received three examinations: conventional, ES-F, and ES-A cystoscopy. Videos of each examination were recorded and analyzed by expert endoscopists for image quality/resolution, brightness, color quality, sharpness, overall quality, and whether or not they were acceptable for diagnostic purposes. Six of the 10 patients for whom the conventional videos were 100% acceptable for diagnostic purposes were included in our analysis. The conventional videos scored higher on every metric relative to both the ES-F and ES-A videos (p < 0.05). There was no difference between ES-F and ES-A videos on any metric. Fifty-two percent and 44% of the ES-F and ES-A videos, respectively, were considered acceptable for diagnostic purposes (p = 0.384). The ES mobile cystoscopy system may be a reasonable option in settings where electricity, sterile fluid irrigant, or access to CVC equipment is unavailable.
The European Social Fund: A Very Specific Case Instrument of HRD Policy
ERIC Educational Resources Information Center
Tome, Eduardo
2013-01-01
Purpose: This paper aims to review the intervention of the European Social Fund (ESF) as an instrument of human resource development (HRD) policies in the European labor market. Design/methodology/approach: The paper uses an economic background, and reviews the official documents produced by the ESF during its history to try to define its economic…
The European Social Fund: Changing Approaches to VET
ERIC Educational Resources Information Center
Welbers, Gerhard
2011-01-01
Since its creation in 1958, the European Social Fund (ESF) has played a major role in supporting the development of vocational training in the Member States. However, compared to other, more recently launched, EU programmes and initiatives in the area of education and training, the ESF has not made a significant contribution to the debate about…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-03
...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing a revision to Regulatory Guide (RG) 1.52, ``Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Post-accident Engineered-Safety-Feature Atmosphere Cleanup Systems in Light-Water-Cooled Nuclear Power Plants.'' This guide applies to the design, inspection, and testing of air filtration and iodine adsorption units of engineered-safety-feature (ESF) atmosphere cleanup systems in light-water-cooled nuclear power plants.
Spatial characteristics of early successional habitat across the Upper Great Lakes states
Brian G. Tavernia; Mark D. Nelson; James D. Garner; Charles H. (Hobie) Perry
2016-01-01
Creation and management of early successional forest (ESF) is needed to halt and reverse declines of bird species dependent on pioneering plant species or young forests. ESF-dependent bird species require specific structural forest classes and are sensitive to forest age (a surrogate for forest structure), patch size, proximity to patch edges, and the juxtaposition of...
V&V Plan for FPGA-based ESF-CCS Using System Engineering Approach.
NASA Astrophysics Data System (ADS)
Maerani, Restu; Mayaka, Joyce; El Akrat, Mohamed; Cheon, Jung Jae
2018-02-01
Instrumentation and Control (I&C) systems play an important role in maintaining the safety of Nuclear Power Plant (NPP) operation. However, most current I&C safety systems are based on Programmable Logic Controller (PLC) hardware, which is difficult to verify and validate, and is susceptible to software common cause failure. Therefore, a plan for the replacement of the PLC-based safety systems, such as the Engineered Safety Feature - Component Control System (ESF-CCS), with Field Programmable Gate Arrays (FPGA) is needed. By using a systems engineering approach, which ensures traceability in every phase of the life cycle, from system requirements, design implementation to verification and validation, the system development is guaranteed to be in line with the regulatory requirements. The Verification process will ensure that the customer and stakeholder’s needs are satisfied in a high quality, trustworthy, cost efficient and schedule compliant manner throughout a system’s entire life cycle. The benefit of the V&V plan is to ensure that the FPGA based ESF-CCS is correctly built, and to ensure that the measurement of performance indicators has positive feedback that “do we do the right thing” during the re-engineering process of the FPGA based ESF-CCS.
Rasella, Davide; Basu, Sanjay; Hone, Thomas; Paes-Sousa, Romulo; Ocké-Reis, Carlos Octávio; Millett, Christopher
2018-05-01
Since 2015, a major economic crisis in Brazil has led to increasing poverty and the implementation of long-term fiscal austerity measures that will substantially reduce expenditure on social welfare programmes as a percentage of the country's GDP over the next 20 years. The Bolsa Família Programme (BFP)-one of the largest conditional cash transfer programmes in the world-and the nationwide primary healthcare strategy (Estratégia Saúde da Família [ESF]) are affected by fiscal austerity, despite being among the policy interventions with the strongest estimated impact on child mortality in the country. We investigated how reduced coverage of the BFP and ESF-compared to an alternative scenario where the level of social protection under these programmes is maintained-may affect the under-five mortality rate (U5MR) and socioeconomic inequalities in child health in the country until 2030, the end date of the Sustainable Development Goals. We developed and validated a microsimulation model, creating a synthetic cohort of all 5,507 Brazilian municipalities for the period 2017-2030. This model was based on the longitudinal dataset and effect estimates from a previously published study that evaluated the effects of poverty, the BFP, and the ESF on child health. We forecast the economic crisis and the effect of reductions in BFP and ESF coverage due to current fiscal austerity on the U5MR, and compared this scenario with a scenario where these programmes maintain the levels of social protection by increasing or decreasing with the size of Brazil's vulnerable populations (policy response scenarios). We used fixed effects multivariate regression models including BFP and ESF coverage and accounting for secular trends, demographic and socioeconomic changes, and programme duration effects. With the maintenance of the levels of social protection provided by the BFP and ESF, in the most likely economic crisis scenario the U5MR is expected to be 8.57% (95% CI: 6.88%-10.24%) lower in 2030 than under fiscal austerity-a cumulative 19,732 (95% CI: 10,207-29,285) averted under-five deaths between 2017 and 2030. U5MRs from diarrhoea, malnutrition, and lower respiratory tract infections are projected to be 39.3% (95% CI: 36.9%-41.8%), 35.8% (95% CI: 31.5%-39.9%), and 8.5% (95% CI: 4.1%-12.0%) lower, respectively, in 2030 under the maintenance of BFP and ESF coverage, with 123,549 fewer under-five hospitalisations from all causes over the study period. Reduced coverage of the BFP and ESF will also disproportionately affect U5MR in the most vulnerable areas, with the U5MR in the poorest quintile of municipalities expected to be 11.0% (95% CI: 8.0%-13.8%) lower in 2030 under the maintenance of BFP and ESF levels of social protection than under fiscal austerity, compared to no difference in the richest quintile. Declines in health inequalities over the last decade will also stop under a fiscal austerity scenario: the U5MR concentration index is expected to remain stable over the period 2017-2030, compared to a 13.3% (95% CI: 5.6%-21.8%) reduction under the maintenance of BFP and ESF levels of protection. Limitations of our analysis are the ecological nature of the study, uncertainty around future macroeconomic scenarios, and potential changes in other factors affecting child health. A wide range of sensitivity analyses were conducted to minimise these limitations. The implementation of fiscal austerity measures in Brazil can be responsible for substantively higher childhood morbidity and mortality than expected under maintenance of social protection-threatening attainment of Sustainable Development Goals for child health and reducing inequality.
[Access to primary healthcare services: still a way to go].
Mendes, Antônio da Cruz Gouveia; Miranda, Gabriella Morais Duarte; Figueiredo, Karla Erika Gouveia; Duarte, Petra Oliveira; Furtado, Betise Mery Alencar Sousa Macau
2012-11-01
This study seeks to evaluate accessibility to the Basic Units of the Family Health Strategy (ESF-UB) and Traditional Basic Units (BU-T) in the city of Recife in 2009. Data were collected through three instruments: a roadmap for systematic observation of the units and questionnaires for users and professional units. This is a descriptive cross-sectional study using a quantitative approach, and 1180 users, 61 doctors and 56 nurses were interviewed. The results showed good ties and recognition of users whereby primary healthcare is seen as the access portal to the health system. In the comparison between ESF-UB and UB-T, evaluations are always more favorable to the family healthcare strategy, though with relatively insignificant differences. The overall result revealed widespread dissatisfaction with the difficulty of obtaining drugs and taking tests, and also with the waiting times and access to specialized care. This showed the existence of organizational problems that may constitute barriers limiting accessibility to basic healthcare services for users.
External kinetics of the kettlebell snatch in amateur lifters
Wilson, Cameron J.; Lorenzen, Christian
2017-01-01
Background Kettlebell lifting has gained increased popularity as both a form of resistance training and as a sport, despite the paucity of literature validating its use as a training tool. Kettlebell sport requires participants to complete the kettlebell snatch continuously over prolonged periods of time. Kettlebell sport and weightlifting involve similar exercises, however, their traditional uses suggest they are better suited to training different fitness qualities. This study examined the three-dimensional ground reaction force (GRF) and force applied to the kettlebell over a 6 min kettlebell snatch set in 12 kettlebell-trained males. Methods During this set, VICON was used to record the kettlebell trajectory with nine infrared cameras while the GRF of each leg was recorded with a separate AMTI force plate. Over the course of the set, an average of 13.9 ± 3.3 repetitions per minute were performed with a 24 kg kettlebell. Significance was evaluated with a two-way ANOVA and paired t-tests, whilst Cohen’s F (ESF) and Cohen’s D (ESD) were used to determine the magnitude. Results The applied force at the point of maximum acceleration was 814 ± 75 N and 885 ± 86 N for the downwards and upwards phases, respectively. The absolute peak resultant bilateral GRF was 1,746 ± 217 N and 1,768 ± 242 N for the downwards and upwards phases, respectively. Bilateral GRF of the first and last 14 repetitions was found to be similar, however there was a significant difference in the peak applied force (F (1.11) = 7.42, p = 0.02, ESF = 0.45). Unilateral GRF was found have a significant difference for the absolute anterior–posterior (F (1.11) = 885.15, p < 0.0001, ESF = 7) and medio-lateral force vectors (F (1.11) = 5.31, p = 0.042, ESF = 0.67). Discussion Over the course of a single repetition there were significant differences in the GRF and applied force at multiple points of the kettlebells trajectory. The kettlebell snatch loads each leg differently throughout a repetition and performing the kettlebell snatch for 6 min will result in a reduction in peak applied force. PMID:28367368
Sorjamaa, Anna; Kangasniemi, Marika; Sutinen, Meeri; Salo, Tuula; Liakka, Annikki; Lehenkari, Petri; Tapanainen, Juha S.; Vuolteenaho, Olli; Chen, Joseph C.; Lehtonen, Siri; Piltonen, Terhi T.
2017-01-01
Objective Intrinsic inflammatory characteristics play a pivotal role in stem cell recruitment and homing through migration where the subsequent change in niche has been shown to alter these characteristics. The bone marrow mesenchymal stem cells (bmMSCs) have been demonstrated to migrate to the endometrium contributing to the stem cell reservoir and regeneration of endometrial tissue. Thus, the aim of the present study was to compare the inflammation-driven migration and cytokine secretion profile of human bmMSCs to endometrial mesenchymal stem cells (eMSCs) and endometrial fibroblasts (eSFs). Materials and methods The bmMSCs were isolated from bone marrow aspirates through culturing, whereas eMSCs and eSFs were FACS-isolated. All cell types were tested for their surface marker, proliferation profiles and migration properties towards serum and inflammatory attractants. The cytokine/chemokine secretion profile of 35 targets was analysed in each cell type at basal level along with lipopolysaccharide (LPS)-induced state. Results Both stem cell types, bmMSCs and eMSCs, presented with similar stem cell surface marker profiles as well as possessed high proliferation and migration potential compared to eSFs. In multiplex assays, the secretion of 16 cytokine targets was detected and LPS stimulation expanded the cytokine secretion pattern by triggering the secretion of several targets. The bmMSCs exhibited higher cytokine secretion of vascular endothelial growth factor (VEGF)-A, stromal cell-derived factor-1 alpha (SDF)-1α, interleukin-1 receptor antagonist (IL-1RA), IL-6, interferon-gamma inducible protein (IP)-10, monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)1α and RANTES compared to eMSCs and/or eSFs after stimulation with LPS. The basal IL-8 secretion was higher in both endometrial cell types compared to bmMSCs. Conclusion Our results highlight that similar to bmMSCs, the eMSCs possess high migration activity while the differentiation process towards stromal fibroblasts seemed to result in loss of stem cell surface markers, minimal migration activity and a subtler cytokine profile likely contributing to normal endometrial function. PMID:28419140
External kinetics of the kettlebell snatch in amateur lifters.
Ross, James A; Keogh, Justin W L; Wilson, Cameron J; Lorenzen, Christian
2017-01-01
Kettlebell lifting has gained increased popularity as both a form of resistance training and as a sport, despite the paucity of literature validating its use as a training tool. Kettlebell sport requires participants to complete the kettlebell snatch continuously over prolonged periods of time. Kettlebell sport and weightlifting involve similar exercises, however, their traditional uses suggest they are better suited to training different fitness qualities. This study examined the three-dimensional ground reaction force (GRF) and force applied to the kettlebell over a 6 min kettlebell snatch set in 12 kettlebell-trained males. During this set, VICON was used to record the kettlebell trajectory with nine infrared cameras while the GRF of each leg was recorded with a separate AMTI force plate. Over the course of the set, an average of 13.9 ± 3.3 repetitions per minute were performed with a 24 kg kettlebell. Significance was evaluated with a two-way ANOVA and paired t -tests, whilst Cohen's F (ESF) and Cohen's D (ESD) were used to determine the magnitude. The applied force at the point of maximum acceleration was 814 ± 75 N and 885 ± 86 N for the downwards and upwards phases, respectively. The absolute peak resultant bilateral GRF was 1,746 ± 217 N and 1,768 ± 242 N for the downwards and upwards phases, respectively. Bilateral GRF of the first and last 14 repetitions was found to be similar, however there was a significant difference in the peak applied force ( F (1.11) = 7.42, p = 0.02, ESF = 0.45). Unilateral GRF was found have a significant difference for the absolute anterior-posterior ( F (1.11) = 885.15, p < 0.0001, ESF = 7) and medio-lateral force vectors ( F (1.11) = 5.31, p = 0.042, ESF = 0.67). Over the course of a single repetition there were significant differences in the GRF and applied force at multiple points of the kettlebells trajectory. The kettlebell snatch loads each leg differently throughout a repetition and performing the kettlebell snatch for 6 min will result in a reduction in peak applied force.
Hone, Thomas; Rasella, Davide; Barreto, Mauricio; Atun, Rifat; Majeed, Azeem; Millett, Christopher
2017-01-01
Strong health governance is key to universal health coverage. However, the relationship between governance and health system performance is underexplored. We investigated whether expansion of the Brazilian Estratégia de Saúde da Família (ESF; family health strategy), a community-based primary care program, reduced amenable mortality (mortality avoidable with timely and effective health care) and whether this association varied by municipal health governance. Fixed-effects longitudinal regression models were used to identify the relationship between ESF coverage and amenable mortality rates in 1,622 municipalities in Brazil over the period 2000-12. Municipal health governance was measured using indicators from a public administration survey, and the resulting scores were used in interactions. Overall, increasing ESF coverage from 0 percent to 100 percent was associated with a reduction of 6.8 percent in rates of amenable mortality, compared with no increase in ESF coverage. The reductions were 11.0 percent for municipalities with the highest governance scores and 4.3 percent for those with the lowest scores. These findings suggest that strengthening local health governance may be vital for improving health services effectiveness and health outcomes in decentralized health systems. Project HOPE—The People-to-People Health Foundation, Inc.
Zhou, Zhengyuan; Han, Na; Liu, Zhihui; Song, Zehai; Wu, Peng; Shao, Jingxuan; Zhang, Jia Ming; Yin, Jun
2016-04-01
In the present study, the in vitro antibacterial activity of an effective fraction (ESF) from Syringae Folium (SF) on Methicillin-resistant Staphylococcus aureus (MRSA) was evaluated and then its in vivo activity was evaluated by using the MRSA-infected mouse peritonitis model. The ESF showed a significant in vitro and in vivo activity on decreasing the Minimum Inhibitory Concentrations (MICs) and increasing the survival rate of mouse from 42.8% to 100%. Six iridoid glucosides (IGs) of ESF were characterized by UPLC-TOF-MS method and also isolated by column chromatography. Most of them showed in vitro anti MRSA activity. Syringopicroside (Sy), the major compound of IGs, was found to increase the survival rate from 42.8% to 92.8% of the MRSA-infected mouse, which revealed Sy is also the main active components of ESF. In order to know why the effect of oral administration of SF is better than its injections in clinic and the metabolites of Sy, seven metabolites of Sy were isolated from rat urine and identified on the basis of NMR and MS spectra. Most of metabolites possessed stronger in vitro anti-MRSA activity than that of Sy, which furtherly proved the clinical result. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Joseph C.; Johnson, Brittni A.; Erikson, David W.; Piltonen, Terhi T.; Barragan, Fatima; Chu, Simon; Kohgadai, Nargis; Irwin, Juan C.; Greene, Warner C.; Giudice, Linda C.; Roan, Nadia R.
2014-01-01
STUDY QUESTION How does seminal plasma (SP) affect the transcriptome of human primary endometrial epithelial cells (eEC) and stromal fibroblasts (eSF)? SUMMARY ANSWER Exposure of eEC and eSF to SP in vitro increases expression of genes and secreted proteins associated with cellular migration, proliferation, viability and inhibition of cell death. WHAT IS KNOWN ALREADY Studies in both humans and animals suggest that SP can access and induce physiological changes in the upper female reproductive tract (FRT), which may participate in promoting reproductive success. STUDY DESIGN, SIZE, DURATION This is a cross sectional study involving control samples versus treatment. SP (pooled from twenty donors) was first tested for dose- and time-dependent cytotoxic effects on eEC and eSF (n = 4). As exposure of eEC or eSF to 1% SP for 6 h proved to be non-toxic, a second set of eEC/eSF samples (n = 4) was treated under these conditions for transcriptome, protein and functional analysis. With a third set of samples (n = 3), we further compared the transcriptional response of the cells to SP versus fresh semen. PARTICIPANTS/MATERIALS, SETTING, METHODS eEC and eSF were isolated from endometrial biopsies from women of reproductive age undergoing benign gynecologic procedures and maintained in vitro. RNA was isolated and processed for microarray studies to analyze global transcriptomic changes. Secreted factors in conditioned media from SP-treated cells were analyzed by Luminex and for the ability to stimulate migration of CD14+ monocytes and CD4+ T cells. MAIN RESULTS AND THE ROLE OF CHANCE Pathway identifications were determined using the Z-scoring system in Ingenuity Pathways Analysis (Z scores ≥|1.5|). SP induced transcriptomic changes (P < 0.05) associated with promoting leukocyte and endothelial cell recruitment, and proliferation of eEC and eSF. Cell viability pathways were induced, while those associated with cell death were suppressed (P < 0.05). SP and fresh semen induced similar sets of pathways, suggesting that SP can model the signaling effects of semen in the endometrium. SP also induced secretion of pro-inflammatory and pro-chemotactic cytokines, as well as pro-angiogenic and proliferative growth factors (P < 0.05) in both eEC and eSF. Finally, functional assays revealed that conditioned media from SP-treated eEC and eSF significantly increased (P < 0.05) chemotaxis of CD14+ monocytes and CD4+ T cells. LIMITATIONS, REASONS FOR CAUTION This study is limited to in vitro analyses of the effects of SP on endometrial cells. In addition, the measured response to SP was conducted in the absence of the ovarian hormones estradiol and progesterone, as well as epithelial-stromal paracrine signaling. While this study focused on establishing the baseline cellular response of endometrial cells to SP, future work should assess how hormone signaling in the presence of appropriate paracrine interactions affects SP-induced genes in these cells. WIDER IMPLICATIONS OF THE FINDINGS The results of this study support previous findings that SP and semen contain bioactive factors capable of eliciting chemotactic responses in the uterus, which can lead to recruitment of leukocytes to the endometrium. Future directions will explore if similar changes in gene expression do indeed occur after coitus in vivo, and how the signaling cascades initiated by SP in the endometrium can affect reproductive success, female reproductive health and susceptibility to sexually transmitted diseases. The gene list provided by the transcriptome analysis reported here should prove a valuable resource for understanding the response of the upper FRT to SP exposure. STUDY FUNDING/COMPETING INTEREST(S) This project was supported by NIH AI083050-04 (W.C.G./L.C.G.); NIH U54HD 055764 (L.C.G.); NIH 1F32HD074423-02 (J.C.C.); DOD W81XWH-11-1-0562 (W.C.G.); NIH 5K12-DK083021-04, NIH 1K99AI104262-01A1, The UCSF Hellman Award (N.R.R.). The authors have nothing to disclose. PMID:24626806
2013-12-01
Public Health Emergency Activations 2004–2013 ...................................54 Table 3. MS ESF-8/What, Who, and Why...trainings, activations , etc. Additionally, the MS public health districts have ESF-8 databases of contacts that have been built over the years from...entities together to discuss the formalization of a state-level healthcare coalition. During this meeting, two primary activities occurred that were
The Global Economic Crisis: Impact on Sub-Saharan Africa and Global Policy Responses
2009-10-19
concessional lending facilities, the Poverty Reduction and Growth Facility ( PRGF ) and the Exogenous Shocks Facility (ESF).99 Figure 12. IMF Concessional Loans...to Africa Billions of Dollars Source: International Monetary Fund. Notes: Amounts are the total amount of outstanding PRGF and ESF loans to...99 PRGF loans are intended to help low-income countries address balance of payments concerns, such as those created by the financial crisis. Unlike
Random Evolutionary Dynamics Driven by Fitness and House-of-Cards Mutations: Sampling Formulae
NASA Astrophysics Data System (ADS)
Huillet, Thierry E.
2017-07-01
We first revisit the multi-allelic mutation-fitness balance problem, especially when mutations obey a house of cards condition, where the discrete-time deterministic evolutionary dynamics of the allelic frequencies derives from a Shahshahani potential. We then consider multi-allelic Wright-Fisher stochastic models whose deviation to neutrality is from the Shahshahani mutation/selection potential. We next focus on the weak selection, weak mutation cases and, making use of a Gamma calculus, we compute the normalizing partition functions of the invariant probability densities appearing in their Wright-Fisher diffusive approximations. Using these results, generalized Ewens sampling formulae (ESF) from the equilibrium distributions are derived. We start treating the ESF in the mixed mutation/selection potential case and then we restrict ourselves to the ESF in the simpler house-of-cards mutations only situation. We also address some issues concerning sampling problems from infinitely-many alleles weak limits.
An Experiment Support Computer for Externally-Based ISS Payloads
NASA Astrophysics Data System (ADS)
Sell, S. W.; Chen, S. E.
2002-01-01
The Experiment Support Facility - External (ESF-X) is a computer designed for general experiment use aboard the International Space Station (ISS) Truss Site locations. The ESF-X design is highly modular and uses commercial off-the-shelf (COTS) components wherever possible to allow for maximum reconfigurability to meet the needs of almost any payload. The ESF-X design has been developed with the EXPRESS Pallet as the target location and the University of Colorado's Micron Accuracy Deployment Experiment (MADE) as the anticipated first payload and capability driver. Thus the design presented here is configured for structural dynamics and control as well as optics experiments. The ESF-X is a small (58.4 x 48.3 x 17.8") steel and copper enclosure which houses a 14 slot VME card chassis and power supply. All power and data connections are made through a single panel on the enclosure so that only one side of the enclosure must be accessed for nominal operation and servicing activities. This feature also allows convenient access during integration and checkout activities. Because it utilizes a standard VME backplane, ESF-X can make use of the many commercial boards already in production for this standard. Since the VME standard is also heavily used in industrial and military applications, many ruggedized components are readily available. The baseline design includes commercial processors, Ethernet, MIL-STD-1553, and mass storage devices. The main processor board contains four TI 6701 DSPs with a PowerPC based controller. Other standard functions, such as analog-to-digital, digital-to-analog, motor driver, temperature readings, etc., are handled on industry-standard IP modules. Carrier cards, which hold 4 IP modules each, are placed in slots in the VME backplane. A unique, custom IP carrier board with radiation event detectors allows non RAD-hard components to be used in an extended exposure environment. Thermal control is maintained by conductive cooling through the copper floor of the enclosure. All components, including the VME backplane, are thermally connected to the floor. The VME chassis can accept both conduction-cooled and convection cooled cards; non-conduction-cooled cards are simply thermal-strapped to the VME chassis. The current ESF-X configuration provides 44 high-rate A/D, 48 low-rate temperature RTDs, 32 digital IO channels (DIO), as well as drivers for digital position encoders, video frame grabbers, an optical interferometry system, stepper motors, paraffin actuators, high torque DC brushless motors, and piezoelectric actuators based on capability demands derived from the MADE program. ESF-X is presently in the critical design phase; potential users are welcome to submit comments and capability requests.
Visual discomfort while watching stereoscopic three-dimensional movies at the cinema.
Zeri, Fabrizio; Livi, Stefano
2015-05-01
This study investigates discomfort symptoms while watching Stereoscopic three-dimensional (S3D) movies in the 'real' condition of a cinema. In particular, it had two main objectives: to evaluate the presence and nature of visual discomfort while watching S3D movies, and to compare visual symptoms during S3D and 2D viewing. Cinema spectators of S3D or 2D films were interviewed by questionnaire at the theatre exit of different multiplex cinemas immediately after viewing a movie. A total of 854 subjects were interviewed (mean age 23.7 ± 10.9 years; range 8-81 years; 392 females and 462 males). Five hundred and ninety-nine of them viewed different S3D movies, and 255 subjects viewed a 2D version of a film seen in S3D by 251 subjects from the S3D group for a between-subjects design for that comparison. Exploratory factor analysis revealed two factors underlying symptoms: External Symptoms Factors (ESF) with a mean ± S.D. symptom score of 1.51 ± 0.58 comprised of eye burning, eye ache, eye strain, eye irritation and tearing; and Internal Symptoms Factors (ISF) with a mean ± S.D. symptom score of 1.38 ± 0.51 comprised of blur, double vision, headache, dizziness and nausea. ISF and ESF were significantly correlated (Spearman r = 0.55; p = 0.001) but with external symptoms significantly higher than internal ones (Wilcoxon Signed-ranks test; p = 0.001). The age of participants did not significantly affect symptoms. However, females had higher scores than males for both ESF and ISF, and myopes had higher ISF scores than hyperopes. Newly released movies provided lower ESF scores than older movies, while the seat position of spectators had minimal effect. Symptoms while viewing S3D movies were significantly and negatively correlated to the duration of wearing S3D glasses. Kruskal-Wallis results showed that symptoms were significantly greater for S3D compared to those of 2D movies, both for ISF (p = 0.001) and for ESF (p = 0.001). In short, the analysis of the symptoms experienced by S3D movie spectators based on retrospective visual comfort assessments, showed a higher level of external symptoms (eye burning, eye ache, tearing, etc.) when compared to the internal ones that are typically more perceptual (blurred vision, double vision, headache, etc.). Furthermore, spectators of S3D movies reported statistically higher symptoms when compared to 2D spectators. © 2015 The Authors Ophthalmic & Physiological Optics © 2015 The College of Optometrists.
Prototype Engineered Barrier System Field Test (PEBSFT); Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez, A.L.; Buscheck, T.; Carlson, R.
1991-08-01
This final report represents a summary of data and interpretations obtained from the Prototype Engineered Barrier System Field Test (PEBSFT) performed in G-Tunnel within the Nevada Test Site. The PEBSFT was conducted to evaluate the applicability of measurement techniques, numerical models, and procedures developed for future field tests that will be conducted in the Exploratory Studies Facilities (ESF) at Yucca Mountain. The primary objective of the test was to provide a basis for determining whether tests planned for the ESF have the potential to be successful. Chapter 1 on high frequency electromagnetic tomography discusses the rock mass electromagnetic permittivity andmore » attenuation rate changes that were measured to characterize the water distribution in the near field of a simulated waste container. The data are used to obtain quantitative estimates of how the moisture content in the rock mass changes during heating and to infer properties of the spatial variability of water distribution, leading to conclusions about the role of fractures in the system. Chapter 2 discusses the changes in rock moisture content detected by the neutron logging probe. Chapter 3 permeability tests discusses the characterization of the in-situ permeability of the fractured tuff around the borehole. The air permeability testing apparatus, the testing procedures, and the data analysis are presented. Chapter 4 describes the moisture collection system installed in the heater borehole to trap and measure the moisture volumes. Chapter 5 describes relative humidity measurements made with the thermocouple psychrometer and capacitance sensors. Chapter 6 discusses gas pressure measurements in the G-Tunnel, addressing the calibration and installation of piezoresistive-gaged transducers. Chapter 7 describes the calibration and installation of thermocouples for temperature measurements. Chapter 8 discusses the results of the PEBSFT.« less
Paes-Sousa, Romulo; Ocké-Reis, Carlos Octávio; Millett, Christopher
2018-01-01
Background Since 2015, a major economic crisis in Brazil has led to increasing poverty and the implementation of long-term fiscal austerity measures that will substantially reduce expenditure on social welfare programmes as a percentage of the country’s GDP over the next 20 years. The Bolsa Família Programme (BFP)—one of the largest conditional cash transfer programmes in the world—and the nationwide primary healthcare strategy (Estratégia Saúde da Família [ESF]) are affected by fiscal austerity, despite being among the policy interventions with the strongest estimated impact on child mortality in the country. We investigated how reduced coverage of the BFP and ESF—compared to an alternative scenario where the level of social protection under these programmes is maintained—may affect the under-five mortality rate (U5MR) and socioeconomic inequalities in child health in the country until 2030, the end date of the Sustainable Development Goals. Methods and findings We developed and validated a microsimulation model, creating a synthetic cohort of all 5,507 Brazilian municipalities for the period 2017–2030. This model was based on the longitudinal dataset and effect estimates from a previously published study that evaluated the effects of poverty, the BFP, and the ESF on child health. We forecast the economic crisis and the effect of reductions in BFP and ESF coverage due to current fiscal austerity on the U5MR, and compared this scenario with a scenario where these programmes maintain the levels of social protection by increasing or decreasing with the size of Brazil’s vulnerable populations (policy response scenarios). We used fixed effects multivariate regression models including BFP and ESF coverage and accounting for secular trends, demographic and socioeconomic changes, and programme duration effects. With the maintenance of the levels of social protection provided by the BFP and ESF, in the most likely economic crisis scenario the U5MR is expected to be 8.57% (95% CI: 6.88%–10.24%) lower in 2030 than under fiscal austerity—a cumulative 19,732 (95% CI: 10,207–29,285) averted under-five deaths between 2017 and 2030. U5MRs from diarrhoea, malnutrition, and lower respiratory tract infections are projected to be 39.3% (95% CI: 36.9%–41.8%), 35.8% (95% CI: 31.5%–39.9%), and 8.5% (95% CI: 4.1%–12.0%) lower, respectively, in 2030 under the maintenance of BFP and ESF coverage, with 123,549 fewer under-five hospitalisations from all causes over the study period. Reduced coverage of the BFP and ESF will also disproportionately affect U5MR in the most vulnerable areas, with the U5MR in the poorest quintile of municipalities expected to be 11.0% (95% CI: 8.0%–13.8%) lower in 2030 under the maintenance of BFP and ESF levels of social protection than under fiscal austerity, compared to no difference in the richest quintile. Declines in health inequalities over the last decade will also stop under a fiscal austerity scenario: the U5MR concentration index is expected to remain stable over the period 2017–2030, compared to a 13.3% (95% CI: 5.6%–21.8%) reduction under the maintenance of BFP and ESF levels of protection. Limitations of our analysis are the ecological nature of the study, uncertainty around future macroeconomic scenarios, and potential changes in other factors affecting child health. A wide range of sensitivity analyses were conducted to minimise these limitations. Conclusions The implementation of fiscal austerity measures in Brazil can be responsible for substantively higher childhood morbidity and mortality than expected under maintenance of social protection—threatening attainment of Sustainable Development Goals for child health and reducing inequality. PMID:29787574
The Global Economic Crisis: Impact on Sub-Saharan Africa and Global Policy Responses
2009-08-25
facilities, the Poverty Reduction and Growth Facility ( PRGF ) and the Exogenous Shocks Facility (ESF).88 Figure 11. IMF Concessional Loans to Africa...Billions of Dollars Source: International Monetary Fund. Notes: Amounts are the total amount of outstanding PRGF and ESF loans to African countries...the Needs of Low-Income Countries,” July 29, 2009. 87 CRS Report RS22534, The Multilateral Debt Relief Initiative, by Martin A. Weiss. 88 PRGF loans
Ecological Realism of US EPA Experimental Stream Facility ...
The USEPA’s Experimental Stream Facility (ESF) conducts meso-scale ecotoxicology studies that account for both structural and functional responses of whole stream communities to contaminants or other stressors. The 16 mesocosms of ESF are indoors and consist of a tiled run section (0.152 m W x 4.268 m L x 0.105 m D) that widens to a gravel riffle section (0.305 m W x 4.268 m L x 0.19 m D). They are intermediate size among studies reporting stream mesocosm results. Their set-up is unique for their size, with a high degree of engineering controls for continuous flow-through dose-response designs, yet fixed, chronic exposures to contaminants under conditions that quantifiably mimic real stream riffle/run habitat with consistent upstream renewal. With fifty standard operating procedures serving ESF studies, the background and boundary condition information is collected to determine the realism critical to the field relevance of the results. Parallel ex situ and in situ single species exposure formats including fish survival and fecundity metrics are also included. With this framework studies at ESF provide scientifically defensible evaluation of proposed aquatic life criteria. This presentation discusses the relevance and realism of USEPA's mesocosms studies conducted using the Experimental Stream Facility in Milford, OH within the context of understanding the role meso-scale results can play in validating aquatic life criteria for streams and, more generally, man
New aspects of the ionospheric irregularities observed with the Equatorial Atmosphere Radar
NASA Astrophysics Data System (ADS)
Fukao, S.
2003-04-01
Coherent radar observations of 3-m equatorial spread F (ESF) irregularities have been conducted with the Equatorial Atmosphere Radar (EAR) in the West Pacific (0.2oS, 100.32oW; geomagnetic latitude 10.63oS) since November 2002. The EAR has a peak output power of 100~kW and a circular antenna array approximately 110~m in diameter. An active phased-array antenna system enables it to view perpendicular to the geomagnetic field in a fan-shaped altitude-longitude sector which extends over 600~km at the altitude of 500~km. The purpose of this paper is to present some preliminary results obtained with this radar. First, the EAR observed that ESF irregularities with east-west scale sizes of 100-500~km usually appeared after sunset and traversed with a speed of the order of 100 m/s from west to east. They considerably changed their shapes, but the shapes of well-matured irregularities are, in general, quite similar to those inferred from altitude-time sections obtained simultaneously. Second, a tiny structure born within the sector was followed during its growth, and the growth rate was estimated to be 7x10-3/sec, the same order of magnitude as that of the gravitational Rayleigh-Taylor instability. Third, plasma bubbles as tall as 800~km in altitude (their maximum apex altitude is about 1300~km) appeared without being accompanied by any upwelling below which is usually observed at other longitudes. This result indicates that the ESF irregularities are first generated at the equator and rapidly rise upward involving higher latitude regions connected with the same geomagnetic field lines. Finally, an intense ESF irregularity was observed after sunrise, which moved first toward the pole and then disappeared to the west. Its growth rate is similar to the nocturnal irregularity. It will be interesting to investigate these new aspects of the ESF irregularities in this longitude for elucidation of their generation mechanism.
Effect of Streamflow Forecast Uncertainty on Real-Time Reservoir Operation
NASA Astrophysics Data System (ADS)
Zhao, T.; Cai, X.; Yang, D.
2010-12-01
Various hydrological forecast products have been applied to real-time reservoir operation, including deterministic streamflow forecast (DSF), DSF-based probabilistic streamflow forecast (DPSF), and ensemble streamflow forecast (ESF), which represent forecast uncertainty in the form of deterministic forecast error, deterministic forecast error-based uncertainty distribution, and ensemble forecast errors, respectively. Compared to previous studies that treat these forecast products as ad hoc inputs for reservoir operation models, this paper attempts to model the uncertainties involved in the various forecast products and explores their effect on real-time reservoir operation decisions. In hydrology, there are various indices reflecting the magnitude of streamflow forecast uncertainty; meanwhile, few models illustrate the forecast uncertainty evolution process. This research introduces Martingale Model of Forecast Evolution (MMFE) from supply chain management and justifies its assumptions for quantifying the evolution of uncertainty in streamflow forecast as time progresses. Based on MMFE, this research simulates the evolution of forecast uncertainty in DSF, DPSF, and ESF, and applies the reservoir operation models (dynamic programming, DP; stochastic dynamic programming, SDP; and standard operation policy, SOP) to assess the effect of different forms of forecast uncertainty on real-time reservoir operation. Through a hypothetical single-objective real-time reservoir operation model, the results illustrate that forecast uncertainty exerts significant effects. Reservoir operation efficiency, as measured by a utility function, decreases as the forecast uncertainty increases. Meanwhile, these effects also depend on the type of forecast product being used. In general, the utility of reservoir operation with ESF is nearly as high as the utility obtained with a perfect forecast; the utilities of DSF and DPSF are similar to each other but not as efficient as ESF. Moreover, streamflow variability and reservoir capacity can change the magnitude of the effects of forecast uncertainty, but not the relative merit of DSF, DPSF, and ESF. Schematic diagram of the increase in forecast uncertainty with forecast lead-time and the dynamic updating property of real-time streamflow forecast
Yu, Qianqian; Cheng, Nengneng; Ni, Xiaojun
2013-11-01
Zhixue capsule is a prescription for hemorrhoid commonly used in traditional Chinese medicine. This drug was recalled by the State Food and Drug Administration in 2008 because of severe adverse hepatic reactions. Zhixue capsule is composed of ethanol extracts of Cortex Dictamni (ECD) and Sophora flavescens (ESF). In our preliminary study, we observed the hepatotoxic effects of ESF on rat primary hepatocytes. However, ECD did not exhibit hepatotoxicity at the same concentration range. In this study, ESF was evaluated for its potential hepatotoxic effects on rats. Bioassay-guided isolation was used to identify the material basis for hepatotoxicity. Treatment with 1.25 g/kg and 2.5 g/kg ESF significantly elevated the alanine aminotransferase and aspartate aminotransferase levels in the serum. The changes in the levels of transaminases were supported by the remarkable fatty degeneration of liver histopathology. Further investigations using bioassay-guided isolation and analysis indicated that prenylated flavanones accounted for the positive hepatotoxic results. Two isolated compounds were identified, kurarinone and sophoraflavanone G, using nuclear magnetic resonance and mass spectrometry techniques. These compounds have potent toxic effects on primary rat hepatocytes (with IC50 values of 29.9 μM and 16.5 μM) and human HL-7702 liver cells (with IC50 values of 48.2 μM and 40.3 μM), respectively. Consequently, the hepatotoxic constituents of S. flavescens were determined to be prenylated flavanones, kurarinone, and sophoraflavanone G. © 2013 Institute of Food Technologists®
Hone, Thomas; Rasella, Davide; Barreto, Mauricio L; Majeed, Azeem; Millett, Christopher
2017-05-01
Universal health coverage (UHC) can play an important role in achieving Sustainable Development Goal (SDG) 10, which addresses reducing inequalities, but little supporting evidence is available from low- and middle-income countries. Brazil's Estratégia de Saúde da Família (ESF) (family health strategy) is a community-based primary healthcare (PHC) programme that has been expanding since the 1990s and is the main platform for delivering UHC in the country. We evaluated whether expansion of the ESF was associated with differential reductions in mortality amenable to PHC between racial groups. Municipality-level longitudinal fixed-effects panel regressions were used to examine associations between ESF coverage and mortality from ambulatory-care-sensitive conditions (ACSCs) in black/pardo (mixed race) and white individuals over the period 2000-2013. Models were adjusted for socio-economic development and wider health system variables. Over the period 2000-2013, there were 281,877 and 318,030 ACSC deaths (after age standardisation) in the black/pardo and white groups, respectively, in the 1,622 municipalities studied. Age-standardised ACSC mortality fell from 93.3 to 57.9 per 100,000 population in the black/pardo group and from 75.7 to 49.2 per 100,000 population in the white group. ESF expansion (from 0% to 100%) was associated with a 15.4% (rate ratio [RR]: 0.846; 95% CI: 0.796-0.899) reduction in ACSC mortality in the black/pardo group compared with a 6.8% (RR: 0.932; 95% CI: 0.892-0.974) reduction in the white group (coefficients significantly different, p = 0.012). These differential benefits were driven by greater reductions in mortality from infectious diseases, nutritional deficiencies and anaemia, diabetes, and cardiovascular disease in the black/pardo group. Although the analysis is ecological, sensitivity analyses suggest that over 30% of black/pardo deaths would have to be incorrectly coded for the results to be invalid. This study is limited by the use of municipal-aggregate data, which precludes individual-level inference. Omitted variable bias, where factors associated with ESF expansion are also associated with changes in mortality rates, may have influenced our findings, although sensitivity analyses show the robustness of the findings to pre-ESF trends and the inclusion of other municipal-level factors that could be associated with coverage. PHC expansion is associated with reductions in racial group inequalities in mortality in Brazil. These findings highlight the importance of investment in PHC to achieve the SDGs aimed at improving health and reducing inequalities.
NASA Astrophysics Data System (ADS)
Boeckx, P.; Rasse, D.; Jandl, R.
2009-04-01
One of the activities of the European Science Foundation (ESF, www.esf.org) is developing European scale Research Networking Programmes (RNPs). RNPs lay the foundation for nationally funded research groups to address major scientific and research infrastructure issues, in order to advance the frontiers of existing science. MOLTER (www.esf.org/molter or www.molter.no) is such an RNP. MOLTER stands for "Natural molecular structures as drivers and tracers of terrestrial C fluxes" aims at stimulating the use of isotopic and organic chemistry to study carbon stabilization and biogeochemistry in terrestrial ecosystems and soils in particular. The understanding of the formation, stabilization and decomposition of complex organic compounds in the environment is currently being revolutionized by advanced techniques in identification, quantification, and origin tracing of functional groups and individual molecules. MOLTER focuses on five major research themes: - Molecular composition and turnover time of soil organic matter; - Plant molecular structures as drivers of C stabilisation in soils; - Fire transformations of plant and soil molecular structures - Molecular markers in soils; - Dissolved organic molecules in soils: origin, functionality and transport. These research themes are covered via the following activities: - Organisation of international conferences; - Organisation of specific topical workshops; - Organisation of summer schools for PhD students; - Short- and long-term exchange grants for scientists. MOLTER is supported by research funding or performing agencies from Austria, Belgium, France, Germany, the Netherlands, Norway, Romania, Spain, Sweden, Switzerland and the United Kingdom. The ESF is also the implementing agency of COST (European Cooperation in Science and Technology, www.cost.esf.org), one of the longest-running European instruments supporting cooperation among scientists and researchers across Europe. COST Action 639 "Greenhouse gas budget of soils under changing climate and land use" (BurnOut) (www.cost.esf.org/domains_actions/essem/Actions/changing_climate or bfw.ac.at/rz/bfwcms.web?dok=5906) BurnOut aims at improving the management of greenhouse gas emissions from European soils under different regimes of ecosystem disturbances and land-use change. This will allow the identification of soil and site conditions (hot spots) that are vulnerable to greenhouse gas emissions. The specific objectives are: - Identification of hot spots of greenhouse gas emissions from soils; - Identification of soil and site conditions that are vulnerable to GHG emissions; - Development of an advanced greenhouse gas reporting concept across different of land forms, land use and land use changes; - Communication of policy relevant GHG reporting concepts; Burnout covers the following activities: - Organisation of specific topical workshops; - Short-term scientific visits for scientists. Participating countries in BurnOut are: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Estonia, Finland, Germany, Greece, Hungary, Ireland, Israel, Italy, Lithuania, Netherlands, Norway, Portugal, Romania, Slovak Republic, Slovenia, Spain, Spain, Sweden, Switzerland, Turkey, United Kingdom, Russian Federation, and Bosnia Herzegovina. During this oral presentation, possible lines of cooperation, opportunities and recent achievements will be exemplified and the audience will be invited to contribute their views on these initiatives.
Behavior of Materials at Cold Regions Temperatures. Part 1. Program Rationale and Test Plan
1988-07-01
10 15 i" 0% I 0 0 0 2 3 4 5a 0 1 2 3 4 5 6 7 lf CSTRAIN (IN/INbST AI OW N V, Figure B47. Static stress vs strain curves for resilient expanded ... polystyrene foam (Resilo-Pak) , at temperature extremes (0.5, 0. 75 and 1.3 lb Ifft3 densities) (Titus 1967). so ,eSF 50 -- 8 * TEMPERATURE. K 0 so 100 is
Identification and characteristics of patients with palliative care needs in Brazilian primary care.
Marcucci, Fernando C I; Cabrera, Marcos A S; Perilla, Anamaria Baquero; Brun, Marilia Maroneze; de Barros, Eder Marcos L; Martins, Vanessa M; Rosenberg, John P; Yates, Patsy
2016-06-01
The Brazilian healthcare system offers universal coverage but lacks information about how patients with PC needs are serviced by its primary care program, Estratégia Saúde da Família (ESF). Cross-sectional study in community settings. Patients in ESF program were screened using a Palliative Care Screening Tool (PCST). Included patients were assessed with Karnofsky Performance Scale (KPS), Edmonton Symptom Assessment System (ESAS) and Palliative Care Outcome Scale (POS). Patients with PC needs are accessing the ESF program regardless of there being no specific PC support provided. From 238 patients identified, 73 (43 women, 30 men) were identified as having a need for PC, and the mean age was 77.18 (95 % Confidence Interval = ±2,78) years, with non-malignant neurologic conditions, such as dementia and cerebrovascular diseases, being the most common (53 % of all patients). Chronic conditions (2 or more years) were found in 70 % of these patients, with 71 % scoring 50 or less points in the KPS. Overall symptom intensity was low, with the exception of some cases with moderate and high score, and POS average score was 14.16 points (minimum = 4; maximum = 28). Most patients received medication and professional support through the primary care units, but limitations of services were identified, including lack of home visits and limited multi-professional approaches. Patients with PC needs were identified in ESF program. Basic health care support is provided but there is a lack of attention to some specific needs. PC policies and professional training should be implemented to improve this area.
Impact of Stratospheric Sudden Warming on the Occurrence of the Equatorial Spread-F
NASA Astrophysics Data System (ADS)
Jose, Lijo; Vineeth, C.; Pant, T. K.
2017-12-01
This study presents the influence of stratospheric sudden warming (SSW) events in modulating the start time of the equatorial spread-F (ESF) through enhanced planetary wave (PW) activity during the winter months of the SSW years. The analysis based on the data from a digital ionosonde and proton precession magnetometer over Trivandrum (8.5°N, 77°E, 0.5°N dip lat.) revealed that the PWs of quasi-16 day periodicity influence the start time of the ESF to a significant extent during the SSW years. On the other hand, during a normal year such effect is not very evidently present. It has been observed that the quasi-16 day wave propagates to ionospheric dynamo region from the atmosphere below and modifies the electrodynamical processes like the equatorial electrojet and prereversal enhancement, which is more pronounced during both the SSW periods. Such a modification in the electrodynamics can modulate the equatorial plasma fountain and influence the F region neutral dynamics, which in turn can affect the occurrence of ESF by modifying the seeding conditions.
Rasella, Davide; Millett, Christopher
2017-01-01
Background Universal health coverage (UHC) can play an important role in achieving Sustainable Development Goal (SDG) 10, which addresses reducing inequalities, but little supporting evidence is available from low- and middle-income countries. Brazil’s Estratégia de Saúde da Família (ESF) (family health strategy) is a community-based primary healthcare (PHC) programme that has been expanding since the 1990s and is the main platform for delivering UHC in the country. We evaluated whether expansion of the ESF was associated with differential reductions in mortality amenable to PHC between racial groups. Methods and findings Municipality-level longitudinal fixed-effects panel regressions were used to examine associations between ESF coverage and mortality from ambulatory-care-sensitive conditions (ACSCs) in black/pardo (mixed race) and white individuals over the period 2000–2013. Models were adjusted for socio-economic development and wider health system variables. Over the period 2000–2013, there were 281,877 and 318,030 ACSC deaths (after age standardisation) in the black/pardo and white groups, respectively, in the 1,622 municipalities studied. Age-standardised ACSC mortality fell from 93.3 to 57.9 per 100,000 population in the black/pardo group and from 75.7 to 49.2 per 100,000 population in the white group. ESF expansion (from 0% to 100%) was associated with a 15.4% (rate ratio [RR]: 0.846; 95% CI: 0.796–0.899) reduction in ACSC mortality in the black/pardo group compared with a 6.8% (RR: 0.932; 95% CI: 0.892–0.974) reduction in the white group (coefficients significantly different, p = 0.012). These differential benefits were driven by greater reductions in mortality from infectious diseases, nutritional deficiencies and anaemia, diabetes, and cardiovascular disease in the black/pardo group. Although the analysis is ecological, sensitivity analyses suggest that over 30% of black/pardo deaths would have to be incorrectly coded for the results to be invalid. This study is limited by the use of municipal-aggregate data, which precludes individual-level inference. Omitted variable bias, where factors associated with ESF expansion are also associated with changes in mortality rates, may have influenced our findings, although sensitivity analyses show the robustness of the findings to pre-ESF trends and the inclusion of other municipal-level factors that could be associated with coverage. Conclusions PHC expansion is associated with reductions in racial group inequalities in mortality in Brazil. These findings highlight the importance of investment in PHC to achieve the SDGs aimed at improving health and reducing inequalities. PMID:28557989
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Walker, Sandra P.
2009-01-01
The objective of the present study was to determine whether infrared imaging (IR) surface temperature data obtained during arc-jet tests of Space Shuttle Orbiter s reinforced carbon-carbon (RCC) wing leading edge panel slip-side joggle region could be used to detect presence of subsurface material separation, and if so, to determine when separation occurs during the simulated entry profile. Recent thermostructural studies have indicated thermally induced interlaminar normal stress concentrations at the substrate/coating interface in the curved joggle region can result in local subsurface material separation, with the separation predicted to occur during approach to peak heating during reentry. The present study was an attempt to determine experimentally when subsurface material separations occur. A simplified thermal model of a flat RCC panel with subsurface material separation was developed and used to infer general surface temperature trends due to the presence of subsurface material separation. IR data from previously conducted arc-jet tests on three test specimens were analyzed: one without subsurface material separation either pre or post test, one with pre test separation, and one with separation developing during test. The simplified thermal model trend predictions along with comparison of experimental IR data of the three test specimens were used to successfully infer material separation from the arc-jet test data. Furthermore, for the test specimen that had developed subsurface material separation during the arc-jet tests, the initiation of separation appeared to occur during the ramp up to the peak heating condition, where test specimen temperature went from 2500 to 2800 F.
Disturbance dynamo effects over low-latitude F region: A study by network of VHF spaced receivers
NASA Astrophysics Data System (ADS)
Kakad, B.; Surve, G.; Tiwari, P.; Yadav, V.; Bhattacharyya, A.
2017-05-01
Generation of equatorial spread F (ESF) irregularities resulting from magnetic disturbance is known for past few decades. However, better prediction models for this phenomenon are still lacking. Magnetic storms also affects the F region plasma drifts. In this work we examined variability in (i) occurrence of such freshly generated ESF and (ii) low-latitude F region zonal plasma drifts over Indian longitude. For this purpose simultaneous observations of amplitude scintillations on 251 MHz signal, recorded by a network of spaced receivers located at low-latitude stations, are utilized. Observational stations are situated such that it longitudinally (latitudinally) covers an area of 5.6° (13°). Here effect of disturbance dynamo (DD) electric field at low-latitude F region and its variability are studied for three magnetic storms occurring in 2011. These magnetic storms are having nearly similar type characteristics except their start time. We find that as time difference (i.e., ΔT) between local sunset and start of magnetic activity decreases, the DD effects seen at low-latitude F region zonal irregularity drift around midnight becomes stronger. For a given magnetic storm the DD effect on F region zonal irregularity drifts is found to be only marginally stronger at dip equator in comparison to off-equatorial stations. Although effect of DD on F region zonal irregularity drifts are felt simultaneously, generation of fresh ESF is variable within a smaller longitudinal belt of 5.6°. It is attributed to the presence of LSWS at the bottomside of F region, as initiation of ESF is highly likely (unlikely) in the vicinity of crest (trough) of such LSWS.
Catino, Arthur
2010-12-01
Natural Products Chemistry, Biology and Medicine III was the third conference in a series of events sponsored by the European Science Foundation (ESF) and the European Cooperation in the field of Scientific and Technical Research (COST). Scientists came together from within and outside the EU to present cutting-edge developments in chemical synthesis. Research areas included the synthesis of natural products, methods development, isolation/structural elucidation and chemical biology. As our capacity to produce new chemotherapeutic agents relies on chemical synthesis, this year's conference has never been so timely. This report highlights several of the scientific contributions presented during the meeting.
Space weather at Low Latitudes: Considerations to improve its forecasting
NASA Astrophysics Data System (ADS)
Chau, J. L.; Goncharenko, L.; Valladares, C. E.; Milla, M. A.
2013-05-01
In this work we present a summary of space weather events that are unique to low-latitude regions. Special emphasis will be devoted to events that occur during so-called quiet (magnetically) conditions. One of these events is the occurrence of nighttime F-region irregularities, also known Equatorial Spread F (ESF). When such irregularities occur navigation and communications systems get disrupted or perturbed. After more than 70 years of studies, many features of ESF irregularities (climatology, physical mechanisms, longitudinal dependence, time dependence, etc.) are well known, but so far they cannot be forecast on time scales of minutes to hours. We present a summary of some of these features and some of the efforts being conducted to contribute to their forecasting. In addition to ESF, we have recently identified a clear connection between lower atmospheric forcing and the low latitude variability, particularly during the so-called sudden stratospheric warming (SSW) events. During SSW events and magnetically quiet conditions, we have observed changes in total electron content (TEC) that are comparable to changes that occur during strong magnetically disturbed conditions. We present results from recent events as well as outline potential efforts to forecast the ionospheric effects during these events.
[The economic-financial sustainability of the Family Health Strategy in large municipalities].
Portela, Gustavo Zoio; Ribeiro, José Mendes
2011-03-01
The universalization of basic care and commitment budget of the Ministry of Health with the Family Health Strategy (ESF) through new systematic financing incentives have been highlighted in the Brazilian health policy scenario. One of the great problems observed is the expansion of the strategy for large urban centres. This paper studies the economic-financial sustainability of ESF in Brazilian municipalities of more than 100 thousand inhabitants according to some selected indicators, considering the geographical region to which they belong, their population size and participation in Project for the Expansion and Consolidation Family Health (Proesf). Municipalities belonging to the Southeast region, more developed of the country, have on average better economic-financial performance, but lower average values of coverage of ESF. Municipalities from the North and Northeast, with the lowest average for economic-financial sustainability indicators, were the ones that made more effort to developments in the period. Thus, we observed the dynamics between bigger fiscal capacity and budgetary commitment with the Health Sector for biggest municipalities and in more economically developed regions, and greater vulnerability and dependence of federative transferences for municipalities with less people, in less developed areas.
The European Science Foundation (ESF) Network SEDIFLUX — An introduction and overview
NASA Astrophysics Data System (ADS)
Beylich, Achim A.; Etienne, Samuel; Etzelmüller, Bernd; Gordeev, Vyacheslav V.; Käyhkö, Jukka; Rachold, Volker; Russell, Andrew J.; Schmidt, Karl-Heinz; Sæmundsson, Þorsteinn; Tweed, Fiona S.; Warburton, Jeff
2006-10-01
Climate change will cause major changes in the Earth surface systems, especially in high-latitude and high-altitude cold environments. Geomorphological processes operating at the Earth's surface, transferring sediments and changing landforms are dependent on climate and will be significantly affected by climate change. More reliable modelling of sediment transfer processes operating under present-day climatic settings is needed to determine the consequences of climate change. It is necessary to collect and to compare data and knowledge from a wide range of different high-latitude and high-altitude cold environments and to develop more standardized methods and approaches for future research on sediment fluxes and relationships between climate and sedimentary transfer processes. In Europe, the wide range of high-latitude and high-altitude cold environments provides great potential to investigate climate-process relationships and to model the effects of climate change by using space for time substitution. The European Science Foundation (ESF) Network (01.01.2004-31.12.2006) "Sedimentary Source-to-Sink-Fluxes in Cold Environments" ( SEDIFLUX) is bringing together leading scientists, young scientists and research teams from different fields. SEDIFLUX forms a framework for an integrated and multidisciplinary investigation of the addressed topic and is a major catalyst for strengthening and extending contacts, collaborative research activities and mobility of scientists in Europe. It also points to areas within Europe that would benefit from wider research collaboration (e.g. Russia, Poland). The SEDIFLUX Steering Committee consists of scientists from seven European countries: Achim A. Beylich, Co-ordinator of SEDIFLUX (Trondheim, Norway), Samuel Etienne (Clermont-Ferrand, France), Bernd Etzelmüller (Oslo, Norway), Vyacheslav V. Gordeev (Moscow, Russia), Jukka Käyhkö (Turku, Finland), Volker Rachold (Potsdam, Germany), Andrew J. Russell (Newcastle, England, UK), Karl-Heinz Schmidt (Halle/S., Germany), Þorsteinn Sæmundsson (Sauðárkrókur, Iceland), Fiona S. Tweed (Staffordshire, England, UK) and Jeff Warburton (Durham, England, UK). SEDIFLUX activities include four Science Meetings: in Sauðárkrókur, Iceland (June 18th-June 21st, 2004), Clermont-Ferrand, France (January 20th-22nd, 2005), Durham, England, UK (December 15th-20th, 2005) and Trondheim, Norway (October 29th-November 1st, 2006), Steering Committee Meetings attached to these Science Meetings, a Session co-organized by SEDIFLUX at the Second European Permafrost Conference, June 12th-17th, 2005, in Potsdam, Germany, publication of Scientific Reports and Abstract Volumes, publication of Special Issues of Journals and of a SEDIFLUX Handbook, creation of a SEDIFLUX Database, an effective diffusion and dissemination of SEDIFLUX activities and outputs by using electronic media (Websites, Newsletters, Forum), invitations of leading experts from other parts of the world, policy makers and land managers to the Science Meetings. The ESF Network SEDIFLUX is organized in four Working Groups: I: Selection of critical test catchments; II: Analysis of geographical and geological settings of test catchments; III: Analysis of present-day fluxes; IV: Integration and data management. The major outputs from the Working Groups will be published in the SEDIFLUX Handbook, including guidelines for future monitoring programmes and a section, which is particularly targeted at end-users. A strong monitoring and operational data collection and more standardized methods provide a baseline for the development of reliable models and for future research in the changing high-latitude and high-altitude cold environments. ESF SEDIFLUX will continue and will be extended as I.A.G./A.I.G. Working Group on Sediment Budgets in Cold Environments (SEDIBUD). Apart from further collaborations and collaborative research activities project and programme applications at both the national and the European level following the three-year ESF Network are discussed and initiated.
NASA Astrophysics Data System (ADS)
Jangi, Mehdi; Lucchini, Tommaso; Gong, Cheng; Bai, Xue-Song
2015-09-01
An Eulerian stochastic fields (ESF) method accelerated with the chemistry coordinate mapping (CCM) approach for modelling spray combustion is formulated, and applied to model diesel combustion in a constant volume vessel. In ESF-CCM, the thermodynamic states of the discretised stochastic fields are mapped into a low-dimensional phase space. Integration of the chemical stiff ODEs is performed in the phase space and the results are mapped back to the physical domain. After validating the ESF-CCM, the method is used to investigate the effects of fuel cetane number on the structure of diesel spray combustion. It is shown that, depending of the fuel cetane number, liftoff length is varied, which can lead to a change in combustion mode from classical diesel spray combustion to fuel-lean premixed burned combustion. Spray combustion with a shorter liftoff length exhibits the characteristics of the classical conceptual diesel combustion model proposed by Dec in 1997 (http://dx.doi.org/10.4271/970873), whereas in a case with a lower cetane number the liftoff length is much larger and the spray combustion probably occurs in a fuel-lean-premixed mode of combustion. Nevertheless, the transport budget at the liftoff location shows that stabilisation at all cetane numbers is governed primarily by the auto-ignition process.
Santos, Wagner Jorge dos; Giacomin, Karla Cristina; Firmo, Josélia Oliveira Araújo
2014-08-01
In the health field, technologies of care relations are in the scope of the worker-user encounter, implying intersubjectivity with the development of relationships between subjects, resulting in action. Evaluation studies synthesize knowledge produced on the consequences of using these technologies for society. This anthropological study aims to understand the perception of the elderly regarding the resolution capability and effectiveness of the acts produced in health care relationships in the context of the Family Health Strategy (ESF). The group studied consisted of 57 elderly residents in Bambui, State of Minas Gerais, Brazil. The model of signs, meanings and actions was used for collecting and analyzing data and the semi-structured interview was applied as a research technique. Elderly individuals assess resolution capability and effectiveness of the acts of care in the ESF as negative, with relation to the quality of user and professional interaction. The ESF is not effective and the desired change in the health care model has not occurred in practice. It repeats the centrality of the medical-drug-procedure model that treats the disease rather than the patient, perceiving old age as a disease and illness as being related to aging.
NASA Astrophysics Data System (ADS)
Han, Lu; Gao, Kun; Gong, Chen; Zhu, Zhenyu; Guo, Yue
2017-08-01
On-orbit Modulation Transfer Function (MTF) is an important indicator to evaluate the performance of the optical remote sensors in a satellite. There are many methods to estimate MTF, such as pinhole method, slit method and so on. Among them, knife-edge method is quite efficient, easy-to-use and recommended in ISO12233 standard for the wholefrequency MTF curve acquisition. However, the accuracy of the algorithm is affected by Edge Spread Function (ESF) fitting accuracy significantly, which limits the range of application. So in this paper, an optimized knife-edge method using Powell algorithm is proposed to improve the ESF fitting precision. Fermi function model is the most popular ESF fitting model, yet it is vulnerable to the initial values of the parameters. Considering the characteristics of simple and fast convergence, Powell algorithm is applied to fit the accurate parameters adaptively with the insensitivity to the initial parameters. Numerical simulation results reveal the accuracy and robustness of the optimized algorithm under different SNR, edge direction and leaning angles conditions. Experimental results using images of the camera in ZY-3 satellite show that this method is more accurate than the standard knife-edge method of ISO12233 in MTF estimation.
Van Wettere, Arnaud J; Redig, Patrick T; Wallace, Larry J; Bourgeault, Craig A; Bechtold, Joan E
2009-12-01
Use of external skeletal fixator-intramedullary pin (ESF-IM) tie-in fixators is an adjustable and effective method of fracture fixation in birds. The objective of this study was to determine the contribution of each of the following parameters to the compressive and torsional rigidity of an ESF-IM pin tie-in applied to avian bones with an osteotomy gap: (1) varying the fixation pin position in the proximal bone segment and (2) increasing the number of fixation pins in one or both bone segments. ESF-IM pin tie-in constructs were applied to humeri harvested from red-tailed hawks (Buteo jamaicensis) (n=24) that had been euthanatized for clinical reasons. Constructs with a variation in the placement of the proximal fixation pin and with 2, 3, or 4 fixation pins applied to avian bone with an osteotomy gap were loaded to a defined displacement in torque and axial compression. Response variables were determined from resulting load-displacement curves (construct stiffness, load at 1-mm displacement). Increasing the number of fixation pins from 1 to 2 per bone segment significantly increased the stiffness in torque (110%) and compression (60%), and the safe load in torque (107%) and compression (50%). Adding a fixation pin to the distal bone segment to form a 3-pin fixator significantly increased the stiffness (27%) and safe load (20%) in torque but not in axial compression. In the configuration with 2 fixation pins, placing the proximal pin distally in the proximal bone segment significantly increased the stiffness in torque (28%), and the safe load in torque (23%) and in axial compression (32%). Results quantified the relative importance of specific parameters affecting the rigidity of ESF-IM pin tie-in constructs as applied to unstable bone fracture models in birds.
ESF EUROCORES Programmes In Geosciences And Environmental Sciences
NASA Astrophysics Data System (ADS)
Jonckheere, I. G.
2007-12-01
In close cooperation with its Member Organisations, the European Science Foundation (ESF) has launched since late 2003 a series of European Collaborative Research (EUROCORES) Programmes. Their aim is to enable researchers in different European countries to develop cooperation and scientific synergy in areas where European scale and scope are required in a global context. The EUROCORES Scheme provides an open, flexible and transparent framework that allows national science funding and science performing agencies to join forces to support excellent European-led research, following a selection among many science-driven suggestions for new Programmes themes submitted by the scientific community. The EUROCORES instrument represents the first large scale attempt of national research (funding) agencies to act together against fragmentation, asynchronicity and duplication of research (funding) within Europe. There are presently 7 EUROCORES Programmes specifically dealing with cutting edge science in the fields of Earth, Climate and Environmental Sciences. The EUROCORES Programmes consist of a number of international, multidisciplinary collaborative research projects running for 3-4 years, selected through independent peer review. Under the overall responsibility of the participating funding agencies, those projects are coordinated and networked together through the scientific guidance of a Scientific Committee, with the support of a Programme Coordinator, responsible at ESF for providing planning, logistics, and the integration and dissemination of science. Strong links are aimed for with other major international programmes and initiatives worldwide. In this framework, linkage to IYPE would be of major interest for the scientific communities involved. Each Programme mobilises 5 to 13 million Euros in direct science funding from 9 to 27 national agencies from 8 to 20 countries. Additional funding for coordination, networking and dissemination is allocated by the ESF through these distinctive research initiatives, to build on the national research efforts and contribute to the capacity building, in relation with typically about 15-20 post-doc positions and/or PhD studentships supported nationally within each Programme. Typical networking activities are topical workshops, open sessions in a larger conference, Programme conference, (summer / winter) schools, exchange visits across projects or programmes. Overall, EUROCORES Programmes are supported by more than 60 national agencies from 30 countries and by the European Science Foundation (ESF) with support by the European Commission, DG Research (Sixth Framework Programme, contract ERAS-CT-2003-980409). In the framework of AGU, a series of present EUROCORES Programmes in the field of Geosciences and Environmental Sciences are presented (e.g., EuroDIVERSITY, EuroDEEP, EUROMARGINS, EuroCLIMATE, and EuroMinScI).
