Science.gov

Sample records for esfahan fuel production

  1. Farmers' Learning Strategies in the Province of Esfahan

    ERIC Educational Resources Information Center

    Karbasioun, Mostafa; Biemans, Harm; Mulder, Martin

    2008-01-01

    This study was designed to investigate changes in farming and to look at how farmers adapt to diverse changes in and around their farms in the province of Esfahan, Iran. It is part of a larger project aimed at developing a job competency profile for agricultural extension instructors (AEIs). One hundred and two farmers who had previously followed…

  2. Alcohol and fuel production

    SciTech Connect

    Roth, E.R.

    1981-12-22

    Alcohol/water mixtures, such as those produced by fermentation of biomass material, are separated by extraction of alcohol with a solvent especially suited to such extraction and to subsequent removal. Conventional distillation steps to concentrate alcohol and eliminate water are rendered unnecessary at a considerable reduction in heat energy requirement (Usually met with fossil fuel). Addition of gasoline between the solvent extraction and solvent recovery steps not only aids the latter separation but produces alcohol already denatured for fuel use.

  3. Opportunities for Alternative Fuels Production

    DTIC Science & Technology

    2011-05-05

    lifecycle emissions can be less than half those of petroleum-derived fuels. In particular, a feedstock consisting of a 60/40 coal/biomass blend (by...available for free download at http://www.rand.org/pubs/testimonies/CT360/. 2 greenhouse gas emissions . Finally, a federal program directed at reducing...liquids production in Qatar and Malaysia, and small amounts of biodiesel production in the United States and Europe. Expanding alternative fuels

  4. Alcohol and fuel production

    SciTech Connect

    Roth, E.R.

    1984-01-10

    Alcohol/water mixtures, such as those produced by fermentation of biomass material, are separated by extraction of alcohol with a solvent, comprising a higher aliphatic alcohol in major amount and an aliphatic hydrocarbon in minor amount, especially suited to such extraction and to subsequent removal. The solvent alcohol desirably has a branched chain, or the hydrocarbon an unsaturated bond, or both. Conventional distillation steps to concentrate alcohol and eliminate water are rendered unnecessary at a considerable reduction in heat energy requirement (usually met with fossil fuel). Optional addition of gasoline between the solvent extraction and solvent recovery steps not only aids the latter separation but produces alcohol already denatured for fuel use.

  5. Fuel from microalgae lipid products

    SciTech Connect

    Hill, A.M.; Feinberg, D.A.

    1984-04-01

    The large-scale production of microalgae is a promising method of producing a renewable feedstock for a wide variety of fuel products currently refined from crude petroleum. These microalgae-derived products include lipid extraction products (triglycerides, fatty acids, and hydrocarbons) and catalytic conversion products (paraffins and olefins). Microalgal biomass productivity and lipid composition of current experimental systems are estimated at 66.0 metric tons per hectare year and 30% lipid content. Similar yields in a large-scale facility indicate that production costs are approximately six times higher than the average domestic price for crude, well-head petroleum. Based on achievable targets for productivity and production costs, the potential for microalgae as a fuel feedstock is presented in context with selected process refining routes and is compared with conventional and alternative feedstocks (e.g., oilseeds) with which microalgae must compete. 24 references, 9 figures, 4 tables.

  6. Solar synthetic fuel production

    NASA Astrophysics Data System (ADS)

    Bilgen, E.; Bilgen, C.

    In this paper, a thermodynamic study is presented on solar hydrogen production using concentrated solar energy. In the first part, the direct decomposition process has been studied. The temperature requirements at various partial pressures of H2O, H2 and H yields, thermal efficiency and separation of products are discussed. In the second part, using consistent costing bases, the cost of hydrogen is estimated for solar-direct decomposition process and solar-electrolysis process. It has been found that the solar-direct decomposition process concept provides hydrogen costs in the range of $22/GJ which are lower by $15-$26 than those provided by a solar electrolysis process.

  7. Hydrogen as a fuel - Production

    NASA Astrophysics Data System (ADS)

    Schmidt, C.

    Methods for the production of hydrogen as a fuel using different technologies are evaluated from a technical and economical point of view. The main characteristics of hydrogen are considered, and its properties are compared to those of methane and gasoline. Electrolysis is viewed as the most likely process for practical large-scale H2 production and offers the greatest potential for meeting necessary capital requirements. Thermochemical production of H2 offers the best efficiency (all by-products can be reinjected into the process), but lacks practical experience. Chemical production of H2 using coal as a primary raw material would be practical for countries with large resources of cheap coal. The low boiling point (-433 F), low gaseous density (0.005 lb/cu ft), and low energy requirements of H2 make its storage and transport the most difficult of all synthetic fuels. Moreover, the price of H2 is not competitive with the present price of petroleum. The production of synthetic natural gas and hydrogen is expected to have economical advantages in the near future.

  8. Jet Fuel Production from TAG and FAME

    DTIC Science & Technology

    2010-12-01

    algae oil TAG into JP-8 fuel components. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 24-02-2011 13. SUPPLEMENTARY NOTES The views, opinions...Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS algae , JP-8, renewable fuel , jet fuel Benjamin G. Oster University of North Dakota...crop oil TAG into hydrocarbon products. This project utilized the EERC process to convert algae oil TAG into JP-8 fuel components. The fuel

  9. Fuel Production from Seawater and Fuel Cells Using Seawater.

    PubMed

    Fukuzumi, Shunichi; Lee, Yong-Min; Nam, Wonwoo

    2017-09-15

    Seawater is the most abundant resource on our planet and fuel production from seawater has the remarkable merit that it would not compete with growing demands of pure water. This review focuses on the production of fuels from seawater and their direct use in fuel cells. Electrolysis of seawater under appropriate conditions affords hydrogen and dioxygen with 100% Faradaic efficiency without oxidation of chloride ion. Photoelectrocatalytic production of hydrogen from seawater provides promising way to produce hydrogen with low cost and high efficiency. Microbial solar cells (MSCs) using biofilms produced in seawater can generate electricity from sun light without additional fuel because the products of photosynthesis can be utilized as electrode reactants, while the electrode products can be utilized as photosynthetic reactants. Another important source for hydrogen is hydrogen sulfide, which is abundantly found in Black Sea deep water. Hydrogen is produced by electrolysis of Black Sea deep water that can also be used in hydrogen fuel cells. Production of a fuel and its direct use in a fuel cell has been made possible for the first time by combination of photocatalytic production of hydrogen peroxide from seawater and dioxygen in the air and its direct use in one-compartment hydrogen peroxide fuel cells to obtain electric power. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ethanol fuels: use, production, and economics. [Textbook

    SciTech Connect

    Not Available

    1981-05-01

    This text is intended for use at the junior college or community college level. It contains the following chapters: issues and concerns; the production and use of alcohol fuels; ethanol-potential as fuel extender or alternative; ethanol production plausibility and feasibility in specific situations, feedstock considerations; introduction to basis chemistry, microbiology, and heat transfer; production of ethanol fuel; plant design considerations; plant operations; production economics; and safety. (MHR)

  11. Advanced Biorefineries for Production of Fuel Ethanol

    USDA-ARS?s Scientific Manuscript database

    This review, "Advanced biorefineries for production of fuel ethanol," is a chapter in the Wiley book entitled Biomass to Biofuels: Strategies for Global Industries and is intended to cover all major ethanol production processes to date. The chapter discusses current fuel ethanol production processe...

  12. Fissile-fuel production by linear accelerators

    SciTech Connect

    Takahashi, H.; Grand, P.; Powell, J.R.; Steinberg, M.; Kouts, H.J.C.

    1982-01-01

    Fissile fuel production by linear accelerators has advantages over fast breeders with respect to the absence of criticality problems and a higher net production rate of fuel. As part of the NASAP effort, a design study of the light-water reactor fuel enricher/regenerator, has been performed under the restriction that fuel was not to be reprocessed. The enricher/regenerator uses liquid lead jets as the target for the accelerator beam. The generated neutrons were then captured in an LWR fuel assembly for in-situ generation of fissile fuel. If the restriction of no reprocessing is removed, uranium or thorium elements can be irradiated directly with high-energy protons. The fissile fuel production rate and the heat regeneration due to high- and low-energy fission reaction are thus considerably increased, i.e., by at least a factor of two, as compared with liquid lead targets.

  13. Fuel cell electric power production

    DOEpatents

    Hwang, Herng-Shinn; Heck, Ronald M.; Yarrington, Robert M.

    1985-01-01

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  14. Composition and methods for improved fuel production

    DOEpatents

    Steele, Philip H.; Tanneru, Sathishkumar; Gajjela, Sanjeev K.

    2015-12-29

    Certain embodiments of the present invention are configured to produce boiler and transportation fuels. A first phase of the method may include oxidation and/or hyper-acidification of bio-oil to produce an intermediate product. A second phase of the method may include catalytic deoxygenation, esterification, or olefination/esterification of the intermediate product under pressurized syngas. The composition of the resulting product--e.g., a boiler fuel--produced by these methods may be used directly or further upgraded to a transportation fuel. Certain embodiments of the present invention also include catalytic compositions configured for use in the method embodiments.

  15. Engineering organisms for industrial fuel production

    PubMed Central

    2010-01-01

    Volatile fuel costs, the need to reduce greenhouse gas emissions and fuel security concerns are driving efforts to produce sustainable renewable fuels and chemicals. Petroleum comes from sunlight, CO2 and water converted via a biological intermediate into fuel over a several million year timescale. It stands to reason that using biology to short-circuit this time cycle offers an attractive alternative—but only with relevant products at or below market prices. The state of the art of biological engineering over the past five years has progressed to allow for market needs to drive innovation rather than trying to adapt existing approaches to the market. This report describes two innovations using synthetic biology to dis-intermediate fuel production. LS9 is developing a means to convert biological intermediates such as cellulosic hydrolysates into drop-in hydrocarbon product replacements such as diesel. Joule Unlimited is pioneering approaches to eliminate feedstock dependency by efficiently capturing sunlight, CO2 and water to produce fuels and chemicals. The innovations behind these companies are built with the market in mind, focused on low cost biosynthesis of existing products of the petroleum industry. Through successful deployment of technologies such as those behind LS9 and Joule Unlimited, alternative sources of petroleum products will mitigate many of the issues faced with our petroleum-based economy. PMID:21326829

  16. Engineering organisms for industrial fuel production.

    PubMed

    Berry, David A

    2010-01-01

    Volatile fuel costs, the need to reduce greenhouse gas emissions and fuel security concerns are driving efforts to produce sustainable renewable fuels and chemicals. Petroleum comes from sunlight, CO(2) and water converted via a biological intermediate into fuel over a several million year timescale. It stands to reason that using biology to short-circuit this time cycle offers an attractive alternative--but only with relevant products at or below market prices. The state of the art of biological engineering over the past five years has progressed to allow for market needs to drive innovation rather than trying to adapt existing approaches to the market. This report describes two innovations using synthetic biology to dis-intermediate fuel production. LS9 is developing a means to convert biological intermediates such as cellulosic hydrolysates into drop-in hydrocarbon product replacements such as diesel. Joule Unlimited is pioneering approaches to eliminate feedstock dependency by efficiently capturing sunlight, CO(2) and water to produce fuels and chemicals. The innovations behind these companies are built with the market in mind, focused on low cost biosynthesis of existing products of the petroleum industry. Through successful deployment of technologies such as those behind LS9 and Joule Unlimited, alternative sources of petroleum products will mitigate many of the issues faced with our petroleum-based economy. © 2010 Landes Bioscience

  17. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2004-08-01

    The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction, leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where the fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report.

  18. Spent nuclear fuel project product specification

    SciTech Connect

    Pajunen, A.L.

    1998-01-30

    Product specifications are limits and controls established for each significant parameter that potentially affects safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for transport to dry storage. The product specifications in this document cover the spent fuel packaged in MultiCanister Overpacks (MCOs) to be transported throughout the SNF Project. The SNF includes N Reactor fuel and single-pass reactor fuel. The FRS removes the SNF from the storage canisters, cleans it, and places it into baskets. The MCO loading system places the baskets into MCO/Cask assembly packages. These packages are then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the MCO cask packages are transferred to the Canister Storage Building (CSB), where the MCOs are removed from the casks, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The key criteria necessary to achieve these goals are documented in this specification.

  19. Controlled Antibiotic use during Fuel Ethanol Production

    USDA-ARS?s Scientific Manuscript database

    The production of fuel ethanol from corn feedstock is a rapidly growing industry in the US. The ability to make a profit in ethanol production from corn is marginal, and depends heavily on the sale of byproducts of the fermentation process. The fermentation reaction is optimized for yeast growth a...

  20. Fuel production potential of several agricultural crops

    SciTech Connect

    Mays, D.A.; Buchanan, W.; Bradford, B.N.

    1984-11-01

    Data collected on starch and sugar crops indicate that sweet potato and sweet sorghum have the best potential for alcohol production in the TVA area. Of the oil crops evaluated in this series of experiments only sunflower and okara appear to offer potential in the Tennessee Valley for oil production for fuel or other uses. 21 tabs.

  1. Alcohol fuel production training program. Final report

    SciTech Connect

    Burke, J.

    1982-06-30

    The purpose of the project was to offer instruction in the small scale production of ethanol, which can be added to gasoline by about 10%. The course was designed to help farmers in particular to make ethanol to extend fuel use. This project has four objectives. They are: (1) design an alcohol fuel production course with appropriate equipment for hands-on training; (2) offer at least three training sessions on alcohol fuel production in Cumberland County each year of the project; (3) work with the Governor's Task Force on Gasohol to disseminate the necessary information on alcohol production to the public; (4) identify, in consultation with the New Jersey Department of Energy and Agriculture, other training sites in the state and offer at least three training sessions outside of Cumberland County during the second year of the project. As of March 31, 1982, Cumberland County College completed all activities and objectives outlined in its Appropriate Technology project ''Alcohol Fuel Production.'' Given the six month extension requested to accommodate farmers in other parts of the state and the growing season, this project was completed within the stated time schedule. Although the response for the course was high in the beginning of 1981, the increased supply of low cost fuels at the end of the year probably accounts for the decline in the public's willingness to take a course of this nature.

  2. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H. C. Maru; M. Farooque

    2003-12-19

    The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations or in distributed locations near the customer, including hospitals, schools, universities, hotels and other commercial and industrial applications. FuelCell Energy has designed three different fuel cell power plant models (DFC300, DFC1500 and DFC3000). FCE's power plants are based on its patented Direct FuelCell technology, where the fuel is directly fed to fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating, and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report. FCE's DFC

  3. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2002-02-01

    generation, industrial cogeneration, marine applications and uninterrupted power for military bases. FuelCell Energy operated a 1.8 MW plant at a utility site in 1996-97, the largest fuel cell power plant ever operated in North America. This proof-of-concept power plant demonstrated high efficiency, low emissions, reactive power control, and unattended operation capabilities. Drawing on the manufacture, field test, and post-test experience of the full-size power plant; FuelCell Energy launched the Product Design Improvement (PDI) program sponsored by government and the private-sector cost-share. The PDI efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program was initiated in December 1994. Year 2000 program accomplishments are discussed in this report.

  4. Household food security status and associated factors among high-school students in Esfahan, Iran.

    PubMed

    Mohammadzadeh, Assieh; Dorosty, Ahmadreza; Eshraghian, Mohammadreza

    2010-10-01

    The present study was designed to determine household food security status and factors associated with food insecurity among high-school students in Esfahan, Iran. Cross-sectional surveys. The present study was conducted in autumn 2008 in Esfahan, Iran. The samples were selected using systematic cluster sampling. Socio-economic questionnaires, food security questionnaires and FFQ were filled out during face-to-face interviews. In addition, data on participants' weights and heights were collected. A total of 580 students (261 boys and 319 girls) aged 14-17 years from forty high schools in Esfahan, Iran, were selected. The prevalence of household food insecurity according to the US Department of Agriculture food security questionnaire was 36.6 % (95 % CI 0.33, 0.40). Food insecurity was positively associated with number of members in the household (P < 0.05) and negatively associated with parental education level and job status and household economic status (P < 0.05). Moreover, students living in food-insecure households more frequently consumed bread, macaroni, potato and egg (P < 0.05), while they less frequently consumed rice, red meat, sausage and hamburger, poultry, fish, green vegetables, root and bulb (coloured) vegetables, melons, apples and oranges, milk and yoghurt (P < 0.05). Food insecurity was prevalent among households in Esfahan, Iran, and food security status was associated with socio-economic factors. Students who belonged to food-secure households more frequently consumed healthy foods (except sausage and hamburger), whereas those living in food-insecure households more frequently consumed cheap foods containing high energy per kilogram. The present study suggests that intervention programmes be designed and carried out.

  5. Engineering cyanobacteria for fuels and chemicals production.

    PubMed

    Zhou, Jie; Li, Yin

    2010-03-01

    The world's energy and global warming crises call for sustainable, renewable, carbon-neutral alternatives to replace fossil fuel resources. Currently, most biofuels are produced from agricultural crops and residues, which lead to concerns about food security and land shortage. Compared to the current biofuel production system, cyanobacteria, as autotrophic prokaryotes, do not require arable land and can grow to high densities by efficiently using solar energy, CO(2), water, and inorganic nutrients. Moreover, powerful genetic techniques of cyanobacteria have been developed. For these reasons, cyanobacteria, which carry out oxygenic photosynthesis, are attractive hosts for production of fuels and chemicals. Recently, several chemicals including ethanol, isobutanol and isoprene have been produced by engineered cyanobacteria directly using solar energy, CO(2), and water. Cyanobacterium is therefore a potential novel cell factory for fuels and chemicals production to address global energy security and climate change issues.

  6. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2003-03-01

    The program efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program is designed to advance the carbonate fuel cell technology from full-size field test to the commercial design. FuelCell Energy, Inc. (FCE) is in the later stage of the multiyear program for development and verification of carbonate fuel cell based power plants supported by DOE/NETL with additional funding from DOD/DARPA and the FuelCell Energy team. FCE has scaled up the technology to full-size and developed DFC{reg_sign} stack and balance-of-plant (BOP) equipment technology to meet product requirements, and acquired high rate manufacturing capabilities to reduce cost. FCE has designed submegawatt (DFC300A) and megawatt (DFC1500 and DFC3000) class fuel cell products for commercialization of its DFC{reg_sign} technology. A significant progress was made during the reporting period. The reforming unit design was optimized using a three-dimensional stack simulation model. Thermal and flow uniformities of the oxidant-In flow in the stack module were improved using computational fluid dynamics based flow simulation model. The manufacturing capacity was increased. The submegawatt stack module overall cost was reduced by {approx}30% on a per kW basis. An integrated deoxidizer-prereformer design was tested successfully at submegawatt scale using fuels simulating digester gas, coal bed methane gas and peak shave (natural) gas.

  7. Seroepidemiological study of bovine respiratory viruses (BRSV, BoHV-1, PI-3V, BVDV, and BAV-3) in dairy cattle in central region of Iran (Esfahan province).

    PubMed

    Shirvani, Edris; Lotfi, Mohsen; Kamalzadeh, Morteza; Noaman, Vahid; Bahriari, Masumeh; Morovati, Hasan; Hatami, Alireza

    2012-01-01

    Respiratory diseases in calves are responsible for major economic losses in both beef and dairy production. Several viruses, such as bovine respiratory syncytial virus (BRSV), bovine herpes virus-1 (BoHV-1), bovine parainfluenza virus-3 (BPI-3V), bovine viral diarrhea virus (BVDV), and bovine adenoviruses (BAV), are detected in most clinical cases with respiratory signs. The aim of this study is to define seroprevalences of five major viral causes of bovine respiratory infections in cattle in central region of Iran (Esfahan province). The population targeted was 642 dairy cows (Holstein-Friesian) from 25 farms. Samples of blood serum from female cattle were examined. Sera were tested by commercial ELISA kits to detect antibody against BRSV, BoHV-1, BPI-3V, BVDV, and BAV-3. The results were analyzed by Chi-square test. In the present study, seroprevalences of BRSV, BoHV-1, PI3V, BVDV, and BAV-3 were 51.1%, 72%, 84.4%, 49.2%, and 55.6%, respectively. The present study shows that infections of bovine respiratory viruses are very common in cattle in Esfahan.

  8. H2 Production and Fuel Cells

    SciTech Connect

    Wang, Xianqin; Rodriguez, Jose A.

    2007-01-01

    The world demand for energy and the need for protecting our environment can be achieved by increasing energy efficiency and by developing “clean” energy sources. Among the alternative fuels, hydrogen is receiving a lot of attention around the world. In this chapter, recent applications of oxide nanostructures in H2 production and fuel cell technology are summarized. We cover in detail catalytic studies for hydrogen production via the water gas shift reaction over ceria-based nanosystems. These studies illustrate the importance of understanding the fundamental conditions necessary for optimal operation of the catalysts.

  9. Production of chemicals and fuels from biomass

    DOEpatents

    Woods, Elizabeth; Qiao, Ming; Myren, Paul; Cortright, Randy D.; Kania, John

    2015-12-15

    Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  10. Risk factors of jet fuel combustion products.

    PubMed

    Tesseraux, Irene

    2004-04-01

    Air travel is increasing and airports are being newly built or enlarged. Concern is rising about the exposure to toxic combustion products in the population living in the vicinity of large airports. Jet fuels are well characterized regarding their physical and chemical properties. Health effects of fuel vapors and liquid fuel are described after occupational exposure and in animal studies. Rather less is known about combustion products of jet fuels and exposure to those. Aircraft emissions vary with the engine type, the engine load and the fuel. Among jet aircrafts there are differences between civil and military jet engines and their fuels. Combustion of jet fuel results in CO2, H2O, CO, C, NOx, particles and a great number of organic compounds. Among the emitted hydrocarbons (HCs), no compound (indicator) characteristic for jet engines could be detected so far. Jet engines do not seem to be a source of halogenated compounds or heavy metals. They contain, however, various toxicologically relevant compounds including carcinogenic substances. A comparison between organic compounds in the emissions of jet engines and diesel vehicle engines revealed no major differences in the composition. Risk factors of jet engine fuel exhaust can only be named in context of exposure data. Using available monitoring data, the possibilities and limitations for a risk assessment approach for the population living around large airports are presented. The analysis of such data shows that there is an impact on the air quality of the adjacent communities, but this impact does not result in levels higher than those in a typical urban environment.

  11. Available Alternative Fuel School Bus Products--2004

    SciTech Connect

    Not Available

    2004-04-01

    This 4-page Clean Cities fact sheet provides a list of the currently available (and soon to be available) model year 2004 alternative fuel school bus and school bus engine products. It includes information from Blue Bird Corporation, Collins Bus Corporation, Corbeil Bus, Ford Motor Company, General Motors Corporation, Thomas Built Buses, Inc., Clean Air Partners, Cummins Westport, and Deere & Company.

  12. Coal conversion and synthetic-fuel production

    NASA Technical Reports Server (NTRS)

    Bradford, R.; Atkins, W. T.; Bass, R. M.; Dascher, R.; Dunkin, J.; Luce, N.; Seward, W.; Warren, D.

    1980-01-01

    Report evaluates potential coal gasification and synthetic-fuel production technologies for 1985 to 1990. Book includes overview of present and future technical and economic potential, ways of evaluating gasification facility designs, discussion of promising processes, characterization of potential markets, and list of available gasification systems.

  13. Spent Nuclear Fuel (SNF) Project Product Specification

    SciTech Connect

    PAJUNEN, A.L.

    2000-01-20

    This document establishes the limits and controls for the significant parameters that could potentially affect the safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for processing, transport, and storage. The product specifications in this document cover the SNF packaged in Multi-Canister Overpacks to be transported throughout the SNF Project.

  14. Spent nuclear fuel project product specification

    SciTech Connect

    PAJUNEN, A.L.

    1999-02-25

    This document establishes the limits and controls for the significant parameters that could potentially affect the safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for processing, transport, and storage. The product specifications in this document cover the SNF packaged in Multi-Canister Overpacks to be transported throughout the SNF Project.

  15. Direct fuel cell product design improvement

    SciTech Connect

    Maru, H.C.; Farooque, M.

    1996-12-31

    Significant milestones have been attained towards the technology development field testing and commercialization of direct fuel cell power plant since the 1994 Fuel Cell Seminar. Under a 5-year cooperative agreement with the Department of Energy signed in December 1994, Energy Research Corporation (ERC) has been developing the design for a MW-scale direct fuel cell power plant with input from previous technology efforts and the Santa Clara Demonstration Project. The effort encompasses product definition in consultation with the Fuel Cell Commercialization Group, potential customers, as well as extensive system design and packaging. Manufacturing process improvements, test facility construction, cell component scale up, performance and endurance improvements, stack engineering, and critical balance-of-plant development are also addressed. Major emphasis of this product design improvement project is on increased efficiency, compactness and cost reduction to establish a competitive place in the market. A 2.85 MW power plant with an efficiency of 58% and a footprint of 420 m{sup 2} has been designed. Component and subsystem testing is being conducted at various levels. Planning and preparation for verification of a full size prototype unit are in progress. This paper presents the results obtained since the last fuel cell seminar.

  16. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2005-03-01

    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste

  17. Fission-product retention in HTGR fuels

    SciTech Connect

    Homan, F.J.; Kania, M.J.; Tiegs, T.N.

    1982-01-01

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed.

  18. Utilization of domestic fuels for hydrogen production

    SciTech Connect

    Mirabal, S.T.; Ingley, H.A.; Goel, N.; Goswami, D.Y.

    2004-07-01

    This article describes the present status of the conventional hydrogen production technologies and some of recent developments in the production of hydrogen using solar energy resources. The authors outline the technological status for commercial and near-commercial technologies using both fossil-based and renewable energy sources such as electrolysis using PV and solar thermal power. The conversion of fossil fuels and electrolysis of water using solar conversion technologies are some of the most important methods of H{sub 2} production. An economic analysis for hydrogen production costs is presented comparing steam reformation, partial oxidation, coal gasification, and electrolysis via photovoltaic and solar thermal power. Although fossil fuels are currently the cheapest and most widely used sources of hydrogen production, it is argued from an economic standpoint that renewable sources of hydrogen, such as biomass and solar, are the most promising options for the future. Further, solar hydrogen represents a storable fuel that is produced from this nonstorable and intermittent source of energy. 17 refs., 6 figs., 3 tabs.

  19. 48 CFR 908.7109 - Fuels and packaged petroleum products.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Fuels and packaged petroleum products. 908.7109 Section 908.7109 Federal Acquisition Regulations System DEPARTMENT OF ENERGY....7109 Fuels and packaged petroleum products. Acquisitions of fuel and packaged petroleum products by...

  20. 48 CFR 908.7109 - Fuels and packaged petroleum products.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Fuels and packaged petroleum products. 908.7109 Section 908.7109 Federal Acquisition Regulations System DEPARTMENT OF ENERGY....7109 Fuels and packaged petroleum products. Acquisitions of fuel and packaged petroleum products by...

  1. 48 CFR 908.7109 - Fuels and packaged petroleum products.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Fuels and packaged petroleum products. 908.7109 Section 908.7109 Federal Acquisition Regulations System DEPARTMENT OF ENERGY....7109 Fuels and packaged petroleum products. Acquisitions of fuel and packaged petroleum products by...

  2. 48 CFR 908.7109 - Fuels and packaged petroleum products.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Fuels and packaged petroleum products. 908.7109 Section 908.7109 Federal Acquisition Regulations System DEPARTMENT OF ENERGY....7109 Fuels and packaged petroleum products. Acquisitions of fuel and packaged petroleum products by...

  3. 48 CFR 908.7109 - Fuels and packaged petroleum products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Fuels and packaged petroleum products. 908.7109 Section 908.7109 Federal Acquisition Regulations System DEPARTMENT OF ENERGY....7109 Fuels and packaged petroleum products. Acquisitions of fuel and packaged petroleum products by...

  4. Bioethanol Fuel Production Concept Study: Topline Report

    SciTech Connect

    Marketing Horizons, Inc.

    2001-11-19

    The DOE is in the process of developing technologies for converting plant matter other than feed stock, e.g., corn stover, into biofuels. The goal of this research project was to determine what the farming community thinks of ethanol as a fuel source, and specifically what they think of bioethanol produced from corn stover. This project also assessed the image of the DOE and the biofuels program and determined the perceived barriers to ethanol-from-stover production.

  5. Inspection procedures for experimental fuel production

    NASA Astrophysics Data System (ADS)

    Campsie, I. C.; Rattray, H. D.

    1988-04-01

    This paper describes the inspection procedures used in the development and manufacture of experimental fuel elements and their components. The examples quoted mainly apply to the PFR experimental fuel programme, although for well over a quarter of a century the procedures and techniques have been progressively developed and applied to the Magnox, SGHW, AGR, HTR, PFR and PWR fuel development programmes undertaken at the UKAEA's Springfields and Windscale Nuclear Power Development Laboratories. In contrast to production runs involving large numbers of standard components, experimental fuel is often assembled from components which, while they may look alike, may have design and material variations. Thus in addition to normal batching and bonding operations, great emphasis has to be placed on dimensional inspection, material testing and the individual identification of all items, thus maintaining traceability throughout all operations. The quality and performance of experimental items are often evaluated comparing pre- and post-test dimensional or NDT measurements. In the case of irradiation tests, several years can elapse between the measurements, therefore it is essential to ensure the reproducibility and compatibility of pre- and post-test measuring techniques and the traceability of all measured data and standards.

  6. Fuel powder production from ductile uranium alloys.

    SciTech Connect

    Clark, C. R.

    1998-10-23

    Metallic uranium alloys are candidate materials for use as the fuel phase in very-high-density LEU dispersion fuels. These ductile alloys cannot be converted to powder form by the processes routinely used for oxides or intermetallics. Three methods of powder production from uranium alloys have been investigated within the US-RERTR program. These processes are grinding, cryogenic milling, and hydride-dehydride. In addition, a gas atomization process was investigated using gold as a surrogate for uranium. Grinding was found to be inefficient and introduced impurities into the fuel. Cryogenic milling of machine chips in a steel vial was found to have similar shortcomings. The hydride-dehydride process has historically been used to produce very fine powder that may not be suitable for fuel fabrication. Uranium is made to form its hydride by heating in a hydrogen atmosphere. Subsequent heating under vacuum drives off hydrogen gas and returns the hydride to a metallic state. The volume change on hydride formation results in a fine powder upon dehydriding. The effects of alloying elements, partial hydriding, and subsequent milling treatments on particle size distribution are being explored. Inert gas atomization is used on an industrial scale to produce metal powder. Current designs are not suitable for use with uranium. A system was specifically designed for uranium atomization. A prototype was built and tested using gold as a surrogate for uranium. The system operates efficiently and can produce powder in a variety of size ranges by changing the atomization nozzle.

  7. Molten carbonate fuel cell product development test

    NASA Astrophysics Data System (ADS)

    1993-12-01

    Advanced fuel cell active components have been developed and scaled up from laboratory scale to commercial scale. Full width components of both the stabilized nickel cathodes and the low chrome anodes have been successfully cast on M-C Power's production tape caster. An improved design for a fuel cell separator plate has been developed. The improved design meets the goals of lower cost and manufacturing simplicity, and addresses performance issues of the current commercial area plate. The engineering that the Bechtel Corporation has completed for the MCFC power plant includes a site design, a preliminary site layout, a Process Flow Diagram, and specification for the procurement of some of the major equipment items. Raw materials for anode and cathode components were ordered and received during the first half of 1993. Tape casting of anodes was started in late summer and continued through August. In addition to the technical progress mentioned above, an environment assessment was prepared in compliance with the National Environmental Policy Act of 1969 (NEPA). As a result, the PDT has received a categorical exclusion from the Air Pollution Control District permit requirements. The PDT is configured to demonstrate the viability of natural gas-fueled MCFC for the production of electricity and thermal energy in an environmentally benign manner for use in commercial and industrial applications.

  8. Drying characteristics of thorium fuel corrosion products

    NASA Astrophysics Data System (ADS)

    Smith, R.-E. Lords

    2004-07-01

    The open literature and accessible US Department of Energy-sponsored reports were reviewed for the dehydration and rehydration characteristics of potential corrosion products from thorium metal and thorium oxide nuclear fuels. Mixed oxides were not specifically examined unless data were given for performance of mixed thorium-uranium fuels. Thorium metal generally corrodes to thorium oxide. Physisorbed water is readily removed by heating to approximately 200 °C. Complete removal of chemisorbed water requires heating above 1000 °C. Thorium oxide adsorbs water well in excess of the amount needed to cover the oxide surface by chemisorption. The adsorption of water appears to be a surface phenomenon; it does not lead to bulk conversion of the solid oxide to the hydroxide. Adsorptive capacity depends on both the specific surface area and the porosity of the thorium oxide. Heat treatment by calcination or sintering reduces the adsorption capacity substantially from the thorium oxide produced by metal corrosion.

  9. Traversing the mountaintop: world fossil fuel production to 2050.

    PubMed

    Nehring, Richard

    2009-10-27

    During the past century, fossil fuels--petroleum liquids, natural gas and coal--were the dominant source of world energy production. From 1950 to 2005, fossil fuels provided 85-93% of all energy production. All fossil fuels grew substantially during this period, their combined growth exceeding the increase in world population. This growth, however, was irregular, providing for rapidly growing per capita production from 1950 to 1980, stable per capita production from 1980 to 2000 and rising per capita production again after 2000. During the past half century, growth in fossil fuel production was essentially limited by energy demand. During the next half century, fossil fuel production will be limited primarily by the amount and characteristics of remaining fossil fuel resources. Three possible scenarios--low, medium and high--are developed for the production of each of the fossil fuels to 2050. These scenarios differ primarily by the amount of ultimate resources estimated for each fossil fuel. Total fossil fuel production will continue to grow, but only slowly for the next 15-30 years. The subsequent peak plateau will last for 10-15 years. These production peaks are robust; none of the fossil fuels, even with highly optimistic resource estimates, is projected to keep growing beyond 2050. World fossil fuel production per capita will thus begin an irreversible decline between 2020 and 2030.

  10. Renewable hydrogen production for fossil fuel processing

    SciTech Connect

    Greenbaum, E.

    1994-09-01

    The objective of this mission-oriented research program is the production of renewable hydrogen for fossil fuel processing. This program will build upon promising results that have been obtained in the Chemical Technology Division of Oak Ridge National Laboratory on the utilization of intact microalgae for photosynthetic water splitting. In this process, specially adapted algae are used to perform the light-activated cleavage of water into its elemental constituents, molecular hydrogen and oxygen. The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of their hydrogen-producing capability. These are: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the original development of an evacuated photobiological reactor for real-world engineering applications; (6) the potential for using modern methods of molecular biology and genetic engineering to maximize hydrogen production. The significance of each of these points in the context of a practical system for hydrogen production is discussed. This program will be enhanced by collaborative research between Oak Ridge National Laboratory and senior faculty members at Duke University, the University of Chicago, and Iowa State University. The special contribution that these organizations and faculty members will make is access to strains and mutants of unicellular algae that will potentially have useful properties for hydrogen production by microalgal water splitting.

  11. Photocatalytic semiconductor clusters for fuel production

    SciTech Connect

    Wilcoxon, J.P.; Bliss, D.E.; Martin, J.E.

    1995-10-01

    High quality crystalline, monodisperse nanometer-size semiconductor clusters were successfully grown using an inverse micellar synthesis process and their optical and structural properties were studied. Among the materials studied were PbS, FeS{sub 2}, MoS{sub 2}, CdS and related compounds. The results demonstrated strong electronic quantum confinement effects and broad tailorability of the bandgaps with decreasing cluster size, features that are important for the potential use of these materials as photocatalysts for solar fuel production and solar detoxification. The highlights of the work are included in an Executive Summary.

  12. Traversing the mountaintop: world fossil fuel production to 2050

    PubMed Central

    Nehring, Richard

    2009-01-01

    During the past century, fossil fuels—petroleum liquids, natural gas and coal—were the dominant source of world energy production. From 1950 to 2005, fossil fuels provided 85–93% of all energy production. All fossil fuels grew substantially during this period, their combined growth exceeding the increase in world population. This growth, however, was irregular, providing for rapidly growing per capita production from 1950 to 1980, stable per capita production from 1980 to 2000 and rising per capita production again after 2000. During the past half century, growth in fossil fuel production was essentially limited by energy demand. During the next half century, fossil fuel production will be limited primarily by the amount and characteristics of remaining fossil fuel resources. Three possible scenarios—low, medium and high—are developed for the production of each of the fossil fuels to 2050. These scenarios differ primarily by the amount of ultimate resources estimated for each fossil fuel. Total fossil fuel production will continue to grow, but only slowly for the next 15–30 years. The subsequent peak plateau will last for 10–15 years. These production peaks are robust; none of the fossil fuels, even with highly optimistic resource estimates, is projected to keep growing beyond 2050. World fossil fuel production per capita will thus begin an irreversible decline between 2020 and 2030. PMID:19770156

  13. Course Experiences and Perceptions of Farmers in Esfahan as a Basis for a Competency Profile of Extension Instructors

    ERIC Educational Resources Information Center

    Karbasioun, Mostafa; Mulder, Martin; Biemans, Harm

    2007-01-01

    The purpose of this study was to analyze farmers' experiences with and perceptions of agricultural extension courses and their instructors in Esfahan, Iran. This study is part of a larger project on the development of a competency profile of extension instructors. Many attempts have been made to develop competency profiles for professionals (Shim,…

  14. LWR Fuel Cycle with Reduced HLW Production

    SciTech Connect

    Darilek, Petr; Necas, Vladimir; Sebian, Vladimir

    2005-05-24

    An advanced fuel cycle of a light water reactor VVER-440 (Russian design) with inert matrix fuel is described. The cycle is based on combined fuel assemblies containing standard uranium pins and transmutation pins with transuranium elements from spent fuel in an inert matrix. This cycle is compared with a standard open fuel cycle based on radially profiled assemblies and with a standard closed fuel cycle containing MOX fuel assemblies. Numerical analysis is based on spectral code HELIOS. Cycle performance indicators covering waste stream parameters and the risk connected with spent fuel are evaluated.

  15. LWR Fuel Cycle with Reduced HLW Production

    NASA Astrophysics Data System (ADS)

    Darilek, Petr; Necas, Vladimir; Sebian, Vladimir

    2005-05-01

    An advanced fuel cycle of a light water reactor VVER-440 (Russian design) with inert matrix fuel is described. The cycle is based on combined fuel assemblies containing standard uranium pins and transmutation pins with transuranium elements from spent fuel in an inert matrix. This cycle is compared with a standard open fuel cycle based on radially profiled assemblies and with a standard closed fuel cycle containing MOX fuel assemblies. Numerical analysis is based on spectral code HELIOS. Cycle performance indicators covering waste stream parameters and the risk connected with spent fuel are evaluated

  16. Spent Nuclear Fuel (SNF) Project Product Specification

    SciTech Connect

    PAJUNEN, A.L.

    2000-12-07

    The process for removal of Spent Nuclear Fuel (SNF) from the K Basins has been divided into major sub-systems. The Fuel Retrieval System (FRS) removes fuel from the existing storage canisters, cleans it, and places it into baskets. The multi-canister overpack (MCO) loading system places the baskets into an MCO that has been pre-loaded in a cask. The cask, containing a loaded MCO, is then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the cask, and MCO, are transferred to the Canister Storage Building (CSB), where the MCO is removed from the cask, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The purpose of this document is to specify the process related characteristics of an MCO at the interface between major process systems. The characteristics are derived from the primary technical documents that form the basis for safety analysis and design calculations. This document translates the calculation assumptions into implementation requirements and describes the method of verifying that the requirement is achieved. These requirements are used to define validation test requirements and describe requirements that influence multiple sub-project safety analysis reports. This product specification establishes limits and controls for each significant process parameter at interfaces between major sub-systems that potentially affect the overall safety and/or quality of the SNF packaged for processing, transport, and interim dry storage. The product specifications in this document cover the SNF packaged in MCOs to be transported throughout the SNF Project. The description of the product specifications are organized in the document as follows: Section 2.0--Summary listing of product specifications at each major sub-system interface. Section 3.0--Summary description providing guidance as to how specifications are complied with by equipment design or processing within a major

  17. Biological production of liquid fuels from biomass

    SciTech Connect

    1982-01-01

    A scheme for the production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper was investigated. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The construction of a pilot apparatus for solvent delignifying 150 g samples of lignocellulosic feeds was completed. Also, an analysis method for characterizing the delignified product has been selected and tested. This is a method recommended in the Forage Fiber Handbook. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis. Work is continuing on characterizing the cellulase and cellobiase enzyme systems derived from the YX strain of Thermomonospora.

  18. Hydrogen fuel production by transgenic microalgae.

    PubMed

    Melis, Anastasios; Seibert, Michael; Ghirardi, Maria L

    2007-01-01

    This chapter summarizes the state-of-art in the field of green algal H2-production and examines physiological and genetic engineering approaches by which to improve the hydrogen metabolism characteristics of these microalgae. Included in this chapter are emerging topics pertaining to the application of sulfur-nutrient deprivation to attenuate O2-evolution and to promote H2-production, as well as the genetic engineering of sulfate uptake through manipulation of a newly reported sulfate permease in the chloroplast of the model green alga Chlamydomonas reinhardtii. Application of the green algal hydrogenase assembly genes is examined in efforts to confer H2-production capacity to other commercially significant unicellular green algae. Engineering a solution to the O2 sensitivity of the green algal hydrogenase is discussed as an alternative approach to sulfur nutrient deprivation, along with starch accumulation in microalgae for enhanced H2-production. Lastly, current efforts aiming to optimize light utilization in transgenic microalgae for enhanced H2-production under mass culture conditions are presented. It is evident that application of genetic engineering technologies and the use of transgenic green algae will improve prospects for commercial exploitation of these photosynthetic micro-organisms in the generation of H2, a clean and renewable fuel.