Gravity wave control on ESF day-to-day variability: An empirical approach
NASA Astrophysics Data System (ADS)
Aswathy, R. P.; Manju, G.
2017-06-01
The gravity wave control on the daily variation in nighttime ionization irregularity occurrence is studied using ionosonde data for the period 2002-2007 at magnetic equatorial location Trivandrum. Recent studies during low solar activity period have revealed that the seed perturbations should have the threshold amplitude required to trigger equatorial spread F (ESF), at a particular altitude and that this threshold amplitude undergoes seasonal and solar cycle changes. In the present study, the altitude variation of the threshold seed perturbations is examined for autumnal equinox of different years. Thereafter, a unique empirical model, incorporating the electrodynamical effects and the gravity wave modulation, is developed. Using the model the threshold curve for autumnal equinox season of any year may be delineated if the solar flux index (F10.7) is known. The empirical model is validated using the data for high, moderate, and low solar epochs in 2001, 2004, and 1995, respectively. This model has the potential to be developed further, to forecast ESF incidence, if the base height of ionosphere is in the altitude region where electrodynamics controls the occurrence of ESF. ESF irregularities are harmful for communication and navigation systems, and therefore, research is ongoing globally to predict them. In this context, this study is crucial for evolving a methodology to predict communication as well as navigation outages.
77 FR 10372 - Drawbridge Operation Regulations; The Gut, South Bristol, ME
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-22
... Bristol, Maine. The deviation is necessary to facilitate subsurface test boring at the bridge. This... temporary deviation to facilitate subsurface test borings at the bridge. Under this temporary deviation the...
The Functional Genomics Network in the evolution of biological text mining over the past decade.
Blaschke, Christian; Valencia, Alfonso
2013-03-25
Different programs of The European Science Foundation (ESF) have contributed significantly to connect researchers in Europe and beyond through several initiatives. This support was particularly relevant for the development of the areas related with extracting information from papers (text-mining) because it supported the field in its early phases long before it was recognized by the community. We review the historical development of text mining research and how it was introduced in bioinformatics. Specific applications in (functional) genomics are described like it's integration in genome annotation pipelines and the support to the analysis of high-throughput genomics experimental data, and we highlight the activities of evaluation of methods and benchmarking for which the ESF programme support was instrumental. Copyright © 2013 Elsevier B.V. All rights reserved.
Lan, Yi; Li, Hui; Chen, Yan-yan; Zhang, Ye-wen; Liu, Na; Zhang, Qing; Wu, Qing
2014-11-01
Our previous studies had confirmed that the essential oil from Zanthoxylum bungeanum Maxim. (Z. bungeanum oil) could effectively enhance the percutaneous permeation of drug molecules as a natural transdermal penetration enhancer. The aim of the present study is to investigate and compare the skin penetration enhancement effect of Z. bungeanum oil and its main components on traditional Chinese medicine (TCM) active components. Toxicities of Z. bungeanum oil and three selected terpene compounds (terpinen-4-ol, 1,8-cineole, and limonene) in epidermal keratinocytes (HaCaT) and dermal fibroblast (CCC-ESF-1) cell lines were measured using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Five model drugs in TCM external preparations, namely osthole (OT), tetramethylpyrazine (TMP), ferulic acid (FA), puerarin (PR), and geniposide (GP), which were selected based on their lipophilicity denoted by logKo/w, were tested using in vitro permeation studies in which vertical Franz diffusion cells and rat abdominal skin were employed. The secondary structure changes of skin stratum corneum (SC) and drug thermodynamic activities were investigated to understand their mechanisms of action using Fourier transform infrared (FTIR) spectroscopy and saturation solubility studies, respectively. It was found that Z. bungeanum oil showed lower toxicities in both HaCaT cells and CCC-ESF-1 cells compared with three terpene compounds used alone. The enhancement permeation capacities by all tested agents were in the following increasing order: terpinen-4-ol≈1,8-cineole
NASA Astrophysics Data System (ADS)
Nigussie, M.; Damtie, B.; Moldwin, M.; Yizengaw, E.; Tesema, F.; Tebabal, A.
2017-12-01
Theoretical simulations have shown that gravity wave (GW) seeded perturbations amplified by Rayleigh-Taylor Instability (RTI) results in ESF (equatorial spread F); however, there have been limited observational studies using simultaneous observations of GW and ionospheric parameters. In this paper, for the fist time, simultaneous atmospheric temperature perturbation profiles that are due to GWs obtained from Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on-board the TIMED satellite and equatorial in -situ ion density and vertical plasma drift velocity observations with and without ESF activity obtained from C/NOFS satellites are used to investigate the effect of GW on the generation of ESF. The horizontal and vertical wavelengths of ionospheric oscillations and GWs respectively have been estimated applying wavelet transforms. Cross wavelet analysis has also been applied between two closely observed profiles of temperature perturbations to estimate the horizontal wavelength of the GWs. Moreover, vertically propagating GWs that dissipate energy at the upper atmosphere have been investigated using spectral analysis compared with theoretical results. The analysis show that when the ion density shows strong post sunset irregularity between 20 and 24 LT, vertically upward drift velocities increase between 17 and 19 LT, but it becomes vertically downward when the ion density shows smooth variation. The horizontal wavelengths estimated from C/NOFS and SABER observations show excellent agreement when ion density observations show strong fluctuations; otherwise, they have poor agreement. It is also found that altitude profiles of potential energy of GW increases up to 90 km and then decreases significantly. It is found that the vertical wavelength of GW, corresponding to the dominant spectral power, ranges from about 7 km to 20 km regardless of the situation of the ionosphere; however, GWs with vertical wavelengths between 100 m to 1 km are found to be saturated between 90 and 110 km whether the ionosphere exhibits irregularity or not. The above results imply that ESF is due to the amplification of perturbations as a result of energy dissipation from GW with vertical wavelength 100 m to 1 km by the RTI that is mainly controlled by Pre-Reversal Enhancement of the zonal electric field.
NASA Astrophysics Data System (ADS)
Thampi, S.; Yamamoto, M.; Tsunoda, R. T.; Otsuka, Y.; Tsugawa, T.; Uemoto, J.; Ishii, M.
2009-12-01
Equatorial spread F (ESF) is a generic name, which refers to the presence of a wide spectrum of field-aligned irregularities in the equatorial nighttime F-region that can extend over nearly seven orders of magnitude. Recently, a large-scale wave structure (LSWS) in the F-layer electron density is identified as a reliable precursor to ESF. The LSWS can be identified as a quasi-periodic modulation in the altitude of isoelectron density contours in the bottomside F-region, superimposed on a mean slope that increases in altitude from west to east. First observations of large-scale wave structure (LSWS) and the subsequent development of equatorial spread F (ESF), using total electron content (TEC) derived from the ground based reception of Coherent Electromagnetic Radio Tomography (CETRO) radio beacon signals on board the C/NOFS (Communications/Navigation Outage Forecasting System) satellite will be presented. For this study the TEC observations from Bac Lieu, Vietnam (9.2°N, 105.6°E geographic, 1.7°N magnetic dip latitude), Phukhet (7.8°N, 98.38°E, 0.4°S dip lat) and Kototabang, Indonesia (0.20°S, 100.32°E, 10.36°S dip lat) are analyzed along with ionosonde observations from Bac Lieu, Chumphon (10.7°N, 99.4°E, 3.3° dip lat) and 30.8 MHz VHF radar observations from Kototabang. It should also be mentioned here that LSWS is not easily detectable with overhead measurements using a sensor at a fixed location, at least not during its early growth phase, mainly because initially it grows in amplitude without significant zonal drift. The results indicate (1) LSWS appears to play a more important role in the development of ESF than the post-sunset rise (PSSR) of the F-layer, and (2) LSWS can appear well before E-region sunset. Other findings, that LSWS does not have significant zonal drift in the initial stages of growth, and can have zonal wavelengths of several hundred kilometers, corroborate earlier reports.
Central cell-derived peptides regulate early embryo patterning in flowering plants.
Costa, Liliana M; Marshall, Eleanor; Tesfaye, Mesfin; Silverstein, Kevin A T; Mori, Masashi; Umetsu, Yoshitaka; Otterbach, Sophie L; Papareddy, Ranjith; Dickinson, Hugh G; Boutiller, Kim; VandenBosch, Kathryn A; Ohki, Shinya; Gutierrez-Marcos, José F
2014-04-11
Plant embryogenesis initiates with the establishment of an apical-basal axis; however, the molecular mechanisms accompanying this early event remain unclear. Here, we show that a small cysteine-rich peptide family is required for formation of the zygotic basal cell lineage and proembryo patterning in Arabidopsis. EMBRYO SURROUNDING FACTOR 1 (ESF1) peptides accumulate before fertilization in central cell gametes and thereafter in embryo-surrounding endosperm cells. Biochemical and structural analyses revealed cleavage of ESF1 propeptides to form biologically active mature peptides. Further, these peptides act in a non-cell-autonomous manner and synergistically with the receptor-like kinase SHORT SUSPENSOR to promote suspensor elongation through the YODA mitogen-activated protein kinase pathway. Our findings demonstrate that the second female gamete and its sexually derived endosperm regulate early embryonic patterning in flowering plants.
NASA Astrophysics Data System (ADS)
Bindra, Amit; Mittal, H. M.
2018-07-01
The dependence of Grodzins systematic as shape fluctuation energy product ESF * B (E 2) ↑ and rotational energy product EROT * B (E 2) ↑ on the Asymmetry parameter γ0 is carried out in the Z = 50-82, N = 82-126 major shell space. The Asymmetry parameter γ0, varying from 0° to 60°, reflects the change in nuclear structure from prolate to oblate. Strong anomalies are highlighted in the shape transitional isotopes. The product ESF * B (E 2) ↑ evolves from low negative values for vibrator nuclei, passing close to zero and then substantially increasing towards triaxial rotor limit with γ0 ∼ 30 °. However, the product EROT * B (E 2) ↑ decreases as a function of γ0 for all the nuclei approaching towards triaxiality from Z = 50-82, N = 82-126. Anomalies are also noticed for the N > 104 region where the product EROT * B (E 2) ↑ decreases in zigzag phase for 188-196Pt isotopes corresponding to γ0 ∼ 25- 30 ° and this reflects the breakdown of coherence between rotational energy EROT and excitation strength B (E 2) ↑. The product EROT * B (E 2) ↑ indicates the shape phase transition for Pt isotopic chain from spherical to γ - soft to slightly triaxial. We have studied for the first time the role of Grodzins systematic ESF and EROT in the framework of Asymmetric Rotor Model.
Results from Field Testing the RIMFAX GPR on Svalbard.
NASA Astrophysics Data System (ADS)
Hamran, S. E.; Amundsen, H. E. F.; Berger, T.; Carter, L. M.; Dypvik, H.; Ghent, R. R.; Kohler, J.; Mellon, M. T.; Nunes, D. C.; Paige, D. A.; Plettemeier, D.; Russell, P.
2017-12-01
The Radar Imager for Mars' Subsurface Experiment - RIMFAX is a Ground Penetrating Radar being developed for NASÁs MARS 2020 rover mission. The principal goals of the RIMFAX investigation are to image subsurface structures, provide context for sample sites, derive information regarding subsurface composition, and search for ice or brines. In meeting these goals, RIMFAX will provide a view of the stratigraphic section and a window into the geological and environmental history of Mars. To verify the design an Engineering Model (EM) of the radar was tested in the field in the spring 2017. Different sounding modes on the EM were tested in different types of subsurface geology on Svalbard. Deep soundings were performed on polythermal glaciers down to a couple of hundred meters. Shallow soundings were used to map a ground water table in the firn area of a glacier. A combination of deep and shallow soundings was used to image buried ice under a sedimentary layer of a couple of meters. Subsurface sedimentary layers were imaged down to more than 20 meters in sand stone permafrost. This presentation will give an overview of the RIMFAX investigation, describe the development of the radar system, and show results from field tests of the radar.
Influence of subsurface defects on damage performance of fused silica in ultraviolet laser
NASA Astrophysics Data System (ADS)
Huang, Jin; Zhou, Xinda; Liu, Hongjie; Wang, Fengrui; Jiang, Xiaodong; Wu, Weidong; Tang, Yongjian; Zheng, Wanguo
2013-02-01
In ultraviolet pulse laser, damage performance of fused silica optics is directly dependent on the absorptive impurities and scratches in subsurface, which are induced by mechanical polishing. In the research about influence of subsurface defects on damage performance, a series of fused silica surfaces with various impurity concentrations and scratch structures were created by hydrofluoric (HF) acid solution etching. Time of Flight secondary ion mass spectrometry and scanning probe microprobe revealed that with increasing etching depth, impurity concentrations in subsurface layers are decreased, the scratch structures become smoother and the diameter:depth ratio is increased. Damage performance test with 355-nm pulse laser showed that when 600 nm subsurface thickness is removed by HF acid etching, laser-induced damage threshold of fused silica is raised by 40 percent and damage density is decreased by over one order of magnitude. Laser weak absorption was tested to explain the cause of impurity elements impacting damage performance, field enhancement caused by change of scratch structures was calculated by finite difference time domain simulation, and the calculated results are in accord with the damage test results.
NASA Astrophysics Data System (ADS)
Tsunoda, Roland T.
2008-10-01
Although the source that controls day-to-day variability in the occurrence of equatorial plasma structure (i.e., equatorial spread F, or ESF) remains to be identified, progress is being made. There is evidence that the appearance of large-scale wave structure (LSWS) in the bottomside F layer, around the time of its post-sunset rise (PSSR), is a more-direct precursor of ESF than the PSSR itself. The bulk of the evidence, however, is in the form of ``satellite'' F traces in ionograms, which may be viewed as less than convincing, because these signatures have not been shown to be causally related to LSWS. In this paper, incoherent-scatter radar and ionosonde data, both collected on 24 July 1979 from the Kwajalein atoll, Marshall Islands, are used to show that this is indeed the case.
Integrating population genetics and conservation biology in the era of genomics.
Ouborg, N Joop
2010-02-23
As one of the final activities of the ESF-CONGEN Networking programme, a conference entitled 'Integrating Population Genetics and Conservation Biology' was held at Trondheim, Norway, from 23 to 26 May 2009. Conference speakers and poster presenters gave a display of the state-of-the-art developments in the field of conservation genetics. Over the five-year running period of the successful ESF-CONGEN Networking programme, much progress has been made in theoretical approaches, basic research on inbreeding depression and other genetic processes associated with habitat fragmentation and conservation issues, and with applying principles of conservation genetics in the conservation of many species. Future perspectives were also discussed in the conference, and it was concluded that conservation genetics is evolving into conservation genomics, while at the same time basic and applied research on threatened species and populations from a population genetic point of view continues to be emphasized.
Introduction. Cosmology meets condensed matter.
Kibble, T W B; Pickett, G R
2008-08-28
At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB ('Cosmology in the Laboratory') that ran from 2001 to 2006, itself built on an earlier ESF network called TOPDEF ('Topological Defects: Non-equilibrium Field Theory in Particle Physics, Condensed Matter and Cosmology'). The articles presented in this issue of Philosophical Transactions A are based on talks given at the Royal Society Discussion Meeting 'Cosmology meets condensed matter', held on 28 and 29 January 2008. Many of the speakers had participated earlier in the COSLAB programme, but the strength of the field is illustrated by the presence also of quite a few new participants.
NASA Astrophysics Data System (ADS)
Chandran, Deepu; Anbazhagan, P.
2017-10-01
Recently, site response analysis has become a mandatory step for the design of important structures. Subsurface investigation is an essential step, from where the input parameters for the site response study like density, shear wave velocity (Vs), thickness and damping characteristics, etc, are obtained. Most site response studies at shallow bedrock sites are one-dimensional (1D) and are usually carried out by using Vs from multi-channel analysis of surface waves (MASW) or a standard penetration test (SPT) for N values with assumptions that soil layers are horizontal, uniform and homogeneous. These assumptions are not completely true in shallow bedrock regions as soil deposits are heterogeneous. The objective of this study is to generate the actual subsurface profiles in two-dimensions at shallow bedrock regions using integrated subsurface investigation testing. The study area selected for this work is Bangalore, India. Three survey lines were selected in Bangalore at two different locations; one at the Indian Institute of Science (IISc) Campus and the other at Whitefield. Geophysical surveys like ground penetrating radar (GPR) and 2D MASW were carried out at these survey lines. Geophysical test results are compared and validated with a conventional geotechnical SPT. At the IISc site, the soil profile is obtained from a trench excavated for a proposed pipeline used to compare the geophysical test results. Test results show that GPR is very useful to delineate subsurface layers, especially for shallow depths at both sites (IISc Campus and Whitefield). MASW survey results show variation of Vs values and layer thickness comparatively at deeper depths for both sites. They also show higher density soil strata with high Vs value obtained at the IISc Campus site, whereas at the Whitefield site weaker soil with low shear velocity is observed. Combining these two geophysical methods helped to generate representative 2D subsurface profiles. These subsurface profiles can be further used to understand the difference between 1D and 2D site response.
Clark, Don T.; Erickson, Eugene E.; Casper, William L.; Everett, David M.; Hubbell, Joel M.; Sisson, James B.
2005-09-06
A suction lysimeter for sampling subsurface liquids includes a lysimeter casing having a drive portion, a reservoir portion, and a tip portion, the tip portion including a membrane through which subsurface liquids may be sampled; a fluid conduit coupled in fluid flowing relation relative to the membrane, and which in operation facilitates the delivery of the sampled subsurface liquids from the membrane to the reservoir portion; and a plurality of tubes coupled in fluid flowing relation relative to the reservoir portion, the tubes in operation facilitating delivery of the sampled subsurface liquids from the reservoir portion for testing. A method of sampling subsurface liquids comprises using this lysimeter.
NASA Astrophysics Data System (ADS)
Davila, A. F.; Lim, D.; Fairen, A. G.; Uceda, E. R.; Zavaleta, J.; McKay, C.
2007-07-01
Orbit Exposure Experiments (OEE) allow us to test the possibility of life transfer between planets and moons. Deep sub-surface microorganisms may be the best candidates to survive long-term exposure to space conditions. A long duration OEE is proposed to test our hypothesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cizdziel, James
2006-07-31
Previous studies Los Alamos National Laboratory (LANL) found elevated ratios of chlorine-36 to total chloride (36Cl/Cl) in samples of rock collected from the Exploratory Studies Facility (ESF) at Yucca Mountain (YM). The data were interpreted as an indication that fluids containing “bomb-pulse” 36Cl reached the repository horizon in the ~50 years since the peak period of above-ground nuclear testing. Due to the significance of 36Cl data to conceptual models of unsaturated zone flow, the United States Geological Survey (USGS) implemented a study to validate the LANL findings. The USGS drilled new boreholes at select locations across zones where bomb-pulse ratiosmore » had previously been identified. The drill cores were analyzed at Lawrence Livermore National Laboratory (LLNL). Because consensus was not reached between the USGS/LLNL and LANL on several fundamental points including the presence or absence of bomb-pulse 36Cl, an evaluation by the University of Nevada, Las Vegas (UNLV), was initiated. The overall objectives of the UNLV study were to investigate the source of the validation study’s conflicting results, and to obtain additional data on bomb-pulse isotopes at the repository horizon. UNLV engaged in discussions with previous investigators, reviewed reports, and analyzed archived samples. UNLV also collected new samples of rock from the ESF, soil profiles from the surface of YM, and samples of seep water from inside the ESF. Samples were analyzed for 36Cl/Cl ratios, and 99Tc and 129I in select samples. A column experiment was conducted mimicking the passage of bomb-pulse 36Cl through YM tuff. The work faced several obstacles including an extended shutdown of the tunnel. Only one sample yielded a background corrected 36Cl/Cl ratio that was higher than the accepted bomb-pulse threshold (1250 x 10-15). Specimen 01034214 obtained from the Drill Hole Wash fault (19+33) had a ratio of 1590 ± 80 (1σ) x10-15, whereas the other separate sample from this fault zone yielded 1160 ± 50 (1σ) x 10-15. Three samples collected from Alcove 6 averaged 490 ± 100 (1σ) x10-15; a sample from Sundance Fault resulted in a ratio of 920 ± 60 (1σ) x10-15, and a sample from the Bow Ridge Fault produced 530 ± 20 (1σ) x10-15. The results are significant because: 1) they tend to be lower than LANL data for comparable samples, albeit in agreement with the range of data produced in the area, and 2) they show that a bomb-pulse 36Cl/Cl ratio was measured in rock collected at the repository horizon level by a second and independent group of investigators (UNLV). Because of time UNLV was not able to replicate the results, and these few data points are insufficient to draw major and definitive conclusions. Leachates of soil samples collected from the surface above the ESF yielded several ratios with bomb-pulse 36Cl, particularly for samples encompassing the wetting front. Soil samples collected above the south ramp, where there was limited soil coverage due to a large amount of rock outcrop, had relatively large ratios ranging from 2170 ± 110 (1σ) x10-15 to 5670 ± 350 (1σ) x10-15. Soil samples from profiles from above the north ramp ranged from 820 ± 70 (1σ) x10-15 to 2390 ± 160 (1σ) x10-15, which compare favorably with previous measurements near the site. Water seepage into the ESF south ramp and 36Cl standards made from NIST material were also analyzed. The standards were produced to have nominal 36Cl/Cl ratios (10-15) of 500, 2,500 and 10,000 and the results showed good agreement with the calculated ratios. The seepage samples ranged between 680 ± 40 (1σ) x10-15 to 1110 ± 40 (1σ) x10-15, consistent with that found for modern meteoric water, with a small bomb-pulse component. Bomb-pulse 36Cl may not have been incorporated in this fast-path water because the surface above the infiltration zone consists mostly of outcrop and the flow pathways have probably mostly been leached. 99Tc was measured in five of nine leaches of ESF rock but poor analytical recoveries and lack of data overlap with 36Cl limit interpretations of these data. The detection capability of the ICP-MS was insufficient for measuring 129I without preconcentration, and detection by AMS may be preferable. Experiments were conducted using bromide instead of chloride as a carrier, which is advantageous because it may eliminate the need for blank subtraction. ESF samples prepared using bromide had 36Cl/Cl ratios (x10-15) with acceptable levels of uncertainty (1σ): 720 ± 30 and 1250 ± 90 for Bow Ridge and Drill Hole Wash Faults, respectively. The result for the latter is noteworthy because it constitutes a second detection of a 36Cl/Cl bomb-pulse ratio at the site, albeit from a non-Q measurement. The source of the conflicting results between USGS/LLNL and LANL could not be determined. There was no evidence that the different AMS facilities were a source of the discrepancy between the results.« less
NASA Astrophysics Data System (ADS)
Hickey, Dustin A.; Martinis, Carlos R.; Mendillo, Michael; Baumgardner, Jeffrey; Wroten, Joei; Milla, Marco
2018-03-01
In March 2014 an all-sky imager (ASI) was installed at the Jicamarca Radio Observatory (11.95° S, 76.87° W; 0.3° S MLAT). We present results of equatorial spread F (ESF) characteristics observed at Jicamarca and at low latitudes. Optical 6300 and 7774 Å airglow observations from the Jicamarca ASI are compared with other collocated instruments and with ASIs at El Leoncito, Argentina (31.8° S, 69.3° W; 19.8° S MLAT), and Villa de Leyva, Colombia (5.6° N, 73.52° W; 16.4° N MLAT). We use Jicamarca radar data, in incoherent and coherent modes, to obtain plasma parameters and detect echoes from irregularities. We find that ESF depletions tend to appear in groups with a group-to-group separation around 400-500 km and within-group separation around 50-100 km. We combine data from the three ASIs to investigate the conditions at Jicamarca that could lead to the development of high-altitude, or topside, plumes. We compare zonal winds, obtained from a Fabry-Pérot interferometer, with plasma drifts inferred from the zonal motion of plasma depletions. In addition to the ESF studies we also investigate the midnight temperature maximum and its effects at higher latitudes, visible as a brightness wave at El Leoncito. The ASI at Jicamarca along with collocated and low-latitude instruments provide a clear two-dimensional view of spatial and temporal evolution of ionospheric phenomena at equatorial and low latitudes that helps to explain the dynamics and evolution of equatorial ionospheric/thermospheric processes.
He, Zhengdi; Chen, Lingling; Hu, Xuejuan; Shimada, Yasushi; Otsuki, Masayuki; Tagami, Junji; Ruan, Shuangchen
2017-10-01
The purpose of this study was to evaluate the chemical and mechanical modifications in subsurface dentin layer after Er: YAG (Erbium-Yttrium Aluminium Garnet) laser irradiation, as the guidance of new dental restorative materials specific for laser irradiated dentin. Dentin disks obtained from extracted human molars were prepared and exposed to a single pulse Er:YAG laser irradiation at 80mJ/pulse. After laser irradiation the mechanical and chemical characteristics of intertubular dentin in subsurface layer were studied using nanoindentation tester and micro-Raman spectromy (μ-RS). The dentin 5-50µm depth beneath the lased surface was determined as testing area. Two-way analysis of variance (ANOVA) were used to compare the mechanical values between lased and untreated subsurface dentin (P = 0.05). A laser affected subsurface dentin layer after Er:YAG laser treatment is present. The laser irradiation is considered to decrease the mechanical properties in the superficial subsurface layer (<15µm deep). There was no significant difference in nanohardness and Young's modulus between lased subsurface dentin and untreated dentin (p > 0.05) under the depth of 15µm. However, the dentin at 5µm and 10µm depth beneath the lased surface exhibited significantly lower (~ 47.8% and ~ 33.6% respectively) hardness (p < 0.05). Er:YAG laser irradiation affected both mineral and organic components in subsurface dentin layer, a higher degree of crystallinity and reduced organic compounds occurred in the lased subsurface dentin. Under the tested laser parameters, Er:YAG laser irradiation causes lower mechanical values and reduction of organic components in subsurface dentin, which has deleterious effects on resin adhesion to this area. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Characterization of Subsurface Defects in Ceramic Rods by Laser Scattering and Fractography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J. M.; Sun, J. G.; Andrews, M. J.
2006-03-06
Silicon nitride ceramics are leading materials being evaluated for valve train components in diesel engine applications. The surface and subsurface defects and damage induced by surface machining can significantly affect component strength and lifetime. In this study, a nondestructive evaluation (NDE) technique based upon laser scattering has been utilized to analyze eight transversely ground silicon nitride cylindrical rods before fracture tests. The fracture origins (machining cracks or material-inherent flaws) identified by fractography after fracture testing were correlated with laser scattering images. The results indicate that laser scattering is able to identify possible fracture origin in the silicon nitride subsurface withoutmore » the need for destructive fracture tests.« less
Lysimeter methods and apparatus
Clark, Don T.; Erickson, Eugene E.; Casper, William L.; Everett, David M.; Hubbell, Joel M.; Sisson, James B.
2004-12-07
A suction lysimeter for sampling subsurface liquids includes a lysimeter casing having a drive portion, a reservoir portion, and a tip portion, the tip portion including a membrane through which subsurface liquids may be sampled; a fluid conduit coupled in fluid flowing relation relative to the membrane, and which in operation facilitates the delivery of the sampled subsurface liquids from the membrane to the reservoir portion; and a plurality of tubes coupled in fluid flowing relation relative to the reservoir portion, the tubes in operation facilitating delivery of the sampled subsurface liquids from the reservoir portion for testing. A method of sampling subsurface liquids comprises using this lysimeter.
Data on subsurface storage of liquid waste near Pensacola, Florida, 1963-1980
Hull, R.W.; Martin, J.B.
1982-01-01
Since 1963, when industrial waste was first injected into the subsurface in northwest Florida, considerable data have been collected relating to the geochemistry of subsurface waste storage. This report presents hydrogeologic data on two subsurface waste storage. This report presents hydrogeologic data on two subsurface storage systems near Pensacola, Fla., which inject liquid industrial waste through deep wells into a saline aquifer. Injection sites are described giving a history of well construction, injection, and testing; geologic data from cores and grab samples; hydrographs of injection rates, volume, pressure, and water levels; and chemical and physical data from water-quality samples collected from injection and monitor wells. (USGS)
Singh, Rajveer; Sivaguru, Mayandi; Fried, Glenn A; Fouke, Bruce W; Sanford, Robert A; Carrera, Martin; Werth, Charles J
2017-09-01
Physical, chemical, and biological interactions between groundwater and sedimentary rock directly control the fundamental subsurface properties such as porosity, permeability, and flow. This is true for a variety of subsurface scenarios, ranging from shallow groundwater aquifers to deeply buried hydrocarbon reservoirs. Microfluidic flow cells are now commonly being used to study these processes at the pore scale in simplified pore structures meant to mimic subsurface reservoirs. However, these micromodels are typically fabricated from glass, silicon, or polydimethylsiloxane (PDMS), and are therefore incapable of replicating the geochemical reactivity and complex three-dimensional pore networks present in subsurface lithologies. To address these limitations, we developed a new microfluidic experimental test bed, herein called the Real Rock-Microfluidic Flow Cell (RR-MFC). A porous 500μm-thick real rock sample of the Clair Group sandstone from a subsurface hydrocarbon reservoir of the North Sea was prepared and mounted inside a PDMS microfluidic channel, creating a dynamic flow-through experimental platform for real-time tracking of subsurface reactive transport. Transmitted and reflected microscopy, cathodoluminescence microscopy, Raman spectroscopy, and confocal laser microscopy techniques were used to (1) determine the mineralogy, geochemistry, and pore networks within the sandstone inserted in the RR-MFC, (2) analyze non-reactive tracer breakthrough in two- and (depth-limited) three-dimensions, and (3) characterize multiphase flow. The RR-MFC is the first microfluidic experimental platform that allows direct visualization of flow and transport in the pore space of a real subsurface reservoir rock sample, and holds potential to advance our understandings of reactive transport and other subsurface processes relevant to pollutant transport and cleanup in groundwater, as well as energy recovery. Copyright © 2017 Elsevier B.V. All rights reserved.
Magnetic perturbation inspection of inner bearing races
NASA Technical Reports Server (NTRS)
Barton, J. R.; Lankford, J.
1972-01-01
Approximately 100 inner race bearings were inspected nondestructively prior to endurance testing. Two of the bearings which failed during testing spalled at the sites of subsurface inclusions previously detected by using magnetic field perturbation. At other sites initially judged to be suspect, subsurface inclusion-nucleated cracking was observed. Inspection records and metallurgical sectioning results are presented and discussed.
Women's Training Provision. Evaluation Report.
ERIC Educational Resources Information Center
European Social Fund, Dublin (Ireland).
A study examined the position of Irish women in the following types of human resource development activities cofinanced by the European Social Fund (ESF): basic/foundation skills training; postfoundation skills training; enterprise support schemes; continuing training for the employed; and apprenticeship training. Representatives of 11 state…
& Speeches USDA Newsroom Videos Pet Travel Blog Z6_LO4C1BS0LO4EB0AER7MEEI2G47 Error Error Biosecurity ESF11 Farm Bill Horse Protection Hungry Pests Pet Travel Trade Veterinary Accreditation USDA.gov
Code of Federal Regulations, 2012 CFR
2012-07-01
... and is in effect when the Federal Response Plan and some or all its Emergency Support Functions (ESFs... resources that are available for response. (2) The establishment of requirements for federal, regional, and... COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN...
Code of Federal Regulations, 2014 CFR
2014-07-01
... and is in effect when the Federal Response Plan and some or all its Emergency Support Functions (ESFs... resources that are available for response. (2) The establishment of requirements for federal, regional, and... COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN...
Code of Federal Regulations, 2013 CFR
2013-07-01
... and is in effect when the Federal Response Plan and some or all its Emergency Support Functions (ESFs... resources that are available for response. (2) The establishment of requirements for federal, regional, and... COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN...
Primary Health Care as a guide for assistance to infants at risk of neurodevelopmental disorders.
Molini-Avejonas, Daniela Regina; Rondon-Melo, Silmara; Batista, Estela Ramos; Souza, Amanda Calsolari de; Dias, Daniela Cardilli; Samelli, Alessandra Gianella
2018-01-01
Purpose Characterize infants at risk of neurodevelopmental disorders according to sociodemographic and health profiles and describe their monitoring in Basic Health Units (UBS) under different management models. Methods Data were collected from medical records of infants at risk of neurodevelopmental disorders in the west region of the city of Sao Paulo from August 2013 to February 2014 (phase 1 - characterization; phase 2 - monitoring). Results Of the 225 individuals assessed in the first phase of the study, 51.1% were female and 7.11% were twins. Adolescent (45.2%), brown (50.56%), single (46.09%), complete primary education (47.60%) mothers were predominant. The mean number of prenatal visits was 7.12. Most mothers had vaginal delivery (62.22%) at mean gestational age of 37.05 weeks. Mean Apgar scores at the 1st and 5th minutes were 7.13 and 8.80, respectively. Mean weight at birth was 2597.21g., with 50.22% of newborns weighting ≤2500g. In its second phase, the study describes and compares the follow-up of 55 infants according to the UBS management model: 28 in UBS/"Estratégia Saúde da Família" (UBS/ESF) and 27 in traditional UBS (UBS/T). UBS/ESF presented higher mean of consultations (p=0.006). Longer interval between consultations was observed at UBS/T. No records of development milestones were found in 56% of the sample. Growth measures were better registered at UBS/ESF. In both management models, the number of consultations was smaller and the interval between them was shorter than those recommended by the Brazilian Ministry of Health. Conclusion According to the recommended guidelines of the "Rede Cegonha" public policy, gaps in the monitoring of infants at risk of neurodevelopmental disorders are still observed.
Chen, Joseph C.; Hoffman, Jacquelyn R.; Arora, Ripla; Perrone, Lila A.; Gonzalez-Gomez, Christian J; Vo, Kim Chi; Laird, Diana J.; Irwin, Juan C.; Giudice, Linda C.
2015-01-01
Objective To develop a protocol for cryopreservation and recovery of human endometrial epithelial cells (eEC) retaining molecular and functional characteristics of endometrial epithelium in vivo. Design This is an in vitro study using human endometrial cells. Setting University research laboratory. Patients Endometrial biopsies were obtained from premenopausal women undergoing benign gynecological procedures. Interventions Primary eEC were cryopreserved in 1% fetal bovine serum (FBS)/10% dimethyl sulfoxide (DMSO) in Defined Keratinocyte Serum Free Medium (KSFM). Recovered cells were observed for endometrial stromal fibroblast (eSF) contamination and subsequently evaluated for morphology, gene expression, and functional characteristics of freshly cultured eECs and in vivo endometrial epithelium. Main Outcome Measures Analysis of eEC morphology and the absence of eSF contamination; evaluation of epithelial-specific gene and protein expression; assessment of epithelial polarity. Results eEC recovered after cryopreservation (n=5) displayed epithelial morphology and expressed E-cadherin (CDH1), occludin (OCLN), claudin1 (CLDN1), and keratin18 (KRT18). Compared to eSF, recovered eEC displayed increased (P<0.05) expression of epithelial-specific genes AREG, CDH1, DEFB4A, MMP7, and WNT7A, while exhibiting low-to-undetectable (P<0.05) stromal-specific genes COL6A3, HOXA11, MMP2, PDGFRB, and WNT5A. Recovered eEC secrete levels of cytokines and growth factors comparable to freshly cultured eEC. Recovered eEC can formed a polarized monolayer with high transepithelial electrical resistance (TER) and impermeability to small molecules, and expressed apical/basolateral localization of CDH1 and apical localization of OCLN. Conclusion We have developed a protocol for cryopreservation of eEC in which recovered cells after thawing demonstrate morphological, transcriptomic, and functional characteristics of human endometrial epithelium in vivo. PMID:26515378
SUBSURFACE VOLATIZATION AND VENTILATION SYSTEM (SVVS) - INNOVATIVE TECHNOLOGY REPORT
This report summarizes the findings associated with a Demonstration Test of Environmental Improvement Technologies’ (EIT) Subsurface Volatilization and Ventilation System (SVVS) process. The technology was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) ...
Torres, Geanne Maria Costa; Figueiredo, Inês Dolores Teles; Cândido, José Auricélio Bernardo; Pinto, Antonio Germane Alves; Morais, Ana Patrícia Pereira; Araújo, Maria Fátima Maciel; Almeida, Maria Irismar de
2017-01-01
OBJECTIVE To analyze the therapeutic communication in the interaction between health professionals and hypertensive patients in the Family Health Strategy. METHODS Descriptive study with qualitative approach. The sample consisted of 14 hypertensive patients and two health professionals of the Family Health Strategy (ESF - "Estratégia Saúde Família") in a city of the state of Ceará, Brazil, in 2016. In the data collection, a checklist was used for non-participant systematic observation containing the strategies of therapeutic communication, namely: expression, clarity, validation, and a field diary, being these subjected to content analysis. RESULTS It was noted that ESF professionals do not adequately use therapeutic communication, indicating the need of investment in this device, which acts as a bridge for users, enhances care practices and opens paths that instrumentalize interpersonal relationships. CONCLUSIONS It was realized that health professionals are not fully exploring therapeutic communication strategies, therefore being necessary to develop skills to use these techniques correctly when caring for hypertensive patients.
NASA Astrophysics Data System (ADS)
Thampi, Smitha V.; Yamamoto, Mamoru; Tsunoda, Roland T.; Otsuka, Yuichi; Tsugawa, Takuya; Uemoto, Jyunpei; Ishii, Mamoru
2009-09-01
First observations of large-scale wave structure (LSWS) and the subsequent development of equatorial spread F (ESF), using total electron content (TEC) derived from the ground based reception of beacon signals from the CERTO (Coherent Electromagnetic Radio Tomography) radio beacon on board C/NOFS (Communications/Navigation Outage Forecasting System) satellite, are presented. Selected examples of TEC variations, using measurements made during January 2009 from Bac Lieu, Vietnam (9.2°N, 105.6°E geographic, 1.7°N magnetic dip latitude) are presented to illustrate two key findings: (1) LSWS appears to play a more important role in the development of ESF than the post-sunset rise (PSSR) of the F-layer, and (2) LSWS can appear well before E region sunset. Other findings, that LSWS does not have significant zonal drift in the initial stages of growth, and can have zonal wavelengths of several hundred kilometers, corroborate earlier reports.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Cizdziel
2006-07-28
Previous studies by scientists at Los Alamos National Laboratory (LANL) found elevated ratios of chlorine-36 to total chloride ({sup 36}Cl/Cl) in samples of rock collected from the Exploratory Studies Facility (ESF) and the Enhanced Characterization of the Repository Block (ECRB) at Yucca Mountain as the tunnels were excavated. The data were interpreted as an indication that fluids containing 'bomb-pulse' {sup 36}Cl reached the repository horizon in the {approx}50 years since the peak period of above-ground nuclear testing. Moreover, the data support the concept that so-called fast pathways for infiltration not only exist but are active, possibly through a combination ofmore » porous media, faults and/or other geologic features. Due to the significance of {sup 36}Cl data to conceptual models of unsaturated zone flow and transport, the United States Geological Survey (USGS) was requested by the Department of Energy (DOE) to design and implement a study to validate the LANL findings. The USGS chose to drill new boreholes at select locations across zones where bomb-pulse ratios had previously been identified. The drill cores were analyzed at Lawrence Livermore National Laboratory (LLNL) for {sup 36}Cl/Cl using both active and passive leaches, with the USGS/LLNL concluding that the active leach extracted too much rock-Cl and the passive leach did not show bomb-pulse ratios. Because consensus was not reached between the USGS/LLNL and LANL on several fundamental points, including the conceptual strategy for sampling, interpretation and use of tritium ({sup 3}H) data, and the importance and interpretation of blanks, in addition to the presence or absence of bomb-pulse {sup 36}Cl, an evaluation by an independent entity, the University of Nevada, Las Vegas (UNLV), using new samples was initiated. This report is the result of that study. The overall objectives of the UNLV study were to investigate the source or sources of the conflicting results from the previous validation study, and to obtain additional data to determine whether or not there are bomb-pulse isotopes at the repository horizon. To that en4 we have engaged in discussions with previous investigators, reviewed reports, and analyzed archived samples. We have also collected new samples of rock from the ESF, soil profiles from the surface of Yucca Mountain, and opportunistic samples of seep water from inside the south ramp of the ESF.« less
A study of surface and subsurface ground motions at Calico Hills, Nevada Test Site
King, Kenneth W.
1982-01-01
A study of earthquake ground motions recorded at depth in a drill hole and at the ground surface has derived the surface to subsurface transfer functions such as might be expected at a potential nuclear waste repository in a similar setting. The site under investigation has small seismic velocity contrasts in the layers of rock between the surface and the subsurface seismometer location. The subsurface seismic motions were similar in spectral characteristics to the surface motions and were lower in amplitude across the recorded band-width by a factor of 1.5.
Kuramochi, Erika; Iizuka, Junko; Mukai, Yoshiharu
2016-12-01
In the present study, we investigated, using micro-Raman spectroscopy (Raman) and transverse microradiography, the influence of bicarbonate [sodium hydrogen carbonate (NaHCO 3 )] on the effects of carbonate ions in the mineral phase during demineralization (acid resistance test) of subsurface lesions. Baseline lesions were created by demineralizing bovine enamel, and specimens were then exposed to remineralization solutions containing 0, 5, or 50 mM bicarbonate. Acid resistance tests were performed on remineralized and sound enamel specimens. Raman spectra showed that carbonate and phosphate were incorporated into both surface layers and lesion bodies during remineralization in the presence of bicarbonate. Moreover, the presence of bicarbonate did not affect the rates of remineralization, although the average mineral profiles of remineralized enamel differed from those of sound enamel after acid resistance tests. Raman analyses enabled close evaluation of site-specific characteristics of carbonate and phosphate in subsurface lesions. In conclusion, incorporation of carbonate and phosphate ions into enamel subsurface lesions during remineralization does not affect the magnitude of remineralization or acid resistance. © 2016 Eur J Oral Sci.
A NOVEL PROCESS FOR BIOLOGICAL NITROGEN REMOVAL FROM DAIRY WASTEWATER IN CONSTRUCTED WETLANDS
SUNY-ESF has a multidisciplinary P3 Team, although it is mainly composed of undergraduate students in forest engineering and graduate students in environmental and resources engineering. The Team has successfully enriched anammox bacteria in two vertical flow baffled biofilter...
Upgrade of U.S. EPA's Experimental Stream Facility Supervisory Control and Data Acquisition System
The Supervisory control and data acquisition (SCADA) system for the U.S. EPA’s Experimental Stream Facility (ESF) was upgraded using Camile hardware and software in 2015. The upgrade added additional hardwired connections, new wireless capabilities, and included a complete rewrit...
Space Weather Effects on the Dynamics of Equatorial F Region Irregularities
NASA Astrophysics Data System (ADS)
Bhattacharyya, A.; Basu, S.; Groves, K.; Valladares, C.; Sheehan, R.
Space weather effects on transionospheric radio waves used for navigation and communication may be divided into two categories depending on the spatial scale size of the ionospheric perturbation produced by such effects. For large-scale (> 10 km) perturbations in the ionospheric plasma density, there are changes in the excess time delay for a radio wave signal, which propagates through the ionosphere, while small scale (< 1 m) structures or irregularities in the ionosphere may give rise tok amplitude and phase scintillations on UHF/L-band radio waves, resulting in loss of data, cycle slips and loss of phase lock for signals used in communication/navigation systems. In the equatorial region, where such effects may be severe, space weather effects on the dynamics of equatorial spread F (ESF) irregularities are studied from two different angles. The first one deals with the effect of magnetic activity on the generation of ESF irregularities by helping or hindering the growth of the Rayleigh Taylor (R-T) instability in the post-sunset equatorial F region. For this purpose, spaced receiver observations of scintillations on a UHF signal transmitted from a geostationary satellite and recorded near the dip equator, are used to establish the `age' of the irregularities. This is necessary because the occurrence of scintillations, particularly in the post midnight period, may also be due to irregularities which drift into the path of the radio wave signal, after having been generated more than 3 hours before the actual observation of scintillations. In order to associate the generation of irregularities with major changes in space weather, a parameter that is a measure of random variations in irregularity drift speed is computed from spaced receiver scintillation data. A large value of this parameter is usually a signature of random variations in irregularity drift due to polarization electric fields associated with freshly generated irregularities. Once these electric fields decay, the irregularities drift with the background plasma. This allows a study of the other effect of space weather on the dynamics of equatorial F region irregularities, viz. magnetically disturbed ionospheric drifts in the equatorial region. The drifts estimated for magnetically quiet days with ESF, within a period of a month, display far less variability than the quiet time variability for non-ESF days, thus making it possible to quantify perturbations in irregularity drift due to disturbance dynamo electric fields and/or prompt penetration of transient magnetospheric electric fields.
1984-08-08
transmission PTR signal changes whenever the transmitted thermal wave crosses a void. This provides a means of nondestructive subsurface imaging of defects...and Busse and Renk( 2 2 ) have demonstrated a new stereoscopic subsurface imaging technique involving two adjacent modulated PT source for...modulation frequencies. In all cases of subsurface imaging , the authors preferred to use the shape or the phase of the PTR signal rather than the amplitude
Shen, Li-Na; Zhang, Yong-Tai; Wang, Qin; Xu, Ling; Feng, Nian-Ping
2014-01-01
The aims of the present study were to investigate the skin permeation and cellular uptake of a microemulsion (ME) containing total flavone of rhizoma arisaematis (TFRA), and to evaluate its effects on skin structure. Pseudo-ternary phase diagrams were constructed to evaluate ME regions with various surfactants and cosurfactants. Eight formulations of oil-in-water MEs were selected as vehicles, and in vitro skin-permeation experiments were performed to optimize the ME formulation and to evaluate its permeability, in comparison to that of an aqueous suspension. Laser scanning confocal microscopy and fluorescent-activated cell sorting were used to explore the cellular uptake of rhodamine 110-labeled ME in human epidermal keratinocytes (HaCaT) and human embryonic skin fibroblasts (CCC-ESF-1). The structure of stratum corneum treated with ME was observed using a scanning electron microscope. Furthermore, skin irritation was tested to evaluate the safety of ME. ME formulated with 4% ethyl oleate (weight/weight), 18% Cremophor EL® (weight/weight), and 18% Transcutol® P, with 1% Azone to enhance permeation, showed good skin permeability. ME-associated transdermal fluxes of schaftoside and isoschaftoside, two major effective constituents of TFRA, were 3.72-fold and 5.92-fold higher, respectively, than those achieved using aqueous suspensions. In contrast, in vitro studies revealed that uptake by HaCaT and CCC-ESF-1 cells was lower with ME than with an aqueous suspension. Stratum corneum loosening and shedding was observed in nude mouse skin treated with ME, although ME produced no observable skin irritation in rabbits. These findings indicated that ME enhanced transdermal TFRA delivery effectively and showed good biocompatibility with skin tissue. PMID:25092976
@nrel.gov | 303-384-6136 Research Interests Ashutosh Mittal received an M.S. in 2004 and a Ph.D. in 2007 in Laboratory (NREL), he is actively involved in research on biomass pretreatment and conversion of biomass ., Environmental Resource Engineering, SUNY, ESF, Syracuse Professional Experience Research Scientist IV, NREL
Ukraine: Current Issues and U.S. Policy
2014-02-26
The United States also pledged to continue to cooperate with Ukraine on nuclear safety issues, including the cleanup of the Chernobyl nuclear...Congressional Research Service 13 A significant portion of U.S. aid to Ukraine in the ESF account is dedicated to improving the safety of the Chernobyl nuclear
Host-parasite interactions: Resist or tolerate but never stop running
USDA-ARS?s Scientific Manuscript database
A Conference exploring ‘The impact of the environment on innate immunity: the threat of diseases’ was held 4-9 May 2009 in Obergurgl, Austria, thanks to support from the European Science Foundation (ESF), Innsbruck University and the Austrian Science Foundation. The goals of the conference were to e...
EFFECTS OF COPPER ON COMMUNITY, FUNCTIONAL, AND BEHAVIORAL ENDPOINTS IN AN ARTIFICIAL STREAM STUDY
A study of the effects of copper on biota and behavioral endpoints was carried out at the U.S. EPA's Experimental Stream Facility (ESF), Milford OH. The objective of the study was to identify relationships between structural (macrobenthos and periphyton indices), functional (inte...
ERIC Educational Resources Information Center
Ward, Jane
2011-01-01
With women bearing a disproportionate share of economic hardship, their poor representation on training designed to tackle barriers to work is a critical concern. The author asks what can be done to improve women's access to this sort of learning. As the underrecruitment of women to ESF pre-employment programmes demonstrates, the author suggests…
ERIC Educational Resources Information Center
Thinesse-Demel, Jutta
2010-01-01
In 2000, the German Federal Ministry of Education and Research (BMBF) launched the programme "Learning Regions--Providing Support for Networks'" in cooperation with the Lander. It was co-financed by the European Social Fund (ESF). Some 90 regions were selected and financially supported. After one year, 71 regions continued to build-up…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moser, Duane P; Czerwinski, Ken; Russell, Charles E
2010-07-13
This US Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program's Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse andmore » divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moser, Duane P.; Bruckner, Jim; Fisher, Jen
2010-09-01
This U.S. Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program’s Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse andmore » divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.« less
DESIGN OF A SURFACTANT REMEDIATION FIELD DEMONSTRATION BASED ON LABORATORY AND MODELINE STUDIES
Surfactant-enhanced subsurface remediation is being evaluated as an innovative technology for expediting ground-water remediation. This paper reports on laboratory and modeling studies conducted in preparation for a pilot-scale field test of surfactant-enhanced subsurface remedia...
In-situ Subsurface Soil Analyzer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulmer, Chris
The Department of Energy’s (DOE’s) Terrestrial Ecosystem Science (TES) program is seeking improved sensor systems for monitoring hydro-biogeochemical processes in complex subsurface environments. The TES program is specifically interested in acquiring chemical and structural information regarding the type and nature of the hydration and redox states of subsurface chemical species. The technology should be able to perform on-site and real-time measurements to provide information not available using current sample acquisition and preservation processes. To address the needs of the DOE and the terrestrial science community, Physical Optics Corporation (POC) worked on the development of a new In-Situ Subsurface Soil Analyzermore » (ISSA) based on magnetic resonance technologies. Benchtop testing was performed to assess the feasibility of continuous wave electron pair resonance (CW-EPR) detection of chemical species in subsurface soil systems.« less
Evaluation of subsurface damage in concrete deck joints using impact echo method
Rickard, Larry; Choi, Wonchang
2016-01-01
Many factors can affect the overall performance and longevity of highway bridges, including the integrity of their deck joints. This study focuses on the evaluation of subsurface damage in deteriorated concrete deck joints, which includes the delamination and corrosion of the reinforcement. Impact echo and surface wave technology, mainly a portable seismic property analyzer (PSPA), were employed to evaluate the structural deficiency of concrete joints. Laboratory tests of core samples were conducted to verify the nondestructive test results. As a result, the primary advantage of the PSPA as a bridge assessment tool lies in its ability to assess the concrete’smore » modulus and to detect subsurface defects at a particular point simultaneously.« less
Prediction of sub-surface 37 Ar concentrations at locations in the Northwestern United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritz, Bradley G.; Aalseth, Craig E.; Back, Henning O.
The Comprehensive Nuclear Test-Ban Treaty, which is intended to prevent nuclear weapon testing, includes a verification regime, which provides monitoring to identify potential nuclear testing. The presence of elevated 37Ar is one way to identify subsurface nuclear testing. However, the naturally occurring formation of 37Ar in the subsurface adds a complicating factor. Prediction of the naturally occurring concentration of 37Ar can help to determine if a measured 37Ar concentration is elevated. The naturally occurring 37Ar background concentration has been shown to vary between less than 1 mBq/m3 to greater than 100 mBq/m3 (Riedmann and Purtschert 2011). Here, we evaluate amore » model for predicting the average concentration of 37Ar at any depth under transient barometric pressures, and compare it with measurements. This model is shown to compare favorably with concentrations of 37Ar measured at multiple locations in the Northwestern United States.« less
The European Social Fund: The Commission, the Member State and Levels of Governance
ERIC Educational Resources Information Center
Brine, Jacqueline
2004-01-01
The European Social Fund (ESF) is the European Union structural fund that redistributes funds to facilitate vocational education and training (VET). With the exception of the Common Agricultural Policy it is the EU's largest instrument for redistribution. Currently linked to the European Employment Strategy it match-funds, and through its…
The Islamic State Crisis and U.S. Policy
2015-06-11
Funding—The Administration is requesting $1.629 billion in Migration and Refugee Assistance-OCO ( MRA - OCO) and International Disaster Assistance-OCO...Programs (DoD) 715 600 1315 INCLE-OCO 11 10 21 PKO-OCO 65 65 FMF-OCO 250 50 300 ESF-OCO 50 160 277.4 487.4 MRA -OCO 819 819 IDA-OCO
European Social Fund in Portugal: A Complex Question for Human Resource Development
ERIC Educational Resources Information Center
Tome, Eduardo
2012-01-01
Purpose: This article aims to review the application of the funds awarded by the European Social Fund (ESF) to Portugal, since 1986, from a human resource development (HRD) perspective. Design/methodology/approach: Several variables are analyzed: investment, absorption, people, impact of investment, evolution of skills, main programs, supply and…
Schäfer, Beat W; Koscielniak, Ewa; Kovar, Heinrich; Fulda, Simone
2013-01-01
Rhabdomyosarcoma (RMS) and Ewing sarcoma (ES) are among the most common pediatric sarcomas (Arndt et al., 2012). Despite sarcomas representing a highly heterogeneous group of tumors, ES and alveolar RMS (ARMS) typically share one common genetic characteristic, namely a specific chromosomal translocation (Helman and Meltzer, 2003; Lessnick and Ladanyi, 2012). These translocations generate fusion proteins, which are composed of two transcription factors (TF). Typically, one TF is a developmentally regulated factor that is essential for proper specification of a given lineage and provides the DNA-binding domain, while the partner TF contributes a transactivation domain that drives aberrant expression of target genes. Based on these common genetic characteristics, the first ESF-EMBO research conference entitled "Molecular Biology and Innovative Therapies in Sarcomas of Childhood and Adolescence" with special focus on RMS and ES was held at the Polonia Castle in Pultusk, Poland. The conference gathered 70 participants from more than 15 countries and several continents representing most research groups that are active in this field.
NASA Astrophysics Data System (ADS)
Wang, Zhenhua; Li, Qingyun; Huang, Zhuo; Tang, Xianqiang; Zhao, Weihua
2017-05-01
Cascaded exploitation of diversion-type small hydropower (SHP) offers a source of new energy as well as socioeconomic benefits; however, it inevitably causes environmental disturbance and damage. Previous studies on the cumulative effect of cascaded diversion SHP rarely discussed using quantitative analysis method. In this paper, the ecological footprint analysis approach is proposed to assess the positive and negative impacts of cascaded diversion SHP on environment of a small-scale river in Southwest China. Positive impact is defined as ecological supply footprint (ESF), which refers to vegetation protection by replacing firewood with SHP. Negative impact is defined as ecological loss footprint (ELF), which includes fish and net primary productivity loss, vegetation destruction and soil erosion. With the raising in the number (n>4) of diversion SHP stations, the difference between ELF and ESF increases remarkably, suggesting that the adverse impacts of cascaded diversion SHP accumulate in the study area. Compared with vegetation destruction and soil erosion, the cumulative loss of fish and net productivity is the most important aspect of the adverse impacts which needs more attentions.
Brazelton, William J; Morrill, Penny L; Szponar, Natalie; Schrenk, Matthew O
2013-07-01
Reactions associated with the geochemical process of serpentinization can generate copious quantities of hydrogen and low-molecular-weight organic carbon compounds, which may provide energy and nutrients to sustain subsurface microbial communities independently of the photosynthetically supported surface biosphere. Previous microbial ecology studies have tested this hypothesis in deep sea hydrothermal vents, such as the Lost City hydrothermal field. This study applied similar methods, including molecular fingerprinting and tag sequencing of the 16S rRNA gene, to ultrabasic continental springs emanating from serpentinizing ultramafic rocks. These molecular surveys were linked with geochemical measurements of the fluids in an interdisciplinary approach designed to distinguish potential subsurface organisms from those derived from surface habitats. The betaproteobacterial genus Hydrogenophaga was identified as a likely inhabitant of transition zones where hydrogen-enriched subsurface fluids mix with oxygenated surface water. The Firmicutes genus Erysipelothrix was most strongly correlated with geochemical factors indicative of subsurface fluids and was identified as the most likely inhabitant of a serpentinization-powered subsurface biosphere. Both of these taxa have been identified in multiple hydrogen-enriched subsurface habitats worldwide, and the results of this study contribute to an emerging biogeographic pattern in which Betaproteobacteria occur in near-surface mixing zones and Firmicutes are present in deeper, anoxic subsurface habitats.
Morrill, Penny L.; Szponar, Natalie; Schrenk, Matthew O.
2013-01-01
Reactions associated with the geochemical process of serpentinization can generate copious quantities of hydrogen and low-molecular-weight organic carbon compounds, which may provide energy and nutrients to sustain subsurface microbial communities independently of the photosynthetically supported surface biosphere. Previous microbial ecology studies have tested this hypothesis in deep sea hydrothermal vents, such as the Lost City hydrothermal field. This study applied similar methods, including molecular fingerprinting and tag sequencing of the 16S rRNA gene, to ultrabasic continental springs emanating from serpentinizing ultramafic rocks. These molecular surveys were linked with geochemical measurements of the fluids in an interdisciplinary approach designed to distinguish potential subsurface organisms from those derived from surface habitats. The betaproteobacterial genus Hydrogenophaga was identified as a likely inhabitant of transition zones where hydrogen-enriched subsurface fluids mix with oxygenated surface water. The Firmicutes genus Erysipelothrix was most strongly correlated with geochemical factors indicative of subsurface fluids and was identified as the most likely inhabitant of a serpentinization-powered subsurface biosphere. Both of these taxa have been identified in multiple hydrogen-enriched subsurface habitats worldwide, and the results of this study contribute to an emerging biogeographic pattern in which Betaproteobacteria occur in near-surface mixing zones and Firmicutes are present in deeper, anoxic subsurface habitats. PMID:23584766
Yield response and economics of shallow subsurface drip irrigation systems
USDA-ARS?s Scientific Manuscript database
Field tests were conducted using shallow subsurface drip irrigation (S3DI) on cotton (Gossypium hirsutum, L.), corn (Zea mays, L.), and peanut (Arachis hypogeae, L.) in rotation to investigate yield potential and economic sustainability of this irrigation system technique over a six year period. Dri...
Biofilm-induced calcium carbonate precipitation: application in the subsurface
NASA Astrophysics Data System (ADS)
Phillips, A. J.; Eldring, J.; Lauchnor, E.; Hiebert, R.; Gerlach, R.; Mitchell, A. C.; Esposito, R.; Cunningham, A. B.; Spangler, L.
2012-12-01
We have investigated mitigation strategies for sealing high permeability regions, like fractures, in the subsurface. This technology has the potential to, for example, improve the long-term security of geologically-stored carbon dioxide (CO2) by sealing fractures in cap rocks or to mitigate leakage pathways to prevent contamination of overlying aquifers from hydraulic fracturing fluids. Sealing technologies using low-viscosity fluids are advantageous since they potentially reduce the necessary injection pressures and increase the radius of influence around injection wells. In this technology, aqueous solutions and suspensions are used to promote microbially-induced mineral precipitation which can be applied in subsurface environments. To this end, a strategy was developed to twice seal a hydraulically fractured, 74 cm (2.4') diameter Boyles Sandstone core, collected in North-Central Alabama, with biofilm-induced calcium carbonate (CaCO3) precipitates under ambient pressures. Sporosarcina pasteurii biofilms were established and calcium and urea containing reagents were injected to promote saturation conditions favorable for CaCO3 precipitation followed by growth reagents to resuscitate the biofilm's ureolytic activity. Then, in order to evaluate this process at relevant deep subsurface pressures, a novel high pressure test vessel was developed to house the 74 cm diameter core under pressures as high as 96 bar (1,400 psi). After determining that no impact to the fracture permeability occurred due to increasing overburden pressure, the fractured core was sealed under subsurface relevant pressures relating to 457 meters (1,500 feet) below ground surface (44 bar (650 psi) overburden pressure). After fracture sealing under both ambient and subsurface relevant pressure conditions, the sandstone core withstood three times higher well bore pressure than during the initial fracturing event, which occurred prior to biofilm-induced CaCO3 mineralization. These studies suggest biofilm-induced CaCO3 precipitation technologies may potentially seal and strengthen high permeability regions or fractures (either natural or induced) in the subsurface. Novel high pressure test vessel to investigate biogeochemical processes under relevant subsurface scales and pressures.
A wavefront reconstruction method for 3-D cylindrical subsurface radar imaging.
Flores-Tapia, Daniel; Thomas, Gabriel; Pistorius, Stephen
2008-10-01
In recent years, the use of radar technology has been proposed in a wide range of subsurface imaging applications. Traditionally, linear scan trajectories are used to acquire data in most subsurface radar applications. However, novel applications, such as breast microwave imaging and wood inspection, require the use of nonlinear scan trajectories in order to adjust to the geometry of the scanned area. This paper proposes a novel reconstruction algorithm for subsurface radar data acquired along cylindrical scan trajectories. The spectrum of the collected data is processed in order to locate the spatial origin of the target reflections and remove the spreading of the target reflections which results from the different signal travel times along the scan trajectory. The proposed algorithm was successfully tested using experimental data collected from phantoms that mimic high contrast subsurface radar scenarios, yielding promising results. Practical considerations such as spatial resolution and sampling constraints are discussed and illustrated as well.
A Mobile Acoustic Subsurface Sensing (MASS) System for Rapid Roadway Assessment
Lu, Yifeng; Zhang, Yi; Cao, Yinghong; McDaniel, J. Gregory; Wang, Ming L.
2013-01-01
Surface waves are commonly used for vibration-based nondestructive testing for infrastructure. Spectral Analysis of Surface Waves (SASW) has been used to detect subsurface properties for geologic inspections. Recently, efforts were made to scale down these subsurface detection approaches to see how they perform on small-scale structures such as concrete slabs and pavements. Additional efforts have been made to replace the traditional surface-mounted transducers with non-contact acoustic transducers. Though some success has been achieved, most of these new approaches are inefficient because they require point-to-point measurements or off-line signal analysis. This article introduces a Mobile Acoustic Subsurface Sensing system as MASS, which is an improved surface wave based implementation for measuring the subsurface profile of roadways. The compact MASS system is a 3-wheeled cart outfitted with an electromagnetic impact source, distance register, non-contact acoustic sensors and data acquisition/processing equipment. The key advantage of the MASS system is the capability to collect measurements continuously at walking speed in an automatic way. The fast scan and real-time analysis advantages are based upon the non-contact acoustic sensing and fast air-coupled surface wave analysis program. This integration of hardware and software makes the MASS system an efficient mobile prototype for the field test. PMID:23698266
NASA Astrophysics Data System (ADS)
Oudega, Thomas James; Derx, Julia; van Driezum, Inge; Cisneros, Anibal; Sommer, Regina; Kirschner, Alexander; Farnleitner, Andreas; Blaschke, Alfred Paul
2017-04-01
Subsurface media are being used around the world as a means to mitigate microbial contamination, but vary widely in their ability to remove pathogens. To help to provide accurate risk assessments of microbial contamination of groundwaters, and establish safe setback distances between receiving waters and disposal fields, this study aims to use aquifer tracer tests to evaluate the ability of subsurface media to attenuate these pathogens. The novelty of this work is the use of a variety of different tracer substances (e.g. phages, spores, microspheres, conservative tracers) together in field experiments. This will be done by means of injecting these substances under a forced gradient in a sandy gravel aquifer in Lobau, Austria. The extraction of the tracers will be monitored in a pumping well at a distrance of 50m downgradient. This will be able to provide us with insight to the characteristics of microbial transport and how the microorganisms react to the subsurface in the study site. Subsequent numerical modelling of the experiments can tell us more about quantification of subsurface processes such as attachment/detachment, inactivation and die-off of these substances. The first field experiment with conservative tracers (NaCl) has been carried out in December 2016, and subsequent tests are being planned for the next months.
Gascoyne, M.; Miller, N.H.; Neymark, L.A.