  19. Genetically Modified Bacteria for Fuel Production: Development of Rhodobacteria as a Versatile Platform for Fuels Production

    SciTech Connect

    2010-07-01

    Electrofuels Project: Penn State is genetically engineering bacteria called Rhodobacter to use electricity or electrically generated hydrogen to convert carbon dioxide into liquid fuels. Penn State is taking genes from oil-producing algae called Botryococcus braunii and putting them into Rhodobacter to produce hydrocarbon molecules, which closely resemble gasoline. Penn State is developing engineered tanks to support microbial fuel production and determining the most economical way to feed the electricity or hydrogen to the bacteria, including using renewable sources of power like solar energy.

  20. 10 CFR 490.8 - Replacement fuel production goal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Replacement fuel production goal. 490.8 Section 490.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General... sufficient to replace, on an energy equivalent basis, at least 30 percent of motor fuel consumption in the...

  1. 10 CFR 490.8 - Replacement fuel production goal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Replacement fuel production goal. 490.8 Section 490.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General... sufficient to replace, on an energy equivalent basis, at least 30 percent of motor fuel consumption in the...

  2. 10 CFR 490.8 - Replacement fuel production goal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Replacement fuel production goal. 490.8 Section 490.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General... sufficient to replace, on an energy equivalent basis, at least 30 percent of motor fuel consumption in the...

  3. 10 CFR 490.8 - Replacement fuel production goal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Replacement fuel production goal. 490.8 Section 490.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General... sufficient to replace, on an energy equivalent basis, at least 30 percent of motor fuel consumption in the...

  4. 10 CFR 490.8 - Replacement fuel production goal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Replacement fuel production goal. 490.8 Section 490.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General... sufficient to replace, on an energy equivalent basis, at least 30 percent of motor fuel consumption in the...

  5. Microdiesel: Escherichia coli engineered for fuel production.

    PubMed

    Kalscheuer, Rainer; Stölting, Torsten; Steinbüchel, Alexander

    2006-09-01

    Biodiesel is an alternative energy source and a substitute for petroleum-based diesel fuel. It is produced from renewable biomass by transesterification of triacylglycerols from plant oils, yielding monoalkyl esters of long-chain fatty acids with short-chain alcohols such as fatty acid methyl esters and fatty acid ethyl esters (FAEEs). Despite numerous environmental benefits, a broader use of biodiesel is hampered by the extensive acreage required for sufficient production of oilseed crops. Therefore, processes are urgently needed to enable biodiesel production from more readily available bulk plant materials like sugars or cellulose. Toward this goal, the authors established biosynthesis of biodiesel-adequate FAEEs, referred to as Microdiesel, in metabolically engineered Escherichia coli. This was achieved by heterologous expression in E. coli of the Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase and the unspecific acyltransferase from Acinetobacter baylyi strain ADP1. By this approach, ethanol formation was combined with subsequent esterification of the ethanol with the acyl moieties of coenzyme A thioesters of fatty acids if the cells were cultivated under aerobic conditions in the presence of glucose and oleic acid. Ethyl oleate was the major constituent of these FAEEs, with minor amounts of ethyl palmitate and ethyl palmitoleate. FAEE concentrations of 1.28 g l(-1) and a FAEE content of the cells of 26 % of the cellular dry mass were achieved by fed-batch fermentation using renewable carbon sources. This novel approach might pave the way for industrial production of biodiesel equivalents from renewable resources by employing engineered micro-organisms, enabling a broader use of biodiesel-like fuels in the future.

  6. Ultraclean Fuels Production and Utilization for the Twenty-First Century: Advances toward Sustainable Transportation Fuels

    SciTech Connect

    Fox, Elise B.; Liu, Zhong-Wen; Liu, Zhao-Tie

    2013-11-21

    Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow the introduction of alternative feed stocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive clean-up and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization, synthesis gas conversion into fuels and feed stocks that were presented at the 245th American Chemical Society Spring Annual Meeting in New Orleans, LA in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization".

  7. Photosynthetic terpene hydrocarbon production for fuels and chemicals

    USDA-ARS?s Scientific Manuscript database

    Photosynthetic terpene production[ED1] represents an energy and carbon-efficient route for hydrocarbon fuel production. Diverse terpene structures also provide the potential to produce next-generation 'drop-in' hydrocarbon fuel molecules. However, it is highly challenging to achieve efficient redire...

  8. Food, fuel, and feed production with microalgae

    SciTech Connect

    Benemann, J.R.; Weissman, J.C.

    1993-12-31

    Large-scale (>10 hectares) microalgae cultures are being used in several countries around the world for the production of human food supplements and specialty animal (mainly aquaculture) feeds. Microalgae cultures are also extensively used in wastewater treatment and being produced on a small scale for soil inoculants and diagnostic reagents. In addition, microalgae cultures are being investigated for their potential in fuel production and CO{sub 2} utilization, as a method for greenhouse gas mitigation. A pilot plant effort in New Mexico, under a US Department of Energy/National Renewable Energy Lab. subcontract, demonstrated the feasibility of cultivating a number of algal species in large outdoor ponds on brackish waters. Building on this experience, SeaAg, Inc. has developed a process for the mass culture of microalgae as a source of bivalve feeds. In this process, algae (diatoms) are cultured in large open ponds on seawater, and then fed to clams and oysters, which filter and convert the algal cells into high value protein. The SeaAg process is another application of a technology which promises to eventually result in large-scale commercial production of microalgae for a variety of useful products and processes.

  9. Artificial leaf device for solar fuel production.

    PubMed

    Amao, Yutaka; Shuto, Naho; Furuno, Kana; Obata, Asami; Fuchino, Yoshiko; Uemura, Keiko; Kajino, Tsutomu; Sekito, Takeshi; Iwai, Satoshi; Miyamoto, Yasushi; Matsuda, Masatoshi

    2012-01-01

    Solar fuels, such as hydrogen gas produced from water and methanol produced from carbon dioxide reduction by artificial photosynthesis, have received considerable attention. In natural leaves the photosynthetic proteins are well-organized in the thylakoid membrane. To develop an artificial leaf device for solar low-carbon fuel production from CO2, a chlorophyll derivative chlorin-e6 (Chl-e6; photosensitizer), 1-carboxylundecanoyl-1'-methyl-4,4'-bipyrizinium bromide, iodide (CH3V(CH2)9COOH; the electron carrier) and formate dehydrogenase (FDH) (the catalyst) immobilised onto a silica-gel-based thin layer chromatography plate (the Chl-V-FDH device) was investigated. From luminescence spectroscopy measurements, the photoexcited triplet state of Chl-e6 was quenched by the CH3V(CH2)9COOH moiety on the device, indicating the photoinduced electron transfer from the photoexcited triplet state of Chl-e6 to the CH3V(CH2)9COOH moiety. When the CO2-saturated sample solution containing NADPH (the electron donor) was flowed onto the Chl-V-FDH device under visible light irradiation, the formic acid concentration increased with increasing irradiation time.

  10. Production of distillate fuels from biomass-derived polyoxygenates

    DOEpatents

    Kania, John; Blommel, Paul; Woods, Elizabeth; Dally, Brice; Lyman, Warren; Cortright, Randy

    2017-03-14

    The present invention provides methods, reactor systems and catalysts for converting biomass and biomass-derived feedstocks to C.sub.8+ hydrocarbons using heterogenous catalysts. The product stream may be separated and further processed for use in chemical applications, or as a neat fuel or a blending component in jet fuel and diesel fuel, or as heavy oils for lubricant and/or fuel oil applications.

  11. Biomass gasification for liquid fuel production

    NASA Astrophysics Data System (ADS)

    Najser, Jan; Peer, Václav; Vantuch, Martin

    2014-08-01

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  12. Biomass gasification for liquid fuel production

    SciTech Connect

    Najser, Jan E-mail: vaclav.peer@vsb.cz; Peer, Václav E-mail: vaclav.peer@vsb.cz

    2014-08-06

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  13. Production of diesel fuel from light olefins

    SciTech Connect

    Tabak, S.A.; Krambeck, F.J.

    1986-03-01

    Mobile Research and Development Corporation has developed a catalytic process for converting light olefinic compounds to high quality gasoline and distillate. The process has been named Mobil Olefin to Gasoline and Distillate (MOGD) Process. Based on the Mobile zeolite catalyst ZSM-5, light olefins can be shape selectively oligomerized to higher molecular weight iso-olefins. In the gasoline boiling range, these olefins have a high octane number and for the diesel fuel range product a high cetane number and low pour point following hydrogenation. Through normally designed to process propylene or butylene, MOGD is applicable to a wide range of feed streams ranging from ethylene to 400/sup 0/F endpoint olefinic naphtha. The process has been tested using commercially-produced catalyst in refinery scale equipment.

  14. (Fuel, fission product, and graphite technology)

    SciTech Connect

    Stansfield, O.M.

    1990-07-25

    Travel to the Forschungszentrum (KFA) -- Juelich described in this report was for the purpose of participating in the annual meeting of subprogram managers for the US/DOE Umbrella Agreement for Fuel, Fission Product, and Graphite Technology. At this meeting the highlights of the cooperative exchange were reviewed for the time period June 1989 through June 1990. The program continues to contribute technology in an effective way for both countries. Revision 15 of the Subprogram Plan will be issued as a result of the meeting. There was interest expressed by KFA management in the level of support received from the NPR program and in potential participation in the COMEDIE loop experiment being conducted at the CEA.

  15. Coal liquefaction to increase jet fuel production

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Processing concept that increases supply of jet fuel has been developed as part of study on methods for converting coal to hydrogen, methane, and jet fuel. Concept takes advantage of high aromatic content of coal-derived liquids to make high-octane gasoline, instead of destroying aromatics to make jet fuel.

  16. Coal liquefaction to increase jet fuel production

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Processing concept that increases supply of jet fuel has been developed as part of study on methods for converting coal to hydrogen, methane, and jet fuel. Concept takes advantage of high aromatic content of coal-derived liquids to make high-octane gasoline, instead of destroying aromatics to make jet fuel.

  17. Molten carbonate fuel cell product design improvement

    SciTech Connect

    P. Voyentzie; T. Leo; A. Kush; L. Christner; G. Carlson; C. Yuh

    1998-12-20

    Drawing on the manufacture, field test, and post-test experience of the sixteen Santa Clara Demonstration Project (SCDP) stacks, ERC is finalizing the next generation commercial entry product design. The second generation cells are 50% larger in area, 40% lighter on equal geometric area basis, and 30% thinner than the earlier design. These improvements have resulted in doubling of the full-height stack power. A low-cost and high-strength matrix has also been developed for improving product ruggedness. The low-cost advanced cell design incorporating these improvements has been refined through six short stack tests. Power production per cell of two times the SCDP maximum power operation, over ten thermal cycles, and overall operating flexibility with respect to load and thermal changes have been demonstrated in these short stack tests. An internally insulated stack enclosure has been designed and fabricated to eliminate the need for an inert gas environment during operation. ERC has acquired the capability for testing 400kW full-height direct fuel ceil (DFC) stack and balance-of-plant equipment. With the readiness of the power plant test facility, the cell package design, and the stack module, full-height stack testing has begun. The first full- height stack incorporating the post-SCDP second generation design was completed. The stack reached a power level of 253 kW, setting a world record for the highest power production from the advanced fuel cell system. Excellent performance uniformity at this power level affirmed manufacturing reproducibility of the components at the factory. This unoptimized small size test has achieved pipeline natural gas to DC electricity conversion efficiency of 47% (based on lower heating value - LHV) including the parasitic power consumed by the BOP equipment; that should translate to more than 50% efficiency in commercial operation, before employing cogeneration. The power plant system also operated smoothly. With the success of this

  18. Chemical state of fission products in irradiated uranium carbide fuel

    NASA Astrophysics Data System (ADS)

    Arai, Yasuo; Iwai, Takashi; Ohmichi, Toshihiko

    1987-12-01

    The chemical state of fission products in irradiated uranium carbide fuel has been estimated by equilibrium calculation using the SOLGASMIX-PV program. Solid state fission products are distributed to the fuel matrix, ternary compounds, carbides of fission products and intermetallic compounds among the condensed phases appearing in the irradiated uranium carbide fuel. The chemical forms are influenced by burnup as well as stoichiometry of the fuel. The results of the present study almost agree with the experimental ones reported for burnup simulated carbides.

  19. Fuel preparation for use in the production of medical isotopes

    SciTech Connect

    Policke, Timothy A.; Aase, Scott B.; Stagg, William R.

    2016-10-25

    The present invention relates generally to the field of medical isotope production by fission of uranium-235 and the fuel utilized therein (e.g., the production of suitable Low Enriched Uranium (LEU is uranium having 20 weight percent or less uranium-235) fuel for medical isotope production) and, in particular to a method for producing LEU fuel and a LEU fuel product that is suitable for use in the production of medical isotopes. In one embodiment, the LEU fuel of the present invention is designed to be utilized in an Aqueous Homogeneous Reactor (AHR) for the production of various medical isotopes including, but not limited to, molybdenum-99, cesium-137, iodine-131, strontium-89, xenon-133 and yttrium-90.

  20. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli: Production of Jet Fuel Precursor Monoterpenoids

    DOE PAGES

    Mendez-Perez, Daniel; Alonso-Gutierrez, Jorge; Hu, Qijun; ...

    2017-05-18

    Monoterpenes (C10 isoprenoids) are the main components of essential oils and are possible precursors for many commodity chemicals and high energy density fuels. Monoterpenes are synthesized from geranyl diphosphate (GPP), which is also the precursor for the biosynthesis of farnesyl diphosphate (FPP). FPP biosynthesis diverts the carbon flux from monoterpene production to C 15 products and quinone biosynthesis. In this study, we tested a chromosomal mutation of Escherichia coli's native FPP synthase (IspA) to improve GPP availability for the production of monoterpenes using a heterologous mevalonate pathway. Monoterpene production at high levels required not only optimization of GPP production butmore » also a basal level of FPP to maintain growth. The optimized strains produced two jet fuel precursor monoterpenoids 1,8-cineole and linalool at the titer of 653 mg/L and 505 mg/L, respectively, in batch cultures with 1% glucose. The engineered strains developed in this work provide useful resources for the production of high-value monoterpenes.« less

  1. Iron based photoanodes for solar fuel production.

    PubMed

    Bassi, Prince Saurabh; Gurudayal; Wong, Lydia Helena; Barber, James

    2014-06-28

    In natural photosynthesis, the water splitting reaction of photosystem II is the source of the electrons/reducing equivalents for the reduction of carbon dioxide to carbohydrate while oxygen is formed as the by-product. Similarly, for artificial photosynthesis where the end product is a solar fuel such as hydrogen, a water splitting-oxygen evolving system is required to supply high energy electrons to drive the reductive reactions. Very attractive candidates for this purpose are iron based semiconductors which have band gaps corresponding to visible light and valence band energies sufficient to oxidise water. The most studied system is hematite (Fe2O3) which is highly abundant with many attributes for incorporation into photoelectrochemical (PEC) cells. We review the recent progress in manipulating hematite for this purpose through nanostructuring, doping and surface modifications. We also consider several hybrid iron-based semiconducting systems like ferrites and iron titanates as alternatives to hematite for light driven water splitting emphasizing their advantages with respect to their band levels and charge transport properties.

  2. Alcohol Fuel Production for Vocational Students: Secondary, Postsecondary.

    ERIC Educational Resources Information Center

    Green, C. Paul; Burkhalter, Wayne

    In order to help bring about the potential for alcohol production by the farming community, Navarro College (Texas) has developed this curriculum for secondary and postsecondary levels in alcohol fuel production. The alcohol fuel curriculum consists of five modules for use in practical hands-on vocational programs. The curriculum is designed to…

  3. Fuel ethanol production: process design trends and integration opportunities.

    PubMed

    Cardona, Carlos A; Sánchez, Oscar J

    2007-09-01

    Current fuel ethanol research and development deals with process engineering trends for improving biotechnological production of ethanol. In this work, the key role that process design plays during the development of cost-effective technologies is recognized through the analysis of major trends in process synthesis, modeling, simulation and optimization related to ethanol production. Main directions in techno-economical evaluation of fuel ethanol processes are described as well as some prospecting configurations. The most promising alternatives for compensating ethanol production costs by the generation of valuable co-products are analyzed. Opportunities for integration of fuel ethanol production processes and their implications are underlined. Main ways of process intensification through reaction-reaction, reaction-separation and separation-separation processes are analyzed in the case of bioethanol production. Some examples of energy integration during ethanol production are also highlighted. Finally, some concluding considerations on current and future research tendencies in fuel ethanol production regarding process design and integration are presented.

  4. On Cherenkov light production by irradiated nuclear fuel rods

    NASA Astrophysics Data System (ADS)

    Branger, E.; Grape, S.; Jacobsson Svärd, S.; Jansson, P.; Andersson Sundén, E.

    2017-06-01

    Safeguards verification of irradiated nuclear fuel assemblies in wet storage is frequently done by measuring the Cherenkov light in the surrounding water produced due to radioactive decays of fission products in the fuel. This paper accounts for the physical processes behind the Cherenkov light production caused by a single fuel rod in wet storage, and simulations are presented that investigate to what extent various properties of the rod affect the Cherenkov light production. The results show that the fuel properties have a noticeable effect on the Cherenkov light production, and thus that the prediction models for Cherenkov light production which are used in the safeguards verifications could potentially be improved by considering these properties. It is concluded that the dominating source of the Cherenkov light is gamma-ray interactions with electrons in the surrounding water. Electrons created from beta decay may also exit the fuel and produce Cherenkov light, and e.g. Y-90 was identified as a possible contributor to significant levels of the measurable Cherenkov light in long-cooled fuel. The results also show that the cylindrical, elongated fuel rod geometry results in a non-isotropic Cherenkov light production, and the light component parallel to the rod's axis exhibits a dependence on gamma-ray energy that differs from the total intensity, which is of importance since the typical safeguards measurement situation observes the vertical light component. It is also concluded that the radial distributions of the radiation sources in a fuel rod will affect the Cherenkov light production.

  5. Production of Jet Fuels from Coal Derived Liquids. Volume 7. GPGP Jet Fuels Production Program. Evaluation of Technical Uncertainties for Producing Jet Fuels from Liquid By-Products of the Great Plains Gasification Plant

    DTIC Science & Technology

    1989-01-01

    AFWAL-TR-87-2042 VOLUME VII PRODUCTION OF JET FUELS FROM COAL DERIVED LIQUIDS I VOLUME VII -- GPGP JET FUELS PRODUCTION PROGRAM -- EVALUATION OF o...from Coal Derived Liquids, Vol VII - GPGP Jet Fuels Production Program - Evaluation of Technical Uncertainties for Producing Jet Fuels from Liquid By...potential of jet fuel production from the liquid by-product streams produced by the gasification of lignite at the Great Plains Gasification Plant ( GPGP

  6. Production of bio-jet fuel from microalgae

    NASA Astrophysics Data System (ADS)

    Elmoraghy, Marian

    The increase in petroleum-based aviation fuel consumption, the decrease in petroleum resources, the fluctuation of the crude oil price, the increase in greenhouse gas emission and the need for energy security are motivating the development of an alternate jet fuel. Bio-jet fuel has to be a drop in fuel, technically and economically feasible, environmentally friendly, greener than jet fuel, produced locally and low gallon per Btu. Bic jet fuel has been produced by blending petro-based jet fuel with microalgae biodiesel (Fatty Acid Methyl Ester, or simply FAME). Indoor microalgae growth, lipids extraction and transetrification to biodiesel are energy and fresh water intensive and time consuming. In addition, the quality of the biodiesel product and the physical properties of the bio-jet fuel blends are unknown. This work addressed these challenges. Minimizing the energy requirements and making microalgae growth process greener were accomplished by replacing fluorescent lights with light emitting diodes (LEDs). Reducing fresh water footprint in algae growth was accomplished by waste water use. Microalgae biodiesel production time was reduced using the one-step (in-situ transestrification) process. Yields up to 56.82 mg FAME/g dry algae were obtained. Predicted physical properties of in-situ FAME satisfied European and American standards confirming its quality. Lipid triggering by nitrogen deprivation was accomplished in order to increase the FAME production. Bio-jet fuel freezing points and heating values were measured for different jet fuel to biodiesel blend ratios.

  7. Enteric bacterial catalysts for fuel ethanol production

    SciTech Connect

    Ingram, L.O.; Aldrich, H.C.; Borges, A.C.C.

    1999-10-01

    The technology is available to produce fuel ethanol from renewable lignocellulosic biomass. The current challenge is to assemble the various process options into a commercial venture and begin the task of incremental improvement. Current process designs for lignocellulose are far more complex than grain to ethanol processes. This complexity results in part from the complexity of the substrate and the biological limitations of the catalyst. Their work at the University of Florida has focused primarily on the genetic engineering of Enteric bacteria using genes encoding Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase. These two genes have been assembled into a portable ethanol production cassette, the PET operon, and integrated into the chromosome of Escherichia coli B for use with hemicellulose-derived syrups. The resulting strain, KO11, produces ethanol efficiently from all hexose and pentose sugars present in the polymers of hemicellulose. By using the same approach, the authors integrated the PET operon into the chromosome of Klebsiella oxytoca to produce strain P2 for use in the simultaneous saccharification and fermentation (SSF) process for cellulose. Strain P2 has the native ability to ferment cellobiose and cellotriose, eliminating the need for one class of cellulase enzymes.

  8. Fuel ethanol production from agricultural residues

    USDA-ARS?s Scientific Manuscript database

    Ethanol is a renewable oxygenated fuel. In 2012, about 13.3 billion gallons of fuel ethanol was produced from corn in the USA which makes up 10% of gasoline supply. Various agricultural residues such as corn stover, wheat straw, rice straw and barley straw can serve as low-cost lignocellulosic fee...

  9. Production of LEU Fully Ceramic Microencapsulated Fuel for Irradiation Testing

    SciTech Connect

    Terrani, Kurt A; Kiggans Jr, James O; McMurray, Jake W; Jolly, Brian C; Hunt, Rodney Dale; Trammell, Michael P; Snead, Lance Lewis

    2016-01-01

    Fully Ceramic Microencapsulated (FCM) fuel consists of tristructural isotropic (TRISO) fuel particles embedded inside a SiC matrix. This fuel inherently possesses multiple barriers to fission product release, namely the various coating layers in the TRISO fuel particle as well as the dense SiC matrix that hosts these particles. This coupled with the excellent oxidation resistance of the SiC matrix and the SiC coating layer in the TRISO particle designate this concept as an accident tolerant fuel (ATF). The FCM fuel takes advantage of uranium nitride kernels instead of oxide or oxide-carbide kernels used in high temperature gas reactors to enhance heavy metal loading in the highly moderated LWRs. Production of these kernels with appropriate density, coating layer development to produce UN TRISO particles, and consolidation of these particles inside a SiC matrix have been codified thanks to significant R&D supported by US DOE Fuel Cycle R&D program. Also, surrogate FCM pellets (pellets with zirconia instead of uranium-bearing kernels) have been neutron irradiated and the stability of the matrix and coating layer under LWR irradiation conditions have been established. Currently the focus is on production of LEU (7.3% U-235 enrichment) FCM pellets to be utilized for irradiation testing. The irradiation is planned at INL s Advanced Test Reactor (ATR). This is a critical step in development of this fuel concept to establish the ability of this fuel to retain fission products under prototypical irradiation conditions.

  10. Integrated coke, asphalt and jet fuel production process and apparatus

    DOEpatents

    Shang, Jer Y.

    1991-01-01

    A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

  11. METHANOL PRODUCTION FROM BIOMASS AND NATURAL GAS AS TRANSPORTATION FUEL

    EPA Science Inventory

    Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (i) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the U.S., (ii) minimizes em...

  12. METHANOL PRODUCTION FROM BIOMASS AND NATURAL GAS AS TRANSPORTATION FUEL

    EPA Science Inventory

    Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (i) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the U.S., (ii) minimizes em...

  13. Alcohol Fuel By-Product Utilization and Production.

    ERIC Educational Resources Information Center

    Boerboom, Jim

    Ten lessons comprise this curriculum intended to assist vocational teachers in establishing and conducting an alcohol fuels workshop on engine modification and plant design. A glossary is provided first. The 10 lessons cover these topics: the alcohol fuel plant, feedstock preparation lab, distillation lab, fuel plant processes, plant design lab,…

  14. Alcohol Fuel By-Product Utilization and Production.

    ERIC Educational Resources Information Center

    Boerboom, Jim

    Ten lessons comprise this curriculum intended to assist vocational teachers in establishing and conducting an alcohol fuels workshop on engine modification and plant design. A glossary is provided first. The 10 lessons cover these topics: the alcohol fuel plant, feedstock preparation lab, distillation lab, fuel plant processes, plant design lab,…

  15. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People's Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  16. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People`s Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  17. Exposure to occupational air pollution and cardiac function in workers of the Esfahan Steel Industry, Iran.

    PubMed

    Golshahi, Jafar; Sadeghi, Masoumeh; Saqira, Mohammad; Zavar, Reihaneh; Sadeghifar, Mostafa; Roohafza, Hamidreza

    2016-06-01

    Air pollution is recognized as an important risk factor for cardiovascular disease. We investigated association of exposure to occupational air pollution and cardiac function in the workers of the steel industry. Fifty male workers of the agglomeration and coke-making parts of the Esfahan Steel Company were randomly selected (n = 50). Workers in the administrative parts were studied as controls (n = 50). Those with known history of hypertension, dyslipidemia, or diabetes, and active smokers were not included. Data of age, body mass index, employment duration, blood pressure, fasting blood sugar, and lipid profile were gathered. Echocardiography was performed to evaluate cardiac function. Left ventricular ejection fraction was lower in workers of the agglomeration/coke-making parts than in controls (mean difference = 5 to 5.5 %, P < 0.001). Mild right ventricular dilatation and grade I pulmonary hypertension were present in three (12 %) workers of the coke-making part, but none of the controls (P = 0.010). According to these results, occupational air pollution exposure in workers of the steel industry is associated with left heart systolic dysfunction. Possible right heart insults due to air pollution exposure warrant further investigations.

  18. Occupational stress among male employees of esfahan steel company, iran: prevalence and associated factors.

    PubMed

    Lotfizadeh, Masoud; Moazen, Babak; Habibi, Ehsan; Hassim, Noor

    2013-07-01

    Lack of data on occupational stress among Iranian industrial employees persuaded us to design and conduct this study to evaluate the prevalence and associated parameters of occupational stress among male employees of the Esfahan Steel Company (ESCO), one of the biggest industrial units in Iran. In this cross-sectional study, 400 male employees were sampled from the operational divisions of the company. Socio-demographic data and stress-related variables were entered into a logistic regression to determine significant associated factors of occupational stress among the participants. From all samples, 53% were found as stressful. A monthly salary of less than $600 (OR = 1.88, 95% confidence interval [CI] = 1.21-2.94), family-related problems (OR = 2.75, 95% CI = 1.22-6.21), work environment (OR = 3.09, 95% CI = 1.78-5.33) and having a second job (OR = 2.68, 95% CI = 1.78-6.78) were significantly associated with the outcome. Attention to some variables, especially economic problems and the work environment of employees, might play a protective role against the prevalence of occupational stress, not only among the employees of ESCO but also among all industrial employees in Iran.

  19. Occupational Stress Among Male Employees of Esfahan Steel Company, Iran: Prevalence and Associated Factors

    PubMed Central

    Lotfizadeh, Masoud; Moazen, Babak; Habibi, Ehsan; Hassim, Noor

    2013-01-01

    Background: Lack of data on occupational stress among Iranian industrial employees persuaded us to design and conduct this study to evaluate the prevalence and associated parameters of occupational stress among male employees of the Esfahan Steel Company (ESCO), one of the biggest industrial units in Iran. Methods: In this cross-sectional study, 400 male employees were sampled from the operational divisions of the company. Socio-demographic data and stress-related variables were entered into a logistic regression to determine significant associated factors of occupational stress among the participants. Results: From all samples, 53% were found as stressful. A monthly salary of less than $600 (OR = 1.88, 95% confidence interval [CI] = 1.21-2.94), family-related problems (OR = 2.75, 95% CI = 1.22-6.21), work environment (OR = 3.09, 95% CI = 1.78-5.33) and having a second job (OR = 2.68, 95% CI = 1.78-6.78) were significantly associated with the outcome. Conclusions: Attention to some variables, especially economic problems and the work environment of employees, might play a protective role against the prevalence of occupational stress, not only among the employees of ESCO but also among all industrial employees in Iran. PMID:24049599

  20. Fuel pins with both target and fuel pellets in an isotope-production reactor

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target pellets are placed in close contact with fissile fuel pellets in order to increase the tritium production rate.

  1. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    NASA Astrophysics Data System (ADS)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-12-01

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  2. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    SciTech Connect

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A. Ignatiev, V. V.; Subbotin, S. A. Tsibulskiy, V. F.

    2015-12-15

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  3. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    NASA Astrophysics Data System (ADS)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  4. Potential production of energy cane for fuel in the Caribbean

    SciTech Connect

    Samuels, G.

    1984-08-01

    Sugarcane grown as energy cane presents a new potential to the Caribbean countries to provide their own energy needs and to reduce or eliminate fuel oil imports. The use of proper agronomic techniques can convert conventional sugarcane growing to a crop capable of giving energy feedstocks in the form of fiber for boiler fuel for electricity and fermentable solids for alcohol for motor fuel. Sugarcane can still be obtained from the energy cane for domestic consumption and export if desired. The aerable land now devoted to sugarcane can utilized for energy-cane production without causing any serious imbalance in food crop production.

  5. Midwest vision for sustainable fuel production

    USDA-ARS?s Scientific Manuscript database

    Meeting the challenge of providing 30% of the transportation fuels used in the USA from those developed from biomass will require significant improvements in technology across the supply chain, significant commercial investment in infrastructure, and, because of the unique characteristics of biomass...

  6. Fuels Products of the LANDFIRE Project

    Treesearch

    Matthew C. Reeves; Jay R. Kost; Kevin C. Ryan

    2006-01-01

    The LANDFIRE project is a collaborative interagency effort designed to provide seamless, nationally consistent, locally relevant geographic information systems (GIS) data layers depicting wildland fuels, vegetation and fire regime characteristics. The LANDFIRE project is the first of its kind and offers new opportunity for fire management and research activities. Here...

  7. Whole-cell biocatalysts for biodiesel fuel production.

    PubMed

    Fukuda, H; Hama, S; Tamalampudi, S; Noda, H

    2008-12-01

    Biodiesel fuel (BDF), which refers to fatty acid alkyl esters, has attracted considerable attention as an environmentally friendly alternative fuel for diesel engines. Alkali catalysis is widely applied for the commercial production of BDF. However, enzymatic transesterification offers considerable advantages, including reducing process operations in biodiesel fuel production and an easy separation of the glycerol byproduct. The high cost of the lipase enzyme is the main obstacle for a commercially feasible enzymatic production of biodiesel fuels. To reduce enzyme associated process costs, the immobilization of fungal mycelium within biomass support particles (BSPs) as well as expression of the lipase enzyme on the surface of yeast cells has been developed to generate whole-cell biocatalysts for industrial applications.

  8. Trends in biotechnological production of fuel ethanol from different feedstocks.

    PubMed

    Sánchez, Oscar J; Cardona, Carlos A

    2008-09-01

    Present work deals with the biotechnological production of fuel ethanol from different raw materials. The different technologies for producing fuel ethanol from sucrose-containing feedstocks (mainly sugar cane), starchy materials and lignocellulosic biomass are described along with the major research trends for improving them. The complexity of the biomass processing is recognized through the analysis of the different stages involved in the conversion of lignocellulosic complex into fermentable sugars. The features of fermentation processes for the three groups of studied feedstocks are discussed. Comparative indexes for the three major types of feedstocks for fuel ethanol production are presented. Finally, some concluding considerations on current research and future tendencies in the production of fuel ethanol regarding the pretreatment and biological conversion of the feedstocks are presented.

  9. New co-products from grain-based fuel ethanol production and their drying performance

    USDA-ARS?s Scientific Manuscript database

    Fuel ethanol production in the U.S. and elsewhere is an important and growing industry. In the U.S, about 40% of annual corn production is now converted into fuel ethanol. During co-product recovery, condensed distillers solubles (CDS) has to be mixed with distillers wet grains before drying due to ...

  10. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect

    Garabedian, Harold T. Wight, Gregory Dreier, Ken Borland, Nicholas

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable

  11. Spatial fuel data products of the LANDFIRE Project

    USGS Publications Warehouse

    Reeves, M.C.; Ryan, K.C.; Rollins, M.G.; Thompson, T.G.

    2009-01-01

    The Landscape Fire and Resource Management Planning Tools (LANDFIRE) Project is mapping wildland fuels, vegetation, and fire regime characteristics across the United States. The LANDFIRE project is unique because of its national scope, creating an integrated product suite at 30-m spatial resolution and complete spatial coverage of all lands within the 50 states. Here we describe development of the LANDFIRE wildland fuels data layers for the conterminous 48 states: surface fire behavior fuel models, canopy bulk density, canopy base height, canopy cover, and canopy height. Surface fire behavior fuel models are mapped by developing crosswalks to vegetation structure and composition created by LANDFIRE. Canopy fuels are mapped using regression trees relating field-referenced estimates of canopy base height and canopy bulk density to satellite imagery, biophysical gradients and vegetation structure and composition data. Here we focus on the methods and data used to create the fuel data products, discuss problems encountered with the data, provide an accuracy assessment, demonstrate recent use of the data during the 2007 fire season, and discuss ideas for updating, maintaining and improving LANDFIRE fuel data products.

  12. FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT

    SciTech Connect

    Stephen P. Bergin

    2003-04-23

    This project has two primary purposes: (1) Build a small-footprint (SFP) fuel production plant to prove the feasibility of this relatively transportable technology on an intermediate scale (i.e. between laboratory-bench and commercial capacity) and produce as much as 150,000 gallons of hydrogen-saturated Fischer-Tropsch (FT) diesel fuel; and (2) Use the virtually sulfur-free fuel produced to demonstrate (over a period of at least six months) that it can not only be used in existing diesel engines, but that it also can enable significantly increased effectiveness and life of the next-generation exhaust-after-treatment emission control systems that are currently under development and that will be required for future diesel engines. Furthermore, a well-to-wheels economic analysis will be performed to characterize the overall costs and benefits that would be associated with the actual commercial production, distribution and use of such FT diesel fuel made by the process under consideration, from the currently underutilized (or entirely un-used) energy resources targeted, primarily natural gas that is stranded, sub-quality, off-shore, etc. During the first year of the project, which is the subject of this report, there have been two significant areas of progress: (1) Most of the preparatory work required to build the SFP fuel-production plant has been completed, and (2) Relationships have been established, and necessary project coordination has been started, with the half dozen project-partner organizations that will have a role in the fuel demonstration and evaluation phase of the project. Additional project tasks directly related to the State of Alaska have also been added to the project. These include: A study of underutilized potential Alaska energy resources that could contribute to domestic diesel and distillate fuel production by providing input energy for future commercial-size SFP fuel production plants; Demonstration of the use of the product fuel in a heavy

  13. Three generation production biotechnology of biomass into bio-fuel

    NASA Astrophysics Data System (ADS)

    Zheng, Chaocheng

    2017-08-01

    The great change of climate change, depletion of natural resources, and scarcity of fossil fuel in the whole world nowadays have witnessed a sense of urgency home and abroad among scales of researchers, development practitioners, and industrialists to search for completely brand new sustainable solutions in the area of biomass transforming into bio-fuels attributing to our duty-that is, it is our responsibility to take up this challenge to secure our energy in the near future with the help of sustainable approaches and technological advancements to produce greener fuel from nature organic sources or biomass which comes generally from organic natural matters such as trees, woods, manure, sewage sludge, grass cuttings, and timber waste with a source of huge green energy called bio-fuel. Biomass includes most of the biological materials, livings or dead bodies. This energy source is ripely used industrially, or domestically for rather many years, but the recent trend is on the production of green fuel with different advance processing systems in a greener. More sustainable method. Biomass is becoming a booming industry currently on account of its cheaper cost and abundant resources all around, making it fairly more effective for the sustainable use of the bio-energy. In the past few years, the world has witnessed a remarkable development in the bio-fuel production technology, and three generations of bio-fuel have already existed in our society. The combination of membrane technology with the existing process line can play a vital role for the production of green fuel in a sustainable manner. In this paper, the science and technology for sustainable bio-fuel production will be introduced in detail for a cleaner world.

  14. Applying fuel cell experience to sustainable power products

    NASA Astrophysics Data System (ADS)

    King, Joseph M.; O'Day, Michael J.

    Fuel cell power plants have demonstrated high efficiency, environmental friendliness, excellent transient response, and superior reliability and durability in spacecraft and stationary applications. Broader application of fuel cell technology promises significant contribution to sustainable global economic growth, but requires improvement to size, cost, fuel flexibility and operating flexibility. International Fuel Cells (IFC) is applying lessons learned from delivery of more than 425 fuel cell power plants and 3 million h of operation to the development of product technology which captures that promise. Key findings at the fuel cell power plant level include: (1) ancillary components account for more than 40% of the weight and nearly all unscheduled outages of hydrocarbon-fuelled power plants; a higher level of integration and simplification is required to achieve reasonable characteristics, (2) hydrocarbon fuel cell power plant components are highly interactive; the fuel processing approach and power plant operating pressure are major determinants of overall efficiency, and (3) achieving the durability required for heavy duty vehicles and stationary applications requires simultaneous satisfaction of electrochemical, materials and mechanical considerations in the design of the cell stack and other power plant components. Practical designs must minimize application specific equipment. Related lessons for stationary fuel cell power plants include: (1) within fuel specification limits, natural gas varies widely in heating value, minor constituents such as oxygen and nitrogen content and trace compounds such as the odorant; (2) city water quality varies widely; recovery of product water for process use avoids costly, complicated and site-specific water treatment systems, but water treatment is required to eliminate impurities and (3) the embedded protection functions for reliable operation of fuel cell power conditioners meet or exceed those required for connection to

  15. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    SciTech Connect

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in

  16. Modulation of fossil fuel production by global temperature variations, 2

    SciTech Connect

    Rust, B.W.; Crosby, F.J.

    1994-01-01

    The report includes the inverse modulation of global fossil production by variations in Northern Hemispheric temperatures. The present study incorporates recent revisions and extensions of the fuel production record and uses a much improved temperature record. The authors show that the new data are consistent with the predictions of the original Rust-Kirk model which they then extend to allow for time lag between variations in the temperature and the corresponding responses in fuel production. The modulation enters the new model through the convolution of a lagged averaging function with the temperature time-series. The authors also include explicit terms to account for the perturbations caused by the Great Depression and World War II. The final model accounts for 99.84% of the total variance in the production record. This modulation represents a feedback which is consistent with the carbon dioxide problem; climate change; fossil fuel production; global warming Gaia hypothesis; temperature variations.

  17. Nanoplasmonic Catalysis for Synthetic Fuel Production

    DTIC Science & Technology

    2010-02-22

    in our energy infrastructure. For photocatalysis , this area is especially exciting because it presents a possible route to direct solar-to-fuel...Here, we utilize the plasmonic field enhancement to improve TiO2 photocatalysis in the visible wavelength range. (a) (b) 100 nm Figure 5. (a...this photocatalysis into the visible range by inducing charge in the TiO2 through the plasmon resonance phenomenon. In addition to CH4, the reduction

  18. Isotope geochemistry of hydrothermal alteration in East of Esfahan, Central Iran

    NASA Astrophysics Data System (ADS)

    Taghipour, Sedigheh; Taghipour, Batoul

    2010-05-01

    In the Cenozoic magmatic belt of Central Iran, the Eocene volcanics and pyroclastics from the East of Esfahan underwent extensive hydrothermal alteration. The Eocene volcanics composed mostly of andesite lava and tuffs have been altered. The survey area is laterally zoned from an inner quartz-sericite alteration zone to an outer propylitic zone. Quartz-sericite alteration is predominant (>95%), but smaller zones of alunite-jarosite and silicified zones are present and superimposed onto a quartz-sericite alteration. In the quartz-sericite zone all altered rocks are light grayish to whitish in color and porphyritic with aphanitic groundmass. Concentrations of alunite and jarosite veinlets and stockworks are dispersed irregularly in this zone. Alunite and jarosite occur also as coatings on fractured rocks. All types of alunite occurrences are brick-red, cream, white and buff in colors, while jarosite is brown to rusty in colors. To verify, chemical composition of alunite and jarosite were identified by X-ray diffraction in mineral assemblages. Major alteration zones show inclusions of propylite, quartz sericite, advanced argillic and silicified zones. These alunites are mainly porcelaneous and their compositions show a solid solution between alunite and jarosite. In alteration zones, the mineral assemblage is characterized by alunite-jarosite + quartz + sericite + alkali feldspars + chlorite ± turquoise ± barite ± iron oxides. There are numerous alunite and jarosite occurrences, mainly as veinlets, in parts of the advanced argillic zone. Alunite δ18O and δ D values range from -1.76 to 8.81‰ and from -52.86 to -129.26‰ respectively. Field observations, mineralogical evidence and results from light element stable isotope data (δ18O, δ D and δ34S); indicate that in this area alunitization is supergene in origin.