2002-01-01
Samples of tuff from boreholes drilled into fault zones in the Exploratory Studies Facility (ESF) and relatively unfractured rock of the Cross Drift tunnels, at Yucca Mountain, Nevada, have been analysed by U-series methods. This work is part of a project to verify the finding of fast flow-paths through the tuff to ESF level, indicated by the presence of 'bomb' 36Cl in pore fluids. Secular radioactive equilibrium in the U decay series, (i.e. when the radioactivity ratios 234U/238U, 230Th/234U and 226Ra/230Th all equal 1.00) might be expected if the tuff samples have not experienced radionuclide loss due to rock-water interaction occurring within the last million years. However, most fractured and unfractured samples were found to have a small deficiency of 234U (weighted mean 234U/238U=0.95??0.01) and a small excess of 230Th (weighted mean 230Th/234U 1.10??0.02). The 226Ra/230Th ratios are close to secular equilibrium (weighted mean = 0.94??0.07). These data indicate that 234U has been removed from the rock samples in the last ???350 ka, probably by pore fluids. Within the precision of the measurement, it would appear that 226Ra has not been mobilized and removed from the tuff, although there may be some localised 226Ra redistribution as suggested by a few ratio values that are significantly different from 1.0. Because both fractured and unfractured tuffs show approximately the same deficiency of 234U, this indicates that pore fluids are moving equally through fractured and unfractured rock, More importantly, fractured rock appears not to be a dominant pathway for groundwater flow (otherwise the ratio would be more strongly affected and the Th and Ra isotopic ratios would likely also show disequilibrium). Application of a simple mass-balance model suggests that surface infiltration rate is over an order of magnitude greater than the rate indicated by other infiltration models and that residence time of pore fluids at ESF level is about 400 a. Processes of U sorption, precipitation and re-solution are believed to be occurring and would account for these anomalous results but have not been included in the model. Despite the difficulties, the U-series data suggest that fractured rock, specifically the Sundance and Drill Hole Wash faults, are not preferred flow paths for groundwater flowing through the Topopah Spring tuff and, by implication, rapid-flow, within 50 a, from the surface to the level of the ESF is improbable. ?? 2002 Elsevier Science Ltd. All rights reserved.
Holographic Subsurface Radar Technique for Nondestructive Testing of Dielectric Structures
NASA Astrophysics Data System (ADS)
Ivashov, S. I.; Bugaev, A. S.; Zhuravlev, A. V.; Razevig, V. V.; Chizh, M. A.; Ivashov, A. I.
2018-02-01
Holographic subsurface radar method is compared with the conventional technology of impulse radars. Basic relationships needed for the reconstruction of complex microwave holograms are presented. Possible applications of the proposed technology are discussed. Diagnostics of polyurethane foam coatings of spacecrafts is used as an example of the efficiency of holographic subsurface radars. Results of reconstruction of complex and amplitude microwave holograms are compared. It is demonstrated that the image quality that results from reconstruction of complex microwave holograms is higher than the image quality obtained with the aid of amplitude holograms.
ERIC Educational Resources Information Center
Pike, Mark A.
2009-01-01
The Emmanuel Schools Foundation (ESF) has so far sponsored four schools in England. Beginning with Emmanuel College in Gateshead in 1990 (which remains a City Technology College) the Foundation sponsors the King's Academy in Middlesbrough, which opened in 2003, and Trinity Academy in Thorne near Doncaster, which opened in 2005. The Foundation's…
Core Values, Education and Research: A Response to Mark Pike
ERIC Educational Resources Information Center
Bragg, Sara; Allington, Daniel; Simmons, Katy; Jones, Ken
2011-01-01
This article presents the authors' response to the article by Mark Pike, which appeared in the "Oxford Review of Education" in December 2010. Pike's article focuses on Trinity Academy, one of four academies in the Emmanuel Schools Foundation (ESF): it is not a faith school, but sponsored by a Christian faith-based and business-oriented…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Yeohoon; Du, Yingge; Garcia, Juan C.
2015-02-02
Using combination of STM, DFT and SIMS, we explored the interplay and relative impact of surface vs. subsurface defects on the surface chemistry of rutile TiO2. STM results show that surface O vacancies (VO’s) are virtually absent in the vicinity of positively-charged subsurface point-defects. This observation is consistent with DFT calculations of impact of subsurface defect proximity on VO formation energy. To monitor the influence of such lateral anticorrelation on surface redox chemistry, a test reaction of the dissociative adsorption of O2 is employed, which is observed to be suppressed around them. DFT results attribute this to a perceived absencemore » of the intrinsic (Ti) (and likely extrinsic) interstitials in the nearest subsurface layer beneath “inhibited” areas. We also postulate that the entire nearest subsurface region could be voided of any charged point-defects, whereas prevalent VO’s are largely responsible for mediation of the redox chemistry at reduced TiO2(110) surface.« less
USDA-ARS?s Scientific Manuscript database
Improving understanding of subsurface conditions includes comparison and discrimination of concurrent models. Additional observations can be useful for that purpose. The objective of this work was to implement and test a novel method for optimization of selecting locations for additional observation...
Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology
NASA Technical Reports Server (NTRS)
Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.
2006-01-01
This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.
Nde of Frp Wrapped Columns Using Infrared Thermography
NASA Astrophysics Data System (ADS)
Halabe, Udaya B.; Dutta, Shasanka Shekhar; GangaRao, Hota V. S.
2008-02-01
This paper investigates the feasibility of using Infrared Thermography (IRT) for detecting debonds in Fiber Reinforced Polymer (FRP) wrapped columns. Laboratory tests were conducted on FRP wrapped concrete cylinders of size 6″×12″ (152.4 mm×304.8 mm) in which air-filled and water-filled debonds of various sizes were placed underneath the FRP wraps. Air-filled debonds were made by cutting plastic sheets into the desired sizes whereas water-filled debonds were made by filling water in custom made polyethylene pouches. Both carbon and glass fiber reinforced wraps were considered in this study. Infrared tests were conducted using a fully radiometric digital infrared camera which was successful in detecting air-filled as well as water-filled subsurface debonds. In addition to the laboratory testing, two field trips were made to Moorefield, West Virginia for detecting subsurface debonds in FRP wrapped timber piles of a railroad bridge using infrared testing. The results revealed that infrared thermography can be used as an effective nondestructive evaluation tool for detecting subsurface debonds in structural components wrapped with carbon or glass reinforced composite fabrics.
de Moraes, Rafael Ratto; Marimon, José Laurindo Machado; Schneider, Luis Felipe; Sinhoreti, Mário Alexandre Coelho; Correr-Sobrinho, Lourenço; Bueno, Márcia
2008-06-01
This study assessed the effect of 6 months of aging in water on surface roughness and surface/subsurface hardness of two microhybrid resin composites. Filtek Z250 and Charisma were tested. Cylindrical specimens were obtained and stored in distilled water for 24 hours or 6 months, at 37 degrees C. For Knoop hardness evaluation, the specimens were transversely wet-flattened, and indentations were made on surface and subsurface layers. Data were submitted to three-way ANOVA and Tukey's test (alpha < or = 0.05). Surface roughness baseline measurements were made at 24 hours and repeated after 6 months of storage. Data were submitted to repeated measures ANOVA and Tukey's test (alpha < or = 0.05). Surface hardness (KHN, kg/mm(2)) means (+/- standard deviation) ranged from 55 +/- 1 to 49 +/- 4 for Z250 and from 50 +/- 2 to 41 +/- 3 for Charisma, at 24 hours and 6 months, respectively. Subsurface means ranged from 58 +/- 2 to 61 +/- 3 for Z250 and from 50 +/- 1 to 54 +/- 2 for Charisma, at 24 hours and 6 months. For both composites, the aged specimens presented significantly softer surfaces (p < 0.01). For the subsurface hardness, alteration after storage was detected only for Charisma, which presented a significant rise in hardness (p < 0.01). Z250 presented significantly harder surface and subsurface layers in comparison with Charisma. Surface roughness (Ra, mum) means ranged from 0.07 +/- 0.00 to 0.07 +/- 0.01 for Z250 and from 0.06 +/- 0.01 to 0.07 +/- 0.01 for Charisma, at 24 hours and 6 months, respectively. For both composites, no significant roughness alteration was detected during the study (p= 0.386). The 6-month period of storage in water presented a significant softening effect on the surfaces of the composites, although no significant deleterious alteration was detected for the subsurface hardness. In addition, the storage period had no significant effect on the surface roughness of the materials.
NASA Astrophysics Data System (ADS)
Payler, Samuel J.; Biddle, Jennifer F.; Coates, Andrew J.; Cousins, Claire R.; Cross, Rachel E.; Cullen, David C.; Downs, Michael T.; Direito, Susana O. L.; Edwards, Thomas; Gray, Amber L.; Genis, Jac; Gunn, Matthew; Hansford, Graeme M.; Harkness, Patrick; Holt, John; Josset, Jean-Luc; Li, Xuan; Lees, David S.; Lim, Darlene S. S.; McHugh, Melissa; McLuckie, David; Meehan, Emma; Paling, Sean M.; Souchon, Audrey; Yeoman, Louise; Cockell, Charles S.
2017-04-01
The subsurface exploration of other planetary bodies can be used to unravel their geological history and assess their habitability. On Mars in particular, present-day habitable conditions may be restricted to the subsurface. Using a deep subsurface mine, we carried out a program of extraterrestrial analog research - MINe Analog Research (MINAR). MINAR aims to carry out the scientific study of the deep subsurface and test instrumentation designed for planetary surface exploration by investigating deep subsurface geology, whilst establishing the potential this technology has to be transferred into the mining industry. An integrated multi-instrument suite was used to investigate samples of representative evaporite minerals from a subsurface Permian evaporite sequence, in particular to assess mineral and elemental variations which provide small-scale regions of enhanced habitability. The instruments used were the Panoramic Camera emulator, Close-Up Imager, Raman spectrometer, Small Planetary Linear Impulse Tool, Ultrasonic drill and handheld X-ray diffraction (XRD). We present science results from the analog research and show that these instruments can be used to investigate in situ the geological context and mineralogical variations of a deep subsurface environment, and thus habitability, from millimetre to metre scales. We also show that these instruments are complementary. For example, the identification of primary evaporite minerals such as NaCl and KCl, which are difficult to detect by portable Raman spectrometers, can be accomplished with XRD. By contrast, Raman is highly effective at locating and detecting mineral inclusions in primary evaporite minerals. MINAR demonstrates the effective use of a deep subsurface environment for planetary instrument development, understanding the habitability of extreme deep subsurface environments on Earth and other planetary bodies, and advancing the use of space technology in economic mining.
USDA-ARS?s Scientific Manuscript database
Whether yield reduction risk of cotton fertilized with fall-applied poultry litter in regions with warm fall or winter months can be minimized by applying the litter in subsurface bands in conjunction with winter cover crop is unknown. A field study was conducted in Mississippi to test whether litte...
A one-dimensional model of subsurface hillslope flow
Jason C. Fisher
1997-01-01
Abstract - A one-dimensional, finite difference model of saturated subsurface flow within a hillslope was developed. The model uses rainfall, elevation data, a hydraulic conductivity, and a storage coefficient to predict the saturated thickness in time and space. The model was tested against piezometric data collected in a swale located in the headwaters of the North...
NASA Astrophysics Data System (ADS)
Ling, Zhen; Li, Jie
2018-03-01
Subsurface Flow Constructed Wetland Plant 5 kinds of perennial herbs, there are Canna, Water onion, Iris, Calamus, Reed. Foucs on Subsurface Flow Constructed Wetlands on agricultural wastewater nitrogen and phosphorus removal effect. Research results: Different plants TP removal efficiency from high to low is Iris> reed> calamus> water onion> canna.And TN removal efficiency from high to low is reed> water onion> iris> calamus> canna. Compared with the blank test land, Wetland plants improves TN removal and TP removal is higher than TN. Wetland plants can reduce the PH of experimental water.
Effect of Microstructural Evolution and Hardening in Subsurface on Wear Behavior of Mg-3Al-1Zn Alloy
NASA Astrophysics Data System (ADS)
Liang, C.; Li, C.; An, J.; Yu, M.; Hu, Y. C.; Lin, W. H.; Liu, F.; Ding, Y. H.
2013-12-01
Dry sliding tests were performed on as-cast AZ31 alloy using a pin-on-disc configuration. Coefficient of friction and wear rate were measured within a load range of 5-360 N at a sliding velocity of 0.785 m/s. Worn surface morphologies were examined using scanning electron microscopy. Five wear mechanisms, namely abrasion, oxidation, delamination, thermal softening, and melting, have been observed. Surface hardness, subsurface plastic strain, worn surface temperature, and cross-sectional optical microscopy were used to characterize hardness change, plastic deformation, and the microstructure evolution in subsurface. The results illustrate the correlation between the wear behavior and evolution of microstructure and hardness in subsurface, and reveal that in the load range of 5-120 N, surface oxidation and hardening originating from large plastic deformation play an important role in maintaining the mild wear, and softening originating from dynamic recrystallization in subsurface and surface melting are responsible for the severe wear in the load range of 120-360 N.
Detection in subsurface air of radioxenon released from medical isotope production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Christine; Biegalski, Steven; Haas, Derek
Abstract Under the Comprehensive Nuclear-Test-Ban Treaty, an On-Site Inspection (OSI) may be conducted to clarify whether a nuclear explosion has been carried out in violation of Article I of the Treaty. A major component of an OSI is the measurement of subsurface gases in order to detect radioactive noble gases that are produced in a nuclear explosion, particularly radioxenon and radioargon. In order to better understand potential backgrounds of these gases, a sampling campaign was performed near Canadian Nuclear Laboratories in the Ottawa River Valley, a major source of environmental radioxenon. First of their kind measurements of atmospheric radioxenon imprintedmore » into the shallow subsurface from an atmospheric pressure driven force were made using current OSI techniques to measure both atmospheric and subsurface gas samples which were analyzed for radioxenon. These measurements indicate that under specific sampling conditions, on the order of one percent of the atmospheric radioxenon concentration may be measured via subsurface sampling.« less
U.S. Security Assistance to Latin America.
1995-09-01
Western hemisphere. By ensuring our allies have the capability to maintain their own self-defense, the need for American intervention is decreased. The...the Military Assistance Program ( MAP ); the International Military Education and Training Program (IMET); Foreign Military Sales (FMS); Foreign...Military Sales Financing; Commercial Sales; and the Economic Support Fund (ESF). MAP provides grants to American allies for the purchase of weapons and
Regolith Volatile Recovery at Simulated Lunar Environments
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Paulsen, Gale; Zacny, Kris; Schmidt, Sherry; Boucher, Dale
2016-01-01
Lunar Polar Volatiles: Permanently shadowed craters at the lunar poles contain water, 5 wt according to LCROSS. Interest in water for ISRU applications. Desire to ground truth water using surface prospecting e.g. Resource Prospector and RESOLVE. How to access subsurface water resources and accurately measure quantity. Excavation operations and exposure to lunar environment may affect the results. Volatile capture tests: A series a ground based dirty thermal vacuum tests are being conducted to better understand the subsurface sampling operations. Sample removal and transfer. Volatiles loss during sampling operations. Concept of operations, Instrumentation. This presentation is a progress report on volatiles capture results from these tests with lunar polar drill prototype hardware.
DeMeo, Guy A.; Flint, Alan L.; Laczniak, Randell J.; Nylund, Walter E.
2006-01-01
Micrometeorological and soil-moisture data were collected at two instrumented sites on Rainier Mesa at the Nevada Test Site, January 1, 2002 - August 23, 2005. Data collected at each site include net radiation, air temperature, and relative humidity at two heights; wind speed and direction; subsurface soil heat flux; subsurface soil temperature; volumetric soil water; and matric water potential. These data were used to estimate 20-minute average and daily average evapotranspiration values. The data presented in this report are collected and calculated evapotranspiration rates.
4D ERT Monitoring of Subsurface Water Pipe Leakage During a Controlled Field Experiment
NASA Astrophysics Data System (ADS)
Inauen, C.; Chambers, J. E.; Wilkinson, P. B.; Meldrum, P.; Swift, R. T.; Uhlemann, S.; Gunn, D.; Dashwood, B.; Taxil, J.; Curioni, G.
2016-12-01
Locating and delineating leakage from subsurface pipelines is an important task for civil engineers. 4D Electrical Resistivity Tomography (ERT) allows changes in subsurface resistivity to be imaged at a high spatial and temporal resolution in a minimally invasive manner. It is therefore a promising tool to supplement conventional point-sensing techniques to monitor subsurface flow processes. To assess the efficacy of ERT for pipe leakage monitoring several controlled leak experiments were carried out at a test site in Blagdon, Bristol, UK. To simulate the leak, a plastic pipe with a hole was buried below a flat, grassed area at a depth of 0.7 m, representing a standard UK mains water pipe installation. The water table at the site lies well below the surface meaning that the experiment took entirely place in the vadose zone, where changes in resistivity are primarily sensitive to water content variations. The ERT array covered an area of 6.5m x 6.5m around the leak location. Data acquisition was carried out with the BGS PRIME (Proactive Infrastructure Monitoring and Evaluation) system, which facilitates remote scheduling and autonomous ERT data collection and transmission. To obtain the resistivity changes of the subsurface a 4D inversion was carried out using a Gauss-Newton approach with spatial and temporal smoothness constraints. We were able to reliably observe the onset, spread and cessation of the leakage. Measurements from in-situ soil sensors at several depths above and below the leak complemented the ERT data and allowed us to assess their reliability and directly relate them to hydrogeological processes. Moreover, through experimental tests with soil samples from the test area, a Waxman-Smits relation was obtained to directly convert the changes in electrical resistivity to gravimetric soil moisture content. With future experiments on the test site more work is planned towards survey optimization, automated processing and tracking of leakage plumes.
Improved Geologic Interpretation of Non-invasive Electrical Resistivity Imaging from In-situ Samples
NASA Astrophysics Data System (ADS)
Mucelli, A.; Aborn, L.; Jacob, R.; Malusis, M.; Evans, J.
2016-12-01
Non-invasive geophysical techniques are useful in characterizing the subsurface geology without disturbing the environment, however, the ability to interpret the subsurface is enhanced by invasive work. Since geologic materials have electrical resistivity values it allows for a geologic interpretation to be made based on variations of electrical resistivity measured by electrical resistivity imaging (ERI). This study focuses on the pre-characterization of the geologic subsurface from ERI collected adjacent to the Montandon Marsh, a wetland located near Lewisburg, PA within the West Branch of the Susquehanna River watershed. The previous invasive data, boreholes, indicate that the subsurface consists of limestone and shale bedrock overlain with sand and gravel deposits from glacial outwash and aeolian processes. The objective is to improve our understanding of the subsurface at this long-term hydrologic research site by using excavation results, specifically observed variations in geologic materials and electrical resistivity laboratory testing of subsurface samples. The pre-excavation ERI indicated that the shallow-most geologic material had a resistivity value of 100-500 ohm-m. In comparison, the laboratory testing indicated the shallow-most material had the same range of electrical resistivity values depending on saturation levels. The ERI also showed that there was an electrically conductive material, 7 to 70 ohm-m, that was interpreted to be clay and agreed with borehole data, however, the excavation revealed that at this depth range the geologic material varied from stratified clay to clay with cobbles to weathered residual clay. Excavation revealed that the subtle variations in the electrical conductive material corresponded well with the variations in the geologic material. We will use these results to reinterpret previously collected ERI data from the entire long-term research site.
This poster will present a modeling and mapping assessment of landscape sensitivity to non-point source pollution as applied to a hierarchy of catchment drainages in the Coastal Plain of the state of North Carolina. Analysis of the subsurface residence time of water in shallow a...
NASA Astrophysics Data System (ADS)
Worms, Jean-Claude; Lammer, Helmut; Barucci, Antonella; Beebe, Reta; Bibring, Jean-Pierre; Blamont, Jacques; Blanc, Michel; Bonnet, Roger; Brucato, John R.; Chassefière, Eric; Coradini, Angioletta; Crawford, Ian; Ehrenfreund, Pascale; Falcke, Heino; Gerzer, Rupert; Grady, Monica; Grande, Manuel; Haerendel, Gerhard; Horneck, Gerda; Koch, Bernhard; Lobanov, Andreï; Lopez-Moreno, José J.; Marco, Robert; Norsk, Peter; Rothery, Dave; Swings, Jean-Pierre; Tropea, Cam; Ulamec, Stephan; Westall, Frances; Zarnecki, John
2009-02-01
In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December 2005 Ministerial Conference of ESA Member States, held in Berlin. A first interim report was presented to ESA at the second stakeholders meeting on 30 and 31 May 2005. A second draft report was made available at the time of the final science stakeholders meeting on 16 September 2005 in order for ESA to use its recommendations to prepare the Executive proposal to the Ministerial Conference. The final ESSC report on that activity came a few months after the Ministerial Conference (June 2006) and attempted to capture some elements of the new situation after Berlin, and in the context of the reduction in NASA's budget that was taking place at that time; e.g., the postponement sine die of the Mars Sample Return mission. At the time of this study, ESSC made it clear to ESA that the timeline imposed prior to the Berlin Conference had not allowed for a proper consultation of the relevant science community and that this should be corrected in the near future. In response to that recommendation, ESSC was asked again in the summer of 2006 to initiate a broad consultation to define a science-driven scenario for the Aurora Programme. This exercise ran between October 2006 and May 2007. ESA provided the funding for staff support, publication costs, and costs related to meetings of a Steering Group, two meetings of a larger ad hoc group (7 and 8 December 2006 and 8 February 2007), and a final scientific workshop on 15 and 16 May 2007 in Athens. As a result of these meetings a draft report was produced and examined by the Ad Hoc Group. Following their endorsement of the report and its approval by the plenary meeting of the ESSC, the draft report was externally refereed, as is now normal practice with all ESSC-ESF reports, and amended accordingly. The Ad Hoc Group defined overarching scientific goals for Europe's exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments," focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return as the recognized primary goal; furthermore the report clearly states that Europe should position itself as a major actor in defining and leading Mars sample return missions. The report is reproduced in this article. On 26 November 2008 the Ministers of ESA Member States decided to give a high strategic priority to the robotic exploration programme of Mars by funding the enhanced ExoMars mission component, in line therefore with the recommendations from this ESSC-ESF report.
Worms, Jean-Claude; Lammer, Helmut; Barucci, Antonella; Beebe, Reta; Bibring, Jean-Pierre; Blamont, Jacques; Blanc, Michel; Bonnet, Roger; Brucato, John R; Chassefière, Eric; Coradini, Angioletta; Crawford, Ian; Ehrenfreund, Pascale; Falcke, Heino; Gerzer, Rupert; Grady, Monica; Grande, Manuel; Haerendel, Gerhard; Horneck, Gerda; Koch, Bernhard; Lobanov, Andreï; Lopez-Moreno, José J; Marco, Roberto; Norsk, Peter; Rothery, Dave; Swings, Jean-Pierre; Tropea, Cam; Ulamec, Stephan; Westall, Frances; Zarnecki, John
2009-01-01
In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December 2005 Ministerial Conference of ESA Member States, held in Berlin. A first interim report was presented to ESA at the second stakeholders meeting on 30 and 31 May 2005. A second draft report was made available at the time of the final science stakeholders meeting on 16 September 2005 in order for ESA to use its recommendations to prepare the Executive proposal to the Ministerial Conference. The final ESSC report on that activity came a few months after the Ministerial Conference (June 2006) and attempted to capture some elements of the new situation after Berlin, and in the context of the reduction in NASA's budget that was taking place at that time; e.g., the postponement sine die of the Mars Sample Return mission. At the time of this study, ESSC made it clear to ESA that the timeline imposed prior to the Berlin Conference had not allowed for a proper consultation of the relevant science community and that this should be corrected in the near future. In response to that recommendation, ESSC was asked again in the summer of 2006 to initiate a broad consultation to define a science-driven scenario for the Aurora Programme. This exercise ran between October 2006 and May 2007. ESA provided the funding for staff support, publication costs, and costs related to meetings of a Steering Group, two meetings of a larger ad hoc group (7 and 8 December 2006 and 8 February 2007), and a final scientific workshop on 15 and 16 May 2007 in Athens. As a result of these meetings a draft report was produced and examined by the Ad Hoc Group. Following their endorsement of the report and its approval by the plenary meeting of the ESSC, the draft report was externally refereed, as is now normal practice with all ESSC-ESF reports, and amended accordingly. The Ad Hoc Group defined overarching scientific goals for Europe's exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments," focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return as the recognized primary goal; furthermore the report clearly states that Europe should position itself as a major actor in defining and leading Mars sample return missions. The report is reproduced in this article. On 26 November 2008 the Ministers of ESA Member States decided to give a high strategic priority to the robotic exploration programme of Mars by funding the enhanced ExoMars mission component, in line therefore with the recommendations from this ESSC-ESF report.
NASA Technical Reports Server (NTRS)
Choi, Taeyong; Xiong, Xiaoxiong; Wang, Zhipeng
2013-01-01
Spatial quality of an imaging sensor can be estimated by evaluating its modulation transfer function (MTF) from many different sources such as a sharp edge, a pulse target, or bar patterns with different spatial frequencies. These well-defined targets are frequently used for prelaunch laboratory tests, providing very reliable and accurate MTF measurements. A laboratory-quality edge input source was included in the spatial-mode operation of the Spectroradiometric Calibration Assembly (SRCA), which is one of the onboard calibrators of the Moderate Resolution Imaging Spectroradiometer (MODIS). Since not all imaging satellites have such an instrument, SRCA MTF estimations can be used as a reference for an on-orbit lunar MTF algorithm and results. In this paper, the prelaunch spatial quality characterization process from the Integrated Alignment Collimator and SRCA is briefly discussed. Based on prelaunch MTF calibration using the SRCA, a lunar MTF algorithm is developed and applied to the lifetime on-orbit Terra and Aqua MODIS lunar collections. In each lunar collection, multiple scan-directionMoon-to-background transition profiles are aligned by the subpixel edge locations from a parametric Fermi function fit. Corresponding accumulated edge profiles are filtered and interpolated to obtain the edge spread function (ESF). The MTF is calculated by applying a Fourier transformation on the line spread function through a simple differentiation of the ESF. The lifetime lunar MTF results are analyzed and filtered by a relationship with the Sun-Earth-MODIS angle. Finally, the filtered lunarMTF values are compared to the SRCA MTF results. This comparison provides the level of accuracy for on-orbit MTF estimations validated through prelaunch SRCA measurements. The lunar MTF values had larger uncertainty than the SRCA MTF results; however, the ratio mean of lunarMTF fit and SRCA MTF values is within 2% in the 250- and 500-m bands. Based on the MTF measurement uncertainty range, the suggested lunar MTF algorithm can be applied to any on-orbit imaging sensor with lunar calibration capability.
Jayarathne, P D K D; Kumaragamage, D; Indraratne, S; Flaten, D; Goltz, D
2016-07-01
Enhanced phosphorus (P) release from soils to overlying water under flooded, anaerobic conditions has been well documented for noncalcareous and surface soils, but little information is available for calcareous and subsurface soils. We compared the magnitude of P released from 12 calcareous surface soils and corresponding subsurface soils to overlying water under flooded, anaerobic conditions and examined the reasons for the differences. Surface (0-15 cm) and subsurface (15-30 cm) soils were packed into vessels and flooded for 8 wk. Soil redox potential and concentrations of dissolved reactive phosphorus (DRP) and total dissolved Ca, Mg, Fe, and Mn in floodwater and pore water were measured weekly. Soil test P was significantly smaller in subsurface soils than in corresponding surface soils; thus, the P release to floodwater from subsurface soils was significantly less than from corresponding surface soils. Under anaerobic conditions, floodwater DRP concentration significantly increased in >80% of calcareous surface soils and in about 40% of subsurface soils. The increase in floodwater DRP concentration was 2- to 17-fold in surface soils but only 4- to 7-fold in subsurface soils. With time of flooding, molar ratios of Ca/P and Mg/P in floodwater increased, whereas Fe/P and Mn/P decreased, suggesting that resorption and/or reprecipitation of P took place involving Fe and Mn. Results indicate that P release to floodwater under anaerobic conditions was enhanced in most calcareous soils. Surface and subsurface calcareous soils in general behaved similarly in releasing P under flooded, anaerobic conditions, with concentrations released mainly governed by initial soil P concentrations. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Modeling subsurface stormflow initiation in low-relief landscapes
NASA Astrophysics Data System (ADS)
Hopp, Luisa; Vaché, Kellie B.; Rhett Jackson, C.; McDonnell, Jeffrey J.
2015-04-01
Shallow lateral subsurface flow as a runoff generating mechanism at the hillslope scale has mostly been studied in steeper terrain with typical hillside angles of 10 - 45 degrees. These studies have shown that subsurface stormflow is often initiated at the interface between a permeable upper soil layer and a lower conductivity impeding layer, e.g. a B horizon or bedrock. Many studies have identified thresholds of event size and soil moisture states that need to be exceeded before subsurface stormflow is initiated. However, subsurface stormflow generation on low-relief hillslopes has been much less studied. Here we present a modeling study that investigates the initiation of subsurface stormflow on low-relief hillslopes in the Upper Coastal Plain of South Carolina, USA. Hillslopes in this region typically have slope angles of 2-5 degrees. Topsoils are sandy, underlain by a low-conductivity sandy clay loam Bt horizon. Subsurface stormflow has only been intercepted occasionally in a 120 m long trench, and often subsurface flow was not well correlated with stream signals, suggesting a disconnect between subsurface flow on the hillslopes and stream flow. We therefore used a hydrologic model to better understand which conditions promote the initiation of subsurface flow in this landscape, addressing following questions: Is there a threshold event size and soil moisture state for producing lateral subsurface flow? What role does the spatial pattern of depth to the impeding clay layer play for subsurface stormflow dynamics? We reproduced a section of a hillslope, for which high-resolution topographic data and depth to clay measurements were available, in the hydrologic model HYDRUS-3D. Soil hydraulic parameters were based on experimentally-derived data. The threshold analysis was first performed using hourly climate data records for 2009-2010 from the study site to drive the simulation. For this period also trench measurements of subsurface flow were available. In addition, we also ran a longer-term simulation, using daily climate data for a nine year period to include more variable climate conditions in the threshold analysis. The model captured the observed subsurface flow instances very well. The threshold analysis indicated that the occurrence of subsurface stormflow uncommon, with a large proportion of the water perching above the clay layer percolating vertically into the clay layer. Event sizes of approximately 70-80 mm were required for initiating subsurface stormflow. The hourly data from 2009-2010 was subsequently used to test if the actual spatial distribution of depth to clay is a major control for the occurrence and magnitude of lateral subsurface flow. Results suggest that in this low-relief landscape also a spatially uniform mean depth to clay reproduces well the hydrologic behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shuo; Zhong, Lirong; Li, Guanghe
Colloidal silica (fumed silica) suspensions are being tested as carriers for remedial amendment delivery in subsurface remediation and as media for underground contamination containment. The knowledge of the rheological behavior of the silica suspensions is lack in the literature while it is essential for the preparation and field injection of the suspensions. This contribution is focused on the rheological characteristics of colloidal silica suspensions under various environmental conditions relevant to amendment delivery for subsurface remediation. We investigated the influence of silica particle concentration, water source, ionic strength, pH, aging, amendment type and concentration, and subsurface sediment on the rheological behaviormore » of the suspensions. All tested suspension formulations exhibited shear thinning before gelation. Higher silica particle concentration and salinity (Na+ and K+) increased suspensions’ viscosity and the degree of shear thinning. The viscosity of suspensions increased with aging. The suspensions at natural pH exhibited the highest viscosity compared to the acidic and alkaline suspensions with the same silica concentration. Addition of KMnO4 amendment to aqueous silica suspensions increased viscosity, while addition of alcohol amendment decreased suspensions’ viscosity. The presence of amendment did not reduce shear thinning. The gelation rate of silica suspensions was increased with silica concentration and with the addition of sediments. The rheological characteristics of shear thinning aqueous fumed silica suspensions were compared to that of shear thinning solutions formed with organic polymer xanthan gum, which was applied for amendment delivery in subsurface remediation.« less
Handbook. Disaster Response Staff Officer’s Handbook: Observations, Insights, and Lessons
2010-12-01
Agriculture, and the Federal Emergency Management Agency under ESF #6, Mass Care , in the support of the Pets Evacuation and Transportation Standards Act...in local hospitals, nursing homes, and extended care facilities, those with special needs, household pets , and service animals. Significant...household pets and service animals will require appropriate care , sheltering, medical attention, and transportation. • A catastrophic incident will
ERIC Educational Resources Information Center
Strijbos, Jan-Willem; Narciss, Susanne; Dunnebier, Katrin
2010-01-01
Peer-feedback content is a core component of peer assessment, but the impact of various contents of feedback is hardly studied. Participants in the study were 89 graduate students who were assigned to four experimental and a control group. Experimental groups received a scenario with concise general (CGF) or elaborated specific (ESF) feedback by a…
A covalent G-site inhibitor for glutathione S-transferase Pi (GSTP1-1).
Shishido, Yuko; Tomoike, Fumiaki; Kimura, Yasuaki; Kuwata, Keiko; Yano, Takato; Fukui, Kenji; Fujikawa, Haruka; Sekido, Yoshitaka; Murakami-Tonami, Yuko; Kameda, Tomoshi; Shuto, Satoshi; Abe, Hiroshi
2017-10-10
We herein report the first covalent G-site-binding inhibitor for GST, GS-ESF (1), which irreversibly inhibited the GSTP 1-1 function. LC-MS/MS and X-ray structure analyses of the covalently linked GST-inhibitor complex suggested that 1 reacted with Tyr108 of GSTP 1-1 . The mechanism of covalent bond formation was discussed based on MD simulation results.
Mass Care (ESF-6) Preparedness for Catastrophic Disasters
2009-09-01
seismic event along the New Madrid fault zone resulting in an earthquake with a Richter scale reading approximating 7.7 or higher to determine the...shelter, mass feeding, bulk distribution, catastrophic disaster response, New Madrid earthquake, long-term recovery process, National Shelter...catastrophic seismic event along the New Madrid fault zone resulting in an earthquake with a Richter scale reading approximating 7.7 or higher to
Dual-band beacon experiment over Southeast Asia for ionospheric irregularity analysis
NASA Astrophysics Data System (ADS)
Watthanasangmechai, K.; Yamamoto, M.; Saito, A.; Saito, S.; Maruyama, T.; Tsugawa, T.; Nishioka, M.
2013-12-01
An experiment of dual-band beacon over Southeast Asia was started in March 2012 in order to capture and analyze ionospheric irregularities in equatorial region. Five GNU Radio Beacon Receivers (GRBRs) were aligned along 100 degree geographic longitude. The distances between the stations reach more than 500 km. The field of view of this observational network covers +/- 20 degree geomagnetic latitude including the geomagnetic equator. To capture ionospheric irregularities, the absolute TEC estimation technique was developed. The two-station method (Leitinger et al., 1975) is generally accepted as a suitable method to estimate TEC offsets of dual-band beacon experiment. However, the distances between the stations directly affect on the robustness of the technique. In Southeast Asia, the observational network is too sparse to attain a benefit of the classic two-station method. Moreover, the least-squares approch used in the two-station method tries too much to adjust the small scales of the TEC distribution which are the local minima. We thus propose a new technique to estimate the TEC offsets with the supporting data from absolute GPS-TEC from local GPS receivers and the ionospheric height from local ionosondes. The key of the proposed technique is to utilize the brute-force technique with weighting function to find the TEC offset set that yields a global minimum of RMSE in whole parameter space. The weight is not necessary when the TEC distribution is smooth, while it significantly improves the TEC estimation during the ESF events. As a result, the latitudinal TEC shows double-hump distribution because of the Equatorial Ionization Anomaly (EIA). In additions, the 100km-scale fluctuations from an Equatorial Spread F (ESF) are captured at night time in equinox seasons. The plausible linkage of the meridional wind with triggering of ESF is under invatigating and will be presented. The proposed method is successful to estimate the latitudinal TEC distribution from dual-band frequency beacon data for the sparse observational network in Southeast Asia which may be useful for other equatorial sectors like Affrican region as well.
Data Qualification Report: Pore Water Data for Use on the Yucca Mountain Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
H. Miller; R. Monks; C. Warren
Pore water data associated with Data Tracking Number (DTN) No.LL990702804244.100 are referenced in the Analysis and Model Reports (AMRs) prepared to support the Site Recommendation in determining the suitability of the Yucca Mountain, Nevada as a repository for high-level nuclear waste. It has been determined, in accordance with procedure AP-3.15Q Rev. 1, ICN 1, ''Managing Technical Product Inputs'', Attachment 6 , that the DTN-referenced data are used in AMRs that provide a direct calculation of ''Principal Factors'' for the Post-closure Safety Case or Potentially Disruptive Processes or Events. Therefore, in accordance with the requirements of procedure AP-SIII.2Q, Rev 0, ICNmore » 2, ''Qualification of Unqualified Data and the Documentation of Rationale for Accepted Data'', Section 5.3.1 .a, a Data Qualification Report has been prepared for submittal to the Assistant Manager, Office of Project Execution for concurrence. This report summarizes the findings of the Data Qualification Team assembled to evaluate unqualified ''pore water data'' represented by DTN No. LL990702804244.100. This DTN is currently used in the following AMRs: Drift-Scale Coupled Processes (DST and THC Seepage) Models (CRWMS M&O 2000a), Environment of the Surfaces of the Drip Shield and Waste Package Outer Barrier (CRWMS M&O 2000b), and Engineered Barrier System: Physical and Chemical Environment Model (CRWMS M&O 2000c). Mineral composition of pore water submitted to the Technical Data Management System (TDMS) using the subject DTN were acquired data from the analysis pore water samples sent to Lawrence Livermore National Laboratory's (LLNL) by UFA Ventures, Inc. and analyzed by LLNL's Analytical Sciences/Analytical and Nuclear Chemistry Division (ASD). The purpose and scope of the AMRs that reference the subject DTN and the potential application of pore water data is described below. These AMRs use only that data associated with the specific samples: ESF-HD-PERM-1, ESF-HD-PERM-2, and ESF-HD-PERM-3. The data for these samples represents a subset of the data identified as DTN No. LL990702804244.100.« less
Removal of nutrients from septic tank effluent with baffle subsurface-flow constructed wetlands
Lihu Cui; Ying Ouyang; Weizhi Yang; Zhujian Huang; Qiaoling Xu; Guangwei Yu
2015-01-01
Three new baffle flow constructed wetlands (CWs), namely the baffle horizontal flow CW (Z1), baffle vertical flow CW (Z2) and baffle hybrid flow CW (Z3), along with one traditional horizontal subsurface flow CW (Z4) were designed to test the removal efficiency of nitrogen (N) and phosphorus (P) from the septic tank effluent under varying hydraulic retention times (HRTs...
R.A. Payn; M.N. Gooseff; B.L. McGlynn; K.E. Bencala; S.M. Wondzell
2009-01-01
Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6-...
Reaction bonded silicon nitride prepared from wet attrition-milled silicon. [fractography
NASA Technical Reports Server (NTRS)
Herball, T. P.; Glasgow, T. K.; Shaw, N. J.
1980-01-01
Silicon powder wet milled in heptane was dried, compacted into test bar shape, helium-sintered, and then reaction bonded in nitrogen-4 volume percent hydrogen. As-nitrided bend strengths averaged approximately 290 MPa at both room temperature and 1400 C. Fracture initiation appeared to be associated with subsurface flaws in high strength specimens and both subsurface and surface flaws in low strength specimens.
Reaction bonded silicon nitride prepared from wet attrition-milled silicon
NASA Technical Reports Server (NTRS)
Herbell, T. P.; Glasgow, T. K.; Shaw, N. J.
1980-01-01
Silicon powder wet milled in heptane was dried, compacted into test bar shape, helium-sintered, and then reaction bonded in nitrogen-4 vol% hydrogen. As-nitrided bend strengths averaged approximately 290 MPa at both room temperature and 1400 C. Fracture initiation appeared to be associated with subsurface flaws in high-strength specimens and both subsurface and surface flaws in low-strength specimens.
Dynamic coupling of subsurface and seepage flows solved within a regularized partition formulation
NASA Astrophysics Data System (ADS)
Marçais, J.; de Dreuzy, J.-R.; Erhel, J.
2017-11-01
Hillslope response to precipitations is characterized by sharp transitions from purely subsurface flow dynamics to simultaneous surface and subsurface flows. Locally, the transition between these two regimes is triggered by soil saturation. Here we develop an integrative approach to simultaneously solve the subsurface flow, locate the potential fully saturated areas and deduce the generated saturation excess overland flow. This approach combines the different dynamics and transitions in a single partition formulation using discontinuous functions. We propose to regularize the system of partial differential equations and to use classic spatial and temporal discretization schemes. We illustrate our methodology on the 1D hillslope storage Boussinesq equations (Troch et al., 2003). We first validate the numerical scheme on previous numerical experiments without saturation excess overland flow. Then we apply our model to a test case with dynamic transitions from purely subsurface flow dynamics to simultaneous surface and subsurface flows. Our results show that discretization respects mass balance both locally and globally, converges when the mesh or time step are refined. Moreover the regularization parameter can be taken small enough to ensure accuracy without suffering of numerical artefacts. Applied to some hundreds of realistic hillslope cases taken from Western side of France (Brittany), the developed method appears to be robust and efficient.
Hodges, Mary K.V.; Champion, Duane E.
2016-10-03
The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, used paleomagnetic data from 18 coreholes to construct three cross sections of subsurface basalt flows in the southern part of the Idaho National Laboratory (INL). These cross sections, containing descriptions of the subsurface horizontal and vertical distribution of basalt flows and sediment layers, will be used in geological studies, and to construct numerical models of groundwater flow and contaminant transport.Subsurface cross sections were used to correlate surface vents to their subsurface flows intersected by coreholes, to correlate subsurface flows between coreholes, and to identify possible subsurface vent locations of subsurface flows. Correlations were identified by average paleomagnetic inclinations of flows, and depth from land surface in coreholes, normalized to the North American Datum of 1927. Paleomagnetic data were combined, in some cases, with other data, such as radiometric ages of flows. Possible vent locations of buried basalt flows were identified by determining the location of the maximum thickness of flows penetrated by more than one corehole.Flows from the surface volcanic vents Quaking Aspen Butte, Vent 5206, Mid Butte, Lavatoo Butte, Crater Butte, Pond Butte, Vent 5350, Vent 5252, Tin Cup Butte, Vent 4959, Vent 5119, and AEC Butte are found in coreholes, and were correlated to the surface vents by matching their paleomagnetic inclinations, and in some cases, their stratigraphic positions.Some subsurface basalt flows that do not correlate to surface vents, do correlate over several coreholes, and may correlate to buried vents. Subsurface flows which correlate across several coreholes, but not to a surface vent include the D3 flow, the Big Lost flow, the CFA buried vent flow, the Early, Middle, and Late Basal Brunhes flows, the South Late Matuyama flow, the Matuyama flow, and the Jaramillo flow. The location of vents buried in the subsurface by younger basalt flows can be inferred if their flows are penetrated by several coreholes, by tracing the flows in the subsurface, and determining where the greatest thickness occurs.
NASA Technical Reports Server (NTRS)
Marshall, William M.; Borowski, Stanley K.; Bulman, Mel; Joyner, Russell; Martin, Charles R.
2015-01-01
Nuclear thermal propulsion (NTP) has been recognized as an enabling technology for missions to Mars and beyond. However, one of the key challenges of developing a nuclear thermal rocket is conducting verification and development tests on the ground. A number of ground test options are presented, with the Sub-surface Active Filtration of Exhaust (SAFE) method identified as a preferred path forward for the NTP program. The SAFE concept utilizes the natural soil characteristics present at the Nevada National Security Site to provide a natural filter for nuclear rocket exhaust during ground testing. A validation method of the SAFE concept is presented, utilizing a non-nuclear sub-scale hydrogen/oxygen rocket seeded with detectible radioisotopes. Additionally, some alternative ground test concepts, based upon the SAFE concept, are presented. Finally, an overview of the ongoing discussions of developing a ground test campaign are presented.
Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyrak-Nolte, Laura J; DePaolo, Donald J.; Pietraß, Tanja
2015-05-22
From beneath the surface of the earth, we currently obtain about 80-percent of the energy our nation consumes each year. In the future we have the potential to generate billions of watts of electrical power from clean, green, geothermal energy sources. Our planet’s subsurface can also serve as a reservoir for storing energy produced from intermittent sources such as wind and solar, and it could provide safe, long-term storage of excess carbon dioxide, energy waste products and other hazardous materials. However, it is impossible to underestimate the complexities of the subsurface world. These complexities challenge our ability to acquire themore » scientific knowledge needed for the efficient and safe exploitation of its resources. To more effectively harness subsurface resources while mitigating the impacts of developing and using these resources, the U.S. Department of Energy established SubTER – the Subsurface Technology and Engineering RD&D Crosscut team. This DOE multi-office team engaged scientists and engineers from the national laboratories to assess and make recommendations for improving energy-related subsurface engineering. The SubTER team produced a plan with the overall objective of “adaptive control of subsurface fractures and fluid flow.”This plan revolved around four core technological pillars—Intelligent Wellbore Systems that sustain the integrity of the wellbore environment; Subsurface Stress and Induced Seismicity programs that guide and optimize sustainable energy strategies while reducing the risks associated with subsurface injections; Permeability Manipulation studies that improve methods of enhancing, impeding and eliminating fluid flow; and New Subsurface Signals that transform our ability to see into and characterize subsurface systems. The SubTER team developed an extensive R&D plan for advancing technologies within these four core pillars and also identified several areas where new technologies would require additional basic research. In response, the Office of Science, through its Office of Basic Energy Science (BES), convened a roundtable consisting of 15 national lab, university and industry geoscience experts to brainstorm basic research areas that underpin the SubTER goals but are currently underrepresented in the BES research portfolio. Held in Germantown, Maryland on May 22, 2015, the round-table participants developed a basic research agenda that is detailed in this report. Highlights include the following: -A grand challenge calling for advanced imaging of stress and geological processes to help understand how stresses and chemical substances are distributed in the subsurface—knowledge that is critical to all aspects of subsurface engineering; -A priority research direction aimed at achieving control of fluid flow through fractured media; -A priority research direction aimed at better understanding how mechanical and geochemical perturbations to subsurface rock systems are coupled through fluid and mineral interactions; -A priority research direction aimed at studying the structure, permeability, reactivity and other properties of nanoporous rocks, like shale, which have become critical energy materials and exhibit important hallmarks of mesoscale materials; -A cross-cutting theme that would accelerate development of advanced computational methods to describe heterogeneous time-dependent geologic systems that could, among other potential benefits, provide new and vastly improved models of hydraulic fracturing and its environmental impacts; -A cross-cutting theme that would lead to the creation of “geo-architected materials” with controlled repeatable heterogeneity and structure that can be tested under a variety of thermal, hydraulic, chemical and mechanical conditions relevant to subsurface systems; -A cross-cutting theme calling for new laboratory studies on both natural and geo-architected subsurface materials that deploy advanced high-resolution 3D imaging and chemical analysis methods to determine the ;rates and mechanisms of fluid-rock processes, and to test predictive models of such phenomena. Many of the key energy challenges of the future demand a greater understanding of the subsurface world in all of its complexity. This greater under- standing will improve the ability to control and manipulate the subsurface world in ways that will benefit both the economy and the environment. This report provides specific basic research pathways to address some of the most fundamental issues of energy-related subsurface engineering.« less
Influence of bedrock topography on the runoff generation under use of ERT data
NASA Astrophysics Data System (ADS)
Kiese, Nina; Loritz, Ralf; Allroggen, Niklas; Zehe, Erwin
2017-04-01
Subsurface topography has been identified to play a major role for the runoff generation in different hydrological landscapes. Sinks and ridges in the bedrock can control how water is stored and transported to the stream. Detecting the subsurface structure is difficult and laborious and frequently done by auger measurements. Recently, the geophysical imaging of the subsurface by Electrical Resistivity Tomography (ERT) gained much interest in the field of hydrology, as it is a non-invasive method to collect information on the subsurface characteristics and particularly bedrock topography. As it is impossible to characterize the subsurface of an entire hydrological landscape using ERT, it is of key interest to identify the bedrock characteristics which dominate runoff generation to adapt and optimize the sampling design to the question of interest. For this study, we used 2D ERT images and auger measurements, collected on different sites in the Attert basin in Luxembourg, to characterize bedrock topography using geostatistics and shed light on those aspects which dominate runoff generation. Based on ERT images, we generated stochastic bedrock topographies and implemented them in a physically-based 2D hillslope model. With this approach, we were able to test the influence of different subsurface structures on the runoff generation. Our results highlight that ERT images can be useful for hydrological modelling. Especially the connection from the hillslope to the stream could be identified as important feature in the subsurface for the runoff generation whereas the microtopography of the bedrock seemed to be less relevant.
Using Downhole Probes to Locate and Characterize Buried Transuranic and Mixed Low Level Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinman, Donald K; Bramblett, Richard L; Hertzog, Russel C
2012-06-25
Borehole logging probes were developed and tested to locate and quantify transuranic elements in subsurface disposal areas and in contaminated sites at USDOE Weapons Complex sites. A new method of measuring very high levels of chlroine in the subsurface was developed using pulsed neutron technology from oilfield applications. The probes were demonstrated at the Hanford site in wells containing plutonium and other contaminants.
Robotic Range Clearance Competition (R2C2)
2011-10-01
unexploded ordnance (UXO). A large part of the debris field consists of ferrous metal objects that magnetic 39 Distribution A: Approved for public...was set at 7 degrees above horizontal based on terrain around the Base station. We used the BSUBR file for all fields except the Subsurface...and subsurface clearance test areas had numerous pieces of simulated unexploded ordinance (SUXO) buried at random locations around the field . These
SIIOS in Alaska: Testing an "In-Vault" Option for a Europa Lander Seismometer Experiment
NASA Technical Reports Server (NTRS)
Bray, Veronica J.; Weber, Renee C.; DellaGiustina, Daniella N.; Bailey, S. H. (Hop); Schmerr, Nicholas C.; Pettit, Erin C.; Avenson, Brad; Marusiak, Angela G.; Dahl, Peter; Carr, Christina;
2017-01-01
The icy moons of Europa and Enceladus are thought to have global subsurface oceans in contact with mineral-rich silicate interiors, likely providing the three ingredients needed for life as we know it: liquid water, essential chemicals, and a source of energy. The possibility of life forming in their subsurface oceans relies in part on transfer of oxidants from the irradiated ice surface to the sheltered ocean below. Constraining the mechanisms and location of material exchange between the ice surface, the ice shell, and the subsurface ocean, however, is not possible without knowledge of ice thickness and liquid water depths. In a future lander-based experiment seismic measurements will be a key geophysical tool for obtaining this critical knowledge. The Seismometer to Investigate Ice and Ocean Structure (SIIOS) field-tests flight-ready technologies and develops the analytical methods necessary to make a seismic study of Europa and Enceladus a reality. We have been performing small-array seismology with a flight-candidate sensor in analog environments that exploit passive sources. Determining the depth to a subsurface ocean and any intermediate bodies of water is a priority for Ocean Worlds missions as it allows assessment of the habitability of these worlds and provides vital information for evaluating the spacecraft technologies required to access their oceans.
Depth dependency of neutron density produced by cosmic rays in the lunar subsurface
NASA Astrophysics Data System (ADS)
Ota, S.; Sihver, L.; Kobayashi, S.; Hasebe, N.
2014-11-01
Depth dependency of neutrons produced by cosmic rays (CRs) in the lunar subsurface was estimated using the three-dimensional Monte Carlo particle and heavy ion transport simulation code, PHITS, incorporating the latest high energy nuclear data, JENDL/HE-2007. The PHITS simulations of equilibrium neutron density profiles in the lunar subsurface were compared with the measurement by Apollo 17 Lunar Neutron Probe Experiment (LNPE). Our calculations reproduced the LNPE data except for the 350-400 mg/cm2 region under the improved condition using the CR spectra model based on the latest observations, well-tested nuclear interaction models with systematic cross section data, and JENDL/HE-2007.
Egypt: Background and U.S. Relations
2012-12-06
brokering an Israeli-Hamas cease-fire and the approval of a $4.8 billion IMF loan for Egypt. In the weeks since that November 22 document was... financial support for peace between Israel and her Arab neighbors. In two separate memoranda accompanying the treaty, the United States outlined...projects and cash transfers.7 ESF funds are allocated to a variety of sectors , including health, education, economic growth, and democracy and governance
The University of Amsterdam at TREC 2012
2012-11-01
lady , weight, ap, loss, major, insurance, rate, role, response, plays, atlanta, rising, oprah, childhood, crescent Table 5: Example topics and their...by the CLARIN-nl program, the Dutch national program COMMIT, the ESF Research Net- work Program ELIAS, the Elite Network Shifts project funded by the...Royal Dutch Academy of Sciences (KNAW), and the Netherlands eScience Center under project number 027.012.105. 6 References [1] Balasubramanian, N. and
Special Inspector General for Afghanistan Reconstruction
2013-04-30
implementation and oversight of reconstruction pro - grams, whether by U.S. agencies or the Afghan government. Contractors and nonprofit organizations...appropriation for these funds is still being negotiated. The President has asked for less in his FY 2014 budget pro - posal—$1.69 billion for ESF and $475...has failed to sufficiently coordinate An Afghan farmer gives his tractor a tough workout in Helmand Province. Improved roads and farm productivity
NASA Astrophysics Data System (ADS)
Abdu, Mangalathayil A.; Nogueira, Paulo A. B.; Santos, Angela M.; de Souza, Jonas R.; Batista, Inez S.; Sobral, Jose H. A.
2018-04-01
Equatorial plasma bubble/spread F irregularity occurrence can present large variability depending upon the intensity of the evening prereversal enhancement in the zonal electric field (PRE), that is, the F region vertical plasma drift, which basically drives the post-sunset irregularity development. Forcing from magnetospheric disturbances is an important source of modification and variability in the PRE vertical drift and of the associated bubble development. Although the roles of magnetospheric disturbance time penetration electric fields in the bubble irregularity development have been studied in the literature, many details regarding the nature of the interaction between the penetration electric fields and the PRE vertical drift still lack our understanding. In this paper we have analyzed data on F layer heights and vertical drifts obtained from digisondes operated in Brazil to investigate the connection between magnetic disturbances occurring during and preceding sunset and the consequent variabilities in the PRE vertical drift and associated equatorial spread F (ESF) development. The impact of the prompt penetration under-shielding eastward electric field and that of the over-shielding, and disturbance dynamo, westward electric field on the evolution of the evening PRE vertical drift and thereby on the ESF development are briefly examined.
Zhang, Jingyi; Li, Bin; Chen, Yumin; Chen, Meijie; Fang, Tao; Liu, Yongfeng
2018-06-11
This paper proposes a regression model using the Eigenvector Spatial Filtering (ESF) method to estimate ground PM 2.5 concentrations. Covariates are derived from remotely sensed data including aerosol optical depth, normal differential vegetation index, surface temperature, air pressure, relative humidity, height of planetary boundary layer and digital elevation model. In addition, cultural variables such as factory densities and road densities are also used in the model. With the Yangtze River Delta region as the study area, we constructed ESF-based Regression (ESFR) models at different time scales, using data for the period between December 2015 and November 2016. We found that the ESFR models effectively filtered spatial autocorrelation in the OLS residuals and resulted in increases in the goodness-of-fit metrics as well as reductions in residual standard errors and cross-validation errors, compared to the classic OLS models. The annual ESFR model explained 70% of the variability in PM 2.5 concentrations, 16.7% more than the non-spatial OLS model. With the ESFR models, we performed detail analyses on the spatial and temporal distributions of PM 2.5 concentrations in the study area. The model predictions are lower than ground observations but match the general trend. The experiment shows that ESFR provides a promising approach to PM 2.5 analysis and prediction.
NASA Astrophysics Data System (ADS)
Rodrigues, Fabiano S.; de Paula, Eurico R.; Zewdie, Gebreab K.
2017-03-01
We present results of Capon's method for estimation of in-beam images of ionospheric scattering structures observed by a small, low-power coherent backscatter interferometer. The radar interferometer operated in the equatorial site of São Luís, Brazil (2.59° S, 44.21° W, -2.35° dip latitude). We show numerical simulations that evaluate the performance of the Capon method for typical F region measurement conditions. Numerical simulations show that, despite the short baselines of the São Luís radar, the Capon technique is capable of distinguishing localized features with kilometric scale sizes (in the zonal direction) at F region heights. Following the simulations, we applied the Capon algorithm to actual measurements made by the São Luís interferometer during a typical equatorial spread F (ESF) event. As indicated by the simulations, the Capon method produced images that were better resolved than those produced by the Fourier method. The Capon images show narrow (a few kilometers wide) scattering channels associated with ESF plumes and scattering regions spaced by only a few tens of kilometers in the zonal direction. The images are also capable of resolving bifurcations and the C shape of scattering structures.
Projeto do sistema anti-ressonante da fiação dos transdutores para o detector Mario Schenberg
NASA Astrophysics Data System (ADS)
Vieira, S. J.., Jr.; Melo, J. L.
2003-08-01
O detector de ondas gravitacionais Mario Schenberg está sendo projetado e construído pelo grupo Gráviton. Sua construção está ocorrendo no Laboratório de Estado Sólido e Baixas Temperaturas (LESBT) da Universidade de São Paulo, na cidade de São Paulo. Esse detector possui uma massa ressonante esférica de cobre-alumínio, com 65 cm de diâmetro, pesando aproximadamente 1150 Kg, suspensa por um sistema de isolamento vibracional, que se encontra em fase de testes preliminares. A real eficácia desse sistema, entretanto, só poderá ser comprovada quando o detector estiver aparelhado com, pelo menos, um transdutor eletromecânico de altíssima sensibilidade acoplado à massa ressonante. Neste momento, não só este sistema de isolamento vibracional será posto em teste, como o do projeto da fiação que transporta os sinais de microondas até os transdutores e destes para a pré-amplificação. Apesar dessa fiação ter sido projetada para não apresentar nenhum contato com a superfície esférica da antena, de maneira a não haver nenhuma transmissão de ruído vibracional do laboratório para esta, deve-se minimizar o ruído microfônico produzido nessa fiação por oscilações mecânicas, uma vez que ela não utiliza nenhum sistema de isolamento vibracional. Com o intuito de resolver este problema, projetamos uma estrutura, formada por pequenos cilindros conectados por barras, a qual não terá nenhuma ressonância mecânica na faixa de freqüências de interesse para detecção (3000 - 3400 Hz). Desta forma, as vibrações nessa faixa não serão amplificadas. O projeto foi feito usando iterativamente, de maneira a otimizar os resultados obtidos, o programa de elementos finitos Msc/Nastran. Através de simulações feitas neste programa, determinamos os parâmetros geométricos ideais a serem utilizados, os quais proporcionam a maior região espectral de interesse livre de ressonâncias.
Detecting and characterizing ice units with the WISDOM Radar
NASA Astrophysics Data System (ADS)
Ciarletti, V.; Plettemeier, D.; Dorizon, S.; Clifford, S. M.; Biancheri-Astier, M.; Dechambre, M.; Saintenoy, A. C.; Costard, F.
2012-12-01
The WISDOM (Water Ice Subsurface Deposit Observation on Mars) Ground Penetrating Radar (GPR) is one of the instruments that have been selected as part of the Pasteur payload of ESA's 2018 ExoMars Rover mission. WISDOM main objectives are to understand the geology and evolution of the landing site and to help identifying locations in the shallow subsurface where organic molecules are the most likely to be found and well-preserved. In the context of the ExoMars mission, the importance of the WISDOM GPR is particularly enhanced by its ability to investigate the distribution and state of subsurface water - both as a liquid and as ice. For example, within the diurnally active thermal layer of the subsurface (i.e., the top ~15 - 25 cm), the transient melting and freezing of subsurface ice and brine may be detectable by comparing day- and night-time radar observations at the same location. Moreover, while the biological significance of liquid water on Mars is obvious, a more readily accessible and enduring record of biological activity may be organic biomarkers preserved in subsurface ice. Unfortunately, the dielectric contrast between rock, soil and ice is small, and therefore, differentiating between mixtures of ice-rich and ice-poor regolith in the Martian subsurface is an extraordinarily difficult task. Preliminary tests in both natural (glacier in the Alps and caves in Austria) and artificial (cold chamber) icy environments have been performed with a prototype representative of the WISDOM instrument flight model. These investigations have demonstrated WISDOM's ability to detect and characterize subsurface ice in various forms. Specific examples will be discussed that demonstrate the instrument's depth of sounding, dielectric sensitivity, spatial resolution, full polarimetric and 3-D capability.
FY94 CAG trip reports, CAG memos and other products: Volume 2. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-12-15
The Yucca Mountain Site Characterization Project (YMP) of the US DOE is tasked with designing, constructing, and operating an Exploratory Studies Facility (ESF) at Yucca Mountain, Nevada. The purpose of the YMP is to provide detailed characterization of the Yucca Mountain site for the potential mined geologic repository for permanent disposal of high-level radioactive waste. Detailed characterization of properties of the site are to be conducted through a wide variety of short-term and long-term in-situ tests. Testing methods require the installation of a large number of test instruments and sensors with a variety of functions. These instruments produce analog andmore » digital data that must be collected, processed, stored, and evaluated in an attempt to predict performance of the repository. The Integrated Data and Control System (IDCS) is envisioned as a distributed data acquisition that electronically acquires and stores data from these test instruments. IDCS designers are responsible for designing and overseeing the procurement of the system, IDCS Operation and Maintenance operates and maintains the installed system, and the IDCS Data Manager is responsible for distribution of IDCS data to participants. This report is a compilation of trip reports, interoffice memos, and other memos relevant to Computer Applications Group, Inc., work on this project.« less
NASA Astrophysics Data System (ADS)
Jin, Minquan; Delshad, Mojdeh; Dwarakanath, Varadarajan; McKinney, Daene C.; Pope, Gary A.; Sepehrnoori, Kamy; Tilburg, Charles E.; Jackson, Richard E.
1995-05-01
In this paper we present a partitioning interwell tracer test (PITT) technique for the detection, estimation, and remediation performance assessment of the subsurface contaminated by nonaqueous phase liquids (NAPLs). We demonstrate the effectiveness of this technique by examples of experimental and simulation results. The experimental results are from partitioning tracer experiments in columns packed with Ottawa sand. Both the method of moments and inverse modeling techniques for estimating NAPL saturation in the sand packs are demonstrated. In the simulation examples we use UTCHEM, a comprehensive three-dimensional, chemical flood compositional simulator developed at the University of Texas, to simulate a hypothetical two-dimensional aquifer with properties similar to the Borden site contaminated by tetrachloroethylene (PCE), and we show how partitioning interwell tracer tests can be used to estimate the amount of PCE contaminant before remedial action and as the remediation process proceeds. Tracer tests results from different stages of remediation are compared to determine the quantity of PCE removed and the amount remaining. Both the experimental (small-scale) and simulation (large-scale) results demonstrate that PITT can be used as an innovative and effective technique to detect and estimate the amount of residual NAPL and for remediation performance assessment in subsurface formations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, M.; Delshad, M.; Dwarakanath, V.
1995-05-01
In this paper we present a partitioning interwell tracer test (PITT) technique for the detection, estimation, and remediation performance assessment of the subsurface contaminated by nonaqueous phase liquids (NAPLs). We demonstrate the effectiveness of this technique by examples of experimental and simulation results. The experimental results are from partitioning tracer experiments in columns packed with Ottawa sand. Both the method of moments and inverse modeling techniques for estimating NAPL saturation in the sand packs are demonstrated. In the simulation examples we use UTCHEM, a comprehensive three-dimensional, chemical flood compositional simulator developed at the University of Texas, to simulate a hypotheticalmore » two-dimensional aquifer with properties similar to the Borden site contaminated by tetrachloroethylene (PCE), and we show how partitioning interwell tracer tests can be used to estimate the amount of PCE contaminant before remedial action and as the remediation process proceeds. Tracer test results from different stages of remediation are compared to determine the quantity of PCE removed and the amount remaining. Both the experimental (small-scale) and simulation (large-scale) results demonstrate that PITT can be used as an innovative and effective technique to detect and estimate the amount of residual NAPL and for remediation performance assessment in subsurface formations. 43 refs., 10 figs., 1 tab.« less
Detailed 3D Geophysical Model of the Shallow Subsurface (Zancara River Basin, Iberian Peninsula)
NASA Astrophysics Data System (ADS)
Carbonell, R.; Marzán, I.; Martí, D.; Lobo, A.; Jean, K.; Alvarez-Marrón, J.
2016-12-01
Detailed knowledge of the structure and lithologies of the shallow subsurface is required when designing and building singular geological storage facilities this is the case of the study area in Villar de Cañas (Cuenca, Central Spain). In which an extensive multidisciplinary data acquisition program has been carried out. This include studies on: geology, hydrology, geochemistry, geophysics, borehole logging, etc. Because of this data infrastructure, it can be considered a subsurface imaging laboratory to test and validate indirect underground characterization approaches. The field area is located in a Miocene syncline within the Záncara River Basin (Cuenca, Spain). The sedimentary sequence consists in a transition from shales to massive gypsums, and underlying gravels. The stratigraphic succession features a complex internal structure, diffused lithological boundaries and relatively large variability of properties within the same lithology, these makes direct geological interpretation very difficult and requires of the integration of all the measured physical properties. The ERT survey, the seismic tomography data and the logs have been used jointly to build a 3-D multi-parameter model of the subsurface in a surface of 500x500 m. The Vp model (a 10x20x5 m grid) is able to map the high velocities of the massive gypsum, however it was neither able to map the details of the shale-gypsm transition (low velocity contrast) nor to differentiate the outcropping altered gypsum from the weathered shales. The integration of the electrical resistivity and the log data by means of a supervised statistical tools (Linear Discriminant Analysis, LDA) resulted in a new 3D multiparametric subsurface model. This new model integrates the different data sets resolving the uncertainties characteristic of the models obtained independently by the different techniques separately. Furthermore, this test seismic dataset has been used to test FWI approaches in order to study their capacities. (Research supports: CGL2014-56548-P, 2009-SGR-1595, CGL2013-47412-C2-1-P).