  19. Liquid fuels production from biomass. Final report

    SciTech Connect

    Levy, P. F.; Sanderson, J. E.; Ashare, E.; Wise, D. L.; Molyneaux, M. S.

    1980-06-30

    The current program to convert biomass into liquid hydrocarbon fuels is an extension of a previous program to ferment marine algae to acetic acid. In that study it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids via Kolbe electrolysis to aliphatic hydrocarbons, which may be used as a diesel fuel. The specific goals for the current porgram are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids, here the primary task is methane suppression; (2) modify the current 300-liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process, the primary task is to reduce the working potential required for the electrolysis while maintaining an adequate current density; (5) scale the entire process up to match the output of the 300 liter fermenter; and (6) design pilot plant and commercial size plant (1000 tons/day) processes for converting biomass to liquid hydrocarbon fuels and perform an economic analysis for the 1000 ton/day design.

  20. Target-fueled nuclear reactor for medical isotope production

    DOEpatents

    Coats, Richard L.; Parma, Edward J.

    2017-06-27

    A small, low-enriched, passively safe, low-power nuclear reactor comprises a core of target and fuel pins that can be processed to produce the medical isotope .sup.99Mo and other fission product isotopes. The fuel for the reactor and the targets for the .sup.99Mo production are the same. The fuel can be low enriched uranium oxide, enriched to less than 20% .sup.235U. The reactor power level can be 1 to 2 MW. The reactor is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days.

  1. Gasoline-aided production of alcohol and fuel

    SciTech Connect

    Roth, E.R.

    1984-04-10

    Gasoline aids production of alcohol and fuel in a solvent extraction and recovery process. Alcohol/water mixtures, such as those produced by fermentation of biomass material, are separated by extraction of alcohol with a solvent especially suited to such extraction and to subsequent removal. Conventional distillation steps to concentrate alcohol and eliminate water are rendered unnecessary at a considerable reduction in heat energy requirement (usually met with fossil fuel). Addition of gasoline between the solvent extraction and solvent recovery steps not only aids the latter separation but produces alcohol already denatured for fuel use.

  2. Formate Formation and Formate Conversion in Biological Fuels Production

    PubMed Central

    Crable, Bryan R.; Plugge, Caroline M.; McInerney, Michael J.; Stams, Alfons J. M.

    2011-01-01

    Biomethanation is a mature technology for fuel production. Fourth generation biofuels research will focus on sequestering CO2 and providing carbon-neutral or carbon-negative strategies to cope with dwindling fossil fuel supplies and environmental impact. Formate is an important intermediate in the methanogenic breakdown of complex organic material and serves as an important precursor for biological fuels production in the form of methane, hydrogen, and potentially methanol. Formate is produced by either CoA-dependent cleavage of pyruvate or enzymatic reduction of CO2 in an NADH- or ferredoxin-dependent manner. Formate is consumed through oxidation to CO2 and H2 or can be further reduced via the Wood-Ljungdahl pathway for carbon fixation or industrially for the production of methanol. Here, we review the enzymes involved in the interconversion of formate and discuss potential applications for biofuels production. PMID:21687599

  3. Hydrogen production econometric studies. [hydrogen and fossil fuels

    NASA Technical Reports Server (NTRS)

    Howell, J. R.; Bannerot, R. B.

    1975-01-01

    The current assessments of fossil fuel resources in the United States were examined, and predictions of the maximum and minimum lifetimes of recoverable resources according to these assessments are presented. In addition, current rates of production in quads/year for the fossil fuels were determined from the literature. Where possible, costs of energy, location of reserves, and remaining time before these reserves are exhausted are given. Limitations that appear to hinder complete development of each energy source are outlined.

  4. Products of the Hypochlorite Oxidation of Hydrazine Fuels

    DTIC Science & Technology

    1989-06-01

    environmentally significant products of the chemical neutralization of these fuels with hypochlorite. B. BACKGROUND A possible approach to treatment...and disposal is to chemically react the collected fuel with a suitable oxidizing agent before disposal. The chemical oxidation of hydrazine itself has...studied experimentally in both the liquid (References 1,3-21) and the gas phase (References 22-24). If a chemical neutralization is to be carried out

  5. Properties of air and combustion products of fuel with air

    NASA Technical Reports Server (NTRS)

    Poferl, D. J.; Svehla, R. A.

    1975-01-01

    Thermodynamic and transport properties have been calculated for air, the combustion products of natural gas and air, and combustion products of ASTM-A-1 jet fuel and air. Properties calculated include: ratio of specific heats, molecular weight, viscosity, specific heat, thermal conductivity, Prandtl number, and enthalpy.

  6. Biology and technology for photochemical fuel production.

    PubMed

    Hambourger, Michael; Moore, Gary F; Kramer, David M; Gust, Devens; Moore, Ana L; Moore, Thomas A

    2009-01-01

    Sunlight is the ultimate energy source for the vast majority of life on Earth, and organisms have evolved elegant machinery for energy capture and utilization. Solar energy, whether converted to wind, rain, biomass or fossil fuels, is also the primary energy source for human-engineered energy transduction systems. This tutorial review draws parallels between biological and technological energy systems. Aspects of biology that might be advantageously incorporated into emerging technologies are highlighted, as well as ways in which technology might improve upon the principles found in biological systems. Emphasis is placed upon artificial photosynthesis, as well as the use of protonmotive force in biology.

  7. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    Unknown

    2000-01-01

    The FCE PDI program is designed to advance the carbonate fuel cell technology from the current full-size field test to the commercial design. The specific objectives selected to attain the overall program goal are: Define power plant requirements and specifications; Establish the design for a multifuel, low-cost, modular, market-responsive power plant; Resolve power plant manufacturing issues and define the design for the commercial-scale manufacturing facility; Define the stack and balance-of-plant (BOP) equipment packaging arrangement, and module designs; Acquire capability to support developmental testing of stacks and critical BOP equipment to prepare for commercial design; and Resolve stack and BOP equipment technology issues, and design, build and field test a modular prototype power plant to demonstrate readiness for commercial entry.

  8. Technical and Economic Evaluation of Macroalgae Cultivation for Fuel Production (Draft)

    SciTech Connect

    Feinberg, D. A.; Hock, S. M.

    1985-04-01

    The potential of macroalgae as sources of renewable liquid and gaseous fuels is evaluated. A series of options for production of macroalgae feedstock is considered. Because of their high carbohydrate content, the fuel products for which macroalgae are most suitable are methane and ethanol. Fuel product costs were compared with projected fuel costs in the year 1995.

  9. Production of jet fuels from coal-derived liquids

    SciTech Connect

    Knudson, C.L.

    1990-06-01

    Samples of jet fuel (JP-4, JP-8, JP-8X) produced from the liquid by-products of the gasification of lignite coal from the Great Plains Gasification Plant were analyzed to determine the quantity and type of organo-oxygen compounds present. Results were compared to similar fuel samples produced from petroleum. Large quantities of oxygen compounds were found in the coal-derived liquids and were removed in the refining process. Trace quantities of organo-oxygenate compounds were suspected to be present in the refined fuels. Compounds were identified and quantified as part of an effort to determine the effect of these compounds in fuel instability. Results of the analysis showed trace levels of phenols, naphthols, benzofurans, hexanol, and hydrogenated naphthols were present in levels below 100 ppM. 9 figs., 3 tabs.

  10. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    DOEpatents

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  11. Archaebacterial Fuel Production: Methane from Biomass.

    ERIC Educational Resources Information Center

    Lennox, John E.; And Others

    1983-01-01

    Discusses microbial production of methane from biomass. Topics include methogens (bacteria producing methane), ecology of methanogenesis, methanogenesis in ruminant/nonruminant and other environments, role of methanogenesis in nature, and methane production in sewage treatment plants. Also discusses construction of methane digesters (and related…

  12. Archaebacterial Fuel Production: Methane from Biomass.

    ERIC Educational Resources Information Center

    Lennox, John E.; And Others

    1983-01-01

    Discusses microbial production of methane from biomass. Topics include methogens (bacteria producing methane), ecology of methanogenesis, methanogenesis in ruminant/nonruminant and other environments, role of methanogenesis in nature, and methane production in sewage treatment plants. Also discusses construction of methane digesters (and related…

  13. Assessment of technology for production of liquid fuels from biomass

    SciTech Connect

    Sheppard, A.P.; Spurlock, J.M.; Birchfield, J.L.

    1981-01-01

    Technologies for liquid fuel production from biomass vary widely in states of development and extent of need for government action. Ethanol produced from grain (principally corn), for use in gasohol blends, is the most widely used and accepted biomass-based energy source in the U.S. at present. Several practical factors strongly point to needed government emphasis on research and development to advance ethanol-production technology. Liquid fuels produced from soybeans, sunflowers, Euphorbia and similar crops, or from aquatic plants, remain as longer-term potential requiring further assessment. 6 refs.

  14. Fuel-cycle assessment of selected bioethanol production.

    SciTech Connect

    Wu, M.; Wang, M.; Hong, H.; Energy Systems

    2007-01-31

    A large amount of corn stover is available in the U.S. corn belt for the potential production of cellulosic bioethanol when the production technology becomes commercially ready. In fact, because corn stover is already available, it could serve as a starting point for producing cellulosic ethanol as a transportation fuel to help reduce the nation's demand for petroleum oil. Using the data available on the collection and transportation of corn stover and on the production of cellulosic ethanol, we have added the corn stover-to-ethanol pathway in the GREET model, a fuel-cycle model developed at Argonne National Laboratory. We then analyzed the life-cycle energy use and emission impacts of corn stover-derived fuel ethanol for use as E85 in flexible fuel vehicles (FFVs). The analysis included fertilizer manufacturing, corn farming, farming machinery manufacturing, stover collection and transportation, ethanol production, ethanol transportation, and ethanol use in light-duty vehicles (LDVs). Energy consumption of petroleum oil and fossil energy, emissions of greenhouse gases (carbon dioxide [CO{sub 2}], nitrous oxide [N{sub 2}O], and methane [CH{sub 4}]), and emissions of criteria pollutants (carbon monoxide [CO], volatile organic compounds [VOCs], nitrogen oxide [NO{sub x}], sulfur oxide [SO{sub x}], and particulate matter with diameters smaller than 10 micrometers [PM{sub 10}]) during the fuel cycle were estimated. Scenarios of ethanol from corn grain, corn stover, and other cellulosic feedstocks were then compared with petroleum reformulated gasoline (RFG). Results showed that FFVs fueled with corn stover ethanol blends offer substantial energy savings (94-95%) relative to those fueled with RFG. For each Btu of corn stover ethanol produced and used, 0.09 Btu of fossil fuel is required. The cellulosic ethanol pathway avoids 86-89% of greenhouse gas emissions. Unlike the life cycle of corn grain-based ethanol, in which the ethanol plant consumes most of the fossil fuel

  15. Fuel cell systems for a sustainable energy production

    SciTech Connect

    Kivisaari, T.

    1996-12-31

    When talking about fuel cell systems for stationary applications, two of the advantages are claimed to be a high inherent efficiency and environmentally favourable characteristics. It should, however, be obvious to everybody that in order to call an energy production route environmentally benign, it is not enough that just the energy production step itself has a low negative environmental impact, but that all steps involved (e.g. fuel pre-treatment, fuel processing etc.) should be subjected to the same constraints if the overall production process is to be considered environmentally friendly. In order to evaluate the technical possibilities of a biomass fuelled MCFC unit for stationary applications a system study of a 40 MWe biomass-fired MCFC system is currently carried out at The Royal Institute of Technology, as part of the international co-operation within the IEA Advanced Fuel Cell Programme Annex 1, Balance of Plant of MCFC Systems. In addition to the present work, other recent studies involving biomass and fuel cells can be found in literature.

  16. CO{sub 2} mitigation and fuel production

    SciTech Connect

    Steinberg, M.

    1997-07-07

    Methanol as an alternative transportation fuel appears to be an effective intermediate agent, for reducing CO{sub 2} from the utility power and the transportation sectors. On the utilization side, methanol as a liquid fuel fits in well with the current infrastructure for storage and delivery to the automotive sector with better efficiency. On the production side, CO{sub 2} from fossil fuel plants together with natural gas and biomass can be used as feedstocks for methanol synthesis with reduced CO{sub 2}. Over the past several years, processes have emerged which have varying degrees of CO{sub 2} emission reduction depending on the feedstocks used for methanol synthesis process. This paper reviews the methanol processes from the point of view of production efficiency and CO{sub 2} emissions reduction. The processes include: (1) the Hydrocarb Process which primarily utilizes coal and natural gas and stores carbon, and (2) the Hynol Process which utilizes biomass (including carbonaceous wastes, municipal solid waste (MSW)) or coal and natural gas, and (3) the Carnol Process which utilizes natural gas and CO{sub 2} recovered from fossil fuel fired powered plant stacks, especially coal fired plants. The Carnol System consists of power generation, methanol production and methanol utilization as an automotive fuel. The efficiency and CO{sub 2} emissions for the entire system are compared to the conventional system of petroleum derived automotive fuel (gasoline) and coal fired power generation plants. CO{sub 2} reduction by as much as 56% and 77% can be achieved when methanol is used in internal combustion and fuel cell automotive vehicles, respectively.

  17. Metabolic engineering for the production of hydrocarbon fuels.

    PubMed

    Lee, Sang Yup; Kim, Hye Mi; Cheon, Seungwoo

    2015-06-01

    Biofuels have been attracting increasing attention to provide a solution to the problems of climate change and our dependence on limited fossil oil. During the last decade, metabolic engineering has been performed to develop superior microorganisms for the production of so called advanced biofuels. Among the advanced biofuels, hydrocarbons possess high-energy content and superior fuel properties to other biofuels, and thus have recently been attracting much research interest. Here we review the recent advances in the microbial production of hydrocarbon fuels together with the metabolic engineering strategies employed to develop their production strains. Strategies employed for the production of long-chain and short-chain hydrocarbons derived from fatty acid metabolism along with the isoprenoid-derived hydrocarbons are reviewed. Also, the current limitations and future prospects in hydrocarbon-based biofuel production are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Fuel alcohol production from agricultural lignocellulosic feedstocks

    SciTech Connect

    Farina, G.E.; Barrier, J.W.; Forsythe, M.L. )

    1988-01-01

    A two-stage, low-temperature, ambient pressure, acid hydrolysis process that utilizes separate unit operations to convert hemicellulose and cellulose in agricultural residues and crops to fermentable sugars is being developed and tested. Based on the results of the bench-scale tests, an acid hydrolysis experimental plant to demonstrate the concepts of low-temperature acid hydrolysis on a much larger scale was built. Plant tests using corn stover have been conducted for more that a year and conversion efficiences have equaled those achieved in the laboratory. Laboratory tests to determine the potential for low-temperature acid hydrolysis of other feedstocks - including red clover, alfalfa, kobe lespedeza, winter rape, and rye grass - are being conducted. Where applicable, process modifications to include extraction before or after hydrolysis also are being studied. This paper describes the experimental plant and process, results obtained in the plant, results of alternative feedstocks testing in the laboratory, and a plan for an integrated system that will produce other fuels, feed, and food from crops grown on marginal land.

  19. Fuel oil and other products from wood wastes

    SciTech Connect

    1996-07-01

    Under a project recently funded by the Southeastern Regional Biomass Energy Program (SERBEP), Environmental Resource Services, Inc., (ERS), of Oklahoma City, Oklahoma, will build a plant to manufacture a high-grade fuel (bio-fuel) and other products from wood and other wastes. The plant will be part of a waste recycling center that ERS plans to construct at Anniston, Alabama. ERS will use a proprietary technology developed by Ensyn{trademark} Technologies of Ottawa, Canada to manufacture the bio-fuel. Ensyn`s{trademark} Rapid Thermal Process{trademark} (RPT{trademark}) is commercially available with plants in Canada, the US, Italy, and a plant in Finland under construction. The RTP{trademark} technology produces a light-weight fuel similar to Number 2 fuel oil in consistency. The bio-fuel can be more easily transported, handled, and fired than solid wood wastes. The process also does not have significant emissions and does not require a high volume of material be processed to be economical. Plants are available in the form of factory-built modules that can cost-effectively process 100 tons per day of feedstock.

  20. Renewable hydrogen production for fossil fuel processing

    SciTech Connect

    Greenbaum, E.; Lee, J.W.; Tevault, C.V.

    1995-06-01

    In the fundamental biological process of photosynthesis, atmospheric carbon dioxide is reduced to carbohydrate using water as the source of electrons with simultaneous evolution of molecular oxygen: H{sub 2}O + CO{sub 2} + light {yields} O{sub 2} + (CH{sub 2}O). It is well established that two light reactions, Photosystems I and II (PSI and PSII) working in series, are required to perform oxygenic photosynthesis. Experimental data supporting the two-light reaction model are based on the quantum requirement for complete photosynthesis, spectroscopy, and direct biochemical analysis. Some algae also have the capability to evolve molecular hydrogen in a reaction energized by the light reactions of photosynthesis. This process, now known as biophotolysis, can use water as the electron donor and lead to simultaneous evolution of molecular hydrogen and oxygen. In green algae, hydrogen evolution requires prior incubation under anaerobic conditions. Atmospheric oxygen inhibits hydrogen evolution and also represses the synthesis of hydrogenase enzyme. CO{sub 2} fixation competes with proton reduction for electrons relased from the photosystems. Interest in biophotolysis arises from both the questions that it raises concerning photosynthesis and its potential practical application as a process for converting solar energy to a non-carbon-based fuel. Prior data supported the requirement for both Photosystem I and Photosystem II in spanning the energy gap necessary for biophotolysis of water to oxygen and hydrogen. In this paper we report the at PSII alone is capable of driving sustained simultaneous photoevolution of molecular hydrogen and oxygen in an anaerobically adapted PSI-deficient strain of Chlamydomonas reinhardtii, mutant B4, and that CO{sub 2} competes as an electron acceptor.

  1. Regional analysis of renewable transportation fuels - production and consumption

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoshuai

    The transportation sector contributes more than a quarter of total U.S. greenhouse gas emissions. Replacing fossil fuels with renewable fuels can be a key solution to mitigate GHG emissions from the transportation sector. Particularly, we have focused on land-based production of renewable fuels from landfills and brownfield in the southeastern region of the United States. These so call marginal lands require no direct land-use change to avoid environmental impact and, furthermore, have rendered opportunities for carbon trading and low-carbon intensity business. The resources potential and production capacity were derived using federal and state energy databases with the aid of GIS techniques. To maximize fuels production and land-use efficiency, a scheme of co-location renewable transportation fuels for production on landfills was conducted as a case study. Results of economic modeling analysis indicate that solar panel installed on landfill sites could generate a positive return within the project duration, but the biofuel production within the landfill facility is relatively uncertain, requiring proper sizing of the onsite processing facility, economic scale of production and available tax credits. From the consumers' perspective, a life-cycle cost analysis has been conducted to determine the economic and environmental implications of different transportation choices by consumers. Without tax credits, only the hybrid electric vehicles have lifetime total costs equivalent to a conventional vehicles differing by about 1 to 7%. With tax credits, electric and hybrid electric vehicles could be affordable and attain similar lifetime total costs as compared to conventional vehicles. The dissertation research has provided policy-makers and consumers a pathway of prioritizing investment on sustainable transportation systems with a balance of environmental benefits and economic feasibility.

  2. Fuel ethanol production from alkaline peroxide pretreated corn stover

    USDA-ARS?s Scientific Manuscript database

    Corn stover (CS) has the potential to serve as an abundant low-cost feedstock for production of fuel ethanol. Due to heterogeneous complexity and recalcitrance of lignocellulosic feedstocks, pretreatment is required to break the lignin seal and/or disrupt the structure of crystalline cellulose to in...

  3. Fate of virginiamycin through the fuel ethanol production process

    USDA-ARS?s Scientific Manuscript database

    Antibiotics are frequently used to prevent and treat bacterial contamination of commercial fuel ethanol fermentations, but there is concern that antibiotic residues may persist in the distillers grains coproducts. A study to evaluate the fate of virginiamycin during the ethanol production process wa...

  4. Spatial fuel data products of the LANDFIRE Project

    Treesearch

    Matt Reeves; Kevin C. Ryan; Matthew G. Rollins; Thomas G. Thompson

    2009-01-01

    The Landscape Fire and Resource Management Planning Tools (LANDFIRE) Project is mapping wildland fuels, vegetation, and fire regime characteristics across the United States. The LANDFIRE project is unique because of its national scope, creating an integrated product suite at 30-m spatial resolution and complete spatial coverage of all lands within the 50...

  5. Antimicrobial peptides against contaminating bacteria in fuel ethanol production

    USDA-ARS?s Scientific Manuscript database

    Lactic acid bacteria (LAB) are commonly found as contaminants of fuel ethanol production, resulting in reduced ethanol yields (1). Recent reports suggest that LAB can develop resistance to antibiotics such as virginiamycin and penicillin that are commonly used to control bacterial contamination (2)...

  6. Antimicrobial peptides against contaminating bacteria in fuel ethanol production

    USDA-ARS?s Scientific Manuscript database

    Lactic acid bacteria (LAB) are commonly found as contaminants of fuel ethanol production, resulting in reduced ethanol yields: (1). Recent reports suggest that LAB can develop resistance to antibiotics such as virginiamycin and penicillin that are commonly used to control bacterial contamination; (2...

  7. Production of New Biomass/Waste-Containing Solid Fuels

    SciTech Connect

    Glenn A. Shirey; David J. Akers

    2005-09-23

    CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration in Phase II

  8. Production of Jet Fuels from Coal-Derived Liquids. Volume 11. Production of Advanced Endothermic Fuel Blends from Great Plains Gasification Plant Naphtha By-Product Stream

    DTIC Science & Technology

    1989-03-01

    of this fuel is that its molecular structure must allow a very selective, dehydrogenation (endothermic) reaction to occur. Cycloparaffins have been...step procedure to first remove the sulfur, nitrogen, and oxygen contaminants and then to saturate the aromatic molecules. 2. Catalytic dehydrogenation ...endothermic fuel by subjecting them to catalytic dehydrogenation and then comparing their reac- tivity, stability, and product distributions with

  9. Fuel and core testing plan for a target fueled isotope production reactor.

    SciTech Connect

    Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

    2010-12-01

    In recent years there has been an unstable supply of the critical diagnostic medical isotope 99Tc. Several concepts and designs have been proposed to produce 99Mo the parent nuclide of 99Tc, at a commercial scale sufficient to stabilize the world supply. This work lays out a testing and experiment plan for a proposed 2 MW open pool reactor fueled by Low Enriched Uranium (LEU) 99Mo targets. The experiments and tests necessary to support licensing of the reactor design are described and how these experiments and tests will help establish the safe operating envelop for a medical isotope production reactor is discussed. The experiments and tests will facilitate a focused and efficient licensing process in order to bring on line a needed production reactor dedicated to supplying medical isotopes. The Target Fuel Isotope Reactor (TFIR) design calls for an active core region that is approximately 40 cm in diameter and 40 cm in fuel height. It contains up to 150 cylindrical, 1-cm diameter, LEU oxide fuel pins clad with Zircaloy (zirconium alloy), in an annular hexagonal array on a {approx}2.0 cm pitch surrounded, radially, by a graphite or a Be reflector. The reactor is similar to U.S. university reactors in power, hardware, and safety/control systems. Fuel/target pin fabrication is based on existing light water reactor fuel fabrication processes. However, as part of licensing process, experiments must be conducted to confirm analytical predictions of steady-state power and accident conditions. The experiment and test plan will be conducted in phases and will utilize existing facilities at the U.S. Department of Energy's Sandia National Laboratories. The first phase is to validate the predicted reactor core neutronics at delayed critical, zero power and very low power. This will be accomplished by using the Sandia Critical Experiment (CX) platform. A full scale TFIR core will be built in the CX and delayed critical measurements will be taken. For low power experiments

  10. Photocatalysis for renewable energy production using PhotoFuelCells.

    PubMed

    Michal, Robert; Sfaelou, Stavroula; Lianos, Panagiotis

    2014-11-27

    The present work is a short review of our recent studies on PhotoFuelCells, that is, photoelectrochemical cells which consume a fuel to produce electricity or hydrogen, and presents some unpublished data concerning both electricity and hydrogen production. PhotoFuelCells have been constructed using nanoparticulate titania photoanodes and various cathode electrodes bearing a few different types of electrocatalyst. In the case where the cell functioned with an aerated cathode, the cathode electrode was made of carbon cloth carrying a carbon paste made of carbon black and dispersed Pt nanoparticles. When the cell was operated in the absence of oxygen, the electrocatalyst was deposited on an FTO slide using a special commercial carbon paste, which was again enriched with Pt nanoparticles. Mixing of Pt with carbon paste decreased the quantity of Pt necessary to act as electrocatalyst. PhotoFuelCells can produce electricity without bias and with relatively high open-circuit voltage when they function in the presence of fuel and with an aerated cathode. In that case, titania can be sensitized in the visible region by CdS quantum dots. In the present work, CdS was deposited by the SILAR method. Other metal chalcogenides are not functional as sensitizers because the combined photoanode in their presence does not have enough oxidative power to oxidize the fuel. Concerning hydrogen production, it was found that it is difficult to produce hydrogen in an alkaline environment even under bias, however, this is still possible if losses are minimized. One way to limit losses is to short-circuit anode and cathode electrode and put them close together. This is achieved in the "photoelectrocatalytic leaf", which was presently demonstrated capable of producing hydrogen even in a strongly alkaline environment.

  11. H2 PRODUCTION AND FUEL CELLS.

    SciTech Connect

    WANG, X.; RODRIGUEZ, J.A.

    2006-06-30

    Oxide nanosystems play a key role as components of catalysts used for the production of H{sub 2} via the steam reforming or the partial oxidation of hydrocarbons, and for the water-gas shift reaction. The behavior seen for Cu-ceria and Au-ceria WGS catalysts indicates that the oxide is much more than a simple support. The special chemical properties of the oxide nanoparticles (defect rich, high mobility of oxygen) favor interactions with the reactants or other catalyst components. More in-situ characterization and mechanistic studies are necessary for the optimization of these nanocatalysts. The use of oxide nanomaterials for the fabrication of PEMFCs and SOFCs can lead to devices with a high practical impact. One objective is to build electrodes with low cost conducting oxide nanoarrays. The electron and oxygen-ion conducting capabilities of many oxides improve when going from the bulk to the nanoscale. Furthermore, one can get a more homogeneous surface morphology and an increase of the effective reaction area. Much more fundamental and practical research needs to be done in this area.

  12. Ethanol Production for Automotive Fuel Usage

    SciTech Connect

    Lindemuth, T.E.; Stenzel, R.A.; Yim, Y.J.; Yu, J.

    1980-01-31

    The conceptual design of the 20 million gallon per year anhydrous ethanol facility a t Raft River has been completed. The corresponding geothermal gathering, extraction and reinjection systems to supply the process heating requirement were also completed. The ethanol facility operating on sugar beets, potatoes and wheat will share common fermentation and product recovery equipment. The geothermal fluid requirement will be approximately 6,000 gpm. It is anticipated that this flow will be supplied by 9 supply wells spaced at no closer than 1/4 mile in order to prevent mutual interferences. The geothermal fluid will be flashed in three stages to supply process steam at 250 F, 225 F and 205 F for various process needs. Steam condensate plus liquid remaining after the third flash will all be reinjected through 9 reinjection wells. The capital cost estimated for this ethanol plant employing all three feedstocks is $64 million. If only a single feedstock were used (for the same 20 mm gal/yr plant) the capital costs are estimated at $51.6 million, $43.1 million and $40. 5 million for sugar beets, potatoes and wheat respectively. The estimated capital cost for the geothermal system is $18 million.

  13. Characterization of Catalyst Materials for Production of Aerospace Fuels

    NASA Technical Reports Server (NTRS)

    Best, Lauren M.; De La Ree, Ana B.; Hepp, Aloysius F.

    2012-01-01

    Due to environmental, economic, and security issues, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to non-petroleum sources as a feedstock for aviation (and other transportation) fuels. Additionally, efforts are concentrated on reducing costs coupled with fuel production from non-conventional sources. One solution to this issue is Fischer-Tropsch gas-to-liquid technology. Fischer-Tropsch processing of synthesis gas (CO/H2) produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fisher-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur or aromatic compounds. This process is most commonly catalyzed by heterogeneous (in this case, silver and platinum) catalysts composed of cobalt supported on alumina or unsupported alloyed iron powders. Physisorption, chemisorptions, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) are described to better understand the potential performance of Fischer-Tropsch cobalt on alumina catalysts promoted with silver and platinum. The overall goal is to preferentially produce C8 to C18 paraffin compounds for use as aerospace fuels. Progress towards this goal will eventually be updated and achieved by a more thorough understanding of the characterization of catalyst materials. This work was supported by NASA s Subsonic Fixed Wing and In-situ Resource Utilization projects.

  14. Characterization of Catalyst Materials for Production of Aerospace Fuels

    NASA Technical Reports Server (NTRS)

    DeLaRee, Ana B.; Hepp, Aloysius F.

    2011-01-01

    Due to environmental, economic, and security issues, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to non-petroleum sources as a feedstock for aviation (and other transportation) fuels. Additionally, efforts are concentrated on reducing costs coupled with fuel production from non-conventional sources. One solution to this issue is Fischer-Tropsch gas-to-liquid technology. Fischer-Tropsch processing of synthesis gas (CO/H2) produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fisher-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur or aromatic compounds. This process is most commonly catalyzed by heterogeneous (in this case, silver and platinum) catalysts composed of cobalt supported on alumina or unsupported alloyed iron powders. Physisorption, chemisorptions, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) are described to better understand the potential performance of Fischer-Tropsch cobalt on alumina catalysts promoted with silver and platinum. The overall goal is to preferentially produce C8 to C18 paraffin compounds for use as aerospace fuels. Progress towards this goal will eventually be updated and achieved by a more thorough understanding of the characterization of catalyst materials. This work was supported by NASA s Subsonic Fixed Wing and In-situ Resource Utilization projects.

  15. Method of preparing a high heating value fuel product

    SciTech Connect

    Somerville, R.; Fan, L.T.

    1989-10-24

    This patent describes a method of preparing a high heating value fuel product. The method comprising the steps of: blending a high heating value waste material with a cellulosic material; mixing an organic reagent to the blended mixture of the waste material and the cellulosic material, the organic reagent being a mixture having a 4-15 weight percent of a chemical selected from the group consisting of: triethylene, glycol, diethylene glycol, and glycerin propylene glycol; introducing a pozzolanic agent to the blended mixture for controlling the rate of solidification; and forming the blended mixture into a form suitable for handling. Also described is the same method with the mixture of the organic reagent further comprising: a 20-32 weight percent calcium chloride solution. Another method of preparing a fuel product is also described.

  16. Potential production of energy cane for fuel in the Caribbean

    SciTech Connect

    Samuels, G.

    1984-12-01

    Sugarcane presents a tremendous potential as a renewable energy source for the non-oil producing countries of the Caribbean. The energy cane concept is sugarcane managed for maximum dry matter (total fermentable solids for alcohol fuel and combustible solids for electricity) rather than sucrose. The use of sugarcane as a renewable energy source can provide a solution, either partial or total, to the Caribbean energy problem. Sugar cane production and the use of this crop as a renewable energy source are described.

  17. Preliminary Economics for Hydrocarbon Fuel Production from Cellulosic Sugars

    SciTech Connect

    Collett, James R.; Meyer, Pimphan A.; Jones, Susanne B.

    2014-05-18

    Biorefinery process and economic models built in CHEMCAD and a preliminary, genome-scale metabolic model for the oleaginous yeast Lipomyces starkeyi were used to simulate the bioconversion of corn stover to lipids, and the upgrading of these hydrocarbon precursors to diesel and jet fuel. The metabolic model was based on the recently released genome sequence for L. starkeyi and on metabolic pathway information from the literature. The process model was based on bioconversion, lipid extraction, and lipid oil upgrading data found in literature, on new laboratory experimental data, and on yield predictions from the preliminary L. starkeyi metabolic model. The current plant gate production cost for a distillate-range hydrocarbon fuel was estimated by the process model Base Case to be $9.5/gallon ($9.0 /gallon of gasoline equivalent) with assumptions of 2011$, 10% internal return on investment, and 2205 ton/day dry feed rate. Opportunities for reducing the cost to below $5.0/gallon, such as improving bioconversion lipid yield and hydrogenation catalyst selectivity, are presented in a Target Case. The process and economic models developed for this work will be updated in 2014 with new experimental data and predictions from a refined metabolic network model for L. starkeyi. Attaining a production cost of $3.0/gallon will require finding higher value uses for lignin other than power generation, such as conversion to additional fuel or to a co-product.

  18. Engineering microbial electrocatalysis for chemical and fuel production.

    PubMed

    Rosenbaum, Miriam A; Henrich, Alexander W

    2014-10-01

    In many biotechnological areas, metabolic engineering and synthetic biology have become core technologies for biocatalyst development. Microbial electrocatalysis for biochemical and fuel production is still in its infancy and reactions rates and the product spectrum are currently very low. Therefore, molecular engineering strategies will be crucial for the advancement and realization of many new bioproduction routes using electroactive microorganisms. The complex and unresolved biochemistry and physiology of extracellular electron transfer and the lack of molecular tools for these new non-model hosts for genetic engineering constitute the major challenges for this effort. This review is providing an insight into the current status, challenges and promising approaches of pathway engineering for microbial electrocatalysis.

  19. Biomass Biorefinery for the production of Polymers and Fuels

    SciTech Connect

    Dr. Oliver P. Peoples

    2008-05-05

    The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nation’s dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the grower’s ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

  20. Solid oxide fuel cell electrode characterization and improvement for fuel flexibility and supplemental power production

    NASA Astrophysics Data System (ADS)

    Kellogg, Isaiah Daniel

    2010-03-01

    Solid oxide fuel cells (SOFC) were fabricated and the electrodes tested for their individual catalytic effectiveness in various fuels by exposing each electrode to mixed gas while the opposite electrode was exposed to its respective pure gas. Mixed hydrogen and oxygen gas was successfully utilized as fuel in a single chamber SOFC (SC-SOFC). The conditions at which the porous nickel-yttria-stabilized zirconia (Ni-YSZ) cermet anode performed well did not significantly overlap the conditions at which the La0.8Sr 0.2Fe0.8Co0.2 oxide (LSCF) cathode performed well, but there was significant catalytic activity at both electrodes which increased the open circuit voltage (OCV) beyond that predicted by the Nernst equation. The results of these tests, and future tests of similar format, could be useful in the development of SC-SOFC electrode catalysts. Pyrolytic carbon was used as fuel in a SOFC with a YSZ electrolyte and a bi-layer anode composed of nickel gadolinia-doped ceria (Ni-GDC) and Ni-YSZ. The common problems of bulk shrinkage and emergent porosity in the YSZ layer adjacent to the GDC/YSZ interface were avoided by using an interlayer of porous Ni-YSZ as a buffer anode layer between the electrolyte and the Ni-GDC primary anode. Cells were fabricated from commercially available component powders so that unconventional production methods suggested in the literature were avoided. A cell of similar construction was used with externally applied acetylene flame soot as fuel so that soot captured at the exhaust of a diesel engine could be utilized for secondary power generation in a SOFC while decreasing particulate pollution without the need for filter regeneration.

  1. Reaction products of amido-amine and epoxide useful as fuel additives

    SciTech Connect

    Efner, H.F.

    1988-04-12

    A method for reducing engine deposits in an internal combustion engine is described comprising the addition of a detergent fuel additive package to a hydrocarbon fuel for the engine. The fuel detergent is added in an amount effective to reduce deposits and the hydrocarbon fuel is used with detergent additive as fuel in an internal combustion engine. The detergent fuel additive package comprises: (1) a fuel detergent additive that is the reaction product prepared by reacting (a) vegetable oil or (b) higher carboxylic acid chosen from (i) aliphatic fatty acids having 10-25 carbon atoms and (ii) aralkyl acids having 12-42 carbon atoms with (c) multiamine to obtain a fist product mixture with the first product mixture reacted with alklylene oxide to produce a second product mixture and (2) a fuel detergent additive solvent compatible with the fuels.

  2. Coal Water Fuels: Production process modifications; their impact on fuel specifications

    SciTech Connect

    Goodman, R.M.

    1986-01-01

    Coal Water Fuels (CWF) have a tremendous potential in the US Energy market. There is an ''oil glut'' and cheap oil is readily available at least in the near term future. Thus, whether future oil shortages and concomitant price escalations for oil are ''just-around-the-corner'' or off in the 21st Century, is a matter for great current debate. The recent indications of price collapse further fuel this debate. Unfortunately, it is only in the future that the correct answer will become apparent. Prudence dictates, however, that survival for a CWF supplier in early 1986, must be predicated on flexibility. It is clear that the most flexible technology and most adaptive supplier network will have the best chance to become successful in the currently difficult CWF market. The Carbogel organization enjoys tremendous flexibility in approach to CWF development and production. Further, the Carbogel technology development program, from its inception, has stressed flexibility and adaptability to different requirements.

  3. Production, quality and quality assurance of Refuse Derived Fuels (RDFs).

    PubMed

    Sarc, R; Lorber, K E

    2013-09-01

    This contribution describes characterization, classification, production, application and quality assurance of Refuse Derived Fuels (RDFs) that are increasingly used in a wide range of co-incineration plants. It is shown in this paper, that the fuel-parameter, i.e. net calorific value [MJ/kg(OS)], particle size d(90) or d(95) [mm], impurities [w%], chlorine content [w%], sulfur content [w%], fluorine content [w%], ash content [w%], moisture [w%] and heavy metals content [mg/kg(DM)], can be preferentially used for the classification of different types of RDF applied for co-incineration and substitution of fossil-fuel in different industial sectors. Describing the external production of RDF by processing and confectioning of wastes as well as internal processing of waste at the incineration plant, a case study is reported on the application of RDF made out of different household waste fractions in a 120,000t/yr Waste to Energy (WtE) circulating fluidized bed (CFB) incinerator. For that purpose, delivered wastes, as well as incinerator feedstock material (i.e. after internal waste processing) are extensively investigated. Starting with elaboration of sampling plan in accordance with the relevant guidelines and standards, waste from different suppliers was sampled. Moreover, manual sorting analyses and chemical analyses were carried out. Finally, results of investigations are presented and discussed in the paper.

  4. Metabolic engineering of yeast for production of fuels and chemicals.

    PubMed

    Nielsen, Jens; Larsson, Christer; van Maris, Antonius; Pronk, Jack

    2013-06-01

    Microbial production of fuels and chemicals from renewable carbohydrate feedstocks offers sustainable and economically attractive alternatives to their petroleum-based production. The yeast Saccharomyces cerevisiae offers many advantages as a platform cell factory for such applications. Already applied on a huge scale for bioethanol production, this yeast is easy to genetically engineer, its physiology, metabolism and genetics have been intensively studied and its robustness enables it to handle harsh industrial conditions. Introduction of novel pathways and optimization of its native cellular processes by metabolic engineering are rapidly expanding its range of cell-factory applications. Here we review recent scientific progress in metabolic engineering of S. cerevisiae for the production of bioethanol, advanced biofuels, and chemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Symbiotic Nuclear—Coal Systems for Production of Liquid Fuels

    NASA Astrophysics Data System (ADS)

    Taczanowski, S.

    The notion of safety is not confined to the technological or non-proliferation aspects. It covers also the elements of energy policy: irrational reactions of societies, emotions, egoistic interests of more or less powerful pressure of economical and external political factors. One should be conscious that the country's privilege of being equipped by the Nature with rich resources of oil or gas is not solely economical, but even more a political one. Simultaneously, the gradual depletion of world hydrocarbons that draws behind irrevocable price increase has to be expected within the time scale of exploitation of power plants (now amounted to ~60 years). Therefore consequences of energy policy last much longer than the perspectives the political or economical decision makers are planning and acting within and the public is expecting successes and finally evaluating them. The world oil and gas resources are geopolitically very non-uniformly distributed, in contrast to coal and uranium. Since the level of energy self-sufficiency of the EU is highest for coal, the old idea of synfuels production from coal is recalled. Yet, in view of limits to the CO2 emissions in the EU another method has to be used here than the conventional coal liquefaction just applied in China. Simultaneously, an interesting evolution of energy prices was be observed, namely an increase in that of motor fuels in contrast to that of electricity remaining well stable. This fact suggests that the use of electricity (mainly the off-peak load), generated without emissions of CO2 for production of liquid fuels can prove reasonable. Thus, the essence of the presented idea of coal-nuclear symbiosis lies in the supply of energy in the form of H2, necessary for this process, from a nuclear reactor. Particularly, in the present option H2 is obtained by electrolytic water splitting supplying also O2 as a precious by-product in well mature and commercially available already since decades, Light Water Reactors

  6. Symbiotic Nuclear—Coal Systems for Production of Liquid Fuels

    NASA Astrophysics Data System (ADS)

    Taczanowski, S.