Hickey, John D.
1977-01-01
Lithologic, hydraulic, geophysical, and water-quality data collected at the McKay Creek subsurface waste-injection test site in Pinellas County, Florida, are reported. Data were collected to determine the possibility of subsurface injection of waste-treatment plant effluent. One exploratory hole, one test injection well, and eight observation wells were constructed between May 1973 and February 1976. The exploratory hole was drilled to a depth of 1,750 feet below land surface; the test injection well is open in dolomite between 952 and 1 ,040 feet; and the observation wells are open to intervals above , in, and below the test injection zone. The lithology of the upper 100 feet is predominantly clay. From 100 to 1,750 feet below land surface, limestone and dolomite predominate. Gypsum is present 1,210 feet below land surface. Laboratory analyses of cores taken during drilling are given for vertical intrinsic permeability, porosity, interval transit time, and compressibility. Specific capacities tested during drilling range from 4 to 2,500 gallons per minute per foot of drawdown. An 83-hour withdrawal test at 4,180 gallons per minute and a 2-month injection test at 650 gallons per minute were run. Small water-quality changes were observed in one observation well immediately above the test injection zone during and after the injection test. Formation water in all of the wells with the exception of the shallowest observation wells is saline. The vertical position of saltwater is estimated to be at about 280 feet below land surface. Thirteen wells within a 1-mile radius of the test site were located and sampled for water quality. (USGS)
NASA Astrophysics Data System (ADS)
Bonaccorsi, R.; Stoker, C. R.; MARTE Science Team
2007-12-01
The subsurface is the key environment for searching for life on planets lacking surface life. Subsurface ecosystems are of great relevance to astrobiology including the search for past/present life on Mars. Conditions on the Martian surface do not support biological activity but the subsurface might preserve organics and host subsurface life [1]. A key requirement for the analysis of subsurface samples on Mars is the ability to characterize organic vs. inorganic carbon pools. This information is needed to determine if the sample contains organic material of biological origin and/ or to establish if pools of inorganic carbon can support subsurface biospheres. The Mars Analog Rio Tinto Experiment (MARTE) performed deep drilling of cores i.e., down to 165-m depth, in a volcanically-hosted-massive-sulfide deposit at Rio Tinto, Spain, which is considered an important analog of the Sinus Meridiani site on Mars. Results from MARTE suggest the existence of a relatively complex subsurface life including aerobic and anaerobic chemoautotrophs, and strict anaerobic methanogens sustained by Fe and S minerals in anoxic conditions, which is an ideal model analog for a deep subsurface Martian environment. We report here on the distribution of organic (C-org: 0.01-0.3Wt% and inorganic carbon (IC = 0.01-7.0 Wt%) in a subsurface rock system including weathered/oxidized i.e., gossan, and unaltered pyrite stockwork. Cores were analyzed from 3 boreholes (BH-4, BH-7, and BH-8) that penetrated down to a depth of ~165 m into massive sulfide. Nearsurface phyllosilicate rich-pockets contain the highest amounts of organics (0.3Wt%) [2], while the deeper rocks contain the highest amount of carbonates. Assessing the amount of C pools available throughout the RT subsurface brings key insight on the type of trophic system sustaining its microbial ecosystem (i.e., heterotrophs vs. autotrophs) and the biogeochemical relationships that characterize a new type of subsurface biosphere at RT. This potentially novel biosphere on Earth could be used as a model to test for extant and extinct life on Mars. Furthermore, having found carbonates in an hyperacidic system (pH ~2.3) brings new insights on the possible occurrence of deep carbonates deposits under low-pH condition on Mars. [1] Boston, P.J., et al., 1992. Icarus 95,300-308; Bonaccorsi, Stoker and Sutter, 2007 Accepted with review in Astrobiology.
Electrochemical characterization of cerium-based conversion coatings on aluminum alloy 7075-T6
NASA Astrophysics Data System (ADS)
Joshi, Simon
This research used electrochemical techniques to characterize the deposition and corrosion protection behavior of cerium-based conversion coatings on Al 7075-T6. Alkaline activation decreased native oxide impedance (5.9 kO-cm2) by ˜25% promoting deposition of 250--500 nm coatings. Activation in NaOH solutions deposited coatings with large cracks and craters, whereas Na2CO3 activation resulted in uniform coatings, i.e., fewer cracks and almost no craters. Uniformly deposited coatings exhibited better cathodic inhibition and higher impedance (˜200 kO-cm 2) than on NaOH activated substrates (˜100 kO-cm 2). Subsurface crevices, caused by Cl- and H 2O2 in the deposition solution, were found under large cracks and craters. Thus, Na2CO3 activation produced fewer subsurface crevices. To reduce subsurface crevice formation, Ce(NO3) 3 and CeCl3 were used in different ratios. Coatings made using 100% Ce(NO3)3 solutions were ˜60 nm thick without subsurface crevices, but the coatings offered little corrosion protection. Despite formation of subsurface crevices, Cl- was necessary as impedance increased linearly with Cl- concentration in the deposition solution. To characterize the different non-uniform features of the coatings, microelectrochemical testing was performed and it showed three distinct regions: active, intermediate, and passive. Humidity experiments were performed to understand the effect of moisture during salt spray testing and showed an increase in coating impedance by making the exposed substrate oxide more passive. However, this passive oxide could not provide corrosion resistance in a chloride environment. Dissolution studies showed that cerium migration was only possible at pH ≤2. Overall, deposition of uniform 250--500 nm thick outings was essential to make it an effective barrier to Cl - attach and prevent subsurface crevices on Al 7075-T6.
Shallow characterization of the subsurface for the 2018 Mission to Mars
NASA Astrophysics Data System (ADS)
Ciarletti, V.; plettemeier, D.; Vieau, A. J.; Hassen-Khodja, R.; Lustrement, B.; Cais, P.; Clifford, S.
2012-04-01
The highest priority scientific objectives of the revised 2018 mission to Mars are (1) to search for evidence of past or present life, (2) to identify the samples that are most likely to preserve potential evidence of life and the nature of the early Martian environment that might have given rise to it and (3) to cache them for later retrieval back to Earth for more detailed analyses than can be performed by the rover's onboard analytical laboratory. WISDOM is a ground penetrating radar that has been designed to investigate the near subsurface of Mars down to a depth of ~2-3 m, with a vertical resolution of several centimeters - commensurate with the sampling capabilities of the ExoMars onboard drill. The ability of WISDOM to investigate the geology of the landing site in 3-dimensions will permit direct correlations between subsurface layers and horizons with those exposed in nearby outcrops and the interior of impact craters. By combining periodic soundings conducted during a Rover traverse with targeted, high density grid-type soundings of areas of potential scientific interest, it will be possible to construct a 3-dimensional map of the local radar stratigraphy. Of all of the Pasteur Payload instruments, only WISDOM has the ability to investigate and characterize the nature of the subsurface remotely. Moreover, the geoelectrical properties of H2O make WISDOM a powerful tool to understand the local distribution and state of subsurface H2O, including the potential presence of segregated ground ice and the persistent or transient occurrence of liquid water/brine. A WISDOM prototype, representative of the final flight model is now being tested. A series of calibrations and verifications have been initiated. The real performance of the instrument is currently assessed for various test environments. Results about the resolution and sensitivity achieved are presented as well as 3D representations of detected subsurface structures. Preliminary estimates of permittivity values are also shown.
Geophysical testing of rock and its relationships to physical properties
DOT National Transportation Integrated Search
2011-02-01
Testing techniques were designed to characterize spatial variability in geotechnical engineering physical parameters of : rock formations. Standard methods using seismic waves, which are routinely used for shallow subsurface : investigation, have lim...
Exploitation of Microdoppler and Multiple Scattering Phenomena for Radar Target Recognition
2006-08-24
is tested with measurement data. The resulting GPR images demonstrate the effectiveness of the proposed algorithm. INTRODUCTION Subsurface imaging to...utilizes the fast Fourier . transform (FFT) to expedite the imaging GPR. Recently, we re- .... ported a fast and effective SAR-based subsurface ... imaging tech- nique that can provide good resolutions in both the range and cross-range domains I111. Our algorithm differs from Witten’s [91 and Hansen’s
Tran, Anh Phuong; Dafflon, Baptiste; Hubbard, Susan S.; ...
2016-04-25
Improving our ability to estimate the parameters that control water and heat fluxes in the shallow subsurface is particularly important due to their strong control on recharge, evaporation and biogeochemical processes. The objectives of this study are to develop and test a new inversion scheme to simultaneously estimate subsurface hydrological, thermal and petrophysical parameters using hydrological, thermal and electrical resistivity tomography (ERT) data. The inversion scheme-which is based on a nonisothermal, multiphase hydrological model-provides the desired subsurface property estimates in high spatiotemporal resolution. A particularly novel aspect of the inversion scheme is the explicit incorporation of the dependence of themore » subsurface electrical resistivity on both moisture and temperature. The scheme was applied to synthetic case studies, as well as to real datasets that were autonomously collected at a biogeochemical field study site in Rifle, Colorado. At the Rifle site, the coupled hydrological-thermal-geophysical inversion approach well predicted the matric potential, temperature and apparent resistivity with the Nash-Sutcliffe efficiency criterion greater than 0.92. Synthetic studies found that neglecting the subsurface temperature variability, and its effect on the electrical resistivity in the hydrogeophysical inversion, may lead to an incorrect estimation of the hydrological parameters. The approach is expected to be especially useful for the increasing number of studies that are taking advantage of autonomously collected ERT and soil measurements to explore complex terrestrial system dynamics.« less
NASA Astrophysics Data System (ADS)
Plettemeier, D.; Statz, C.; Hahnel, R.; Benedix, W. S.; Hamran, S. E.; Ciarletti, V.
2016-12-01
The "Water Ice Subsurface Deposition on Mars" Experiment (WISDOM) is a Ground Penetrating Radar (GPR) and part of the 2020 ExoMars Rover payload. It will be the first GPR operating on a planetary rover and the first fully polarimetric radar tasked at probing the subsurface of Mars. WISDOM operates at frequencies between 500 MHz and 3 GHz yielding a centimetric resolution and a penetration depth of about 3 meters in Martian soil. Its prime scientific objective is the detailed characterization of the material distribution within the first few meters of the Martian subsurface as a contribution to the search for evidence of past life. For the first time, WISDOM will give access to the geological structure, electromagnetic nature, and hydrological state of the shallow subsurface by retrieving the layering and properties of the buried reflectors at an unprecedented resolution and, due to the fully polarimetric measurements, amount of information. Furthermore, a "real time" subsurface analysis will support the drill operations by identifying locations of high scientific interest and low risk. Key element in the WISDOM data analysis is the fast and reliable classification and correct localization of subsurface scatterers and layers. The fully polarimetric nature of the WISDOM measurements allows the use of the entropy-alpha decomposition (H-alpha). This method enables the classification of reconstructed images of the subsurface (obtained by inverse imaging algorithms, e.g. f-k migration) with regard to the main scattering mechanisms of geological features present in the image of the subsurface. It is, for example, possible to differentiate smooth surfaces, rough surfaces, isolated spherical scatterers, double- and bounce scattering, anisotropic scatterers, clouds of small scatterers of similar shape as well as layers of oblate spheroids. Preliminary tests under laboratory conditions suggest the feasibility and value of the approach for the classification of geological features in the Martian subsurface in the context of WISDOM data processing and operations. It is a fast and reliable tool leveraging the whole amount of information provided by the fully polarimetric WISDOM Radar.
Lunar and Martian Sub-surface Habitat Structure Technology Development and Application
NASA Technical Reports Server (NTRS)
Boston, Penelope J.; Strong, Janet D.
2005-01-01
NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Subsidace structures such as caves and lava tubes offer readily available and existing in-situ habitat options. Sub-surface dwellings can provide complete radiation, micro-meteorite and exhaust plume shielding and a moderate and constant temperature environment; they are, therefore, excellent pre-existing habitat risk mitigation elements. Technical challenges to subsurface habitat structure development include surface penetration (digging and mining equipment), environmental pressurization, and psychological environment enhancement requirements. Lunar and Martian environments and elements have many beneficial similarities. This will allow for lunar testing and design development of subsurface habitat structures for Martian application; however, significant differences between lunar and Martian environments and resource elements will mandate unique application development. Mars is NASA's ultimate exploration goal and is known to have many very large lava tubes. Other cave types are plausible. The Moon has unroofed rilles and lava tubes, but further research will, in the near future, define the extent of Lunar and Martian differences and similarities. This paper will discuss Lunar and Martian subsurface habitation technology development challenges and opportunities.
A multi-scale experimental and simulation approach for fractured subsurface systems
NASA Astrophysics Data System (ADS)
Viswanathan, H. S.; Carey, J. W.; Frash, L.; Karra, S.; Hyman, J.; Kang, Q.; Rougier, E.; Srinivasan, G.
2017-12-01
Fractured systems play an important role in numerous subsurface applications including hydraulic fracturing, carbon sequestration, geothermal energy and underground nuclear test detection. Fractures that range in scale from microns to meters and their structure control the behavior of these systems which provide over 85% of our energy and 50% of US drinking water. Determining the key mechanisms in subsurface fractured systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. In this study, we developed and use microfluidic and triaxial core flood experiments required to reveal the fundamental dynamics of fracture-fluid interactions. In addition we have developed high fidelity fracture propagation and discrete fracture network flow models to simulate these fractured systems. We also have developed reduced order models of these fracture simulators in order to conduct uncertainty quantification for these systems. We demonstrate an integrated experimental/modeling approach that allows for a comprehensive characterization of fractured systems and develop models that can be used to optimize the reservoir operating conditions over a range of subsurface conditions.
Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.
2009-01-01
Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6 km valley segment. For each reach, we estimated net change in discharge, gross hydrologic loss, and gross hydrologic gain from tracer dilution and mass recovery. Four series of tracer tests were performed during relatively high, intermediate, and low base flow conditions. The relative distribution of channel water along the stream was strongly related to a transition in valley structure, with a general increase in gross losses through the recession. During tracer tests at intermediate and low flows, there were frequent substantial losses of tracer mass (>10%) that could not be explained by net loss in flow over the reach, indicating that many of the study reaches were concurrently losing and gaining water. For example, one reach with little net change in discharge exchanged nearly 20% of upstream flow with gains and losses along the reach. These substantial bidirectional exchanges suggest that some channel interactions with subsurface flow paths were not measurable by net change in flow or transient storage of recovered tracer. Understanding bidirectional channel water balances in stream reaches along valleys is critical to an accurate assessment of stream solute fate and transport and to a full assessment of exchanges between the stream channel and surrounding subsurface.
Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.
2009-01-01
Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6 km valley segment. For each reach, we estimated net change in discharge, gross hydrologic loss, and gross hydrologic gain from tracer dilution and mass recovery. Four series of tracer tests were performed during relatively high, intermediate, and low base flow conditions. The relative distribution of channel water along the stream was strongly related to a transition in valley structure, with a general increase in gross losses through the recession. During tracer tests at intermediate and low flows, there were frequent substantial losses of tracer mass (>10%) that could not be explained by net loss in flow over the reach, indicating that many of the study reaches were concurrently losing and gaining water. For example, one reach with little net change in discharge exchanged nearly 20% of upstream flow with gains and losses along the reach. These substantial bidirectional exchanges suggest that some channel interactions with subsurface flow paths were not measurable by net change in flow or transient storage of recovered tracer. Understanding bidirectional channel water balances in stream reaches along valleys is critical to an accurate assessment of stream solute fate and transport and to a full assessment of exchanges between the stream channel and surrounding subsurface. Copyright 2009 by the American Geophysical Union.
An Investigation of the Physical Properties of Erupting Solar Prominences, Phase II
2014-12-30
and in two orthogonal states of polarization. It performs full-Stokes spectro- polarimetry , using Hanlé effect polarization measurements to infer the...is slow relative to the turbulence timescale for atmosphere seeing, and the ESF does not have a seeing-correction system, dual-beam polarimetry is...beam polarimetry in removing seeing-induced polarization cross- talk is completely lost. This is because there is no guarantee the slit will sample the
The Global Financial Crisis: Increasing IMF Resources and the Role of Congress
2009-06-05
may borrow on concessional repayment terms from the Poverty Reduction and Growth Facility ( PRGF ) and the Exogenous Shocks Facility (ESF). To qualify...Association (IDA). Most borrowers have per capita income levels of about $865 a year. PRGF loans are intended to help low-income countries surmount BOP...or financial crises. Unlike SBA and other loans, however, conditionality for PRGF loans is based more on the economic strategies outlined in Poverty
The Global Economic Crisis: Impact on Sub-Saharan Africa and Global Policy Responses
2010-04-06
financial assistance to Africa is provided through the IMF’s concessional lending facilities, the Poverty Reduction and Growth Facility ( PRGF ) and...Notes: Amounts are the total amount of outstanding PRGF and ESF loans to African countries at the end of April for each year...Report RS22534, The Multilateral Debt Relief Initiative, by Martin A. Weiss. 107 PRGF loans are intended to help low-income countries address
Zam, Azhar; Dsouza, Roshan; Subhash, Hrebesh M; O'Connell, Marie-Louise; Enfield, Joey; Larin, Kirill; Leahy, Martin J
2013-09-01
We propose the use of correlation mapping optical coherence tomography (cmOCT) to deliver additional biometrics associated with the finger that could complement existing fingerprint technology for law enforcement applications. The current study extends the existing fingerprint paradigm by measuring additional biometrics associated with sub-surface finger tissue such as sub-surface fingerprints, sweat glands, and the pattern of the capillary bed to yield a user-friendly cost effective and anti-spoof multi-mode biometric solution associated with the finger. To our knowledge no other method has been able to capture sub-surface fingerprint, papillary pattern and horizontal vessel pattern in a single scan or to show the correspondence between these patterns in live adult human fingertip. Unlike many current technologies this approach incorporates 'liveness' testing by default. The ultimate output is a biometric module which is difficult to defeat and complements fingerprint scanners that currently are used in border control and law enforcement applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Line-scan spatially offset Raman spectroscopy for inspecting subsurface food safety and quality
NASA Astrophysics Data System (ADS)
Qin, Jianwei; Chao, Kuanglin; Kim, Moon S.
2016-05-01
This paper presented a method for subsurface food inspection using a newly developed line-scan spatially offset Raman spectroscopy (SORS) technique. A 785 nm laser was used as a Raman excitation source. The line-shape SORS data was collected in a wavenumber range of 0-2815 cm-1 using a detection module consisting of an imaging spectrograph and a CCD camera. A layered sample, which was created by placing a plastic sheet cut from the original container on top of cane sugar, was used to test the capability for subsurface food inspection. A whole set of SORS data was acquired in an offset range of 0-36 mm (two sides of the laser) with a spatial interval of 0.07 mm. Raman spectrum from the cane sugar under the plastic sheet was resolved using self-modeling mixture analysis algorithms, demonstrating the potential of the technique for authenticating foods and ingredients through packaging. The line-scan SORS measurement technique provides a new method for subsurface inspection of food safety and quality.
Mechanical Stress Effects on Electromigration Voiding in a Meandering Test Stripe
NASA Technical Reports Server (NTRS)
Lowry, L. E.; Tai, B. H.; Mattila, J.; Walsh, L. H.
1993-01-01
Earlier experimental findings concluded that electromigratin voids in these meandering stripe test structures were not randomly distributed and that void nucleation frequenly occurred sub-surface at the metal/thermal oxide interface.
NASA Astrophysics Data System (ADS)
Pilecki, Zenon; Isakow, Zbigniew; Czarny, Rafał; Pilecka, Elżbieta; Harba, Paulina; Barnaś, Maciej
2017-08-01
In this work, the capabilities of the Seismobile system for shallow subsurface imaging of transport routes, such as roads, railways, and airport runways, in different geological conditions were presented. The Seismobile system combines the advantages of seismic profiling using landstreamer and georadar (GPR) profiling. It consists of up to four seismic measuring lines and carriage with a suspended GPR antenna. Shallow subsurface recognition may be achieved to a maximum width of 10.5 m for a distance of 3.5 m between the measurement lines. GPR measurement is performed in the axis of the construction. Seismobile allows the measurement time, labour and costs to be reduced due to easy technique of its installation, remote data transmission from geophones to accompanying measuring modules, automated location of the system based on GPS and a highly automated method of seismic wave excitation. In this paper, the results of field tests carried out in different geological conditions were presented. The methodologies of acquisition, processing and interpretation of seismic and GPR measurements were broadly described. Seismograms and its spectrum registered by Seismobile system were compared to the ones registered by Geode seismograph of Geometrix. Seismic data processing and interpretation software allows for the obtaining of 2D/3D models of P- and S-wave velocities. Combined seismic and GPR results achieved sufficient imaging of shallow subsurface to a depth of over a dozen metres. The obtained geophysical information correlated with geological information from the boreholes with good quality. The results of performed tests proved the efficiency of the Seismobile system in seismic and GPR imaging of a shallow subsurface of transport routes under compound conditions.
Analytical solutions for efficient interpretation of single-well push-pull tracer tests
Single-well push-pull tracer tests have been used to characterize the extent, fate, and transport of subsurface contamination. Analytical solutions provide one alternative for interpreting test results. In this work, an exact analytical solution to two-dimensional equations descr...
PAVECHECK : training material updated user's manual including GPS.
DOT National Transportation Integrated Search
2009-01-01
PAVECHECK is a software package used to integrate nondestructive test data from various testing systems to provide the pavement engineer with a comprehensive evaluation of both surface and subsurface conditions. This User's Manual is intended to demo...
NASA Astrophysics Data System (ADS)
Martinez, I. A.; Eisenmann, D.
2012-12-01
Ground Penetrating Radar (GPR) has been used for many years in successful subsurface detection of conductive and non-conductive objects in all types of material including different soils and concrete. Typical defect detection is based on subjective examination of processed scans using data collection and analysis software to acquire and analyze the data, often requiring a developed expertise or an awareness of how a GPR works while collecting data. Processing programs, such as GSSI's RADAN analysis software are then used to validate the collected information. Iowa State University's Center for Nondestructive Evaluation (CNDE) has built a test site, resembling a typical levee used near rivers, which contains known sub-surface targets of varying size, depth, and conductivity. Scientist at CNDE have developed software with the enhanced capabilities, to decipher a hyperbola's magnitude and amplitude for GPR signal processing. With this enhanced capability, the signal processing and defect detection capabilities for GPR have the potential to be greatly enhanced. This study will examine the effects of test parameters, antenna frequency (400MHz), data manipulation methods (which include data filters and restricting the range of depth in which the chosen antenna's signal can reach), and real-world conditions using this test site (such as varying weather conditions) , with the goal of improving GPR tests sensitivity for differing soil conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, Jeremiah, E-mail: jeremiah.sanders@duke.e
Purpose: To develop and validate an automated technique for evaluating the spatial resolution characteristics of clinical computed tomography (CT) images. Methods: Twenty one chest and abdominopelvic clinical CT datasets were examined in this study. An algorithm was developed to extract a CT resolution index (RI) analogous to the modulation transfer function from clinical CT images by measuring the edge-spread function (ESF) across the patient’s skin. A polygon mesh of the air-skin boundary was created. The faces of the mesh were then used to measure the ESF across the air-skin interface. The ESF was differentiated to obtain the line-spread function (LSF),more » and the LSF was Fourier transformed to obtain the RI. The algorithm’s ability to detect the radial dependence of the RI was investigated. RIs measured with the proposed method were compared with a conventional phantom-based method across two reconstruction algorithms (FBP and iterative) using the spatial frequency at 50% RI, f{sub 50}, as the metric for comparison. Three reconstruction kernels were investigated for each reconstruction algorithm. Finally, an observer study was conducted to determine if observers could visually perceive the differences in the measured blurriness of images reconstructed with a given reconstruction method. Results: RI measurements performed with the proposed technique exhibited the expected dependencies on the image reconstruction. The measured f{sub 50} values increased with harder kernels for both FBP and iterative reconstruction. Furthermore, the proposed algorithm was able to detect the radial dependence of the RI. Patient-specific measurements of the RI were comparable to the phantom-based technique, but the patient data exhibited a large spread in the measured f{sub 50}, indicating that some datasets were blurrier than others even when the projection data were reconstructed with the same reconstruction algorithm and kernel. Results from the observer study substantiated this finding. Conclusions: Clinically informed, patient-specific spatial resolution can be measured from clinical datasets. The method is sufficiently sensitive to reflect changes in spatial resolution due to different reconstruction parameters. The method can be applied to automatically assess the spatial resolution of patient images and quantify dependencies that may not be captured in phantom data.« less
Probability of detection of internal voids in structural ceramics using microfocus radiography
NASA Technical Reports Server (NTRS)
Baaklini, G. Y.; Roth, D. J.
1986-01-01
The reliability of microfocous X-radiography for detecting subsurface voids in structural ceramic test specimens was statistically evaluated. The microfocus system was operated in the projection mode using low X-ray photon energies (20 keV) and a 10 micro m focal spot. The statistics were developed for implanted subsurface voids in green and sintered silicon carbide and silicon nitride test specimens. These statistics were compared with previously-obtained statistics for implanted surface voids in similar specimens. Problems associated with void implantation are discussed. Statistical results are given as probability-of-detection curves at a 95 precent confidence level for voids ranging in size from 20 to 528 micro m in diameter.
Probability of detection of internal voids in structural ceramics using microfocus radiography
NASA Technical Reports Server (NTRS)
Baaklini, G. Y.; Roth, D. J.
1985-01-01
The reliability of microfocus x-radiography for detecting subsurface voids in structural ceramic test specimens was statistically evaluated. The microfocus system was operated in the projection mode using low X-ray photon energies (20 keV) and a 10 micro m focal spot. The statistics were developed for implanted subsurface voids in green and sintered silicon carbide and silicon nitride test specimens. These statistics were compared with previously-obtained statistics for implanted surface voids in similar specimens. Problems associated with void implantation are discussed. Statistical results are given as probability-of-detection curves at a 95 percent confidence level for voids ranging in size from 20 to 528 micro m in diameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eddy Dilek, C.A.; Looney, B.B.; Hazen, T.C.
A full-scale demonstration of the use of horizontal wells for in situ air stripping for environment restoration was completed as part of the Savannah River Integrated Demonstration Program. The demonstration of in situ air stripping was the first in a series of demonstrations of innovative remediation technologies for the cleanup of sites contaminated with volatile organic contaminants. The in situ air stripping system consisted of two directionally drilled wells that delivered gases to and extract contamination from the subsurface. The demonstration was designed to remediate soils and sediments in the unsaturated and saturated zones as well as groundwater contaminated withmore » volatile organic compounds. The demonstration successfully removed significant quantities of solvent from the subsurface. The field site and horizontal wells were subsequently used for an in situ bioremediation demonstration during which methane was added to the injected air. The field conditions documented herein represent the baseline status of the site for evaluating the in situ bioremediation as well as the post-test conditions for the in situ air stripping demonstration. Characterization activities focused on documenting the nature and distribution of contamination in the subsurface. The post-test characterization activities discussed herein include results from the analysis of sediment samples, three-dimensional images of the pretest and post-test data, contaminant inventories estimated from pretest and post-test models, a detailed lithologic cross sections of the site, results of aquifer testing, and measurements of geotechnical parameters of undisturbed core sediments.« less
PREFACE: Stellar Atmospheres in the Gaia Era - Preface
NASA Astrophysics Data System (ADS)
Lobel, Alex; De Greve, Jean-Pierre; Van Rensbergen, Walter
2011-12-01
Volume 328 (2011) of the Journal of Physics: Conference Series provides a record of the invited and contributed talks, and of the posters presented at the GREAT-ESF workshop entitled `Stellar Atmospheres in the Gaia Era: Quantitative Spectroscopy and Comparative Spectrum Modelling' (http://great-esf.oma.be and mirrored at http://spectri.freeshell.org/great-esf). The conference was held on 23-24 June 2011 at the Vrije Universiteit Brussel, Belgium. 47 scientists from 11 countries around the world attended the workshop. The ESA-Gaia satellite (launch mid 2013) will observe a billion stellar objects in the Galaxy and provide spectrophotometric and high-resolution spectra of an unprecedented number of stars observed with a space-based instrument. The confrontation of these data with theoretical models will significantly advance our understanding of the physics of stellar atmospheres. New stellar populations such as previously unknown emission line stars will be discovered, and fundamental questions such as the basic scenarios of stellar evolution will be addressed with Gaia data. The 33 presentations and 4 main discussion sessions at the workshop addressed important topics in spectrum synthesis methods and detailed line profile calculations urgently needed for accurate modelling of stellar spectra. It brought together leading scientists and students of the stellar physics communities investigating hot and cool star spectra. The scientific programme of the workshop consisted of 23 oral (6 invited) and 10 poster presentations about cool stars (first day; Comparative Spectrum Modelling and Quantitative Spectroscopy of Cool Stars), and hot stars (second day; Quantitative Spectroscopy of Hot Stars). The hot and cool stars communities use different spectrum modelling codes for determining basic parameters such as the effective temperature, surface gravity, iron abundance, and the chemical composition of stellar atmospheres. The chaired sessions of the first day highlighted new research results with spectral synthesis codes developed for cool stars, while the second day focused on codes applied for modeling the spectra of hot stars. The workshop addressed five major topics in stellar atmospheres research: Spectrum synthesis codes Radiation hydrodynamics codes Atmospheric parameters, abundance, metallicity, and chemical tagging studies Large spectroscopic surveys New atomic database The workshop presentations discussed various important scientific issues by comparing detailed model spectra to identify differences that can influence and bias the resulting atmospheric parameters. Theoretical line-blanketed model spectra were compared in detail to high-resolution spectroscopic observations. Stellar spectra computed (i.e., in the Gaia Radial Velocity Spectrometer wavelength range) with 1-D model atmosphere structures were mutually compared, but also to 3-D models from advanced radiation hydrodynamics codes. Atmospheric parameters derived from spectrum synthesis calculations assuming Local Thermodynamic Equilibrium (LTE) were evaluated against more sophisticated non-LTE models of metal-poor stars and the extended atmospheres of giants and supergiants. The workshop presented an overview of high-resolution synthetic spectral libraries of model spectra computed with the synthesis codes. The spectral model grids will be utilized to derive stellar parameters with the Discrete Source Classifier Algorithms currently under development in the Gaia DPAC consortium (http://www.rssd.esa.int/index.php?project=GAIA&page=DPAC_Introduction). They are implemented for training Gaia data analysis algorithms for the classification of a wide variety of hot and cool star types; FGK and M stars, OB stars, white dwarfs, red supergiants, peculiar A and B stars, carbon stars, ultra cool dwarfs, various types of emission line stars, Be stars, Wolf-Rayet stars, etc. A substantial number of oral and poster presentations discussed different techniques for measuring the abundance of various chemical elements from stellar spectra. The presented methods utilize spectra observed with large spectral dispersion, for example for accurately measuring iron, carbon, and nitrogen abundances. These methods are important for ongoing development and testing of automated and supervised algorithms for determining detailed chemical composition in tagging studies of large (chemo-dynamical) spectroscopic surveys planned to complement the Gaia (astrometric and kinematic) census of the Galaxy. The complete scientific programme is available here. The workshop website also offers the presentation viewgraphs (in PDF format) and some nice photographs of the talks and poster breaks http://great-esf.oma.be/program.php.
Enterprise Terrain Data Standards for Joint Training
2017-10-03
e.g., bombs /shells, vehicles, etc.) or environmental factors (e.g., weather). • Riverine and ocean surface and bathymetry. o Wave/swell generation...Attachment 2 Terrain Generation Capability St an da rd iz ed S ch em a & At tr ib ut es...F or m at Pl at fo rm In de pe nd en t O pe ra tin g Sy st em In de pe nd en t Geospatial Source & Industry Formats Utilized by the Specification
Equatorial late-afternoon periodic TEC fluctuations observed by multiple GPS receivers
NASA Astrophysics Data System (ADS)
Tsugawa, T.; Maruyama, T.; Saito, S.; Ishii, M.
2009-12-01
We report, for the first time, equatorial periodic total electron content (TEC) fluctuations observed in the late afternoon by multiple GPS receivers. As a part of Southeast Asia low-latitude ionospheric network (SEALION), GPS receivers at Chiang Mai and Chumphon, Thailand, have been operated since 2005. We found that periodic TEC fluctuations (PTF) with the periods of 15-30 minutes are often observed at these two sites in the spring (Apr-May) late afternoon. Further investigations using multiple GPS receivers in Southeast Asia revealed that the PTFs propagate at 150-200 m/s away from the equator and their amplitudes depend on the satellite azimuth angle. Statistical study of the PTF activity at different latitudes and longitudes clarified that the PTFs are not observed at mid-latitudes, and their seasonal variations are different at different longitudes and at geomagnetically conjugate regions. These observational results indicate that the PTFs are caused by the atmospheric gravity waves (AGW) which are generated in the equatorial lower atmosphere and propagate away from the equator. Simultaneous GPS-TEC and ionosonde observations at Chumphon revealed that the day-to-day variations of PTF activities are well correlated with those of the rate of TEC change index (ROTI) and the occurrence of equatorial spread F (ESF) after the sunset, indicating the PTFs may be related with the onset of the ESF and plasma bubbles.
Evaluation of consolidation characteristics of cohesive soils from piezocone penetration tests.
DOT National Transportation Integrated Search
2004-01-01
The piezocone penetration test (PCPT) has gained wide popularity and acknowledgement as a preferred in-situ device for subsurface investigation and soil characterization. The PCPT measurements can be utilized for soil identification and the evaluatio...
NASA Astrophysics Data System (ADS)
Bonaccorsi, R.; Stoker, C. R.
2005-12-01
The subsurface is the key environment for searching for life on planets lacking surface life. Subsurface ecosystems are of great relevance to astrobiology including the search for past/present life on Mars. The surface of Mars has conditions preventing current life but the subsurface might preserve organics and even host some life [1]. The Mars-Analog-Rio-Tinto-Experiment (MARTE) is performing a simulation of a Mars drilling experiment. This comprises conventional and robotic drilling of cores in a volcanically-hosted-massive-pyrite deposit [2] from the Iberian Pyritic Belt (IBP) and life detection experiments applying anti-contamination protocols (e.g., ATP Luminometry assay). The RT is considered an important analog of the Sinus Meridiani site on Mars and an ideal model analog for a deep subsurface Martian environment. Former results from MARTE suggest the existence of a relatively complex subsurface life including aerobic and anaerobic chemoautotrophs and strict anaerobic methanogens sustained by Fe and S minerals in anoxic conditions. A key requirement for the analysis of a subsurface sample on Mars is a set of simple tests that can help determine if the sample contains organic material of biological origin, and its potential for retaining definitive biosignatures. We report here on the presence of bulk organic matter Corg (0.03-0.05 Wt%), and Ntot (0.01-0.04 Wt%) and amount of measured ATP (Lightning MVP, Biocontrol) in weathered rocks (tuffs, gossan, pyrite stockwork from Borehole #8; >166m). This provides key insight on the type of trophic system sustaining the subsurface biosphere (i.e., heterotrophs vs. autotrophs) at RT. ATP data (Relative-Luminosity-Units, RLU) provide information on possible contamination and distribution of viable biomass with core depth (BH#8, and BH#7, ~3m). Avg. 153 RLU, i.e., surface vs. center of core, suggest that cleaness/sterility can be maintained when using a simple sterile protocol under field conditions. Results from this research will support future drilling mission planned on Mars. [1] Boston, P.J., et al., 1992. Icarus 95,300-308; [2] Leistel et al., 1998.
Modeling Phosphorus Losses through Surface Runoff and Subsurface Drainage Using ICECREAM.
Qi, Hongkai; Qi, Zhiming; Zhang, T Q; Tan, C S; Sadhukhan, Debasis
2018-03-01
Modeling soil phosphorus (P) losses by surface and subsurface flow pathways is essential in developing successful strategies for P pollution control. We used the ICECREAM model to simultaneously simulate P losses in surface and subsurface flow, as well as to assess effectiveness of field practices in reducing P losses. Monitoring data from a mineral-P-fertilized clay loam field in southwestern Ontario, Canada, were used for calibration and validation. After careful adjustment of model parameters, ICECREAM was shown to satisfactorily simulate all major processes of surface and subsurface P losses. When the calibrated model was used to assess tillage and fertilizer management scenarios, results point to a 10% reduction in total P losses by shifting autumn tillage to spring, and a 25.4% reduction in total P losses by injecting fertilizer rather than broadcasting. Although the ICECREAM model was effective in simulating surface and subsurface P losses when thoroughly calibrated, further testing is needed to confirm these results with manure P application. As illustrated here, successful use of simulation models requires careful verification of model routines and comprehensive calibration to ensure that site-specific processes are accurately represented. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Ameli, Ali; McDonnell, Jeffrey; Laudon, Hjalmar; Bishop, Kevin
2017-04-01
The stable isotopes of water have served science well as hydrological tracers which have demonstrated that there is often a large component of "old" water in stream runoff. It has been more problematic to define the full transit time distribution of that stream water. Non-linear mixing of previous precipitation signals that is stored for extended periods and slowly travel through the subsurface before reaching the stream results in a large range of possible transit times. It difficult to find tracers can represent this, especially if all that one has is data on the precipitation input and the stream runoff. In this paper, we explicitly characterize this "old water" displacement using a novel quasi-steady physically-based flow and transport model in the well-studied S-Transect hillslope in Sweden where the concentration of hydrological tracers in the subsurface and stream has been measured. We explore how subsurface conductivity profile impacts the characteristics of old water displacement, and then test these scenarios against the observed dynamics of conservative hydrological tracers in both the stream and subsurface. This work explores the efficiency of convolution-based approaches in the estimation of stream "young water" fraction and time-variant mean transit times. We also suggest how celerity and velocity differ with landscape structure
Coordinated Ground- and Space-based Multispectral Campaign to Study Equatorial Spread-F Formation
NASA Astrophysics Data System (ADS)
Finn, S. C.; Geddes, G.; Aryal, S.; Stephan, A. W.; Budzien, S. A.; Duggirala, P. R.; Chakrabarti, S.; Valladares, C.
2016-12-01
We present a concept for a multispectral campaign using coordinated data from state-of-the-art instruments aboard the International Space Station (ISS) and multiple ground-based spectrometers and digisondes deployed at low-latitudes to study the formation and development of Equatorial Spread-F (ESF). This extended observational campaign utilizes ultraviolet, visible, and radio measurements to develop a predictive capability for ESF and to study the coupling of the ionosphere-thermosphere (I-T) system during geomagnetically quiet and disturbed times. The ground-based instruments will be deployed in carefully chosen locations in the American and Indian sectors while the space-based data will provide global coverage spanning all local times and longitudes within ±51° geographic latitudes. The campaign, over an extended period covering a range of geophysical conditions, will provide the extensive data base necessary to address the important science questions. The space-based instrument suite consists of the Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) and the GPS Radio Occultation and Ultraviolet Photometry-Colocated (GROUP-C) instruments, scheduled to launch to the ISS in November 2016. LITES is a compact imaging spectrograph for remote sensing of the upper atmosphere and ionosphere from 60 to 140nm and GROUP-C has a nadir-viewing FUV photometer. The ground-based instruments to be deployed for this campaign are three high-resolution imaging spectrographs capable of continuous round-the-clock airglow observations: Multiwavelength Imaging Spectrograph using Echelle grating (MISE) in India and two High Throughput and Multi-slit Imaging Spectrographs (HiT&MIS) to be deployed in Colombia and Argentina, the Low-Latitude Ionosphere Sensor Network (LISN), and the Global Ionospheric Radio Observatory (GIRO) digisondes network. We present data from the ground-based instruments, initial results from the LITES and GROUP-C instruments on-orbit, and modeling and analysis methods for the campaign. This work was supported by NSF 1315354 and 1145166, and ONR N00014-13-1-0266 grants. LITES and GROUP-C are part of the STP-H5 Payload, integrated and flown under the direction of the DoD Space Test Program.
Lunar-edge based on-orbit modulation transfer function (MTF) measurement
NASA Astrophysics Data System (ADS)
Cheng, Ying; Yi, Hongwei; Liu, Xinlong
2017-10-01
Modulation transfer function (MTF) is an important parameter for image quality evaluation of on-orbit optical image systems. Various methods have been proposed to determine the MTF of an imaging system which are based on images containing point, pulse and edge features. In this paper, the edge of the moon can be used as a high contrast target to measure on-orbit MTF of image systems based on knife-edge methods. The proposed method is an extension of the ISO 12233 Slanted-edge Spatial Frequency Response test, except that the shape of the edge is a circular arc instead of a straight line. In order to get more accurate edge locations and then obtain a more authentic edge spread function (ESF), we choose circular fitting method based on least square to fit lunar edge in sub-pixel edge detection process. At last, simulation results show that the MTF value at Nyquist frequency calculated using our lunar edge method is reliable and accurate with error less than 2% comparing with theoretical MTF value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-12-01
The technique described herein for determining the magnitudes and directions of the in situ principal stresses utilizes the stress relief in a small volume of rock when it is physically isolated from the surrounding rock mass. Measurements of deformation are related to stress magnitudes through an understanding of the constitutive behavior of the rock. The behaviors of the non-salt strata around the ESF are expected to conform approximately to that of uniform homogeneous linear-elastic materials having either isotropic or transverse isotropic properties, for which constitutive relations are developed. The constitutive behavior of the salt strata is not well understood andmore » so the overcoring technique yields information of only very limited use. For this reason the overcoring technique will not be used in the salt strata. The technique has also limited application in rocks containing joints spaced less than 8 in. (0.2 m) apart, unless a large number of test can be performed to obtain, a good statistical average. However, such unfavorably discontinuous rocks are not expected as a norm at the Deaf Smith County site. 7 refs., 22 figs., 4 tabs.« less
DOT National Transportation Integrated Search
2015-08-01
The seismic cone penetration test with pore pressure measurement (SCPTu) is a geotechnical investigation technique which : involves pushing a sensitized cone into the subsurface at a constant rate while continuously measuring tip resistance, sleeve :...
ANALYTICAL METHOD DEVELOPMENTS TO SUPPORT PARTITIONING INTERWELL TRACER TESTING
Partitioning Interwell Tracer Testing (PITT) uses alcohol tracer compounds in estimating subsurface contamination from non-polar pollutants. PITT uses the analysis of water samples for various alcohols as part of the overall measurement process. The water samples may contain many...
Evaluation of cone penetration testing (CPT) for use with transportation projects.
DOT National Transportation Integrated Search
2011-04-01
Cone Penetration Testing (CPT) has many advantages as a means for subsurface investigation. CPT consists of pushing a steel : cone into the ground and recording the penetration resistance using sensors. Pore pressure, shear wave velocity and other : ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semprini, L.; Istok, J.
'The objective of this research is to develop a unique method of using naturally occurring radon-222 as a tracer for locating and quantitatively describing the presence of subsurface NAPL contamination. The research will evaluate using radon as an inexpensive, yet highly accurate, means of detecting NAPL contamination and assessing the effectiveness of NAPL remediation. Laboratory, field, and modeling studies are being performed to evaluate this technique, and to develop methods for its successful implementation in practice. This report summarizes work that has been accomplished after 1-year of a 3-year project. The research to date has included radon tracer tests inmore » physical aquifer models (PAMs) and field studies at Site 300 of the Lawrence Livermore National Laboratory, CA, and Site 100D at Hanford DOE Facility, WA. The PAM tests have evaluated the ability of radon as a tracer to monitor the remediation of TCE NAPL contamination using surfactant treatment, and oxidation with permanganate. The surfactant tests were performed in collaboration with Dr. Jack Istok and Dr. Jennifer Field and their EMSP project ``In-situ, Field-Scale Evaluation of Surfactant Enhanced DNAPL Recovery Using a Single-Well-Push-Pull Test.'''' This collaboration enabled the EMSP radon project to make rapid progress. The PAM surfactant tests were performed in a radial flow geometry to simulate the push-pull-method that is being developed for surfactant field tests. The radon tests were easily incorporated into these experiments, since they simply rely on measuring the natural radon present in the subsurface fluids. Two types of radon tests were performed: (1) static tests where radon was permitted to build-up to steady-state concentrations in the pore fluids and the groundwater concentrations were monitored, and (2) dynamic tests were the radon response during push-pull surfactant tests was measured. Both methods were found to be useful in determining how NAPL remediation was progressing.'« less
Conceptual Model Evaluation using Advanced Parameter Estimation Techniques with Heat as a Tracer
NASA Astrophysics Data System (ADS)
Naranjo, R. C.; Morway, E. D.; Healy, R. W.
2016-12-01
Temperature measurements made at multiple depths beneath the sediment-water interface has proven useful for estimating seepage rates from surface-water channels and corresponding subsurface flow direction. Commonly, parsimonious zonal representations of the subsurface structure are defined a priori by interpretation of temperature envelopes, slug tests or analysis of soil cores. However, combining multiple observations into a single zone may limit the inverse model solution and does not take full advantage of the information content within the measured data. Further, simulating the correct thermal gradient, flow paths, and transient behavior of solutes may be biased by inadequacies in the spatial description of subsurface hydraulic properties. The use of pilot points in PEST offers a more sophisticated approach to estimate the structure of subsurface heterogeneity. This presentation evaluates seepage estimation in a cross-sectional model of a trapezoidal canal with intermittent flow representing four typical sedimentary environments. The recent improvements in heat as a tracer measurement techniques (i.e. multi-depth temperature probe) along with use of modern calibration techniques (i.e., pilot points) provides opportunities for improved calibration of flow models, and, subsequently, improved model predictions.
Accelerated aging studies of UHMWPE. II. Virgin UHMWPE is not immune to oxidative degradation.
Edidin, A A; Villarraga, M L; Herr, M P; Muth, J; Yau, S S; Kurtz, S M
2002-08-01
In Part I of this series, we showed that aging at elevated oxygen pressure is more successful at increasing the depth to which degradation occurs although it, too, generally causes greater degradation at the surface than at the subsurface. Therefore we hypothesized that thermal degradation alone, in the absence of free radicals, could be sufficient to artificially age UHMWPE in a manner analogous to natural aging. In the present study, virgin and air-irradiated UHMWPE (extruded GUR 1050 and compression-molded 1900) were aged up to 4 weeks at elevated oxygen pressure, and the mechanical behavior at the surface and subsurface was examined. All the materials were substantially degraded following 4 weeks of aging, but the spatial variations in the nonirradiated materials more closely mimicked the previously observed subsurface peak of degradation seen in naturally aged UHMWPE following irradiation in air. This aged material could provide a more realistic model for subsurface mechanical degradation, making it suitable for further mechanical testing in venues such as wear simulation. Copyright 2002 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Framgos, William
1999-06-01
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach. Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen
2002-11-20
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex
2000-06-01
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach (Song et al., 1997). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen
2001-06-10
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
An Autonomous Cryobot Synthetic Aperture Radar for Subsurface Exploration of Europa
NASA Astrophysics Data System (ADS)
Pradhan, O.; Gasiewski, A. J.
2015-12-01
We present the design and field testing of a forward-looking end-fire synthetic aperture radar (SAR) for the 'Very deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice Explorer' (VALKYRIE) ice-penetrating cryobot. This design demonstrates critical technologies that will support an eventual landing and ice penetrating mission to Jupiter's icy moon, Europa. Results proving the feasibility of an end-fire SAR system for vehicle guidance and obstacle avoidance in a sub-surface ice environment will be presented. Data collected by the SAR will also be used for constructing sub-surface images of the glacier which can be used for: (i) mapping of englacial features such as crevasses, moulins, and embedded liquid water and (ii) ice-depth and glacier bed analysis to construct digital elevation models (DEM) that can help in the selection of crybot trajectories and future drill sites for extracting long-term climate records. The project consists of three parts, (i) design of an array of four conformal cavity-backed log-periodic folded slot dipole array (LPFSA) antennas that form agile radiating elements, (ii) design of a radar system that includes RF signal generation, 4x4 transmit-receive antenna switching and isolation and digital SAR data processing and (iii) field testing of the SAR in melt holes. The antennas have been designed, fabricated, and lab tested at the Center for Environmental Technology (CET) at CU-Boulder. The radar system was also designed and integrated at CET utilizing rugged RF components and FPGA based digital processing. Field testing was performed in conjunction with VALKYRIE tests by Stone Aerospace in June, 2015 on Matanuska Glacier, Alaska. The antennas are designed to operate inside ice while being immersed in a thin layer of surrounding low-conductivity melt water. Small holes in the corners of the cavities allow flooding of these cavities with the same melt-water thus allowing for quarter-wavelength cavity-backed reflection. Testing of the antenna array was first carried out by characterizing their operation inside a large ice block at the Stone Aerospace facility in Austin, TX. The complete radar system was then tested on the Matanuska glacier in Alaska, which is an effective Earth analog to Europan sub-surface exploration.
Numerical Simulation and Forecast of Equatorial Spread F Under Realistic Postsunset Conditions
2012-01-30
at Kwajalein Atoll (8.8◦N, 167.5◦E) [Tsunoda et al., 1979]. Figure 1 displays ALTAIR UHF (422 MHz) data for the night of April 29, 2009. ALTAIR ...perpendicular scans reflect only incoherent scatter. The top panel of Figure 1 shows ALTAIR scans made pointing perpendicular to the geomagnetic field...to be driven downward in between ascending depletions. 1 X - 22 AVEIRO ET AL.: 3-D ESF SIMULATIONS AND OBSERVATIONS Figure 1 . ALTAIR radar scans for
ERIC Educational Resources Information Center
European Centre for the Development of Vocational Training, Berlin (Germany).
This document consists of the 24 papers delivered at a conference that had five workshops examining various dimensions of the social and occupational transition of young people. The papers are arranged by workshop/session. A summary report precedes the other papers presented during a session. The papers in the session on perspectives on systems,…
PARTITIONING INTERWELL TRACER TEST FOR NAPL SOURCE CHARACTERIZATION: A GENERAL OVERVIEW
Innovative and nondestructive characterization techniques have been developed to locate and quantify nonaqueous phase liquids (NAPLs) in the vadose and saturated zones in the subsurface environment. One such technique is the partitioning interwell tracer test (PITT). The PITT i...
NASA Astrophysics Data System (ADS)
Hartogh, P.; Ilyushin, Ya. A.
2016-10-01
Exploration of subsurface oceans on Jovian icy moons is a key issue of the icy moons' geology. Electromagnetic wave propagation is the only way to probe their icy mantles from the orbit. In the present paper, a principal concept of a passive interferometric instrument for deep sounding of the icy moons' crust is proposed. Its working principle is measuring and correlating Jupiter's radio wave emissions with reflections from the deep sub-surface of the icy moons. A number of the functional aspects of the proposed experiment are studied, in particular, impact of the wave scattering on the surface terrain on the instrument performance and digital sampling of the noisy signal. Results of the test of the laboratory prototype of the instrument are also presented in the paper.
Subsurface Noble Gas Sampling Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrigan, C. R.; Sun, Y.
2017-09-18
The intent of this document is to provide information about best available approaches for performing subsurface soil gas sampling during an On Site Inspection or OSI. This information is based on field sampling experiments, computer simulations and data from the NA-22 Noble Gas Signature Experiment Test Bed at the Nevada Nuclear Security Site (NNSS). The approaches should optimize the gas concentration from the subsurface cavity or chimney regime while simultaneously minimizing the potential for atmospheric radioxenon and near-surface Argon-37 contamination. Where possible, we quantitatively assess differences in sampling practices for the same sets of environmental conditions. We recognize that allmore » sampling scenarios cannot be addressed. However, if this document helps to inform the intuition of the reader about addressing the challenges resulting from the inevitable deviations from the scenario assumed here, it will have achieved its goal.« less
Casingless down-hole for sealing an ablation volume and obtaining a sample for analysis
Noble, Donald T.; Braymen, Steven D.; Anderson, Marvin S.
1996-10-01
A casing-less down hole sampling system for acquiring a subsurface sample for analysis using an inductively coupled plasma system is disclosed. The system includes a probe which is pushed into the formation to be analyzed using a hydraulic ram system. The probe includes a detachable tip member which has a soil point mad a barb, with the soil point aiding the penetration of the earth, and the barb causing the tip member to disengage from the probe and remain in the formation when the probe is pulled up. The probe is forced into the formation to be tested, and then pulled up slightly, to disengage the tip member and expose a column of the subsurface formation to be tested. An instrumentation tube mounted in the probe is then extended outward from the probe to longitudinally extend into the exposed column. A balloon seal mounted on the end of the instrumentation tube allows the bottom of the column to be sealed. A source of laser radiation is emitted from the instrumentation tube to ablate a sample from the exposed column. The instrumentation tube can be rotated in the probe to sweep the laser source across the surface of the exposed column. An aerosol transport system carries the ablated sample from the probe to the surface for testing in an inductively coupled plasma system. By testing at various levels in the down-hole as the probe is extracted from the soil, a profile of the subsurface formation may be obtained.
NASA Astrophysics Data System (ADS)
Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.
2012-12-01
Understanding the movement and modeling of chemical vapor through unsaturated soil in the shallow subsurface when subjected to natural atmospheric thermal and mass flux boundary conditions at the land surface is of importance to applications such as landmine detection and vapor intrusion into subsurface structures. New, advanced technologies exist to sense chemical signatures at the land/atmosphere interface, but interpretation of these sensor signals to make assessment of source conditions remains a challenge. Chemical signatures are subject to numerous interactions while migrating through the unsaturated soil environment, attenuating signal strength and masking contaminant source conditions. The dominant process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal or no quantification of other processes contributing to vapor migration, such as thermal diffusion, convective gas flow due to the displacement of air, expansion/contraction of air due to temperature changes, temporal and spatial variations of soil moisture and fluctuations in atmospheric pressure. Soil water evaporation and interfacial mass transfer add to the complexity of the system. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmosphere interface and use the resulting dataset to test existing theories on subsurface gas flow and iterate between numerical modeling efforts and experimental data. Ultimately, we aim to update conceptual models of shallow subsurface vapor transport to include conditionally significant transport processes and inform placement of mobile sensors and/or networks. We have developed a two-dimensional tank apparatus equipped with a network of sensors and a flow-through head space for simulation of the atmospheric interface. A detailed matrix of realistic atmospheric boundary conditions was applied in a series of experiments. Water saturation, capillary pressure, air and soil temperature, and relative humidity were continuously monitored. Aqueous TCE was injected into the tank below the water table and allowed to volatilize. TCE concentration exiting the tank head space was measured through interval sampling by direct injection into a gas chromatograph. To quantify the transient concentration of TCE vapor in the soil pore space a novel use of Solid Phase Micro-Extraction (SPME) was developed. Results from our numerical simulations were compared with the experimental data, which demonstrated the importance of considering the interaction of the atmosphere with the subsurface in conceptualization and numerical model development. Results also emphasize that soil saturation and transient sorption have a significant effect on vapor transport through the vadose zone. Follow-up tests and detailed analyses are still underway. Additional applications of this work include carbon sequestration leakage, methane contamination in the shallow subsurface and environmental impact of hydraulic fracturing.
Tracer testing is generally regarded as the most reliable and efficient method of gathering surface and subsurface hydraulic information. This is especially true for karstic and fractured-rock aquifers. Qualitative tracing tests have been conventionally employed in most karst s...
Effects of Irrigating Tree Seedlings with a Nutrient Solution
R. P. Belanger; C. B. Briscoe
1963-01-01
Subsurface irrigation with nutrient solution was found to be biologically feasible under the conditions tested. Growth of seedlings was satisfactory, but not unusually good. On the bases of total height growth, and growth in fresh weight, the various fertilizers tested produced statistically different results. The species tested, members of three different families and...
Analytical solutions for efficient interpretation of single-well push-pull tracer tests
NASA Astrophysics Data System (ADS)
Huang, Junqi; Christ, John A.; Goltz, Mark N.
2010-08-01
Single-well push-pull tracer tests have been used to characterize the extent, fate, and transport of subsurface contamination. Analytical solutions provide one alternative for interpreting test results. In this work, an exact analytical solution to two-dimensional equations describing the governing processes acting on a dissolved compound during a modified push-pull test (advection, longitudinal and transverse dispersion, first-order decay, and rate-limited sorption/partitioning in steady, divergent, and convergent flow fields) is developed. The coupling of this solution with inverse modeling to estimate aquifer parameters provides an efficient methodology for subsurface characterization. Synthetic data for single-well push-pull tests are employed to demonstrate the utility of the solution for determining (1) estimates of aquifer longitudinal and transverse dispersivities, (2) sorption distribution coefficients and rate constants, and (3) non-aqueous phase liquid (NAPL) saturations. Employment of the solution to estimate NAPL saturations based on partitioning and non-partitioning tracers is designed to overcome limitations of previous efforts by including rate-limited mass transfer. This solution provides a new tool for use by practitioners when interpreting single-well push-pull test results.
Wireless sensors for measuring sub-surface processes in firn
NASA Astrophysics Data System (ADS)
Bagshaw, Elizabeth; Karlsson, Nanna; Lishman, Ben; Bun Lok, Lai; Burrow, Stephen; Wadham, Jemma; Clare, Lindsay; Nicholls, Keith; Corr, Hugh; Brennan, Paul; Eisen, Olaf; Dahl-Jensson, Dorthe
2017-04-01
Subsurface processes exert controls on meltwater storage and densification within firn, which are, by their nature, challenging to measure. We present the results of proof-of-concept tests of wireless ETracer sensors with the East Greenland Ice Core Project (EGRIP) at the Northeast Greenland Ice Stream. ETracers equipped with temperature, pressure and electrical conductivity sensors were deployed in firn boreholes at the centre and the shear margins of the ice stream. Data were returned from a 60m deep test borehole, and continuously for 4 weeks from two 14m deep boreholes, to autonomous receivers at the surface. Two receivers were tested: a station using software radio and PC, and the BAS/UCL ApRES radar system. The sensors were used to track high resolution changes in temperature with depth, changes in densification rates in response to accumulation events and snow redistribution, and the presence of liquid water within the firn.
Integrated Coupling of Surface and Subsurface Flow with HYDRUS-2D
NASA Astrophysics Data System (ADS)
Hartmann, Anne; Šimůnek, Jirka; Wöhling, Thomas; Schütze, Niels
2016-04-01
Describing interactions between surface and subsurface flow processes is important to adequately define water flow in natural systems. Since overland flow generation is highly influenced by rainfall and infiltration, both highly spatially heterogeneous processes, overland flow is unsteady and varies spatially. The prediction of overland flow needs to include an appropriate description of the interactions between the surface and subsurface flow. Coupling surface and subsurface water flow is a challenging task. Different approaches have been developed during the last few years, each having its own advantages and disadvantages. A new approach by Weill et al. (2009) to couple overland flow and subsurface flow based on a generalized Richards equation was implemented into the well-known subsurface flow model HYDRUS-2D (Šimůnek et al., 2011). This approach utilizes the one-dimensional diffusion wave equation to model overland flow. The diffusion wave model is integrated in HYDRUS-2D by replacing the terms of the Richards equation in a pre-defined runoff layer by terms defining the diffusion wave equation. Using this approach, pressure and flux continuity along the interface between both flow domains is provided. This direct coupling approach provides a strong coupling of both systems based on the definition of a single global system matrix to numerically solve the coupled flow problem. The advantage of the direct coupling approach, compared to the loosely coupled approach, is supposed to be a higher robustness, when many convergence problems can be avoided (Takizawa et al., 2014). The HYDRUS-2D implementation was verified using a) different test cases, including a direct comparison with the results of Weill et al. (2009), b) an analytical solution of the kinematic wave equation, and c) the results of a benchmark test of Maxwell et al. (2014), that included several known coupled surface subsurface flow models. Additionally, a sensitivity analysis evaluating the effects of various model parameters on simulated overland flow (while considering or neglecting the effects of subsurface flow) was carried out to verify the applicability of the model to different problems. The model produced reasonable results in describing the diffusion wave approximation and its interactions with subsurface flow processes. The model could handle coupled surface-subsurface processes for conditions involving runoff generated by infiltration excess, saturation excess, or run-on, as well as a combination of these runoff generating processes. Several standard features of the HYDRUS 2D model, such as root water uptake and evaporation from the soil surface, as well as evaporation from runoff layer, can still be considered by the new model. The code required relatively small time steps when overland flow was active, resulting in long simulation times, and sometimes produced poor mass balance. The model nevertheless showed potential to be a useful tool for addressing various issues related to irrigation research and to natural generation of overland flow at the hillslope scale. Maxwell, R., Putti, M., Meyerhoff, S., Delf, J., Ferguson, I., Ivanov, V., Kim, J., Kolditz, O., Kollet, S., Kumar, M., Lopez, S., Niu, J., Paniconi, C., Park, Y.-J., Phanikumar, M., Shen, C., Sudicky, E., and Sulis, M. (2014). Surface-subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resourc. Res., 50:1531-1549. Šimůnek, J., van Genuchten, M. T., and Šejna, M. (2011). The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. Technical Manual, Version 2.0, PC Progress, Prague, Czech Republic. Takizawa, K., Bazilevs Y., Tezduyar, T. E., Long, C.C., Marsden, A. L. and Schjodt.K., Patient-Specific Cardiovascular Fluid Mechanics Analysis with the ST and ALE-VMS Method in Idelsohn, S. R. (2014). Numerical Simulations of Coupled Problems in Engineering. Springer. Weill, S., Mouche, E., and Patin, J. (2009). A generalized Richards equation for surface/subsurface flow modelling. Journal of Hydrology, 366:9-20.
Detection of microbes in the subsurface
NASA Technical Reports Server (NTRS)
White, David C.; Tunlid, Anders
1989-01-01
The search for evidence of microbial life in the deep subsurface of Earth has implications for the Mars Rover Sampling Return Missions program. If suitably protected environments can be found on Mars then the instrumentation to detect biomarkers could be used to examine the molecular details. Finding a lipid in Martian soil would represent possibly the simplest test for extant or extinct life. A device that could do a rapid extraction possibly using the supercritical fluid technology under development now with a detection of the carbon content would clearly indicate a sample to be returned.
NASA Astrophysics Data System (ADS)
Kozyrev, S. Alexander; Litvak, Maxim; Malakhov, Alexey; Mokrousov, Maxim; Mitrofanov, Igor; Sanin, Anton; Schulz, Rita; Shvetsov, Valery; Rogozhin, Alexander; Timoshenko, Genagy; Tretyakov, Vladislav; Vostrukhin, Andrey
The Neutron Spectrometer HEND (NS HEND) has been proposed for studying elemental com-position of Phobos (the Mars's moon) regolith by "Phobos-Grunt" mission. NS HEND have been selected by the Federal Space Agency of Russia for the Lander of the "Phobos-Grunt" mission scheduled for launch in 2011. The shallow subsurface of Phobos might be studied by observations of induced nuclear gamma-ray lines and neutron emission. Secondary gamma-rays and neutrons are produced by energetic Galactic Cosmic Rays within 1-2 meter layer of subsur-face. The knowledge of the spectral density of neutrons in addition to measurements of nuclear gamma lines allows to deconvolve concentrations of soil-constituting elements. That is why nuclear instruments include both the segment for detection of gamma ray lines and segment of neutron spectrometer for the measurement of the neutron leakage spectra. Moreover, mea-surements of neutrons at 2.2 MeV line will also allow to study the content of hydrogen within subsurface layer about 1 meter deep. This instrument, will be able to provide observational data for composition of Phobos regolith and content of natural radioactive elements K, U and Th, and also for content of hydrogen or water ice in the Phobos subsurface. At present, the flight units of NS HEND instrument is manufactured, tested and current go through physical calibration.
Monitoring of olive oil mills' wastes using electrical resistivity tomography techniques
NASA Astrophysics Data System (ADS)
Simyrdanis, Kleanthis; Papadopoulos, Nikos; Kirkou, Stella; Sarris, Apostolos; Tsourlos, Panagiotis
2014-08-01
Olive oil mills' wastes (OOMW) are one of the byproducts of the oil production that can lead to serious environmental pollution when they are deposited in ponds dug on the ground surface. Electrical Resistivity Tomography (ERT) method can provide a valuable tool in order to monitor through time the physical flow of the wastes into the subsurface. ERT could potentially locate the electrical signature due to lower resistivity values resulting from the leakage of OOMW to the subsurface. For this purpose, two vertical boreholes were installed (12m depth, 9 m apart) in the vicinity of an existing pond which is filled with OOMW during the oil production period. The test site is situated in Saint Andreas village about 15km south of the city of Rethymno (Crete, Greece). Surface ERT measurements were collected along multiple lines in order to reconstruct the subsurface resistivity models. Data acquisition was performed with standard and optimized electrode configuration protocols. The monitoring survey includes the ERT data collection for a period of time. The study was initiated before the OOMW were deposited in the pond, so resistivity fluctuations are expected due to the flow of OOMW in the porous subsurface media through time. Preliminary results show the good correlation of the ERT images with the drilled geological formations and the identification of low resistivity subsurface zone that could be attributed to the flow of the wastes within the porous layers.
Painter, Scott L.; Coon, Ethan T.; Atchley, Adam L.; ...