    The notion of safety is not confined to the technological or non-proliferation aspects. It covers also the elements of energy policy: irrational reactions of societies, emotions, egoistic interests of more or less powerful pressure of economical and external political factors. One should be conscious that the country's privilege of being equipped by the Nature with rich resources of oil or gas is not solely economical, but even more a political one. Simultaneously, the gradual depletion of world hydrocarbons that draws behind irrevocable price increase has to be expected within the time scale of exploitation of power plants (now amounted to ~60 years). Therefore consequences of energy policy last much longer than the perspectives the political or economical decision makers are planning and acting within and the public is expecting successes and finally evaluating them. The world oil and gas resources are geopolitically very non-uniformly distributed, in contrast to coal and uranium. Since the level of energy self-sufficiency of the EU is highest for coal, the old idea of synfuels production from coal is recalled. Yet, in view of limits to the CO2 emissions in the EU another method has to be used here than the conventional coal liquefaction just applied in China. Simultaneously, an interesting evolution of energy prices was be observed, namely an increase in that of motor fuels in contrast to that of electricity remaining well stable. This fact suggests that the use of electricity (mainly the off-peak load), generated without emissions of CO2 for production of liquid fuels can prove reasonable. Thus, the essence of the presented idea of coal-nuclear symbiosis lies in the supply of energy in the form of H2, necessary for this process, from a nuclear reactor. Particularly, in the present option H2 is obtained by electrolytic water splitting supplying also O2 as a precious by-product in well mature and commercially available already since decades, Light Water Reactors

  7. Microbial production of fatty acid-derived fuels and chemicals

    PubMed Central

    Lennen, Rebecca M; Pfleger, Brian F

    2013-01-01

    Fatty acid metabolism is an attractive route to produce liquid transportation fuels and commodity oleochemicals from renewable feedstocks. Recently, genes and enzymes, which comprise metabolic pathways for producing fatty acid-derived compounds (e.g. esters, alkanes, olefins, ketones, alcohols, polyesters) have been elucidated and used in engineered microbial hosts. The resulting strains often generate products at low percentages of maximum theoretical yields, leaving significant room for metabolic engineering. Economically viable processes will require strains to approach theoretical yields, particularly for replacement of petroleum-derived fuels. This review will describe recent progress toward this goal, highlighting the scientific discoveries of each pathway, ongoing biochemical studies to understand each enzyme, and metabolic engineering strategies that are being used to improve strain performance. PMID:23541503

  8. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    SciTech Connect

    Gabriel Miller

    2009-03-25

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processing plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report

  9. Chemical Characterization and Reactivity of Fuel-Oxidizer Reaction Product

    NASA Technical Reports Server (NTRS)

    David, Dennis D.; Dee, Louis A.; Beeson, Harold D.

    1997-01-01

    Fuel-oxidizer reaction product (FORP), the product of incomplete reaction of monomethylhydrazine and nitrogen tetroxide propellants prepared under laboratory conditions and from firings of Shuttle Reaction Control System thrusters, has been characterized by chemical and thermal analysis. The composition of FORP is variable but falls within a limited range of compositions that depend on three factors: the fuel-oxidizer ratio at the time of formation; whether the composition of the post-formation atmosphere is reducing or oxidizing; and the reaction or post-reaction temperature. A typical composition contains methylhydrazinium nitrate, ammonium nitrate, methylammonium nitrate, and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. Thermal decomposition reactions of the FORP compositions used in this study were unremarkable. Neither the various compositions of FORP, the pure major components of FORP, nor mixtures of FORP with propellant system corrosion products showed any unusual thermal activity when decomposed under laboratory conditions. Off-limit thruster operations were simulated by rapid mixing of liquid monomethylhydrazine and liquid nitrogen tetroxide in a confined space. These tests demonstrated that monomethylhydrazine, methylhydrazinium nitrate, ammonium nitrate, or Inconel corrosion products can induce a mixture of monomethylhydrazine and nitrogen tetroxide to produce component-damaging energies. Damaging events required FORP or metal salts to be present at the initial mixing of monomethylhydrazine and nitrogen tetroxide.

  10. Production of Jet Fuels from Coal Derived Liquids. Volume 10. Jet Fuels Production By-Products, Utility and Sulfur Emissions Control Integration Study

    DTIC Science & Technology

    1989-06-01

    45433-6563 "I -27 NOTICE When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely ...11 6.1 By-Product Flowrate Definition .............................. 11 6.2 By-Product Sulfur and Nitrogen...Content Definition ........... 12 6.3 Process and Intermediate Stream Definition .................. 15 6.4 Replacement Fuel Requirements

  11. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    SciTech Connect

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model

  12. Fuel NOx production during the combustion of low caloric value fuel

    SciTech Connect

    Colaluca, M.A.; Caraway, J.P.

    1997-07-01

    The objective of this investigation is to identify and qualify physical mechanisms and parameters that affect the combustion of low caloric value gases (LCVG) and the formation of NOx pollutants produced form fuel bound nitrogen. Average physical properties of a low caloric value gas were determined from the products of several industrial coal gasifiers. A computer model was developed, utilizing the PHOENICS computational fluid dynamics software to model the combustion of LCVG. The model incorporates a 3-dimensional physical design and is based on typical industrial combustors. Feed stock to the gasifier can be wood, feed stock manure, cotton gin trash, coal, lignite and numerous forms of organic industrial wastes.

  13. [Biodiesel fuel production from lipids of filamentous fungi].

    PubMed

    Lunin, V V; Sergeev, Ia É; Galanina, L A; Mysiakina, I S; Ivashechkin, A A; Bogdan, V I; Feofilova, E P

    2013-01-01

    The main stages in the production of biodiesel fuel from lipids of filamentous fungi belonging to the order Mucorales are described. Fungi of the family Cunninghamellaceae have been screened; the lipogenic activity of the examined strains has been assessed; and a producer generating up to 50% of lipids, represented by triacylglycerols, has been found. The substitution effect of a source of carbon and nitrogen with less expensive components (in particular, various industrial wastes) has been studied, as well as their influence on the quantity and major characteristics of the final product. An ecologically friendly method for extracting lipids from fungal mycelia, utilizing supercritical technologies, has been used. A correlation between the lipid content in the spore inoculum and the maximal lipid content in biomass has been discovered; this correlation is proposed for optimizing the biotechnology and increasing the yield of final products.

  14. Production of fuels and chemicals from apple pomace

    SciTech Connect

    Hang, Y.D.

    1987-03-01

    Nearly 36 million tons of apples are produced annually in the US. Approximately 45% of the total US apple production is used for processing purposes. The primary by-product of apple processing is apple pomace. It consists of the presscake resulting from pressing apples for juice or cider, including the presscake obtained in pressing peel and core wastes generated in the manufacture of apple sauce or slices. More than 500 food processing plants in the US produce a total of about 1.3 million metric tons of apple pomace each year, and it is likely that annual disposal fees exceed $10 million. Apple pomace has the potential to be used for the production of fuels (ethanol and biogas containing 60% methane) and food-grade chemicals. These uses will be reviewed in this article.

  15. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    SciTech Connect

    none,

    2010-08-01

    This report identifies the commercial and near-commercial (emerging) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies Program in the Office of Energy Efficiency and Renewable Energy.

  16. Lubricant and fuel compositions containing reaction products of polyalkenyl succinimides, aldehydes, and triazoles

    SciTech Connect

    Blain, D.A.; Cardis, A.B.; McGonigle, S.S.

    1990-10-16

    This patent describes an additive for liquid hydrocarbon fuel composition, particularly diesel fuels. The additive composition is the reaction product of polyalkenyl-substituted succinimides, aldehydes, and triazoles. It also finds use in lubricant compositions.

  17. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    SciTech Connect

    Dale, Virginia H.; Parish, Esther S.; Kline, Keith L.

    2014-12-02

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most of which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Furthermore, energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.

  18. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    DOE PAGES

    Dale, Virginia H.; Parish, Esther S.; Kline, Keith L.

    2014-12-02

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most ofmore » which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Furthermore, energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.« less

  19. Electricity production coupled to ammonium in a microbial fuel cell.

    PubMed

    He, Zhen; Kan, Jinjun; Wang, Yanbing; Huang, Yuelong; Mansfeld, Florian; Nealson, Kenneth H

    2009-05-01

    The production of electricity from ammonium was examined using a rotating-cathode microbial fuel cell (MFC). The addition of ammonium chloride, ammonium sulfate, or ammonium phosphate (monobasic) resulted in electricity generation, while adding sodium chloride, nitrate, or nitrite did not cause any increase in current production. The peak current increased with increasing amount of ammonium addition up to 62.3 mM of ammonium chloride, suggesting that ammonium was involved in electricity generation either directly as the anodic fuel or indirectly as substrates for nitrifiers to produce organic compounds for heterotrophs. Adding nitrate or nitrite with ammonium increased current production compared to solely ammonium addition. Using 16S rRNA-linked molecular analyses, we found ammonium-oxidizing bacteria and denitrifying bacteria on both the anode and cathode electrodes, whereas no anammox bacteria were detected. The dominant ammonium-oxidizing bacteria were closely related to Nitrosomonas europaea. The present MFC achieved an ammonium removal efficiency of 49.2 +/- 5.9 or 69.7 +/- 3.6%, depending on hydraulic retention time, but exhibited a very low Coulombic efficiency.

  20. Energy Conversion in Photosynthesis: A Paradigm for Solar Fuel Production

    NASA Astrophysics Data System (ADS)

    Moore, Gary F.; Brudvig, Gary W.

    2011-03-01

    Solar energy has the capacity to fulfill global human energy demands in an environmentally and socially responsible manner, provided efficient, low-cost systems can be developed for its capture, conversion, and storage. Toward these ends, a molecular-based understanding of the fundamental principles and mechanistic details of energy conversion in photosynthesis is indispensable. This review addresses aspects of photosynthesis that may prove auspicious to emerging technologies. Conversely, areas in which human ingenuity may offer innovative solutions, resulting in enhanced energy storage efficiencies in artificial photosynthetic constructs, are considered. Emphasis is placed on photoelectrochemical systems that utilize water as a source of electrons for the production of solar fuels.

  1. Production of fuel alcohol from Jerusalem artichoke tops

    SciTech Connect

    Not Available

    1983-01-01

    The objective of this research program is to demonstrate fuel alcohol production in New Mexico using the Jerusalem artichoke and local resources. This final report summarizes progress made during the course of the project. The planting and cultivation of the tubers are described as well as the construction of the ethanol plant. During the grinding of the tubers, the Bowie gear pump failed and a larger Mayo pump was purchased. Results indicate that Jerusalem artichokes will grow well in this area of New Mexico; water requirements are about the same as for corn and cultivation is only necessary until plant height is 18 inches. (DMC)

  2. Fuel alcohol: report and analysis of plant conversion potential to fuel alcohol production

    SciTech Connect

    Not Available

    1980-09-01

    An analysis is made of the national potential to convert and/or to retrofit existing plants to process their present feedstock into fuel alcohol in lieu of their originally designed final product. Categories of plants examined are distilleries, breweries, corn wet milling, beet and cane sugar mills, wineries, cheese whey, and other food processing. Outline descriptions are developed for a base-case plant in each of the industries found to be a viable contributor to a fuel alcohol program. These base-case plants are illustrative of plant size, estimated capital costs of conversion, operating costs, labor estimates for daily operation, and estimated time schedules for comparison purposes. The facilities described as convertible could begin making alcohol by 1982, with a total of 581 million gallons of ethanol identified by 1985 and an additional 300 million gallons being possible. Thus with current production, these additional volumes can largely meet the President's 1982 ethanol goal, and can contribute greatly to the 1985 goal. A glossary is included.

  3. Fischer-Tropsch Catalyst for Aviation Fuel Production

    NASA Technical Reports Server (NTRS)

    deLaRee, Ana B.; Best, Lauren M.; Hepp, Aloysius F.

    2011-01-01

    As the oil supply declines, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to non-petroleum sources as a feedstock for aviation (and other transportation) fuels. The Fischer-Tropsch process uses a gas mixture of carbon monoxide and hydrogen which is converted into various liquid hydrocarbons; this versatile gas-to-liquid technology produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fischer-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur and aromatic compounds. It is most commonly catalyzed by cobalt supported on alumina, silica, or titania or unsupported alloyed iron powders. Cobalt is typically used more often than iron, in that cobalt is a longer-active catalyst, has lower water-gas shift activity, and lower yield of modified products. Promoters are valuable in improving Fischer-Tropsch catalyst as they can increase cobalt oxide dispersion, enhance the reduction of cobalt oxide to the active metal phase, stabilize a high metal surface area, and improve mechanical properties. Our goal is to build up the specificity of the Fischer-Tropsch catalyst while adding less-costly transition metals as promoters; the more common promoters used in Fischer-Tropsch synthesis are rhenium, platinum, and ruthenium. In this report we will describe our preliminary efforts to design and produce catalyst materials to achieve our goal of preferentially producing C8 to C18 paraffin compounds in the NASA Glenn Research Center Gas-To-Liquid processing plant. Efforts at NASA Glenn Research Center for producing green fuels using non-petroleum feedstocks support both the Sub-sonic Fixed Wing program of Fundamental Aeronautics and the In Situ Resource Utilization program of the Exploration Technology Development and Demonstration program.

  4. Fischer-Tropsch Catalyst for Aviation Fuel Production

    NASA Technical Reports Server (NTRS)

    DeLaRee, Ana B.; Best, Lauren M.; Bradford, Robyn L.; Gonzalez-Arroyo, Richard; Hepp, Aloysius F.

    2012-01-01

    As the oil supply declines, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to nonpetroleum sources as a feedstock for aviation (and other transportation) fuels. The Fischer-Tropsch process uses a gas mixture of carbon monoxide and hydrogen which is converted into various liquid hydrocarbons; this versatile gas-to-liquid technology produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fischer-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur and aromatic compounds. It is most commonly catalyzed by cobalt supported on alumina, silica, or titania or unsupported alloyed iron powders. Cobalt is typically used more often than iron, in that cobalt is a longer-active catalyst, has lower water-gas shift activity, and lower yield of modified products. Promoters are valuable in improving Fischer-Tropsch catalyst as they can increase cobalt oxide dispersion, enhance the reduction of cobalt oxide to the active metal phase, stabilize a high metal surface area, and improve mechanical properties. Our goal is to build up the specificity of the Fischer-Tropsch catalyst while adding less-costly transition metals as promoters; the more common promoters used in Fischer-Tropsch synthesis are rhenium, platinum, and ruthenium. In this report we will describe our preliminary efforts to design and produce catalyst materials to achieve our goal of preferentially producing C8 to C18 paraffin compounds in the NASA Glenn Research Center Gas-To-Liquid processing plant. Efforts at NASA Glenn Research Center for producing green fuels using non-petroleum feedstocks support both the Sub-sonic Fixed Wing program of Fundamental Aeronautics and the In Situ Resource Utilization program of the Exploration Technology Development and Demonstration program.

  5. Volatile organic compound emissions from dry mill fuel ethanol production.

    PubMed

    Brady, Daniel; Pratt, Gregory C

    2007-09-01

    Ethanol fuel production is growing rapidly in the rural Midwest, and this growth presents potential environmental impacts. In 2002, the U.S. Environmental Protection Agency (EPA) and the Minnesota Pollution Control Agency (MPCA) entered into enforcement actions with 12 fuel ethanol plants in Minnesota. The enforcement actions uncovered underreported emissions and resulted in consent decrees that required pollution control equipment be installed. A key component of the consent decrees was a requirement to conduct emissions tests for volatile organic compounds (VOCs) with the goal of improving the characterization and control of emissions. The conventional VOC stack test method was thought to underquantify total VOC emissions from ethanol plants. A hybrid test method was also developed that involved quantification of individual VOC species. The resulting database of total and speciated VOC emissions from 10 fuel ethanol plants is relatively small, but it is the most extensive to date and has been used to develop and gauge compliance with permit limits and to estimate health risks in Minnesota. Emissions were highly variable among facilities and emissions units. In addition to the variability, the small number of samples and the presence of many values below detection limits complicate the analysis of the data. To account for these issues, a nested bootstrap procedure on the Kaplan-Meier method was used to calculate means and upper confidence limits. In general, the fermentation scrubbers and fluid bed coolers emitted the largest mass of VOC emissions. Across most facilities and emissions units ethanol was the pollutant emitted at the highest rate. Acetaldehyde, acetic acid, and ethyl acetate were also important emissions from some units. Emissions of total VOCs, ethanol, and some other species appeared to be a function of the beer feed rate, although the relationship was not reliable enough to develop a production rate-based emissions factor.

  6. Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel

    SciTech Connect

    Herrmann, Steven Douglas

    2014-05-27

    Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.

  7. Characterization of Cassini GPHS Fueled-Clad Production Girth Welds

    SciTech Connect

    Franco-Ferreira, E.A.

    2000-03-23

    Fueled clads for radioisotope power systems are produced by encapsulating {sup 238}PuO{sub 2} in iridium alloy cups, which are joined at their equators by gas tungsten arc welding. Cracking problems at the girth weld tie-in area during production of the Galileo/Ulysses GPHS capsules led to the development of a first-generation ultrasonic test for girth weld inspection at the Savannah River Plant. A second-generation test and equipment with significantly improved sensitivity and accuracy were jointly developed by the Oak Ridge Y-12 Plant and Westinghouse Savannah River Company for use during the production of Cassini GPHS capsules by the Los Alamos National Laboratory. The test consisted of Lamb wave ultrasonic scanning of the entire girth weld from each end of the capsule combined with a time-of-flight evaluation to aid in characterizing nonrelevant indications. Tangential radiography was also used as a supplementary test for further evaluation of reflector geometry. Each of the 317 fueled GPHS capsules, which were girth welded for the Cassini Program, was subjected to a series of nondestructive tests that included visual, dimensional, helium leak rate, and ultrasonic testing. Thirty-three capsules were rejected prior to ultrasonic testing. Of the 44 capsules rejected by the standard ultrasonic test, 22 were upgraded to flight quality through supplementary testing for an overall process acceptance rate of 82.6%. No confirmed instances of weld cracking were found.

  8. Sweet sorghum biorefinery for production of fuel ethanol and value-added co-products

    USDA-ARS?s Scientific Manuscript database

    An integrated process has been developed for a sweet-sorghum biorefinery in which all carbohydrate components of the feedstock were used for production of fuel ethanol and industrial chemicals. In the first step, the juice was extracted from the stalks. The resulted straw (bagasse) then was pretreat...

  9. Thermocatalytic CO2-Free Production of Hydrogen from Hydrocarbon Fuels

    SciTech Connect

    University of Central Florida

    2004-01-30

    The main objective of this project is the development of an economically viable thermocatalytic process for production of hydrogen and carbon from natural gas or other hydrocarbon fuels with minimal environmental impact. The three major technical goals of this project are: (1) to accomplish efficient production of hydrogen and carbon via sustainable catalytic decomposition of methane or other hydrocarbons using inexpensive and durable carbon catalysts, (2) to obviate the concurrent production of CO/CO{sub 2} byproducts and drastically reduce CO{sub 2} emissions from the process, and (3) to produce valuable carbon products in order to reduce the cost of hydrogen production The important feature of the process is that the reaction is catalyzed by carbon particulates produced in the process, so no external catalyst is required (except for the start-up operation). This results in the following advantages: (1) no CO/CO{sub 2} byproducts are generated during hydrocarbon decomposition stage, (2) no expensive catalysts are used in the process, (3) several valuable forms of carbon can be produced in the process depending on the process conditions (e.g., turbostratic carbon, pyrolytic graphite, spherical carbon particles, carbon filaments etc.), and (4) CO{sub 2} emissions could be drastically reduced (compared to conventional processes).

  10. The chemical state of fission products in oxide fuels at different stages of the nuclear fuel cycle

    SciTech Connect

    Kleykamp, H.

    1988-03-01

    A survey of work at the Kernforschungszentrum Karlsruhe is presented on the chemical state of selected fission products that are relevant in the fuel cycle of light water reactor (LWR) and fast breeder reactor fuels. The influence of fuel type and irradiation progress on the composition of the Mo-Tc-Ru-Rh-Pd fission product alloys precipitated in the oxide matrix is examined using the respective multicomponent phase diagrams. The kinetics of dissolution of these phases in nitric acid at the reprocessing stage is discussed. Composition and structure of the residues, and the reprecipitation phenomena from highly active waste (HAW), are elucidated. A second metamorphosis of the fission products is recognized during the vitrification process. The formation of Ru(Rh) oxide and Pd(Rh, U, Te) alloys in simulated vitrified HAW concentrate and in HAW concentrate from the reprocessing of irradiated LWR fuels in interpreted on the basis of heterogeneous equilibria.

  11. Ethyl-alcohol-fuel production from the Jerusalem artichoke. Alcohol-Fuels Grant Program

    SciTech Connect

    Middaugh, P.R.

    1983-03-01

    The project objective is to evaluate the commercial feasibility for production of fuel alcohol by fermentation of the carbohydrates in the tops of the Jerusalem artichoke. The maximum top biomass yields of the mammoth French white variety of Jerusalem artichoke was obtained at 119 days after plant emergence and maximum fresh weight of the tops was 31.6 tons per acre. During rapid growth the fresh stalks had 2% to 4% carbohydrate. After the plant reached a maximum height of 168 inches, and started to bud the stalk had a maximum of 4% carbohydrate. During blossoming the stalk carbohydrates rapidly translocated to the tuber. Single versus multiple cuttings demonstrated the maximum carbohydrate was obtained with a single harvest of the mature plants immediately following bud formation. The total carbohydrate yield from the top biomass was 1.26 tons per acre. The equivalent yield of fermentation alcohol is 180.6 gallons of anhydrous ethanol per acre. The tuber yield at both Mesa and Toppenish, WA, was 14 to 15 tons of fresh tubers with 18% total carbohydrates. The carbohydrate yield was 2.52 tons per acre. This is equivalent to a yield of 360 gallons of anhydrous ethanol per acre. Commercial scale fuel alcohol equipment was used to hammer mill and batch ferment tops and tubers. The steps for commercial processing of the biomass tops and tubers was discussed including extracting and fermentation of the carbohydrates to ethanol and their concentration by distillation and dehydration by molecular sieves to anhydrous fuel alcohol. The use of molecular sieves reduced the energy for dehydration of 95% ethanol to 5000 Btu per gallon. The economic feasibility and energy requirement for commercial processing was discussed.

  12. A novel biochemical platform for fuels and chemicals production from cellulosic biomass

    USDA-ARS?s Scientific Manuscript database

    The conventional biochemical platform for biofuels production featuring enzymatic hydrolysis involves five key steps: pretreatment, cellulase production, enzymatic hydrolysis, fermentation, and product recovery. Sugars are produced as reactive intermediates for subsequent fermentation to fuels and c...

  13. Federal Support for the Development, Production, and Use of Fuels and Energy Technologies

    DTIC Science & Technology

    2015-11-01

    CONGRESS OF THE UNITED STATES CONGRESSIONAL BUDGET OFFICE CBO Federal Support for the Development, Production, and Use of Fuels and Energy ...Development, Production, and Use of Fuels and Energy Technologies 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...ContentsSummary 1 How Does the Federal Government Support the Development, Production, and Use of Fuels and Energy Technologies? 1 How Has Federal Support

  14. Use of MRF residue as alternative fuel in cement production.

    PubMed

    Fyffe, John R; Breckel, Alex C; Townsend, Aaron K; Webber, Michael E

    2016-01-01

    Single-stream recycling has helped divert millions of metric tons of waste from landfills in the U.S., where recycling rates for municipal solid waste are currently over 30%. However, material recovery facilities (MRFs) that sort the municipal recycled streams do not recover 100% of the incoming material. Consequently, they landfill between 5% and 15% of total processed material as residue. This residue is primarily composed of high-energy-content non-recycled plastics and fiber. One possible end-of-life solution for these energy-dense materials is to process the residue into Solid Recovered Fuel (SRF) that can be used as an alternative energy resource capable of replacing or supplementing fuel resources such as coal, natural gas, petroleum coke, or biomass in many industrial and power production processes. This report addresses the energetic and environmental benefits and trade-offs of converting non-recycled post-consumer plastics and fiber derived from MRF residue streams into SRF for use in a cement kiln. An experimental test burn of 118 Mg of SRF in the precalciner portion of the cement kiln was conducted. The SRF was a blend of 60% MRF residue and 40% post-industrial waste products producing an estimated 60% plastic and 40% fibrous material mixture. The SRF was fed into the kiln at 0.9 Mg/h for 24h and then 1.8 Mg/h for the following 48 h. The emissions data recorded in the experimental test burn were used to perform the life-cycle analysis portion of this study. The analysis included the following steps: transportation, landfill, processing and fuel combustion at the cement kiln. The energy use and emissions at each step is tracked for the two cases: (1) The Reference Case, where MRF residue is disposed of in a landfill and the cement kiln uses coal as its fuel source, and (2) The SRF Case, in which MRF residue is processed into SRF and used to offset some portion of coal use at the cement kiln. The experimental test burn and accompanying analysis indicate

  15. Storage and production of hydrogen for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Aiello, Rita

    The increased utilization of proton-exchange membrane (PEM) fuel cells as an alternative to internal combustion engines is expected to increase the demand for hydrogen, which is used as the energy source in these systems. The objective of this work is to develop and test new methods for the storage and production of hydrogen for fuel cells. Six ligand-stabilized hydrides were synthesized and tested as hydrogen storage media for use in portable fuel cells. These novel compounds are more stable than classical hydrides (e.g., NaBH4, LiAlH4) and react to release hydrogen less exothermically upon hydrolysis with water. Three of the compounds produced hydrogen in high yield (88 to 100 percent of the theoretical) and at significantly lower temperatures than those required for the hydrolysis of NaBH4 and LiAlH4. However, a large excess of water and acid were required to completely wet the hydride and keep the pH of the reaction medium neutral. The hydrolysis of the classical hydrides with steam can overcome these limitations. This reaction was studied in a flow reactor and the results indicate that classical hydrides can be hydrolyzed with steam in high yields at low temperatures (110 to 123°C) and in the absence of acid. Although excess steam was required, the pH of the condensed steam was neutral. Consequently, steam could be recycled back to the reactor. Production of hydrogen for large-scale transportation fuel cells is primarily achieved via the steam reforming, partial oxidation or autothermal reforming of natural gas or the steam reforming of methanol. However, in all of these processes CO is a by-product that must be subsequently removed because the Pt-based electrocatalyst used in the fuel cells is poisoned by its presence. The direct cracking of methane over a Ni/SiO2 catalyst can produce CO-free hydrogen. In addition to hydrogen, filamentous carbon is also produced. This material accumulates on the catalyst and eventually deactivates it. The Ni/SiO2 catalyst

  16. Fundamental Studies of Irradiation-Induced Defect Formation and Fission Product Dynamics in Oxide Fuels

    SciTech Connect

    Stubbins, James

    2012-12-19

    The objective of this research program is to address major nuclear fuels performance issues for the design and use of oxide-type fuels in the current and advanced nuclear reactor applications. Fuel performance is a major issue for extending fuel burn-up which has the added advantage of reducing the used fuel waste stream. It will also be a significant issue with respect to developing advanced fuel cycle processes where it may be possible to incorporate minor actinides in various fuel forms so that they can be 'burned' rather than join the used fuel waste stream. The potential to fission or transmute minor actinides and certain long-lived fission product isotopes would transform the high level waste storage strategy by removing the need to consider fuel storage on the millennium time scale.

  17. Health effects of fossil-fuel combustion products: needed research

    SciTech Connect

    Not Available

    1980-01-01

    An examination is made of the research needed to expand and clarify the understanding of the products of fossil-fuel combustion, chiefly that taking place in stationary sources of power. One of the specific objectives that guided the study on which this report is based was to identify the pollutants potentially hazardous to man that are released into the environment in the course of the combustion of fossil fuels. The hazards of principal concern are those which could cause deleterious, long-term somatic and genetic effects. Another objective was to specify the nature of the research needed to determine the health effects of these pollutants on the general population. Special attention was paid to the interaction of pollutants; the meteorologic and climatic factors that affect the transport, diffusion, and transformation of pollutants; the effects of concentrations of aerosol, particulate, and thermal loads on biologic systems; and the susceptibility of some portions of the population to the effects of pollutants on the skin and cardiovascular, pulmonary, and urinary systems. Other objectives were to evaluate the methods of the proposed research, including analytic and interpretation techniques, to identify fields in which the available scientific information is inadequate for regulatory decision-making and to recommend a research program to meet those deficiencies, and to provide a logical framework within which the necessary information can be developed (the proposed program is presented in terms of subject, methods, and priorities).

  18. 40 CFR 80.1455 - What are the small volume provisions for renewable fuel production facilities and importers?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for renewable fuel production facilities and importers? 80.1455 Section 80.1455 Protection of... ADDITIVES Renewable Fuel Standard § 80.1455 What are the small volume provisions for renewable fuel production facilities and importers? (a) Standard volume threshold. Renewable fuel production...

  19. 40 CFR 80.1455 - What are the small volume provisions for renewable fuel production facilities and importers?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for renewable fuel production facilities and importers? 80.1455 Section 80.1455 Protection of... ADDITIVES Renewable Fuel Standard § 80.1455 What are the small volume provisions for renewable fuel production facilities and importers? (a) Standard volume threshold. Renewable fuel production...

  20. 40 CFR 80.1455 - What are the small volume provisions for renewable fuel production facilities and importers?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for renewable fuel production facilities and importers? 80.1455 Section 80.1455 Protection of... ADDITIVES Renewable Fuel Standard § 80.1455 What are the small volume provisions for renewable fuel production facilities and importers? (a) Standard volume threshold. Renewable fuel production...

  1. 40 CFR 80.1455 - What are the small volume provisions for renewable fuel production facilities and importers?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for renewable fuel production facilities and importers? 80.1455 Section 80.1455 Protection of... ADDITIVES Renewable Fuel Standard § 80.1455 What are the small volume provisions for renewable fuel production facilities and importers? (a) Standard volume threshold. Renewable fuel production...

  2. 40 CFR 80.1455 - What are the small volume provisions for renewable fuel production facilities and importers?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for renewable fuel production facilities and importers? 80.1455 Section 80.1455 Protection of... ADDITIVES Renewable Fuel Standard § 80.1455 What are the small volume provisions for renewable fuel production facilities and importers? (a) Standard volume threshold. Renewable fuel production...

  3. Solar fuels production as a sustainable alternative for substituting fossil fuels: COSOLπ project

    NASA Astrophysics Data System (ADS)

    Hernando Romero-Paredes, R.; Alvarado-Gil, Juan José; Arancibia-Bulnes, Camilo Alberto; Ramos-Sánchez, Víctor Hugo; Villafán-Vidales, Heidi Isabel; Espinosa-Paredes, Gilberto; Abanades, Stéphane

    2017-06-01

    This article presents, in summary form, the characteristics of COSOLπ development project and some of the results obtained to date. The benefits of the work of this project will include the generation of a not polluting transportable energy feedstock from a free, abundant and available primary energy source, in an efficient method with no greenhouse gas emission. This will help to ensure energy surety to a future transportation/energy infrastructure, without any fuel import. Further technological development of thermochemical production of clean fuels, together with solar reactors and also with the possibility of determining the optical and thermal properties of the materials involved a milestone in the search for new processes for industrialization. With the above in mind, important national academic institutions: UAM, UNAM, CINVESTAV, UACH, UNISON among others, have been promoting research in solar energy technologies. The Goals and objectives are to conduct research and technological development driving high-temperature thermochemical processes using concentrated solar radiation as thermal energy source for the future sustainable development of industrial processes. It focuses on the production of clean fuels such as H2, syngas, biofuels, without excluding the re-value of materials used in the industry. This project conducts theoretical and experimental studies for the identification, characterization, and optimization of the most promising thermochemical cycles, and for the thorough investigation of the reactive chemical systems. It applies material science and nano-engineering to improve chemicals properties and stability upon cycling. The characterization of materials will serve to measure the chemical composition and purity (MOX fraction-1) of each of the samples. The characterizations also focus on the solid particle morphology (shape, size, state of aggregation, homogeneity, specific surface) images obtained from SEM / TEM and BET measurements. Likewise

  4. Moving bed reactor for solar thermochemical fuel production

    DOEpatents

    Ermanoski, Ivan

    2013-04-16

    Reactors and methods for solar thermochemical reactions are disclosed. Embodiments of reactors include at least two distinct reactor chambers between which there is at least a pressure differential. In embodiments, reactive particles are exchanged between chambers during a reaction cycle to thermally reduce the particles at first conditions and oxidize the particles at second conditions to produce chemical work from heat. In embodiments, chambers of a reactor are coupled to a heat exchanger to pre-heat the reactive particles prior to direct exposure to thermal energy with heat transferred from reduced reactive particles as the particles are oppositely conveyed between the thermal reduction chamber and the fuel production chamber. In an embodiment, particle conveyance is in part provided by an elevator which may further function as a heat exchanger.

  5. Production of gaseous fuel by pyrolysis of municipal solid waste

    NASA Technical Reports Server (NTRS)

    Crane, T. H.; Ringer, H. N.; Bridges, D. W.

    1975-01-01

    Pilot plant tests were conducted on a simulated solid waste which was a mixture of shredded newspaper, wood waste, polyethylene plastics, crushed glass, steel turnings, and water. Tests were conducted at 1400 F in a lead-bath pyrolyser. Cold feed was deaerated by compression and was dropped onto a moving hearth of molten lead before being transported to a sealed storage container. About 80 percent of the feed's organic content was converted to gaseous products which contain over 90 percent of the potential waste energy; 12 percent was converted to water; and 8 percent remained as partially pyrolyzed char and tars. Nearly half of the carbon in the feed is converted to benzene, toluene and medium-quality fuel gas, a potential credit of over $25 per ton of solid waste. The system was shown to require minimal preprocessing and less sorting then other methods.

  6. Determination of alternative fuels combustion products: Phase 2 final report

    SciTech Connect

    Whitney, K.A.

    1997-06-01

    This report describes the laboratory efforts to accomplish four independent tasks: (1) speciation of hydrocarbon exhaust emissions from a light-duty vehicle operated over the chassis dynamometer portion of the light-duty FTP after modifications for operation on butane and butane blends; (2) evaluation of NREL`s Variable Conductance Vacuum Insulated Catalytic Converter Test Article 4 for the reduction of cold-start FTP exhaust emissions after extended soak periods for a Ford FFV Taurus operating on E85; (3) support of UDRI in an attempt to define correlations between engine-out combustion products identified by SwRI during chassis dynamometer testing, and those found during flow tube reactor experiments conducted by UDRI; and (4) characterization of small-diameter particulate matter from a Ford Taurus FFV operating in a simulated fuel-rich failure mode on CNG, LPG, M85, E85, and reformulated gasoline. 22 refs., 18 figs., 17 tabs.

  7. Artificial photosynthesis for sustainable fuel and chemical production.

    PubMed

    Kim, Dohyung; Sakimoto, Kelsey K; Hong, Dachao; Yang, Peidong

    2015-03-09

    The apparent incongruity between the increasing consumption of fuels and chemicals and the finite amount of resources has led us to seek means to maintain the sustainability of our society. Artificial photosynthesis, which utilizes sunlight to create high-value chemicals from abundant resources, is considered as the most promising and viable method. This Minireview describes the progress and challenges in the field of artificial photosynthesis in terms of its key components: developments in photoelectrochemical water splitting and recent progress in electrochemical CO2 reduction. Advances in catalysis, concerning the use of renewable hydrogen as a feedstock for major chemical production, are outlined to shed light on the ultimate role of artificial photosynthesis in achieving sustainable chemistry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fuel Sustainability And Actinide Production Of Doping Minor Actinide In Water-Cooled Thorium Reactor

    NASA Astrophysics Data System (ADS)

    Permana, Sidik

    2017-07-01

    Fuel sustainability of nuclear energy is coming from an optimum fuel utilization of the reactor and fuel breeding program. Fuel cycle option becomes more important for fuel cycle utilization as well as fuel sustainability capability of the reactor. One of the important issues for recycle fuel option is nuclear proliferation resistance issue due to production plutonium. To reduce the proliferation resistance level, some barriers were used such as matrial barrier of nuclear fuel based on isotopic composition of even mass number of plutonium isotope. Analysis on nuclear fuel sustainability and actinide production composition based on water-cooled thorium reactor system has been done and all actinide composition are recycled into the reactor as a basic fuel cycle scheme. Some important parameters are evaluated such as doping composition of minor actinide (MA) and volume ratio of moderator to fuel (MFR). Some feasible parameters of breeding gains have been obtained by additional MA doping and some less moderation to fuel ratios (MFR). The system shows that plutonium and MA are obtained low compositions and it obtains some higher productions of even mass plutonium, which is mainly Pu-238 composition, as a control material to protect plutonium to be used as explosive devices.

  9. Lignin depolymerization and upgrading via fast pyrolysis and electrocatalysis for the production of liquid fuels and value-added products

    NASA Astrophysics Data System (ADS)

    Garedew, Mahlet

    The production of liquid hydrocarbon fuels from biomass is needed to replace fossil fuels, which are decreasing in supply at an unsustainable rate. Renewable fuels also address the rising levels of greenhouse gases, an issue for which the Intergovernmental Panel on Climate Change implicated humanity in 2013. In response, the Energy Independence and Security Act (EISA) mandates the production of 21 billion gallons of advanced biofuels by 2022. Biomass fast pyrolysis (BFP) uses heat (400-600 °C) without oxygen to convert biomass to liquids fuel precursors offering an alternative to fossil fuels and a means to meet the EISA mandate. The major product, bio-oil, can be further upgraded to liquid hydrocarbon fuels, while biochar can serve as a solid fuel or soil amendment. The combustible gas co-product is typically burned for process heat. Though the most valuable of the pyrolysis products, the liquid bio-oil is highly oxygenated, corrosive, low in energy content and unstable during storage. As a means of improving bio-oil properties, electrocatalytic hydrogenation (ECH) is employed to reduce and deoxygenate reactive compounds. This work specifically focuses on lignin as a feed material for BFP. As lignin comprises up to 30% of the mass and 40% of the energy stored in biomass, it offers great potential for the production of liquid fuels and value-added products by utilizing fast pyrolysis as a conversion method coupled with electrocatalysis as an upgrading method.

  10. Pectin-rich biomass as feedstock for fuel ethanol production.

    PubMed

    Edwards, Meredith C; Doran-Peterson, Joy

    2012-08-01

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes.

  11. Surface production fuels deep heterotrophic respiration in northern peatlands

    NASA Astrophysics Data System (ADS)

    Elizabeth Corbett, J.; Burdige, David J.; Tfaily, Malak M.; Dial, Angela R.; Cooper, William T.; Glaser, Paul H.; Chanton, Jeffrey P.

    2013-12-01

    Multiple analyses of dissolved organic carbon (DOC) from pore waters were conducted to define the processes that govern carbon balance in peatlands: (1) source, reactivity, and transport of DOC with respect to vegetation, peat, and age of carbon substrate, (2) reactivity of DOC with respect to molecular size, and (3) lability to photoxidation of surficial DOC. We found that surface organic production fuels heterotrophic respiration at depth in advection-dominated peatlands, especially in fens. Fen DOC was Δ14C enriched relative to the surrounding fen peat, and fen respiration products were similar to this enriched DOC indicating that DOC was the main microbial substrate. Bog DOC was more variable showing either enrichment in ∆14C at depth or ∆14C values that follow peat values. This variability in bogs is probably controlled by the relative importance of vertical transport of labile carbon substrates within the peat profile versus DOC production from bog peat. These results extended our set of observations to 10 years at one bog-fen pair and add two additional bog-fen pairs to our series of observations. Anaerobic incubations of peat, rinsed free of residual DOC, produced DOC and respiration products that were strikingly similar to the peat values in a bog and two fens. This result demonstrated conclusively that downward advection is the process responsible for the presence of modern DOC found at depth in the peat column. Fen DOC has lower C/N values and up to twice as much LMW (<1 kDa) DOC as bogs due to differences in organic inputs and greater microbial processing. Fluorescence irradiation experiments showed that fen DOC is more photolabile than bog DOC.

  12. FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FOR FUEL-GRADE ETHANOL PRODUCTION

    SciTech Connect

    F.D. Guffey; R.C. Wingerson

    2002-10-01

    PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to

  13. Alcohol fuels: Production. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-09-01

    The bibliography contains citations concerning the synthesis of alcohol fuels, including gasohol. Alcohol production from sugar beets, industrial wastes, hardwood, biomass, and coal conversion processes are discussed. Cellulose and lignin degradation processes are described. Production systems are evaluated. The utilization of alcohol fuels is discussed in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

  14. Alcohol fuels: Production. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-05-01

    The bibliography contains citations concerning the synthesis of alcohol fuels, including gasohol. Alcohol production from sugar beets, industrial wastes, hardwood, biomass, and coal conversion processes are discussed. Cellulose and lignin degradation processes are described. Production systems are evaluated. The utilization of alcohol fuels is discussed in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

  15. Fate of virginiamycin through the fuel ethanol production process.

    PubMed

    Bischoff, Kenneth M; Zhang, Yanhong; Rich, Joseph O

    2016-05-01

    Antibiotics are frequently used to prevent and treat bacterial contamination of commercial fuel ethanol fermentations, but there is concern that antibiotic residues may persist in the distillers grains coproducts. A study to evaluate the fate of virginiamycin during the ethanol production process was conducted in the pilot plant facilities at the National Corn to Ethanol Research Center, Edwardsville, IL. Three 15,000-liter fermentor runs were performed: one with no antibiotic (F1), one dosed with 2 parts per million (ppm) of a commercial virginiamycin product (F2), and one dosed at 20 ppm of virginiamycin product (F3). Fermentor samples, distillers dried grains with solubles (DDGS), and process intermediates (whole stillage, thin stillage, syrup, and wet cake) were collected from each run and analyzed for virginiamycin M and virginiamycin S using a liquid chromatography-mass spectrometry method. Virginiamycin M was detected in all process intermediates of the F3 run. On a dry-weight basis, virginiamycin M concentrations decreased approximately 97 %, from 41 μg/g in the fermentor to 1.4 μg/g in the DDGS. Using a disc plate bioassay, antibiotic activity was detected in DDGS from both the F2 and F3 runs, with values of 0.69 μg virginiamycin equivalent/g sample and 8.9 μg/g, respectively. No antibiotic activity (<0.6 μg/g) was detected in any of the F1 samples or in the fermentor and process intermediate samples from the F2 run. These results demonstrate that low concentrations of biologically active antibiotic may persist in distillers grains coproducts produced from fermentations treated with virginiamycin.