2016-08-11
The need to understand potential climate impacts and feedbacks in Arctic regions has prompted recent interest in modeling of permafrost dynamics in a warming climate. A new fine-scale integrated surface/subsurface thermal hydrology modeling capability is described and demonstrated in proof-of-concept simulations. The new modeling capability combines a surface energy balance model with recently developed three-dimensional subsurface thermal hydrology models and new models for nonisothermal surface water flows and snow distribution in the microtopography. Surface water flows are modeled using the diffusion wave equation extended to include energy transport and phase change of ponded water. Variation of snow depth in themore » microtopography, physically the result of wind scour, is also modeled heuristically with a diffusion wave equation. The multiple surface and subsurface processes are implemented by leveraging highly parallel community software. Fully integrated thermal hydrology simulations on the tilted open book catchment, an important test case for integrated surface/subsurface flow modeling, are presented. Fine-scale 100-year projections of the integrated permafrost thermal hydrological system on an ice wedge polygon at Barrow Alaska in a warming climate are also presented. Finally, these simulations demonstrate the feasibility of microtopography-resolving, process-rich simulations as a tool to help understand possible future evolution of the carbon-rich Arctic tundra in a warming climate.« less
Subsurface polarimetric migration imaging for full polarimetric ground-penetrating radar
NASA Astrophysics Data System (ADS)
Feng, Xuan; Yu, Yue; Liu, Cai; Fehler, Michael
2015-08-01
Polarization is a property of electromagnetic wave that generally refers to the locus of the electric field vector, which can be used to characterize surface properties by polarimetric radar. However, its use has been less common in the ground-penetrating radar (GPR) community. Full polarimetric GPR data include scattering matrices, by which the polarization properties can be extracted, at each survey point. Different components of the measured scattering matrix are sensitive to different types of subsurface objects, which offers a potential improvement in the detection ability of GPR. This paper develops a polarimetric migration imaging method. By merging the Pauli polarimetric decomposition technique with the Krichhoff migration equation, we develop a polarimetric migration algorithm, which can extract three migrated coefficients that are sensitive to different types of objects. Then fusing the three migrated coefficients, we can obtain subsurface colour-coded reconstructed object images, which can be employed to interpret both the geometrical information and the scattering mechanism of the subsurface objects. A 3-D full polarimetric GPR data set was acquired in a laboratory experiment and was used to test the method. In the laboratory experiment, four objects-a scatterer, a ball, a plate and a dihedral target-were buried in homogeneous dry sand under a flat ground surface. By merging the reconstructed image with polarization properties, we enhanced the subsurface image and improved the classification ability of GPR.
The Mojave Subsurface Bio-Geochemistry Explorer (MOSBE)
NASA Technical Reports Server (NTRS)
Guerrero, J.; Beegle, L.; Abbey, W.; Bhartia, R.; Kounaves, S.; Russell, M.; Towles, D.
2012-01-01
The MOSBE Team has developed a terrestrial field campaign to explore two subsurface biological habitats under the Mojave Desert. This field campaign will not only help us understand terrestrial desert biology, but also will develop methodologies and strategies for potential future Mars missions that would seek to explore the Martian subsurface. We have proposed to the ASTEP program to integrate a suite of field demonstrated instruments with a 20 m subsurface drill as a coherent unit, the Mojave Subsurface Bio-geochemistry Explorer. The ATK Space Modular Planetary Drill System (MPDS) requires no drilling fluid, which allows aseptic sampling, can penetrate lithic ground up to 20 meters of depth, and utilizes less than 100 Watts throughout the entire depth. The drill has been developed and demonstrated in field testing to a depth of 10 meters in Arizona, December 2002. In addition to caching a continuous core throughout the drilling depth, it also generates and caches cuttings and fines that are strata-graphically correlated with the core. As a core segment is brought to the surface, it will be analyzed for texture and structure by a color microscopic imager and for relevant chemistry and mineralogy with a UV fluorescence/Raman spectrometer. Organic and soluble ionic species will be identified through two instruments -- a microcapillary electrophoresis, and an ion trap mass spectrometer that have been developed under PIDDP, ASTID and MIDP funding.
A high frequency electromagnetic impedance imaging system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex
2003-01-15
Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systemsmore » for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.« less
NASA Astrophysics Data System (ADS)
Hsu, H.; Chang, P. Y.; Yao, H. J.
2017-12-01
For hydrodynamics study of the unconfined aquifer in gravel formation, a pumping test was established to estimate the hydraulic conductivity in the midstream of Zhoushui River in Taiwan. The hydraulic parameters and the cone of depression could be estimated by monitoring the groundwater drawdown in an observation well which was in a short distance far from the pumping well. In this study we carried out the electric resistivity image monitoring during the whole pumping test. The electric resistivity data was measured with the surface and downhole electrodes which would produce a clear subsurface image of groundwater level through a larger distance than the distance between pumping and observation wells. The 2D electric image could also describe how a cone of depression truly created at subsurface. The continuous records could also show the change of groundwater level during the whole pumping test which could give a larger scale of the hydraulic parameters.
Confocal examination of subsurface cracking in ceramic materials.
Etman, Maged K
2009-10-01
The original ceramic surface finish and its microstructure may have an effect on crack propagation. The purpose of this study was to investigate the relation between crack propagation and ceramic microstructure following cyclic fatigue loading, and to qualitatively evaluate and quantitatively measure the surface and subsurface crack depths of three types of ceramic restorations with different microstructures using a Confocal Laser Scanning Microscope (CLSM) and Scanning Electron Microscope (SEM). Twenty (8 x 4 x 2 mm(3)) blocks of AllCeram (AC), experimental ceramic (EC, IPS e.max Press), and Sensation SL (SSL) were prepared, ten glazed and ten polished of each material. Sixty antagonist enamel specimens were made from the labial surfaces of permanent incisors. The ceramic abraders were attached to a wear machine, so that each enamel specimen presented at 45 degrees to the vertical movement of the abraders, and immersed in artificial saliva. Wear was induced for 80K cycles at 60 cycles/min with a load of 40 N and 2-mm horizontal deflection. The specimens were examined for cracks at baseline, 5K, 10K, 20K, 40K, and 80K cycles. Twenty- to 30-microm deep subsurface cracking appeared in SSL, with 8 to 10 microm in AC, and 7 microm close to the margin of the wear facets in glazed EC after 5K cycles. The EC showed no cracks with increasing wear cycles. Seventy-microm deep subsurface cracks were detected in SSL and 45 microm in AC after 80K cycles. Statistically, there was significant difference among the three materials (p < 0.05). Bonferroni multiple comparison of means test confirmed the ANOVA test and showed that there was no statistical difference (p > 0.05) in crack depth within the same ceramic material with different surface finishes. The ceramic materials with different microstructures showed different patterns of subsurface cracking.
NASA Astrophysics Data System (ADS)
Skaugen, T.; Mengistu, Z.
2015-10-01
In this study we propose a new formulation of subsurface water storage dynamics for use in rainfall-runoff models. Under the assumption of a strong relationship between storage and runoff, the temporal distribution of storage is considered to have the same shape as the distribution of observed recessions (measured as the difference between the log of runoff values). The mean subsurface storage is estimated as the storage at steady-state, where moisture input equals the mean annual runoff. An important contribution of the new formulation is that its parameters are derived directly from observed recession data and the mean annual runoff and hence estimated prior to calibration. Key principles guiding the evaluation of the new subsurface storage routine have been (a) to minimize the number of parameters to be estimated through the, often arbitrary fitting to optimize runoff predictions (calibration) and (b) maximize the range of testing conditions (i.e. large-sample hydrology). The new storage routine has been implemented in the already parameter parsimonious Distance Distribution Dynamics (DDD) model and tested for 73 catchments in Norway of varying size, mean elevations and landscape types. Runoff simulations for the 73 catchments from two model structures; DDD with calibrated subsurface storage and DDD with the new estimated subsurface storage were compared. No loss in precision of runoff simulations was found using the new estimated storage routine. For the 73 catchments, an average of the Nash-Sutcliffe Efficiency criterion of 0.68 was found using the new estimated storage routine compared with 0.66 using calibrated storage routine. The average Kling-Gupta Efficiency criterion was 0.69 and 0.70 for the new and old storage routine, respectively. Runoff recessions are more realistically modelled using the new approach since the root mean square error between the mean of observed and simulated recessions was reduced by almost 50 % using the new storage routine.
Prediction of sub-surface 37Ar concentrations at locations in the Northwestern United States.
Fritz, Bradley G; Aalseth, Craig E; Back, Henning O; Hayes, James C; Humble, Paul H; Ivanusa, Pavlo; Mace, Emily K
2018-01-01
The Comprehensive Nuclear-Test-Ban Treaty, which is intended to prevent nuclear weapon test explosions and any other nuclear explosions, includes a verification regime, which provides monitoring to identify potential nuclear explosions. The presence of elevated 37 Ar is one way to identify subsurface nuclear explosive testing. However, the naturally occurring formation of 37 Ar in the subsurface adds a complicating factor. Prediction of the naturally occurring concentration of 37 Ar can help to determine if a measured 37 Ar concentration is elevated relative to background. The naturally occurring 37 Ar background concentration has been shown to vary between less than 1 mBq/m 3 to greater than 100 mBq/m 3 (Riedmann and Purtschert, 2011). The purpose of this work was to enhance the understanding of the naturally occurring background concentrations of 37 Ar, allowing for better interpretation of results. To that end, we present and evaluate a computationally efficient model for predicting the average concentration of 37 Ar at any depth under transient barometric pressures. Further, measurements of 37 Ar concentrations in samples collected at multiple locations are provided as validation of the concentration prediction model. The model is shown to compare favorably with concentrations of 37 Ar measured at multiple locations in the Northwestern United States. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Paillou, P.; Grandjean, G.; Heggy, E.; Farr, T.
2004-05-01
For several years, we have conducted a quantitative study of radar penetration performances in various desert arid environments. This study combines both SAR (Synthetic Aperture Radar) imaging from orbital and airborne platforms and in situ GPR (Ground Penetrating Radar) measurements. Laboratory characterization of various minerals and rocks are used as input to electromagnetic models such as IEM (Integral Equation Model) and FDTD (Finite Difference Time Domain) that describe the subsurface scattering process for inversion purposes. Several test sites were explored, mainly the Sahara. Our first experiment was realized in Republic of Djibouti, an arid volcanic area which is a good analog to Mars. We observed a very little radar penetration there because of the presence of iron oxides and salts in the subsurface that make the soil conductive [Paillou et al., GRL, 2001]. A more favorable site for radar penetration was then explored in southern Egypt: the Bir Safsaf area where buried river channels were discovered using orbital SAR images. We showed how to combine SAR and GPR in order to obtain a complete description of subsurface geology down to several meters [Paillou et al., IEEE TGRS, 2003]. Such field experiments were the basis for more systematic laboratory measurements of the electromagnetic properties of various rocks and minerals which were used in numerical models in order to simulate the performances of future Martian radars, e.g. MARSIS and NETLANDER low frequency radars [Heggy et al., Icarus, 2001; Berthelier et al., JGR, 2003; Heggy et al., JGR, 2003]. More recently, new explorations were conducted in Mauritania in order to demonstrate radar capacities for geologic mapping [Grandjean et al., Coll. Afr. Geol., 2004] and in Libya where radar discovered a double impact crater in the southern desert [Paillou et al., C.R. Geoscience, 2003]. More local radar experiments were also conducted on a test site located in France, the Pyla sand dune, where we observed and modeled a radar signature of subsurface water [Grandjean et al., IEEE TGRS, 2001; Paillou et al., IGARSS'03, 2003]. All of these results shall be used in the context of "terrestrial analogs to Mars" studies in order to prepare for future Mars exploration using radars [Farr et al., Planet. Dec. Study, 2002; Paillou et al., 35th LPSC, 2004]: it concerns both GPR instruments onboard rovers and landers devoted to the exploration of the deep subsurface [Berthelier at al., ESA Pasteur, 2003] and SAR imaging systems onboard orbital platforms for global mapping of the shallow subsurface geology [Paillou et al., Conf. Water Mars, 2001].
NASA Astrophysics Data System (ADS)
Dorizon, S.; Ciarletti, V.; Clifford, S. M.; Plettemeier, D.
2013-12-01
The Water Ice Subsurface Deposits Observation on Mars (WISDOM) Ground Penetrating Radar (GPR) has been selected as part of the Pasteur payload for the European Space Agency (ESA) ExoMars 2018 mission. The main scientific objectives of the mission are to search for evidence of past or present life and to characterize the water/geochemical environment as a function of depth in the shallow subsurface. A rover equipped with a 2 meters capacity drill and a suite of instruments will land on Mars in 2018, collect and analyze samples from outcrops and at depth. The WISDOM GPR will support these activities by sounding the subsurface and provide understanding of the geologic context and evolution of the local environment. When operated on the ExoMars rover, WISDOM will offer the possibility to understand the 3D geology in terms of stratigraphy and structure, spatial heterogeneities as well as the compositional and electromagnetic properties of the subsurface. According to these scientific objectives, this radar has been designed as a polarimetric step frequency GPR, operating from 0.5 GHz to 3GHz, which allows the sounding of the first 3 meters of the subsurface with a vertical resolution of a few centimeters. The importance of this GPR is particularly enhanced by its ability to investigate the water content, state (ice or liquid) and distribution in the subsurface, which are crucial clues to constrain the possibility of life traces evidence. In addition, WISDOM will be operated at a distance of 30 cm above the ground. This configuration allows the monitoring of potential transient liquid water that could appear on Mars surface. Results from several laboratory tests and a campaign in alpine ice caves in Austria are consistent with the expected performances of WISDOM regarding the question of water characterization. The specific configuration of the antennas allows the retrieval of the first layer permittivity value from the surface echo, which is related to the water content. The differentiation between segregated ice and other medium is done using a textural approach, and the determinations of stratum thickness are inferred from the permittivity values estimations. We double check and validate this approach with a 2D model simulating WISDOM in interaction with different environments. Perspectives are numerous to take the best from this instrument, starting with processing and modeling improvement, added on other field and laboratory tests to validate our methods. Radargrams from measurements with WISDOM in Alpine ice caves, Dachstein, Austria. a) at high frequencies; b) at low frequencies
Development of stream-subsurface flow module in sub-daily simulation of Escherichia coli using SWAT
NASA Astrophysics Data System (ADS)
Kim, Minjeong; Boithias, Laurie; Cho, Kyung Hwa; Silvera, Norbert; Thammahacksa, Chanthamousone; Latsachack, Keooudone; Rochelle-Newall, Emma; Sengtaheuanghoung, Oloth; Pierret, Alain; Pachepsky, Yakov A.; Ribolzi, Olivier
2017-04-01
Water contaminated with pathogenic bacteria poses a large threat to public health, especially in the rural areas in the tropics where sanitation and drinking water facilities are often lacking. Several studies have used the Soil and Water Assessment Tool (SWAT) to predict the export of in-stream bacteria at a watershed-scale. However, SWAT is limited to in-stream processes, such as die-off, resuspension and, deposition; and it is usually implemented on a daily time step using the SCS Curve Number method, making it difficult to explore the dynamic fate and transport of bacteria during short but intense events such as flash floods in tropical humid montane headwaters. To address these issues, this study implemented SWAT on an hourly time step using the Green-Ampt infiltration method, and tested the effects of subsurface flow (LATQ+GWQ in SWAT) on bacterial dynamics. We applied the modified SWAT model to the 60-ha Houay Pano catchment in Northern Laos, using sub-daily rainfall and discharge measurements, electric conductivity-derived fractions of overland and subsurface flows, suspended sediments concentrations, and the number of fecal indicator organism Escherichia coli monitored at the catchment outlet from 2011 to 2013. We also took into account land use change by delineating the watershed with the 3-year composite land use map. The results show that low subsurface flow of less than 1 mm recovered the underestimation of E. coli numbers during the dry season, while high subsurface flow caused an overestimation during the wet season. We also found that it is more reasonable to apply the stream-subsurface flow interaction to simulate low in-stream bacteria counts. Using fecal bacteria to identify and understand the possible interactions between overland and subsurface flows may well also provide some insight into the fate of other bacteria, such as those involved in biogeochemical fluxes both in-stream and in the adjacent soils and hyporheic zones.
NASA Astrophysics Data System (ADS)
De Martis, Gabriele; Mulas, Bonaria; Malavasi, Veronica; Marignani, Michela
2016-05-01
Constructed wetlands (CW) are considered a successful tool to treat wastewater in many countries: their success is mainly assessed observing the rate of pollution reduction, but CW can also contribute to the conservation of ecosystem services. Among the many ecosystem services provided, the biodiversity of CW has received less attention. The EcoSistema Filtro (ESF) of the Molentargius-Saline Regional Natural Park is a constructed wetland situated in Sardinia (Italy), built to filter treated wastewater, increase habitat diversity, and enhance local biodiversity. A floristic survey has been carried out yearly 1 year after the construction of the artificial ecosystem in 2004, observing the modification of the vascular flora composition in time. The flora of the ESF accounted for 54 % of the whole Regional Park's flora; alien species amount to 12 %; taxa of conservation concern are 6 %. Comparing the data in the years, except for the biennium 2006/2007, we observed a continuous increase of species richness, together with an increase of endemics, species of conservation concern, and alien species too. Once the endemics appeared, they remained part of the flora, showing a good persistence in the artificial wetland. Included in a natural park, but trapped in a sprawling and fast growing urban context, this artificial ecosystem provides multiple uses, by preserving and enhancing biodiversity. This is particularly relevant considering that biodiversity can act as a driver of sustainable development in urban areas where most of the world's population lives and comes into direct contact with nature.
De Martis, Gabriele; Mulas, Bonaria; Malavasi, Veronica; Marignani, Michela
2016-05-01
Constructed wetlands (CW) are considered a successful tool to treat wastewater in many countries: their success is mainly assessed observing the rate of pollution reduction, but CW can also contribute to the conservation of ecosystem services. Among the many ecosystem services provided, the biodiversity of CW has received less attention. The EcoSistema Filtro (ESF) of the Molentargius-Saline Regional Natural Park is a constructed wetland situated in Sardinia (Italy), built to filter treated wastewater, increase habitat diversity, and enhance local biodiversity. A floristic survey has been carried out yearly 1 year after the construction of the artificial ecosystem in 2004, observing the modification of the vascular flora composition in time. The flora of the ESF accounted for 54% of the whole Regional Park's flora; alien species amount to 12%; taxa of conservation concern are 6%. Comparing the data in the years, except for the biennium 2006/2007, we observed a continuous increase of species richness, together with an increase of endemics, species of conservation concern, and alien species too. Once the endemics appeared, they remained part of the flora, showing a good persistence in the artificial wetland. Included in a natural park, but trapped in a sprawling and fast growing urban context, this artificial ecosystem provides multiple uses, by preserving and enhancing biodiversity. This is particularly relevant considering that biodiversity can act as a driver of sustainable development in urban areas where most of the world's population lives and comes into direct contact with nature.
He, Zhengdi; Chen, Lingling; Shimada, Yasushi; Tagami, Junji; Ruan, Shuangchen
2017-03-31
This study aimed to investigate self-etching bonding systems penetrating in sub-surface dentin layer after Er:YAG laser irradiation and micro-shear bonding durability over a period of 1 year. Dentin slices obtained from extracted human third molars were prepared. Two self-etching adhesive systems were evaluated: Clearfil SE Bond and Clearfil Tri-S Bond. Specimens were tested for micro-shear bond strength with one of the following treatments: Er:YAG laser irradiation and 600-grit silicon paper polishing at 24 h, 7 days, 6 months and 1 year. The adhesive interfaces between bonding agents and lased cervical dentin were studied. No hybrid layer could be observed for lased dentin. The slim resin tags could be seen penetrating through the lased subsurface layer. Bond strength to lased dentin after 6 months and 1 year were significantly decreased (p<0.05).
A design study for a medium-scale field demonstration of the viscous barrier technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moridis, G.; Yen, P.; Persoff, P.
1996-09-01
This report is the design study for a medium-scale field demonstration of Lawrence Berkeley National Laboratory`s new subsurface containment technology for waste isolation using a new generation of barrier liquids. The test site is located in central California in a quarry owned by the Los Banos Gravel Company in Los Banos, California, in heterogeneous unsaturated deposits of sand, silt, and -ravel typical of many of the and DOE cleanup sites and particularly analogous to the Hanford site. The coals of the field demonstration are (a) to demonstrate the ability to create a continuous subsurface barrier isolating a medium-scale volume (30more » ft long by 30 ft wide by 20 ft deep, i.e. 1/10th to 1/8th the size of a buried tank at the Hanford Reservation) in the subsurface, and (b) to demonstrate the continuity, performance, and integrity of the barrier.« less
Contamination and restoration of groundwater aquifers.
Piver, W T
1993-01-01
Humans are exposed to chemicals in contaminated groundwaters that are used as sources of drinking water. Chemicals contaminate groundwater resources as a result of waste disposal methods for toxic chemicals, overuse of agricultural chemicals, and leakage of chemicals into the subsurface from buried tanks used to hold fluid chemicals and fuels. In the process, both the solid portions of the subsurface and the groundwaters that flow through these porous structures have become contaminated. Restoring these aquifers and minimizing human exposure to the parent chemicals and their degradation products will require the identification of suitable biomarkers of human exposure; better understandings of how exposure can be related to disease outcome; better understandings of mechanisms of transport of pollutants in the heterogeneous structures of the subsurface; and field testing and evaluation of methods proposed to restore and cleanup contaminated aquifers. In this review, progress in these many different but related activities is presented. PMID:8354172
Workshop on Radar Investigations of Planetary and Terrestrial Environments
NASA Technical Reports Server (NTRS)
2005-01-01
Contents include the following: Salt Kinematics and InSAR. SAR Interferometry as a Tool for Monitoring Coastal Changes in the Nile River Delta of Egypt. Modem Radar Techniques for Geophysical Applications: Two Examples. WISDOM Experiment on the EXOMARS ESA Mission. An Ice Thickness Study Utilizing Ground Penetrating Radar on the Lower Jamapa. Probing the Martian Subsurface with Synthetic Aperture Radar. Planetary Surface Properties from Radar Polarimetric Observations. Imaging the Sub-surface Reflectors : Results From the RANETA/NETLANDER Field Test on the Antarctic Ice Shelf. Strategy for Selection of Mars Geophysical Analogue Sites. Observations of Low Frequency Low Altitude Plasma Oscillations at Mars and Implications for Electromagnetic Sounding of the Subsurface. Ionospheric Transmission Losses Associated with Mars-orbiting Radar. A Polarimetric Scattering Model for the 2-Layer Problem. Radars for Imaging and Sounding of Polar Ice Sheets. Strata: Ground Penetrating Radar for Mars Rovers. Scattering Limits to Depth of Radar Investigation: Lessons from the Bishop Tuff.
Mirus, Benjamin B.; Becker, Rachel E.; Baum, Rex L.; Smith, Joel B.
2018-01-01
Early warning for rainfall-induced shallow landsliding can help reduce fatalities and economic losses. Although these commonly occurring landslides are typically triggered by subsurface hydrological processes, most early warning criteria rely exclusively on empirical rainfall thresholds and other indirect proxies for subsurface wetness. We explore the utility of explicitly accounting for antecedent wetness by integrating real-time subsurface hydrologic measurements into landslide early warning criteria. Our efforts build on previous progress with rainfall thresholds, monitoring, and numerical modeling along the landslide-prone railway corridor between Everett and Seattle, Washington, USA. We propose a modification to a previously established recent versus antecedent (RA) cumulative rainfall thresholds by replacing the antecedent 15-day rainfall component with an average saturation observed over the same timeframe. We calculate this antecedent saturation with real-time telemetered measurements from five volumetric water content probes installed in the shallow subsurface within a steep vegetated hillslope. Our hybrid rainfall versus saturation (RS) threshold still relies on the same recent 3-day rainfall component as the existing RA thresholds, to facilitate ready integration with quantitative precipitation forecasts. During the 2015–2017 monitoring period, this RS hybrid approach has an increase of true positives and a decrease of false positives and false negatives relative to the previous RA rainfall-only thresholds. We also demonstrate that alternative hybrid threshold formats could be even more accurate, which suggests that further development and testing during future landslide seasons is needed. The positive results confirm that accounting for antecedent wetness conditions with direct subsurface hydrologic measurements can improve thresholds for alert systems and early warning of rainfall-induced shallow landsliding.
Zaller, Johann G; Wechselberger, Katharina F; Gorfer, Markus; Hann, Patrick; Frank, Thomas; Wanek, Wolfgang; Drapela, Thomas
Earthworms (Annelida: Oligochaeta) deposit several tons per hectare of casts enriched in nutrients and/or arbuscular mycorrhizal fungi (AMF) and create a spatial and temporal soil heterogeneity that can play a role in structuring plant communities. However, while we begin to understand the role of surface casts, it is still unclear to what extent plants utilize subsurface casts. We conducted a greenhouse experiment using large mesocosms (volume 45 l) to test whether (1) soil microsites consisting of earthworm casts with or without AMF (four Glomus taxa) affect the biomass production of 11 grassland plant species comprising the three functional groups grasses, forbs, and legumes, (2) different ecological groups of earthworms (soil dwellers- Aporrectodea caliginosa vs. vertical burrowers- Lumbricus terrestris ) alter potential influences of soil microsites (i.e., four earthworms × two subsurface microsites × two AMF treatments). Soil microsites were artificially inserted in a 25-cm depth, and afterwards, plant species were sown in a regular pattern; the experiment ran for 6 months. Our results show that minute amounts of subsurface casts (0.89 g kg -1 soil) decreased the shoot and root production of forbs and legumes, but not that of grasses. The presence of earthworms reduced root biomass of grasses only. Our data also suggest that subsurface casts provide microsites from which root AMF colonization can start. Ecological groups of earthworms did not differ in their effects on plant production or AMF distribution. Taken together, these findings suggest that subsurface earthworm casts might play a role in structuring plant communities by specifically affecting the growth of certain functional groups of plants.
Efficacy of different whitening modalities on bovine enamel and dentin.
Wiegand, Annette; Vollmer, Doreen; Foitzik, Magdalena; Attin, Rengin; Attin, Thomas
2005-06-01
Previous studies have shown that bleaching treatment may be efficient in both enamel and dentin, but it is still unknown how much the subsurface dentin contributes to the color change of teeth. This in vitro study evaluated the whitening effect of different external bleaching agents on enamel-dentin slabs and subsurface dentin. Ninety bovine teeth were distributed among six groups (A, Opalescence 10%; B, Opalescence PF 15%; C, Opalescence Quick; D, Opalescence Extra Boost; E, Rapid White; F, Whitestrips). Two enamel-dentin specimens were prepared from the labial surface of each teeth. In one of the specimens enamel was removed, resulting in a dentin (CD) disc of 1 mm high. The labial and the pulpal sides of the second specimen were ground until the remaining enamel and dentin layers of the enamel-dentin sample (ED) were 1 mm each. Whitening treatment of the ED specimens was performed according to manufacturers' instructions. Pre- and posttreatment Lab values of ED samples were analyzed using CIE-Lab. Baseline Lab values of dentin were analyzed by evaluation of the CD specimen. Finally, enamel of the ED specimens was removed and color change of the exposed dentin (D) was recorded. For all treatment agents significant color changes (DeltaE) were observed for enamel-dentin samples and subsurface dentin specimens compared to controls. In groups A-D DeltaE was significantly higher in dentin than enamel-dentin. Furthermore, L and b values of bleached enamel-dentin and subsurface dentin samples differed significantly from baseline. Treatment with the tested external whitening bleaching agents resulted in color change of both enamel-dentin and subsurface dentin samples. The results indicate that color change of treated teeth might be highly influenced by color change of the subsurface dentin.
Malone, Robert W.; Nolan, Bernard T.; Ma, Liwang; Kanwar, Rameshwar S.; Pederson, Carl H.; Heilman, Philip
2014-01-01
Well tested agricultural system models can improve our understanding of the water quality effects of management practices under different conditions. The Root Zone Water Quality Model (RZWQM) has been tested under a variety of conditions. However, the current model's ability to simulate pesticide transport to subsurface drain flow over a long term period under different tillage systems and application rates is not clear. Therefore, we calibrated and tested RZWQM using six years of data from Nashua, Iowa. In this experiment, atrazine was spring applied at 2.8 (1990–1992) and 0.6 kg/ha/yr (1993–1995) to two 0.4 ha plots with different tillage (till and no-till). The observed and simulated average annual flow weighted atrazine concentrations (FWAC) in subsurface drain flow from the no-till plot were 3.7 and 3.2 μg/L, respectively for the period with high atrazine application rates, and 0.8 and 0.9 μg/L, respectively for the period with low application rates. The 1990–1992 observed average annual FWAC difference between the no-till and tilled plot was 2.4 μg/L while the simulated difference was 2.1 μg/L. These observed and simulated differences for 1993–1995 were 0.1 and 0.1 μg/L, respectively. The Nash–Sutcliffe model performance statistic (EF) for cumulative atrazine flux to subsurface drain flow was 0.93 for the no-till plot testing years (1993–1995), which is comparable to other recent model tests. The value of EF is 1.0 when simulated data perfectly match observed data. The order of selected parameter sensitivity for RZWQM simulated FWAC was atrazine partition coefficient > number of macropores > atrazine half life in soil > soil hydraulic conductivity. Simulations from 1990 to 1995 with four different atrazine application rates applied at a constant rate throughout the simulation period showed concentrations in drain flow for the no-till plot to be twice those of the tilled plot. The differences were more pronounced in the early simulation period (1990–1992), partly because of the characteristics of macropore flow during large storms. The results suggest that RZWQM is a promising tool to study pesticide transport to subsurface drain flow under different tillage systems and application rates over several years, the concentrations of atrazine in drain flow can be higher with no-till than tilled soil over a range of atrazine application rates, and atrazine concentrations in drain flow are sensitive to the macropore flow characteristics under different tillage systems and rainfall timing and intensity.
NASA Astrophysics Data System (ADS)
Greeley, A.; Kurtz, N. T.; Neumann, T.; Cook, W. B.; Markus, T.
2016-12-01
Photon counting laser altimeters such as MABEL (Multiple Altimeter Beam Experimental Lidar) - a single photon counting simulator for ATLAS (Advanced Topographical Laser Altimeter System) - use individual photons with visible wavelengths to measure their range to target surfaces. ATLAS, the sole instrument on NASA's upcoming ICESat-2 mission, will provide scientists a view of Earth's ice sheets, glaciers, and sea ice with unprecedented detail. Precise calibration of these instruments is needed to understand rapidly changing parameters such as sea ice freeboard, and to measure optical properties of surfaces like snow covered ice sheets using subsurface scattered photons. Photons that travel through snow, ice, or water before scattering back to an altimeter receiving system travel farther than photons taking the shortest path between the observatory and the target of interest. These delayed photons produce a negative elevation bias relative to photons scattered directly off these surfaces. We use laboratory measurements of snow surfaces using a flight-tested laser altimeter (MABEL), and Monte Carlo simulations of backscattered photons from snow to estimate elevation biases from subsurface scattered photons. We also use these techniques to demonstrate the ability to retrieve snow surface properties like snow grain size.
Norrman, Jenny; Volchko, Yevheniya; Hooimeijer, Fransje; Maring, Linda; Kain, Jaan-Henrik; Bardos, Paul; Broekx, Steven; Beames, Alistair; Rosén, Lars
2016-09-01
This paper presents a holistic approach to sustainable urban brownfield redevelopment where specific focus is put on the integration of a multitude of subsurface qualities in the early phases of the urban redevelopment process, i.e. in the initiative and plan phases. Achieving sustainability in brownfield redevelopment projects may be constrained by a failure of engagement between two key expert constituencies: urban planners/designers and subsurface engineers, leading to missed opportunities and unintended outcomes in the plan realisation phase. A more integrated approach delivers greater benefits. Three case studies in the Netherlands, Belgium and Sweden were used to test different sustainability assessment instruments in terms of the possibility for knowledge exchange between the subsurface and the surface sectors and in terms of cooperative learning among experts and stakeholders. Based on the lessons learned from the case studies, a generic decision process framework is suggested that supports holistic decision making. The suggested framework focuses on stakeholder involvement, communication, knowledge exchange and learning and provides an inventory of instruments that can support these processes. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen
2004-06-16
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 0.1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002, Tseng et al., 2003). Electric and magnetic sensors are being tested and calibrated on sea water and in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
NASA Astrophysics Data System (ADS)
Greeley, A.; Neumann, T.; Markus, T.; Kurtz, N. T.; Cook, W. B.
2015-12-01
Existing visible light laser altimeters such as MABEL (Multiple Altimeter Beam Experimental Lidar) - a single photon counting simulator for ATLAS (Advanced Topographic Laser Altimeter System) on NASA's upcoming ICESat-2 mission - and ATM (Airborne Topographic Mapper) on NASA's Operation IceBridge mission provide scientists a view of Earth's ice sheets, glaciers, and sea ice with unprecedented detail. Precise calibration of these instruments is needed to understand rapidly changing parameters like sea ice freeboard and to measure optical properties of surfaces like snow covered ice sheets using subsurface scattered photons. Photons travelling into snow, ice, or water before scattering back to the altimeter receiving system (subsurface photons) travel farther and longer than photons scattering off the surface only, causing a bias in the measured elevation. We seek to identify subsurface photons in a laboratory setting using a flight-tested laser altimeter (MABEL) and to quantify their effect on surface elevation estimates for laser altimeter systems. We also compare these estimates with previous laboratory measurements of green laser light transmission through snow, as well as Monte Carlo simulations of backscattered photons from snow.
Tracer Transport Along a Vertical Fault Located in Welded Tuffs
NASA Astrophysics Data System (ADS)
Salve, R.; Liu, H.; Hu, Q.
2002-12-01
A near-vertical fault that intercepts the fractured welled tuff formation in the underground Exploratory Studies Facility (ESF) at Yucca Mountain, Nevada, has provided a unique opportunity to evaluate important hydrological parameters associated with faults (e.g., flow velocity, matrix diffusion, fault-fracture-matrix interactions). Alcove 8, which intersects the fault is located in the cross drift of the ESF, has been excavated for liquid releases through this fault and a network of fractures. Located 25 m below Alcove 8 in the main drift of the ESF, Niche 3 which also intercepts the fault, serves as the site for monitoring the wetting front and for collecting seepage following liquid releases in Alcove 8. To investigate the importance of matrix diffusion and the extent of area subject to fracture-matrix interactions, we released a mix of conservative tracers (pentafluorobenzoic acid [PFBA] and lithium bromide [LiBr]) along the fault. The ceiling of Niche 3 was blanketed with an array of trays to capture seepage, and seepage rates were continuously monitored by a water collection system connected to the trays. Additionally, a water sampling device, the passive-discreet water sampler (PDWS), was connected to three of the collections trays in Niche 3 into which water was seeping. The PDWS, designed to isolate continuous seepage from each tray into discreet samples for chemical analysis, remained connected to the trays over a period of three months. During this time, all water that seeped into the three trays was captured sequentially into sampling bottles and analyzed for concentrations of PFBA and LiBr. Water released along the fault initially traveled the 25 m vertical distance over a period of 36 days (at a velocity ~0.7 m/day). The seepage recovered in Niche 3 was less than 10% of the injected water with significant spatial and temporal fluctuations in seepage rates. Along a fast flow path, the benzoic tracer (PFBA) and LiBr were first detected ~12 days after they were released into the fault. Along slower flow paths the tracers appeared ~ two weeks later, with PFBA preceding the LiB. The differing travel times of the two conservative tracers suggests the impact of matrix diffusion in the transport process. This work was supported by the Director, Office of Civilian Radioactive Waste Management, U.S. Department of Energy, through Memorandum Purchase Order EA9013MC5X between Bechtel SAIC Company, LLC, and the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab). The support is provided to Berkeley Lab through the U.S. Department of Energy Contract No. DE-AC03-76SF00098.
Integrated geophysical methods for geotechnical subsurface investigations : final report.
DOT National Transportation Integrated Search
2006-01-01
This report summarizes the New Hampshire Department of Transportations (NHDOTs) investigation of : geophysical techniques to supplement conventional test borings and other explorations on transportation projects. : The Departments geotechnic...
Subsurface investigation with ground penetrating radar
USDA-ARS?s Scientific Manuscript database
Ground penetrating radar (GPR) data was collected on a small test plot at the OTF/OSU Turfgrass Research & Education Facility in Columbus, Ohio. This test plot was built to USGA standards for a golf course green, with a constructed sand layer just beneath the surface overlying a gravel layer, that i...
Qtracer Program for Tracer-Breakthrough Curve Analysis for Karst and Fractured-Rock Aquifers (2000)
Tracer tests are generally regarded as being the most reliable and efficient means of gathering subsurface hydraulic information. This is true for all types of aquifers, but especially so for karst and fractured-rock aquifers. Qualitative tracing tests have been conventionally em...
NASA Astrophysics Data System (ADS)
Fairley, J. P., Jr.; Oyarzún L, R.; Villegas, G.
2015-12-01
Early theories of fluid migration in unsaturated fractured rock hypothesized that matrix suction would dominate flow up to the point of matrix saturation. However, experiments in underground laboratories such as the ESF (Yucca Mountain, NV) have demonstrated that liquid water can migrate significant distances through fractures in an unsaturated porous medium, suggesting limited interaction between fractures and unsaturated matrix blocks and potentially rapid transmission of recharge to the sat- urated zone. Determining the conditions under which this rapid recharge may take place is an important factor in understanding deep percolation processes in arid areas with thick unsaturated zones. As part of an on-going, Fondecyt-funded project (award 11150587) to study mountain block hydrological processes in arid regions, we are plan- ning a series of in-situ fracture flow injection tests in the Cerro Brillador/Mina Escuela, an underground laboratory and teaching facility belonging to the Universidad la Serena, Chile. Planning for the tests is based on an analytical model and curve-matching method, originally developed to evaluate data from injection tests at Yucca Mountain (Fairley, J.P., 2010, WRR 46:W08542), that uses a known rate of liquid injection to a fracture (for example, from a packed-off section of borehole) and the observed rate of seepage discharging from the fracture to estimate effective fracture aperture, matrix sorptivity, fracture/matrix flow partitioning, and the wetted fracture/matrix interac- tion area between the injection and recovery points. We briefly review the analytical approach and its application to test planning and analysis, and describe the proposed tests and their goals.
Casingless down-hole for sealing an ablation volume and obtaining a sample for analysis
Noble, D.T.; Braymen, S.D.; Anderson, M.S.
1996-10-01
A casing-less down hole sampling system for acquiring a subsurface sample for analysis using an inductively coupled plasma system is disclosed. The system includes a probe which is pushed into the formation to be analyzed using a hydraulic ram system. The probe includes a detachable tip member which has a soil point and a barb, with the soil point aiding the penetration of the earth, and the barb causing the tip member to disengage from the probe and remain in the formation when the probe is pulled up. The probe is forced into the formation to be tested, and then pulled up slightly, to disengage the tip member and expose a column of the subsurface formation to be tested. An instrumentation tube mounted in the probe is then extended outward from the probe to longitudinally extend into the exposed column. A balloon seal mounted on the end of the instrumentation tube allows the bottom of the column to be sealed. A source of laser radiation is emitted from the instrumentation tube to ablate a sample from the exposed column. The instrumentation tube can be rotated in the probe to sweep the laser source across the surface of the exposed column. An aerosol transport system carries the ablated sample from the probe to the surface for testing in an inductively coupled plasma system. By testing at various levels in the down-hole as the probe is extracted from the soil, a profile of the subsurface formation may be obtained. 9 figs.
The DESMEX Project - Deep Electromagnetic Sounding for Mineral EXploration
NASA Astrophysics Data System (ADS)
Meyer, U.; Becken, M.; Stolz, R.; Nittinger, C.; Cherevatova, M.; Siemon, B.; Martin, T.; Petersen, H.; Steuer, A.
2017-12-01
The DESMEX project (Deep Electromagnetic Sounding for Mineral Exploration) aims to develop independent semi-airborne frequency domain systems for mineral exploration down to depths of 1 km and deeper. Two different helicopter-towed systems are being designed and tested using source installations on ground. One system uses among other equipment conventional three axis induction coils, a 3D-fluxgate and a high precision inertial motion unit. The use of the two different magnetometers allows to record data in a broad frequency range from 1 Hz to 10 kHz. The second system uses a newly developed SQUID-based sensing system of a similar frequency range and a self made inertial motion unit. Horizontal electric dipole transmitters provided by the Leibniz Institute for Applied Geophysics in Hannover and the Institute of Geophysics and Meteorology of the University in Cologne are used as ground based sources. First system tests showed a good performance of both systems with general noise levels below 50 pT/root(Hz). Test flights above the common survey area proved that the desired depth of investigation can be achieved and that the data is consistent with the subsurface conductivity structures. In order to verify the data acquired from the newly developed system at shallow depths and to provide a better starting model for later inversion calculations helicopter borne frequency domain electromagnetics has been acquired and fully processed over the test site Schleiz - Greiz in Germany. To further relate the subsurface conductivity models to the subsurface geology and mineralogy, petrophysical investigations have been performed on rock samples from the site of investigation and analogue samples.
Subsurface iron and arsenic removal for shallow tube well drinking water supply in rural Bangladesh.
van Halem, D; Olivero, S; de Vet, W W J M; Verberk, J Q J C; Amy, G L; van Dijk, J C
2010-11-01
Subsurface iron and arsenic removal has the potential to be a cost-effective technology to provide safe drinking water in rural decentralized applications, using existing shallow tube wells. A community-scale test facility in Bangladesh was constructed for injection of aerated water (∼1 m(3)) into an anoxic aquifer with elevated iron (0.27 mmolL(-1)) and arsenic (0.27μmolL(-1)) concentrations. The injection (oxidation) and abstraction (adsorption) cycles were monitored at the test facility and simultaneously simulated in the laboratory with anoxic column experiments. Dimensionless retardation factors (R) were determined to represent the delayed arrival of iron or arsenic in the well compared to the original groundwater. At the test facility the iron removal efficacies increased after every injection-abstraction cycle, with retardation factors (R(Fe)) up to 17. These high removal efficacies could not be explained by the theory of adsorptive-catalytic oxidation, and therefore other ((a)biotic or transport) processes have contributed to the system's efficacy. This finding was confirmed in the anoxic column experiments, since the mechanism of adsorptive-catalytic oxidation dominated in the columns and iron removal efficacies did not increase with every cycle (stable at R(Fe)=∼8). R(As) did not increase after multiple cycles, it remained stable around 2, illustrating that the process which is responsible for the effective iron removal did not promote the co-removal of arsenic. The columns showed that subsurface arsenic removal was an adsorptive process and only the freshly oxidized adsorbed iron was available for the co-adsorption of arsenic. This indicates that arsenic adsorption during subsurface treatment is controlled by the amount of adsorbed iron that is oxidized, and not by the amount of removed iron. For operational purposes this is an important finding, since apparently the oxygen concentration of the injection water does not control the subsurface arsenic removal, but rather the injection volume. Additionally, no relation has been observed in this study between the amount of removed arsenic at different molar Fe:As ratios (28, 63, and 103) of the groundwater. It is proposed that the removal of arsenic was limited by the presence of other anions, such as phosphate, competing for the same adsorption sites. Copyright © 2010 Elsevier Ltd. All rights reserved.
Comparison of Fracture Gradient Methods for the FutureGen 2.0 Carbon Storage Site, Ill., USA.
NASA Astrophysics Data System (ADS)
Appriou, D.; Spane, F.; Wurstner White, S.; Kelley, M. E.; Sullivan, E. C.; Bonneville, A.; Gilmore, T. J.
2014-12-01
As part of a first-of-its-kind carbon dioxide storage project, FutureGen Industrial Alliance is planning to inject 1.1 MMt/yr of supercritical CO2 over a 20-year period within a 1240 m deep saline aquifer (Mount Simon Sandstone) located in Morgan County, Illinois, USA. Numerous aspects of the design and operational activities of the CO2 storage site are dependent on the geomechanical properties of the targeted reservoir zone, as well as of the overlying confining zone and the underlying crystalline Precambrian basement. Detailed determination of the state-of-stress within the subsurface is of paramount importance in successfully designing well drilling/completion aspects, as well as assessing the risk of induced seismicity and the potential for creating and/or reopening pre-existing fractures; all of which help ensure the safe long-term storage of injected CO2. The quantitative determination of the subsurface fracture gradient is one of the key geomechanical parameters for the site injection design and operational limits (e.g., maximum safe injection pressure). A characterization well drilled in 2011 provides subsurface geomechanical characterization information for the FutureGen 2.0 site, and includes: 1) continuous elastic properties inferred from sonic/acoustic wireline logs 2) discrete depth geomechanical laboratory core measurements and 3) results obtained from hydraulic fracturing tests of selected borehole/depth-intervals. In this paper, the precise fracture gradients derived from borehole geomechanical test results are compared with semi-empirical, fracture gradient calculation/relationships based on elastic property wireline surveys and laboratory geomechanical core test results. Implications for using various fracture-gradients obtained from the different methods are assessed using PNNL's subsurface multiphase flow and transport simulator STOMP-CO2. The implications for operational activities at the site (based on using different fracture gradients) are also discussed.
Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L; Bell, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R
2008-10-01
The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undisclosed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.
NASA Astrophysics Data System (ADS)
Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L.; Bell Johnson, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R.
2008-10-01
The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undis closed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.
NASA Astrophysics Data System (ADS)
Yoon, J. S.; Culligan, P. J.; Germaine, J. T.
2003-12-01
Subsurface colloid behavior has recently drawn attention because colloids are suspected of enhancing contaminant transport in groundwater systems. To better understand the processes by which colloids move through the subsurface, and in particular the vadose zone, a new technique that enables real-time visualization of colloid particles as they move through a porous medium has been developed. This visualization technique involves the use of laser induced fluorescent particles and digital image processing to directly observe particles moving through a porous medium consisting of soda-lime glass beads and water in a transparent experimental box of 10.0cm\\x9D27.9cm\\x9D2.38cm. Colloid particles are simulated using commercially available micron sized particles that fluoresce under argon-ion laser light. The fluorescent light given off from the particles is captured through a camera filter, which lets through only the emitted wavelength of the colloid particles. The intensity of the emitted light is proportional to the colloid particle concentration. The images of colloid movement are captured by a MagnaFire digital camera; a cooled CCD digital camera produced by Optronics. This camera enables real-time capture of images to a computer, thereby allowing the images to be processed immediately. The images taken by the camera are analyzed by the ImagePro software from Media Cybernetics, which contains a range of counting, sizing, measuring, and image enhancement tools for image processing. Laboratory experiments using the new technique have demonstrated the existence of both irreversible and reversible sites for colloid entrapment during uniform saturated flow in a homogeneous porous medium. These tests have also shown a dependence of colloid entrapment on velocity. Models for colloid transport currently available in the literature have proven to be inadequate predictors for the experimental observations, despite the simplicity of the system studied. To further extend the work, the visualization technique has been developed for use on the geo-centrifuge. The advantage that the geo-centrifuge has for investigating subsurface colloid behavior, is the ability to simulate unsaturated transport mechanisms under well simulated field moisture profiles and in shortened periods of time. A series of tests to investigate colloid transport during uniform saturated flow is being used to examine basic scaling laws for colloid transport under enhanced gravity. The paper will describe the new visualization technique, its use in geo-centrifuge testing and observations on scaling relationships for colloid transport during geo-centrifuge experiments. Although the visualization technique has been developed for investigating subsurface colloid behavior, it does have application in other areas of investigation, including the investigation of microbial behavior in the subsurface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M.
2007-09-16
To predict the long-term fate of low- and high-level waste forms in the subsurface over geologic time scales, it is important to understand the behavior of the corroding waste forms under conditions the mimic to the open flow and transport properties of a subsurface repository. Fluidized bed steam reformation (FBSR), a supplemental treatment technology option, is being considered as a waste form for the immobilization of low-activity tank waste. To obtain the fundamental information needed to evaluate the behavior of the FBSR waste form under repository relevant conditions and to monitor the long-term behavior of this material, an accelerated weatheringmore » experiment is being conducted with the pressurized unsaturated flow (PUF) apparatus. Unlike other accelerated weathering test methods (product consistency test, vapor hydration test, and drip test), PUF experiments are conducted under hydraulically unsaturated conditions. These experiments are unique because they mimic the vadose zone environment and allow the corroding waste form to achieve its final reaction state. Results from this on-going experiment suggest the volumetric water content varied as a function of time and reached steady state after 160 days of testing. Unlike the volumetric water content, periodic excursions in the solution pH and electrical conductivity have been occurring consistently during the test. Release of elements from the column illustrates a general trend of decreasing concentration with increasing reaction time. Normalized concentrations of K, Na, P, Re (a chemical analogue for 99Tc), and S are as much as 1 × 104 times greater than Al, Cr, Si, and Ti. After more than 600 days of testing, the solution chemistry data collected to-date illustrate the importance of understanding the long-term behavior of the FBSR product under conditions that mimic the open flow and transport properties of a subsurface repository.« less
Gas Transport and Detection Following Underground Nuclear Explosions
NASA Astrophysics Data System (ADS)
Carrigan, C. R.; Sun, Y.; Wagoner, J. L.; Zucca, J. J.
2011-12-01
Some extremely rare radioactive noble gases are by-products of underground nuclear explosions, and the detection of significant levels of these gases (e.g., Xe-133 and Ar-37) at the surface is a very strong indicator of the occurrence of an underground nuclear event. Because of their uniqueness, such noble gas signatures can be confirmatory of the nuclear nature of an event while signatures from other important detection methods, such as anomalous seismicity, are generally not. As a result, noble gas detection at a suspected underground nuclear test site is considered to be the most important technique available to inspectors operating under the On-Site-Inspection protocol of the Comprehensive Nuclear Test Ban Treaty. A one-kiloton chemical underground explosion, the Non-Proliferation Experiment (NPE), was carried out at the Nevada Test Site in 1993 and represented the first On-Site-Inspection oriented test of subsurface gas transport with subsequent detection at the surface using soil gas sampling methods. A major conclusion of the experiment was that noble gases from underground nuclear tests have a good possibility of being detected even if the test is well contained. From this experiment and from computer simulations, we have also learned significant lessons about the modes of gas transport to the surface and the importance of careful subsurface sampling to optimize the detected noble gas signature. Understanding transport and sampling processes for a very wide range of geologic and testing scenarios presents significant challenges that we are currently addressing using sensitivity studies, which we attempt to verify using experiments such as the NPE and a new subsurface gas migration experiment that is now being undertaken at the National Center for Nuclear Security. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M.; Bacon, Diana H.
2009-09-21
The interest in the long-term durability of waste glass stems from the need to predict radionuclide release rates from the corroding glass over geologic time-scales. Several long-term test methods have been developed to accelerate the glass-water reaction [drip test, vapor hydration test, product consistency test-B, and pressurized unsaturated flow (PUF)]. Currently, the PUF test is the only method that can mimic the unsaturated hydraulic properties expected in a subsurface disposal facility and simultaneously monitor the glass-water reaction. PUF tests are being conducted to accelerate the weathering of glass and validate the model parameters being used to predict long-term glass behavior.more » One dimensional reactive chemical transport simulations of glass dissolution and secondary phase formation during a 1.5-year long PUF experiment was conducted with the subsurface transport over reactive multi-phases (STORM) code. Results show that parameterization of the computer model by combining direct laboratory measurements and thermodynamic data provides an integrated approach to predicting glass behavior over geologic-time scales.« less
Automated Data Base Implementation Requirements for the Avionics Planning Baseline - Army
1983-07-01
PJRQT PJRSG .... PRJR owns PJRQTR Item EFT A32 A26 In record EFR Item ESFT A36 A40 In record ESFR Item EQPOC ALCPOC A20 In record EQR Iten EPHONE LPHONE...USING EF DUPLICATES ARE NOT ALLOWED WITHIN EQSEG. EF TYPE CHARACTER 4. EFT TYPE CHARACTER 32. EG TYPE CHARACTER 4. RECORD NAME IS ESFR LOCATION MODE... ESFR MANDATORY AUTOMATIC LINKED TO OWNER ASCENDING KEY IS ESF DUPLICATES NOT SET SELECTION THRU LOCATION MODE OF OWNER. SET NAME IS ESEQ MODE CHAIN
Bernard, F; Furneaux, R; Adrega Da Silva, C; Bardet, J-F
2008-01-01
rhBMP-2 solution on a collagen sponge was placed along the diaphysis of an atrophicradius, which had a history of recurring fractures. Two months after rhBMP-2 treatment, new mineralized bone was present, which significantly increased the diameter of the radius and allowed the removal of the external skeletal fixator (ESF). Due to carpo-metacarpal joint compromise, a pancarpal arthrodesis was performed seven months later. At follow-up evaluation two years later the dog was only very mildly lame.
2006-10-01
1999,103,9614. (14) Pal, H.; Nad, S.; Kumbhakar, M. J Chern. Phys. 2003, 119,443. (15) Barik , A.; Nath, S.; Pal, H. J Chern. Phys. 2003, 119, 10202...Signature// TIM J . SCHUMACHER, Chief Survivability and Sensor Materials Division This report is published in the interest of...6-311 ++G(d,p) and the aug-cc-pVTZ basis sets. Theory Expt System/Method E(S])f Jlo]Energy (JlO]) [ j ]Solvent C120 CAMB3LYP 4.29 (4.24)0.373 (0.368
Infrared emission contrast for the visualization of subsurface graphical features in artworks
NASA Astrophysics Data System (ADS)
Mercuri, Fulvio; Paoloni, Stefano; Cicero, Cristina; Zammit, Ugo; Orazi, Noemi
2018-03-01
In this paper a method is presented based on the use of active infrared thermography for the detection of subsurface graphical features in artworks. A theoretical model for the thermographic signal describing the physical mechanisms which allow the identification of the buried features has been proposed and thereafter it has been applied to the analysis of the results obtained on specifically made test samples. It is shown that the proposed model predictions adequately describe the experimental results obtained on the test samples. A comparative analysis between the proposed technique and infrared reflectography is also presented. The comparison shows that active thermography can be more effective in the detection of features buried below infrared translucent layers and, in addition, that it can provide information about the depth of the detected features, particularly in highly IR diffusing materials.
In situ time-series measurements of subseafloor sediment properties
Wheatcroft, R.A.; Stevens, A.W.; Johnson, R.V.
2007-01-01
The capabilities and diversity of subsurface sediment sensors lags significantly from what is available for the water column, thereby limiting progress in understanding time-dependent seabed exchange and high-frequency acoustics. To help redress this imbalance, a new instrument, the autonomous sediment profiler (ASP), is described herein. ASP consists of a four-electrode, Wenner-type resistivity probe and a thermistor that log data at 0.1-cm vertical intervals over a 58-cm vertical profile. To avoid resampling the same spot on the seafloor, the probes are moved horizontally within a 20 times 100-cm-2 area in one of three preselected patterns. Memory and power capacities permit sampling at hourly intervals for up to 3-mo duration. The system was tested in a laboratory tank and shown to be able to resolve high-frequency sediment consolidation, as well as changes in sediment roughness. In a field test off the southern coast of France, the system collected resistivity and temperature data at hourly intervals for 16 d. Coupled with environmental data collected on waves, currents, and suspended sediment, the ASP is shown to be useful for understanding temporal evolution of subsurface sediment porosity, although no large depositional or erosional events occurred during the deployment. Following a rapid decrease in bottom-water temperature, the evolution of the subsurface temperature field was consistent with the 1-D thermal diffusion equation coupled with advection in the upper 3-4 cm. Collectively, the laboratory and field tests yielded promising results on time-dependent seabed change.
Simulation and validation of concentrated subsurface lateral flow paths in an agricultural landscape
NASA Astrophysics Data System (ADS)
Zhu, Q.; Lin, H. S.
2009-08-01
The importance of soil water flow paths to the transport of nutrients and contaminants has long been recognized. However, effective means of detecting concentrated subsurface flow paths in a large landscape are still lacking. The flow direction and accumulation algorithm based on single-direction flow algorithm (D8) in GIS hydrologic modeling is a cost-effective way to simulate potential concentrated flow paths over a large area once relevant data are collected. This study tested the D8 algorithm for simulating concentrated lateral flow paths at three interfaces in soil profiles in a 19.5-ha agricultural landscape in central Pennsylvania, USA. These interfaces were (1) the interface between surface plowed layers of Ap1 and Ap2 horizons, (2) the interface with subsoil water-restricting clay layer where clay content increased to over 40%, and (3) the soil-bedrock interface. The simulated flow paths were validated through soil hydrologic monitoring, geophysical surveys, and observable soil morphological features. The results confirmed that concentrated subsurface lateral flow occurred at the interfaces with the clay layer and the underlying bedrock. At these two interfaces, the soils on the simulated flow paths were closer to saturation and showed more temporally unstable moisture dynamics than those off the simulated flow paths. Apparent electrical conductivity in the soil on the simulated flow paths was elevated and temporally unstable as compared to those outside the simulated paths. The soil cores collected from the simulated flow paths showed significantly higher Mn content at these interfaces than those away from the simulated paths. These results suggest that (1) the D8 algorithm is useful in simulating possible concentrated subsurface lateral flow paths if used with appropriate threshold value of contributing area and sufficiently detailed digital elevation model (DEM); (2) repeated electromagnetic surveys can reflect the temporal change of soil water storage and thus is a useful indicator of possible subsurface flow path over a large area; and (3) observable Mn distribution in soil profiles can be used as a simple indicator of water flow paths in soils and over the landscape; however, it does require sufficient soil sampling (by excavation or augering) to possibly infer landscape-scale subsurface flow paths. In areas where subsurface interface topography varies similarly with surface topography, surface DEM can be used to simulate potential subsurface lateral flow path reasonably so the cost associated with obtaining depth to subsurface water-restricting layer can be minimized.
Johnson, Raymond H.; Yager, Douglas B.
2006-01-01
In the late nineteenth century, San Juan County, Colorado, was the center of a metal mining boom in the San Juan Mountains. Although most mining activity ceased by the 1990s, the effects of historical mining continue to contribute metals to ground water and surface water. Previous research by the U.S. Geological Survey identified ground-water discharge as a significant pathway for the loading of metals to surface water from both acid-mine drainage and acid-rock drainage. In an effort to understand the ground-water flow system in the upper Animas River watershed, Prospect Gulch was selected for further study because of the amount of previous data provided in and around that particular watershed. In support of this ground-water research effort, wells and piezometers were installed to allow for coring during installation, subsurface hydrologic testing, and the monitoring of ground-water hydraulic heads and geochemistry. This report summarizes the data that were collected during and after the installation of these wells and piezometers and includes (1) subsurface completion details, (2) locations and elevations, (3) geologic logs and elemental data, (4) slug test data for the estimation of subsurface hydraulic conductives, and (5) hydraulic head data.
Development of anomaly detection models for deep subsurface monitoring
NASA Astrophysics Data System (ADS)
Sun, A. Y.
2017-12-01
Deep subsurface repositories are used for waste disposal and carbon sequestration. Monitoring deep subsurface repositories for potential anomalies is challenging, not only because the number of sensor networks and the quality of data are often limited, but also because of the lack of labeled data needed to train and validate machine learning (ML) algorithms. Although physical simulation models may be applied to predict anomalies (or the system's nominal state for that sake), the accuracy of such predictions may be limited by inherent conceptual and parameter uncertainties. The main objective of this study was to demonstrate the potential of data-driven models for leakage detection in carbon sequestration repositories. Monitoring data collected during an artificial CO2 release test at a carbon sequestration repository were used, which include both scalar time series (pressure) and vector time series (distributed temperature sensing). For each type of data, separate online anomaly detection algorithms were developed using the baseline experiment data (no leak) and then tested on the leak experiment data. Performance of a number of different online algorithms was compared. Results show the importance of including contextual information in the dataset to mitigate the impact of reservoir noise and reduce false positive rate. The developed algorithms were integrated into a generic Web-based platform for real-time anomaly detection.
In-Tank Processing (ITP) Geotechnical Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cumbest, R.J.
A geotechnical investigation has been completed for the In Tank Processing Facility (ITP) which consists of buildings 241-96H and 241-32H; and Tanks 241-948H, 241-949H, 241-950H, and 241-951H. The investigation consisted of a literature search for relevant technical data, field explorations, field and laboratory testing, and analyses. This document presents a summary of the scope and results to date of the investigations and engineering analyses for these facilities. A final geotechnical report, which will include a more detailed discussion and all associated boring logs, laboratory test results, and analyses will be issued in October 1994.The purpose of the investigation is tomore » obtain geotechnical information to evaluate the seismic performance of the foundation materials and embankme nts under and around the ITP. The geotechnical engineering objectives of the investigation are to: 1) define the subsurface stratigraphy, 2) obtain representative engineering properties of the subsurface materials, 3) assess the competence of the subsurface materials under static and dynamic loads, 4) derive properties for seismic soil-structure interaction analysis, 5) evaluate the areal and vertical extent of horizons that might cause dynamic settlement or instability, and 6) determine settlement at the foundation level of the tanks.« less
Influence of soil phosphorus and manure on phosphorus leaching in Swedish topsoils
USDA-ARS?s Scientific Manuscript database
In Sweden, subsurface transport of phosphorus (P) represents the primary pathway of concern to surface water quality. While strong relationships have been consistently observed between P in surface runoff and soil test P, there have been mixed findings linking P in leachate with soil test P. To expl...
NASA Astrophysics Data System (ADS)
Kim, W.; Kim, Y.; Min, D.; Oh, J.; Huh, C.; Kang, S.
2012-12-01
During last two decades, CO2 sequestration in the subsurface has been extensively studied and progressed as a direct tool to reduce CO2 emission. Commercial projects such as Sleipner, In Salah and Weyburn that inject more than one million tons of CO2 per year are operated actively as well as test projects such as Ketzin to study the behavior of CO2 and the monitoring techniques. Korea also began the CCS (CO2 capture and storage) project. One of the prospects for CO2 sequestration in Korea is the southwestern continental margin of Ulleung basin. To monitor the behavior of CO2 underground for the evaluation of stability and safety, several geophysical monitoring techniques should be applied. Among various geophysical monitoring techniques, seismic survey is considered as the most effective tool. To verify CO2 migration in the subsurface more effectively, seismic numerical simulation is an essential process. Furthermore, the efficiency of the seismic migration techniques should be investigated for various cases because numerical seismic simulation and migration test help us accurately interpret CO2 migration. In this study, we apply the reverse-time migration and Kirchhoff migration to synthetic seismic monitoring data generated for the simplified model based on the geological structures of Ulleung basin in Korea. Synthetic seismic monitoring data are generated for various cases of CO2 migration in the subsurface. From the seismic migration images, we can investigate CO2 diffusion patterns indirectly. From seismic monitoring simulation, it is noted that while the reverse-time migration generates clear subsurface images when subsurface structures are steeply dipping, Kirchhoff migration has an advantage in imaging horizontal-layered structures such as depositional sediments appearing in the continental shelf. The reverse-time migration and Kirchhoff migration present reliable subsurface images for the potential site characterized by stratigraphical traps. In case of vertical CO2 migration at injection point, the reverse time migration yields better images than Kirchhoff migration does. On the other hand, Kirchhoff migration images horizontal CO2 migration clearer than the reverse time migration does. From these results, we can conclude that the reverse-time migration and Kirchhoff migration can complement with each other to describe the behavior of CO2 in the subsurface. Acknowledgement This work was financially supported by the Brain Korea 21 project of Energy Systems Engineering, the "Development of Technology for CO2 Marine Geological Storage" program funded by the Ministry of Land, Transport and Maritime Affairs (MLTM) of Korea and the Korea CCS R&D Center (KCRC) grant funded by the Korea government (Ministry of Education, Science and Technology) (No. 2012-0008926).
Reliability enhancement of APR + diverse protection system regarding common cause failures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Y. G.; Kim, Y. M.; Yim, H. S.
2012-07-01
The Advanced Power Reactor Plus (APR +) nuclear power plant design has been developed on the basis of the APR1400 (Advanced Power Reactor 1400 MWe) to further enhance safety and economics. For the mitigation of Anticipated Transients Without Scram (ATWS) as well as Common Cause Failures (CCF) within the Plant Protection System (PPS) and the Emergency Safety Feature - Component Control System (ESF-CCS), several design improvement features have been implemented for the Diverse Protection System (DPS) of the APR + plant. As compared to the APR1400 DPS design, the APR + DPS has been designed to provide the Safety Injectionmore » Actuation Signal (SIAS) considering a large break LOCA accident concurrent with the CCF. Additionally several design improvement features, such as channel structure with redundant processing modules, and changes of system communication methods and auto-system test methods, are introduced to enhance the functional reliability of the DPS. Therefore, it is expected that the APR + DPS can provide an enhanced safety and reliability regarding possible CCF in the safety-grade I and C systems as well as the DPS itself. (authors)« less
NASA Astrophysics Data System (ADS)
Moraitis, Kostas; Archontis, Vasilis; Tziotziou, Konstantinos; Georgoulis, Manolis K.
We calculate the instantaneous free magnetic energy and relative magnetic helicity of solar active regions using two independent approaches: a) a non-linear force-free (NLFF) method that requires only a single photospheric vector magnetogram, and b) well known semi-analytical formulas that require the full three-dimensional (3D) magnetic field structure. The 3D field is obtained either from MHD simulations, or from observed magnetograms via respective NLFF field extrapolations. We find qualitative agreement between the two methods and, quantitatively, a discrepancy not exceeding a factor of 4. The comparison of the two methods reveals, as a byproduct, two independent tests for the quality of a given force-free field extrapolation. We find that not all extrapolations manage to achieve the force-free condition in a valid, divergence-free, magnetic configuration. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.