  16. ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT

    SciTech Connect

    Steve Bergin

    2003-10-17

    The Syntroleum plant is mechanically complete and currently undergoing start-up. The fuel production and demonstration plan is near completion. The study on the impact of small footprint plant (SFP) fuel on engine performance is about half-completed. Cold start testing has been completed. Preparations have been completed for testing the fuel in diesel electric generators in Alaska. Preparations are in progress for testing the fuel in bus fleets at Denali National Park and the Washington Metropolitan Transit Authority. The experiments and analyses conducted during this project show that Fischer-Tropsch (FT) gas-to-liquid diesel fuel can easily be used in a diesel engine with little to no modifications. Additionally, based on the results and discussion presented, further improvements in performance and emissions can be realized by configuring the engine to take advantage of FT diesel fuel's properties. The FT fuel also shows excellent cold start properties and enabled the engine tested to start at more the ten degrees than traditional fuels would allow. This plant produced through this project will produce large amounts of FT fuel. This will allow the fuel to be tested extensively, in current, prototype, and advanced diesel engines. The fuel may also contribute to the nation's energy security. The military has expressed interest in testing the fuel in aircraft and ground vehicles.

  17. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect

    Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2008-03-31

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to commercial

  18. Microbial production of advanced transportation fuels in non-natural hosts.

    PubMed

    Connor, Michael R; Liao, James C

    2009-06-01

    The production of alternative transportation fuels from renewable sources has gained increased attention due to energy and environmental concerns. Recently, progress has been made in the development of microbe-based processes for the production of biofuels beyond ethanol. These biofuels possess superior fuel properties relative to ethanol, such as increased energy density, low hygroscopicity, and low vapor pressure. These fuels are also advantageous as they may be transported using existing infrastructure. The isobutanol production process, in particular, has already reached near-industrial level. Although many of these processes are still being scaled-up for commercial production, their potential for practical application is promising.

  19. Solid fuel production by hydrothermal carbonization of black liquor.

    PubMed

    Kang, Shimin; Li, Xianglan; Fan, Juan; Chang, Jie

    2012-04-01

    Formaldehyde was used as a polymerization agent to perform hydrothermal carbonization of black liquor for solid fuel production from 220 to 285°C. Compared to hydrochar prepared without formaldehyde, hydrochar produced in the presence of a 2.8wt.% formaldehyde solution (hydrochar-F) had 1.27-2.13 times higher yield, 1.02-1.36 times higher heating value (HHV), 1.20-2.31 times higher C recovery efficiency, 1.20-2.44 times higher total energy recovery efficiency, 0.51-0.64 times lower sulfur content, and 0.48-0.89 times lower ash content. The HHV of hydrochar-Fs ranged from 2.2×10(4) to 3.0×10(4)kJ/kg, while the HHV of hydrochar-F produced at 285°C was 1.90 times greater than that of the raw material (black liquor solid). These considerable improvements indicated that formaldehyde was an effective additive in hydrothermal carbonization of black liquor.

  20. Electricity production and microbial characterization of thermophilic microbial fuel cells.

    PubMed

    Dai, Kun; Wen, Jun-Li; Zhang, Fang; Ma, Xi-Wen; Cui, Xiang-Yu; Zhang, Qi; Zhao, Ting-Jia; Zeng, Raymond J

    2017-07-01

    Thermophilic microbial fuel cell (TMFC) offers many benefits, but the investigations on the diversity of exoelectrogenic bacteria are scarce. In this study, a two-chamber TMFC was constructed using ethanol as an electron donor, and the microbial dynamics were analyzed by high-throughput sequencing and 16S rRNA clone-library sequencing. The open-circuit potential of TMFC was approximately 650mV, while the maximum voltage was around 550mV. The maximum power density was 437mW/m(2), and the columbic efficiency in this work was 20.5±6.0%. The Firmicutes bacteria, related to the uncultured bacterium clone A55_D21_H_B_C01 with a similarity of 99%, accounted for 90.9% of all bacteria in the TMFC biofilm. This unknown bacterium has the potential to become a new thermophilic exoelectrogenic bacterium that is yet to be cultured. The development of TMFC-involved biotechnologies will be beneficial for the production of valuable chemicals and generation of energy in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Bioelectricity production from soil using microbial fuel cells.

    PubMed

    Wolińska, Agnieszka; Stępniewska, Zofia; Bielecka, Arletta; Ciepielski, Jakub

    2014-08-01

    Microbial fuel cells (MFCs) are a device using microorganisms as biocatalysts for transforming chemical energy into bioelectricity. As soil is an environment with the highest number of microorganisms and diversity, we hypothesized that it should have the potential for energy generation. The soil used for the study was Mollic Gleysol collected from the surface layer (0-20 cm). Four combinations of soil MFC differing from each other in humidity (full water holding capacity [WHC] and flooding) and the carbon source (glucose and straw) were constructed. Voltage (mV) and current intensity (μA) produced by the MFCs were recorded every day or at 2-day intervals. The fastest and the most effective MFCs in voltage generation (372.2 ± 5 mV) were those constructed on the basis of glucose (MFC-G). The efficiency of straw MFCs (MFC-S) was noticeable after 2 weeks (319.3 ± 4 mV). Maximal power density (P max = 32 mW m(-2)) was achieved by the MFC-G at current density (CD) of 100 mA m(-2). Much lower values of P max (10.6-10.8 mW m(-2)) were noted in the MFC-S at CD of ca. 60-80 mA m(-2). Consequently, soil has potential for production of renewable energy.

  2. C1-carbon sources for chemical and fuel production by microbial gas fermentation.

    PubMed

    Dürre, Peter; Eikmanns, Bernhard J

    2015-12-01

    Fossil resources for production of fuels and chemicals are finite and fuel use contributes to greenhouse gas emissions and global warming. Thus, sustainable fuel supply, security, and prices necessitate the implementation of alternative routes to the production of chemicals and fuels. Much attention has been focussed on use of cellulosic material, particularly through microbial-based processes. However, this is still costly and proving challenging, as are catalytic routes to biofuels from whole biomass. An alternative strategy is to directly capture carbon before incorporation into lignocellulosic biomass. Autotrophic acetogenic, carboxidotrophic, and methanotrophic bacteria are able to capture carbon as CO, CO2, or CH4, respectively, and reuse that carbon in products that displace their fossil-derived counterparts. Thus, gas fermentation represents a versatile industrial platform for the sustainable production of commodity chemicals and fuels from diverse gas resources derived from industrial processes, coal, biomass, municipal solid waste (MSW), and extracted natural gas.

  3. Systems analysis of electricity production from coal using fuel cells

    NASA Technical Reports Server (NTRS)

    Fleming, D. K.

    1983-01-01

    Gasifiers, heat transfer, gas stability, quench, water-gas shift reaction, reforming-methanation, other catalytic reactions, compressors and expanders, acid-gas removal, the fuel cell, and catalytic combustors are described. System pressure drops, efficiency of rotating power equipment, heat exchangers, chemical reactions, steam systems, and the fuel cell subsystems are discussed.

  4. Brachypodium distachyon genomics for sustainable food and fuel production

    USDA-ARS?s Scientific Manuscript database

    Grasses are a vital source of food for humanity and are projected to be become an important source of renewable fuel. To provide food, feed and fuel for an ever expanding human population it will be necessary to improve existing grass crops (e.g. wheat, maize, rice) and domesticate perennial grasses...

  5. AFCI Transmutation Fuel Processes and By-Products Planning: Interim Report

    SciTech Connect

    Eric L. Shaber

    2005-09-01

    dictates the need for detailed process flows, mass balances, batch size data, and radiological dose estimates. Full definition of the materials that will need to be handled in the facility as feed material inputs, in-process fuel, scrap recycle, scrap requiring recovery, and by-product wastes is required. The feed material for demonstrating transmutation fuel fabrication will need to come from the separations of actinides from spent nuclear fuel processed in the same AFCF.

  6. Aluminum/uranium fuel foaming/recriticality considerations for production reactor core-melt accidents

    SciTech Connect

    Hyder, M.L.; Ellison, P.G. ); Cronenberg, A.W. )

    1990-01-01

    Severe accident studies for the Savannah River production reactors indicate that if coherent fuel melting and relocation occur in the absence of target melting, in-vessel recriticality may be achieved. In this paper, fuel-melt/target interaction potential is assessed where fission gas-induced fuel foaming and melt attack on target material are evaluated and compared with available data. Models are developed to characterize foams for irradiated aluminum-based fuel. Predictions indicate transient foaming, the extent of which is governed by fission gas inventory, heating transient conditions, and bubble coalescence behavior. The model also indicates that metallic foams are basically unstable and will collapse, which largely depends on film tenacity and melt viscosity considerations. For high-burnup fuel, extensive foaming lasting tens of seconds is predicted, allowing molten fuel to contact and cause melt ablation of concentric targets. For low-burnup fuel, contact can not be assured. 9 refs., 4 figs., 4 tabs.

  7. Solar Thermochemical Fuels Production: Solar Thermochemical Fuel Production via a Novel Lowe Pressure, Magnetically Stabilized, Non-volatile Iron Oxide Looping Process

    SciTech Connect

    2011-12-19

    HEATS Project: The University of Florida is developing a windowless high-temperature chemical reactor that converts concentrated solar thermal energy to syngas, which can be used to produce gasoline. The overarching project goal is lowering the cost of the solar thermochemical production of syngas for clean and synthetic hydrocarbon fuels like petroleum. The team will develop processes that rely on water and recycled CO2 as the sole feed-stock, and concentrated solar radiation as the sole energy source, to power the reactor to produce fuel efficiently. Successful large-scale deployment of this solar thermochemical fuel production could substantially improve our national and economic security by replacing imported oil with domestically produced solar fuels.

  8. Fusion-Fission Hybrid for Fissile Fuel Production without Processing

    SciTech Connect

    Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

    2012-01-02

    Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in the critical reactors

  9. Production of biosolid fuels from municipal sewage sludge: Technical and economic optimisation.

    PubMed

    Wzorek, Małgorzata; Tańczuk, Mariusz

    2015-08-01

    The article presents the technical and economic analysis of the production of fuels from municipal sewage sludge. The analysis involved the production of two types of fuel compositions: sewage sludge with sawdust (PBT fuel) and sewage sludge with meat and bone meal (PBM fuel). The technology of the production line of these sewage fuels was proposed and analysed. The main objective of the study is to find the optimal production capacity. The optimisation analysis was performed for the adopted technical and economic parameters under Polish conditions. The objective function was set as a maximum of the net present value index and the optimisation procedure was carried out for the fuel production line input capacity from 0.5 to 3 t h(-1), using the search step 0.5 t h(-1). On the basis of technical and economic assumptions, economic efficiency indexes of the investment were determined for the case of optimal line productivity. The results of the optimisation analysis show that under appropriate conditions, such as prices of components and prices of produced fuels, the production of fuels from sewage sludge can be profitable. In the case of PBT fuel, calculated economic indexes show the best profitability for the capacity of a plant over 1.5 t h(-1) output, while production of PBM fuel is beneficial for a plant with the maximum of searched capacities: 3.0 t h(-1). Sensitivity analyses carried out during the investigation show that influence of both technical and economic assessments on the location of maximum of objective function (net present value) is significant. © The Author(s) 2015.

  10. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    SciTech Connect

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  11. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    SciTech Connect

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R&D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  12. Water Footprint and Land Requirement of Solar Thermochemical Jet-Fuel Production.

    PubMed

    Falter, Christoph; Pitz-Paal, Robert

    2017-10-10

    The production of alternative fuels via the solar thermochemical pathway has the potential to provide supply security and to significantly reduce greenhouse gas emissions. H2O and CO2 are converted to liquid hydrocarbon fuels using concentrated solar energy mediated by redox reactions of a metal oxide. Because attractive production locations are in arid regions, the water footprint and the land requirement of this fuel production pathway are analyzed. The water footprint consists of 7.4 liters per liter of jet fuel of direct demand on-site and 42.4 liters per liter of jet fuel of indirect demand, where the dominant contributions are the mining of the rare earth oxide ceria, the manufacturing of the solar concentration infrastructure, and the cleaning of the mirrors. The area-specific productivity is found to be 33 362 liters per hectare per year of jet fuel equivalents, where the land coverage is mainly due to the concentration of solar energy for heat and electricity. The water footprint and the land requirement of the solar thermochemical fuel pathway are larger than the best power-to-liquid pathways but an order of magnitude lower than the best biomass-to-liquid pathways. For the production of solar thermochemical fuels arid regions are best-suited, and for biofuels regions of a moderate and humid climate.

  13. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses

  14. Correlations for fission product release from N Reactor fuel under high-temperature accident conditions

    SciTech Connect

    Birney, K.R.; Bechtold, D.B.; McCall, T.B.

    1988-03-01

    Empirical correlations were derived for fission product release from metallic uranium alloy 601 N Reactor fuel during postulated accident conditions in which the fuel nears, reaches, or exceeds the melting temperature. The correlations were based on a sparse data base from fuel melted in an inert or steam atmosphere. The empirical correlations are presented for use in subsequent deterministic analyses of N Reactor behavior during hypothetical severe accidents beyond the design basis. 20 refs., 4 figs., 4 tabs.

  15. Internal Gelation as Applied to the Production of Uranium Nitride Space Nuclear Fuel

    SciTech Connect

    Carmack, W.J.; Richardson, W.C.; Husser, D.L.; Mohr, T.C.

    2004-02-04

    The production of uranium nitride fuel depends upon a qualified and controlled method for obtaining a final fuel form. The final fuel form must have the desired properties, fuel density, fuel chemistry (X/U ratio), and impurity levels. These properties must be maintained throughout the entire fuel fabrication process and throughout the fuel operational lifetime. A variety of methods have been used during the past 40 years to obtain uranium nitride with applicable work performed on the (U, Pu)Nx system. These methods each have strengths and weaknesses with respect to the above criteria. Of the methods reviewed, the internal gelation process appears to be a viable method for well-controlled production of uranium nitride fuel for space nuclear reactors. It can be used to produce a uniform size microsphere that can in turn be used to produce high quality, low impurity UN fuel. This paper provides a summary review of many of the processes available for obtaining uranium nitride. The internal gelation process is described and limitations and advantages are discussed with respect to the fabrication of uranium nitride. Finally, recent results of uranium nitride fuel fabrication efforts using an internal gelation process are presented and discussed.

  16. Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production.

    PubMed

    Wang, Yunpu; Dai, Leilei; Fan, Liangliang; Cao, Leipeng; Zhou, Yue; Zhao, Yunfeng; Liu, Yuhuan; Ruan, Roger

    2017-03-01

    In this study, a ZrO2-based polycrystalline ceramic foam catalyst was prepared and used in catalytic co-pyrolysis of waste vegetable oil and high density polyethylene (HDPE) for hydrocarbon fuel production. The effects of pyrolysis temperature, catalyst dosage, and HDPE to waste vegetable oil ratio on the product distribution and hydrocarbon fuel composition were examined. Experimental results indicate that the maximum hydrocarbon fuel yield of 63.1wt. % was obtained at 430°C, and the oxygenates were rarely detected in the hydrocarbon fuel. The hydrocarbon fuel yield increased when the catalyst was used. At the catalyst dosage of 15wt.%, the proportion of alkanes in the hydrocarbon fuel reached 97.85wt.%, which greatly simplified the fuel composition and improved the fuel quality. With the augment of HDPE to waste vegetable oil ratio, the hydrocarbon fuel yield monotonously increased. At the HDPE to waste vegetable oil ratio of 1:1, the maximum proportion (97.85wt.%) of alkanes was obtained. Moreover, the properties of hydrocarbon fuel were superior to biodiesel and 0(#) diesel due to higher calorific value, better low-temperature low fluidity, and lower density and viscosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Subtask 2.6 - Assessment of Alternative Fuels on CO2 Production

    SciTech Connect

    Debra Pflughoeft-Hassett; Darren Naasz

    2009-06-16

    Many coal-based electric generating units use alternative fuels, and this effort assessed the impact of alternative fuels on CO{sub 2} production and other emissions and also assessed the potential impact of changes in emission regulations under the Clean Air Act (CAA) for facilities utilizing alternative fuels that may be categorized as wastes. Information was assembled from publicly available U.S. Department of Energy Energy Information Administration databases that included alternative fuel use for 2004 and 2005. Alternative fuel types were categorized along with information on usage by coal-based electric, number of facilities utilizing each fuel type, and the heating value of solid, liquid, and gaseous alternative fuels. The sulfur dioxide, nitrogen oxide, and carbon dioxide emissions associated with alternative fuels and primary fuels were also evaluated. Carbon dioxide emissions are also associated with the transport of all fuels. A calculation of carbon dioxide emissions associated with the transport of biomass-based fuels that are typically accessed on a regional basis was made. A review of CAA emission regulations for coal-based electric generating facilities from Section 112 (1) and Section 129 (2) for solid waste incinerators was performed with consideration for a potential regulatory change from Section 112 (1) regulation to Section 129 (2). Increased emission controls would be expected to be required if coal-based electric generating facilities using alternative fuels would be recategorized under CAA Section 129 (2) for solid waste incinerators, and if this change were made, it is anticipated that coal-fired electric generating facilities might reduce the use of alternative fuels. Conclusions included information on the use profile for alternative fuels and the impacts to emissions as well as the impact of potential application of emission regulations for solid waste incinerators to electric generating facilities using alternative fuels.

  18. Determination of alternative fuels combustion products: Phase 3 report

    SciTech Connect

    Whitney, K.A.

    1997-12-01

    This report describes the laboratory efforts to characterize particulate and gaseous exhaust emissions from a passenger vehicle operating on alternative fuels. Tests were conducted at room temperature (nominally 72 F) and 20 F utilizing the chassis dynamometer portion of the FTP for light-duty vehicles. Fuels evaluated include Federal RFG, LPG meeting HD-5 specifications, a national average blend of CNG, E85, and M85. Exhaust particulate generated at room temperature was further characterized to determine polynuclear aromatic content, trace element content, and trace organic constituents. For all fuels except M85, the room temperature particulate emission rate from this vehicle was about 2 to 3 mg/mile. On M85, the particulate emission rate was more than 6 mg/mile. In addition, elemental analysis of particulate revealed an order of magnitude more sulfur and calcium from M85 than any other fuel. The sulfur and calcium indicate that these higher emissions might be due to engine lubricating oil in the exhaust. For RFG, particulate emissions at 20 F were more than six times higher than at room temperature. For alcohol fuels, particulate emissions at 20 F were two to three times higher than at room temperature. For CNG and LPG, particulate emissions were virtually the same at 72 F and 20 F. However, PAH emissions from CNG and LPG were higher than expected. Both gaseous fuels had larger amounts of pyrene, 1-nitropyrene, and benzo(g,h,i)perylene in their emissions than the other fuels.

  19. Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery

    SciTech Connect

    2011-12-19

    HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

  20. Fuel cell systems for submarines: from the first idea to serial production

    NASA Astrophysics Data System (ADS)

    Psoma, Angela; Sattler, Gunter

    The future submarines of Howaldtswerke-Deutsche Werft AG (HDW) will be equipped with fuel cell power plants for air independent propulsion. In the 1970s the decision for a fuel cell system on submarines was made. Tests in the 1980s confirmed the feasibility of fuel cells on submarines. Positive development results in the 1990s led to series production of fuel cell equipped submarines, which will be in operation from 2003 onwards. Strictly controlled development work was necessary to reach the goal of series production. The train of thought behind this process of development is described in this paper starting with the initial idea and ending with the description of the serial production of the fuel cell power plant. The future outlook gives an impression of current development work.

  1. Biodiesel production from various feedstocks and their effects on the fuel properties.

    PubMed

    Canakci, M; Sanli, H

    2008-05-01

    Biodiesel, which is a new, renewable and biological origin alternative diesel fuel, has been receiving more attention all over the world due to the energy needs and environmental consciousness. Biodiesel is usually produced from food-grade vegetable oils using transesterification process. Using food-grade vegetable oils is not economically feasible since they are more expensive than diesel fuel. Therefore, it is said that the main obstacle for commercialization of biodiesel is its high cost. Waste cooking oils, restaurant greases, soapstocks and animal fats are potential feedstocks for biodiesel production to lower the cost of biodiesel. However, to produce fuel-grade biodiesel, the characteristics of feedstock are very important during the initial research and production stage since the fuel properties mainly depend on the feedstock properties. This review paper presents both biodiesel productions from various feedstocks and their effects on the fuel properties.

  2. Laboratory Scale Coal And Biomass To Drop-In Fuels (CBDF) Production And Assessment

    SciTech Connect

    Lux, Kenneth; Imam, Tahmina; Chevanan, Nehru; Namazian, Mehdi; Wang, Xiaoxing; Song, Chunshan

    2016-06-29

    This Final Technical Report describes the work and accomplishments of the project entitled, “Laboratory Scale Coal and Biomass to Drop-In Fuels (CBDF) Production and Assessment.” The main objective of the project was to fabricate and test a lab-scale liquid-fuel production system using coal containing different percentages of biomass such as corn stover and switchgrass at a rate of 2 liters per day. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. The system was designed, fabricated, tested, and assessed for economic and environmental feasibility relative to competing technologies.

  3. Feasibility study for alternate fuel production from biomass resources

    SciTech Connect

    Not Available

    1981-06-01

    The propsed project will be a 50 mm USGPY anhydrous alcohol plant to be located at Walhalla in northeastern North Dakota. The plant will use barley grown in the region as the raw material to produce a Motor Fuel Grade Alcohol through a fermentation and distillation process. North Dakota lignite coal will be used as the primary energy source to produce alcohol from the barley. The site is located on an active branch of the Burlington Northern Railroad, providing efficient and economical access to North Dakota's vast lignite coal fields in western North Dakota and to the established grain and grain by-product markets of Duluth and Minneapolis. The site is also adjacent to paved secondary highways, providing access to state and interstate highway systems. The plant site is adjacent to the City of Walhalla and will be annexed to the city limits and served by community facilities. Electrical energy to operate plant equipment will be partially produced by co-generation within the plant but the total electrical energy cannot be produced internally and additional power will be purchased from Otter Tail Power Co., supplier to the community. A technical review of the plant is provided in this report. The process, plant layout and major equipment procurement and costs are described. A complete economic analysis is provided using the data derived from the technical evaluation and cost estimates and is provided in a separate section. Siting and the environmental and socio-economic considerations are covered separately. A review of the proposed management and personnel structure completes the report.

  4. SYSTEM AND PROCESS FOR PRODUCTION OF METHANOL FROM COMBINED WIND TURBINE AND FUEL CELL POWER

    EPA Science Inventory

    The paper examines an integrated use of ultra-clean wind turbines and high temperature fuel cells to produce methanol, especially for transportation purposes. The principal utility and application of the process is the production of transportation fuel from domestic resources to ...

  5. SYSTEM AND PROCESS FOR PRODUCTION OF METHANOL FROM COMBINED WIND TURBINE AND FUEL CELL POWER

    EPA Science Inventory

    The paper examines an integrated use of ultra-clean wind turbines and high temperature fuel cells to produce methanol, especially for transportation purposes. The principal utility and application of the process is the production of transportation fuel from domestic resources to ...

  6. Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products

    SciTech Connect

    Willson, W.G.; Knudson, C.L.; Rindt, J.R.

    1987-01-01

    The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu Natural Gas from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation fuel jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions, thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report discusses the suitability of the tar oil stream. 5 refs., 20 figs., 15 tabs.

  7. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2015

    SciTech Connect

    None, None

    2016-01-08

    This FY 2015 report updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that resulted from U.S. Department of Energy support through the Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.

  8. Electrochemical device for syngas and liquid fuels production

    DOEpatents

    Braun, Robert J.; Becker, William L.; Penev, Michael

    2017-04-25

    The invention relates to methods for creating high value liquid fuels such as gasoline, diesel, jet and alcohols using carbon dioxide and water as the starting raw materials and a system for using the same. These methods combine a novel solid oxide electrolytic cell (SOEC) for the efficient and clean conversion of carbon dioxide and water to hydrogen and carbon monoxide, uniquely integrated with a gas-to-liquid fuels producing method.

  9. Electricity production from municipal solid waste using microbial fuel cells.

    PubMed

    Chiu, H Y; Pai, T Y; Liu, M H; Chang, C A; Lo, F C; Chang, T C; Lo, H M; Chiang, C F; Chao, K P; Lo, W Y; Lo, S W; Chu, Y L

    2016-07-01

    The organic content of municipal solid waste has long been an attractive source of renewable energy, mainly as a solid fuel in waste-to-energy plants. This study focuses on the potential to use microbial fuel cells to convert municipal solid waste organics into energy using various operational conditions. The results showed that two-chamber microbial fuel cells with carbon felt and carbon felt allocation had a higher maximal power density (20.12 and 30.47 mW m(-2) for 1.5 and 4 L, respectively) than those of other electrode plate allocations. Most two-chamber microbial fuel cells (1.5 and 4 L) had a higher maximal power density than single-chamber ones with corresponding electrode plate allocations. Municipal solid waste with alkali hydrolysis pre-treatment and K3Fe(CN)6 as an electron acceptor improved the maximal power density to 1817.88 mW m(-2) (~0.49% coulomb efficiency, from 0.05-0.49%). The maximal power density from experiments using individual 1.5 and 4 L two-chamber microbial fuel cells, and serial and parallel connections of 1.5 and 4 L two-chamber microbial fuel cells, was found to be in the order of individual 4 L (30.47 mW m(-2)) > serial connection of 1.5 and 4 L (27.75) > individual 1.5 L (20.12) > parallel connection of 1.5 and 4 L (17.04) two-chamber microbial fuel cells . The power density using municipal solid waste microbial fuel cells was compared with information in the literature and discussed. © The Author(s) 2016.

  10. Production of new biomass/waste-containing solid fuels

    SciTech Connect

    Akers, D.; Shirey, G.; Zitron, Z.; Nowak, M.

    2000-07-01

    The electric utility industry is interested in the use of biomass and waste byproducts as fuel to reduce both emissions and fuel costs. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. One method of addressing these issues is to produce composite fuels composed of a pelletized mixture of biomass and other constituents. However, for composite fuels to be extensively used in the US, especially in the steam market, a lower cost method of producing these fuels must be developed. Also, standard formulations of biomass and coal (possibly including waste) with broad application to US boilers must be identified. In addition to acceptable cost, these standard formulations can provide environmental benefits relative to coal. The Department of Energy along with the Electric Power Research Institute and various industry partners has funded CQ Inc. to develop both a dewatering/pelletizing die and three standard formulations of biomass, coal, and waste byproducts. Six biomass/waste sources were initially selected for study: petroleum coke, mixed waste plastic, switchgrass, waxed cardboard, poultry manure, and sewage sludge. A sample representative of each source was collected and analyzed. Also, two sources of coal, recovered from waste ponds, were collected for use in the project.

  11. Procedure for matching synfuel users with potential suppliers. Appendix B. Proposed and ongoing synthetic fuel production projects

    SciTech Connect

    1981-08-07

    To assist the Department of Energy, Office of Fuels Conversion (OFC), in implementing the synthetic fuel exemption under the Powerplant and Industrial Fuel Use Act (FUA) of 1978, Resource Consulting Group, Inc. (RCG), has developed a procedure for matching prospective users and producers of synthetic fuel. The matching procedure, which involves a hierarchical screening process, is designed to assist OFC in: locating a supplier for a firm that wishes to obtain a synthetic fuel exemption; determining whether the fuel supplier proposed by a petitioner is technically and economically capable of meeting the petitioner's needs; and assisting the Synthetic Fuels Corporation or a synthetic fuel supplier in evaluating potential markets for synthetic fuel production. A data base is provided in this appendix on proposed and ongoing synthetic fuel production projects to be used in applying the screening procedure. The data base encompasses a total of 212 projects in the seven production technologies.

  12. Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen

    SciTech Connect

    2010-07-15

    Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

  13. Analyzing Losses: Transuranics into Waste and Fission Products into Recycled Fuel

    SciTech Connect

    Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert E. Cherry; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros; Candido Pereira; Denia Djokic

    2010-11-01

    All mass streams from separations and fuel fabrication are products that must meet criteria. Those headed for disposal must meet waste acceptance criteria (WAC) for the eventual disposal sites corresponding to their waste classification. Those headed for reuse must meet fuel or target impurity limits. A “loss” is any material that ends up where it is undesired. The various types of losses are linked in the sense that as the loss of transuranic (TRU) material into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. We have analyzed four separation options and two fuel fabrication options in a generic fuel cycle. The separation options are aqueous uranium extraction plus (UREX+1), electrochemical, Atomics International reduction oxidation separation (AIROX), and melt refining. UREX+1 and electrochemical are traditional, full separation techniques. AIROX and melt refining are taken as examples of limited separations, also known as minimum fuel treatment. The fuels are oxide and metal. To define a generic fuel cycle, a fuel recycling loop is fed from used light water reactor (LWR) uranium oxide fuel (UOX) at 51 MWth-day/kg-iHM burnup. The recycling loop uses a fast reactor with TRU conversion ratio (CR) of 0.50. Excess recovered uranium is put into storage. Only waste, not used fuel, is disposed – unless the impurities accumulate to a level so that it is impossible to make new fuel for the fast reactor. Impurities accumulate as dictated by separation removal and fission product generation. Our model approximates adjustment to fast reactor fuel stream blending of TRU and U products from incoming LWR UOX and recycling FR fuel to compensate for impurity accumulation by adjusting TRU:U ratios. Our mass flow model ignores postulated fuel impurity limits; we compare the calculated impurity values with those limits to identify elements of concern. AIROX and melt refining cannot be used to separate used LWR UOX-51 because they cannot

  14. Fission Product Release from Molten U/Al Alloy Fuel: A Vapor Transpiration Model

    SciTech Connect

    Whitkop, P.G.

    2001-06-26

    This report describes the application of a vapor transportation model to fission product release data obtained for uranium/aluminum alloy fuel during early Oak Ridge fuel melt experiments. The Oak Ridge data validates the vapor transpiration model and suggests that iodine and cesium are released from the molten fuel surface in elemental form while tellurium and ruthenium are released as oxides. Cesium iodide is postulated to form in the vapor phase outside of the fuel matrix. Kinetic data indicates that cesium iodide can form from Cs atoms and diatomic iodine in the vapor phase. Temperatures lower than those capable of melting fuel are necessary in order to maintain a sufficient I2 concentration. At temperatures near the fuel melting point, cesium can react with iodine atoms to form CsI only on solid surfaces such as aerosols.

  15. Separation of the rare-earth fission product poisons from spent nuclear fuel

    SciTech Connect

    Christian, Jerry D.; Sterbentz, James W.

    2016-08-30

    A method for the separation of the rare-earth fission product poisons comprising providing a spent nuclear fuel. The spent nuclear fuel comprises UO.sub.2 and rare-earth oxides, preferably Sm, Gd, Nd, Eu oxides, with other elements depending on the fuel composition. Preferably, the provided nuclear fuel is a powder, preferably formed by crushing the nuclear fuel or using one or more oxidation-reduction cycles. A compound comprising Th or Zr, preferably metal, is provided. The provided nuclear fuel is mixed with the Th or Zr, thereby creating a mixture. The mixture is then heated to a temperature sufficient to reduce the UO.sub.2 in the nuclear fuel, preferably to at least to 850.degree. C. for Th and up to 600.degree. C. for Zr. Rare-earth metals are then extracted to form the heated mixture thereby producing a treated nuclear fuel. The treated nuclear fuel comprises the provided nuclear fuel having a significant reduction in rare-earths.

  16. Hydrogen production from E85 fuel with ceria-based catalysts

    NASA Astrophysics Data System (ADS)

    Swartz, Scott L.; Matter, Paul H.; Arkenberg, Gene B.; Holcomb, Franklin H.; Josefik, Nicholas M.

    The use of renewable (crop-derived) fuels to produce hydrogen has considerable environmental advantages with respect to reducing net emissions of carbon dioxide into the atmosphere. Ethanol is an example of a renewable fuel from which hydrogen can be derived, and E85 is a commercially available ethanol-based fuel of increasing importance. The distributed production of hydrogen from E85 fuel is one potential way of assuring availability of hydrogen as PEM fuel cells are introduced into service. NexTech Materials is collaborating with the U.S. Army Construction Engineering Laboratory (CERL) on the development of a hydrogen reformation process for E85 fuel. This paper describes the technical status of E85 fuel reforming process development work using Rh/ceria catalysts. Reforming results are compared for steam reforming and oxidative steam reforming of ethanol (the primary constituent of E85 fuel), isooctane, ethanol/iso-octane fuel mixtures (as a surrogate to E85), and commercially available E85 fuel. Stable reforming of E85 at 800 °C and a space velocity of 58,000 scm 3 g cat -1 h -1 over a 200-h period is reported.

  17. Prospects for production of synthetic liquid fuel from low-grade coal

    NASA Astrophysics Data System (ADS)

    Shevyrev, Sergei; Bogomolov, Aleksandr; Alekssev, Maksim

    2015-01-01

    In the paper, we compare the energy costs of steam and steam-oxygen gasification technologies for production of synthetic liquid fuel. Results of mathematic simulation and experimental studies on gasification of low-grade coal are presented.

  18. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  19. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-04-23

    This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  20. Evaluation of yeast strains for production of fuel ethanol from biomass hydrolysates

    USDA-ARS?s Scientific Manuscript database

    Robust industrial yeast strains are needed for profitable production of fuel ethanol from mixed biomass waste. USDA, ARS, NCAUR, RPT has been evaluating ethanol-producing yeasts, including Saccharomyces cerevisiae, engineered GMAX Saccharomyces cerevisiae, irradiated Kluyveromyces marxianus, and Pi...

  1. State-of-the-Art Fuel Cell Voltage Durability Status: Spring 2013 Composite Data Products

    SciTech Connect

    Kurtz, J.; Sprik, S.; Saur, G.; Peters, M.; Post, M.; Ainscough, C.

    2013-05-01

    This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes composite data products (CDPs) produced in 2013 for state-of-the-art fuel cell voltage durability status.

  2. Assemblies with both target and fuel pins in an isotope-production reactor

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins adjacent to fuel pins in order to increase the tritium production rate.

  3. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  4. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect

    Gerald P. Huffman

    2004-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

  5. Ultra-clean Fischer-Tropsch (F-T) Fuels Production and Demonstration Project

    SciTech Connect

    Stephen P. Bergin

    2006-06-30

    The objective of the DOE-NETL Fischer-Tropsch (F-T) Production and Demonstration Program was to produce and evaluate F-T fuel derived from domestic natural gas. The project had two primary phases: (1) fuel production of ultra-clean diesel transportation fuels from domestic fossil resources; and (2) demonstration and performance testing of these fuels in engines. The project also included a well-to-wheels economic analysis and a feasibility study of small-footprint F-T plants (SFPs) for remote locations such as rural Alaska. During the fuel production phase, ICRC partnered and cost-shared with Syntroleum Corporation to complete the mechanical design, construction, and operation of a modular SFP that converts natural gas, via F-T and hydro-processing reactions, into hydrogensaturated diesel fuel. Construction of the Tulsa, Oklahoma plant started in August 2002 and culminated in the production of over 100,000 gallons of F-T diesel fuel (S-2) through 2004, specifically for this project. That fuel formed the basis of extensive demonstrations and evaluations that followed. The ultra-clean F-T fuels produced had virtually no sulfur (less than 1 ppm) and were of the highest quality in terms of ignition quality, saturation content, backend volatility, etc. Lubricity concerns were investigated to verify that commercially available lubricity additive treatment would be adequate to protect fuel injection system components. In the fuel demonstration and testing phase, two separate bus fleets were utilized. The Washington DC Metropolitan Area Transit Authority (WMATA) and Denali National Park bus fleets were used because they represented nearly opposite ends of several spectra, including: climate, topography, engine load factor, mean distance between stops, and composition of normally used conventional diesel fuel. Fuel evaluations in addition to bus fleet demonstrations included: bus fleet emission measurements; F-T fuel cold weather performance; controlled engine dynamometer

  6. Method for forming nuclear fuel containers of a composite construction and the product thereof

    DOEpatents

    Cheng, Bo-Ching; Rosenbaum, Herman S.; Armijo, Joseph S.

    1984-01-01

    An improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof.

  7. A Reversible Planar Solid Oxide Fuel-Fed Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biomass Fuels

    SciTech Connect

    Tao, Greg, G.

    2007-03-31

    A solid oxide fuel-assisted electrolysis technique was developed to co-generate hydrogen and electricity directly from a fuel at a reduced cost of electricity. Solid oxide fuel-assisted electrolysis cells (SOFECs), which were comprised of 8YSZ electrolytes sandwiched between thick anode supports and thin cathodes, were constructed and experimentally evaluated at various operation conditions on lab-level button cells with 2 cm2 per-cell active areas as well as on bench-scale stacks with 30 cm2 and 100 cm2 per-cell active areas. To reduce the concentration overpotentials, pore former systems were developed and engineered to optimize the microstructure and morphology of the Ni+8YSZ-based anodes. Chemically stable cathode materials, which possess good electronic and ionic conductivity and exhibit good electrocatalytic properties in both oxidizing and reducing gas atmospheres, were developed and materials properties were investigated. In order to increase the specific hydrogen production rate and thereby reduce the system volume and capital cost for commercial applications, a hybrid system that integrates the technologies of the SOFEC and the solid-oxide fuel cell (SOFC), was developed and successfully demonstrated at a 1kW scale, co-generating hydrogen and electricity directly from chemical fuels.

  8. CO{sub 2} mitigation and fuel production

    SciTech Connect

    Steinberg, M.

    1997-12-31

    CO{sub 2} mitigation technologies deals with how to utilize fossil fuels, mainly coal, with reduced CO{sub 2} emissions. Most development work to date has emphasized improving efficiency of energy utilization and in removal and recovery of CO{sub 2} from central power stations followed by disposal in underground wells or in the ocean. CO{sub 2} removal, recovery and disposal suffers from economic penalties of power generation and possible adverse environmental effects at the point of ocean disposal. Disposal in depleted gas wells has limited capacity. Another approach is to decarbonize fossil fuels, especially coal and natural gas in the U.S. and produce methanol as an automotive fuel while either sequestering the carbon or utilizing the carbon as a commodity. These technologies will be reviewed and the socio-political factors necessary for hastening their developments will be discussed.

  9. Use of refinery computer model to predict fuel production

    NASA Technical Reports Server (NTRS)

    Flores, F. J.

    1979-01-01

    Several factors (crudes, refinery operation and specifications) that affect yields and properties of broad specification jet fuel were parameterized using the refinery simulation model which can simulate different types of refineries were used to make the calculations. Results obtained from the program are used to correlate yield as a function of final boiling point, hydrogen content and freezing point for jet fuels produced in two refinery configurations, each one processing a different crude mix. Refinery performances are also compared in terms of energy consumption.

  10. (Production and environmental impacts of alternative motor fuels)

    SciTech Connect

    McGill, R.N.

    1990-12-04

    The traveler participated in the 13th meeting of the Executive Committee on Alternative Motor Fuels (International Energy Agency). Participating countries in addition to the US are Canada, Italy, Finland, Japan, Sweden, and New Zealand (absent). The status of five existing annexes was reviewed and a pre-proposal for an additional annex to be a review of environmental impacts of fuels was presented by the traveler. This was well received by committee members, and a detailed proposal for such work will be developed for presentation at the next Executive Committee meeting.

  11. Determination of alternative fuels combustion products: Phase 1 report

    SciTech Connect

    Whitney, K.A.

    1997-09-01

    This report describes the laboratory effort to identify and quantify organic exhaust species generated from alternative-fueled light-duty vehicles operating over the Federal Test Procedure on compressed natural gas, liquefied petroleum gas, methanol, ethanol, and reformulated gasoline. The exhaust species from these vehicles were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without a vehicle catalyst in place to determine the influence of a catalytic converter on species formation.