NASA Astrophysics Data System (ADS)
Lu, Guoping; Sonnenthal, Eric L.; Bodvarsson, Gudmundur S.
2008-12-01
The standard dual-component and two-member linear mixing model is often used to quantify water mixing of different sources. However, it is no longer applicable whenever actual mixture concentrations are not exactly known because of dilution. For example, low-water-content (low-porosity) rock samples are leached for pore-water chemical compositions, which therefore are diluted in the leachates. A multicomponent, two-member mixing model of dilution has been developed to quantify mixing of water sources and multiple chemical components experiencing dilution in leaching. This extended mixing model was used to quantify fracture-matrix interaction in construction-water migration tests along the Exploratory Studies Facility (ESF) tunnel at Yucca Mountain, Nevada, USA. The model effectively recovers the spatial distribution of water and chemical compositions released from the construction water, and provides invaluable data on the matrix fracture interaction. The methodology and formulations described here are applicable to many sorts of mixing-dilution problems, including dilution in petroleum reservoirs, hydrospheres, chemical constituents in rocks and minerals, monitoring of drilling fluids, and leaching, as well as to environmental science studies.
End-user interest in geotechnical data management systems.
DOT National Transportation Integrated Search
2008-12-01
In conducting geotechnical site investigations, large volumes of subsurface information and associated test data : are generated. The current practice relies on paper-based filing systems that are often difficult and cumbersome : to access by users. ...
Atri, Dimitra
2016-10-01
Photosynthesis is a mechanism developed by terrestrial life to utilize the energy from photons of solar origin for biological use. Subsurface regions are isolated from the photosphere, and consequently are incapable of utilizing this energy. This opens up the opportunity for life to evolve alternative mechanisms for harvesting available energy. Bacterium Candidatus Desulforudis audaxviator, found 2.8 km deep in a South African mine, harvests energy from radiolysis, induced by particles emitted from radioactive U, Th and K present in surrounding rock. Another radiation source in the subsurface environments is secondary particles generated by galactic cosmic rays (GCRs). Using Monte Carlo simulations, it is shown that it is a steady source of energy comparable to that produced by radioactive substances, and the possibility of a slow metabolizing life flourishing on it cannot be ruled out. Two mechanisms are proposed through which GCR-induced secondary particles can be utilized for biological use in subsurface environments: (i) GCRs injecting energy in the environment through particle-induced radiolysis and (ii) organic synthesis from GCR secondaries interacting with the medium. Laboratory experiments to test these hypotheses are also proposed. Implications of these mechanisms on finding life in the Solar System and elsewhere in the Universe are discussed. © 2016 The Author(s).
2016-01-01
Photosynthesis is a mechanism developed by terrestrial life to utilize the energy from photons of solar origin for biological use. Subsurface regions are isolated from the photosphere, and consequently are incapable of utilizing this energy. This opens up the opportunity for life to evolve alternative mechanisms for harvesting available energy. Bacterium Candidatus Desulforudis audaxviator, found 2.8 km deep in a South African mine, harvests energy from radiolysis, induced by particles emitted from radioactive U, Th and K present in surrounding rock. Another radiation source in the subsurface environments is secondary particles generated by galactic cosmic rays (GCRs). Using Monte Carlo simulations, it is shown that it is a steady source of energy comparable to that produced by radioactive substances, and the possibility of a slow metabolizing life flourishing on it cannot be ruled out. Two mechanisms are proposed through which GCR-induced secondary particles can be utilized for biological use in subsurface environments: (i) GCRs injecting energy in the environment through particle-induced radiolysis and (ii) organic synthesis from GCR secondaries interacting with the medium. Laboratory experiments to test these hypotheses are also proposed. Implications of these mechanisms on finding life in the Solar System and elsewhere in the Universe are discussed. PMID:27707907
DOE Office of Scientific and Technical Information (OSTI.GOV)
Probst, Alexander J.; Ladd, Bethany; Jarett, Jessica K.
An enormous diversity of previously unknown bacteria and archaea has been discovered recently, yet their functional capacities and distributions in the terrestrial subsurface remain uncertain. Here, we continually sampled a CO 2-driven geyser (Colorado Plateau, Utah, USA) over its 5-day eruption cycle to test the hypothesis that stratified, sandstone-hosted aquifers sampled over three phases of the eruption cycle have microbial communities that differ both in membership and function. Genome-resolved metagenomics, single-cell genomics and geochemical analyses confirmed this hypothesis and linked microorganisms to groundwater compositions from different depths. Autotrophic Candidatus “Altiarchaeum sp.” and phylogenetically deep-branching nanoarchaea dominate the deepest groundwater. Amore » nanoarchaeon with limited metabolic capacity is inferred to be a potential symbiont of the Ca. “Altiarchaeum”. Candidate Phyla Radiation bacteria are also present in the deepest groundwater and they are relatively abundant in water from intermediate depths. During the recovery phase of the geyser, microaerophilic Fe- and S-oxidizers have high in situ genome replication rates. Autotrophic Sulfurimonas sustained by aerobic sulfide oxidation and with the capacity for N 2 fixation dominate the shallow aquifer. Overall, 104 different phylum-level lineages are present in water from these subsurface environments, with uncultivated archaea and bacteria partitioned to the deeper subsurface.« less
Wang, Guohui; Um, Wooyong
2013-03-15
Significantly enhanced immobilization of radionuclides (such as (90)Sr and (137)Cs) due to adsorption and coprecipitation with neo-formed colloid-sized secondary precipitates has been reported at the U.S. Department of Energy's Hanford Site. However, the stability of these secondary precipitates containing radionuclides in the subsurface under changeable field conditions is not clear. Here, the authors tested the remobilization possibility of Sr-containing secondary precipitates (nitrate-cancrinite) in the subsurface using saturated column experiments under different geochemical and flow conditions. The columns were packed with quartz sand that contained secondary precipitates (nitrate-cancrinite containing Sr), and leached using colloid-free solutions under different flow rates, varying pH, and ionic strength conditions. The results indicate remobilization of the neo-formed secondary precipitates could be possible given a change of pH of ionic strength and flow rate conditions. The remobility of the neo-formed precipitates increased with the rise in the leaching solution flow rate and pH (in a range of pH 4-11), as well as with decreasing solution ionic strength. The increased mobility of Sr-containing secondary precipitates with changing background conditions can be a potential source for additional radionuclide transport in Hanford Site subsurface environments. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Heldmann, J.; Schurmeier, L. R.; Wilhelm, M.; Stoker, C.; McKay, C.; Davila, A.; Marinova, M.; Karcz, J.; Smith, H.
2012-01-01
We suggest an ice-rich landing site at 188.5E 46.16N within Amazonis Planitia as a candidate location to support a Mars lander mission equipped to study past habitability and regions capable of preserving the physical and chemical signs of life and organic matter. Studies of the ice-rich subsurface on Mars are critical for several reasons. The subsurface environment provides protection from radiation to shield organic and biologic compounds from destruction. The ice-rich substrate is also ideal for preserving organic and biologic molecules and provides a source of H2O for biologic activity. Examination of martian ground ice can test several hypotheses such as: 1) whether ground ice supports habitable conditions, 2) that ground ice can preserve and accumulate organic compounds, and 3) that ice contains biomolecules evident of past or present biological activity on Mars. This Amazonis site, located near the successful Viking Lander 2, shows indirect evidence of subsurface ice (ubiquitous defined polygonal ground, gamma ray spectrometer hydrogen signature, and numerical modeling of ice stability) and direct evidence of exposed subsurface ice. This site also provides surface conditions favorable to a safe landing including no boulders, low rock density, minimal rough topography, and few craters.
Retrieving Temperature Anomaly in the Global Subsurface and Deeper Ocean From Satellite Observations
NASA Astrophysics Data System (ADS)
Su, Hua; Li, Wene; Yan, Xiao-Hai
2018-01-01
Retrieving the subsurface and deeper ocean (SDO) dynamic parameters from satellite observations is crucial for effectively understanding ocean interior anomalies and dynamic processes, but it is challenging to accurately estimate the subsurface thermal structure over the global scale from sea surface parameters. This study proposes a new approach based on Random Forest (RF) machine learning to retrieve subsurface temperature anomaly (STA) in the global ocean from multisource satellite observations including sea surface height anomaly (SSHA), sea surface temperature anomaly (SSTA), sea surface salinity anomaly (SSSA), and sea surface wind anomaly (SSWA) via in situ Argo data for RF training and testing. RF machine-learning approach can accurately retrieve the STA in the global ocean from satellite observations of sea surface parameters (SSHA, SSTA, SSSA, SSWA). The Argo STA data were used to validate the accuracy and reliability of the results from the RF model. The results indicated that SSHA, SSTA, SSSA, and SSWA together are useful parameters for detecting SDO thermal information and obtaining accurate STA estimations. The proposed method also outperformed support vector regression (SVR) in global STA estimation. It will be a useful technique for studying SDO thermal variability and its role in global climate system from global-scale satellite observations.
Probst, Alexander J.; Ladd, Bethany; Jarett, Jessica K.; ...
2018-01-29
An enormous diversity of previously unknown bacteria and archaea has been discovered recently, yet their functional capacities and distributions in the terrestrial subsurface remain uncertain. Here, we continually sampled a CO 2-driven geyser (Colorado Plateau, Utah, USA) over its 5-day eruption cycle to test the hypothesis that stratified, sandstone-hosted aquifers sampled over three phases of the eruption cycle have microbial communities that differ both in membership and function. Genome-resolved metagenomics, single-cell genomics and geochemical analyses confirmed this hypothesis and linked microorganisms to groundwater compositions from different depths. Autotrophic Candidatus “Altiarchaeum sp.” and phylogenetically deep-branching nanoarchaea dominate the deepest groundwater. Amore » nanoarchaeon with limited metabolic capacity is inferred to be a potential symbiont of the Ca. “Altiarchaeum”. Candidate Phyla Radiation bacteria are also present in the deepest groundwater and they are relatively abundant in water from intermediate depths. During the recovery phase of the geyser, microaerophilic Fe- and S-oxidizers have high in situ genome replication rates. Autotrophic Sulfurimonas sustained by aerobic sulfide oxidation and with the capacity for N 2 fixation dominate the shallow aquifer. Overall, 104 different phylum-level lineages are present in water from these subsurface environments, with uncultivated archaea and bacteria partitioned to the deeper subsurface.« less
WISDOM GPR investigations in a Mars-analog environment during the SAFER rover operation simulation
NASA Astrophysics Data System (ADS)
Dorizon, S.; Ciarletti, V.; Plettemeier, D.; Vieau, A.-J.; Benedix, W.-S.; Mütze, M.; Hassen-Kodja, R.; Humeau, O.
2014-04-01
The WISDOM (Water Ice Subsurface Deposits Observations on Mars) Ground Penetrating Radar has been selected to be onboard the ExoMars 2018 rover mission [1]. This instrument will investigate the Martian shallow subsurface and provide the geological context of the mission, by characterizing the subsurface in terms of structure, stratigraphy and potential buried objects. It will also quantify the geoelectrical properties of the medium, which are directly related to its nature, its water or salts content and its hardness [2]. WISDOM data will provide important clues to guide the drilling operations to location of potential exobiological interest. A prototype available in LATMOS, France, is currently tested in a wide range of natural environments. In this context, the WISDOM team participated in the SAFER (Sample Acquisition Field Experiment with a Rover) field trial that occurred from 7th to 13th October 2013 in the Atacama Desert, Chile. Designed to gather together scientists and engineers in a context of a real Martian mission with a rover, the SAFER trial was the opportunity to use three onboard ExoMars instruments, namely CLUPI (Close- UP Imager), PANCAM (Panoramic Camera) and WISDOM, to investigate the chosen area. We present the results derived from WISDOM data acquired over the SAFER trial site to characterize the shallow subsurface of the area.
Novel approaches for an enhanced geothermal development of residential sites
NASA Astrophysics Data System (ADS)
Schelenz, Sophie; Firmbach, Linda; Shao, Haibing; Dietrich, Peter; Vienken, Thomas
2015-04-01
An ongoing technological enhancement drives an increasing use of shallow geothermal systems for heating and cooling applications. However, even in areas with intensive shallow geothermal use, planning of geothermal systems is in many cases solely based on geological maps, drilling databases, and literature references. Thus, relevant heat transport parameters are rather approximated than measured for the specific site. To increase the planning safety and promote the use of renewable energies in the domestic sector, this study investigates a novel concept for an enhanced geothermal development of residential neighbourhoods. This concept is based on a site-specific characterization of subsurface conditions and the implementation of demand-oriented geothermal usage options. Therefore, an investigation approach has been tested that combines non-invasive with minimum-invasive exploration methods. While electrical resistivity tomography has been applied to characterize the geological subsurface structure, Direct Push soundings enable a detailed, vertical high-resolution characterization of the subsurface surrounding the borehole heat exchangers. The benefit of this site-specific subsurface investigation is highlighted for 1) a more precise design of shallow geothermal systems and 2) a reliable prediction of induced long-term changes in groundwater temperatures. To guarantee the financial feasibility and practicability of the novel geothermal development, three different options for its implementation in residential neighbourhoods were consequently deduced.
Effect of biocrust: study of mechanical and hydraulic properties and erodibility
NASA Astrophysics Data System (ADS)
Slavík, Martin; Bruthans, Jiří; Schweigstillová, Jana
2016-04-01
It is well-known that lichens and other organisms forming crust on soil or rock surface play important role in weathering but may also protect underlying material from fast erosion. So far, there have been only few measurements comparing mechanical or hydraulic properties of biocrust with its subsurface on locked sand and friable sandstones, so the overall effect of the biocrust is not well-understood. Objective of our study is to quantify the effect of the biocrust on mechanical and hydraulic properties of friable sandstone and locked sand of Cretaceous age in six different localities with varying aspect and inclination and age of exposure in sandpit Strelec (Czech Rep.). On the artificial exposures, biocrust developed within last 10-30 years. Beside measurements of mechanical and hydraulic properties, SEM and mercury intrusion porosimetry in crust and subsurface was performed. Drilling resistance technique was found an excellent method to distinguish the biocrust from its subsurface (~3 mm thick biocrust has up to 12 times higher drilling resistance than underlying material). Surface zone with the biocrust has 3 - 25 times higher tensile strength than the subsurface material (1 - 25 kPa). In comparison with the subsurface, the biocrust is considerably less erodible (based on water jet testing). Biocrust saturated hydraulic conductivity is 15 - 240 times lower than the subsurface (6*10 -5 - 1*10 -4 m/s) and its permeability for water vapor is 4 - 9 times lower than subsurface. Presence of the biocrust slows down capillary absorption of water 4 - 25 times. The biocrust is thus forming firm surface which protects underlying material from rain and flowing water erosion and which considerably modifies its hydraulic properties. Material with crust exposed to calcination, leaching by concentrated peroxide and experiments with zymoliase enzyme strongly indicate that major contribution to crust hardening is provided by organic matter. Based on DNA sequencing the crust is formed by fungi including components of lichens which differ at individual localities. This research was funded by the Czech Science Foundation (GA CR No. 13-28040S) and Grant Agency of Charles University (No. 386815)
Low signal-to-noise FDEM in-phase data: Practical potential for magnetic susceptibility modelling
NASA Astrophysics Data System (ADS)
Delefortrie, Samuël; Hanssens, Daan; De Smedt, Philippe
2018-05-01
In this paper, we consider the use of land-based frequency-domain electromagnetics (FDEM) for magnetic susceptibility modelling. FDEM data comprises both out-of-phase and in-phase components, which can be related to the electrical conductivity and magnetic susceptibility of the subsurface. Though applying the FDEM method to obtain information on the subsurface conductivity is well established in various domains (e.g. through the low induction number approximation of subsurface apparent conductivity), the potential for susceptibility mapping is often overlooked. Especially given a subsurface with a low magnetite and maghemite content (e.g. most sedimentary environments), it is generally assumed that susceptibility is negligible. Nonetheless, the heterogeneity of the near surface and the impact of anthropogenic disturbances on the soil can cause sufficient variation in susceptibility for it to be detectable in a repeatable way. Unfortunately, it can be challenging to study the potential for susceptibility mapping due to systematic errors, an often poor low signal-to-noise ratio, and the intricacy of correlating in-phase responses with subsurface susceptibility and conductivity. Alongside use of an accurate forward model - accounting for out-of-phase/in-phase coupling - any attempt at relating the in-phase response with subsurface susceptibility requires overcoming instrument-specific limitations that burden the real-world application of FDEM susceptibility mapping. Firstly, the often erratic and drift-sensitive nature of in-phase responses calls for relative data levelling. In addition, a correction for absolute levelling offsets may be equally necessary: ancillary (subsurface) susceptibility data can be used to assess the importance of absolute in-phase calibration though hereby accurate in-situ data is required. To allow assessing the (importance of) in-phase calibration alongside the potential of FDEM data for susceptibility modelling, we consider an experimental test case whereby the in-phase responses of a multi-receiver FDEM instrument are calibrated through downhole susceptibility data. Our results show that, while it is possible to derive approximate susceptibility profiles from FDEM data, robust quantitative analysis hinges on appropriate calibration of the responses.
Approximating Phosphorus Leaching from Agricultural Organic Soils by Soil Testing.
Zheng, Z M; Zhang, T Q; Kessel, C; Tan, C S; O'Halloran, I P; Wang, Y T; Speranzini, D; Van Eerd, L L
2015-11-01
Phosphorus applied to soils in excess of crop requirement could create situations favorable to P enrichment in subsurface flow that contributes to eutrophication of surface water. This pathway of P loss can be more severe in muck (i.e., organic) soils where agricultural production is intensive. This study evaluated the suitability of various environmental and agronomic soil P tests initially designed for mineral soils to predict dissolved reactive P (DRP) in subsurface flow from organic soils. Intact soil columns were collected from 44 muck soils in Ontario to provide a wide range of soil test P levels. A lysimeter leaching study was conducted by evenly adding water in an amount equivalent to 5 mm of rainfall. The leachate DRP concentration was linearly related to soil water-extractable P and CaCl-extractable P with values of 0.90 and 0.93, respectively, and to Bray-1 P and FeO-impregnated filter paper extractable P in a split-line model with a change point. Mehlich-3 P and Olsen P, a method recommended for agronomic P calibration in Ontario, were not related to leachate DRP concentration. All P sorption index (PSI) based degree of P saturation (DPS) values were closely related to leachate DRP in split-line models, with the DPS indices expressed as Bray-1 P/PSI and FeO-P/PSI having the highest correlation with leachate DRP concentration. Because it is desirable from practical and economic standpoints that the environmental risk assessment shares the same soil test with agronomic P calibration, the two PSI-based DPS indices as presented can be considered as environmental risk indicators of DRP subsurface loss from organic soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Immobilization of cobalt by sulfate-reducing bacteria in subsurface sediments
Krumholz, Lee R.; Elias, Dwayne A.; Suflita, Joseph M.
2003-01-01
We investigated the impact of sulfate-reduction on immobilization of metals in subsurface aquifers. Co 2+ was used as a model for heavy metals. Factors limiting sulfate-reduction dependent Co 2+ immobilization were tested on pure cultures of sulfate-reducing bacteria, and in sediment columns from a landfill leachate contaminated aquifer. In the presence of 1 mM Co 2+ , the growth of pure cultures of sulfate-reducing bacteria was not impacted. Cultures of Desulfovibrio desulfuricans, Desulfotomaculum gibsoniae , and Desulfomicrobium hypogeia removed greater than 99.99% of the soluble Co 2+ when CoCl 2 was used with no chelators. The above cultures and Desulfoarcula baarsi removed 98-99.94% of the soluble Co(II) when the metal was complexed with the model ligand nitrilotriacetate (Co-NTA). Factors controlling the rate of sulfate-reduction based Co 2+ precipitation were investigated in sediment-cobalt mixtures. Several electron donors were tested and all but toluene accelerated soluble Co 2+ loss. Ethanol and formate showed the greatest stimulation. All complex nitrogen sources tested slowed and decreased the extent of Co 2+ removal from solution relative to formate-amended sediment incubations. A range of pH values were tested (6.35-7.81), with the more alkaline incubations exhibiting the largest precipitation of Co 2+ . The immobilization of Co 2+ in sediments was also investigated with cores to monitor the flow of Co 2+ through undisturbed sediments. An increase in the amount of Co 2+ immobilized as CoS was observed as sulfate reduction activity was stimulated in flow through columns. Both pure culture and sediment incubation data indicate that stimulation of sulfate reduction is a viable strategy in the immobilization of contaminating metals in subsurface systems.
NASA Astrophysics Data System (ADS)
Thiel, Erik; Kreutzbruck, Marc; Studemund, Taarna; Ziegler, Mathias
2018-04-01
Among the photothermal methods, full-field thermal imaging is used to characterize materials, to determine thicknesses of layers, or to find inhomogeneities such as voids or cracks. The use of classical light sources such as flash lamps (impulse heating) or halogen lamps (modulated heating) led to a variety of nondestructive testing methods, in particular, lock-in and flash-thermography. In vertical-cavity surface-emitting lasers (VCSELs), laser light is emitted perpendicularly to the surface with a symmetrical beam profile. Due to the vertical structure, they can be arranged in large arrays of many thousands of individual lasers, which allows power scaling into the kilowatt range. Recently, a high-power yet very compact version of such a VCSEL-array became available that offers both the fast timing behavior of a laser as well as the large illumination area of a lamp. Moreover, it allows a spatial and temporal control of the heating because individual parts of the array can be controlled arbitrarily in frequency, amplitude, and phase. In conjunction with a fast infrared camera, such structured heating opens up a field of novel thermal imaging and testing methods. As a first demonstration of this approach, we chose a testing problem very challenging to conventional thermal infrared testing: The detection of very thin subsurface defects perpendicularly oriented to the surface of metallic samples. First, we generate destructively interfering thermal wave fields, which are then affected by the presence of defects within their reach. It turned out that this technique allows highly sensitive detection of subsurface defects down to depths in excess of the usual thermographic rule of thumb, with no need for a reference or surface preparation.
Observations of unusual pre-dawn response of the equatorial F-region during geomagnetic disturbances
NASA Astrophysics Data System (ADS)
Lima, W.; Becker-Guedes, F.; Fagundes, P.; Sahai, Y.; Abalde, J.; Pillat, V.
It is known that the disturbed solar wind-magnetosphere interactions have important effects on equatorial and low-latitude ionospheric electrodynamics. The response of equatorial ionosphere during storm-time is an important aspect of space weather studies. It has been observed that during geomagnetic disturbances both suppression as well as generation of equatorial spread-F (ESF) or plasma irregularities takes place. However, the mechanism(s) associated with the generation of ESF still needs further investigations. This work reports some unusual events of pre-dawn occurrence of ionospheric F-region satellite traces followed by spread-F and cusp-like spread-F from ionospheric sounding observations carried out by a Canadian Advanced Digital Ionosonde (CADI) localized at Palmas (10.2°, 48.2°W, dip latitude 5.7°S), Brazil during 2002, every 5 minutes. For the present work we have scaled and analyzed the ionospheric sounding data for three events (April 20, September 04 and 08, 2002), which are associated with geomagnetic disturbances. In the events studied, the ionograms show the occurrence of satellite trace followed by cusp-like spread. The cusp like features move up in frequency and height and finally attain the F-layer peak value (foF2) and then disappear. They had duration of about 30 min and always occurred in the early morning hours. Our studies involved seven geomagnetic disturbances as well as quiet days during the year 2002, but only on these three occasions we observed these features. We present and discuss these observations in this paper and suggest possible mechanisms for the occurrence of these unusual features.
Alves, Hayda; Escorel, Sarah
2013-12-01
To understand the impact of Bolsa Família (PBF), a federal cash transfer program, and to analyze its effects on social inclusion and exclusion processes experienced by low-income families in Brazil, with a focus on the program's potential to help overcome health inequity. This qualitative investigation used a case study methodology including observant participation, review of documents, and semi-structured interviews with current and former PBF beneficiaries, as well as with the program's local managers. The study was conducted in a small city in the state of Rio de Janeiro with a high social exclusion index and 100% coverage by the Family Health Strategy (Estratégia Saúde da Família, ESF) program. The economic, political, social, and cultural dimensions of social exclusion and inclusion processes were used to guide data collection and analysis. The program facilitated social inclusion of low-income families, especially in the economic and social dimensions. Nevertheless, it did not produce the changes desired by the beneficiaries in the work dimension. The effects on the political dimension were limited by the insufficient social engagement of the PBF. The interviewees underscored the positive effects of the ESF, which allowed them to exercise their right to health by granting them wider access to primary health care services. However, these effects appeared to be unrelated to the PBF. The results reveal effects, limitations, and challenges of the PBF towards modifying the social determinants of health inequity, in order to promote more effective changes in the social exclusion/inclusion dynamics affecting low-income families.
NASA Astrophysics Data System (ADS)
Woodward, Simon J. R.; Wöhling, Thomas; Stenger, Roland
2016-03-01
Understanding the hydrological and hydrogeochemical responses of hillslopes and other small scale groundwater systems requires mapping the velocity and direction of groundwater flow relative to the controlling subsurface material features. Since point observations of subsurface materials and groundwater head are often the basis for modelling these complex, dynamic, three-dimensional systems, considerable uncertainties are inevitable, but are rarely assessed. This study explored whether piezometric head data measured at high spatial and temporal resolution over six years at a hillslope research site provided sufficient information to determine the flow paths that transfer nitrate leached from the soil zone through the shallow saturated zone into a nearby wetland and stream. Transient groundwater flow paths were modelled using MODFLOW and MODPATH, with spatial patterns of hydraulic conductivity in the three material layers at the site being estimated by regularised pilot point calibration using PEST, constrained by slug test estimates of saturated hydraulic conductivity at several locations. Subsequent Null Space Monte Carlo uncertainty analysis showed that this data was not sufficient to definitively determine the spatial pattern of hydraulic conductivity at the site, although modelled water table dynamics matched the measured heads with acceptable accuracy in space and time. Particle tracking analysis predicted that the saturated flow direction was similar throughout the year as the water table rose and fell, but was not aligned with either the ground surface or subsurface material contours; indeed the subsurface material layers, having relatively similar hydraulic properties, appeared to have little effect on saturated water flow at the site. Flow path uncertainty analysis showed that, while accurate flow path direction or velocity could not be determined on the basis of the available head and slug test data alone, the origin of well water samples relative to the material layers and site contour could still be broadly deduced. This study highlights both the challenge of collecting suitably informative field data with which to characterise subsurface hydrology, and the power of modern calibration and uncertainty modelling techniques to assess flow path uncertainty in hillslopes and other small scale systems.
NASA Astrophysics Data System (ADS)
Küsel, Kirsten; Totsche, Kai; Trumbore, Susan; Lehmann, Robert; Steinhäuser, Christine; Herrmann, Martina
2016-04-01
The Earth's Critical Zone (CZ) is a thin living layer connecting atmosphere and geosphere, including aquifers. Humans live in the CZ and benefit from the vital supporting services it provides. However, the CZ is increasingly impacted by human activities including land and resource use, pollution and climate change. Recent interest in uniting the many disciplines studying this complex domain has initiated an international network of research infrastructure platforms that allow access to the CZ in a range of geologic settings. In this paper a new such infrastructure platform associated with the Collaborative Research Center AquaDiva is described, that uniquely seeks to combine CZ research with detailed investigation of the functional biodiversity of the subsurface. Overall, AquaDiva aims to test hypotheses about how water connects surface conditions set by land cover and land management to the biota and biogeochemical functions in the subsurface. With long-term and continuous observations, hypotheses about how seasonal variations and extreme events at the surface impact subsurface processes, community structure and function, are tested. AquaDiva has established the Hainich Critical Zone Exploratory (CZE) in central Germany in an alkaline geological setting of German Triassic Muschelkalk formations. The Hainich CZE includes specialized monitoring wells to access the vadose zone and two main groundwater complexes in limestone and marlstone parent materials along a ~6 km transect spanning forest, pasture and agricultural land uses. Initial results demonstrate fundamental differences in the biota and biogeochemistry of the two aquifer complexes that trace back to the land uses in their respective recharge areas. They also show the importance of antecedent conditions on the impact of precipitation events on responses in terms of groundwater dynamics, chemistry and ecology. Thus we find signals of surface land use and events can be detected in the subsurface CZ. Future research will expand to a second CZE in contrasting siliciclastic parent rock, to evaluate the relative importance of parent material lithology versus surface conditions for the emergent characteristics of the subsurface CZ and biodiversity. The Hainich CZE is open to researchers who bring new questions that the research platform can help answer.
Lihua Cui; Ying Ouyang; Wenjie Gu; Weozhi Yang; Qiaoling Xu
2013-01-01
In this study, the enzyme activities and their relationships to domestic wastewater purification are investigated in four different types of subsurface-flow constructed wetlands (CWs), namely the traditional horizontal subsurface-flow, horizontal baffled subsurface-flow, vertical baffled subsurface-flow, and composite baffled subsurface-flow CWs. Results showed that...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldwin, Brett R.; Peacock, Aaron D.; Gan, M.
2009-09-23
An in-situ incubation device (ISI) was developed in order to investigate the stability and dynamics of sediment associated microbial communities to prevailing subsurface oxidizing or reducing conditions. Here we describe the use of these devices at the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site. During the 7 month deployment oxidized Rifle aquifer background sediments (RABS) were deployed in previously biostimulated wells under iron reducing conditions, cell densities of known iron reducing bacteria including Geobacteraceae increased significantly showing the microbial community response to local subsurface conditions. PLFA profiles of RABS following in situ deployment were strikingly similar to thosemore » of adjacent sediment cores suggesting ISI results could be extrapolated to the native material of the test plots. Results for ISI deployed reduced sediments showed only slight changes in community composition and pointed toward the ability of the ISIs to monitor microbial community stability and response to subsurface conditions.« less
Roadside IED detection using subsurface imaging radar and rotary UAV
NASA Astrophysics Data System (ADS)
Qin, Yexian; Twumasi, Jones O.; Le, Viet Q.; Ren, Yu-Jiun; Lai, C. P.; Yu, Tzuyang
2016-05-01
Modern improvised explosive device (IED) and mine detection sensors using microwave technology are based on ground penetrating radar operated by a ground vehicle. Vehicle size, road conditions, and obstacles along the troop marching direction limit operation of such sensors. This paper presents a new conceptual design using a rotary unmanned aerial vehicle (UAV) to carry subsurface imaging radar for roadside IED detection. We have built a UAV flight simulator with the subsurface imaging radar running in a laboratory environment and tested it with non-metallic and metallic IED-like targets. From the initial lab results, we can detect the IED-like target 10-cm below road surface while carried by a UAV platform. One of the challenges is to design the radar and antenna system for a very small payload (less than 3 lb). The motion compensation algorithm is also critical to the imaging quality. In this paper, we also demonstrated the algorithm simulation and experimental imaging results with different IED target materials, sizes, and clutters.
NASA Technical Reports Server (NTRS)
Stoker, C. R.; Clarke, J. D. A.; Direito, S.; Foing, B.
2011-01-01
The DOMEX program is a NASA-MMAMA funded project featuring simulations of human crews on Mars focused on science activities that involve collecting samples from the subsurface using both manual and robotic equipment methods and analyzing them in the field and post mission. A crew simulating a human mission to Mars performed activities focused on subsurface science for 2 weeks in November 2009 at Mars Desert Research Station near Hanksville, Utah --an important chemical and morphological Mars analog site. Activities performed included 1) survey of the area to identify geologic provinces, 2) obtaining soil and rock samples from each province and characterizing their mineralogy, chemistry, and biology; 3) site selection and reconnaissance for a future drilling mission; 4) deployment and testing of Mars Underground Mole, a percussive robotic soil sampling device; and 5) recording and analyzing how crew time was used to accomplish these tasks. This paper summarizes results from analysis of soil cores
NASA Astrophysics Data System (ADS)
Delefortrie, Samuël; Saey, Timothy; Van De Vijver, Ellen; De Smedt, Philippe; Missiaen, Tine; Demerre, Ine; Van Meirvenne, Marc
2014-01-01
Subsurface investigation in the Belgian intertidal zone is severely complicated due to high heterogeneity and tides. Near-surface geophysical techniques can offer assistance since they allow fast surveying and collection of high spatial density data and frequency domain electromagnetic induction (EMI) was chosen for archaeological prospection on the Belgian shore. However, in the intertidal zone the effects of extreme salinity compromise validity of low-induction-number (LIN) approximated EMI data. In this paper, the effects of incursion of seawater on multi-receiver EMI data are investigated by means of survey results, field observations, cone penetration tests and in-situ electrical conductivity measurements. The consequences of LIN approximation breakdown were researched. Reduced depth of investigation of the quadrature-phase (Qu) response and a complex interpretation of the in-phase response were confirmed. Nonetheless, a high signal-to-noise ratio of the Qu response and viable data with regard to shallow subsurface investigation were also evidenced, allowing subsurface investigation in the intertidal zone.
Plant-based plume-scale mapping of tritium contamination in desert soils
Andraski, Brian J.; Stonestrom, David A.; Michel, R.L.; Halford, K.J.; Radyk, J.C.
2005-01-01
Plant-based techniques were tested for field-scale evaluation of tritium contamination adjacent to a low-level radioactive waste (LLRW) facility in the Amargosa Desert, Nevada. Objectives were to (i) characterize and map the spatial variability of tritium in plant water, (ii) develop empirical relations to predict and map subsurface contamination from plant-water concentrations, and (iii) gain insight into tritium migration pathways and processes. Plant sampling [creosote bush, Larrea tridentata (Sessé & Moc. ex DC.) Coville] required one-fifth the time of soil water vapor sampling. Plant concentrations were spatially correlated to a separation distance of 380 m; measurement uncertainty accounted for <0.1% of the total variability in the data. Regression equations based on plant tritium explained 96 and 90% of the variation in root-zone and sub-root-zone soil water vapor concentrations, respectively. The equations were combined with kriged plant-water concentrations to map subsurface contamination. Mapping showed preferential lateral movement of tritium through a dry, coarse-textured layer beneath the root zone, with concurrent upward movement through the root zone. Analysis of subsurface fluxes along a transect perpendicular to the LLRW facility showed that upward diffusive-vapor transport dominates other transport modes beneath native vegetation. Downward advective-liquid transport dominates at one endpoint of the transect, beneath a devegetated road immediately adjacent to the facility. To our knowledge, this study is the first to document large-scale subsurface vapor-phase tritium migration from a LLRW facility. Plant-based methods provide a noninvasive, cost-effective approach to mapping subsurface tritium migration in desert areas.
An analytical solution for predicting the transient seepage from a subsurface drainage system
NASA Astrophysics Data System (ADS)
Xin, Pei; Dan, Han-Cheng; Zhou, Tingzhang; Lu, Chunhui; Kong, Jun; Li, Ling
2016-05-01
Subsurface drainage systems have been widely used to deal with soil salinization and waterlogging problems around the world. In this paper, a mathematical model was introduced to quantify the transient behavior of the groundwater table and the seepage from a subsurface drainage system. Based on the assumption of a hydrostatic pressure distribution, the model considered the pore-water flow in both the phreatic and vadose soil zones. An approximate analytical solution for the model was derived to quantify the drainage of soils which were initially water-saturated. The analytical solution was validated against laboratory experiments and a 2-D Richards equation-based model, and found to predict well the transient water seepage from the subsurface drainage system. A saturated flow-based model was also tested and found to over-predict the time required for drainage and the total water seepage by nearly one order of magnitude, in comparison with the experimental results and the present analytical solution. During drainage, a vadose zone with a significant water storage capacity developed above the phreatic surface. A considerable amount of water still remained in the vadose zone at the steady state with the water table situated at the drain bottom. Sensitivity analyses demonstrated that effects of the vadose zone were intensified with an increased thickness of capillary fringe, capillary rise and/or burying depth of drains, in terms of the required drainage time and total water seepage. The analytical solution provides guidance for assessing the capillary effects on the effectiveness and efficiency of subsurface drainage systems for combating soil salinization and waterlogging problems.
ExoMars WISDOM Left-Right-Evaluation of Subsurface Features
NASA Astrophysics Data System (ADS)
Plettemeier, Dirk; Ciarletti, Valerie; Benedix, Wolf-Stefan; Clifford, Stephen; Dorizon, Sophie; Statz, Christoph
2013-04-01
The Experiment "Water Ice and Subsurface Deposit Observations on Mars" (WISDOM) is a Ground Penetrating Radar (GPR) selected to be part of the Pasteur payload on board the rover of the ExoMars2018 mission. This experiment has been designed to characterize the shallow subsurface structure of Mars. The radar is a gated step frequency system covering a frequency range from 0.5 GHz to 3 GHz. The antenna system consists of two antennas sending and receiving two orthogonal polarizations each. Its particular arrangement on the rover enables a classification, whether a scattering object is located on the left or the right hand side of the rover path. The setting and the procedure for the left-right-detection of off-track buried objects is described. The method is applied to data from laboratory, test site and field measurements. The capability of WISDOM left-right-evaluation of scatters is based on the performance of the fully polarimetric antenna system. The ultra-light weight antenna system consists of two crosswise arranged Vivaldi arrays, which operate over a wide bandwidth of 6:1. The antenna is placed at the rear of the ExoMars rover in a way that the E- planes of each single Vivaldi antenna is rotated by 45 degrees with respect to the direction of motion. Moreover, the pattern of this Vivaldi antenna exhibits a narrow beam at the E-plane and a wide beam at the H-plane. Besides the simple detection of objects, these particular antenna and accommodation features allow the location of objects to the left or to the right of the rover path. In a first step the left-right-evaluation of objects and subsurface features is investigated on laboratory measurements for different geometrical configurations. As expected the radargrams exhibit a strong echo at the co-polar transfer functions. At each lateral distance the echo of each scatterer produces a hyperbola but the position of the maximum of magnitude depends on the lateral distance to the rover path. In the next step measurements in artificial environment with known material parameters is carried out to estimate the performance for buried objects. Finally, the procedure is applied to measurement data gained from a field test. The data were recorded during a campaign in a cave of the Dachstein mountain area in Austria. Since the echo interpretation of lots of subsurface features at once is not easy, the gray scale data of both polarizations has been set to different color channels and combined. The different colors allow also in a realistic environment the discrimination of subsurface features located on the left from those located on the right hand side of the rover path. This technique is interesting especially for the traverse mode, where the rover is moving long distances from one place of investigation to the next rather that following a grid like pattern necessary to get a real 3D mapping of the subsurface. Even in this case where radar measurements are done on the way one can get a more detailed (3D-like) insight of the subsurface structure.
Control of embankment settlement field verification on PCPT prediction methods.
DOT National Transportation Integrated Search
2011-07-01
Piezocone penetration tests (PCPT) have been widely used by geotechnical engineers for subsurface investigation and evaluation of different soil properties such as strength and deformation characteristics of the soil. This report focuses on the verif...
Control of embankment settlement field verification on PCPT prediction methods.
DOT National Transportation Integrated Search
2011-07-01
Piezocone penetration tests (PCPT) have been widely used by geotechnical engineers for subsurface : investigation and evaluation of different soil properties such as strength and deformation characteristics of the : soil. This report focuses on the v...
USDA-ARS?s Scientific Manuscript database
Well-tested agricultural system models can improve our understanding of the water quality effects of management practices under different conditions. The Root Zone Water Quality Model (RZWQM) has been tested under a variety of conditions. However, the current model’s ability to simulate pesticide tr...
NASA Astrophysics Data System (ADS)
Wiemann, Stefan; Eltner, Anette; Sardemann, Hannes; Spieler, Diana; Singer, Thomas; Thanh Luong, Thi; Janabi, Firas Al; Schütze, Niels; Bernard, Lars; Bernhofer, Christian; Maas, Hans-Gerd
2017-04-01
Flash floods regularly cause severe socio-economic damage worldwide. In parallel, climate change is very likely to increase the number of such events, due to an increasing frequency of extreme precipitation events (EASAC 2013). Whereas recent work primarily addresses the resilience of large catchment areas, the major impact of hydro-meteorological extremes caused by heavy precipitation is on small areas. Those are very difficult to observe and predict, due to sparse monitoring networks and only few means for hydro-meteorological modelling, especially in small catchment areas. The objective of the EXTRUSO project is to identify and implement appropriate means to close this gap by an interdisciplinary approach, combining comprehensive research expertise from meteorology, hydrology, photogrammetry and geoinformatics. The project targets innovative techniques for achieving spatio-temporal densified monitoring and simulations for the analysis, prediction and warning of local hydro-meteorological extreme events. The following four aspects are of particular interest: 1. The monitoring, analysis and combination of relevant hydro-meteorological parameters from various sources, including existing monitoring networks, ground radar, specific low-cost sensors and crowdsourcing. 2. The determination of relevant hydro-morphological parameters from different photogrammetric sensors (e.g. camera, laser scanner) and sensor platforms (e.g. UAV (unmanned aerial vehicle) and UWV (unmanned water vehicle)). 3. The continuous hydro-meteorological modelling of precipitation, soil moisture and water flows by means of conceptual and data-driven modelling. 4. The development of a collaborative, web-based service infrastructure as an information and communication point, especially in the case of an extreme event. There are three major applications for the planned information system: First, the warning of local extreme events for the population in potentially affected areas, second, the support for decision makers and emergency responders in the case of an event and, third, the development of open, interoperable tools for other researchers to be applied and further developed. The test area of the project is the Free State of Saxony (Germany) with a number of small and medium catchment areas. However, the whole system, comprising models, tools and sensor setups, is planned to be transferred and tested in other areas, within and outside Europe, as well. The team working on the project consists of eight researchers, including five PhD students and three postdocs. The EXTRUSO project is funded by the European Social Fund (ESF grant nr. 100270097) with a project duration of three years until June 2019. EASAC (2013): Trends in extreme weather events in Europe: implications for national and European Union adaption strategies. European Academies Science Advisory Council. Policy report 22, November 2013 The EXTRUSO project is funded by the European Social Fund (ESF), grant nr. 100270097
Subcritical fracturing of shales under chemically reactive conditions
NASA Astrophysics Data System (ADS)
Chen, X.; Callahan, O. A.; Eichhubl, P.; Olson, J. E.
2016-12-01
Growth of opening-mode fractures under chemically reactive subsurface conditions is potentially relevant for seal integrity in subsurface CO2 storage and hazardous waste disposal. Using double-torsion load relaxation tests we determine mode-I fracture toughness (KIC), subcritical index (SCI), and the stress-intensity factor vs fracture velocity (K-V) behavior of Marcellus, Woodford, and Mancos shales. Samples are tested under ambient air and aqueous conditions with variable NaCl and KCl concentrations, variable pH, and temperatures of up to 70. Under ambient air condition, KIC determined from double torsion tests is 1.3, 0.6, and 1.1 MPam1/2 for Marcellus, Woodford, and Mancos shales, respectively. SCI under ambient air condition is between 55 and 90 for the shales tested. Tests in aqueous solutions show a significant drop of KIC compared to ambient air condition. For tests in deionized water, KIC reduction is 18.5% for Marcellus and 47.0% for Woodford. The presence of aqueous fluids also results in a reduction of the SCI up to 85% compared to ambient condition. K-V curves generally obey a power-law relation throughout the load-relaxation period. However, aqueous-based tests on samples result in K-V curves deviating from the power-law relation, with the SCI values gradually decreasing with time during the relaxation period. This non-power-law behavior is obvious in Woodford and Mancos, but negligible in Marcellus. We find that the shales interact with the aqueous solution both at the fracture tip and within the rock matrix during subcritical fracturing. For Marcellus shale, water mainly interacts with the fracture tip on both tests due to low matrix permeability and less reactive mineral composition. However, Woodford and Mancos react strongly with water causing significant sample degradation. The competition between degradation and fracture growth results in the time-dependent SCI: at lower fracture velocities, the tip interacts longer with the chemically altered area around the tip; at higher fracture velocities, the fracture propagates through the altered area before significant degradation. Our results display strong weakening effects of chemically reactive fluids on subcritical fracture properties with implications on subsurface storage seal performance.
NASA Astrophysics Data System (ADS)
Stoker, C. R.; Stevens, T.; Amils, R.; Fernandez, D.
2005-12-01
Biological systems on Earth require three key ingredients-- liquid water, an energy source, and a carbon source, that are found in very few extraterrestrial environments. Previous examples of independent subsurface ecosystems have been found only in basalt aquifers. Such lithotrophic microbial ecosystems (LME) have been proposed as models for steps in the early evolution of Earth's biosphere and for potential biospheres on other planets where the surface is uninhabitable, such as Mars and Europa.. The Mars Analog Rio Tinto Experiment (MARTE) has searched in a volcanic massive sulfide deposit in Rio Tinto Spain for a subsurface biosphere capable of living without sunlight or oxygen and found a subsurface ecosystem driven by the weathering of the massive sulfide deposit (VMS) in which the rock matrix provides sufficient resources to support microbial metabolism, including the vigorous production of H2 by water-rock interactions. Microbial production of methane and sulfate occurred in the sulfide orebody and microbial production of methane and hydrogen sulfide continued in an anoxic plume downgradient from the sulfide ore. Organic carbon concentrations in the parent rock were too low to support microbes. The Rio Tinto system thus represents a new type of subsurface ecosystem with strong relevance for exobiological studies. Commercial drilling was used to reach the aquifer system at 100 m depth and conventional laboratory techniques were used to identify and characterize the biosphere. Then, the life search strategy that led to successful identification of this biosphere was applied to the development of a robotic drilling, core handling, inspection, subsampling, and life detection system built on a prototype planetary lander that was deployed in Rio Tinto Spain in September 2005 to test the capability of a robotic drilling system to search for subsurface life. A remote science team directed the simulation and analyzed the data from the MARTE robotic drill. The results of this experiment have important implications for the strategy for searching for life on Mars.
Mogaji, Kehinde Anthony; Lim, Hwee San
2017-07-01
This study integrates the application of Dempster-Shafer-driven evidential belief function (DS-EBF) methodology with remote sensing and geographic information system techniques to analyze surface and subsurface data sets for the spatial prediction of groundwater potential in Perak Province, Malaysia. The study used additional data obtained from the records of the groundwater yield rate of approximately 28 bore well locations. The processed surface and subsurface data produced sets of groundwater potential conditioning factors (GPCFs) from which multiple surface hydrologic and subsurface hydrogeologic parameter thematic maps were generated. The bore well location inventories were partitioned randomly into a ratio of 70% (19 wells) for model training to 30% (9 wells) for model testing. Application results of the DS-EBF relationship model algorithms of the surface- and subsurface-based GPCF thematic maps and the bore well locations produced two groundwater potential prediction (GPP) maps based on surface hydrologic and subsurface hydrogeologic characteristics which established that more than 60% of the study area falling within the moderate-high groundwater potential zones and less than 35% falling within the low potential zones. The estimated uncertainty values within the range of 0 to 17% for the predicted potential zones were quantified using the uncertainty algorithm of the model. The validation results of the GPP maps using relative operating characteristic curve method yielded 80 and 68% success rates and 89 and 53% prediction rates for the subsurface hydrogeologic factor (SUHF)- and surface hydrologic factor (SHF)-based GPP maps, respectively. The study results revealed that the SUHF-based GPP map accurately delineated groundwater potential zones better than the SHF-based GPP map. However, significant information on the low degree of uncertainty of the predicted potential zones established the suitability of the two GPP maps for future development of groundwater resources in the area. The overall results proved the efficacy of the data mining model and the geospatial technology in groundwater potential mapping.
Model for the prediction of subsurface strata movement due to underground mining
NASA Astrophysics Data System (ADS)
Cheng, Jianwei; Liu, Fangyuan; Li, Siyuan
2017-12-01
The problem of ground control stability due to large underground mining operations is often associated with large movements and deformations of strata. It is a complicated problem, and can induce severe safety or environmental hazards either at the surface or in strata. Hence, knowing the subsurface strata movement characteristics, and making any subsidence predictions in advance, are desirable for mining engineers to estimate any damage likely to affect the ground surface or subsurface strata. Based on previous research findings, this paper broadly applies a surface subsidence prediction model based on the influence function method to subsurface strata, in order to predict subsurface stratum movement. A step-wise prediction model is proposed, to investigate the movement of underground strata. The model involves a dynamic iteration calculation process to derive the movements and deformations for each stratum layer; modifications to the influence method function are also made for more precise calculations. The critical subsidence parameters, incorporating stratum mechanical properties and the spatial relationship of interest at the mining level, are thoroughly considered, with the purpose of improving the reliability of input parameters. Such research efforts can be very helpful to mining engineers’ understanding of the moving behavior of all strata over underground excavations, and assist in making any damage mitigation plan. In order to check the reliability of the model, two methods are carried out and cross-validation applied. One is to use a borehole TV monitor recording to identify the progress of subsurface stratum bedding and caving in a coal mine, the other is to conduct physical modelling of the subsidence in underground strata. The results of these two methods are used to compare with theoretical results calculated by the proposed mathematical model. The testing results agree well with each other, and the acceptable accuracy and reliability of the proposed prediction model are thus validated.
Sumner, Andrew J; Plata, Desiree L
2018-02-21
Hydraulic fracturing coupled with horizontal drilling (HDHF) involves the deep-well injection of a fracturing fluid composed of diverse and numerous chemical additives designed to facilitate the release and collection of natural gas from shale plays. Analyses of flowback wastewaters have revealed organic contamination from both geogenic and anthropogenic sources. The additional detections of undisclosed halogenated chemicals suggest unintended in situ transformation of reactive additives, but the formation pathways for these are unclear in subsurface brines. To develop an efficient experimental framework for investigating the complex shale-well parameter space, we have reviewed and synthesized geospatial well data detailing temperature, pressure, pH, and halide ion values as well as industrial chemical disclosure and concentration data. Our findings showed subsurface conditions can reach pressures up to 4500 psi (310 bars) and temperatures up to 95 °C, while at least 588 unique chemicals have been disclosed by industry, including reactive oxidants and acids. Given the extreme conditions necessary to simulate the subsurface, we briefly highlighted existing geochemical reactor systems rated to the necessary pressures and temperatures, identifying throughput as a key limitation. In response, we designed and developed a custom reactor system capable of achieving 5000 psi (345 bars) and 90 °C at low cost with 15 individual reactors that are readily turned over. To demonstrate the system's throughput, we simultaneously tested 12 disclosed HDHF chemicals against a radical initiator compound in simulated subsurface conditions, ruling out a dozen potential transformation pathways in a single experiment. This review outlines the dynamic and diverse parameter range experienced by HDHF chemical additives and provides an optimized framework and novel reactor system for the methodical study of subsurface transformation pathways. Ultimately, enabling such studies will provide urgently needed clarity for water treatment downstream or releases to the environment.
NASA Astrophysics Data System (ADS)
Ala-aho, Pertti; Soulsby, Chris; Wang, Hailong; Tetzlaff, Doerthe
2017-04-01
Understanding the role of groundwater for runoff generation in headwater catchments is a challenge in hydrology, particularly so in data-scarce areas. Fully-integrated surface-subsurface modelling has shown potential in increasing process understanding for runoff generation, but high data requirements and difficulties in model calibration are typically assumed to preclude their use in catchment-scale studies. We used a fully integrated surface-subsurface hydrological simulator to enhance groundwater-related process understanding in a headwater catchment with a rich background in empirical data. To set up the model we used minimal data that could be reasonably expected to exist for any experimental catchment. A novel aspect of our approach was in using simplified model parameterisation and including parameters from all model domains (surface, subsurface, evapotranspiration) in automated model calibration. Calibration aimed not only to improve model fit, but also to test the information content of the observations (streamflow, remotely sensed evapotranspiration, median groundwater level) used in calibration objective functions. We identified sensitive parameters in all model domains (subsurface, surface, evapotranspiration), demonstrating that model calibration should be inclusive of parameters from these different model domains. Incorporating groundwater data in calibration objectives improved the model fit for groundwater levels, but simulations did not reproduce well the remotely sensed evapotranspiration time series even after calibration. Spatially explicit model output improved our understanding of how groundwater functions in maintaining streamflow generation primarily via saturation excess overland flow. Steady groundwater inputs created saturated conditions in the valley bottom riparian peatlands, leading to overland flow even during dry periods. Groundwater on the hillslopes was more dynamic in its response to rainfall, acting to expand the saturated area extent and thereby promoting saturation excess overland flow during rainstorms. Our work shows the potential of using integrated surface-subsurface modelling alongside with rigorous model calibration to better understand and visualise the role of groundwater in runoff generation even with limited datasets.
Subsurface multidisciplinary research results at ICTJA-CSIC downhole lab and test site
NASA Astrophysics Data System (ADS)
Jurado, Maria Jose; Crespo, Jose; Salvany, Josep Maria; Teixidó, Teresa
2017-04-01
Two scientific boreholes, Almera-1 and Almera-2 were drilled in the Barcelona University campus area in 2011. The main purpose for this drilling was to create a new geophysical logging and downhole monitoring research facility and infrastructure. We present results obtained in the frame of multidisciplinary studies and experiments carried out since 2011 at the ICTJA "Borehole Geophysical Logging Lab - Scientific Boreholes Almera" downhole lab facilities. First results obtained from the scientific drilling, coring and logging allowed us to characterize the urban subsurface geology and hydrology adjacent to the Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) in Barcelona. The subsurface geology and structural picture has been completed with recent geophysical studies and monitoring results. The upper section of Almera-1 214m deep hole was cased with PVC after drilling and after the logging operations. An open hole interval was left from 112m to TD (Paleozoic section). Almera-2 drilling reached 46m and was cased also with PVC to 44m. Since completion of the drilling in 2011, both Almera-1 and Almera-2 have been extensively used for research purposes, tests, training, hydrological and geophysical monitoring. A complete set of geophysical logging measurements and borehole oriented images were acquired in open hole mode of the entire Almera-1 section. Open hole measurements included acoustic and optical imaging, spectral natural gamma ray, full wave acoustic logging, magnetic susceptibility, hydrochemical-temperature logs and fluid sampling. Through casing (PVC casing) measurements included spectral gamma ray logging, full wave sonic and acoustic televiewer. A Quaternary to Paleozoic section was characterized based on the geophysical logging and borehole images interpretation and also on the complete set of (wireline) cores of the entire section. Sample availability was intended for geological macro and micro-facies detailed characterization, mineralogical and petrophysical tests and analyses. The interpretation of the geophysical logging data and borehole oriented images, and core data allowed us to define the stratigraphy, structures and petrophysical properties in the subsurface. Quaternary sediments overlie unconformably weathered, deformed and partially metamorphosed Paleozoic rocks. A gap of the Tertiary rocks at the drillsite was detected. Structures at intensely fractured and faulted sections were measured and have yielded valuable data to understand the subsurface geology, hydrology and geological evolution in that area. Logging, borehole imaging and monitoring carried out in the scientific boreholes Almera-1 and Almera-2 has allowed also to identify three preferential groundwater flow paths in the subsurface. Geophysical logging data combined with groundwater monitoring allowed us to identify three zones of high permeability in the subsurface. Logging data combined with core analysis were used to characterize the aquifers lithology and their respective petrophysical properties. We also analyzed the aquifer dynamics and potential relationships between the variations in groundwater levels and the rainfalls by comparing the groundwater monitoring results and the rainfall. A seismic survey was carried out to outline the geological structures beyond Almera-1 borehole, a vertical reverse pseudo-3D (2.5D) seismic tomography experiment. The results allowed us to define the geological structure beyond the borehole wall and also a correlation between the different geological units in the borehole and their geometry and spatial geophysical and seismic image.
The subsurface record for the Anthropocene based on the global analysis of deep wells
NASA Astrophysics Data System (ADS)
Rose, K.
2016-12-01
While challenges persist in the characterization of Earth's subsurface, over two centuries of exploration resulting in more than six million deep wellbores, offer insights into these systems. Characteristics of the subsurface vary and can be analyzed on a variety of spatial scales using geospatial tools and methods. Characterization and prediction of subsurface properties, such as depth, thickness, porosity, permeability, pressure and temperature, are important for models and interpretations of the subsurface. Subsurface studies contribute to insights and understanding of natural system but also enable predictions and assessments of subsurface resources and support environmental and geohazard assessments. As the geo-data science landscape shifts, becoming more open, there are increasing opportunities to fill knowledge gaps, mine large, interrelated datasets, and develop innovative methods to improve our understanding of the subsurface and the impacts of its exploration. In this study, a global dataset of more than 6,000,000 deep subsurface wells has been assembled using ArcGIS and Access, which reflects to a first order, the cumulative representation of over two centuries of drilling. Wellbore data, in general represent the only portal for direct measurement and characterization of deep subsurface properties. As human engineering of the subsurface evolves from a focus on hydrocarbon resource development to include subsurface waste product disposal (e.g. CO2, industrial waste, etc) and production of other deep subsurface resources, such as heat and water resources, there is the increasing need to improve characterization techniques and understand local and global ramifications of anthropogenic interaction with the subsurface. Data and geospatial analyses are reviewed to constrain the extent to which human interactions, not just with Earth's surface systems, atmospheric and geologic, but subsurface systems will result in an enduring signature of human influences on the planet. Specifically, the extent and enduring signature of subsurface interactions with the planet, utilizing the four-dimensional, spatial and temporal, record for known deep wellbores is utilized.
NONDESTRUCTIVE TESTING (NDT) TECHNIQUES TO DETECT CONTAINED SUBSURFACE HAZARDOUS WASTE
The project involves the detection of buried containers with NDT (remote-sensing) techniques. Seventeen techniques were considered and four were ultimately decided upon. They were: electromagnetic induction (EMI); metal detection (MD); magnetometer (MAG); and ground penetrating r...
Code of Federal Regulations, 2014 CFR
2014-01-01
.... Site characterization includes borings, surface excavations, excavation of exploratory shafts, limited subsurface lateral excavations and borings, and in situ testing at depth needed to determine the suitability of the site for a geologic repository, but does not include preliminary borings and geophysical...
Code of Federal Regulations, 2013 CFR
2013-01-01
.... Site characterization includes borings, surface excavations, excavation of exploratory shafts, limited subsurface lateral excavations and borings, and in situ testing at depth needed to determine the suitability of the site for a geologic repository, but does not include preliminary borings and geophysical...
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Site characterization includes borings, surface excavations, excavation of exploratory shafts, limited subsurface lateral excavations and borings, and in situ testing at depth needed to determine the suitability of the site for a geologic repository, but does not include preliminary borings and geophysical...
Hydrological and Geological Features Contributing to a Seepage Event at Yucca Mountain
NASA Astrophysics Data System (ADS)
Fedors, R. W.; Smart, K. J.; Parrott, J. D.
2006-05-01
The occurrence of an unusual seepage event in the Exploratory Studies Facility (ESF) tunnel at Yucca Mountain (YM) in 2005 provides an opportunity to further understand the hydrological system associated with flow in fractured rocks and seepage into tunnels. Understanding the contributing factors for this seepage occurrence in the ventilated tunnel will assist U.S. Nuclear Regulatory Commission in its assessment of Department of Energy flow models. The seepage event begin in the later portion of an El Nino winter (February 2005) predominantly along a 40-m [130-ft] section of the south ramp of the ESF tunnel. The stratigraphic section at this location is comprised of a portion of the Tiva Canyon Tuff, which is a rhyolitic ignimbrite. The effect of El Nino conditions in the semi-arid climate of southern Nevada near YM is greatly increased winter precipitation. Based on the ~50 years of record at a nearby meteorological station, the winter of 2004-2005 was the wettest winter on record. The previous largest winter precipitation amounts were recorded in the El Nino years of 1992-1993 and 1997-1998. During the 1997 El Nino year, a monitored set of boreholes in nearby Pagany Wash indicated that a saturated front traversed the entire Tiva Canyon Tuff section during a single event (Le Cain and Kurmack, 2002, USGS Water Resources Investigations Report 02-4035). It is unclear if the fracture system in the south ramp location was saturated in the February 2005 event; no data were available to estimate the saturated state of the fracture system. With heavy precipitation occurring throughout the winter, however, the matrix and fracture systems were likely primed (i.e., saturation levels were likely significantly higher than normal) for a significant percolation event. Ponding caused by focusing of runoff at the ground surface above seepage location in the south ramp of the ESF tunnel likely did not occur based on topographical and catchment considerations (no significant depressions or gullies). Analyses of the geological characteristics associated with the seepage location suggest the contributing factors that constrained seepage to this particular portion of the tunnel include (i) distance to the surface (i.e., ~60 m [200 ft]), (ii) gently dipping strata with distinct lithological contacts that may have laterally diverted water, (iii) faults and fractures, and (iv) downslope capping by rock units with different hydrological characteristics. This is an independent product of the CNWRA and does not necessarily reflect the views of regulatory positions of the NRC. The NRC staff views expressed herein are preliminary and do not constitute a final judgment or determination of the matters addressed or of the acceptability of a license application for a geologic repository at Yucca Mountain.
NASA Astrophysics Data System (ADS)
Xiong, Si-Ting; Muller, Jan-Peter
2017-04-01
Extracting lines from an imagery is a solved problem in the field of edge detection. Different to images taken by camera, radargrams are a set of radar echo profiles, which record wave energy reflected by subsurface reflectors, at each location of a radar footprint along the satellite's ground track. The radargrams record where there is a dielectric contrast caused by different deposits, and other subsurface features, such as facies, and internal distributions like porosity and fluids. Among the subsurface features, layering is an important one which reflect the sequence of seasonal or yearly deposits on the ground [1-2]. In the field of image processing, line detection methods, such as the Radon Transform or Hough Transform, are able to extract these subsurface layers from rasterised versions of the echograms. However, due to the attenuation of radar waves whilst propagating through geological media, radargrams sometimes suffer from gradient and high background noise. These attributes of radargrams cause errors in detection when conventional line detection methods are directly applied. In this study, we have developed a continuous wavelet analysis technique to be applied directly to the radar echo profiles in a radargram in order to detect segmented lines, and then a conventional line detection method, such as a Hough transform can be applied to connect these segmented lines. This processing chain is tested by using datasets from a radargram acquired by the Multi-channel Coherent Radar Depth Sounder (MCoRDS) on an airborne platform in Greenland and a radargram acquired by the SHAllow RADar (SHARAD) on board the Mars Reconnaissance Orbiter (MRO) [3] over Martian North Polar Layered Deposits (NPLD). Keywords: Subsurface mapping, Radargram, SHARAD, Greenland, Martian NPLD, Subsurface layering, line detection References: [1] Phillips, R. J., et al. "Mars north polar deposits: Stratigraphy, age, and geodynamical response." Science 320.5880 (2008): 1182-1185. [2] Cutts, James A., and Blake H. Lewis. "Models of climate cycles recorded in Martian polar layered deposits." Icarus 50.2 (1982): 216-244. [3] Plaut J J, Picardi G, Safaeinili A, et al. Subsurface radar sounding of the south polar layered deposits of Mars[J]. science, 2007, 316(5821): 92-95. Acknowledgements: Part of the research leading to these results has received funding from the STFC "MSSL Consolidated Grant" ST/K000977/1 and partial support from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement No. 607379 as well as from the China Scholarship Council and the UCL Dean of MAPS fund.
The objective of this research is to test the utility of simple functions of spatially integrated and temporally averaged ground water residence times in shallow "groundwatersheds" with field observations and more detailed computer simulations. The residence time of water in the...
A field test of emulsified zero valent iron (EZVI) nanoparticles was conducted at Parris Island, SC, USA and was monitored for two and half years to assess the treatment of subsurface-source zone chlorinated volatile organic compounds (CVOCs) dominated by tetrachloroethene (PCE) ...
2011 Groundwater Monitoring and Inspection Report Gnome-Coach Site, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-02-01
Gnome-Coach was the site of a 3-kiloton underground nuclear test in 1961. Surface and subsurface contamination resulted from the underground nuclear testing, post-test drilling, and groundwater tracer test performed at the site. The State of New Mexico is currently proceeding with a conditional certificate of completion for the surface. As for the subsurface, monitoring activities that include hydraulic head monitoring and groundwater sampling of the wells onsite are conducted as part of the annual site inspection. These activities were conducted on January 19, 2011. The site roads, monitoring well heads, and the monument at surface ground zero were observed asmore » being in good condition at the time of the site inspection. An evaluation of the hydraulic head data obtained from the site indicates that water levels in wells USGS-4 and USGS-8 appear to respond to the on/off cycling of the dedicated pump in well USGS-1 and that water levels in wells LRL-7 and DD-1 increased during this annual monitoring period. Analytical results obtained from the sampling indicate that concentrations of tritium, strontium-90, and cesium-137 were consistent with concentrations from historical sampling events.« less
A drilling tool design and in situ identification of planetary regolith mechanical parameters
NASA Astrophysics Data System (ADS)
Zhang, Weiwei; Jiang, Shengyuan; Ji, Jie; Tang, Dewei
2018-05-01
The physical and mechanical properties as well as the heat flux of regolith are critical evidence in the study of planetary origin and evolution. Moreover, the mechanical properties of planetary regolith have great value for guiding future human planetary activities. For planetary subsurface exploration, an inchworm boring robot (IBR) has been proposed to penetrate the regolith, and the mechanical properties of the regolith are expected to be simultaneously investigated during the penetration process using the drilling tool on the IBR. This paper provides a preliminary study of an in situ method for measuring planetary regolith mechanical parameters using a drilling tool on a test bed. A conical-screw drilling tool was designed, and its drilling load characteristics were experimentally analyzed. Based on the drilling tool-regolith interaction model, two identification methods for determining the planetary regolith bearing and shearing parameters are proposed. The bearing and shearing parameters of lunar regolith simulant were successfully determined according to the pressure-sinkage tests and shear tests conducted on the test bed. The effects of the operating parameters on the identification results were also analyzed. The results indicate a feasible scheme for future planetary subsurface exploration.
Flow pathways in the Slapton Wood catchment using temperature as a tracer
NASA Astrophysics Data System (ADS)
Birkinshaw, Stephen J.; Webb, Bruce
2010-03-01
SummaryThis study investigates the potential of temperature as a tracer to provide insights into flow pathways. The approach couples fieldwork and modelling experiments for the Eastergrounds Hollow within the Slapton Wood catchment, South Devon, UK. Measurements in the Eastergrounds Hollow were carried out for soil temperature, spring temperature, and the stream temperature and use was made of an existing 1989-1991 data set for the entire Slapton Wood catchment. The predominant flow in this hollow is a result of subsurface stormflow, and previous work has suggested that the water flows vertically down through the soil and then subsurface stormflow occurs at the soil/bedrock interface where the water is deflected laterally. The depth of the subsurface stormflow was previously thought to be around 2.2 m. However, analysis of the new spring, stream and soil temperature data suggests a deeper pathway for the subsurface stormflow. Modelling of water flow and heat transport was carried out using SHETRAN and this was calibrated to reproduce the water flow in the entire Slapton Wood catchment and soil temperatures in the Eastergrounds Hollow. The model was tested for the entire Eastergrounds Hollow with two different soil depths. A depth of 2.2 m, based on previous knowledge, was unable to reproduce the Eastergrounds spring temperature. A depth of 3.7 m produced an excellent comparison between measured and simulated stream and spring temperatures in the Eastergrounds Hollow. This work suggests that the depth of the flow pathways that produce the subsurface stormflow are deeper than previously thought. It also provides a demonstration on the use of temperature as a tracer to understand flow pathways.
Lateral and subsurface flows impact arctic coastal plain lake water budgets
Koch, Joshua C.
2016-01-01
Arctic thaw lakes are an important source of water for aquatic ecosystems, wildlife, and humans. Many recent studies have observed changes in Arctic surface waters related to climate warming and permafrost thaw; however, explaining the trends and predicting future responses to warming is difficult without a stronger fundamental understanding of Arctic lake water budgets. By measuring and simulating surface and subsurface hydrologic fluxes, this work quantified the water budgets of three lakes with varying levels of seasonal drainage, and tested the hypothesis that lateral and subsurface flows are a major component of the post-snowmelt water budgets. A water budget focused only on post-snowmelt surface water fluxes (stream discharge, precipitation, and evaporation) could not close the budget for two of three lakes, even when uncertainty in input parameters was rigorously considered using a Monte Carlo approach. The water budgets indicated large, positive residuals, consistent with up to 70% of mid-summer inflows entering lakes from lateral fluxes. Lateral inflows and outflows were simulated based on three processes; supra-permafrost subsurface inflows from basin-edge polygonal ground, and exchange between seasonally drained lakes and their drained margins through runoff and evapotranspiration. Measurements and simulations indicate that rapid subsurface flow through highly conductive flowpaths in the polygonal ground can explain the majority of the inflow. Drained lakes were hydrologically connected to marshy areas on the lake margins, receiving water from runoff following precipitation and losing up to 38% of lake efflux to drained margin evapotranspiration. Lateral fluxes can be a major part of Arctic thaw lake water budgets and a major control on summertime lake water levels. Incorporating these dynamics into models will improve our ability to predict lake volume changes, solute fluxes, and habitat availability in the changing Arctic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brownlow, D.T.; Escude, S.; Johanneson, O.H.
The 1500 Area at Kelly Air Force Base (AFB) was the site of a subsurface release of approximately 1,000 gallons of JP-4 jet fuel. Preliminary studies found evidence of hydrocarbon contamination extending from 10 feet below ground surface (bgs) down to the shallow water table, at 20 to 25 feet bgs. In June of 1993, Kelly AFB authorized the installation and evaluation of a bioventing system at this site to aid in the cleanup of the hydrocarbon contaminated soils. The purpose of the bioventing system is to aerate subsurface soils within and immediately surrounding the release area, in order tomore » stimulate in-situ biological activity and enhance the natural bioremediation capacity of the soil. Augmenting oxygen to the indigenous soil microorganisms promotes the aerobic metabolism of fuel hydrocarbons in the soil. In vadose zone soils exhibiting relatively good permeability, bioventing has proven to be a highly cost effective remediation technology for treating fuel contaminated soils. In November, 1993, a Start-Up Test program consisting of an In-Situ Respiration Test (ISRT) and an Air Permeability Test was performed at the 1500 Area Spill Site.« less
Experimental Evaluation of Hot Films on Ceramic Substrates for Skin-Friction Measurement
NASA Technical Reports Server (NTRS)
Noffz, Gregory K.; Lavine, Adrienne S.; Hamory, Philip J.
2003-01-01
An investigation has been performed on the use of low-thermal conductivity, ceramic substrates for hot films intended to measure skin friction. Hot films were deposited on two types of ceramic substrates. Four hot films used composite-ceramic substrates with subsurface thermocouples (TCs), and two hot films were deposited on thin Macor(R) substrates. All six sensors were tested side by side in the wall of the NASA Glenn Research Center 8-ft by 6-ft Supersonic Wind Tunnel (SWT). Data were obtained from zero flow to Mach 1.98 in air. Control measurements were made with three Preston tubes and two boundary-layer rakes. The tests were repeated at two different hot film power levels. All hot films and subsurface TCs functioned throughout the three days of testing. At zero flow, the films on the high-thermal conductivity Macor(R) substrates required approximately twice the power as those on the composite-ceramic substrates. Skin-friction results were consistent with the control measurements. Estimates of the conduction heat losses were made using the embedded TCs but were hampered by variability in coating thicknesses and TC locations.
Identification of subsurface structures using electromagnetic data and shape priors
NASA Astrophysics Data System (ADS)
Tveit, Svenn; Bakr, Shaaban A.; Lien, Martha; Mannseth, Trond
2015-03-01
We consider the inverse problem of identifying large-scale subsurface structures using the controlled source electromagnetic method. To identify structures in the subsurface where the contrast in electric conductivity can be small, regularization is needed to bias the solution towards preserving structural information. We propose to combine two approaches for regularization of the inverse problem. In the first approach we utilize a model-based, reduced, composite representation of the electric conductivity that is highly flexible, even for a moderate number of degrees of freedom. With a low number of parameters, the inverse problem is efficiently solved using a standard, second-order gradient-based optimization algorithm. Further regularization is obtained using structural prior information, available, e.g., from interpreted seismic data. The reduced conductivity representation is suitable for incorporation of structural prior information. Such prior information cannot, however, be accurately modeled with a gaussian distribution. To alleviate this, we incorporate the structural information using shape priors. The shape prior technique requires the choice of kernel function, which is application dependent. We argue for using the conditionally positive definite kernel which is shown to have computational advantages over the commonly applied gaussian kernel for our problem. Numerical experiments on various test cases show that the methodology is able to identify fairly complex subsurface electric conductivity distributions while preserving structural prior information during the inversion.
Evaluation of Cone Penetrometer Testing (CPT) for Use with Transportation Projects Phase 1
DOT National Transportation Integrated Search
2008-07-01
The ODOT Office of Geotechnical Engineering (OGE) currently uses conventional drilling methods (e.g., hollow stem auger, solid stem auger) to perform subsurface investigations in unconsolidated materials. These techniques have been used for decades a...
Analytical Characterisation of Nanoscale Zero-Valent Iron: A Methodological Review
Zero-valent iron nanoparticles (nZVI) have been widely tested as they are showing significant promise for environmental remediation. However, many recent studies have demonstrated that their mobility and reactivity in subsurface environments are significantly affected by their te...
DOT National Transportation Integrated Search
2011-04-01
The ODOT Office of Geotechnical : Engineering (OGE) currently uses : conventional drilling methods (e.g., hollow : stem auger, solid stem auger) to perform : subsurface investigations in soil. These : techniques have been used for decades and : have ...
Subsurface Grain Morphology Reconstruction by Differential Aperture X-ray Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenlohr, Philip; Shanthraj, Pratheek; Vande Kieft, Brendan R.
A multistep, non-destructive grain morphology reconstruction methodology that is applicable to near-surface volumes is developed and tested on synthetic grain structures. This approach probes the subsurface crystal orientation using differential aperture x-ray microscopy on a sparse grid across the microstructure volume of interest. Resulting orientation data are clustered according to proximity in physical and orientation space and used as seed points for an initial Voronoi tessellation to (crudely) approximate the grain morphology. Curvature-driven grain boundary relaxation, simulated by means of the Voronoi implicit interface method, progressively improves the reconstruction accuracy. The similarity between bulk and readily accessible surface reconstruction errormore » provides an objective termination criterion for boundary relaxation.« less
Pretest Predictions for Phase II Ventilation Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yiming Sun
The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, and concrete pipe walls that will be developed during the Phase II ventilation tests involving various test conditions. The results will be used as inputs to validating numerical approach for modeling continuous ventilation, and be used to support the repository subsurface design. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the Phase II ventilation tests, and describe numerical methods that are used to calculate the effects of continuous ventilation. The calculation is limitedmore » to thermal effect only. This engineering work activity is conducted in accordance with the ''Technical Work Plan for: Subsurface Performance Testing for License Application (LA) for Fiscal Year 2001'' (CRWMS M&O 2000d). This technical work plan (TWP) includes an AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', activity evaluation (CRWMS M&O 2000d, Addendum A) that has determined this activity is subject to the YMP quality assurance (QA) program. The calculation is developed in accordance with the AP-3.12Q procedure, ''Calculations''. Additional background information regarding this activity is contained in the ''Development Plan for Ventilation Pretest Predictive Calculation'' (DP) (CRWMS M&O 2000a).« less
NASA Astrophysics Data System (ADS)
Napiórkowska-Krzebietke, Agnieszka; Dunalska, Julita A.; Zębek, Elżbieta
2017-05-01
Phytoplankton (including plant-like, animal-like algae and Cyanobacteria) blooms have recently become a serious global threat to the sustenance of ecosystems, to human and animal health and to economy. This study focused on the composition and stability of blooms as well as their taxa-specific ecological sensitivity to the main causal factors (especially phosphorus and nitrogen) in degraded urban lakes. The analyzed lakes were assessed with respect to the trophic state as well as ecological status. Total phytoplankton biomass (ranging from 1.5 to 181.3 mg dm-3) was typical of blooms of different intensity, which can appear during a whole growing season but are the most severe in early or late summer. Our results suggested that steady-state and non-steady-state bloom assemblages including mono-, bi- and multi-species or heterogeneous blooms may occur in urban lakes. The most intense blooms were formed by the genera of Cyanobacteria: Microcystis, Limnothrix, Pseudanabaena, Planktothrix, Bacillariophyta: Cyclotella and Dinophyta mainly Ceratium and Peridinium. Considering the sensitivity of phytoplankton assemblages, a new eco-sensitivity factor was proposed (E-SF), based on the concept of Phytoplankton Trophic Index composed of trophic scores of phytoplankton taxa along the eutrophication gradient. The E-SF values of 0.5, 1.3, 6.7 and 15.1 were recognized in lakes having a high, good, moderate or poor ecological status, respectively. For lake restoration, each type of bloom should be considered separately because of different sensitivities of taxa and relationships with environmental variables. Proper recognition of the taxa-specific response to abiotic (especially to N and P enrichment) and biotic factors could have significant implications for further water protection and management.
Cavalcante, Denise de Fátima Barros; Brizon, Valéria Silva Cândido; Probst, Livia Fernandes; Meneghim, Marcelo de Castro; Pereira, Antonio Carlos; Ambrosano, Gláucia Maria Bovi
2018-01-01
The objective was to analyze whether socioeconomic factors related to the context and those related to the model of care-specifically the coverage of primary care by the Family Health Strategy (ESF)-had an impact on hospitalizations due to heart failure (HF) and stroke, in the State of São Paulo/Brazil between 1998 and 2013. A longitudinal ecological study involving 645 municipalities was conducted in the state of São Paulo/Brazil from 1998 to 2013, using the Hospital Information System (SIH-DataSUS database). The hospitalizations for primary care sensitive conditions: Stroke and heart failure (HF) that correspond to the International Classification of Diseases (ICD 10): I50, I63 to I67; I69, G45 to G46 were analyzed longitudinally during the period indicated regarding the percentage of people covered by the Family Health Program (PSF) adjusted for confounders (population size, gross domestic product -GDP and human development index- HDI). There was a significant decrease in the number of hospitalizations for heart failure and stroke per 10000 (inhabitants) in the period (p <0.0001), with a significant relationship with increased proportion of ESF (p <0.0001), and this remained significant even when possible confounders (population size, GDP and HDI) were included in the model (p <0.0001). GDP per capita was close to or higher than that if many European countries, which shows the relevance of the study. The health care model based on the Family Health Strategy positively impacted hospitalization indicators for heart failure and stroke, indicating that this model is effective in the prevention of primary care sensitive conditions.
The Development of 3d Sub-Surface Mapping Scheme and its Application to Martian Lobate Debris Aprons
NASA Astrophysics Data System (ADS)
Baik, H.; Kim, J.
2017-07-01
The Shallow Subsurface Radar (SHARAD), a sounding radar equipped on the Mars Reconnaissance Orbiter (MRO), has produced highly valuable information about the Martian subsurface. In particular, the complicated substructures of Mars such as polar deposit, pedestal crater and the other geomorphic features involving possible subsurface ice body has been successfully investigated by SHARAD. In this study, we established a 3D subsurface mapping strategy employing the multiple SHARAD profiles. A number of interpretation components of SHARAD signals were integrated into a subsurface mapping scheme using radargram information and topographic data, then applied over a few mid latitude Lobate Debris Aprons (LDAs). From the identified subsurface layers of LDA, and the GIS data base incorporating the other interpretation outcomes, we are expecting to trace the origin of LDAs. Also, the subsurface mapping scheme developed in this study will be further applied to other interesting Martian geological features such as inter crater structures, aeolian deposits and fluvial sediments. To achieve higher precision sub-surface mapping, the clutter simulation employing the high resolution topographic data and the upgraded clustering algorithms assuming multiple sub-surface layers will be also developed.
Costa, Gislaine Desani da; Souza, Rosely Almeida; Yamashita, Cintia Hitomi; Pinheiro, Juliane Cibelle Ferreira; Alvarenga, Márcia Regina Martins; Oliveira, Maria Amélia de Campos
2015-04-01
To describe the trans-cultural adaptation of the evaluation instrument entitled Atenció Sanitària de Les Demències: la visió de L' Atenció Primarià from Catalan into versions in Portuguese for doctors and nurses. This study evaluates the knowledge and perspectives of these professionals in their treatment of patients diagnosed with dementia in cases of primary care. The adaptation followed internationally accepted rules, which include the following steps: translation, synthesis, back-translation, revision by a committee of specialists, and a test run with 35 practicing doctors and 35 practicing nurses in Brazil's Family Health Strategy (Estratégia Saúde da Família, or ESF in Portuguese). The translation, synthesis, and back-translation steps were performed satisfactorily; only small adjustments were required. The committee of specialists verified the face validity in the version translated into Portuguese, and all of the items that received an agreement score lower than 80% during the initial evaluation were revised. In the test run, the difficulties presented by the health care professionals did not reach 15% of the sample, and therefore, no changes were made. The Portuguese translation of the instrument can be considered semantically, idiomatically, culturally, and conceptually equivalent to the original Catalan version and is, therefore, appropriate for use in Brazil.
UTM Well Coordinates for the Boise Hydrogeophysical Research Site (BHRS)
Lim, David
2014-12-19
A series of oscillatory pumping tests were performed at the BHRS. The data collected from these wells will be used to tomographically image the shallow subsurface. This excel file only contains well coordinates for all wells at the Boise site.
Development of a Carbon Sequestration Visualization Tool using Google Earth Pro
NASA Astrophysics Data System (ADS)
Keating, G. N.; Greene, M. K.
2008-12-01
The Big Sky Carbon Sequestration Partnership seeks to prepare organizations throughout the western United States for a possible carbon-constrained economy. Through the development of CO2 capture and subsurface sequestration technology, the Partnership is working to enable the region to cleanly utilize its abundant fossil energy resources. The intent of the Los Alamos National Laboratory Big Sky Visualization tool is to allow geochemists, geologists, geophysicists, project managers, and other project members to view, identify, and query the data collected from CO2 injection tests using a single data source platform, a mission to which Google Earth Pro is uniquely and ideally suited . The visualization framework enables fusion of data from disparate sources and allows investigators to fully explore spatial and temporal trends in CO2 fate and transport within a reservoir. 3-D subsurface wells are projected above ground in Google Earth as the KML anchor points for the presentation of various surface subsurface data. This solution is the most integrative and cost-effective possible for the variety of users in the Big Sky community.
Directional phytoscreening: contaminant gradients in trees for plume delineation.
Limmer, Matt A; Shetty, Mikhil K; Markus, Samantha; Kroeker, Ryan; Parker, Beth L; Martinez, Camilo; Burken, Joel G
2013-08-20
Tree sampling methods have been used in phytoscreening applications to delineate contaminated soil and groundwater, augmenting traditional investigative methods that are time-consuming, resource-intensive, invasive, and costly. In the past decade, contaminant concentrations in tree tissues have been shown to reflect the extent and intensity of subsurface contamination. This paper investigates a new phytoscreening tool: directional tree coring, a concept originating from field data that indicated azimuthal concentrations in tree trunks reflected the concentration gradients in the groundwater around the tree. To experimentally test this hypothesis, large diameter trees were subjected to subsurface contaminant concentration gradients in a greenhouse study. These trees were then analyzed for azimuthal concentration gradients in aboveground tree tissues, revealing contaminant centroids located on the side of the tree nearest the most contaminated groundwater. Tree coring at three field sites revealed sufficiently steep contaminant gradients in trees reflected nearby groundwater contaminant gradients. In practice, trees possessing steep contaminant gradients are indicators of steep subsurface contaminant gradients, providing compass-like information about the contaminant gradient, pointing investigators toward higher concentration regions of the plume.
Subsurface plasma in beam of continuous CO2-laser
NASA Astrophysics Data System (ADS)
Danytsikov, Y. V.; Dymshakov, V. A.; Lebedev, F. V.; Pismennyy, V. D.; Ryazanov, A. V.
1986-03-01
Experiments performed at the Institute of Atomic Energy established the conditions for formation of subsurface plasma in substances by laser radiation and its characteristics. A quasi-continuous CO2 laser emitting square pulses of 0.1 to 1.0 ms duration and 1 to 10 kW power as well as a continuous CO2 laser served as radiation sources. Radiation was focused on spots 0.1 to 0.5 mm in diameter and maintained at levels ensuring constant power density during the interaction time, while the temperature of the target surface was measured continuously. Metals, graphite and dielectric materials were tested with laser action taking place in air N2 + O2 mixtures, Ar or He atmosphere under pressures of 0.01 to 1.0 atm. Data on radiation intensity thresholds for evaporation and plasma formation were obtained. On the basis of these thresholds, combined with data on energy balance and the temperature profile in plasma layers, a universal state diagram was constructed for subsurface plasma with nonquantified surface temperature and radiation intensity coordinates.
Experimental and simulated ultrasonic characterization of complex damage in fused silica.
Martin, L Peter; Chambers, David H; Thomas, Graham H
2002-02-01
The growth of a laser-induced, surface damage site in a fused silica window was monitored by the ultrasonic pulse-echo technique. The laser damage was grown using 12-ns pulses of 1.053-microm wavelength light at a fluence of approximately 27 J/cm2. The ultrasonic data were acquired after each pulse of the laser beam for 19 pulses. In addition, optical images of the surface and subsurface damage shape were recorded after each pulse of the laser. The ultrasonic signal amplitude exhibited variations with the damage size, which were attributed to the subsurface morphology of the damage site. A mechanism for the observed ultrasonic data based on the interaction of the ultrasound with cracks radiating from the damage site was tested using two-dimensional numerical simulations. The simulated results exhibit qualitatively similar characteristics to the experimental data and demonstrate the usefulness of numerical simulation as an aid for ultrasonic signal interpretation. The observed sensitivity to subsurface morphology makes the ultrasonic methodology a promising tool for monitoring laser damage in large aperture laser optics used in fusion energy research.
Cu-rGO subsurface layer creation on copper substrate and its resistance to oxidation
NASA Astrophysics Data System (ADS)
Pietrzak, Katarzyna; Strojny-Nędza, Agata; Olesińska, Wiesława; Bańkowska, Anna; Gładki, Andrzej
2017-11-01
On the basis of a specially designed experiment, this paper presents a model, which is an attempt to explain the mechanism of formatting and creating oxidation resistance of Cu-rGO subsurface layers. Practically zero chemical affinity of copper to carbon is a fundamental difficulty in creating composite structures of Cu-C, properties which are theoretically possible to estimate. In order to bind the thermally reduced graphene oxide with copper surface, the effect of structural rebuilding of the copper oxide, in the process of annealing in a nitrogen atmosphere, have been used. On intentionally oxidized and anoxic copper substrates the dispersed graphene oxide (GO) and thermally reduced graphene oxide (rGO) were loaded. Annealing processes after the binding effects of both graphene oxide forms to Cu substrates were tested. The methods for high-resolution electron microscopy were found subsurface rGO-Cu layer having a substantially greater resistance to oxidation than pure copper. The mechanism for the effective resistance to oxidation of the Cu-rGO has been presented in a hypothetical form.
Microbial production and oxidation of methane in deep subsurface
NASA Astrophysics Data System (ADS)
Kotelnikova, Svetlana
2002-10-01
The goal of this review is to summarize present studies on microbial production and oxidation of methane in the deep subterranean environments. Methane is a long-living gas causing the "greenhouse" effect in the planet's atmosphere. Earlier, the deep "organic carbon poor" subsurface was not considered as a source of "biogenic" methane. Evidence of active methanogenesis and presence of viable methanogens including autotrophic organisms were obtained for some subsurface environments including water-flooded oil-fields, deep sandy aquifers, deep sea hydrothermal vents, the deep sediments and granitic groundwater at depths of 10 to 2000 m below sea level. As a rule, the deep subterranean microbial populations dwell at more or less oligotrophic conditions. Molecular hydrogen has been found in a variety of subsurface environments, where its concentrations were significantly higher than in the tested surface aquatic environments. Chemolithoautotrophic microorganisms from deep aquifers that could grow on hydrogen and carbon dioxide can act as primary producers of organic carbon, initiating heterotrophic food chains in the deep subterranean environments independent of photosynthesis. "Biogenic" methane has been found all over the world. On the basis of documented occurrences, gases in reservoirs and older sediments are similar and have the isotopic character of methane derived from CO 2 reduction. Groundwater representing the methanogenic end member are characterized by a relative depletion of dissolved organic carbon (DOC) in combination with an enrichment in 13C in inorganic carbon, which is consistent with the preferential reduction of 12CO 2 by autotrophic methanogens or acetogens. The isotopic composition of methane formed via CO 2 reduction is controlled by the δ13C of the original CO 2 substrate. Literature data shows that CH 4 as heavy as -40‰ or -50‰ can be produced by the microbial reduction of isotopically heavy CO 2. Produced methane may be oxidized microbially to carbon dioxide. Microbial methane oxidation is a biogeochemical process that limits the release of methane, a greenhouse gas from anaerobic environments. Anaerobic methane oxidation plays an important role in marine sediments. Similar processes may take place in deep subsurface and thus fuel the deep microbial community. Organisms or consortia responsible for anaerobic methane oxidation have not yet been cultured, although diverse aerobic methanotrophs have been isolated from a variety of underground niches. The presence of aerobic methanotrophs in the anoxic subsurface remains to be explained. The presence of methane in the deep subsurface have been shown all over the world. The flux of gases between the deep subsurface and the atmosphere is driven by the concentration gradient from depth to the atmosphere. However, methane is consumed by methanotrophs on the way of its evolution in oxidized environments and is transformed to organic form, available for further microbial processing. When the impact of subsurface environments to global warming is estimated, it is necessary to take into account the activity of methane-producing Archaea and methane-oxidizing biofilters in groundwater. Microbial production and oxidation of methane is involved in the carbon cycle in the deep subsurface environments.
NASA Astrophysics Data System (ADS)
Günther, Andreas; Aziz Patwary, Mohammad Abdul; Bahls, Rebecca; Asaduzzaman, Atm; Ludwig, Rüdiger; Ashraful Kamal, Mohammad; Nahar Faruqa, Nurun; Jabeen, Sarwat
2016-04-01
Dhaka Metropolitan City (including Dhaka and five adjacent municipal areas) is one of the fastest developing urban regions in the world. Densely build-up areas in the developed metropolitan area of Dhaka City are subject to extensive restructuring as common six- or lower storied buildings are replaced by higher and heavier constructions. Additional stories are built on existing houses, frequently exceeding the allowable bearing pressure on the subsoil as supported by the foundations. In turn, newly developing city areas are projected in marshy terrains modified by extensive, largely unengineered landfills. In most areas, these terrains bear unfavorable building ground conditions within 30 meters. Within a collaborative technical cooperation project between Bangladesh and Germany, BGR supports GSB in the provision of geo-information for the Capital Development Authority (RAJUK). For general urban planning, RAJUK successively develops a detailed area plan (DAP) at scale 1 : 50000 for the whole Dhaka Metropolitan City area (approx. 1700 km2). Geo-information have not been considered in the present DAP. Within the project, geospatial information in form of a geomorphic map, a digital terrain model and a 3-D subsurface model covering the whole city area have been generated at a scale of 1 : 50000. An extensive engineering geological data base consisting of more than 2200 borehole data with associated Standard Penetration Testing (SPT) and lab data has been compiled. With the field testing (SPT) and engineering geological lab data, the 3-D subsurface model can be parameterized to derive important spatial subsurface information for urban planning like bearing capacity evaluations for different foundation designs or soil liquefaction potential assessments for specific earthquake scenarios. In conjunction with inundation potential evaluations for different flooding scenarios, comprehensive building ground suitability information can be derived to support risk-sensitive urban planning in Dhaka Metropolitan City area at the DAP scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, K.H.; Pellerin, L.; Becker, A.
1998-06-01
'Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small due, and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high resolution imaging, accurate measurements are necessary so the field datamore » can be mapped into the space of the subsurface parameters. The authors are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach, known as the magnetotelluric (MT) method at low frequencies. Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques. The summary of the work to date is divided into three sections: equipment procurement, instrumentation, and theoretical developments. For most earth materials, the frequency range from 1 to 100 MHz encompasses a very difficult transition zone between the wave propagation of displacement currents and the diffusive behavior of conduction currents. Test equipment, such as signal generators and amplifiers, does not cover the entire range except at great expense. Hence the authors have divided the range of investigation into three sub-ranges: 1--10 MHz, 10--30 MHz, and 30--100 MHz. Results to date are in the lowest frequency range of 1--10 MHz. Even though conduction currents dominate in this range, as in traditional electromagnetic exploration methods, little work has been done by the geophysical community above 500 kHz.'« less
Huang, Ping; Lin, I-I; Chou, Chia; Huang, Rong-Hui
2015-05-18
Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas.
Huang, Ping; Lin, I. -I; Chou, Chia; Huang, Rong-Hui
2015-01-01
Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas. PMID:25982028
NASA Astrophysics Data System (ADS)
Schumacher, Sandra; Pierau, Roberto; Wirth, Wolfgang
2017-04-01
In recent years, the development of geothermal plants in Germany has increased significantly due to a favorable political setting and resulting financial incentives. However, most projects are developed by local communities or private investors, which cannot afford a project to fail. To cover the risk of total loss if the geothermal well should not provide the energy output necessary for an economically viable project, investors try to procure insurances for this worst case scenario. In order to issue such insurances, the insurance companies insist on so called probability-of-success studies (POS studies), in which the geological risk for not achieving the necessary temperatures and/or flow rates for an economically successful project is quantified. Quantifying the probability of reaching a minimum temperature, which has to be defined by the project investors, is relatively straight forward as subsurface temperatures in Germany are comparatively well known due tens of thousands of hydrocarbon wells. Moreover, for the German Molasse Basin a method to characterize the hydraulic potential of a site based on pump test analysis has been developed and refined in recent years. However, to quantify the probability of reaching a given flow rate with a given drawdown is much more challenging in areas where pump test data are generally not available (e.g. the North German Basin). Therefore, a new method based on log and core derived porosity and permeability data was developed to quantify the geological risk of reaching a determined flow rate in such areas. We present both methods for POS studies and show how subsurface data such as pump tests or log and core measurements can be used to predict the chances of a potential geothermal project from a geological point of view.
NASA Astrophysics Data System (ADS)
Major, J. R.; Eichhubl, P.; Callahan, O. A.
2015-12-01
The coupled chemical and mechanical response of reservoir and seal rocks to injection of CO2 have major implications on the short and long term security of sequestered carbon. Many current numerical models evaluating behavior of reservoirs and seals during and after CO2 injection in the subsurface consider chemistry and mechanics separately and use only simple mechanical stability criteria while ignoring time-dependent failure parameters. CO2 injection irreversibly alters the subsurface chemical environment which can then affect geomechanical properties on a range of time scales by altering rock mineralogy and cements through dissolution, remobilization, and precipitation. It has also been documented that geomechanical parameters such as fracture toughness (KIC) and subcritical index (SCI) are sensitive to chemical environment. Double torsion fracture mechanics testing of reservoir lithologies under controlled environmental conditions relevant to CO2 sequestration show that chemical environment can measurably affect KIC and SCI. This coupled chemical-mechanical behavior is also influenced by rock composition, grains, amount and types of cement, and fabric. Fracture mechanics testing of the Aztec Sandstone, a largely silica-cemented, subarkose sandstone demonstrate it is less sensitive to chemical environment than Entrada Sandstone, a silty, clay-rich sandstone. The presence of de-ionized water lowers KIC by approximately 20% and SCI 30% in the Aztec Sandstone relative to tests performed in air, whereas the Entrada Sandstone shows reductions on the order of 70% and 90%, respectively. These results indicate that rock composition influences the chemical-mechanical response to deformation, and that the relative chemical reactivity of target reservoirs should be recognized in context of CO2 sequestration. In general, inert grains and cements such as quartz will be less sensitive to the changing subsurface environment than carbonates and clays.
Subsurface characterization by the ground penetrating radar WISDOM/ExoMars 2020
NASA Astrophysics Data System (ADS)
Hervé, Y.; Ciarletti, V.; Le Gall, A. A.; Oudart, N.; Loizeau, D.; Guiffaut, C.; Dorizon, S.
2017-12-01
The main objective of the ExoMars 2020 mission is to search for signs of past and/or present life on Mars. Toward this goal, a rover was designed to investigate the shallow subsurface which is the most likely place where signs of life may be preserved, beneath the hostile surface of Mars. The rover of the ExoMars 2020 mission has on board a polarimetric ground penetrating radar called WISDOM (Water Ice Subsurface Deposits Observation on Mars). Thanks to its large frequency bandwidth of 2.5 GHz, WISDOM is able to probe down to a depth of approximately 3 m on sedimentary rock with a vertical resolution of a few centimeters.The main scientific objectives of WISDOM are to characterize the shallow subsurface of Mars, to help understand the local geological context and to identify the most promising location for drilling. The WISDOM team is currently working on the preparation of the scientific return of the ExoMars 2020 mission. In particular, tools are developed to interpret WISDOM experimental data and, more specifically, to extract information from the radar signatures of expected buried reflectors. Insights into the composition of the ground (through the retrieval of its permittivity) and the geological context of the site can be inferred from the radar signature of buried rocks since the shape and the density of rocks in the subsurface is related to the geological processes that have shaped and placed them there (impact, fluvial processes, volcanism). This paper presents results obtained by automatic detection of structures of interest on a radargram, especially radar signature of buried rocks. The algorithm we developed uses a neural network to identify the position of buried rocks/blocs and then a Hough transform to characterize each signature and to estimate the local permittivity of the medium. Firstly, we will test the performances of the algorithm on simulated data constructed with a 3D FDTD code. This code allows us to simulate radar operation in realistic environments. Secondly, we will test our algorithm on experimental data acquired in a semi-controlled environment. Lastly, we will present experimental data acquired during a recent field campaign (July 2017) in the south of France and we will validate our method and illustrate the ability of WISDOM to provide clues about the geological context of a site.
Aminostratigraphy of surface and subsurface Quaternary sediments, North Carolina coastal plain, USA
Wehmiller, John F.; Thieler, E. Robert; Miller, D.; Pellerito, V.; Bakeman, Keeney V.; Riggs, S.R.; Culver, S.; Mallinson, D.; Farrell, K.M.; York, L.L.; Pierson, J.; Parham, P.R.
2010-01-01
The Quaternary stratigraphy and geochronology of the Albemarle Embayment of the North Carolina (NC) Coastal Plain is examined using amino acid racemization (AAR) in marine mollusks, in combination with geophysical, lithologic, and biostratigraphic analysis of 28 rotasonic cores drilled between 2002 and 2006. The Albemarle Embayment is bounded by structural highs to the north and south, and Quaternary strata thin westward toward the Suffolk paleoshoreline, frequently referred to as the Suffolk Scarp. The Quaternary section is up to ∼90 m thick, consists of a variety of estuarine, shelf, back-barrier, and lagoonal deposits, and has been influenced by multiple sea-level cycles. The temporal resolution of the amino acid racemization method is tested statistically and with the stratigraphic control provided by this geologic framework, and it is then applied to the correlation and age estimation of subsurface units throughout the region. Over 500 specimens (primarily Mercenaria and Mulinia) from the subsurface section have been analyzed using either gas chromatographic (GC) or reverse-phase liquid chromatographic (RPLC) techniques. The subsurface stratigraphic data are compared with AAR results from numerous natural or excavated exposures from the surrounding region, as well as results from NC beach collections, to develop a comprehensive aminostratigraphic database for the entire Quaternary record within the NC coastal system. Age mixing, recognized in the beach collections, is also seen in subsurface sections, usually where major seismic reflections or core lithology indicate the presence of stratigraphic discontinuities. Kinetic models for racemization are tested within the regional stratigraphic framework, using either radiocarbon or U-series calibrations or comparison with regional biostratigraphy. Three major Pleistocene aminozones [AZ2, AZ3, and AZ4] are found throughout the region, all being found in superposition in several cores. Each can be subdivided, yielding a total of at least eight stratigraphically and statistically distinct aminozones. Kinetic modeling, supplemented with local calibration, indicates that these aminozones represent depositional events ranging from ∼80 ka to nearly 2 Ma. Three prominent seismic reflections are interpreted to represent the base of the early, middle, and late Pleistocene, respectively, roughly 2 Ma, 800 ka, and 130 ka. The large number of samples and the available stratigraphic control provide new insights into the capabilities and limitations of aminostratigraphic methods in assessing relative and numerical ages of Atlantic Coastal Plain Quaternary deposits.
Hjorth, Rune; Coutris, Claire; Nguyen, Nhung H A; Sevcu, Alena; Gallego-Urrea, Juliàn Alberto; Baun, Anders; Joner, Erik J
2017-09-01
Nanoremediation with iron (Fe) nanomaterials opens new doors for treating contaminated soil and groundwater, but is also accompanied by new potential risks as large quantities of engineered nanomaterials are introduced into the environment. In this study, we have assessed the ecotoxicity of four engineered Fe nanomaterials, specifically, Nano-Goethite, Trap-Ox Fe-zeolites, Carbo-Iron ® and FerMEG12, developed within the European FP7 project NanoRem for sub-surface remediation towards a test battery consisting of eight ecotoxicity tests on bacteria (V. fisheri, E. coli), algae (P. subcapitata, Chlamydomonas sp.), crustaceans (D. magna), worms (E. fetida, L. variegatus) and plants (R. sativus, L. multiflorum). The tested materials are commercially available and include Fe oxide and nanoscale zero valent iron (nZVI), but also hybrid products with Fe loaded into a matrix. All but one material, a ball milled nZVI (FerMEG12), showed no toxicity in the test battery when tested in concentrations up to 100 mg/L, which is the cutoff for hazard labeling in chemicals regulation in Europe. However it should be noted that Fe nanomaterials proved challenging to test adequately due to their turbidity, aggregation and sedimentation behavior in aqueous media. This paper provides a number of recommendations concerning future testing of Fe nanomaterials and discusses environmental risk assessment considerations related to these. Copyright © 2017 Elsevier Ltd. All rights reserved.
MA_MISS: Mars Multispectral Imager for Subsurface Studies
NASA Astrophysics Data System (ADS)
De Sanctis, M. C.; Coradini, A.; Ammannito, E.; Boccaccini, A.; Di Iorio, T.; Battistelli, E.; Capanni, A.
2012-04-01
A Drilling system, coupled with an in situ analysis package, is installed on the ExoMars Pasteur Rover to perform in situ investigations up to 2m in the Mars soil. Ma_Miss (Mars Multispectral Imager for Subsurface Studies) is a spectrometer devoted to observe the lateral wall of the borehole generated by the Drilling system. The instrument is fully integrated with the Drill and shares its structure and electronics. For the first time in Mars exploration experiments the water/geochemical environment will be investigated as function of depth in the shallow subsurface. Samples from the subsurface of Martian soil are unaltered by weathering process, oxidation and erosion. Subsurface access can be the key to look for signs of present and past environmental conditions, associated to the possibility for life (water, volatiles and weathering process). The analysis of uncontaminated samples by means of instrumented Drill and in situ observations is the solution for unambiguous interpretation of the original environment that leading to the formation of rocks. Ma_Miss experiment is perfectly suited to perform multispectral imaging of the drilled layers. Ma_Miss is a miniaturized near-infrared imaging spectrometer in the range 0.4-2.2 µm with 20nm spectral sampling. The task of illuminating the borehole wall and collecting the diffused light from the illuminated spot on the target requires a transparent window on the Drill tool, which shall prevent the dust contamination of the optical and mechanical elements inside. Hardness of sapphire is the closest to diamond one, thus avoiding the risk of scratches on its surface. The Sapphire window is cylindrical, and bounded such as to realize a continuous auger profile. Ma_Miss Optical Head performs the double task of illuminating the borehole wall with a spot around 1 mm diameter and of collecting the scattered light coming from a 0.1 mm diameter spot of the target. The signal from the Optical Head to the spectrometer is transferred through the different elements of the Drill by means of fiber optics and an optical rotary joint implemented in the roto-translation group of the Drill. Ma_Miss Optical Head has been tested in the breadboard to capture the diffused light from the observed target and transfer the signal to a laboratory spectrometer for analysis. The Optical Head of Ma_Miss has been tested after integration in ExoMars Drill. The drilling experiment has been carried out in realistic media (tuff, red brick). The test shows good performance of Optical Head illumination capability and of the window cleanliness during the drilling. Illumination spot is focused at the nominal distance of 0.2 mm from the sapphire window. During the ExoMars Pasteur Rover mission, the Ma_Miss experiment will allow collecting valuable data of the drilled stratigraphic column, will document "in-situ" the nature of the samples that will be delivered to the Pasteur Laboratory and will be able to identify hydrated minerals, sedimentary materials and different kind of diagnostic materials of Martian subsurface.
Method for Implementing Subsurface Solid Derived Concentration Guideline Levels (DCGL) - 12331
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lively, J.W.
2012-07-01
The U.S. Nuclear Regulatory Commission (NRC) and other federal agencies currently approve the Multi-Agency Radiation Site Survey and Investigation Manual (MARSSIM) as guidance for licensees who are conducting final radiological status surveys in support of decommissioning. MARSSIM provides a method to demonstrate compliance with the applicable regulation by comparing residual radioactivity in surface soils with derived concentration guideline levels (DCGLs), but specifically discounts its applicability to subsurface soils. Many sites and facilities undergoing decommissioning contain subsurface soils that are potentially impacted by radiological constituents. In the absence of specific guidance designed to address the derivation of subsurface soil DCGLs andmore » compliance demonstration, decommissioning facilities have attempted to apply DCGLs and final status survey techniques designed specifically for surface soils to subsurface soils. The decision to apply surface soil limits and surface soil compliance metrics to subsurface soils typically results in significant over-excavation with associated cost escalation. MACTEC, Inc. has developed the overarching concepts and principles found in recent NRC decommissioning guidance in NUREG 1757 to establish a functional method to derive dose-based subsurface soil DCGLs. The subsurface soil method developed by MACTEC also establishes a rigorous set of criterion-based data evaluation metrics (with analogs to the MARSSIM methodology) that can be used to demonstrate compliance with the developed subsurface soil DCGLs. The method establishes a continuum of volume factors that relate the size and depth of a volume of subsurface soil having elevated concentrations of residual radioactivity with its ability to produce dose. The method integrates the subsurface soil sampling regime with the derivation of the subsurface soil DCGL such that a self-regulating optimization is naturally sought by both the responsible party and regulator. This paper describes the concepts and basis used by MACTEC to develop the dose-based subsurface soil DCGL method. The paper will show how MACTEC's method can be used to demonstrate that higher concentrations of residual radioactivity in subsurface soils (as compared with surface soils) can meet the NRC's dose-based regulations. MACTEC's method has been used successfully to obtain the NRC's radiological release at a site with known radiological impacts to subsurface soils exceeding the surface soil DCGL, saving both time and cost. Having considered the current NRC guidance for consideration of residual radioactivity in subsurface soils during decommissioning, MACTEC has developed a technically based approach to the derivation of and demonstration of compliance with subsurface soil DCGLs for radionuclides. In fact, the process uses the already accepted concepts and metrics approved for surface soils as the foundation for deriving scaling factors used to calculate subsurface soil DCGLs that are at least equally protective of the decommissioning annual dose standard. Each of the elements identified for consideration in the current NRC guidance is addressed in this proposed method. Additionally, there is considerable conservatism built into the assumptions and techniques used to arrive at subsurface soil scaling factors and DCGLs. The degree of conservatism embodied in the approach used is such that risk managers and decision makers approving and using subsurface soil DCGLs derived in accordance with this method can be confident that the future exposures will be well below permissible and safe levels. The technical basis for the method can be applied to a broad variety of sites with residual radioactivity in subsurface soils. Given the costly nature of soil surveys, excavation, and disposal of soils as low-level radioactive waste, MACTEC's method for deriving and demonstrating compliance with subsurface soil DCGLs offers the possibility of significant cost savings over the traditional approach of applying surface soil DCGLs to subsurface soils. Furthermore, while yet untested, MACTEC believes that the concepts and methods embodied in this approach could readily be applied to other types of contamination found in subsurface soils. (author)« less
E. coli transport through surface-connected biopores identified from smoke injection tests
USDA-ARS?s Scientific Manuscript database
Macropores are the primary mechanism by which fecal bacteria from surface-applied manure can be transported into subsurface drains or shallow groundwater bypassing the soil matrix. Limited research has been performed investigating fecal bacteria transport through specific macropores identified in th...
CO2 Sparging Proof of Concept Test Report, Revision 1, LCP Chemicals Site, Brunswick, Georgia
April 2013 report to evaluate the feasibility of CO2 sparging to remediate a sub-surface caustic brine pool (CBP) at the LCP Chemicals Superfund Site, GA. Region ID : 04, DocID: 10940639 , DocDate: 2013-04-01
Over the past decade, there has been an increasing array of commercially available products for the treatment of nonpoint source pollution from urban stormwater. These products incorporate various approaches to stormwater treatment such as: in-line subsurface treatment chambers...
75 FR 1276 - Requirements for Subsurface Safety Valve Equipment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-11
...-0066] RIN 1010-AD45 Requirements for Subsurface Safety Valve Equipment AGENCY: Minerals Management... Edition of the American Petroleum Institute's Specification for Subsurface Safety Valve Equipment (API... 14A, Specification for Subsurface Safety Valve Equipment, Eleventh Edition, October 2005, Effective...
Prediction of hydrocarbon surface seepage potential using infiltrometer data
NASA Astrophysics Data System (ADS)
Connors, J. J.; Jackson, J. L.; Engle, R. A.; Connors, J. L.
2017-12-01
Environmental regulations addressing above-ground storage tank (AST) spill control activities typically require owners/operators to demonstrate that local soil permeability values are low enough to adequately contain released liquids while emergency-response procedures are conducted. Frequently, geotechnical borings and soil samples/analyses, and/or monitoring well slug-test analyses, are used to provide hydraulic conductivity data for the required calculations. While these techniques are useful in assessing hydrological characteristics of the subsurface, they do not always assess the uppermost surface soil layer, where the bulk of the containment can occur. This layer may have been subject to long-term permeability-reduction by activities such as compaction by vehicular and foot traffic, micro-coatings by hydrophobic pollutants, etc. This presentation explores the usefulness of dual-ring infiltrometers, both in field and bench-scale tests, to rapidly acquire actual hydraulic conductivity values of surficial soil layers, which can be much lower than subsurface values determined using more traditional downhole geotechnical and hydrogeological approaches.
Effects of wet etch processing on laser-induced damage of fused silica surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battersby, C.L.; Kozlowski, M.R.; Sheehan, L.M.
1998-12-22
Laser-induced damage of transparent fused silica optical components by 355 nm illumination occurs primarily at surface defects produced during the grinding and polishing processes. These defects can either be surface defects or sub-surface damage.Wet etch processing in a buffered hydrogen fluoride (HF) solution has been examined as a tool for characterizing such defects. A study was conducted to understand the effects of etch depth on the damage threshold of fused silica substrates. The study used a 355 nm, 7.5 ns, 10 Hz Nd:YAG laser to damage test fused silica optics through various wet etch processing steps. Inspection of the surfacemore » quality was performed with Nomarski microscopy and Total Internal Reflection Microscopy. The damage test data and inspection results were correlated with polishing process specifics. The results show that a wet etch exposes subsurface damage while maintaining or improving the laser damage performance. The benefits of a wet etch must be evaluated for each polishing process.« less
Subsurface Void Characterization with 3-D Time Domain Full Waveform Tomography.
NASA Astrophysics Data System (ADS)
Nguyen, T. D.
2017-12-01
A new three dimensional full waveform inversion (3-D FWI) method is presented for subsurface site characterization at engineering scales (less than 30 m in depth). The method is based on a solution of 3-D elastic wave equations for forward modeling, and a cross-adjoint gradient approach for model updating. The staggered-grid finite-difference technique is used to solve the wave equations, together with implementation of the perfectly matched layer condition for boundary truncation. The gradient is calculated from the forward and backward wavefields. Reversed-in-time displacement residuals are induced as multiple sources at all receiver locations for the backward wavefield. The capability of the presented FWI method is tested on both synthetic and field experimental datasets. The test configuration uses 96 receivers and 117 shots at equal spacing (Fig 1). The inversion results from synthetic data show the ability of characterizing variable low- and high-velocity layers with embedded void (Figs 2-3). The synthetic study shows good potential for detection of voids and abnormalities in the field.
James, A.L.; McDonnell, Jeffery J.; Tromp-Van Meerveld, I.; Peters, N.E.
2010-01-01
As a fundamental unit of the landscape, hillslopes are studied for their retention and release of water and nutrients across a wide range of ecosystems. The understanding of these near-surface processes is relevant to issues of runoff generation, groundwater-surface water interactions, catchment export of nutrients, dissolved organic carbon, contaminants (e.g. mercury) and ultimately surface water health. We develop a 3-D physics-based representation of the Panola Mountain Research Watershed experimental hillslope using the TOUGH2 sub-surface flow and transport simulator. A recent investigation of sub-surface flow within this experimental hillslope has generated important knowledge of threshold rainfall-runoff response and its relation to patterns of transient water table development. This work has identified components of the 3-D sub-surface, such as bedrock topography, that contribute to changing connectivity in saturated zones and the generation of sub-surface stormflow. Here, we test the ability of a 3-D hillslope model (both calibrated and uncalibrated) to simulate forested hillslope rainfall-runoff response and internal transient sub-surface stormflow dynamics. We also provide a transparent illustration of physics-based model development, issues of parameterization, examples of model rejection and usefulness of data types (e.g. runoff, mean soil moisture and transient water table depth) to the model enterprise. Our simulations show the inability of an uncalibrated model based on laboratory and field characterization of soil properties and topography to successfully simulate the integrated hydrological response or the distributed water table within the soil profile. Although not an uncommon result, the failure of the field-based characterized model to represent system behaviour is an important challenge that continues to vex scientists at many scales. We focus our attention particularly on examining the influence of bedrock permeability, soil anisotropy and drainable porosity on the development of patterns of transient groundwater and sub-surface flow. Internal dynamics of transient water table development prove to be essential in determining appropriate model parameterization. ?? 2010 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Carey, Austin M.; Paige, Ginger B.; Carr, Bradley J.; Dogan, Mine
2017-10-01
Time-lapse electrical resistivity tomography (ERT) is commonly used as a minimally invasive tool to study infiltration processes. In 2014, we conducted field studies coupling variable intensity rainfall simulation with high-resolution ERT to study the real-time partitioning of rainfall into surface and subsurface response. The significant contrast in resistivity in the subsurface from large changes in subsurface moisture resulted in artifacts during the inversion process of the time-lapse ERT data collected using a dipole-dipole electrode array. These artifacts, which are not representative of real subsurface moisture dynamics, have been shown to arise during time-lapse inversion of ERT data and may be subject to misinterpretation. Forward modeling of the infiltration process post field experiments using a two-layer system (saprolite overlain by a soil layer) was used to generate synthetic datasets. The synthetic data were used to investigate the influence of both changes in volumetric moisture content and electrode configuration on the development of the artifacts identified in the field datasets. For the dipole-dipole array, we found that a decrease in the resistivity of the bottom layer by 67% resulted in a 50% reduction in artifact development. Artifacts for the seven additional array configurations tested, ranged from a 19% increase in artifact development (using an extended dipole-dipole array) to as much as a 96% decrease in artifact development (using a wenner-alpha array), compared to that of the dipole-dipole array. Moreover, these arrays varied in their ability to accurately delineate the infiltration front. Model results showed that the modified pole-dipole array was able to accurately image the infiltration zone and presented fewer artifacts for our experiments. In this study, we identify an optimal array type for imaging rainfall-infiltration dynamics that reduces artifacts. The influence of moisture contrast between the infiltrating water and the bulk subsurface material was characterized and shown to be a major factor in contributing to artifact development. Through forward modeling, this study highlights the importance of considering array type and subsurface moisture conditions when using time-lapse resistivity to obtain reliable estimates of vadose zone flow processes during rainfall-infiltration events.
NASA Astrophysics Data System (ADS)
Nixon, S. L.; Montgomery, W.; Sephton, M. A.; Cockell, C. S.
2014-12-01
More than 90% of organic material on Earth resides in sedimentary rocks in the form of kerogens; fossilized organic matter formed through selective preservation of high molecular weight biopolymers under anoxic conditions. Despite its prevalence in the subsurface, the extent to which this material supports microbial metabolisms is unknown. Whilst aerobic microorganisms are known to derive energy from kerogens within shales, utilization in anaerobic microbial metabolisms that proliferate in the terrestrial subsurface, such as microbial iron reduction, has yet to be demonstrated. Data are presented from microbial growth experiments in which kerogens and shales were supplied as the sole electron donor source for microbial iron reduction by an enrichment culture. Four well-characterized kerogens samples (representative of Types I-IV, classified by starting material), and two shale samples, were assessed. Organic analysis was carried out to investigate major compound classes present in each starting material. Parallel experiments were conducted to test inhibition of microbial iron reduction in the presence of each material when the culture was supplied with a full redox couple. The results demonstrate that iron-reducing microorganisms in this culture were unable to use kerogens and shales as a source of electron donors for energy acquisition, despite the presence of compound classes known to support this metabolism. Furthermore, the presence of these materials was found to inhibit microbial iron reduction to varying degrees, with some samples leading to complete inhibition. These results suggest that recalcitrant carbonaceous material in the terrestrial subsurface is not available for microbial iron reduction and similar metabolisms, such as sulphate-reduction. Further research is needed to investigate the inhibition exerted by these materials, and to assess whether these findings apply to other microbial consortia. These results may have significant implications for the role of anaerobic microbial metabolisms in the subsurface terrestrial carbon cycle. Kerogens are chemically similar to organic material in carbonaceous chondrites. As such, further study may provide insight into the potential availability of organic compounds for microbial metabolisms operating in the subsurface of Mars.
Luoma, James A.; Severson, Todd J.
2016-01-01
The efficacy of whole water column and subsurface applications of the biopesticide Zequanox®, a commercially prepared spray-dried powder formulation of Pseudomonas fluorescens (strain CL145A), were evaluated for controlling zebra mussels (Dreissena polymorpha) within 27-m2 enclosures in Lake Minnetonka (Deephaven, Minnesota). Five treatments consisting of (1) two whole water column Zequanox applications, (2) two subsurface Zequanox applications, and (3) an untreated control were completed on each of three independent treatment days during September 2014. The two types of samplers used in the study were (1) type 1 samplers, which were custom built multi-plate samplers (wood, perforated aluminum, and tile substrates) that were placed into Robinson’s Bay in June of 2013 to allow for natural colonization by zebra mussels, and (2) type 2 samplers, which consisted of zebra mussels adhering to perforated aluminum trays that were placed into mesh containment bags. One day prior to treatment, three individual samplers of each type were distributed to test enclosures and exposed to a randomly assigned treatment. Sampling to determine the zebra mussel biomass adhering to type 1 samplers and the survival assessments for zebra mussels contained in type 2 samplers were completed ~40 days after exposure. The zebra mussel biomass adhering to type 1 samplers and the survival of zebra mussels contained in type 2 samplers were significantly less in groups treated with the highest Zequanox concentrations and in groups that received whole water column applications than comparable groups treated with lower Zequanox concentrations and subsurface applications. However, standardization of biomass and survival results to the amount of Zequanox applied showed that the lower concentrations and subsurface applications were more cost efficient, with respect to product used, at reducing zebra mussel biomass and for inducing zebra mussel mortality. Although the subsurface application methods and lower treatment concentrations were more cost efficient, biological significance and management goals should be evaluated prior to selecting the application method. Development and refinement of additional application techniques may improve the utility of the subsurface Zequanox applications.
A stochastic approach for model reduction and memory function design in hydrogeophysical inversion
NASA Astrophysics Data System (ADS)
Hou, Z.; Kellogg, A.; Terry, N.
2009-12-01
Geophysical (e.g., seismic, electromagnetic, radar) techniques and statistical methods are essential for research related to subsurface characterization, including monitoring subsurface flow and transport processes, oil/gas reservoir identification, etc. For deep subsurface characterization such as reservoir petroleum exploration, seismic methods have been widely used. Recently, electromagnetic (EM) methods have drawn great attention in the area of reservoir characterization. However, considering the enormous computational demand corresponding to seismic and EM forward modeling, it is usually a big problem to have too many unknown parameters in the modeling domain. For shallow subsurface applications, the characterization can be very complicated considering the complexity and nonlinearity of flow and transport processes in the unsaturated zone. It is warranted to reduce the dimension of parameter space to a reasonable level. Another common concern is how to make the best use of time-lapse data with spatial-temporal correlations. This is even more critical when we try to monitor subsurface processes using geophysical data collected at different times. The normal practice is to get the inverse images individually. These images are not necessarily continuous or even reasonably related, because of the non-uniqueness of hydrogeophysical inversion. We propose to use a stochastic framework by integrating minimum-relative-entropy concept, quasi Monto Carlo sampling techniques, and statistical tests. The approach allows efficient and sufficient exploration of all possibilities of model parameters and evaluation of their significances to geophysical responses. The analyses enable us to reduce the parameter space significantly. The approach can be combined with Bayesian updating, allowing us to treat the updated ‘posterior’ pdf as a memory function, which stores all the information up to date about the distributions of soil/field attributes/properties, then consider the memory function as a new prior and generate samples from it for further updating when more geophysical data is available. We applied this approach for deep oil reservoir characterization and for shallow subsurface flow monitoring. The model reduction approach reliably helps reduce the joint seismic/EM/radar inversion computational time to reasonable levels. Continuous inversion images are obtained using time-lapse data with the “memory function” applied in the Bayesian inversion.
Zhang, Jing; Lynch, Richard J M; Watson, Timothy F; Banerjee, Avijit
2018-05-01
To investigate the remineralisation of chitosan pre-treated enamel white spot lesions (WSLs) by bioglass in the presence of the pellicle layer. 50 artificial enamel white spot lesions were created by acidic gel. Two lesions were used to investigate the formation of the pellicle layer by treating with human whole saliva for 3 min. 48 lesions were assigned to 6 experimental groups (n = 8): (1) bioactive glass slurry, (2) bioactive glass containing polyacrylic acid (BG + PAA) slurry, (3) chitosan pre-treated WSLs with BG slurry (CS-BG), (4) chitosan pre-treated WSLs with BG + PAA slurry (CS-BG + PAA), (5) "standard" remineralisation solution (RS) and (6) de-ionised water (negative control, NC). Remineralisation was carried out using a pH-cycling model for 7 days. Before each treatment using remineralising agents, 3-min pellicle was formed on lesions' surfaces. Mineral content changes, surface and subsurface microhardness and ultrastructure were evaluated by Raman intensity mapping, Knoop microhardness and scanning electron microscopy, respectively. Data were statistically analysed using one-way ANOVA with Tukey's test (p < 0.05 is considered as significant). Despite the heterogeneously formed pellicle layer, all groups showed an increase in surface mineral content after pH-cycling. Chitosan pre-treatment enhanced the subsurface remineralisation of WSLs using bioglass as both pre-treated groups showed greater surface and subsurface microhardness compared to NC. CS-BG exhibited denser subsurface structure than BG, while in CS-BG + PAA the crystals were bigger in size but resemble more enamel-like compared to BG + PAA as shown in SEM observations. Remineralisation of RS was limited to the surface as no significant subsurface changes of mechanical properties and structure were found. Chitosan pre-treatment can enhance WSL remineralisation with bioglass biomaterials when a short-term salivary pellicle is present. A further investigation using a long-term pH-cycling model with mature pellicle is suggested with regards to clinical application. Chitosan pre-treatment has the potential in clinical application to remineralise subsurface lesions to achieve lesion consolidation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Boise Hydrogeophysical Research Site: Control Volume/Test Cell and Community Research Asset
NASA Astrophysics Data System (ADS)
Barrash, W.; Bradford, J.; Malama, B.
2008-12-01
The Boise Hydrogeophysical Research Site (BHRS) is a research wellfield or field-scale test facility developed in a shallow, coarse, fluvial aquifer with the objectives of supporting: (a) development of cost- effective, non- or minimally-invasive quantitative characterization and imaging methods in heterogeneous aquifers using hydrologic and geophysical techniques; (b) examination of fundamental relationships and processes at multiple scales; (c) testing theories and models for groundwater flow and solute transport; and (d) educating and training of students in multidisciplinary subsurface science and engineering. The design of the wells and the wellfield support modular use and reoccupation of wells for a wide range of single-well, cross-hole, multiwell and multilevel hydrologic, geophysical, and combined hydrologic-geophysical experiments. Efforts to date by Boise State researchers and collaborators have been largely focused on: (a) establishing the 3D distributions of geologic, hydrologic, and geophysical parameters which can then be used as the basis for jointly inverting hard and soft data to return the 3D K distribution and (b) developing subsurface measurement and imaging methods including tomographic characterization and imaging methods. At this point the hydrostratigraphic framework of the BHRS is known to be a hierarchical multi-scale system which includes layers and lenses that are recognized with geologic, hydrologic, radar, seismic, and EM methods; details are now emerging which may allow 3D deterministic characterization of zones and/or material variations at the meter scale in the central wellfield. Also the site design and subsurface framework have supported a variety of testing configurations for joint hydrologic and geophysical experiments. Going forward we recognize the opportunity to increase the R&D returns from use of the BHRS with additional infrastructure (especially for monitoring the vadose zone and surface water-groundwater interactions), more collaborative activity, and greater access to site data. Our broader goal of becoming more available as a research asset for the scientific community also supports the long-term business plan of increasing funding opportunities to maintain and operate the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, M. Hope; Truex, Mike; Freshley, Mark
Complex sites are defined as those with difficult subsurface access, deep and/or thick zones of contamination, large areal extent, subsurface heterogeneities that limit the effectiveness of remediation, or where long-term remedies are needed to address contamination (e.g., because of long-term sources or large extent). The Test Area North at the Idaho National Laboratory, developed for nuclear fuel operations and heavy metal manufacturing, is used as a case study. Liquid wastes and sludge from experimental facilities were disposed in an injection well, which contaminated the subsurface aquifer located deep within fractured basalt. The wastes included organic, inorganic, and low-level radioactive constituents,more » with the focus of this case study on trichloroethylene. The site is used as an example of a systems-based framework that provides a structured approach to regulatory processes established for remediation under existing regulations. The framework is intended to facilitate remedy decisions and implementation at complex sites where restoration may be uncertain, require long timeframes, or involve use of adaptive management approaches. The framework facilitates site, regulator, and stakeholder interactions during the remedial planning and implementation process by using a conceptual model description as a technical foundation for decisions, identifying endpoints, which are interim remediation targets or intermediate decision points on the path to an ultimate end, and maintaining protectiveness during the remediation process. At the Test Area North, using a structured approach to implementing concepts in the endpoint framework, a three-component remedy is largely functioning as intended and is projected to meet remedial action objectives by 2095 as required. The remedy approach is being adjusted as new data become available. The framework provides a structured process for evaluating and adjusting the remediation approach, allowing site owners, regulators, and stakeholders to manage contamination at complex sites where adaptive remedies are needed.« less
Development of a direct push based in-situ thermal conductivity measurement system
NASA Astrophysics Data System (ADS)
Chirla, Marian Andrei; Vienken, Thomas; Dietrich, Peter; Bumberger, Jan
2016-04-01
Heat pump systems are commonly utilized in Europe, for the exploitation of the shallow geothermal potential. To guarantee a sustainable use of the geothermal heat pump systems by saving resources and minimizing potential negative impacts induced by temperature changes within soil and groundwater, new geothermal exploration methods and tools are required. The knowledge of the underground thermal properties is a necessity for a correct and optimum design of borehole heat exchangers. The most important parameter that indicates the performance of the systems is thermal conductivity of the ground. Mapping the spatial variability of thermal conductivity, with high resolution in the shallow subsurface for geothermal purposes, requires a high degree of technical effort to procure adequate samples for thermal analysis. A collection of such samples from the soil can disturb sample structure, so great care must be taken during collection to avoid this. Factors such as transportation and sample storage can also influence measurement results. The use of technologies like Thermal Response Test (TRT) require complex mechanical and electrical systems for convective heat transport in the subsurface and longer monitoring times, often three days. Finally, by using thermal response tests, often only one integral value is obtained for the entire coupled subsurface with the borehole heat exchanger. The common thermal conductivity measurement systems (thermal analyzers) can perform vertical thermal conductivity logs only with the aid of sample procurement, or by integration into a drilling system. However, thermal conductivity measurements using direct push with this type of probes are not possible, due to physical and mechanical limitations. Applying vertical forces using direct push technology, in order to penetrate the shallow subsurface, can damage the probe and the sensors systems. The aim of this study is to develop a new, robust thermal conductivity measurement probe, for direct push based approaches, called Thermal Conductivity Profiler (TCP), that operates based on the principles of a hollow cylindrical geometry heat source. To determinate thermal conductivity in situ, the transient temperature at the middle of the probe and electrical power dissipation is measured. At the same time, this work presents laboratory results obtained when this novel hollow cylindrical probe system was tested on different materials for calibration. By using the hollow cylindrical probe, the thermal conductivity results have an error of less than 2.5% error for solid samples (Teflon, Agar jelly, and Nylatron). These findings are useful to achieve a proper thermal energy balance in the shallow subsurface by using direct push technology and TCP. By providing information of layers with high thermal conductivity, suitable for thermal storage capability, can be used determine borehole heat exchanger design and, therefore, determine geothermal heat pump architecture.
Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada
Asch, Theodore H.; Sweetkind, Donald S.; Burton, Bethany L.; Wallin, Erin L.
2009-01-01
Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the integrated interpretations developed from the suite of geophysical methodologies utilized in this investigation. Data collection for this activity started in the spring of 2005 and continued into 2006. A suite of electrical geophysical surveys were run in combination with ground magnetic surveys; these surveys resulted in high-resolution subsurface data that portray subsurface fault geometry at the two sites and have identified structures not readily apparent from surface geologic mapping, potential field geophysical data, or surface effects fracture maps.
Depleted uranium investigation at missile impact sites in White Sands Missile Range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Etten, D.M.; Purtymun, W.D.
1994-01-01
An investigation for residual depleted uranium was conducted at Pershing missile impact sites on the White Sands Missile Range. Subsurface core soil samples were taken at Chess, Salt Target, and Mine Impact Sites. A sampling pump was installed in a monitoring well at Site 65 where a Pershing earth penetrator was not recovered. Pumping tests and water samples were taken at this site. Chess Site, located in a gypsum flat, was the only location showing elevated levels of depleted uranium in the subsurface soil or perched groundwater. Small fragments can still be found on the surface of the impact sites.more » The seasonal flooding and near surface water has aided in the movement of surface fragments.« less
Subsurface Grain Morphology Reconstruction by Differential Aperture X-ray Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenlohr, Philip; Shanthraj, Pratheek; Vande Kieft, Brendan R.