  12. DOSIMETRY MODELING FOR PREDICTING RADIOLYTIC PRODUCTION AT THE SPENT FUEL-WATER INTERFACE

    SciTech Connect

    W.H. Miller

    2006-03-03

    The radiolysis of water in contact with spent nuclear fuel (SNF) will produce oxidants and reductants that can affect the dissolution of the fuel in a geologic disposal site. These products are created by initial radiolytic species which are a function of the type of radiation being emitted by the SNF, i.e. alpha, beta and/or gamma, as well as the energy of this radiation, the fuel grain size (and resulting surface-to-volume ratio) and the fuel-to-water ratio. These products interact with the surface of the fuel, creating new species and ultimately affecting the dissolution rate. The objective of the work reported here is to develop a systematic dosimetry model to determine the dose to water from the SNF as a function of these variables. This dose is calculated for different radiation types as a function of decay for the average fuel composition expected at Yucca Mountain. From these dose calculations the production rate of initial radiolytic products can be estimated. This data provides the basis for subsequent determination of the resulting chemical interactions at the fuel/water interface predicted by published theoretical and experimental data.

  13. Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products

    SciTech Connect

    Willson, W.G.; Knudson, C.L.; Rindt, J.R.

    1987-01-01

    The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day high-Btu SNG from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report describes results on feedstock characterization. 6 figs., 5 tabs.

  14. Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products

    SciTech Connect

    Willson, W.G.; Knudson, C.L.; Rindt, J.R.; Smith, E. )

    1987-01-01

    The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu SNG from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report describes the stream assessment. 6 refs., 3 figs., 3 tabs.

  15. Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production.

    PubMed

    Falter, Christoph; Batteiger, Valentin; Sizmann, Andreas

    2016-01-05

    Solar thermochemistry presents a promising option for the efficient conversion of H2O and CO2 into liquid hydrocarbon fuels using concentrated solar energy. To explore the potential of this fuel production pathway, the climate impact and economic performance are analyzed. Key drivers for the economic and ecological performance are thermochemical energy conversion efficiency, the level of solar irradiation, operation and maintenance, and the initial investment in the fuel production plant. For the baseline case of a solar tower concentrator with CO2 capture from air, jet fuel production costs of 2.23 €/L and life cycle greenhouse gas (LC GHG) emissions of 0.49 kgCO2-equiv/L are estimated. Capturing CO2 from a natural gas combined cycle power plant instead of the air reduces the production costs by 15% but leads to LC GHG emissions higher than that of conventional jet fuel. Favorable assumptions for all involved process steps (30% thermochemical energy conversion efficiency, 3000 kWh/(m(2) a) solar irradiation, low CO2 and heliostat costs) result in jet fuel production costs of 1.28 €/L at LC GHG emissions close to zero. Even lower production costs may be achieved if the commercial value of oxygen as a byproduct is considered.

  16. The challenges and opportunities for integration of solar syngas production with liquid fuel synthesis

    NASA Astrophysics Data System (ADS)

    Hinkley, James T.; McNaughton, Robbie K.; Pye, John; Saw, Woei; Stechel, Ellen B.

    2016-05-01

    Reforming of methane is practiced on a vast scale globally for the production of syngas as a precursor for the production of many commodities, including hydrogen, ammonia and synthetic liquid fuels. Solar reforming can reduce the greenhouse gas intensity of syngas production by up to about 40% by using solar thermal energy to provide the endothermic heat of reaction, traditionally supplied by combustion of some of the feed. This has the potential to enable the production of solar derived synthetic fuels as drop in replacements for conventional fuels with significantly lower CO2 intensity than conventional gas to liquids (GTL) processes. However, the intermittent nature of the solar resource - both diurnal and seasonal - poses significant challenges for such a concept, which relies on synthesis processes that typically run continuously on very stable feed compositions. We find that the integration of solar syngas production to a GTL process is a non-trivial exercise, with the ability to turn down the capacity of the GTL synthesis section, and indeed to suspend operations for short periods without significant detriment to product quality or process operability, likely to be a key driver for the commercial implementation of solar liquid fuels. Projected costs for liquid fuel synthesis suggest that solar reforming and small scale gas to liquid synthesis can potentially compete with conventional oil derived transport fuels in the short to medium term.

  17. Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags

    USDA-ARS?s Scientific Manuscript database

    Pyrolysis of HDPE waste grocery bags followed by distillation resulted in a liquid hydrocarbon mixture that consisted of saturated aliphatic paraffins (96.8%), aliphatic olefins (2.6%), and aromatics (0.6%) that corresponded to the boiling range of conventional petroleum diesel fuel (#1 diesel 182–2...

  18. Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology.

    PubMed

    Jarboe, Laura R; Zhang, Xueli; Wang, Xuan; Moore, Jonathan C; Shanmugam, K T; Ingram, Lonnie O

    2010-01-01

    Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.

  19. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    PubMed Central

    Jarboe, Laura R.; Zhang, Xueli; Wang, Xuan; Moore, Jonathan C.; Shanmugam, K. T.; Ingram, Lonnie O.

    2010-01-01

    Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors. PMID:20414363

  20. Fuels production by photoelectrolysis of water and photooxidation of soluble biomass materials

    SciTech Connect

    Sammells, A.F.; St. John, M.R.

    1984-03-20

    A process and apparatus for production of fuels by photoelectrolysis of water and photooxidation of water soluble biomass and a process for preparation of Schottky-type metalized, appropriately doped n-type semiconductor photochemical diodes suitable for use in the above process and apparatus. The production of hydrogen by photoelectrolysis of water as the cathodic reaction of an optically illuminated photochemical diode is effected in an aqueous electrolyte which comprises a biomass product which may be monosaccharides, polysaccharides, lignins, their partially oxidized products, and mixtures thereof which are oxidized as the anodic reaction of the photochemical diode producing liquid fuels and useful chemicals. Molecular oxygen evolution is avoided and utilization of biomass product provides a cost effective material to increase fuels and useful chemical production by photoelectrolysis of water at potentials substantially less than required for normal water electrolysis involving oxygen evolution.

  1. Novel catalysts and photoelectrochemical system for solar fuel production

    NASA Astrophysics Data System (ADS)

    Zhang, Yan

    Solar fuel production from abundant raw chemicals such as CO2 and water is highly desired as a clean renewable energy solution for the future. Developing photoelectrochemical cells is viewed as a promising approach to realize this energy conversion and storage process. Efficient and robust oxygen evolution catalyst made from non-precious materials remains a major challenge for such a system. This thesis basically consists of three parts of work, including studies on enhancing the photocatalytic oxygen evolution activity of cobalt-based spinel nanoparticles by manganese3+ substitution, in situ formation of cobalt oxide nanocubanes as highly active catalyst for photocatalytic oxygen evolution reaction, and development of a photoanode-driven photoelectrochemical cell for CO2 reduction with water. The first part of this thesis work devotes efforts in the development and study on cobalt and other transition metal oxide based oxygen evolution catalyst. Photocatalytic oxygen evolution is a critical step for solar fuel production from abundant sources. It poses a significant challenge because it requires an efficient catalyst to bridge the one-electron photon capture process with the four-electron oxygen reaction. Among all the metal oxides, Co3O4 spinel exhibits a high activity as an oxygen evolution catalyst. The results of this work demonstrate that the photocatalytic oxygen evolution activity of Co3O4 spinel can be further enhanced by substituting Co with Mn in the spinel structure. Using a facile hydrothermal approach, Co3O4 spinel nanoparticles as well as Mn-substituted and Ni-substituted Co3O4 spinel nanoparticles with a typical particle size of 5-7 nm were successfully synthesized. The morphology and crystal structures of the as-synthesized nanoparticle catalysts have been carefully examined using various structural characterization techniques, including powder x-ray diffraction (PXRD), transmission electron microscope (TEM), gas adsorption, and x-ray absorption

  2. [Electricity production from surplus sludge using microbial fuel cells].

    PubMed

    Jia, Bin; Liu, Zhi-Hua; Li, Xiao-Ming; Yang, Yong-Lin; Yang, Qi; Zeng, Guang-Ming; Liu, Yi-Lin; Liu, Qian-Qian; Zheng, Shi-Wen

    2009-04-15

    A single-chamber and membrane-less microbial fuel cells were successfully started up using anaerobic sludge as inoculums without any chemical substance for 20 d. The electricity generation of the microbial fuel cell using surplus sludge as fuel and the change of substrate were investigated. The results showed that the obtained maximum voltage and power density were 495 mV and 44 mW x m(-2) (fixed 1,000 Omega), and the internal resistance was about 300 Omega during steady state. In a cycle, the removal efficiency of SS and VSS were 27.3% and 28.7%, pH was 6.5-8.0. In addition, the COD increased from 617 mg x L(-1) to 1,150 mg x L(-1) and decreased afterwards with time. The change of glucose was similar to that of COD, glucose increased from 47 mg x L(-1) to 60 mg x L(-1) and decreased afterwards with time. Consequently, the microbial fuel cell can transform chemical energy of surplus sludge into the cleanest electrical energy, and it provides a new way of sludge recycling.

  3. Zero-Gravity Fuel-Cell Product-Water Accumulator

    NASA Technical Reports Server (NTRS)

    Barrera, Thomas P.

    1989-01-01

    Assortment of documents describes simple, passive system that removes water formed from reaction of hydrogen and oxygen in proton-exchange-membrane fuel cell. Designed for use in zero gravity, system does not require any machinery or external source of power. Works by capillary action and differential pressure.

  4. Bacteria engineered for fuel ethanol production: current status

    Treesearch

    B.S. Dien; M.A. Cotta; T.W. Jeffries

    2003-01-01

    The lack of industrially suitable microorganisms for converting biomass into fuel ethanol has traditionally been cited as a major technical roadblock to developing a bioethanol industry. In the last two decades, numerous microorganisms have been engineered to selectively produce ethanol. Lignocellulosic biomass contains complex carbohydrates that necessitate utilizing...

  5. Fission product release modelling for application of fuel-failure monitoring and detection - An overview

    NASA Astrophysics Data System (ADS)

    Lewis, B. J.; Chan, P. K.; El-Jaby, A.; Iglesias, F. C.; Fitchett, A.

    2017-06-01

    A review of fission product release theory is presented in support of fuel-failure monitoring analysis for the characterization and location of defective fuel. This work is used to describe: (i) the development of the steady-state Visual_DETECT code for coolant activity analysis to characterize failures in the core and the amount of tramp uranium; (ii) a generalization of this model in the STAR code for prediction of the time-dependent release of iodine and noble gas fission products to the coolant during reactor start-up, steady-state, shutdown, and bundle-shifting manoeuvres; (iii) an extension of the model to account for the release of fission products that are delayed-neutron precursors for assessment of fuel-failure location; and (iv) a simplification of the steady-state model to assess the methodology proposed by WANO for a fuel reliability indicator for water-cooled reactors.

  6. Radioactive Fission Product Release from Defective Light Water Reactor Fuel Elements

    SciTech Connect

    Konyashov, Vadim V.; Krasnov, Alexander M.

    2002-04-15

    Results are provided of the experimental investigation of radioactive fission product (RFP) release, i.e., krypton, xenon, and iodine radionuclides from fuel elements with initial defects during long-term (3 to 5 yr) irradiation under low linear power (5 to 12 kW/m) and during special experiments in the VK-50 vessel-type boiling water reactor.The calculation model for the RFP release from the fuel-to-cladding gap of the defective fuel element into coolant was developed. It takes into account the convective transport in the fuel-to-cladding gap and RFP sorption on the internal cladding surface and is in good agreement with the available experimental data. An approximate analytical solution of the transport equation is given. The calculation dependencies of the RFP release coefficients on the main parameters such as defect size, fuel-to-cladding gap, temperature of the internal cladding surface, and radioactive decay constant were analyzed.It is shown that the change of the RFP release from the fuel elements with the initial defects during long-term irradiation is, mainly, caused by fuel swelling followed by reduction of the fuel-to-cladding gap and the fuel temperature. The calculation model for the RFP release from defective fuel elements applicable to light water reactors (LWRs) was developed. It takes into account the change of the defective fuel element parameters during long-term irradiation. The calculation error according to the program does not exceed 30% over all the linear power change range of the LWR fuel elements (from 5 to 26 kW/m)

  7. On-farm production of fuel-alcohol in Mid-America technical and economic potential

    SciTech Connect

    Hohmann, M.A.

    1980-03-01

    Alcohol fuel production is suggested as an alternative to high energy costs for the Mid-American farmer. The steps involved in producing alcohol from biomass are reviewed. Fermentation equipment and procedures are readily available. The utilization of by-products for animal feeds is discussed. Combustion characteristics and chemical properties of ethanol are reviewed. Estimates are made of costs involved in alcohol production in the mid-west region. Regional agricultural consumption of gasoline is estimated and 3 scenarios are developed. Benefits of on-farm fuel production are outlined. (DMC)

  8. Liquid phase products and solid deposit formation from thermally stressed model jet fuels

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Bittker, D. A.

    1984-01-01

    The relationship between solid deposit formation and liquid degradation product concentration was studied for the high temperature (400 C) stressing of three hydrocarbon model fuels. A Jet Fuel Thermal Oxidation Tester was used to simulate actual engine fuel system conditions. The effects of fuel type, dissolved oxygen concentration, and hot surface contact time (reaction time) were studied. Effects of reaction time and removal of dissolved oxygen on deposit formation were found to be different for n-dodecane and for 2-ethylnaphthalene. When ten percent tetralin is added to n-dodecane to give a simpler model of an actual jet fuel, the tetralin inhibits both the deposit formation and the degradation of n-dodecane. For 2-ethylnaphthalene primary product analyses indicate a possible self-inhibition at long reaction times of the secondary reactions which form the deposit precursors. The mechanism of the primary breakdown of these fuels is suggested and the primary products which participate in these precursor-forming reactions are identified. Some implications of the results to the thermal degradation of real jet fuels are given.

  9. Economic and energetic evaluation of alcohol fuel production from agriculture: Yolo County, California

    SciTech Connect

    Meo, M.

    1983-01-01

    This dissertation reviews the technical aspects of alcohol fuel production and consumption, examines the set of policy-related issues that affect both the private and the public sectors, and investigates the economic and energetic feasibility of small-scale on-farm production on a representative Sacramento Valley field and vegetable crop farm. Candidate feedstocks, including both starch and sugar-rich crops, are: barley, corn, fodder beet, grain sorghum, Jerusalem artichoke, sugar beet, sweet sorghum, tomatoes, and wheat. The leading fuel crops were found to be sweet sorghum, Jerusalem artichoke, corn, fodder beet, and grain sorghum in order of declining preference. With better than average crop yields and the current mix of financial incentives, the breakeven cost of alcohol fuel is $1.03 per gallon when diesel fuel and gasoline prices are $1.30 and $1.46, respectively. Without subsidy, the breakeven cost is $1.62 per gallon. An energy analysis was calculated for each of the feedstocks under consideration. With the exception of sweet sorghum, wheat, and barley, all feedstocks showed a negative net energy balance. The use of agricultural residues as a boiler fuel, however, made a significant difference in the overall energy balance. The role of government in energy policy is reviewed and typical policy instruments are discussed. Although on-farm alcohol fuel production is not currently economically competitive with gasoline and diesel fuel, technological innovation and the return of increasing petroleum prices could alter the situation.

  10. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    SciTech Connect

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  11. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels.

    PubMed

    Lee, Sung Kuk; Chou, Howard; Ham, Timothy S; Lee, Taek Soon; Keasling, Jay D

    2008-12-01

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  12. ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT

    SciTech Connect

    Steve Bergin

    2004-10-18

    The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: SFP Construction and Fuel Production, Impact of SFP Fuel on Engine Performance, Fleet Testing at WMATA and Denali National Park, Demonstration of Clean Diesel Fuels in Diesel Electric Generators in Alaska, and Economic Analysis. ICRC provided overall project organization and budget management for the project. ICRC held meetings with various project participants. ICRC presented at the Department of Energy's annual project review meeting. The plant began producing fuel in October 2004. The first delivery of finished fuel was made in March of 2004 after the initial start-up period.

  13. Advances in Automated QA/QC for TRISO Fuel Particle Production

    SciTech Connect

    Hockey, Ronald L.; Bond, Leonard J.; Batishko, Charles R.; Gray, Joseph N.; Saurwein, John J.; Lowden, Richard A.

    2004-06-30

    Fuel in most Generation IV reactor designs typically encompasses billions of the TRISO particles. Present day QA/QC methods, done manually and in many cases destructively, cannot economically test a statistically significant fraction of the large number of the individual fuel particles required. Fully automated inspection technologies are essential to economical TRISO fuel particle production. A combination of in-line nondestructive (NDE) measurements employing electromagnetic induction and digital optical imaging analysis is currently under investigation and preliminary data indicate the potential for meeting the demands of this application. To calibrate high-speed NDE methods, surrogate fuel particle samples are being coated with layers containing a wide array of defect types found to degrade fuel performance and these are being characterized via high-resolution CT and digital radiographic images.

  14. Comparative Study of Laboratory-Scale and Prototypic Production-Scale Fuel Fabrication Processes and Product Characteristics

    SciTech Connect

    Douglas W. Marshall

    2014-10-01

    An objective of the High Temperature Gas Reactor fuel development and qualification program for the United States Department of Energy has been to qualify fuel fabricated in prototypic production-scale equipment. The quality and characteristics of the tristructural isotropic coatings on fuel kernels are influenced by the equipment scale and processing parameters. Some characteristics affecting product quality were suppressed while others have become more significant in the larger equipment. Changes to the composition and method of producing resinated graphite matrix material has eliminated the use of hazardous, flammable liquids and enabled it to be procured as a vendor-supplied feed stock. A new method of overcoating TRISO particles with the resinated graphite matrix eliminates the use of hazardous, flammable liquids, produces highly spherical particles with a narrow size distribution, and attains product yields in excess of 99%. Compact fabrication processes have been scaled-up and automated with relatively minor changes to compact quality to manual laboratory-scale processes. The impact on statistical variability of the processes and the products as equipment was scaled are discussed. The prototypic production-scale processes produce test fuels that meet fuel quality specifications.

  15. Linked strategy for the production of fuels via formose reaction

    PubMed Central

    Deng, Jin; Pan, Tao; Xu, Qing; Chen, Meng-Yuan; Zhang, Ying; Guo, Qing-Xiang; Fu, Yao

    2013-01-01

    Formose reaction converts formaldehyde to carbohydrates. We found that formose reaction can be used linking the biomass gasification with the aqueous-phase processing (APP) to produce liquid transportation fuel in three steps. First, formaldehyde from syn-gas was converted to triose. This was followed by aldol condensation and dehydration to 4-hydroxymethylfurfural (4-HMF). Finally, 4-HMF was hydrogenated to produce 2,4-dimethylfuran (2,4-DMF) or C9-C15 branched-chain alkanes as liquid transportation fuels. In the linked strategy, high energy-consuming pretreatment as well as expensive and polluting hydrolysis of biomass were omitted, but the high energy recovery of APP was inherited. In addition, the hexoketoses via formose reaction could be converted to HMFs directly without isomerization. A potential platform molecule 4-HMF was formed simultaneously in APP. PMID:23393625

  16. Producing Clean Syngas via Catalytic Reforming for Fuels Production

    SciTech Connect

    Magrini, K. A.; Parent, Y.; Jablonski, W.; Yung, M.

    2012-01-01

    Thermochemical biomass conversion to fuels and chemicals can be achieved through gasification to syngas. The biomass derived raw syngas contains the building blocks of carbon monoxide and hydrogen as well as impurities such as tars, light hydrocarbons, and hydrogen sulfide. These impurities must be removed prior to fuel synthesis. We used catalytic reforming to convert tars and hydrocarbons to additional syngas, which increases biomass carbon utilization. In this work, nickel based, fluidizable tar reforming catalysts were synthesized and evaluated for tar and methane reforming performance with oak and model syngas in two types of pilot scale fluidized reactors (recirculating and recirculating regenerating). Because hydrogen sulfide (present in raw syngas and added to model syngas) reacts with the active nickel surface, regeneration with steam and hydrogen was required. Pre and post catalyst characterization showed changes specific to the syngas type used. Results of this work will be discussed in the context of selecting the best process for pilot scale demonstration.

  17. Constraints on JP-900 Jet Fuel Production Concepts

    DTIC Science & Technology

    2007-01-01

    most of this research effort has focused on a coal-tar blending process. Penn State currently plans to build a one-barrel- per-day pilot plant and...which a mixture of solid coal and a refinery intermediate, decant oil, is used to pro- duce a combination of liquid fuels and coke. The findings and...petroleum refinery intermedi- ate (specifically, light cycle oil). More recently, attention has been directed toward a co-coking process, in which a

  18. Production of fuels and chemicals from waste by microbiomes.

    PubMed

    Marshall, Christopher W; LaBelle, Edward V; May, Harold D

    2013-06-01

    The demand for chemicals and fuels will continue to grow simultaneously with the costly requirement to treat solid waste, wastewater, and regarding climate change, carbon dioxide. A dual benefit is at hand if waste could be converted to valuable chemicals. The application of stable chemical producing microbiomes adapted to these waste streams may turn this challenge into an opportunity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. A physical description of fission product behavior fuels for advanced power reactors.

    SciTech Connect

    Kaganas, G.; Rest, J.; Nuclear Engineering Division; Florida International Univ.

    2007-10-18

    The Global Nuclear Energy Partnership (GNEP) is considering a list of reactors and nuclear fuels as part of its chartered initiative. Because many of the candidate materials have not been explored experimentally under the conditions of interest, and in order to economize on program costs, analytical support in the form of combined first principle and mechanistic modeling is highly desirable. The present work is a compilation of mechanistic models developed in order to describe the fission product behavior of irradiated nuclear fuel. The mechanistic nature of the model development allows for the possibility of describing a range of nuclear fuels under varying operating conditions. Key sources include the FASTGRASS code with an application to UO{sub 2} power reactor fuel and the Dispersion Analysis Research Tool (DART ) with an application to uranium-silicide and uranium-molybdenum research reactor fuel. Described behavior mechanisms are divided into subdivisions treating fundamental materials processes under normal operation as well as the effect of transient heating conditions on these processes. Model topics discussed include intra- and intergranular gas-atom and bubble diffusion, bubble nucleation and growth, gas-atom re-solution, fuel swelling and ?scion gas release. In addition, the effect of an evolving microstructure on these processes (e.g., irradiation-induced recrystallization) is considered. The uranium-alloy fuel, U-xPu-Zr, is investigated and behavior mechanisms are proposed for swelling in the {alpha}-, intermediate- and {gamma}-uranium zones of this fuel. The work reviews the FASTGRASS kinetic/mechanistic description of volatile ?scion products and, separately, the basis for the DART calculation of bubble behavior in amorphous fuels. Development areas and applications for physical nuclear fuel models are identified.

  20. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect

    Paul A. Erickson

    2006-01-01

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the ninth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2005-December 31, 2005. This quarter saw progress in four areas. These areas are: (1) reformate purification, (2) heat transfer enhancement, (3) autothermal reforming coal-derived methanol degradation test; and (4) model development for fuel cell system integration. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

  1. Ceria-thoria pellet manufacturing in preparation for plutonia-thoria LWR fuel production

    NASA Astrophysics Data System (ADS)

    Drera, Saleem S.; Björk, Klara Insulander; Sobieska, Matylda

    2016-10-01

    Thorium dioxide (thoria) has potential to assist in niche roles as fuel for light water reactors (LWRs). One such application for thoria is its use as the fertile component to burn plutonium in a mixed oxide fuel (MOX). Thor Energy and an international consortium are currently irradiating plutonia-thoria (Th-MOX) fuel in an effort to produce data for its licensing basis. During fuel-manufacturing research and development (R&D), surrogate materials were utilized to highlight procedures and build experience. Cerium dioxide (ceria) provides a good surrogate platform to replicate the chemical nature of plutonium dioxide. The project's fuel manufacturing R&D focused on powder metallurgical techniques to ensure manufacturability with the current commercial MOX fuel production infrastructure. The following paper highlights basics of the ceria-thoria fuel production including powder milling, pellet pressing and pellet sintering. Green pellets and sintered pellets were manufactured with average densities of 67.0% and 95.5% that of theoretical density respectively.

  2. Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays

    NASA Astrophysics Data System (ADS)

    Yusibani, Elin; Kamil, Insan; Suud, Zaki

    2010-06-01

    Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

  3. Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays

    SciTech Connect

    Yusibani, Elin; Kamil, Insan; Suud, Zaki

    2010-06-22

    Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

  4. Behavior of metallic fission products in uranium plutonium mixed oxide fuel

    NASA Astrophysics Data System (ADS)

    Sato, I.; Furuya, H.; Arima, T.; Idemitsu, K.; Yamamoto, K.

    1999-08-01

    Metallic fission products, ruthenium, rhodium, technetium, palladium, and molybdenum, exist in irradiated oxide fuels as metallic inclusions. In this work, the radial distributions of metallic inclusion constituents in the fuel specimen irradiated to a peak burnup of 7-13 at.% were observed with an electron probe microanalysis. Palladium concentration is high at the periphery in all the specimens. Molybdenum shows the same tendency for the 13 at.% burnup specimen. These results showed the significant difference between experimental data and calculations with ORIGEN-2 at such high burnups, which suggested that the migration of palladium and molybdenum was controlled mainly by diffusion of gaseous species containing each metal along the fuel temperature gradient.

  5. Energy balances in the production and end use of alcohols derived from biomass. A fuels-specific comparative analysis of alternate ethanol production cycles

    SciTech Connect

    Not Available

    1980-10-01

    Considerable public interest and debate have been focused on the so-called energy balance issue involved in the conversion of biomass materials into ethanol for fuel use. This report addresses questions of net gains in premium fuels that can be derived from the production and use of ethanol from biomass, and shows that for the US alcohol fuel program, energy balance need not be a concern. Three categories of fuel gain are discussed in the report: (1) Net petroleum gain; (2) Net premium fuel gain (petroleum and natural gas); and (3) Net energy gain (for all fuels). In this study the investment of energy (in the form of premium fuels) in alcohol production includes all investment from cultivating, harvesting, or gathering the feedstock and raw materials, through conversion of the feedstock to alcohol, to the delivery to the end-user. To determine the fuel gains in ethanol production, six cases, encompassing three feedstocks, five process fuels, and three process variations, have been examined. For each case, two end-uses (automotive fuel use and replacement of petrochemical feedstocks) were scrutinized. The end-uses were further divided into three variations in fuel economy and two different routes for production of ethanol from petrochemicals. Energy requirements calculated for the six process cycles accounted for fuels used directly and indirectly in all stages of alcohol production, from agriculture through distribution of product to the end-user. Energy credits were computed for byproducts according to the most appropriate current use.

  6. Fuel age impacts on gaseous fission product capture during separations

    SciTech Connect

    Jubin, Robert T.; Soelberg, Nicolas R.; Strachan, Denis M.; Ilas, G.

    2012-09-21

    As a result of fuel reprocessing, volatile radionuclides will be released from the facility stack if no processes are put in place to remove them. The radionuclides that are of concern in this document are 3H, 14C, 85Kr, and 129 Rosnick 2007 I. The question we attempt to answer is how efficient must this removal process be for each of these radionuclides? To answer this question, we examine the three regulations that may impact the degree to which these radionuclides must be reduced before process gases can be released from the facility. These regulations are 40 CFR 61 (EPA 2010a), 40 CFR 190(EPA 2010b), and 10 CFR 20 (NRC 2012), and they apply to the total radonuclide release and to the dose to a particular organ – the thyroid. Because these doses can be divided amongst all the radionuclides in different ways and even within the four radionuclides in question, several cases are studied. These cases consider for the four analyzed radionuclides inventories produced for three fuel types—pressurized water reactor uranium oxide (PWR UOX), pressurized water reactor mixed oxide (PWR MOX), and advanced high-temperature gascooled reactor (AHTGR)—several burnup values and time out of reactor extending to 200 y. Doses to the maximum exposed individual (MEI) are calculated with the EPA code CAP-88 ( , 1992). Two dose cases are considered. The first case, perhaps unrealistic, assumes that all of the allowable dose is assigned to the volatile radionuclides. In lieu of this, for the second case a value of 10% of the allowable dose is arbitrarily selected to be assigned to the volatile radionuclides. The required decontamination factors (DFs) are calculated for both of these cases, including the case for the thyroid dose for which 14C and 129I are the main contributors. However, for completeness, for one fuel type and burnup, additional cases are provided, allowing 25% and 50% of the allowable dose to be assigned to the volatile radionuclides. Because 3H and 85Kr have

  7. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  8. Solar to Liquid Fuels Production: Light-Driven Reduction of Carbon Dioxide to Formic Acid

    DTIC Science & Technology

    2014-03-29

    AFRL-OSR-VA-TR-2014-0088 SOLAR TO LIQUID FUELS PRODUCTION : LIGHT-DRIVEN REDUCTION OF CARBON DIOXIDE TO FO John Golbeck PENNSYLVANIA STATE UNIVERSITY...Standard Form 298 (Re . 8-98) v Prescribed by ANSI Std. Z39.18 1 Project FA9550-09-1-0671: Solar to Liquid Fuels Production : Light-Driven Reduction of...potential is decreased, the rate of formic acid production increases linearly up to a maximum of –0.8 V. CO2 reduction is greatest at pH 5.5, but it

  9. Estimate of the Sources of Plutonium-Containing Wastes Generated from MOX Fuel Production in Russia

    SciTech Connect

    Kudinov, K. G.; Tretyakov, A. A.; Sorokin, Yu. P.; Bondin, V. V.; Manakova, L. F.; Jardine, L. J.

    2002-02-26

    In Russia, mixed oxide (MOX) fuel is produced in a pilot facility ''Paket'' at ''MAYAK'' Production Association. The Mining-Chemical Combine (MCC) has developed plans to design and build a dedicated industrial-scale plant to produce MOX fuel and fuel assemblies (FA) for VVER-1000 water reactors and the BN-600 fast-breeder reactor, which is pending an official Russian Federation (RF) site-selection decision. The design output of the plant is based on a production capacity of 2.75 tons of weapons plutonium per year to produce the resulting fuel assemblies: 1.25 tons for the BN-600 reactor FAs and the remaining 1.5 tons for VVER-1000 FAs. It is likely the quantity of BN-600 FAs will be reduced in actual practice. The process of nuclear disarmament frees a significant amount of weapons plutonium for other uses, which, if unutilized, represents a constant general threat. In France, Great Britain, Belgium, Russia, and Japan, reactor-grade plutonium is used in MOX-fuel production. Making MOX-fuel for CANDU (Canada) and pressurized water reactors (PWR) (Europe) is under consideration in Russia. If this latter production is added, as many as 5 tons of Pu per year might be processed into new FAs in Russia. Many years of work and experience are represented in the estimates of MOX fuel production wastes derived in this report. Prior engineering studies and sludge treatment investigations and comparisons have determined how best to treat Pu sludges and MOX fuel wastes. Based upon analyses of the production processes established by these efforts, we can estimate that there will be approximately 1200 kg of residual wastes subject to immobilization per MT of plutonium processed, of which approximately 6 to 7 kg is Pu in the residuals per MT of Pu processed. The wastes are various and complicated in composition. Because organic wastes constitute both the major portion of total waste and of the Pu to be immobilized, the recommended treatment of MOX-fuel production waste is

  10. Fuel From Farms: A Guide to Small-Scale Ethanol Production.

    ERIC Educational Resources Information Center

    Solar Energy Research Inst., Golden, CO.

    Ethanol and blends of ethanol and gasoline (such as gasohol) offer a near-term fuel alternative to oil. The focus of this handbook is upon the small-scale production of ethanol using farm crops as the source of raw materials. Provided are chapters on ethanol production procedures, feedstocks, plant design, and financial planning. Also presented…

  11. Sorghum as a renewable feedstock for production of fuels and industrial chemicals

    USDA-ARS?s Scientific Manuscript database

    Considerable efforts have been made in the USA and other countries to develop renewable feedstocks for production of fuels and chemicals. Among these, sorghum has attracted strong interest because of its many good characteristics such as rapid growth and high sugar accumulation, high biomass product...

  12. Energy conversion and fuel production from electrochemical interfaces

    NASA Astrophysics Data System (ADS)

    Markovic, Nenad

    2012-02-01

    Design and synthesis of energy efficient and stable electrochemical interfaces (materials and double layer components) with tailor properties for accelerating and directing chemical transformations is the key to developing new alternative energy systems -- fuel cells, electrolizers and batteries. In aqueous electrolytes, depending on the nature of the reacting species, the supporting electrolyte, and the metal electrodes, two types of interactions have traditionally been considered: (i) direct -- covalent - bond formation between adsorbates and electrodes, involving chemisorption, electron transfer, and release of the ion hydration shell; and (ii) relatively weak non-covalent metal-ion forces that may affect the concentration of ions in the vicinity of the electrode but do not involve direct metal-adsorbate bonding. The range of physical phenomena associated with these two classes of bonds is unusually broad, and are of paramount importance to understand activity of both metal-electrolyte two phase interfaces and metal-Nafion-electrolyte three phase interfaces. Furthermore, in the past, researcher working in the field of fuel cells (converting hydrogen and oxygen into water) and electrolyzers (splitting water back to H2 and O2) ) seldom focused on understanding the electrochemical compliments of these reactions in battery systems, e.g., the lithium-air system. In this lecture, we address the importance of both covalent and non-covalent interactions in controlling catalytic activity at the two-phase and three-phase interfaces. Although the field is still in its infancy, a great deal has already been learned and trends are beginning to emerge that give new insight into the relationship between the nature of bonding interactions and catalytic activity/stability of electrochemical interfaces. In addition, to bridge the gap between the ``water battery'' (fuel cell <-> electrolyzer) and the Li-air battery systems we demonstrate that this would require fundamentally new

  13. [Biodiesel-fuel: content, production, producers, contemporary biotechnology (review)].

    PubMed

    Feofilova, E P; Sergeeva, Ia E; Ivashechkin, A A

    2010-01-01

    The necessity of expanding studies on producing renewable biofuel is reviewed. Special attention is given to biodiesel, the history of its creation, and its advantages and disadvantages in comparison with diesel-fuel. The main part of the review is devoted to an analysis of diesel biofuel on the basis of bacterial lipids, filamentous fungi, yeasts, plants, photo- and heterotrophic algae. Biodiesel on the basis of filamentous fungi is studied in detail and the possibility of creation of the most perspective biotechnology using these producers is grounded. The contemporary state of biotechnology in Russia is discussed in connection with the development of energetics based on renewable biofuels.

  14. Estimate of the Sources of Plutonium-Containing Wastes Generated from MOX Fuel Production in Russia

    SciTech Connect

    Kudinov, K.G.; Tretyakov, A.A.; Sorokin, Y.P.; Bondin, V.V.; Manakova, L.F.; Jardine, L.J.

    2001-12-01

    In Russia, mixed oxide (MOX) fuel is produced in a pilot facility ''Paket'' at ''MAYAK'' Production Association. The Mining-Chemical Combine (MCC) has developed plans to design and build a dedicated industrial-scale plant to produce MOX fuel and fuel assemblies (FA) for VVER-1000 water reactors and the BN-600 fast-breeder reactor, which is pending an official Russian Federation (RF) site-selection decision. The design output of the plant is based on production capacity of 2.75 tons of weapons plutonium per year to produce the resulting fuel assemblies: 1.25 tons for the BN-600 reactor FAs and the remaining 1.5 tons for VVER-1000 FAs. It is likely the quantity of BN-600 FAs will be reduced in actual practice. The process of nuclear disarmament frees a significant amount of weapons plutonium for other uses, which, if unutilized, represents a constant general threat. In France, Great Britain, Belgium, Russia, and Japan, reactor-grade plutonium is used in MOX-fuel production. Making MOX-fuel for CANDU (Canada) and pressurized water reactors (PWR) (Europe) is under consideration Russia. If this latter production is added, as many as 5 tons of Pu per year might be processed into new FAs in Russia. Many years of work and experience are represented in the estimates of MOX fuel production wastes derived in this report. Prior engineering studies and sludge treatment investigations and comparisons have determined how best to treat Pu sludges and MOX fuel wastes. Based upon analyses of the production processes established by these efforts, we can estimate that there will be approximately 1200 kg of residual wastes subject to immobilization per MT of plutonium processed, of which approximately 6 to 7 kg is Pu in the residuals per MT of Pu processed. The wastes are various and complicated in composition. Because organic wastes constitute both the major portion of total waste and of the Pu to be immobilized, the recommended treatment of MOX-fuel production waste is incineration

  15. Evaluation of fission product worth margins in PWR spent nuclear fuel burnup credit calculations.

    SciTech Connect

    Blomquist, R.N.; Finck, P.J.; Jammes, C.; Stenberg, C.G.

    1999-02-17

    Current criticality safety calculations for the transportation of irradiated LWR fuel make the very conservative assumption that the fuel is fresh. This results in a very substantial overprediction of the actual k{sub eff} of the transportation casks; in certain cases, this decreases the amount of spent fuel which can be loaded in a cask, and increases the cost of transporting the spent fuel to the repository. Accounting for the change of reactivity due to fuel depletion is usually referred to as ''burnup credit.'' The US DOE is currently funding a program aimed at establishing an actinide only burnup credit methodology (in this case, the calculated reactivity takes into account the buildup or depletion of a limited number of actinides). This work is undergoing NRC review. While this methodology is being validated on a significant experimental basis, it implicitly relies on additional margins: in particular, the absorption of neutrons by certain actinides and by all fission products is not taken into account. This provides an important additional margin and helps guarantee that the methodology is conservative provided these neglected absorption are known with reasonable accuracy. This report establishes the accuracy of fission product absorption rate calculations: (1) the analysis of European fission product worth experiments demonstrates that fission product cross-sections available in the US provide very good predictions of fission product worth; (2) this is confirmed by a direct comparison of European and US cross section evaluations; (3) accuracy of Spent Nuclear Fuel (SNF) fission product content predictions is established in a recent ORNL report where several SNF isotopic assays are analyzed; and (4) these data are then combined to establish in a conservative manner the fraction of the predicted total fission product absorption which can be guaranteed based on available experimental data.

  16. A1-U fuel foaming/recriticality considerations for production reactor core-melt accidents

    SciTech Connect

    Cronenberg, A.W. ); Hyder, M.L.; Ellison, P.G. )

    1990-01-01

    Severe accident studies for the Savannah River production reactors indicate that if coherent fuel melting and relocation occur in the absence of target melting, in-vessel recriticality may be achieved. In this paper, fuel-melt/target interaction potential is assessed, where fission gas-induced fuel foaming and melt attach on target material are evaluated and compared with available data. Models are developed to characterize foams for irradiated Al-based fuel. Predictions indicate transient foaming (the extent of which is governed by fission gas inventory), heating transient, and bubble coalescence behavior. The model also indicates that metallic foams are basically unstable and will collapse, which largely depends on film tenacity and melt viscosity. For high-burnup fuel, foams lasting tens of seconds are predicted, allowing molten fuel to contact and cause melt ablation of concentric targets. For low-burnup fuel, contact can not be assured, thus recriticality may be of concern at reactor startup. 8 refs., 4 figs., 4 tabs.

  17. Microbial alkane production for jet fuel industry: motivation, state of the art and perspectives.

    PubMed

    Jiménez-Díaz, Lorena; Caballero, Antonio; Pérez-Hernández, Natalia; Segura, Ana

    2017-01-01

    Bio-jet fuel has attracted a lot of interest in recent years and has become a focus for aircraft and engine manufacturers, oil companies, governments and researchers. Given the global concern about environmental issues and the instability of oil market, bio-jet fuel has been identified as a promising way to reduce the greenhouse gas emissions from the aviation industry, while also promoting energy security. Although a number of bio-jet fuel sources have been approved for manufacture, their commercialization and entry into the market is still a far way away. In this review, we provide an overview of the drivers for intensified research into bio-jet fuel technologies, the type of chemical compounds found in bio-jet fuel preparations and the current state of related pre-commercial technologies. The biosynthesis of hydrocarbons is one of the most promising approaches for bio-jet fuel production, and thus we provide a detailed analysis of recent advances in the microbial biosynthesis of hydrocarbons (with a focus on alkanes). Finally, we explore the latest developments and their implications for the future of research into bio-jet fuel technologies.

  18. Fission product behavior during the PBF (Power Burst Facility) Severe Fuel Damage Test 1-1

    SciTech Connect

    Hartwell, J K; Petti, D A; Hagrman, D L; Jensen, S M; Cronenberg, A W

    1987-05-01

    In response to the accident at Three Mile Island Unit 2 (TMI-2), the United States Nuclear Regulatory Commission (USNRC) initiated a series of Severe Fuel Damage tests that were performed in the Power Burst Facility at the Idaho National Engineering Laboratory to obtain data necessary to understand (a) fission product release, transport, and deposition; (b) hydrogen generation; and (c) fuel/cladding material behavior during degraded core accidents. Data are presented about fission product behavior noted during the second experiment of this series, the Severe Fuel Damage Test 1-1, with an in-depth analysis of the fission product release, transport, and deposition phenomena that were observed. Real-time release and transport data of certain fission products were obtained from on-line gamma spectroscopy measurements. Liquid and gas effluent grab samples were collected at selected periods during the test transient. Additional information was obtained from steamline deposition analysis. From these and other data, fission product release rates and total release fractions are estimated and compared with predicted release behavior using current models. Fission product distributions and a mass balance are also summarized, and certain probable chemical forms are predicted for iodine, cesium, and tellurium. An in-depth evaluation of phenomena affecting the behavior of the high-volatility fission products - xenon, krypton, iodine, cesium, and tellurium - is presented. Analysis indicates that volatile release from fuel is strongly influenced by parameters other than fuel temperature. Fission product behavior during transport through the Power Burst Facility effluent line to the fission product monitoring system is assessed. Tellurium release behavior is also examined relatve to the extent of Zircaloy cladding oxidation. 81 fig., 53 tabs.

  19. Fuel ethanol production from Jerusalem artichoke stalks using different yeasts

    SciTech Connect

    Margaritis, A.; Bajpai, P.; Bajpai, P.K.

    1983-01-01

    The inulin-type sugars present in the stalks of Jerusalem artichoke (Helianthus tuberosus) were extracted with hot water and were used as a substrate to produce fuel EtOH. Seven different yeasts were used to obtain batch kinetic data. The medium consisted of stalk extract from Jerusalem artichoke containing 7.3% total sugars, supplemented with 0.01% oleic acid, 0.01% corn steep liquor, and 0.05% Tween 80. All batch fermentations were carried out in a 1-L bioreactor at 35 degrees and pH 4.6, and the following parameters were measured as a function of time: total sugars, EtOH and biomass concentration, maximum specific growth rate, and biomass and EtOH yields. The best EtOH producer was Kluyveromyces marxianus UCD (FST) 55-82 which gave an EtOH-to-sugar yield 97% of the theoretical maximum value, with almost 100% sugar utilization.

  20. Production of solar fuels by CO2 plasmolysis

    NASA Astrophysics Data System (ADS)

    Goede, Adelbert P. H.; Bongers, Waldo A.; Graswinckel, Martijn F.; M. C. M van de Sanden, Richard; Leins, Martina; Kopecki, Jochen; Schulz, Andreas; Walker, Mathias

    2014-12-01

    A storage scheme for Renewable Energy (RE) based on the plasmolysis of CO2into CO and O2 has been experimentally investigated, demonstrating high energy efficiency (>50%) combined with high energy density, rapid start-stop and no use of scarce materials. The key parameter controlling energy efficiency has been identified as the reduced electric field. Basic plasma parameters including density and temperature are derived from a simple particle and energy balance model, allowing parameter specification of an upscale 100 kW reactor. With RE powered plasmolysis as the critical element, a CO2 neutral energy system becomes feasible when complemented by effective capture of CO2 at the input and separation of CO from the output gas stream followed by downstream chemical processing into hydrocarbon fuels.

  1. Molten Carbonate Fuel Cell (MCFC) product development test

    NASA Astrophysics Data System (ADS)

    1995-02-01

    M-C Power Corporation will design, fabricate, install, test, and evaluate a 250 kW Proof-of-Concept Molten Carbonate Fuel Cell (MCFC) Power Plant. The plant is to be located at the Naval Air Station Miramar in San Diego, California. This report summarizes the technical progress that has occurred in conjunction with this project in 1994. M-C Power has completed the tape casting and sintering of cathodes and is proceeding with the tape casting and sintering of anodes for the first 250 cell stack. M-C Power and San Diego Gas and Electric (SDG&E) relocated the fuel cell demonstration project to an alternate site at the Naval Air Station Miramar. For the new project location, an Environmental Assessment has been prepared by the Department of Energy in compliance with the National Environmental Policy Act of 1969. The Environmental Assessment resulted in a categorical exclusion of the proposed action from all environmental permit requirements. Bechtel Corporation has completed the reformer process design coordination, a Process Description, the Pipe and Instrumentation Diagrams, a Design Criteria Document and General Project Requirement Document. Bechtel developed the requirements for soils investigation report and issued the following equipment bid packages to the suppliers for bids: inverter, reformer, desulfurization vessels, hot gas recycle blower, heat recovery steam generator, and recycle gas cooler. SDG&E has secured necessary site permits, conducted soils investigations, and is working on the construction plan. They are in final negotiations with the US Navy on a site agreement. Site drawings are required for finalization of the agreement.

  2. Design of a full scale model fuel assembly for full power production reactor flow excursion experiments

    SciTech Connect

    Nash, C.A. ); Blake, J.E.; Rush, G.C. )

    1990-01-01

    A novel full scale production reactor fuel assembly model was designed and built to study thermal-hydraulic effects of postulated Savannah River Site (SRS) nuclear reactor accidents. The electrically heated model was constructed to simulate the unique annular concentric tube geometry of fuel assemblies in SRS nuclear production reactors. Several major design challenges were overcome in order to produce the prototypic geometry and thermal-hydraulic conditions. The two concentric heater tubes (total power over 6 MW and maximum heat flux of 3.5 MW/m{sup 2}) (1.1E+6 BTU/(ft{sup 2}hr)) were designed to closely simulate the thermal characteristics of SRS uranium-aluminum nuclear fuel. The paper discusses the design of the model fuel assembly, which met requirements of maintaining prototypic geometric and hydraulic characteristics, and approximate thermal similarity. The model had a cosine axial power profile and the electrical resistance was compatible with the existing power supply. The model fuel assembly was equipped with a set of instruments useful for code analysis, and durable enough to survive a number of LOCA transients. These instruments were sufficiently responsive to record the response of the fuel assembly to the imposed transient.

  3. Design of a full scale model fuel assembly for full power production reactor flow excursion experiments

    SciTech Connect

    Nash, C.A.; Blake, J.E.; Rush, G.C.

    1990-12-31

    A novel full scale production reactor fuel assembly model was designed and built to study thermal-hydraulic effects of postulated Savannah River Site (SRS) nuclear reactor accidents. The electrically heated model was constructed to simulate the unique annular concentric tube geometry of fuel assemblies in SRS nuclear production reactors. Several major design challenges were overcome in order to produce the prototypic geometry and thermal-hydraulic conditions. The two concentric heater tubes (total power over 6 MW and maximum heat flux of 3.5 MW/m{sup 2}) (1.1E+6 BTU/(ft{sup 2}hr)) were designed to closely simulate the thermal characteristics of SRS uranium-aluminum nuclear fuel. The paper discusses the design of the model fuel assembly, which met requirements of maintaining prototypic geometric and hydraulic characteristics, and approximate thermal similarity. The model had a cosine axial power profile and the electrical resistance was compatible with the existing power supply. The model fuel assembly was equipped with a set of instruments useful for code analysis, and durable enough to survive a number of LOCA transients. These instruments were sufficiently responsive to record the response of the fuel assembly to the imposed transient.

  4. Further studies on the modulation of fossil fuel production by global temperature variations

    SciTech Connect

    Rust, B.W.; Crosby, F.J. )

    1994-01-01

    This study extends the earlier work of Rust and Kirk (1982) on the inverse modulation of global fossil fuel production by variations in Northern Hemispheric temperatures. Recent revisions and extensions of the fuel production record are incorporated and a much improved temperature record in used. The new data are consistent with the predictions of the original Rust-Kirk model which is extended to allow for time lags between variations in the temperature and the corresponding responses in fuel production. The modulation enters the new model through the convolution of a lagged averaging function with the temperature time-series. Explicit terms account for the perturbations caused by the Great Depression and World War II. The final model accounts for 99.84% of the total variance in the production record. The temperature modulation produces variations of as much as 30% in the total production. This modulation represents a feedback which is consistent with the predictions of the Gaia hypothesis for a planetary greenhouse temperature control. The new model calculates 20-y fuel production predictions for three temperature scenarios which hopefully bracket the possibilities for temperature behavior during that time.

  5. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  6. Demand for waste as fuel in the swedish district heating sector: a production function approach.

    PubMed

    Furtenback, Orjan

    2009-01-01

    This paper evaluates inter-fuel substitution in the Swedish district heating industry by analyzing almost all the district heating plants in Sweden in the period 1989-2003, specifically those plants incinerating waste. A multi-output plant-specific production function is estimated using panel data methods. A procedure for weighting the elasticities of factor demand to produce a single matrix for the whole industry is introduced. The price of waste is assumed to increase in response to the energy and CO2 tax on waste-to-energy incineration that was introduced in Sweden on 1 July 2006. Analysis of the plants involved in waste incineration indicates that an increase in the net price of waste by 10% is likely to reduce the demand for waste by 4.2%, and increase the demand for bio-fuels, fossil fuels, other fuels and electricity by 5.5%, 6.0%, 6.0% and 6.0%, respectively.

  7. Production of biomass fuel for resource recovery: Trash recycling in Dade County, Florida

    SciTech Connect

    Mauriello, P.J.; Brooks, K.G.

    1997-12-01

    Dade County, Florida has been in the forefront of resources recovery from municipal solid waste since the early 1980`s. The County completed its 3,000 tons per day (six days per week) refuse derived fuel waste-to-energy facility in 1982. The Resources Recovery facility is operated under a long-term agreement with Montenay-Dade, Ltd. The trash processing capability of this facility was upgraded in 1997 to process 860 tons per day (six days per week) of trash into a biomass fuel which is used off-site to produce electrical energy. Under current Florida law, facilities like trash-to-fuel that produce alternative clean-burning fuels for the production of energy may receive credit for up to one-half of the state`s 30 percent waste reduction goal.

  8. Engineering Bacteria for Efficient Fuel Production: Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Free Fatty Acids

    SciTech Connect

    2010-07-12

    Electrofuels Project: OPX Biotechnologies is engineering a microorganism currently used in industrial biotechnology to directly produce a liquid fuel from hydrogen and carbon dioxide (CO2). The microorganism has the natural ability to use hydrogen and CO2 for growth. OPX Biotechnologies is modifying the microorganism to divert energy and carbon away from growth and towards the production of liquid fuels in larger, commercially viable quantities. The microbial system will produce a fuel precursor that can be chemically upgraded to various hydrocarbon fuels.

  9. Determination of Combustion Product Radicals in a Hydrocarbon Fueled Rocket Exhaust Plume

    NASA Technical Reports Server (NTRS)

    Langford, Lester A.; Allgood, Daniel C.; Junell, Justin C.

    2007-01-01

    The identification of metallic effluent materials in a rocket engine exhaust plume indicates the health of the engine. Since 1989, emission spectroscopy of the plume of the Space Shuttle Main Engine (SSME) has been used for ground testing at NASA's Stennis Space Center (SSC). This technique allows the identification and quantification of alloys from the metallic elements observed in the plume. With the prospect of hydrocarbon-fueled rocket engines, such as Rocket Propellant 1 (RP-1) or methane (CH4) fueled engines being considered for use in future space flight systems, the contributions of intermediate or final combustion products resulting from the hydrocarbon fuels are of great interest. The effect of several diatomic molecular radicals, such as Carbon Dioxide , Carbon Monoxide, Molecular Carbon, Methylene Radical, Cyanide or Cyano Radical, and Nitric Oxide, needs to be identified and the effects of their band systems on the spectral region from 300 nm to 850 nm determined. Hydrocarbon-fueled rocket engines will play a prominent role in future space exploration programs. Although hydrogen fuel provides for higher engine performance, hydrocarbon fuels are denser, safer to handle, and less costly. For hydrocarbon-fueled engines using RP-1 or CH4 , the plume is different from a hydrogen fueled engine due to the presence of several other species, such as CO2, C2, CO, CH, CN, and NO, in the exhaust plume, in addition to the standard H2O and OH. These species occur as intermediate or final combustion products or as a result of mixing of the hot plume with the atmosphere. Exhaust plume emission spectroscopy has emerged as a comprehensive non-intrusive sensing technology which can be applied to a wide variety of engine performance conditions with a high degree of sensitivity and specificity. Stennis Space Center researchers have been in the forefront of advancing experimental techniques and developing theoretical approaches in order to bring this technology to a more

  10. Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment

    SciTech Connect

    Dawn M. Scates; John K. Hartwell; John b. Walter

    2010-10-01

    The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B’s) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  11. Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment

    SciTech Connect

    Dawn M. Scates; John K Hartwell; John B. Walter

    2008-09-01

    The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B’s) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  12. The economic production of alcohol fuels from coal-derived synthesis gas

    SciTech Connect

    Kugler, E.L.; Dadyburjor, D.B.; Yang, R.Y.K.

    1995-12-31

    The objectives of this project are to discover, (1) study and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. Specifically, alternative methods of preparing catalysts are to be investigated, and novel catalysts, including sulfur-tolerant ones, are to be pursued. (Task 1); (2) explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (Task 1); (3) simulate by computer the most energy efficient and economically efficient process for converting coal to energy, with primary focus on converting syngas to fuel alcohols. (Task 2); (4) develop on the bench scale the best holistic combination of chemistry, catalyst, reactor and total process configuration integrated with the overall coal conversion process to achieve economic optimization for the conversion of syngas to liquid products within the framework of achieving the maximum cost effective transformation of coal to energy equivalents. (Tasks 1 and 2); and (5) evaluate the combustion, emission and performance characteristics of fuel alcohols and blends of alcohols with petroleum-based fuels. (Task 2)

  13. Artificial photosynthesis for production of hydrogen peroxide and its fuel cells.

    PubMed

    Fukuzumi, Shunichi

    2016-05-01

    The reducing power released from photosystem I (PSI) via ferredoxin enables the reduction of NADP(+) to NADPH, which is essential in the Calvin-Benson cycle to make sugars in photosynthesis. Alternatively, PSI can reduce O2 to produce hydrogen peroxide as a fuel. This article describes the artificial version of the photocatalytic production of hydrogen peroxide from water and O2 using solar energy. Hydrogen peroxide is used as a fuel in hydrogen peroxide fuel cells to make electricity. The combination of the photocatalytic H2O2 production from water and O2 using solar energy with one-compartment H2O2 fuel cells provides on-site production and usage of H2O2 as a more useful and promising solar fuel than hydrogen. This article is part of a Special Issue entitled Biodesign for Bioenergetics--The design and engineering of electronc transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Peak oil demand: the role of fuel efficiency and alternative fuels in a global oil production decline.

    PubMed

    Brandt, Adam R; Millard-Ball, Adam; Ganser, Matthew; Gorelick, Steven M

    2013-07-16

    Some argue that peak conventional oil production is imminent due to physical resource scarcity. We examine the alternative possibility of reduced oil use due to improved efficiency and oil substitution. Our model uses historical relationships to project future demand for (a) transport services, (b) all liquid fuels, and (c) substitution with alternative energy carriers, including electricity. Results show great increases in passenger and freight transport activity, but less reliance on oil. Demand for liquids inputs to refineries declines significantly after 2070. By 2100 transport energy demand rises >1000% in Asia, while flattening in North America (+23%) and Europe (-20%). Conventional oil demand declines after 2035, and cumulative oil production is 1900 Gbbl from 2010 to 2100 (close to the U.S. Geological Survey median estimate of remaining oil, which only includes projected discoveries through 2025). These results suggest that effort is better spent to determine and influence the trajectory of oil substitution and efficiency improvement rather than to focus on oil resource scarcity. The results also imply that policy makers should not rely on liquid fossil fuel scarcity to constrain damage from climate change. However, there is an unpredictable range of emissions impacts depending on which mix of substitutes for conventional oil gains dominance-oil sands, electricity, coal-to-liquids, or others.

  15. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    SciTech Connect

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  16. Impact of alcohol fuel production on agricultural markets

    SciTech Connect

    Gardiner, W.H.

    1986-01-01

    Production of alcohol from biomass feedstocks, such as corn, was given Federal and State support which resulted in alcohol production rising from 20 million gallons in 1979 to 430 million gallons in 1984. This study estimates the impacts of alcohol production from corn on selected agricultural markets. The tool of analysis was a three region (United States, the European Community and the rest of the world) econometric model of the markets for corn, soybeans, soybean meal, soybean oil, wheat and corn byproduct feeds. Three alternative growth paths for alcohol production (totalling 1.1, 2.0, and 3.0 billion gallons) were analyzed with the model in the context of three different trade environments. The results of this analysis indicate that alcohol production of 1.1 billion gallons by 1980 would have caused moderate adjustments to commodity markets while 3.0 billion gallons would have caused major adjustments. Corn prices rose sharply with increased alcohol production as did wheat prices but to a somewhat lesser extent. The substitution of corn for soybeans on the supply side was not sufficient to offset the demand depressing effects of corn byproduct feeds on soybean meal which translated into slightly lower soybean prices. A quota limiting imports of corn gluten feed into the EC to three million tons annually would cause reductions in export earnings for corn millers.

  17. The new gold rush: fueling ethanol production while protecting water quality.

    PubMed

    Simpson, Thomas W; Sharpley, Andrew N; Howarth, Robert W; Paerl, Hans W; Mankin, Kyle R

    2008-01-01

    Renewable fuel production, particularly grain-based ethanol, is expanding rapidly in the USA. Although subsidized grain-based ethanol may provide a competitively priced transportation fuel, concerns exist about potential environmental impacts. This contribution focuses on potential water quality implications of expanded grain-based ethanol production and potential impacts of perennial-grass-based cellulosic ethanol. Expanded grain-based ethanol will increase and intensify corn production. Even with recommended fertilizer and land conservation measures, corn acreage can be a major source of N loss to water (20-40 kg ha(-1) yr(-1)). A greater acreage of corn is estimated to increase N and P loss to water by 37% (117 million kg) and 25% (9 million kg), respectively, and measures to encourage adoption of conservation practices are essential to mitigate water quality impairments. Dried distiller's grains remaining after ethanol production from corn grain are used as animal feed and can increase manure P content and may increase N content. Cellulosic fuel-stocks from perennials such as switchgrass and woody materials have the potential to produce ethanol. Although production, storage, and handling of cellulosic materials and conversion technology are limitations, accelerating development of cellulosic ethanol has the potential to reduce dependence on grain fuel-stocks and provide water quality and other environmental benefits. All alternative fuel production technologies could have environmental impacts. There is a need to understand these impacts to help guide policy and help make programmatic and scientific decisions that avoid or mitigate unintended environmental consequences of biofuel production.

  18. Submersible microbial fuel cell for electricity production from sewage sludge.

    PubMed

    Zhang, Yifeng; Olias, Lola Gonzalez; Kongjan, Prawit; Angelidaki, Irini

    2011-01-01

    A submersible microbial fuel cell (SMFC) was utilized to treat sewage sludge and simultaneously generate electricity. Stable power generation (145 +/- 5 mW/m2, 470 omega) was produced continuously from raw sewage sludge for 5.5 days. The maximum power density reached 190 +/- 5 mW/m2. The corresponding total chemical oxygen demand (TCOD) removal efficiency was 78.1 +/- 0.2% with initial TCOD of 49.7 g/L. The power generation of SMFC was depended on the sludge concentration, while dilution of the raw sludge resulted in higher power density. The maximum power density was saturated at sludge concentration of 17 g-TCOD/L, where 290 mw/m2 was achieved. When effluents from an anaerobic digester that was fed with raw sludge were used as substrate in the SMFC, a maximum power density of 318 mW/m2, and a final TCOD removal of 71.9 +/- 0.2% were achieved. These results have practical implications for development of an effective system to treat sewage sludge and simultaneously recover energy.

  19. Solar photochemical process engineering for production of fuels and chemicals

    NASA Astrophysics Data System (ADS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6 percent are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6 percent. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel.

  20. Solar photochemical process engineering for production of fuels and chemicals

    NASA Astrophysics Data System (ADS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1984-05-01

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6% are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6%. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel.

  1. Process for making a martensitic steel alloy fuel cladding product

    DOEpatents

    Johnson, Gerald D.; Lobsinger, Ralph J.; Hamilton, Margaret L.; Gelles, David S.

    1990-01-01

    This is a very narrowly defined martensitic steel alloy fuel cladding material for liquid metal cooled reactors, and a process for making such a martensitic steel alloy material. The alloy contains about 10.6 wt. % chromium, about 1.5 wt. % molybdenum, about 0.85 wt. % manganese, about 0.2 wt. % niobium, about 0.37 wt. % silicon, about 0.2 wt. % carbon, about 0.2 wt. % vanadium, 0.05 maximum wt. % nickel, about 0.015 wt. % nitrogen, about 0.015 wt. % sulfur, about 0.05 wt. % copper, about 0.007 wt. % boron, about 0.007 wt. % phosphorous, and with the remainder being essentially iron. The process utilizes preparing such an alloy and homogenizing said alloy at about 1000.degree. C. for 16 hours; annealing said homogenized alloy at 1150.degree. C. for 15 minutes; and tempering said annealed alloy at 700.degree. C. for 2 hours. The material exhibits good high temperature strength (especially long stress rupture life) at elevated temperature (500.degree.-760.degree. C.).

  2. Solar photochemical process engineering for production of fuels and chemicals

    NASA Technical Reports Server (NTRS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1985-01-01

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6 percent are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6 percent. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel.

  3. ERC product improvement activities for direct fuel cell power plants

    SciTech Connect

    Maru, H.C.; Farooque, M.; Bentley, C.

    1995-12-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  4. Solar photochemical process engineering for production of fuels and chemicals

    NASA Technical Reports Server (NTRS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1985-01-01

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6 percent are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6 percent. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel.

  5. ERC product improvement activities for direct fuel cell power plants

    SciTech Connect

    Bentley, C.; Carlson, G.; Doyon, J.

    1995-08-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  6. Solar photochemical process engineering for production of fuels and chemicals

    NASA Technical Reports Server (NTRS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1984-01-01

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6% are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6%. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel.

  7. Production of hydrocarbon fuels from pyrolysis of soybean oils using a basic catalyst.

    PubMed

    Xu, Junming; Jiang, Jianchun; Sun, Yunjuan; Chen, Jie

    2010-12-01

    Triglycerides obtained from animals and plants have attracted great attention from researchers for developing an environmental friendly and high-quality fuel, free of nitrogen and sulfur. In the present work, the production of biofuel by catalytic cracking of soybean oil over a basic catalyst in a continuous pyrolysis reactor at atmospheric pressure has been studied. Experiments were designed to study the effect of different types of catalysts on the yield and acid value of the diesel and gasoline fractions from the pyrolytic oil. It was found that basic catalyst gave a product with relatively low acid number. These pyrolytic oils were also further reacted with alcohol in order to decrease their acid value. After esterification, the physico-chemical properties of these biofuels were characterized, and compared with Chinese specifications for conventional diesel fuels. The results showed that esterification of pyrolytic oil from triglycerides represents an alternative technique for producing biofuels from soybean oils with characteristics similar to those of petroleum fuels.

  8. From fields to fuels: recent advances in the microbial production of biofuels.

    PubMed

    Kung, Yan; Runguphan, Weerawat; Keasling, Jay D

    2012-11-16

    Amid grave concerns over global climate change and with increasingly strained access to fossil fuels, the synthetic biology community has stepped up to the challenge of developing microbial platforms for the production of advanced biofuels. The adoption of gasoline, diesel, and jet fuel alternatives derived from microbial sources has the potential to significantly limit net greenhouse gas emissions. In this effort, great strides have been made in recent years toward the engineering of microorganisms to produce transportation fuels derived from alcohol, fatty acid, and isoprenoid biosynthesis. We provide an overview of the biosynthetic pathways devised in the strain development of biofuel-producing microorganisms. We also highlight many of the commonly used and newly devised engineering strategies that have been employed to identify and overcome pathway bottlenecks and problems of toxicity to maximize production titers.

  9. Kinetics study on biomass pyrolysis for fuel gas production.

    PubMed

    Chen, Guan-Yi; Fang, Meng-Xiang; Andries, J; Luo, Zhong-Yang; Spliethoff, H; Cen, Ke-Fa

    2003-01-01

    Kinetic knowledge is of great importance in achieving good control of the pyrolysis and gasification process and optimising system design. An overall kinetic pyrolysis scheme is therefore addressed here. The kinetic modelling incorporates the following basic steps: the degradation of the virgin biomass materials into primary products (tar, gas and semi-char), the decomposition of primary tar into secondary products and the continuous interaction between primary gas and char. The last step is disregarded completely by models in the literature. Analysis and comparison of predicted results from different kinetic schemes and experimental data on our fixed bed pyrolyser yielded very positive evidence to support our kinetic scheme.

  10. Feasibility study for a DOE research and production fuel multipurpose canister

    SciTech Connect

    Lopez, D.A.; Abbott, D.G.

    1994-02-01

    This is a report of the feasibility of multipurpose canisters for transporting, storing, and sing of Department of Energy research and production spent nuclear fuel. Six representative Department of Energy fuel assemblies were selected, and preconceptual canister designs were developed to accommodate these assemblies. The study considered physical interface, structural adequacy, criticality safety, shielding capability, thermal performance of the canisters, and fuel storage site infrastructure. The external envelope of the canisters was designed to fit within the overpack casks for commercial canisters being developed for the Department of Energy Office of Civilian Radioactive Waste Management. The budgetary cost of canisters to handle all fuel considered is estimated at $170.8M. One large conceptual boiling water reactor canister design, developed for the Office of Civilian Radioactive Waste Management, and two new canister designs can accommodate at least 85% of the volume of the Department of Energy fuel considered. Canister use minimizes public radiation exposure and is cost effective compared with bare fuel handling. Results suggest the need for additional study of issues affecting canister use and for conceptual design development of the three canisters.

  11. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates.

    PubMed

    Román-Leshkov, Yuriy; Barrett, Christopher J; Liu, Zhen Y; Dumesic, James A

    2007-06-21

    Diminishing fossil fuel reserves and growing concerns about global warming indicate that sustainable sources of energy are needed in the near future. For fuels to be useful in the transportation sector, they must have specific physical properties that allow for efficient distribution, storage and combustion; these properties are currently fulfilled by non-renewable petroleum-derived liquid fuels. Ethanol, the only renewable liquid fuel currently produced in large quantities, suffers from several limitations, including low energy density, high volatility, and contamination by the absorption of water from the atmosphere. Here we present a catalytic strategy for the production of 2,5-dimethylfuran from fructose (a carbohydrate obtained directly from biomass or by the isomerization of glucose) for use as a liquid transportation fuel. Compared to ethanol, 2,5-dimethylfuran has a higher energy density (by 40 per cent), a higher boiling point (by 20 K), and is not soluble in water. This catalytic strategy creates a route for transforming abundant renewable biomass resources into a liquid fuel suitable for the transportation sector, and may diminish our reliance on petroleum.

  12. Solar photochemical process engineering for production of fuels and chemicals

    SciTech Connect

    Biddle, J.R.; Peterson, D.B.; Fujita, T.

    1984-05-01

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water have been studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6% are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6%. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. Results predict energy costs in the range of $34 to $55/10/sup 6/ kJ ($36 to $59/10/sup 6/ Btu) for the flat-plate system and $94 to $141/10/sup 6/ kJ ($99 to $149/10/sup 6/ Btu) for the trough system. The overall plant efficiency is the single most important factor in determining the cost of the fuel. Therefore, solar quantum conversion processes were reviewed for the purpose of identifying processes which promise better performance and lower costs. Operating and systems options, including operation at elevated temperatures and hybrid and coupled quantum-thermal conversion processes, were also briefly examined.

  13. Electricity production from twelve monosaccharides using microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Catal, Tunc; Li, Kaichang; Bermek, Hakan; Liu, Hong

    Direct generation of electricity from monosaccharides of lignocellulosic biomass was examined using air cathode microbial fuel cells (MFCs). Electricity was generated from all carbon sources tested, including six hexoses (D-glucose, D-galactose, D(-)-levulose (fructose), L-fucose, L-rhamnose, and D-mannose), three pentoses (D-xylose, D(-)-arabinose, and D(-)-ribose), two uronic acids (D-galacturonic acid and D-glucuronic acid) and one aldonic acid (D-gluconic acid). The mixed bacterial culture, which was enriched using acetate as a carbon source, adapted well to all carbon sources tested, although the adaptation times varied from 1 to 70 h. The maximum power density obtained from these carbon sources ranged from 1240 ± 10 to 2770 ± 30 mW m -2 at current density range of 0.76-1.18 mA cm -2. D-Mannose resulted in the lowest maximum power density, whereas D-glucuronic acid generated the highest one. Coulombic efficiency ranged from 21 to 37%. For all carbon sources tested, the relationship between the maximum voltage output and the substrate concentration appeared to follow saturation kinetics at 120 Ω external resistance. The estimated maximum voltage output ranged between 0.26 and 0.44 V and half-saturation kinetic constants ranged from 111 to 725 mg L -1. Chemical oxygen demand (COD) removal was over 80% for all carbon sources tested. Results from this study indicated that lignocellulosic biomass-derived monosaccharides might be a suitable resource for electricity generation using MFC technology.

  14. Novel Catalysts and Processing Technologies for Production of Aerospace Fuels from Non-Petroleum Raw Materials

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Kulis, Michael J.; Psarras, Peter C.; Ball, David W.; Timko, Michael T.; Wong, Hsi-Wu; Peck, Jay; Chianelli, Russell R.

    2014-01-01

    Transportation fuels production (including aerospace propellants) from non-traditional sources (gases, waste materials, and biomass) has been an active area of research and development for decades. Reducing terrestrial waste streams simultaneous with energy conversion, plentiful biomass, new low-cost methane sources, and/or extra-terrestrial resource harvesting and utilization present significant technological and business opportunities being realized by a new generation of visionary entrepreneurs. We examine several new approaches to catalyst fabrication and new processing technologies to enable utilization of these nontraditional raw materials. Two basic processing architectures are considered: a single-stage pyrolysis approach that seeks to basically re-cycle hydrocarbons with minimal net chemistry or a two-step paradigm that involves production of supply or synthesis gas (mainly carbon oxides and H2) followed by production of fuel(s) via Sabatier or methanation reactions and/or Fischer-Tröpsch synthesis. Optimizing the fraction of product stream relevant to targeted aerospace (and other transportation) fuels via modeling, catalyst fabrication and novel reactor design are described. Energy utilization is a concern for production of fuels for either terrestrial or space operations; renewable sources based on solar energy and/or energy efficient processes may be mission enabling. Another important issue is minimizing impurities in the product stream(s), especially those potentially posing risks to personnel or operations through (catalyst) poisoning or (equipment) damage. Technologies being developed to remove (and/or recycle) heteroatom impurities are briefly discussed as well as the development of chemically robust catalysts whose activities are not diminished during operation. The potential impacts on future missions by such new approaches as well as balance of system issues are addressed.

  15. Novel Catalysts and Processing Technologies for Production of Aerospace Fuels from Non-Petroleum Raw Materials

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Kulis, M. J.; Psarras, P. C.; Ball, D. W.; Timko, M. T.; Wong, H.-W.; Peck, J.; Chianelli, R. R.

    2014-01-01

    Transportation fuels production (including aerospace propellants) from non-traditional sources (gases, waste materials, and biomass) has been an active area of research and development for decades. Reducing terrestrial waste streams simultaneous with energy conversion, plentiful biomass, new low-cost methane sources, and/or extra-terrestrial resource harvesting and utilization present significant technological and business opportunities being realized by a new generation of visionary entrepreneurs. We examine several new approaches to catalyst fabrication and new processing technologies to enable utilization of these non-traditional raw materials. Two basic processing architectures are considered: a single-stage pyrolysis approach that seeks to basically re-cycle hydrocarbons with minimal net chemistry or a two-step paradigm that involves production of supply or synthesis gas (mainly carbon oxides and hydrogen) followed by production of fuel(s) via Sabatier or methanation reactions and/or Fischer-Tropsch synthesis. Optimizing the fraction of product stream relevant to targeted aerospace (and other transportation) fuels via modeling, catalyst fabrication and novel reactor design are described. Energy utilization is a concern for production of fuels for either terrestrial or space operations; renewable sources based on solar energy and/or energy efficient processes may be mission enabling. Another important issue is minimizing impurities in the product stream(s), especially those potentially posing risks to personnel or operations through (catalyst) poisoning or (equipment) damage. Technologies being developed to remove (and/or recycle) heteroatom impurities are briefly discussed as well as the development of chemically robust catalysts whose activity are not diminished during operation. The potential impacts on future missions by such new approaches as well as balance of system issues are addressed.

  16. Formulation and evaluation of highway transportation fuels from shale and coal oils: project identification and evaluation of optimized alternative fuels. Second annual report, March 20, 1980-March 19, 1981. [Broadcut fuel mixtures of petroleum, shale, and coal products

    SciTech Connect

    Sefer, N.R.; Russell, J.A.

    1981-12-01

    Project work is reported for the formulation and testing of diesel and broadcut fuels containing components from petroleum, shale oil, and coal liquids. Formulation of most of the fuels was based on refinery modeling studies in the first year of the project. Product blends were prepared with a variety of compositions for use in this project and to distribute to other, similar research programs. Engine testing was conducted in a single-cylinder CLR engine over a range of loads and speeds. Relative performance and emissions were determined in comparison with typical petroleum diesel fuel. With the eight diesel fuels tested, it was found that well refined shale oil products show only minor differences in engine performance and emissions which are related to differences in boiling range. A less refined coal distillate can be used at low concentrations with normal engine performance and increased emissions of particulates and hydrocarbons. Higher concentrations of coal distillate degrade both performance and emissions. Broadcut fuels were tested in the same engine with variable results. All fuels showed increased fuel consumption and hydrocarbon emissions. The increase was greater with higher naphtha content or lower cetane number of the blends. Particulates and nitrogen oxides were high for blends with high 90% distillation temperatures. Operation may have been improved by modifying fuel injection. Cetane and distillation specifications may be advisable for future blends. Additional multi-cylinder and durability testing is planned using diesel fuels and broadcut fuels. Nine gasolines are scheduled for testing in the next phase of the project.

  17. Process for the production of fuel gas from coal

    DOEpatents

    Patel, Jitendra G.; Sandstrom, William A.; Tarman, Paul B.

    1982-01-01

    An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

  18. Solvent degradation products in nuclear fuel processing solvents

    SciTech Connect

    Shook, H.E. Jr.

    1988-06-01

    The Savannah River Plant uses a modified Purex process to recover enriched uranium and separate fission products. This process uses 7.5% tri-n-butyl phosphate (TBP) dissolved in normal paraffin hydrocarbons for the solvent extraction of a nitric acid solution containing the materials to be separated. Periodic problems in product decontamination result from solvent degradation. A study to improve process efficiency has identified certain solvent degradation products and suggested mitigation measures. Undecanoic acid, lauric acid, and tridecanoic acid were tentatively identified as diluent degradation products in recycle solvent. These long-chain organic acids affect phase separation and lead to low decontamination factors. Solid phase extraction (SPE) was used to concentrate the organic acids in solvent prior to analysis by high performance liquid chromatography (HPLC). SPE and HPLC methods were optimized in this work for analysis of decanoic acid, undecanoic acid, and lauric acid in solvent. Accelerated solvent degradation studies with 7.5% TBP in normal paraffin hydrocarbons showed that long-chain organic acids and long-chain alkyl butyl phosphoric acids are formed by reactions with nitric acid. Degradation of both tributyl phosphate and hydrocarbon can be minimized with purified normal paraffin replacing the standard grade presently used. 12 refs., 1 fig., 3 tabs.

  19. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2013

    SciTech Connect

    none,

    2014-04-30

    This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  20. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    SciTech Connect

    none,

    2011-09-01

    This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  1. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program - 2012

    SciTech Connect

    none,

    2012-09-01

    This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  2. Health effects of fossil fuel combustion products: report of a workshop.

    PubMed Central

    Comar, C L; Nelson, N

    1975-01-01

    Judgemental positions are presented on research priorities in regard to the health effects from stationary sources of fossil fuel combustion products. Hopefully, they can provide guidance for efforts to ensure that national energy needs are met with minimum environmental and economic burdens on the public. The major areas include epidemiological studies, controlled biological studies, mutagenesis and carcinogenesis, trace elements, monitoring and analysis. PMID:1227856

  3. Determining the fate of virginiamycin in the fuel ethanol production process

    USDA-ARS?s Scientific Manuscript database

    Antibiotics are frequently used to prevent and treat bacterial contamination at commercial fuel ethanol facilities. A study to evaluate the fate of the antibiotic virginiamycin during the ethanol production process was conducted in the pilot plant facilities at the National Corn to Ethanol Research...

  4. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration.

    PubMed

    Zaldivar, J; Nielsen, J; Olsson, L

    2001-07-01

    With industrial development growing rapidly, there is a need for environmentally sustainable energy sources. Bioethanol (ethanol from biomass) is an attractive, sustainable energy source to fuel transportation. Based on the premise that fuel bioethanol can contribute to a cleaner environment and with the implementation of environmental protection laws in many countries, demand for this fuel is increasing. Efficient ethanol production processes and cheap substrates are needed. Current ethanol production processes using crops such as sugar cane and corn are well-established; however, utilization of a cheaper substrate such as lignocellulose could make bioethanol more competitive with fossil fuel. The processing and utilization of this substrate is complex, differing in many aspects from crop-based ethanol production. One important requirement is an efficient microorganism able to ferment a variety of sugars (pentoses, and hexoses) as well as to tolerate stress conditions. Through metabolic engineering, bacterial and yeast strains have been constructed which feature traits that are advantageous for ethanol production using lignocellulose sugars. After several rounds of modification/evaluation/modification, three main microbial platforms, Saccharomyces cerevisiae, Zymomonas mobilis, and Escherichia coli, have emerged and they have performed well in pilot studies. While there are ongoing efforts to further enhance their properties, improvement of the fermentation process is just one of several factors-that needs to be fully optimized and integrated to generate a competitive lignocellulose ethanol plant.

  5. Solid recovered fuel production from biodegradable waste in grain processing industry.

    PubMed

    Kliopova, Irina; Staniskis, Jurgis Kazimieras; Petraskiene, Violeta

    2013-04-01

    Management of biodegradable waste is one of the most important environmental problems in the grain-processing industry since this waste cannot be dumped anymore due to legal requirements. Biodegradable waste is generated in each stage of grain processing, including the waste-water and air emissions treatment processes. Their management causes some environmental and financial problems. The majority of Lithuanian grain-processing enterprises own and operate composting sites, but in Lithuania the demand for compost is not given. This study focused on the analysis of the possibility of using biodegradable waste for the production of solid recovered fuel, as a local renewable fuel with the purpose of increasing environmental performance and decreasing the direct costs of grain processing. Experimental research with regard to a pilot grain-processing plant has proven that alternative fuel production will lead to minimizing of the volume of biodegradable waste by 75% and the volume of natural gas for heat energy production by 62%. Environmental indicators of grain processing, laboratory analysis of the chemical and physical characteristics of biodegradable waste, mass and energy balances of the solid recovered fuel production, environmental and economical benefits of the project are presented and discussed herein.

  6. Aviation Turbine Fuels from Tar Sands Bitumen and Heavy Oils. Part 3. Laboratory Sample Production.

    DTIC Science & Technology

    1987-12-01

    PREPARATION CONVERSION SECTION FLOW DIAGRAM ... ........... 12 3. TURBINE FUEL PRECURSOR 3LENDS .... ......... .. 21 4. EFFECT OF HYDROTREATING...SEVERITY ON JP-4 AROMATICS CONTENT ... .......... 30 5. EFFECT OF HYDROTREATING SEVERITY ON JP-4 SMOKE POINT ..... ............. 30 6. EFFECT OF...48 16. EFFECT OF HYDROGEN SPECIFICATION ON PRODUCT COSTS .... ............ 59 A-i. SAMPLE PREPARATION CONVERSION SECTION .. ........ A-3 A-2. SAMPLE

  7. Target Cultivation and Financing Parameters for Sustainable Production of Fuel and Feed from Microalgae.

    PubMed

    Gerber, Léda N; Tester, Jefferson W; Beal, Colin M; Huntley, Mark E; Sills, Deborah L

    2016-04-05

    Production of economically competitive and environmentally sustainable algal biofuel faces technical challenges that are subject to high uncertainties. Here we identify target values for algal productivity and financing conditions required to achieve a biocrude selling price of $5 per gallon and beneficial environmental impacts. A modeling framework--combining process design, techno-economic analysis, life cycle assessment, and uncertainty analysis--was applied to two conversion pathways: (1) "fuel only (HTL)", using hydrothermal liquefaction to produce biocrude, heat and power, and (2) "fuel and feed", using wet extraction to produce biocrude and lipid-extracted algae, which can substitute components of animal and aqua feeds. Our results suggest that with supporting policy incentives, the "fuel and feed" scenario will likely achieve a biocrude selling price of less than $5 per gallon at a productivity of 39 g/m(2)/day, versus 47 g/m(2)/day for the "fuel only (HTL)" scenario. Furthermore, if lipid-extracted algae are used to substitute fishmeal, the process has a 50% probability of reaching $5 per gallon with a base case productivity of 23 g/m(2)/day. Scenarios with improved economics were associated with beneficial environmental impacts for climate change, ecosystem quality, and resource depletion, but not for human health.

  8. Effects of Inoculum Size on Solid-Phase Fermentation of Fodder Beets for Fuel Ethanol Production

    PubMed Central

    Gibbons, William R.; Westby, Carl A.

    1986-01-01

    This fuel ethanol study examined the effects of Saccharomyces cerevisiae inoculum size on solid-phase fermentation of fodder beet pulp. A 5% inoculum (wt/wt) resulted in rapid yeast and ethanol (9.1% [vol/vol]) production. Higher inocula showed no advantages. Lower inocula resulted in lowered final yeast populations and increased fermentation times. PMID:16347193

  9. Effects of inoculum size on solid-phase fermentation of fodder beets for fuel ethanol production

    SciTech Connect

    Gibbons, W.R.; Westby, C.A.

    1986-10-01

    This fuel ethanol study examined the effects of Saccharomyces cerevisiae inoculum size on solid-phase fermentation of fodder beet pulp. A 5% inoculum (wt/wt) resulted in rapid yeast and ethanol (9.1% (vol/vol)) production. Higher inocula showed no advantages. Lower inocula resulted in lowered final yeast populations and increased fermentation times.