A multistep, non-destructive grain morphology reconstruction methodology that is applicable to near-surface volumes is developed and tested on synthetic grain structures. This approach probes the subsurface crystal orientation using differential aperture X-ray microscopy (DAXM) on a sparse grid across the microstructure volume of interest. Resulting orientation data is clustered according to proximity in physical and orientation space and used as seed points for an initial Voronoi tessellation to (crudely) approximate the grain morphology. Curvature-driven grain boundary relaxation, simulated by means of the Voronoi Implicit Interface Method (VIIM), progressively improves the reconstruction accuracy. The similarity between bulk and readily accessible surfacemore » reconstruction error provides an objective termination criterion for boundary relaxation.« less
Sedimentary silicon isotope indicates the Kuroshio subsurface upwelling in the East China Sea
NASA Astrophysics Data System (ADS)
Zhao, Y.; Yang, S.; Su, N.
2017-12-01
The Kuroshio as the western boundary current of the North Pacific subtropical circulation, originates from east of the Philippine Islands, and flows northeastward along the eastern coast of Taiwan. It's subsurface water intrudes the East China Sea (ECS) and forms a typical upwelling on the inner shelf, which may play an important role in the material and heat transport, biogeochemical process and marine ecosystem of the ECS.To date, most previous studies on the Kuroshio subsurface upwelling focuse on the seasonal and interannual variations, and few researches touch on the upwelling evolution in the geologic past. In this study, eight short sediment cores were taken along the ECS inner shelf (upwelling area), which allow us to reconstruct the upwelling history over the last several hundred years. Although conventional indexes of oceanographic changes, such as salinity, temperature and hydrogen and oxygen isotope, provide valuable constraints on the modern oceanic circulation and water mass movements, how to reconstruct them from geologic records is always a challenging work. In this contribution, we present the data of stable silicon isotope, biogenic opal, diatom assemblages, element geochemistry and stable carbon and nitrogen isotopes of these core sediments, and aim to decipher the Kuroshio subsurface upwelling history on the ECS shelf. We will also illustrate the difference in δ30Si signals between small (<30 um) and large (>150 um) diatom fractions, and test whether it is an effective indicator for paleo-upwelling intensity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majer, E.L.; Brockman, F.J.
1998-06-01
'This research is an integrated physical (geophysical and hydrologic) and microbial study using innovative geophysical imaging and microbial characterization methods to identify key scales of physical heterogeneities that affect the biodynamics of natural subsurface environments. Data from controlled laboratory and in-situ experiments at the INEEL Test Area North (TAN) site are being used to determine the dominant physical characteristics (lithologic, structural, and hydrologic) that can be imaged in-situ and correlated with microbial properties. The overall goal of this research is to contribute to the understanding of the interrelationships between transport properties and spatially varying physical, chemical, and microbiological heterogeneity. Themore » outcome will be an improved understanding of the relationship between physical and microbial heterogeneity, thus facilitating the design of bioremediation strategies in similar environments. This report summarizes work as of May 1998, the second year of the project. This work is an extension of basic research on natural heterogeneity first initiated within the DOE/OHER Subsurface Science Program (SSP) and is intended to be one of the building blocks of an integrated and collaborative approach with an INEEL/PNNL effort aimed at understanding the effect of physical heterogeneity on transport properties and biodynamics in natural systems. The work is closely integrated with other EMSP projects at INEEL (Rick Colwell et al.) and PNNL (Fred Brockman and Jim Fredrickson).'« less
Muons and seismic: a dynamic duo for the shallow subsurface?
Mellors, Robert; Chapline, George; Bonneville, Alain; ...
2016-12-01
This paper explores, at a preliminary level, the possibility of merging seismic data, both active and passive, with density constraints inferred from muon measurements. We focus on a theoretical analysis but note that muon experiments are ongoing to test model predictions with experimental data.
Mars penetrator umbilical. [to study geophysical properties of Mars
NASA Technical Reports Server (NTRS)
Barns, C. E.
1979-01-01
The device proposed to gather subsurface data on the planet Mars is a ballistic probe which penetrates the soil after a free fall through the Martian atmosphere. Highlights of the design, development, and testing of several features of the Mars Surface Penetration Probe are outlined.
A subsurface drip irrigation system for weighing lysimetry
USDA-ARS?s Scientific Manuscript database
Large, precision weighing lysimeters can have accuracies as good as 0.04 mm equivalent depth of water, adequate for hourly and even half-hourly determinations of evapotranspiration (ET) rate from crops. Such data are important for testing and improving simulation models of the complex interactions o...
Radon-222 as a Natural Tracer for Monitoring the Remediation of NAPL Contamination in the Subsurface
2006-11-06
cell. The test cell at the site also underwent active remediation using enhanced in situ bioremediation . The PCE released into the test cell was also...Figure 3.2 is a photo of the test cell used in the demonstration and the long-term monitoring locations during the bioremediation study. Injection wells...monitoring indicated that little change in radon occurred despite the application of the bioremediation process. This is in agreement with the PCE
Fatigue and Impact Strength of Diffusion Bonded Titanium Alloy Joints
1989-02-01
likely to be due to the void level being such that the chance of a pore cluster being present at or near the test piece surface was less probable...in sub-surface crack initiation and reduced fatigue strength; it was concluded that small single voids were insignificant but clusters of voids...strength is reduced when clusters of pores are present, and is, in turn, a much more sensitive test than the tensile test. In the current work the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wear, Jr., John Edmund
The objective of this study was to examine the hypothesis that select functional groups of bacteria from pristine sites have an innate ability to degrade synthetic aromatics that often contaminate groundwater environments,due to exposure to naturally occurring recalcitrant aromatics in their environment. This study demonstrates that subsurface microbial communities are capable of utilizing lignin and humic acid breakdown products. Utilizers of these compounds were found to be present in most all the wells tested. Even the deepest aquifer tested had utilizers present for all six of the aromatics tested. Highest counts for the aromatics tested were observed with the naturallymore » occurring breakdown products of either lignin or humic acid. Carboxylic acids were found to be an important sole carbon source for groundwater bacteria possibly explained by the fact that they are produced by the oxidative cleavage of aromatic ring structures. The carbohydrate sole carbon sources that demonstrated the greatest densities were ones commonly associated with humics. This study indicates that utilization of naturally occurring aromatic compounds in the subsurface is an important nutritional source for groundwater bacteria. In addition, it suggests that adaptation to naturally occurring recalcitrant substrates is the origin of degradative pathways for xenobiotic compounds with analogous structure. This work has important implications for in situ bioremediation as a method of environmental cleanup.« less
Crystal structure of laser-induced subsurface modifications in Si
NASA Astrophysics Data System (ADS)
Verburg, P. C.; Smillie, L. A.; Römer, G. R. B. E.; Haberl, B.; Bradby, J. E.; Williams, J. S.; Huis in't Veld, A. J.
2015-08-01
Laser-induced subsurface modification of dielectric materials is a well-known technology. Applications include the production of optical components and selective etching. In addition to dielectric materials, the subsurface modification technology can be applied to silicon, by employing near to mid-infrared radiation. An application of subsurface modifications in silicon is laser-induced subsurface separation, which is a method to separate wafers into individual dies. Other applications for which proofs of concept exist are the formation of waveguides and resistivity tuning. However, limited knowledge is available about the crystal structure of subsurface modifications in silicon. In this work, we investigate the geometry and crystal structure of laser-induced subsurface modifications in monocrystalline silicon wafers. In addition to the generation of lattice defects, we found that transformations to amorphous silicon and Si -iii/Si -xii occur as a result of the laser irradiation.
Wilkening, Jennifer L; Ray, Chris; Varner, Johanna
2015-01-01
The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features.
Haack, Sheridan Kidd; Duris, Joseph W.
2008-01-01
A field trial was done in the Upper Tiffin River Watershed, in southeastern Michigan, to determine the influence of liquid dairy manure effluent (LDME) management practices on the quality of agricultural subsurface-drain water. Samples from subsurface drains were analyzed for nutrients, fecal-coliform and Escherichia coli (E. coli) bacteria, antibiotics, chemicals typically detected in wastewater, and the occurrence of genes indicating the presence of shiga-toxin-producing E. coli, or of bovine-specific Bacteroidetes bacteria. Samples were collected from November 2, 2006, to March 20, 2007, from eight subsurface drains under field plots that received no LDME and no tillage (controls) or received 4,000 or 8,000 gallons per acre (gal/acre) of LDME and either no tillage or two different types of tillage. The two types of tillage tested were (1) ground-driven, rotary, subsurface cultivation and (2) rolling-tine aeration. Samples were collected before LDME application and at 4 hours, and 1, 2, 6, 7, and 14 days post-application. Nutrient concentrations were high in subsurface-drain water throughout the field-trial period and could not be attributed to the field-trial LDME application. Of the 59 drain-water samples, including those collected before LDME application and control samples for each date, 56 had concentrations greater than the U.S. Environmental Protection Agency (USEPA), Ecoregion VI recommended surface-water criterion for total phosphorus, and all samples had concentrations greater than the recommended total nitrogen criterion. Nitrate + nitrite nitrogen concentration exceeded 20 milligrams per liter for every sample and contributed most to the total nitrogen concentrations. Substantial increases in drain-water concentrations of organic and ammonia nitrogen and total phosphorus were found for all treatments, including controls, at 14 days post-application after 0.84 inch of rainfall over 2 days. E. coli concentrations exceeded the USEPA recreational-water-quality single-sample criterion of 235 colony forming units per 100 milliliters in only 3 of 56 samples. Of these three samples, two were collected within 1 day post-LDME application from the treatment receiving 8,000 gal/acre LDME with no tillage (NT8000). The third sample was from the rolling-tine aerator treatment with 4,000 gal/acre LDME application rate after the first significant rainfall. Two wastewater chemicals and two bacterial genes (eaeA and stx1) detected in the LDME, but absent in field blank or pre-application samples, were detected in the 4-hour or 1-day postapplication NT8000 samples. No LDME-associated chemicals were detected in later samples from the NT8000 treatment, and none were detected in samples from other treatments after the first significant rainfall. Results of this field trial were somewhat equivocal with respect to the influence of LDME concentration and tillage practices on subsurface-drain water quality, both immediately after LDME application and in the longer term, after significant rainfall. Interpretation of study findings is limited by the fact that treatments were not replicated, and flow rate or discharge from the subsurface drains was not measured. Nevertheless, study results provide useful information about nutrient and bacteria concentrations in subsurface drains during the non-growing season. In addition, study results demonstrate some potential for the use of chemical and microbiological indicators of LDME transport to subsurface drains.
Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
Pieterson, Roelof; Boyles, Joseph Michael; Diebold, Peter Ulrich
2010-06-08
Methods of using geothermal energy to treat subsurface formations are described herein. Methods for using geothermal energy to treat a subsurface treatment area containing or proximate to hydrocarbons may include producing geothermally heated fluid from at least one subsurface region. Heat from at least a portion of the geothermally heated fluid may be transferred to the subsurface treatment area to heat the subsurface treatment area. At least some hydrocarbon fluids may be produced from the formation.
Estimation of subsurface thermal structure using sea surface height and sea surface temperature
NASA Technical Reports Server (NTRS)
Kang, Yong Q. (Inventor); Jo, Young-Heon (Inventor); Yan, Xiao-Hai (Inventor)
2012-01-01
A method of determining a subsurface temperature in a body of water is disclosed. The method includes obtaining surface temperature anomaly data and surface height anomaly data of the body of water for a region of interest, and also obtaining subsurface temperature anomaly data for the region of interest at a plurality of depths. The method further includes regressing the obtained surface temperature anomaly data and surface height anomaly data for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths to generate regression coefficients, estimating a subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients and outputting the estimated subsurface temperature at the one or more other depths. Using the estimated subsurface temperature, signal propagation times and trajectories of marine life in the body of water are determined.
Defining the Post-Machined Sub-surface in Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.
2018-04-01
Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.
NASA Astrophysics Data System (ADS)
Xiong, S.; Muller, J.-P.; Carretero, R. C.
2017-09-01
Subsurface layers are preserved in the polar regions on Mars, representing a record of past climate changes on Mars. Orbital radar instruments, such as the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) onboard ESA Mars Express (MEX) and the SHAllow RADar (SHARAD) onboard the Mars Reconnaissance Orbiter (MRO), transmit radar signals to Mars and receive a set of return signals from these subsurface regions. Layering is a prominent subsurface feature, which has been revealed by both MARSIS and SHARAD radargrams over both polar regions on Mars. Automatic extraction of these subsurface layering is becoming increasingly important as there is now over ten years' of data archived. In this study, we investigate two different methods for extracting these subsurface layers from SHARAD data and compare the results against delineated layers derived manually to validate which methods is better for extracting these layers automatically.
NASA Astrophysics Data System (ADS)
Yang, Minghong; Qi, Hongji; Zhao, Yuanan; Yi, Kui
2012-01-01
The 355 nm laser-induced damage thresholds (LIDTs) of polished fused silica with and without the residual subsurface cracks were explored. HF based wet etching and magnetorheological finishing was used to remove the subsurface cracks. To isolate the effect of subsurface cracks, chemical leaching was used to eliminate the photoactive impurities in the polishing layer. Results show that the crack number density decreased from~103 to <1cm-2, and the LIDT was improved as high as 2.8-fold with both the subsurface cracks and the polishing layer being removed. Subsurface cracks play a significant role in laser damage at fluencies between 15~31 J/cm2 (355nm, 8ns). HF Etching of the cracks was shown to increase the damage performance as nearly high as that of the samples in which subsurface cracks are well controlled.
Defining the Post-Machined Sub-surface in Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.
2018-06-01
Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.
Total Internal Reflection Microscopy (TIRM) as a nondestructive surface damage assessment tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Z.M.; Cohen, S.J.; Taylor, J.R.
1994-10-01
An easy to use, nondestructive, method for evaluating subsurface damage in polished substrates has been established at LLNL. Subsurface damage has been related to laser damage in coated optical components used in high power, high repetition rate laser systems. Total Internal Reflection Microscopy (TIRM) has been shown to be a viable nondestructive technique in analyzing subsurface damage in optical components. A successful TIRM system has been established for evaluating subsurface damage on fused silica components. Laser light scattering from subsurface damage sites is collected through a Nomarski microscope. These images are then captured by a CCD camera for analysis onmore » a computer. A variety of optics, including components with intentional subsurface damage due to grinding and polishing, have been analyzed and their TIRM images compared to an existing destructive etching method. Methods for quantitative measurement of subsurface damage are also discussed.« less
Crystal structure of laser-induced subsurface modifications in Si
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verburg, P. C.; Smillie, L. A.; Römer, G. R. B. E.
2015-06-04
Laser-induced subsurface modification of dielectric materials is a well-known technology. Applications include the production of optical components and selective etching. In addition to dielectric materials, the subsurface modification technology can be applied to silicon, by employing near to mid-infrared radiation. An application of subsurface modifications in silicon is laser-induced subsurface separation, which is a method to separate wafers into individual dies. Other applications for which proofs of concept exist are the formation of waveguides and resistivity tuning. However, limited knowledge is available about the crystal structure of subsurface modifications in silicon. In this paper, we investigate the geometry and crystalmore » structure of laser-induced subsurface modifications in monocrystalline silicon wafers. Finally, in addition to the generation of lattice defects, we found that transformations to amorphous silicon and Si-iii/Si-xii occur as a result of the laser irradiation.« less
Brack, A; Clancy, P; Fitton, B; Hoffmann, B; Horneck, G; Kurat, G; Maxwell, J; Ori, G; Pillinger, C; Raulin, F; Thomas, N; Westall, F
1998-06-01
A multi-user integrated suite of instruments designed to optimize the search for evidence of life on Mars is described. The package includes: -Surface inspection and surface environment analysis to identify the potential Mars landing sites, to inspect the surface geology and mineralogy, to search for visible surficial microbial macrofossils, to study the surface radiation budget and surface oxidation processes, to search for niches for extant life. -Subsurface sample acquisition by core drilling -Analysis of surface and subsurface minerals and organics to characterize the surface mineralogy, to analyse the surface and subsurface oxidants, to analyse the mineralogy of subsurface aliquots, to analyse the organics present in the subsurface aliquots (elemental and molecular composition, isotopes, chirality). -Macroscopic and microscopic inspection of subsurface aliquots to search for life's indicators (paleontological, biological, mineralogical) and to characterize the mineralogy of the subsurface aliquots. The study is led by ESA Manned Spaceflight and Microgravity Directorate.
Analysis of Adhesively Bonded Ceramics Using an Asymmetric Wedge Test
2008-12-01
4 Figure 2. Average crack ...flexure specimen. The flaw, indicated by the white arrow, is a subsurface semi-elliptical crack induced by surface machining damage...strength-limiting orthogonal surface machining crack in an alumina flexure specimen coated with a single layer of film adhesive. The white arrow
In-Situ Air Sparaing: Engineering and Design
2008-01-31
Construction Materials. Although PVC casing is commonly used, flexible or rigid polyethylene pipe may be more efficient for certain excavation methods, such as...depth, etc.) Piping insulation/ heat tape installed Piping flushed/cleaned/pressure tested Subsurface as-built equipment...4-4 Figure 4-2 Pilot-Scale Piping and Instrumentation Diagram
Radar Cuts Subsoil Survey Costs
NASA Technical Reports Server (NTRS)
Johnson, R.; Glaccum, R.
1984-01-01
Soil features located with minimum time and labor. Ground-penetrating radar (GPR) system supplements manual and mechanical methods in performing subsurface soil survey. Mobile system obtains graphic profile of soil discontinuities and interfaces as function of depth. One or two test borings necessary to substantiate soil profile. GPR proves useful as reconnaissance tool.
Computer modeling provides support for the development of TMDLs (total maximum daily loads) of impaired water bodies. Evaluations of TMDLs for nutrients, especially for nitrogen, benefits from a multi-media assessment (i.e., atmosphere, landscape, subsurface, surface water). In t...
NASA Astrophysics Data System (ADS)
Gusyev, Maksym; Yamazaki, Yusuke; Morgenstern, Uwe; Stewart, Mike; Kashiwaya, Kazuhisa; Hirai, Yasuyuki; Kuribayashi, Daisuke; Sawano, Hisaya
2015-04-01
The goal of this study is to estimate subsurface water transit times and volumes in headwater catchments of Hokkaido, Japan, using the New Zealand high-accuracy tritium analysis technique. Transit time provides insights into the subsurface water storage and therefore provides a robust and quick approach to quantifying the subsurface groundwater volume. Our method is based on tritium measurements in river water. Tritium is a component of meteoric water, decays with a half-life of 12.32 years, and is inert in the subsurface after the water enters the groundwater system. Therefore, tritium is ideally suited for characterization of the catchment's responses and can provide information on mean water transit times up to 200 years. Only in recent years has it become possible to use tritium for dating of stream and river water, due to the fading impact of the bomb-tritium from thermo-nuclear weapons testing, and due to improved measurement accuracy for the extremely low natural tritium concentrations. Transit time of the water discharge is one of the most crucial parameters for understanding the response of catchments and estimating subsurface water volume. While many tritium transit time studies have been conducted in New Zealand, only a limited number of tritium studies have been conducted in Japan. In addition, the meteorological, orographic and geological conditions of Hokkaido Island are similar to those in parts of New Zealand, allowing for comparison between these regions. In 2014, three field trips were conducted in Hokkaido in June, July and October to sample river water at river gauging stations operated by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT). These stations have altitudes between 36 m and 860 m MSL and drainage areas between 45 and 377 km2. Each sampled point is located upstream of MLIT dams, with hourly measurements of precipitation and river water levels enabling us to distinguish between the snow melt and baseflow contributions to the river discharge. For the June sampling, the tritium and stable isotope results indicate below normal river discharges with a strong contribution of snow melt at some sampling points, and relatively short groundwater transit times. The tritium concentration results are used to interpret mean transit times (MTTs) for each sampling point using a tritium input curve constructed from historical International Atomic Energy Agency and available Japanese data, and subsurface volumes are estimated from the MTTs and measured river discharges.
Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Su, Hao; Wang, Zhiguo; Xie, Wenkun
2015-12-01
Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm.
Wilkening, Jennifer L.; Ray, Chris; Varner, Johanna
2015-01-01
The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features. PMID:25803587
Yang, Jie; Tang, Chongjun; Chen, Lihua; Liu, Yaojun; Wang, Lingyun
2017-01-01
Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land) in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface flows associated with bare land. PMID:28792507
Recent experimental data may point to a greater role for osmotic pressures in the subsurface
Neuzil, C.E.; Provost, A.M.
2009-01-01
Uncertainty about the origin of anomalous fluid pressures in certain geologic settings has caused researchers to take a second look at osmosis, or flow driven by chemical potential differences, as a pressure‐generating process in the subsurface. Interest in geological osmosis has also increased because of an in situ experiment by Neuzil (2000) suggesting that Pierre Shale could generate large osmotic pressures when highly compacted. In the last few years, additional laboratory and in situ experiments have greatly increased the number of data on osmotic properties of argillaceous formations, but they have not been systematically examined. In this paper we compile these data and explore their implications for osmotic pressure generation in subsurface systems. Rather than base our analysis on osmotic efficiencies, which depend strongly on concentration, we calculated values of a quantity we term osmotic specific surface area (Aso) that, in principle, is a property of the porous medium only. The Aso values are consistent with a surprisingly broad spectrum of osmotic behavior in argillaceous formations, and all the formations tested exhibited at least a modest ability to generate osmotic pressure. It appears possible that under appropriate conditions some formations can be highly effective osmotic membranes able to generate osmotic pressures exceeding 30 MPa (3 km of head) at porosities as high as ∼0.1 and pressures exceeding 10 MPa at porosities as high as ∼0.2. These findings are difficult to reconcile with the lack of compelling field evidence for osmotic pressures, and we propose three explanations for the disparity: (1) Our analysis is flawed and argillaceous formations are less effective osmotic membranes than it suggests; (2) the necessary subsurface conditions, significant salinity differences within intact argillaceous formations, are rare; or (3) osmotic pressures are unlikely to be detected and are not recognized when encountered. The last possibility, that osmotic pressures routinely escape detection or are attributed to other mechanisms, has important implications for understanding subsurface flow regimes.
NASA Astrophysics Data System (ADS)
Shokri, Ali
2017-04-01
The hydrological cycle contains a wide range of linked surface and subsurface flow processes. In spite of natural connections between surface water and groundwater, historically, these processes have been studied separately. The current trend in hydrological distributed physically based model development is to combine distributed surface water models with distributed subsurface flow models. This combination results in a better estimation of the temporal and spatial variability of the interaction between surface and subsurface flow. On the other hand, simple lumped models such as the Soil Conservation Service Curve Number (SCS-CN) are still quite common because of their simplicity. In spite of the popularity of the SCS-CN method, there have always been concerns about the ambiguity of the SCS-CN method in explaining physical mechanism of rainfall-runoff processes. The aim of this study is to minimize these ambiguity by establishing a method to find an equivalence of the SCS-CN solution to the DrainFlow model, which is a fully distributed physically based coupled surface-subsurface flow model. In this paper, two hypothetical v-catchment tests are designed and the direct runoff from a storm event are calculated by both SCS-CN and DrainFlow models. To find a comparable solution to runoff prediction through the SCS-CN and DrainFlow, the variance between runoff predictions by the two models are minimized by changing Curve Number (CN) and initial abstraction (Ia) values. Results of this study have led to a set of lumped model parameters (CN and Ia) for each catchment that is comparable to a set of physically based parameters including hydraulic conductivity, Manning roughness coefficient, ground surface slope, and specific storage. Considering the lack of physical interpretation in CN and Ia is often argued as a weakness of SCS-CN method, the novel method in this paper gives a physical explanation to CN and Ia.
NASA Astrophysics Data System (ADS)
Illangasekare, T. H.; Smits, K. M.; Trautz, A.; Rice, A. K.; Cihan, A.; Davarzani, H.
2013-12-01
SSoil moisture processes in the subsurface/near-land-surface, play a crucial role in the hydrologic cycle and global water budget. This zone is subject to both natural and human induced disturbances, resulting in continually changing soil structure and hydraulic, thermal, and mechanical properties. Understanding of the dynamics of soil moisture distribution in this zone is of interest in various applications in hydrology such as land-atmospheric interaction, soil evaporation and evapotranspiration, as well as emerging problems on assessing the risk of leakage of sequestrated CO2 from deep geologic formations to the shallow subsurface, and potential leakage of methane to the atmosphere in shale gas development that contributes to global warming. Shallow subsurface soil moisture is highly influenced by diurnal temperature variations, evaporation/condensation, precipitation and liquid water and water vapor flow, all of which are strongly coupled. Modeling studies, have shown that soil moisture in this zone is highly sensitive to the heat and mass flux boundary conditions at the land surface. Hence, approximation of these boundary conditions without properly incorporating complex feedback between the land and the atmospheric boundary layer are expected to result in significant errors. Even though considerable knowledge exists on how soil moisture changes in response to the flux and energy boundary conditions, emerging problems involving land atmospheric interactions require the quantification of soil moisture variability at higher spatial and temporal resolutions than what is needed in traditional applications in soil physics and vadose zone hydrology. These factors lead to many modeling challenges, primarily of which is the issue of up-scaling. It is our contention that knowledge that will contribute to both improving our understanding of the fundamental processes and practical problem solutions cannot be obtained using only field data. Basic to this limitation is the inability to make field measurements at very fine scales at high temporal resolutions. Also, as the natural boundary conditions at the land/atmospheric interface are not controllable in the field, even in pilot scale studies, the developed theories and models cannot be validated for a diversity of conditions that could be expected. As an alternative, we propose an innovative testing approach that couples a low velocity boundary layer climate wind tunnel to intermediate scale porous media tanks. Intermediate scale testing using soil tanks packed to represent different heterogeneous test configurations provides an attractive and cost effective alternative to investigate a class of problems involving the shallow unsaturated zone. In this talk, we will present examples of studies we have conducted in a hierarchy of test systems, including the intermediate scale. The advantages and limitations of testing at this scale are discussed using these examples. The features and capabilities of newly developed test systems are presented with the goal of exploring opportunities to use them to study some of the challenging multi-scale problems in the near surface unsaturated zone.
Lim, Seung Joo; Fox, Peter
2014-02-01
The effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds were investigated using a modified half life equation. The potential future pharmaceutical compounds investigated were approximately 2000 pharmaceutical drugs currently undergoing the United States Food and Drug Administration (US FDA) testing. EPI Suite (BIOWIN) model estimates the fates of compounds based on the biodegradability under aerobic conditions. While BIOWIN considered the biodegradability of a compound only, the half life equation used in this study was modified by biodegradability, sorption and cometabolic oxidation. It was possible that the potential future pharmaceutical compounds were more accurately estimated using the modified half life equation. The modified half life equation considered sorption and cometabolic oxidation of halogenated aromatic/aliphatics and nitrogen(N)-heterocyclic aromatics in the sub-surface, while EPI Suite (BIOWIN) did not. Halogenated aliphatics in chemicals were more persistent than halogenated aromatics in the sub-surface. In addition, in the sub-surface environment, the fates of organic chemicals were much more affected by halogenation in chemicals than by nitrogen(N)-heterocyclic aromatics. © 2013.
Barraclough, Jack T.; Robertson, J.B.; Janzer, V.J.; Saindon, L.G.
1976-01-01
A study was made (1970-1974) to evaluate the geohydrologic and geochemical controls on subsurface migration of radionuclides from pits and trenches in the Idaho National Engineering Laboratory (INEL) solid waste burial ground and to determine the existence and extent of radionuclide migration from the burial ground. A total of about 1,700 sediment, rock, and water samples were collected from 10 observation wells drilled in and near the burial ground of Idaho National Engineering Laboratory, formerly the National Reactor Testing Station (NRTS). Within the burial ground area, the subsurface rocks are composed principally of basalt. Wind- and water-deposited sediments occur at the surface and in beds between the thicker basalt zones. Two principal sediment beds occur at about 110 feet and 240 feet below the land surface. The average thickness of the surficial sedimentary layer is about 15 feet while that of the two principal subsurface layers is 13 and 14 feet, respectively. The water table in the aquifer beneath the burial ground is at a depth of about 580 feet. Fission, activation, and transuranic elements were detected in some of the samples from the 110- and 240-foot sedimentary layers. (Woodard-USGS)
Hickey, J.J.
1984-01-01
The city of St. Petersburg has been testing subsurface injection of treated sewage into the Floridan aquifer as a means of eliminating discharge of sewage to surface waters and as a means of storing treated sewage for future nonpotable reuse. Treated sweage that had a mean chloride concentration of 170 milligrams per liter (mg/l) was injected through a single well for 12 months at a mean rate of 4. 7 multiplied by 10**5 cubic feet per day (ft**3/d). The volume of water injected during the year was 1. 7 multiplied by 10**8 cubic feet. Pressure buildup at the end of one year ranged from less than 0. 1 to as much as 2. 4 pounds per square inch (lb/in**2) in observation wells at the site. Pressure buildup in wells open to the upper part of the injection zone was related to buoyant lift acting on the mixed water in the injection zone in addition to subsurface injection through the injection well. Calculations of the vertical component of pore velocity in the semiconfining bed underlying the shallowest permeable zone of the Floridan aquifer indicate upward movement of native water.
Enamel Microcracks Induced by Simulated Occlusal Wear in Mature, Immature, and Deciduous Teeth
Ijbara, Manhal; Tabata, Makoto J.; Wada, Junichiro; Miyashin, Michiyo
2018-01-01
Enamel wear, which is inevitable due to the process of mastication, is a process in which the microcracking of enamel occurs due to the surface contacting very small hard particles. When these particles slide on enamel, a combined process of microcutting and microcracking in the surface and subsurface of the enamel takes place. The aim of this study was to detect microscopic differences in the microcrack behavior by subjecting enamel specimens derived from different age groups (immature open-apex premolars, mature closed-apex premolars, and deciduous molars) to cycles of simulated impact and sliding wear testing under controlled conditions. Our findings indicated that the characteristics of the microcracks, including the length, depth, count, orientation, and relation to microstructures differed among the study groups. The differences between the surface and subsurface microcrack characteristics were most notable in the enamel of deciduous molars followed by immature premolars and mature premolars whereby deciduous enamel suffered numerous, extensive, and branched microcracks. Within the limitations of this study, it was concluded that enamel surface and subsurface microcracks characteristics are dependent on the posteruptive age with deciduous enamel being the least resistant to wear based on the microcrack behavior as compared to permanent enamel. PMID:29850534
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2012-02-01
Successful identification and preservation of the cavernous nerves (CN), which are responsible for sexual function, during prostate cancer surgery, will require subsurface detection of the CN beneath a thin fascia layer. This study explores optical nerve stimulation (ONS) in the rat with a fascia layer placed over the CN. Two near-IR diode lasers (1455 nm and 1550 nm lasers) were used to stimulate the CN in CW mode with a 1-mm-diameter spot in 8 rats. The 1455 nm wavelength provides an optical penetration depth (OPD) of ~350 μm, while 1550 nm provides an OPD of ~1000 μm (~3 times deeper than 1455 nm and 1870 nm wavelengths previously tested). Fascia layers with thicknesses of 85 - 600 μm were placed over the CN. Successful ONS was confirmed by an intracavernous pressure (ICP) response in the rat penis at 1455 nm through fascia 110 μm thick and at 1550 nm through fascia 450 μm thick. Higher incident laser power was necessary and weaker and slower ICP responses were observed as fascia thickness was increased. Subsurface ONS of the rat CN at a depth of 450 μm using a 1550 nm laser is feasible.
Casale, Gabriele; Pratt, Thomas L.
2015-01-01
The Yakima fold and thrust belt (YFTB) deforms the Columbia River Basalt Group flows of Washington State. The YFTB fault geometries and slip rates are crucial parameters for seismic‐hazard assessments of nearby dams and nuclear facilities, yet there are competing models for the subsurface fault geometry involving shallowly rooted versus deeply rooted fault systems. The YFTB is also thought to be analogous to the evenly spaced wrinkle ridges found on other terrestrial planets. Using seismic reflection data, borehole logs, and surface geologic data, we tested two proposed kinematic end‐member thick‐ and thin‐skinned fault models beneath the Saddle Mountains anticline of the YFTB. Observed subsurface geometry can be produced by 600–800 m of heave along a single listric‐reverse fault or ∼3.5 km of slip along two superposed low‐angle thrust faults. Both models require decollement slip between 7 and 9 km depth, resulting in greater fault areas than sometimes assumed in hazard assessments. Both models require initial slip much earlier than previously thought and may provide insight into the subsurface geometry of analogous comparisons to wrinkle ridges observed on other planets.
Large scale and long term application of bioslurping: the case of a Greek petroleum refinery site.
Gidarakos, E; Aivalioti, M
2007-11-19
This paper presents the course and the remediation results of a 4-year application of bioslurping technology on the subsurface of a Greek petroleum refinery, which is still under full operation and has important and complicated subsurface contamination problems, mainly due to the presence of light non-aqueous phase liquids (LNAPL). About 55 wells are connected to the central bioslurping unit, while a mobile bioslurping unit is also used whenever and wherever is necessary. Moreover, there are about 120 additional wells for the monitoring of the subsurface of the facilities that cover a total area of 1,000,000 m(2). An integrated monitoring program has also been developed and applied on the site, including frequent LNAPL layer depth and thickness measurements, conduction of bail-down and recovery tests, sampling and chemical analysis of the free oil phase, etc., so as to evaluate the remediation technique's efficiency and ensure a prompt tracing of any new potential leak. Despite the occurrence of new leaks within the last 4 years and the observed entrapment of LNAPL in the vadoze zone, bioslurping has managed to greatly restrict the original plume within certain and relatively small parts of the refinery facilities.
Testing of Monitoring Devices for JP-4 Releases in the Subsurface
1990-04-01
tests conducted to study the effectiveness, advantages , and limitations of a set of devices. All of the devices (except FiberChem) evaluated are...1,000 ppm and 1 percent butane standards ( Alltech Associates, Inc., Deerfield, Illinois). b. Temperature Program Analysis Two different temperature...in place. The advantage of having the probe is that we did not have to calculate or measure the liquid volume displaced by the probe. The accuracy of
25 CFR 211.22 - Leases for subsurface storage of oil or gas.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...
25 CFR 211.22 - Leases for subsurface storage of oil or gas.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 25 Indians 1 2012-04-01 2011-04-01 true Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...
25 CFR 211.22 - Leases for subsurface storage of oil or gas.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...
25 CFR 211.22 - Leases for subsurface storage of oil or gas.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 25 Indians 1 2014-04-01 2014-04-01 false Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...
25 CFR 211.22 - Leases for subsurface storage of oil or gas.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 25 Indians 1 2013-04-01 2013-04-01 false Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...
Compositions produced using an in situ heat treatment process
Roes, Augustinus Wilhelmus Maria; Nair, Vijay; Munsterman, Erwin Hunh; Van Bergen, Petrus Franciscus; Van Den Berg, Franciscus Gondulfus Antonius
2013-05-28
Methods for treating a subsurface formation and compositions produced therefrom are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.
Compositions produced using an in situ heat treatment process
Roes, Augustinus Wilhelmus Maria [Houston, TX; Nair, Vijay [Katy, TX; Munsterman, Erwin Henh [Amsterdam, NL; Van Bergen, Petrus Franciscus [Amsterdam, NL; Van Den Berg, Franciscus Gondulfus Antonius
2009-10-20
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.
Remote sensing capacity of Raman spectroscopy in identification of mineral and organic constituents
NASA Astrophysics Data System (ADS)
Chen, Bin; Stoker, Carol; Cabrol, Nathalie; McKay, Christopher P.
2007-09-01
We present design, integration and test results for a field Raman spectrometer science payload, integrated into the Mars Analog Research and Technology (MARTE) drilling platform. During the drilling operation, the subsurface Raman spectroscopy inspection system has obtained signatures of organic and mineral compositions. We also performed ground truth studies using both this field unit and a laboratory micro Raman spectrometer equipped with multiple laser excitation wavelengths on series of field samples including Mojave rocks, Laguna Verde salty sediment and Rio Tinto topsoil. We have evaluated laser excitation conditions and optical probe designs for further improvement. We have demonstrated promising potential for Raman spectroscopy as a non-destructive in situ, high throughput, subsurface detection technique, as well as a desirable active remote sensing tool for future planetary and space missions.
NASA Astrophysics Data System (ADS)
Henriet, J. P.; Microsystems Team
2009-04-01
The MiCROSYSTEMS project under the ESF EUROCORES EuroDiversity scheme is a holistic and multi-scale approach in studying microbial diversity and functionality in a nested microbial/metazoan system, which thrives in deep waters: the giant cold-water coral mound. Studies on prolific cold-water coral sites have been carried out from the canyons of the Bay of Biscay to the fjords of the Norwegian margin, while the Pen Duick carbonate mound province off Morocco developed into a joint natural lab for studying in particular the impact of biogeochemical and microbial processes on modern sedimentary diagenesis within the reef sediments, in complement to the studies on I0DP Exp. 307 cores (Challenger Mound, off Ireland). Major outcomes of this research can be summarized as follows. • IODP Exp. 307 on Challenger Mound had revealed a significant prokaryotic community both within and beneath the carbonate mound. MiCROSYSTEMS unveils a remarkable degree of compartmentalization in such community from the seawater, the coral skeleton surface and mucus to the reef sediments. The occurrence of such multiple and distinct microbial compartments associated with cold-water coral ecosystems promotes opportunities for microbial diversity in the deep ocean. • New cases of co-habitation of cold-water corals and giant deep-water oysters were discovered in the Bay of Biscay, which add a new facet of macrofaunal diversity to cold-water coral reef systems. • The discovery of giant, ancient coral graveyards on the Moroccan mounds not only fuels the debate about natural versus anthropogenic mass extinction, but these open frameworks simultaneously invite for the study of bio-erosion and early diagenesis, in particular organo-mineralization, and of the possible role and significance of these thick, solid rubble patches in 3D mound-building and consolidation. • The assessment of the carbonate budget of a modern cold-water coral mound (Challenger Mound) reveals that only 33 to 40 wt % of carbonate is derived from corals and suggests a selective enrichment of the hemipelagic carbonate fraction, compared to adjacent sediment drift deposits. • The detection of allochthonous fluids, in particular brines, in the pore space of the surficial mound sediments on the Pen Duick Escarpment hints towards the presence of salt deposits deep underneath, and simultaneously provides the first direct evidence of advective fluid transfer from the deep, throughout the mound substrate and the full mound height. Potential stratigraphic pathways leading from the deeper basinal realms directly to the mound setting have been imaged in a spectacular way through high-resolution pseudo-3D seismic imaging. Geophysical signatures of free gas accumulations have been detected a few hundreds of meters below the mound base, but low concentrations of methane and the absence of lipid biomarkers from methane-dependent prokaryotes suggest low fluxes of methane-derived carbon and thus very small rates of anaerobic oxidation of methane (AOM) in the immediate mound subsurface. Local changes in the sediment biogeochemistry are most likely dictated by slow diffusive fluid transfer, operating in a heterogeneous way in the subsurface. • Cultivation experiments with sediments from microbially active mound zones have allowed to study microbially induced carbonate precipitation and provide a tool for the interpretation of carbonate mineralogy. The development and operation of a continuous high-pressure bioreactor (100 bars) allows to simulate in an ex situ mode the impact of environmental parameter changes onto the functioning of relevant microbial communities. • The detected influx of sulfate in mound sediments implies that bacterial sulfate reduction can be the dominant anaerobic carbon mineralization process. Groundwater flow modeling suggests that currents impinging on the escarpment and the flanks of an exposed mound can account for a significant influx and transport of sulfate through convective fluid transfer within the mound sediments. Oceanic currents consequently provide not only a major control on the external flux of nutrients to the mound-building communities, but they also potentially drive internal flow in the mound. The extant hydrodynamic climate of the mound setting is documented through long-term lander deployments and CTD stations: the current records reveal a significant tidal and seasonal variability. The past environmental record over the last 400 ka is documented in a most comprehensive sedimentary archive, sampled with long cores at the foot of the Pen Duick Escarpment during the MD169 ‘MiCROSYSTEMS' cruise in July 2008. • MiCROSYSTEMS has significantly contributed to the successful submission of IODP proposal 673-Full, which should (i) document the whole-mound architecture and the mound setting on Pen Duick Escarpment as well as a most comprehensive stratigraphic record on a reference site at the foot of the escarpment, (ii) reveal the full spatial pattern in microbial diversity, activity and functionality throughout the mound and underneath, and (iii) unravel the plumbing system of a mound and the dynamic interaction between advective, convective and diffusive transfers of organic and inorganic compounds, which impact on biogeochemical equilibria, microbial activity and early diagenetic processes.
Borehole Muon Detector Development
NASA Astrophysics Data System (ADS)
Bonneville, A.; Flygare, J.; Kouzes, R.; Lintereur, A.; Yamaoka, J. A. K.; Varner, G. S.
2015-12-01
Increasing atmospheric CO2 concentrations have spurred investigation into carbon sequestration methods. One of the possibilities being considered, storing super-critical CO2 in underground reservoirs, has drawn more attention and pilot projects are being supported worldwide. Monitoring of the post-injection fate of CO2 is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We propose here to develop a 4-D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Muon detection is a relatively mature field of particle physics and there are many muon detector designs, though most are quite large and not designed for subsurface measurements. The primary technical challenge preventing deployment of this technology in the subsurface is the lack of miniaturized muon-tracking detectors capable of fitting in standard boreholes and that will resist the harsh underground conditions. A detector with these capabilities is being developed by a collaboration supported by the U.S. Department of Energy. Current simulations based on a Monte Carlo modeling code predict that the incoming muon angle can be resolved with an error of approximately two degrees, using either underground or sea level spectra. The robustness of the design comes primarily from the use of scintillating rods as opposed to drift tubes. The rods are arrayed in alternating layers to provide a coordinate scheme. Preliminary testing and measurements are currently being performed to test and enhance the performance of the scintillating rods, in both a laboratory and a shallow underground facility. The simulation predictions and data from the experiments will be presented.
NASA Astrophysics Data System (ADS)
Sussman, A. J.; Anderson, D.; Burt, C.; Craven, J.; Kimblin, C.; McKenna, I.; Schultz-Fellenz, E. S.; Miller, E.; Yocky, D. A.; Haas, D.
2016-12-01
Underground nuclear explosions (UNEs) result in numerous signatures that manifest on a wide range of temporal and spatial scales. Currently, prompt signals, such as the detection of seismic waves provide only generalized locations and the timing and amplitude of non-prompt signals are difficult to predict. As such, research into improving the detection, location, and identification of suspect events has been conducted, resulting in advancement of nuclear test detection science. In this presentation, we demonstrate the scalar variably of surface and subsurface observables, briefly discuss current capabilities to locate, detect and characterize potential nuclear explosion locations, and explain how emergent technologies and amalgamation of disparate data sets will facilitate improved monitoring and verification. At the smaller scales, material and fracture characterization efforts on rock collected from legacy UNE sites and from underground experiments using chemical explosions can be incorporated into predictive modeling efforts. Spatial analyses of digital elevation models and orthoimagery of both modern conventional and legacy nuclear sites show subtle surface topographic changes and damage at nearby outcrops. Additionally, at sites where such technology cannot penetrate vegetative cover, it is possible to use the vegetation itself as both a companion signature reflecting geologic conditions and showing subsurface impacts to water, nutrients, and chemicals. Aerial systems based on RGB imagery, light detection and ranging, and hyperspectral imaging can allow for combined remote sensing modalities to perform pattern recognition and classification tasks. Finally, more remote systems such as satellite based synthetic aperture radar and satellite imagery are other techniques in development for UNE site detection, location and characterization.
Field Investigation of Stream-Aquifer Interactions: A Case Study in Coastal California
NASA Astrophysics Data System (ADS)
Pritchard-Peterson, D.; Malama, B.
2017-12-01
We report here results of a detailed investigation of the dynamic interaction between a stream and an alluvial aquifer at Swanton Pacific Ranch in the Scotts Creek watershed, Santa Cruz County, California. The aquifer is an important source of groundwater for cropland irrigation and for aquatic ecosystem support. Low summer base flows in Scotts Creek are a source of serious concern for land managers, fisheries biologists, and regulatory agencies due to the presence of federally protected steelhead trout and coho salmon. An understanding of the interaction between the stream and pumped aquifer will allow for assessment of the impacts of groundwater extraction on stream flows and is essential to establishing minimum flow requirements. This will aid in the development of sustainable riparian groundwater pumping practices that meet agricultural and ecological needs. Results of extensive direct-push sampling of the subsurface, laboratory falling-head permeameter tests and particle size analysis of aquifer sediments, multi-day pumping tests, long-term passive monitoring of aquifer hydraulic heads and stream stage and discharge, and electrical resistivity interrogation of the subsurface are reported here. Findings indicate that the permeable subsurface formation tapped by irrigation wells is a leaky semi-confined aquifer, overlain by a thin low permeability layer of silt and clay above which lies Scotts Creek. These results are particularly useful to land managers responsible for groundwater abstraction from wells that tap into the aquifer. Additionally, an index of stream-aquifer connectivity is proposed that would allow land managers to conveniently modify groundwater abstraction practices, minimizing concerns of stream depletion.
NASA Astrophysics Data System (ADS)
Barnhart, E. P.; Ruppert, L. F.; Orem, W. H.; McIntosh, J. C.; Cunningham, A. B.; Fields, M. W.; Hiebert, R.; Hyatt, R.
2016-12-01
There is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by the extraction and transport of fossil fuels. This threat increases the need for improved groundwater monitoring and the ability to predict the extent to which microbial activity may remediate such contamination. The characterization of subsurface microbial communities could provide an ideal biomonitoring tool for the assessment of subsurface contamination due to prokaryotes environmental ubiquity, rapidity of response to environmental perturbation and the important role they play in hydrocarbon degradation and bioremediation. New DNA sequencing technologies provide the opportunity to cost-effectively identify the vast subsurface microbial ecosystem, but use of this new technology is restricted due to issues with sampling. Prior subsurface microbiology studies have relied on core samples that are expensive to obtain hard to collect aseptically and/or ground water samples that do not reflect in situ microbial densities or activities. The development of down-well incubation of sterile sediment with a Diffusive Microbial Sampler (DMS) has emerged as an alternative method to sample subsurface microbial communities that minimizes cost and contamination issues associated with traditional methods. We have designed a Subsurface Environment Sampler with a DMS module that could enable the anaerobic transport of the in situ microbial community from the field for laboratory bioremediation studies. This sampler could provide an inexpensive and standard method for subsurface microbial sampling which would make this tool useful for Federal, State, private and local agencies interested in monitoring contamination or the effectiveness of bioremediation activities in subsurface aquifers.
Luna, Gian Marco; Corinaldesi, Cinzia; Rastelli, Eugenio; Danovaro, Roberto
2013-10-01
We investigated the patterns and drivers of bacterial α- and β-diversity, along with viral and prokaryotic abundance and the carbon production rates, in marine surface and subsurface sediments (down to 1 m depth) in two habitats: vegetated sediments (seagrass meadow) and non-vegetated sediments. Prokaryotic abundance and production decreased with depth in the sediment, but cell-specific production rates and the virus-to-prokaryote ratio increased, highlighting unexpectedly high activity in the subsurface. The highest diversity was observed in vegetated sediments. Bacterial β-diversity between sediment horizons was high, and only a minor number of taxa was shared between surface and subsurface layers. Viruses significantly contributed to explain α- and β-diversity patterns. Despite potential limitations due to the only use of fingerprinting techniques, this study indicates that the coastal subsurface host highly active and diversified bacterial assemblages, that subsurface cells are more active than expected and that viruses promote β-diversity and stimulate bacterial metabolism in subsurface layers. The limited number of taxa shared between habitats, and between surface and subsurface sediment horizons, suggests that future investigations of the shallow subsurface will provide insights into the census of bacterial diversity, and the comprehension of the patterns and drivers of prokaryotic diversity in marine ecosystems. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
Farooq, Muhammad; Kim, Jung Ho; Song, Young Soo; Amjad Sabir, Mohammad; Umar, Muhammad; Tariq, Mohammad; Muhammad, Said
2014-01-01
The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM) was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway. PMID:24578621
NASA Astrophysics Data System (ADS)
Hernández-Almeida, I.; Sierro, F.-J.; Cacho, I.; Flores, J.-A.
2015-04-01
Subsurface water column dynamics in the subpolar North Atlantic were reconstructed in order to improve the understanding of the cause of abrupt ice-rafted detritus (IRD) events during cold periods of the early Pleistocene. We used paired Mg / Ca and δ18O measurements of Neogloboquadrina pachyderma (sinistral - sin.), deep-dwelling planktonic foraminifera, to estimate the subsurface temperatures and seawater δ18O from a sediment core from Gardar Drift, in the subpolar North Atlantic. Carbon isotopes of benthic and planktonic foraminifera from the same site provide information about the ventilation and water column nutrient gradient. Mg / Ca-based temperatures and seawater δ18O suggest increased subsurface temperatures and salinities during ice-rafting, likely due to northward subsurface transport of subtropical waters during periods of weaker Atlantic Meridional Overturning Circulation (AMOC). Planktonic carbon isotopes support this suggestion, showing coincident increased subsurface ventilation during deposition of IRD. Subsurface accumulation of warm waters would have resulted in basal warming and break-up of ice-shelves, leading to massive iceberg discharges in the North Atlantic. The release of heat stored at the subsurface to the atmosphere would have helped to restart the AMOC. This mechanism is in agreement with modelling and proxy studies that observe a subsurface warming in the North Atlantic in response to AMOC slowdown during Marine Isotope Stage (MIS) 3.
Farooq, Muhammad; Park, Samgyu; Kim, Jung Ho; Song, Young Soo; Amjad Sabir, Mohammad; Umar, Muhammad; Tariq, Mohammad; Muhammad, Said
2014-01-01
The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM) was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway.
30 CFR 250.801 - Subsurface safety devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... conditions, hydrate formation, or paraffins, an alternate setting depth of the subsurface safety device may... conditions such as permafrost, unstable bottom conditions, hydrate formations, and paraffins. (g) Subsurface...
Synergistic Use of Spacecraft Telecom Links for Collection of Planetary Radar Science Data
NASA Astrophysics Data System (ADS)
Asmar, S.; Bell, D. J.; Chahat, N. E.; Decrossas, E.; Dobreva, T.; Duncan, C.; Ellliot, H.; Jin, C.; Lazio, J.; Miller, J.; Preston, R.
2017-12-01
On multiple solar system missions, radar instruments have been used to probe subsurface geomorphology and to infer chemical composition based on the dielectric signature derived from the reflected signal. Example spacecraft radar instruments are the 90 MHz CONSERT radar used to probe the interior of Comet 67P/Churyumov-Gerasimenko to a depth of 760m, the 20 MHz SHARAD instrument used to investigate Mars subsurface ice features from Mars orbit at depths of 300 to 3000 meters and the upcoming RIMFAX 150 MHz to 1200 MHz ground penetrating radar that will ride on the Mars 2020 rover investigating to a depth of 10m below the rover. In all of these applications, the radar frequency and signal structures were chosen to match science goals of desired depth of penetration and spatial resolution combined with the expected subsurface materials and structures below the surface. Recently, JPL investigators have proposed a new radar science paradigm, synergistic use of the telecom hardware and telecom links to collect bistatic or monostatic radar signatures. All JPL spacecraft employ telecom hardware that operates at UHF (400 MHz and 900 MHz), X-band (8 GHz) or Ka-band (32 GHz). Using existing open-loop record functions in these radios, the telecom hardware can be used to capture opportunistic radar signatures from telecom signals penetrating the surface and reflecting off of subsurface structures. This paper reports on telecom strategies, radar science applications and recent laboratory and field tests to demonstrate the effectiveness of telecom link based radar data collection.
Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface.
Wu, Wei-Min; Carley, Jack; Green, Stefan J; Luo, Jian; Kelly, Shelly D; Van Nostrand, Joy; Lowe, Kenneth; Mehlhorn, Tonia; Carroll, Sue; Boonchayanant, Benjaporn; Löfller, Frank E; Watson, David; Kemner, Kenneth M; Zhou, Jizhong; Kitanidis, Peter K; Kostka, Joel E; Jardine, Philip M; Criddle, Craig S
2010-07-01
The effects of nitrate on the stability of reduced, immobilized uranium were evaluated in field experiments at a U.S. Department of Energy site in Oak Ridge, TN. Nitrate (2.0 mM) was injected into a reduced region of the subsurface containing high levels of previously immobilized U(IV). The nitrate was reduced to nitrite, ammonium, and nitrogen gas; sulfide levels decreased; and Fe(II) levels increased then deceased. Uranium remobilization occurred concomitant with nitrite formation, suggesting nitrate-dependent, iron-accelerated oxidation of U(IV). Bromide tracer results indicated changes in subsurface flowpaths likely due to gas formation and/or precipitate. Desorption-adsorption of uranium by the iron-rich sediment impacted uranium mobilization and sequestration. After rereduction of the subsurface through ethanol additions, background groundwater containing high levels of nitrate was allowed to enter the reduced test zone. Aqueous uranium concentrations increased then decreased. Clone library analyses of sediment samples revealed the presence of denitrifying bacteria that can oxidize elemental sulfur, H(2)S, Fe(II), and U(IV) (e.g., Thiobacillus spp.), and a decrease in relative abundance of bacteria that can reduce Fe(III) and sulfate. XANES analyses of sediment samples confirmed changes in uranium oxidation state. Addition of ethanol restored reduced conditions and triggered a short-term increase in Fe(II) and aqueous uranium, likely due to reductive dissolution of Fe(III) oxides and release of sorbed U(VI). After two months of intermittent ethanol addition, sulfide levels increased, and aqueous uranium concentrations gradually decreased to <0.1 microM.
Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R
2016-05-01
High (37)Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of (37)Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict (37)Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating (37)Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for (37)Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural (37)Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of (37)Ar activity concentrations. The influence of soil water content on (37)Ar production is shown to be negligible to first order, while (37)Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Yanping; Wiatrowski, Heather A; John, Ria; Lin, Chu-Ching; Young, Lily Y; Kerkhof, Lee J; Yee, Nathan; Barkay, Tamar
2013-02-01
The contamination of groundwater with mercury (Hg) is an increasing problem worldwide. Yet, little is known about the interactions of Hg with microorganisms and their processes in subsurface environments. We tested the impact of Hg on denitrification in nitrate reducing enrichment cultures derived from subsurface sediments from the Oak Ridge Integrated Field Research Challenge site, where nitrate is a major contaminant and where bioremediation efforts are in progress. We observed an inverse relationship between Hg concentrations and onset and rates of denitrification in nitrate enrichment cultures containing between 53 and 1.1 μM of inorganic Hg; higher Hg concentrations increasingly extended the time to onset of denitrification and inhibited denitrification rates. Microbial community complexity, as indicated by terminal restriction fragment length polymorphism (tRFLP) analysis of the 16S rRNA genes, declined with increasing Hg concentrations; at the 312 nM Hg treatment, a single tRFLP peak was detected representing a culture of Bradyrhizobium sp. that possessed the merA gene indicating a potential for Hg reduction. A culture identified as Bradyrhizobium sp. strain FRC01 with an identical 16S rRNA sequence to that of the enriched peak in the tRFLP patterns, reduced Hg(II) to Hg(0) and carried merA whose amino acid sequence has 97 % identity to merA from the Proteobacteria and Firmicutes. This study demonstrates that in subsurface sediment incubations, Hg may inhibit denitrification and that inhibition may be alleviated when Hg resistant denitrifying Bradyrhizobium spp. detoxify Hg by its reduction to the volatile elemental form.
Experimental validation of a sub-surface model of solar power for distributed marine sensor systems
NASA Astrophysics Data System (ADS)
Hahn, Gregory G.; Cantin, Heather P.; Shafer, Michael W.
2016-04-01
The capabilities of distributed sensor systems such as marine wildlife telemetry tags could be significantly enhanced through the integration of photovoltaic modules. Photovoltaic cells could be used to supplement the primary batteries for wildlife telemetry tags to allow for extended tag deployments, wherein larger amounts of data could be collected and transmitted in near real time. In this article, we present experimental results used to validate and improve key aspects of our original model for sub-surface solar power. We discuss the test methods and results, comparing analytic predictions to experimental results. In a previous work, we introduced a model for sub-surface solar power that used analytic models and empirical data to predict the solar irradiance available for harvest at any depth under the ocean's surface over the course of a year. This model presented underwater photovoltaic transduction as a viable means of supplementing energy for marine wildlife telemetry tags. The additional data provided by improvements in daily energy budgets would enhance the temporal and spatial comprehension of the host's activities and/or environments. Photovoltaic transduction is one method that has not been widely deployed in the sub-surface marine environments despite widespread use on terrestrial and avian species wildlife tag systems. Until now, the use of photovoltaic cells for underwater energy harvesting has generally been disregarded as a viable energy source in this arena. In addition to marine telemetry systems, photovoltaic energy harvesting systems could also serve as a means of energy supply for autonomous underwater vehicles (AUVs), as well as submersible buoys for oceanographic data collection.
NASA Astrophysics Data System (ADS)
Sinha, Navita; Nepal, Sudip; Kral, Timothy; Kumar, Pradeep
2017-02-01
Life as we know it requires liquid water and sufficient liquid water is highly unlikely on the surface of present-day Mars. However, according to thermal models there is a possibility of liquid water in the deep subsurface of Mars. Thus, the martian subsurface, where the pressure and temperature is higher, could potentially provide a hospitable environment for a biosphere. Also, methane has been detected in the Mars' atmosphere. Analogous to Earth's atmospheric methane, martian methane could also be biological in origin. The carbon and energy sources for methanogenesis in the subsurface of Mars could be available by downwelling of atmospheric CO2 into the regolith and water-rock reactions such as serpentinization, respectively. Corresponding analogs of the martian subsurface on Earth might be the active sites of serpentinization at depths where methanogenic thermophilic archaea are the dominant species. Methanogens residing in Earth's hydrothermal environments are usually exposed to a variety of physiological stresses including a wide range of pressures, temperatures, and pHs. Martian geochemical models imply that the pH of probable groundwater varies from 4.96 to 9.13. In this work, we used the thermophilic methanogen, Methanothermobacter wolfeii, which grows optimally at 55oC. Therefore, a temperature of 55oC was chosen for these experiments, possibly simulating Mars' subsurface temperature. A martian geophysical model suggests depth and pressure corresponding to a temperature of 55 °C would be between 1-30 km and 100-3,000 atm respectively. Here, we have simulated Mars deep subsurface pH, pressure, and temperature conditions and have investigated the survivability, growth rate, and morphology of M. wolfeii after exposure to a wide range of pH 5-9) and pressure (1-1200 atm) at a temperature of 55 °C. Interestingly, in this study we have found that M. wolfeii was able to survive at all the pressures and pHs tested at 55 °C. In order to understand the effect of different pHs and pressures on the metabolic activities of M. wolfeii, we also calculated their growth rate by measuring methane concentration in the headspace gas samples at regular intervals. In acidic conditions, the growth rate (γ) of M. wolfeii increased with the increase in pressure. In neutral and alkaline conditions, the growth rate (γ) of M. wolfeii initially increased with pressure, but decreased upon further increase of pressure. To investigate the effect of combined pH, pressure, and temperature on the morphology of M. wolfeii, we took phase contrast images of the cells. We did not find any obvious significant alteration in the morphology of M. wolfeii cells. Methanogens, chemolithoautotrophic anaerobic microorganisms, are considered as ideal model microorganisms for Mars. In light of research presented here, we suggest that at least one methanogen, M. wolfeii, could survive in the deep subsurface environment of Mars.
An Online Risk Monitor System (ORMS) to Increase Safety and Security Levels in Industry
NASA Astrophysics Data System (ADS)
Zubair, M.; Rahman, Khalil Ur; Hassan, Mehmood Ul
2013-12-01
The main idea of this research is to develop an Online Risk Monitor System (ORMS) based on Living Probabilistic Safety Assessment (LPSA). The article highlights the essential features and functions of ORMS. The basic models and modules such as, Reliability Data Update Model (RDUM), running time update, redundant system unavailability update, Engineered Safety Features (ESF) unavailability update and general system update have been described in this study. ORMS not only provides quantitative analysis but also highlights qualitative aspects of risk measures. ORMS is capable of automatically updating the online risk models and reliability parameters of equipment. ORMS can support in the decision making process of operators and managers in Nuclear Power Plants.
Commercial grade item (CGI) dedication of MDR relays for nuclear safety related applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, R.K.; Julka, A.; Modi, G.
1994-08-01
MDR relays manufactured by Potter and Brumfield (P and B) have been used in various safety related applications in commercial nuclear power plants. These include emergency safety features (ESF) actuation systems, emergency core cooling systems (ECCS) actuation, and reactor protection systems. The MDR relays manufactured prior to May 1990 showed signs of generic failure due to corrosion and outgassing of coil varnish. P and B has made design changes to correct these problems in relays manufactured after May 1990. However, P and B does not manufacture the relays under any 10CFR50 Appendix B quality assurance (QA) program. They manufacture themore » relays under their commercial QA program and supply these as commercial grade items. This necessitates CGI Dedication of these relays for use in nuclear-safety-related applications. This paper presents a CGI dedication program that has been used to dedicate the MDR relays manufactured after May 1990. The program is in compliance with current Nuclear Regulatory Commission (NRC) and Electric Power Research Institute (EPRI) guidelines and applicable industry standards; it specifies the critical characteristics of the relays, provides the tests and analysis required to verify the critical characteristics, the acceptance criteria for the test results, performs source verification to qualify P and B for its control of the critical characteristics, and provides documentation. The program provides reasonable assurance that the new MDR relays will perform their intended safety functions.« less
NASA Astrophysics Data System (ADS)
Melo, J. L.; Aguiar, O. D.; Velloso, W. F., Jr.; Lucena, A. U.
2003-08-01
O detector de ondas gravitacionais MARIO SCHENBERG consistirá de uma massa esférica de cobre-alumínio de 1150kg resfriada a 4K, sobre a qual serão instalados 6 transdutores de nióbio. Com estes trandutores pretende-se converter um possível sinal de onda gravitacional detectado em sinal elétrico, para tanto é necessário que o acoplamento mecânico entre os transdutores e a massa ressonante seja o maior possível. Isto significa que o transdutor deve ser ressonante na mesma freqüência que a antena (aproximadamente 3200Hz). Neste trabalho foi desenvolvida uma geometria para a estrutura mecânica do trandutor. Isto foi feito criando-se modelos em elementos finitos usando-se o "software" MSC/Nastran. Estes modelos criados foram analisados estaticamente (cálculo de tensões) e dinamicamente (cálculo das freqüências de ressonâncias e seus respectivos modos normais) de maneira a se obter o primeiro modo normal do transdutor em 3200Hz. A partir destes cálculos escolheu-se a melhor geometria para o transdutor. Os próximos passos do trabalho serão: usinar este transdutor em uma barra de nióbio e testá-lo à temperatura ambiente e à baixa temperatura. Após isto, pretende-se testá-lo na própria antena resfriada.
Method of imaging the electrical conductivity distribution of a subsurface
Johnson, Timothy C.
2017-09-26
A method of imaging electrical conductivity distribution of a subsurface containing metallic structures with known locations and dimensions is disclosed. Current is injected into the subsurface to measure electrical potentials using multiple sets of electrodes, thus generating electrical resistivity tomography measurements. A numeric code is applied to simulate the measured potentials in the presence of the metallic structures. An inversion code is applied that utilizes the electrical resistivity tomography measurements and the simulated measured potentials to image the subsurface electrical conductivity distribution and remove effects of the subsurface metallic structures with known locations and dimensions.
The report provides a summary of the information exchange at a workshop on the potential for release of semi- or non-volatile organic constituents at contaminated sites where sub-surface treatment has been used to control migration, and from waste that is disposed or re-used. The...
Shallow subsurface drip irrigation (S3DI) for small irregular-shaped fields in the southeast
USDA-ARS?s Scientific Manuscript database
Field tests were conducted using S3DI on cotton (Gossypium hirsutum, L.), corn (Zea mays, L.), and peanut (Arachis hypogeae, L.) rotations to investigate yield potential and economic sustainability of this irrigation system. Drip tubing was installed in alternate row middles, strip tillage was used ...
Glass fiber addition strengthens low-density ablative compositions
NASA Technical Reports Server (NTRS)
Chandler, H. H.
1974-01-01
Approximately 15% of E-glass fibers was added to compositions under test and greatly improved char stability. Use of these fibers also reduced thermal strains which, in turn, minimized char shrinkage and associated cracks, subsurface voids, and disbonds. Increased strength allows honeycomb core reinforcement to be replaced by equivalent amount of glass fibers.
GROUND WATER ISSUE: NATURAL ATTENUATION OF HEXA- VALENT CHROMIUM IN GROUND WATER AND SOILS
In this paper, what is known about the transformation of chromium in the subsurface is explored. This is an attempt to identify conditions where it is most likely to occur, and describe soil tests that can assist in determining the likelihood of natural attenuation of Cr(VI) in s...
DOT National Transportation Integrated Search
2013-06-01
Due to the soft nature of subsurface soils in southern Louisiana, roads often have to : be constructed on very weak subgrade soils with high in-situ moisture contents that : do not have the suffi cient strength/stiff ness to support the construction/...