  10. ENERGY PRODUCTION AND POLLUTION PREVENTION AT SEWAGE TREATMENT PLANTS USING FUEL CELL POWER PLANTS

    EPA Science Inventory

    The paper discusses energy production and pollution prevention at sewage treatment plants using fuel cell power plants. Anaerobic digester gas (ADG) is produced at waste water treatment plants during the anaerobic treatment of sewage to reduce solids. The major constituents are...

  11. ENERGY PRODUCTION AND POLLUTION PREVENTION AT SEWAGE TREATMENT PLANTS USING FUEL CELL POWER PLANTS

    EPA Science Inventory

    The paper discusses energy production and pollution prevention at sewage treatment plants using fuel cell power plants. Anaerobic digester gas (ADG) is produced at waste water treatment plants during the anaerobic treatment of sewage to reduce solids. The major constituents are...

  12. 30 CFR 250.1629 - Additional production and fuel gas system requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed in all enclosed classified areas. Gas sensors shall be installed in all inadequately ventilated, enclosed... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Additional production and fuel gas system...

  13. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2014

    SciTech Connect

    None, None

    2015-02-01

    This FY 2014 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  14. Preliminary assessment of Malaysian micro-algae strains for the production of bio jet fuel

    NASA Astrophysics Data System (ADS)

    Chen, J. T.; Mustafa, E. M.; Vello, V.; Lim, P.; Nik Sulaiman, N. M.; Majid, N. Abdul; Phang, S.; Tahir, P. Md.; Liew, K.

    2016-10-01

    Malaysia is the main hub in South-East Asia and has one of the highest air traffic movements in the region. Being rich in biodiversity, Malaysia has long been touted as country rich in biodiversity and therefore, attracts great interests as a place to setup bio-refineries and produce bio-fuels such as biodiesel, bio-petrol, green diesel, and bio-jet fuel Kerosene Jet A-1. Micro-algae is poised to alleviate certain disadvantages seen in first generation and second generation feedstock. In this study, the objective is to seek out potential micro-algae species in Malaysia to determine which are suitable to be used as the feedstock to enable bio-jet fuel production in Malaysia. From 79 samples collected over 30 sites throughout Malaysia, six species were isolated and compared for their biomass productivity and lipid content. Their lipid contents were then used to derived the require amount of micro-algae biomass to yield 1 kg of certifiable jet fuel via the HEFA process, and to meet a scenario where Malaysia implements a 2% alternative (bio-) jet fuel requirement.

  15. Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations

    SciTech Connect

    Shi, Fan; Wang, Pin; Duan, Yuhua; Link, Dirk; Morreale, Bryan

    2012-01-01

    Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize ‘‘food versus fuel’’ concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

  16. Recent Developments on the Production of Transportation Fuels via Catalytic Conversion of Microalgae: Experiments and Simulations

    SciTech Connect

    Shi, Fan; Wang, Ping; Duan, Yuhua; Link, Dirk; Morreale, Bryan

    2012-08-02

    Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize “food versus fuel” concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

  17. Accelerator breeder: a viable option for the production of nuclear fuels

    SciTech Connect

    Grand, P.

    1983-01-01

    Despite the growing pains of the US nuclear power industry, our dependence on nuclear energy for the production of electricity and possibly process heat is likely to increase dramatically over the next few deacades. This statement dismisses fusion as being entirely too speculative to be practical within that time frame. Sometime, between the years 2000 and 2050, fissile material will be in short supply whether it is to fuel existing LWR's or to provide initial fuel inventory for FBR's. The accelerator breeder could produce the fuel shortfall predicted to occur during the first half of the 21st century. The accelerator breeder offers the only practical means today of producing, or breeding, large quantities of fissile fuel from fertile materials, albeit at high cost. Studies performed over the last few years at Chalk River Laboratory and at Brookhaven National Laboratory have demonstrated that the accelerator breeder is practical, technically feasible with state-of-the-art technology, and is economically competitive with any other proposed synthetic means of fissile fuel production. This paper gives the parameters of a nearly optimized accelerator-breeder system, then discusses the development needs, and the economics and institutional problems that this breeding concept faces.

  18. Efficiency maximization in solar-thermochemical fuel production: challenging the concept of isothermal water splitting.

    PubMed

    Ermanoski, I; Miller, J E; Allendorf, M D

    2014-05-14

    Widespread adoption of solar-thermochemical fuel production depends on its economic viability, largely driven by the efficiency of use of the available solar resource. Herein, we analyze the efficiency of two-step cycles for thermochemical hydrogen production, with emphasis on efficiency. Owing to water thermodynamics, isothermal H2 production is shown to be impractical and inefficient, irrespective of reactor design or reactive oxide properties, but an optimal temperature difference between cycle steps, for which efficiency is the highest, can be determined for a wide range of other operating parameters. A combination of well-targeted pressure and temperature swing, rather than either individually, emerges as the most efficient mode of operation of a two-step thermochemical cycle for solar fuel production.

  19. Environmental and economic aspects of hydrogen production and utilization in fuel cell vehicles

    NASA Astrophysics Data System (ADS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    A smooth transition from gasoline-powered internal combustion engine vehicles to ecologically clean hydrogen fuel cell vehicles depends on the process used for hydrogen production. Three technologies for hydrogen production are considered here: traditional hydrogen production via natural gas reforming, and the use of two renewable technologies (wind and solar electricity generation) to produce hydrogen via water electrolysis. It is shown that a decrease of environmental impact (air pollution and greenhouse gas emissions) as a result of hydrogen implementation as a fuel is accompanied by a decline in the economic efficiency (as measured by capital investments effectiveness). A mathematical procedure is proposed to obtain numerical estimates of environmental and economic criteria interactions in the form of sustainability indexes. On the basis of the obtained sustainability indexes, it is concluded that hydrogen production from wind energy via electrolysis is more advantageous for mitigating greenhouse gas emissions and traditional natural gas reforming is more favorable for reducing air pollution.

  20. Integrated production of fuel gas and oxygenated organic compounds from synthesis gas

    DOEpatents

    Moore, Robert B.; Hegarty, William P.; Studer, David W.; Tirados, Edward J.

    1995-01-01

    An oxygenated organic liquid product and a fuel gas are produced from a portion of synthesis gas comprising hydrogen, carbon monoxide, carbon dioxide, and sulfur-containing compounds in a integrated feed treatment and catalytic reaction system. To prevent catalyst poisoning, the sulfur-containing compounds in the reactor feed are absorbed in a liquid comprising the reactor product, and the resulting sulfur-containing liquid is regenerated by stripping with untreated synthesis gas from the reactor. Stripping offgas is combined with the remaining synthesis gas to provide a fuel gas product. A portion of the regenerated liquid is used as makeup to the absorber and the remainder is withdrawn as a liquid product. The method is particularly useful for integration with a combined cycle coal gasification system utilizing a gas turbine for electric power generation.

  1. Ultra-Clean Diesel Fuel: U.S. Production and Distribution Capability

    SciTech Connect

    Hadder, G.R.

    2001-02-15

    Diesel engines have potential for use in a large number of future vehicles in the US. However, to achieve this potential, proponents of diesel engine technologies must solve diesel's pollution problems, including objectionable levels of emissions of particulates and oxides of nitrogen. To meet emissions reduction goals, diesel fuel quality improvements could enable diesel engines with advanced aftertreatment systems to achieve the necessary emissions performance. The diesel fuel would most likely have to be reformulated to be as clean as low sulfur gasoline. This report examines the small- and large-market extremes for introduction of ultra-clean diesel fuel in the US and concludes that petroleum refinery and distribution systems could produce adequate low sulfur blendstocks to satisfy small markets for low sulfur (30 parts per million) light duty diesel fuel, and deliver that fuel to retail consumers with only modest changes. Initially, there could be poor economic returns on under-utilized infrastructure investments. Subsequent growth in the diesel fuel market could be inconsistent with U.S. refinery configurations and economics. As diesel fuel volumes grow, the manufacturing cost may increase, depending upon how hydrodesulfurization technologies develop, whether significantly greater volumes of the diesel pool have to be desulfurized, to what degree other properties like aromatic levels have to be changed, and whether competitive fuel production technologies become economic. Low sulfur (10 parts per million) and low aromatics (10 volume percent) diesel fuel for the total market could require desulfurization, dearomatization, and hydrogen production investments amounting to a third of current refinery market value. The refinery capital cost component alone would be 3 cents per gallon of diesel fuel. Outside of refineries, the gas-to-liquids (GTL) plant investment cost would be 3 to 6 cents per gallon. With total projected investments of $11.8 billion (6 to 9

  2. Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio-fuel production

    NASA Astrophysics Data System (ADS)

    Brown, Duncan

    Distributed mobile conversion facilities using either fast pyrolysis or torrefaction processes can be used to convert forest residues to more energy dense substances (bio-oil, bio-slurry or torrefied wood) that can be transported as feedstock for bio-fuel facilities. All feedstock are suited for gasification, which produces syngas that can be used to synthesise petrol or diesel via Fischer-Tropsch reactions, or produce hydrogen via water gas shift reactions. Alternatively, the bio-oil product of fast pyrolysis may be upgraded to produce petrol and diesel, or can undergo steam reformation to produce hydrogen. Implementing a network of mobile facilities reduces the energy content of forest residues delivered to a bio-fuel facility as mobile facilities use a fraction of the biomass energy content to meet thermal or electrical demands. The total energy delivered by bio-oil, bio-slurry and torrefied wood is 45%, 65% and 87% of the initial forest residue energy content, respectively. However, implementing mobile facilities is economically feasible when large transport distances are required. For an annual harvest of 1.717 million m3 (equivalent to 2000 ODTPD), transport costs are reduced to less than 40% of the total levelised delivered feedstock cost when mobile facilities are implemented; transport costs account for up to 80% of feedstock costs for conventional woodchip delivery. Torrefaction provides the lowest cost pathway of delivering a forest residue resource when using mobile facilities. Cost savings occur against woodchip delivery for annual forest residue harvests above 2.25 million m3 or when transport distances greater than 250 km are required. Important parameters that influence levelised delivered costs of feedstock are transport distances (forest residue spatial density), haul cost factors, thermal and electrical demands of mobile facilities, and initial moisture content of forest residues. Relocating mobile facilities can be optimised for lowest cost

  3. Alcohol fuels: production. September 1985-December 1987 (citations from the NTIS data base). Report for September 1985-December 1987

    SciTech Connect

    Not Available

    1988-01-01

    This bibliography contains citations concerning the synthesis of alcohol fuels, including gasohol. Alcohol production from sugar beets, industrial wastes, hardwood, biomass, and coal conversion processes are discussed. Cellulose and lignin degradation processes are described. Production systems are evaluated. The utilization of alcohol fuels is discussed in a separate bibliography. (Contains 75 citations fully indexed and including a title list.)

  4. 41 CFR 101-26.602 - Fuels and packaged petroleum products obtained from or through the Defense Logistics Agency.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... petroleum products obtained from or through the Defense Logistics Agency. 101-26.602 Section 101-26.602... Other Than GSA § 101-26.602 Fuels and packaged petroleum products obtained from or through the Defense... requirements for coal, natural gas from sources other than a public utility, petroleum fuels, and...

  5. 41 CFR 101-26.602 - Fuels and packaged petroleum products obtained from or through the Defense Logistics Agency.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... petroleum products obtained from or through the Defense Logistics Agency. 101-26.602 Section 101-26.602... Other Than GSA § 101-26.602 Fuels and packaged petroleum products obtained from or through the Defense... requirements for coal, natural gas from sources other than a public utility, petroleum fuels, and...

  6. 41 CFR 101-26.602 - Fuels and packaged petroleum products obtained from or through the Defense Logistics Agency.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... petroleum products obtained from or through the Defense Logistics Agency. 101-26.602 Section 101-26.602... Other Than GSA § 101-26.602 Fuels and packaged petroleum products obtained from or through the Defense... requirements for coal, natural gas from sources other than a public utility, petroleum fuels, and...

  7. 41 CFR 101-26.602 - Fuels and packaged petroleum products obtained from or through the Defense Logistics Agency.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... petroleum products obtained from or through the Defense Logistics Agency. 101-26.602 Section 101-26.602... Other Than GSA § 101-26.602 Fuels and packaged petroleum products obtained from or through the Defense... requirements for coal, natural gas from sources other than a public utility, petroleum fuels, and...

  8. 41 CFR 101-26.602 - Fuels and packaged petroleum products obtained from or through the Defense Logistics Agency.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... petroleum products obtained from or through the Defense Logistics Agency. 101-26.602 Section 101-26.602... Other Than GSA § 101-26.602 Fuels and packaged petroleum products obtained from or through the Defense... requirements for coal, natural gas from sources other than a public utility, petroleum fuels, and...

  9. Chipping whole trees for fuel chips: a production study

    Treesearch

    Dana Mitchell; Tom Gallagher

    2007-01-01

    A time and motion study was conducted to determine the productivity and cost of an in-woods chipping operation when processing whole mall-diameter trees for biomass. The study removed biomass from two overstocked stands and compared the cost of this treatment to existing alternatives. The treatment stands consisted of a 30-year-old longleaf pine stand and a 37-year-old...

  10. Fuel alcohol production from whey and grain mixtures

    SciTech Connect

    Shahani, K.M.; Friend, B.A.

    1980-01-01

    Fermentation of sweet whey and acid whey into alcohol is discussed. The fermentation efficiency of Kluyvermyces and Saccharomyces is compared. Costs for producing ethanol from dried whey powder is determined. Ethanol production by Kluyvermyces frazilis with various types of whey in a 20% reduced grain system is described. Results indicate that up to 24% of the grain requirements can be replaced with the whey with no apparent loss in fermentation efficiency. (DMC)

  11. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    SciTech Connect

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2004-09-01

    An innovative Diffusion Driven Desalination (DDD) process was recently described where evaporation of mineralized water is driven by diffusion within a packed bed. The energy source to drive the process is derived from low pressure condensing steam within the main condenser of a steam power generating plant. Since waste heat is used to drive the process, the main cost of fresh water production is attributed to the energy cost of pumping air and water through the packed bed. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A combined thermodynamic and dynamic analysis demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3'' Hg. Throughout the past year, the main focus of the desalination process has been on the diffusion tower and direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. An experimental DDD facility has been fabricated, and temperature and humidity data have been collected over a range of flow and thermal conditions. The analyses agree quite well with the current data and the information available in the literature. Direct contact condensers with and without packing have been investigated. It has been experimentally observed that the fresh water production rate is significantly enhanced when packing is added to the direct contact condensers.

  12. Photosynthetic terpene hydrocarbon production for fuels and chemicals

    SciTech Connect

    Wang, X; Ort, DR; Yuan, JS

    2015-01-28

    Photosynthetic hydrocarbon production bypasses the traditional biomass hydrolysis process and represents the most direct conversion of sunlight energy into the next-generation biofuels. As a major class of biologically derived hydrocarbons with diverse structures, terpenes are also valuable in producing a variety of fungible bioproducts in addition to the advanced drop-in' biofuels. However, it is highly challenging to achieve the efficient redirection of photosynthetic carbon and reductant into terpene biosynthesis. In this review, we discuss four major scientific and technical barriers for photosynthetic terpene production and recent advances to address these constraints. Collectively, photosynthetic terpene production needs to be optimized in a systematic fashion, in which the photosynthesis improvement, the optimization of terpene biosynthesis pathway, the improvement of key enzymes and the enhancement of sink effect through terpene storage or secretion are all important. New advances in synthetic biology also offer a suite of potential tools to design and engineer photosynthetic terpene platforms. The systemic integration of these solutions may lead to disruptive' technologies to enable biofuels and bioproducts with high efficiency, yield and infrastructure compatibility.

  13. Production of JP-8-Based Hydrogen and Advanced Tactical Fuels for the U.S. Military

    DTIC Science & Technology

    2009-09-24

    the batch of fuel received was about 9.2%. The moisture in the pine wood waste was increased to 35% by adding water to the batch of 10001b in order...Gasification During the previous test in which 35% pine waste wood was gasified, hydrogen-rich syngas was produced by promoting the water -gas shift reaction...wood residues and wastes produced in the secondary wood products industry or further along in the production process. Residues are also generated

  14. Large-Scale Production of Fuel and Feed from Marine Microalgae

    SciTech Connect

    Huntley, Mark

    2015-09-30

    In summary, this Consortium has demonstrated a fully integrated process for the production of biofuels and high-value nutritional bioproducts at pre-commercial scale. We have achieved unprecedented yields of algal oil, and converted the oil to viable fuels. We have demonstrated the potential value of the residual product as a viable feed ingredient for many important animals in the global food supply.

  15. Porcelain enameling furnaces retrofitted with ceramic fiber to increase fuel savings and production

    SciTech Connect

    Not Available

    1984-07-01

    Appliance manufacturers and companies supplying porcelainized parts have done considerable revamping and modernizing of their furnaces. As a result, economy of production has been improved through either substantial fuel savings or increased productivity or both. Coinciding with this industry furnace upgrading, a refractory engineering and contracting firm, Ronalco Inc., Louisville, KY has emerged, within a few years, as experts in porcelain enameling furnace renovations devising their own innovative methodology for lining and heating these units.

  16. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    SciTech Connect

    Lampert, David J.; Cai, Hao; Wang, Zhichao; Keisman, Jennifer; Wu, May; Han, Jeongwoo; Dunn, Jennifer; Sullivan, John L.; Elgowainy, Amgad; Wang, Michael; Keisman, Jennifer

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  17. Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor

    NASA Astrophysics Data System (ADS)

    Hagiwara, S.; Nabetani, H.; Nakajima, M.

    2015-04-01

    Biodiesel fuel is a replacement for diesel as a fuel produced from biomass resources. It is usually defined as a fatty acid methyl ester (FAME) derived from vegetable oil or animal fat. In European countries, such as Germany and France, biodiesel fuel is commercially produced mainly from rapeseed oil, whereas in the United States and Argentina, soybean oil is more frequently used. In many other countries such as Japan and countries in Southeast Asia, lipids that cannot be used as a food source could be more suitable materials for the production of biodiesel fuel because its production from edible oils could result in an increase in the price of edible oils, thereby increasing the cost of some foodstuffs. Therefore, used edible oil, lipids contained in waste effluent from the oil milling process, byproducts from oil refining process and crude oils from industrial crops such as jatropha could be more promising materials in these countries. The materials available in Japan and Southeast Asia for the production of biodiesel fuel have common characteristics; they contain considerable amount of impurities and are high in free fatty acids (FFA). Superheated methanol vapor (SMV) reactor might be a promising method for biodiesel fuel production utilizing oil feedstock containing FFA such as waste vegetable oil and crude vegetable oil. In the conventional method using alkaline catalyst, FFA contained in waste vegetable oil is known to react with alkaline catalyst such as NaOH and KOH generating saponification products and to inactivate it. Therefore, the FFA needs to be removed from the feedstock prior to the reaction. Removal of the alkaline catalyst after the reaction is also required. In the case of the SMV reactor, the processes for removing FFA prior to the reaction and catalyst after the reaction can be omitted because it requires no catalyst. Nevertheless, detailed study on the productivity of biodiesel fuel produced from waste vegetable oils and other non

  18. Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production.

    PubMed

    Kämäräinen, Jari; Knoop, Henning; Stanford, Natalie J; Guerrero, Fernando; Akhtar, M Kalim; Aro, Eva-Mari; Steuer, Ralf; Jones, Patrik R

    2012-11-30

    Cyanobacteria are capable of directly converting sunlight, carbon dioxide and water into hydrocarbon fuel or precursors thereof. Many biological and non-biological factors will influence the ability of such a production system to become economically sustainable. We evaluated two factors in engineerable cyanobacteria which could potentially limit economic sustainability: (i) tolerance of the host to the intended end-product, and (ii) stoichiometric potential for production. Alcohols, when externally added, inhibited growth the most, followed by aldehydes and acids, whilst alkanes were the least inhibitory. The growth inhibition became progressively greater with increasing chain-length for alcohols, whilst the intermediate C6 alkane caused more inhibition than both C3 and C11 alkane. Synechocystis sp. PCC 6803 was more tolerant to some of the tested chemicals than Synechococcus elongatus PCC 7942, particularly ethanol and undecane. Stoichiometric evaluation of the potential yields suggested that there is no difference in the potential productivity of harvestable energy between any of the studied fuels, with the exception of ethylene, for which maximal stoichiometric yield is considerably lower. In summary, it was concluded that alkanes would constitute the best choice metabolic end-product for fuel production using cyanobacteria if high-yielding strains can be developed. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Solubility Classification of Airborne Uranium Products from LWR-Fuel Plants

    SciTech Connect

    kalkwarf, D. R.

    1980-08-01

    Airborne dust samples were obtained from various locations within plants manufacturing fuel elements for light-water reactors, and the dissolution rates of uranium from these samples into simulated lung fluid at 37°C were measured. These measurements were used to classify the solubilities of the samples in terms of the lung clearance model proposed by the International Commission on Radiological Protection. Similar evaluations were performed for samples of pure uranium compounds expected as components in plant dust. The variation in solubility classifications of dust encountered along the fuel production lines is described and correlated with the process chemistry and the solubility classifications of the pure uranium compounds.

  20. Determination of actinide and fission-product isotopes in very-high-burnup spent nuclear fuel.

    SciTech Connect

    Sullivan, V. S.; Bowers, D. L.; Clark, M. A.; Graczyk, D. G.; Tsai, Y.; Streets, W. E.; Vander Pol, M. H.; Billone, M. C.

    2008-07-01

    A work plan was desired that would produce data for a wide array of actinide and fission-product isotopes with reasonably good accuracy and relatively low cost. An analysis scheme involving a fairly small number of separations, dilutions, and measurement methods was used to generate information on 74 isotopes in two spent-fuel samples of >70 GWd/MTU burnup. Some of the measured isotopes are of high interest for burnup-credit evaluations and had not been reported previously for high-burnup fuels.

  1. Maximizing Efficiency in Two-step Solar-thermochemical Fuel Production

    SciTech Connect

    Ermanoski, I.

    2015-05-01

    Widespread solar fuel production depends on its economic viability, largely driven by the solar-to-fuel conversion efficiency. Herein, the material and energy requirements in two-step solar-thermochemical cyclesare considered.The need for advanced redox active materials is demonstrated, by considering the oxide mass flow requirements at a large scale. Two approaches are also identified for maximizing the efficiency: optimizing reaction temperatures, and minimizing the pressure in the thermal reduction step by staged thermal reduction. The results show that each approach individually, and especially the two in conjunction, result in significant efficiency gains.

  2. Fission product release phenomena during core melt accidents in metal fueled heavy water reactors

    SciTech Connect

    Ellison, P G; Hyder, M L; Monson, P R; Randolph, H W; Hagrman, D L; McClure, P R; Leonard, M T

    1990-01-01

    The phenomena that determine fission product release rates from a core melting accident in a metal-fueled, heavy water reactor are described in this paper. This information is obtained from the analysis of the current metal fuel experimental data base and from the results of analytical calculations. Experimental programs in place at the Savannah River Site are described that will provide information to resolve uncertainties in the data base. The results of the experiments will be incorporated into new severe accident computer codes recently developed for this reactor design. 47 refs., 4 figs.

  3. CO sub 2 sources for microalgae-based liquid fuel production

    SciTech Connect

    Feinberg, D.; Karpuk, M.

    1990-08-01

    Researchers in the Aquatic Species Program at the Solar Energy Research Institute are developing species of microalgae that have high percentages of lipids, or oils. These lipids can be extracted and converted to diesel fuel substitutes. Because microalgae need carbon dioxide (CO{sub 2}) as a nutrient, optimal microalgae growth occurs in CO{sub 2}-saturated solutions. For this reason, the authors of this study sought to identify possible large-scale sources of CO{sub 2} for microalgae-based liquid fuels production. The authors concluded that several such promising sources exist. 42 refs., 14 figs., 10 tabs.

  4. Techno-Economic Basis for Coproduct Manufacturing To Enable Hydrocarbon Fuel Production from Lignocellulosic Biomass

    SciTech Connect

    Biddy, Mary J.; Davis, Ryan; Humbird, David; Tao, Ling; Dowe, Nancy; Guarnieri, Michael T.; Linger, Jeffrey G.; Karp, Eric M.; Salvachua, Davinia; Vardon, Derek R.; Beckham, Gregg T.

    2016-06-06

    Biorefinery process development relies on techno-economic analysis (TEA) to identify primary cost drivers, prioritize research directions, and mitigate technical risk for scale-up through development of detailed process designs. Here, we conduct TEA of a model 2000 dry metric ton-per-day lignocellulosic biorefinery that employs a two-step pretreatment and enzymatic hydrolysis to produce biomass-derived sugars, followed by biological lipid production, lipid recovery, and catalytic hydrotreating to produce renewable diesel blendstock (RDB). On the basis of projected near-term technical feasibility of these steps, we predict that RDB could be produced at a minimum fuel selling price (MFSP) of USD $9.55/gasoline-gallon-equivalent (GGE), predicated on the need for improvements in the lipid productivity and yield beyond current benchmark performance. This cost is significant given the limitations in scale and high costs for aerobic cultivation of oleaginous microbes and subsequent lipid extraction/recovery. In light of this predicted cost, we developed an alternative pathway which demonstrates that RDB costs could be substantially reduced in the near term if upgradeable fractions of biomass, in this case hemicellulose-derived sugars, are diverted to coproducts of sufficient value and market size; here, we use succinic acid as an example coproduct. The coproduction model predicts an MFSP of USD $5.28/GGE when leaving conversion and yield parameters unchanged for the fuel production pathway, leading to a change in biorefinery RDB capacity from 24 to 15 MM GGE/year and 0.13 MM tons of succinic acid per year. Additional analysis demonstrates that beyond the near-term projections assumed in the models here, further reductions in the MFSP toward $2-3/GGE (which would be competitive with fossil-based hydrocarbon fuels) are possible with additional transformational improvements in the fuel and coproduct trains, especially in terms of carbon efficiency to both fuels and

  5. Innovative Fresh Water Production Process for Fossil Fuel Plants

    SciTech Connect

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight; Venugopal Jogi

    2005-09-01

    This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A dynamic analysis of heat and mass transfer demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3 Hg. The optimum operating condition for the DDD process with a high temperature of 50 C and sink temperature of 25 C has an air mass flux of 1.5 kg/m{sup 2}-s, air to feed water mass flow ratio of 1 in the diffusion tower, and a fresh water to air mass flow ratio of 2 in the condenser. Operating at these conditions yields a fresh water production efficiency (m{sub fW}/m{sub L}) of 0.031 and electric energy consumption rate of 0.0023 kW-hr/kg{sub fW}. Throughout the past year, the main focus of the desalination process has been on the direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. The analyses agree quite well with the current data. Recently, it has been recognized that the fresh water production efficiency can be significantly enhanced with air heating. This type of configuration is well suited for power plants utilizing air-cooled condensers. The experimental DDD facility has been modified with an air heating section, and temperature and humidity data have been collected over a range of flow and thermal conditions. It has been experimentally observed that the fresh water production rate is enhanced when air

  6. Electrolytic hydrogen fuel production with solid polymer electrolyte technology.

    NASA Technical Reports Server (NTRS)

    Titterington, W. A.; Fickett, A. P.

    1973-01-01

    A water electrolysis technology based on a solid polymer electrolyte (SPE) concept is presented for applicability to large-scale hydrogen production in a future energy system. High cell current density operation is selected for the application, and supporting cell test performance data are presented. Demonstrated cell life data are included to support the adaptability of the SPE system to large-size hydrogen generation utility plants as needed for bulk energy storage or transmission. The inherent system advantages of the acid SPE electrolysis technology are explained. System performance predictions are made through the year 2000, along with plant capital and operating cost projections.

  7. Reduction of CO2 to C1 products and fuel

    USGS Publications Warehouse

    Mill, T.; Ross, D.

    2002-01-01

    Photochemical semiconductor processes readily reduced CO2 to a broad range of C1 products. However the intrinsic and solar efficiencies for the processes were low. Improved quantum efficiencies could be realized utilizing quantum-sized particles, but at the expense of using less of the visible solar spectrum. Conversely, semiconductors with small bandgaps used more of the visible solar spectrum at the expense of quantum efficiency. Thermal reduction of CO2 with Fe(II) was thermodynamically favored for forming many kinds of organic compounds and occurred readily with olivine and other Fe(II) minerals above 200??C to form higher alkanes and alkenes. No added hydrogen was required.

  8. Electrolytic hydrogen fuel production with solid polymer electrolyte technology.

    NASA Technical Reports Server (NTRS)

    Titterington, W. A.; Fickett, A. P.

    1973-01-01

    A water electrolysis technology based on a solid polymer electrolyte (SPE) concept is presented for applicability to large-scale hydrogen production in a future energy system. High cell current density operation is selected for the application, and supporting cell test performance data are presented. Demonstrated cell life data are included to support the adaptability of the SPE system to large-size hydrogen generation utility plants as needed for bulk energy storage or transmission. The inherent system advantages of the acid SPE electrolysis technology are explained. System performance predictions are made through the year 2000, along with plant capital and operating cost projections.

  9. Opportunities to increase the productivity of spent fuel shipping casks in the United States

    SciTech Connect

    Winsor, G.H.; Faletti, D.W.; DeSteese, J.G.

    1980-03-01

    Trends indicate that future transportation requirements for spent fuel will be different from those anticipated when the current generation of casks and vehicles was designed. Increased storage capacity at most reactors will increase the average post irradiation age of the spent fuel to be transported. A scenario is presented which shows the 18 casks currently available should be sufficient until approximately 1983. Beyond this time, it appears that an adequate transportation system can be maintained by acquiring, as needed, casks of current designs and new casks currently under development. Spent fuel transportation requirements in the post-1990 period can be met by a new generation of casks specifically designed to transport long-cooled fuel. In terms of the number of casks needed, productivity may be increased by 19% if rail cask turnaround time is reduced to 4 days from the current range of 6.5 to 8.5 days. Productivity defined as payloads per cask year could be increased 62% if the turnaround time for legal weight truck casks were reduced from 12 hours to 4 hours. On a similar basis, overweight truck casks show a 28% increase in productivity.

  10. Analyses of fuel crud and coolant-borne corrosion products in normal water chemistry BWRs

    NASA Astrophysics Data System (ADS)

    Sawicki, Jerzy A.

    2011-12-01

    The samples of crud removed from the surface of fuel rods and corrosion products sampled by filtration of condensate and feed water in three boiling water reactors (BWR) operating at normal water chemistry (NWC) were analyzed using 57Fe Mössbauer spectroscopy. The corrosion products concentration and phase composition was examined in filter membranes exposed to influent and effluent of condensate polishing resin beds, as well as to final feed water. The brushed and scraped portions of fuel crud extracted from fuel rods during refueling outage comprised mostly hematite, α-Fe 2O 3, and submicron-sized goethite particles, α-FeOOH, in weight ratio similar to that observed in feed water. The observed phases are consistent with the oxidizing water chemistry of NWC BWRs. The feasibility of identifying other iron oxides and oxyhydroxides, as well as copper and zinc bearing phases in corrosion products from BWRs is briefly discussed. The results of this work can be used to better understand and minimize iron transport and crud deposition on fuel rods in BWRs.

  11. Current problems: Plant biomass as raw material for the production of olefins and motor fuels

    SciTech Connect

    Paushkin, Ya.M.; Lapidus, A.L.; Adel`son, S.V.

    1995-01-01

    Apart from petroleum, another reserve of energy that may be tapped is plant biomass - the primary source of life on Earth. Plant biomass is formed every year in the amount of 170-200 billion tonnes (calculated as dry weight), equivalent in energy to 70-80 billion tonnes of crude oil (compare with the world oil production of about 3 billion tonnes). A small percentage of the plant biomass is utilized by the human race (food, construction, fuel, industry) and by the animal world. Most of it vanishes without producing any benefits; it is decomposed and converted to carbon dioxide and water. With modern technology of growing and harvesting biomass, there is no doubt that at least 2.5-5% of the biomass can be utilized; this is equivalent in terms of energy to 2-4 billion tonnes of crude oil or more than 3-6 billion tonnes of coal. In the course of processing plant raw material in the forest industry, agriculture, and other activities, large amounts of organic wastes are formed; these can be utilized directly for energy production - either as solid fuel in the form of fuel briquets, in solid-waste disposal plants for the production of heat in the form of steam, or as a raw material for processing into liquid fuel means of newly developed technology.

  12. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    SciTech Connect

    James F. Klausner; Renwei Mei; Yi Li; Mohamed Darwish; Diego Acevedo; Jessica Knight

    2003-09-01

    This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system, which is powered by the waste heat from low pressure condensing steam in power plants. The desalination is driven by water vapor saturating dry air flowing through a diffusion tower. Liquid water is condensed out of the air/vapor mixture in a direct contact condenser. A thermodynamic analysis demonstrates that the DDD process can yield a fresh water production efficiency of 4.5% based on a feed water inlet temperature of only 50 C. An example is discussed in which the DDD process utilizes waste heat from a 100 MW steam power plant to produce 1.51 million gallons of fresh water per day. The main focus of the initial development of the desalination process has been on the diffusion tower. A detailed mathematical model for the diffusion tower has been described, and its numerical implementation has been used to characterize its performance and provide guidance for design. The analysis has been used to design a laboratory scale diffusion tower, which has been thoroughly instrumented to allow detailed measurements of heat and mass transfer coefficient, as well as fresh water production efficiency. The experimental facility has been described in detail.

  13. ENHANCED HYDROGEN ECONOMICS VIA COPRODUCTION OF FUELS AND CARBON PRODUCTS

    SciTech Connect

    Kennel, Elliot B; Bhagavatula, Abhijit; Dadyburjor, Dady; Dixit, Santhoshi; Garlapalli, Ravinder; Magean, Liviu; Mukkha, Mayuri; Olajide, Olufemi A; Stiller, Alfred H; Yurchick, Christopher L

    2011-03-31

    This Department of Energy National Energy Technology Laboratory sponsored research effort to develop environmentally cleaner projects as a spin-off of the FutureGen project, which seeks to reduce or eliminate emissions from plants that utilize coal for power or hydrogen production. New clean coal conversion processes were designed and tested for coproducing clean pitches and cokes used in the metals industry as well as a heavy crude oil. These new processes were based on direct liquefaction and pyrolysis techniques that liberate volatile liquids from coal without the need for high pressure or on-site gaseous hydrogen. As a result of the research, a commercial scale plant for the production of synthetic foundry coke has broken ground near Wise, Virginia under the auspices of Carbonite Inc. This plant will produce foundry coke by pyrolyzing a blend of steam coal feedstocks. A second plant is planned by Quantex Energy Inc (in Texas) which will use solvent extraction to coproduce a coke residue as well as crude oil. A third plant is being actively considered for Kingsport, Tennessee, pending a favorable resolution of regulatory issues.

  14. Yeast selection for fuel ethanol production in Brazil.

    PubMed

    Basso, Luiz C; de Amorim, Henrique V; de Oliveira, Antonio J; Lopes, Mario L

    2008-11-01

    Brazil is one of the largest ethanol biofuel producers and exporters in the world and its production has increased steadily during the last three decades. The increasing efficiency of Brazilian ethanol plants has been evident due to the many technological contributions. As far as yeast is concerned, few publications are available regarding the industrial fermentation processes in Brazil. The present paper reports on a yeast selection program performed during the last 12 years aimed at selecting Saccharomyces cerevisiae strains suitable for fermentation of sugar cane substrates (cane juice and molasses) with cell recycle, as it is conducted in Brazilian bioethanol plants. As a result, some evidence is presented showing the positive impact of selected yeast strains in increasing ethanol yield and reducing production costs, due to their higher fermentation performance (high ethanol yield, reduced glycerol and foam formation, maintenance of high viability during recycling and very high implantation capability into industrial fermenters). Results also suggest that the great yeast biodiversity found in distillery environments could be an important source of strains. This is because during yeast cell recycling, selective pressure (an adaptive evolution) is imposed on cells, leading to strains with higher tolerance to the stressful conditions of the industrial fermentation.

  15. Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production

    PubMed Central

    2014-01-01

    Background Shortages in fresh water supplies today affects more than 1 billion people worldwide. Phytoremediation strategies, based on the abilities of aquatic plants to recycle nutrients offer an attractive solution for the bioremediation of water pollution and represents one of the most globally researched issues. The subsequent application of the biomass from the remediation for the production of fuels and petrochemicals offers an ecologically friendly and cost-effective solution for water pollution problems and production of value-added products. Results In this paper, the feasibility of the dual application of duckweed and azolla aquatic plants for wastewater treatment and production of renewable fuels and petrochemicals is explored. The differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by these aquatic macrophytes were used as the basis for optimization of the composition of wastewater effluents. Analysis of pyrolysis products showed that azolla and algae produce a similar range of bio-oils that contain a large spectrum of petrochemicals including straight-chain C10-C21 alkanes, which can be directly used as diesel fuel supplement, or a glycerin-free component of biodiesel. Pyrolysis of duckweed produces a different range of bio-oil components that can potentially be used for the production of “green” gasoline and diesel fuel using existing techniques, such as catalytic hydrodeoxygenation. Conclusions Differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by different aquatic macrophytes can be used for optimization of composition of wastewater effluents. The generated data suggest that the composition of the petrochemicals can be modified in a targeted fashion, not only by using different species, but also by changing the source plants’ metabolic profile, by exposing them to different abiotic or biotic stresses. This study presents an attractive, ecologically friendly and cost

  16. Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production.

    PubMed

    Muradov, Nazim; Taha, Mohamed; Miranda, Ana F; Kadali, Krishna; Gujar, Amit; Rochfort, Simone; Stevenson, Trevor; Ball, Andrew S; Mouradov, Aidyn

    2014-02-28

    Shortages in fresh water supplies today affects more than 1 billion people worldwide. Phytoremediation strategies, based on the abilities of aquatic plants to recycle nutrients offer an attractive solution for the bioremediation of water pollution and represents one of the most globally researched issues. The subsequent application of the biomass from the remediation for the production of fuels and petrochemicals offers an ecologically friendly and cost-effective solution for water pollution problems and production of value-added products. In this paper, the feasibility of the dual application of duckweed and azolla aquatic plants for wastewater treatment and production of renewable fuels and petrochemicals is explored. The differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by these aquatic macrophytes were used as the basis for optimization of the composition of wastewater effluents. Analysis of pyrolysis products showed that azolla and algae produce a similar range of bio-oils that contain a large spectrum of petrochemicals including straight-chain C10-C21 alkanes, which can be directly used as diesel fuel supplement, or a glycerin-free component of biodiesel. Pyrolysis of duckweed produces a different range of bio-oil components that can potentially be used for the production of "green" gasoline and diesel fuel using existing techniques, such as catalytic hydrodeoxygenation. Differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by different aquatic macrophytes can be used for optimization of composition of wastewater effluents. The generated data suggest that the composition of the petrochemicals can be modified in a targeted fashion, not only by using different species, but also by changing the source plants' metabolic profile, by exposing them to different abiotic or biotic stresses. This study presents an attractive, ecologically friendly and cost-effective solution for efficient bio

  17. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2007-03-17

    This report summarizes the accomplishments toward project goals during the no cost extension period of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts for a third round of testing, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Hydrotreating and hydrogenation of the product has been completed, and due to removal of material before processing, yield of the jet fuel fraction has decreased relative to an increase in the gasoline fraction. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for

  18. Fuel-Flexible Combustion System for Co-production Plant Applications

    SciTech Connect

    Joel Haynes; Justin Brumberg; Venkatraman Iyer; Jonathan Janssen; Ben Lacy; Matt Mosbacher; Craig Russell; Ertan Yilmaz; Williams York; Willy Ziminsky; Tim Lieuwen; Suresh Menon; Jerry Seitzman; Ashok Anand; Patrick May

    2008-12-31

    Future high-efficiency, low-emission generation plants that produce electric power, transportation fuels, and/or chemicals from fossil fuel feed stocks require a new class of fuel-flexible combustors. In this program, a validated combustor approach was developed which enables single-digit NO{sub x} operation for a future generation plants with low-Btu off gas and allows the flexibility of process-independent backup with natural gas. This combustion technology overcomes the limitations of current syngas gas turbine combustion systems, which are designed on a site-by-site basis, and enable improved future co-generation plant designs. In this capacity, the fuel-flexible combustor enhances the efficiency and productivity of future co-production plants. In task 2, a summary of market requested fuel gas compositions was created and the syngas fuel space was characterized. Additionally, a technology matrix and chemical kinetic models were used to evaluate various combustion technologies and to select two combustor concepts. In task 4 systems analysis of a co-production plant in conjunction with chemical kinetic analysis was performed to determine the desired combustor operating conditions for the burner concepts. Task 5 discusses the experimental evaluation of three syngas capable combustor designs. The hybrid combustor, Prototype-1 utilized a diffusion flame approach for syngas fuels with a lean premixed swirl concept for natural gas fuels for both syngas and natural gas fuels at FA+e gas turbine conditions. The hybrid nozzle was sized to accommodate syngas fuels ranging from {approx}100 to 280 btu/scf and with a diffusion tip geometry optimized for Early Entry Co-generation Plant (EECP) fuel compositions. The swozzle concept utilized existing GE DLN design methodologies to eliminate flow separation and enhance fuel-air mixing. With changing business priorities, a fully premixed natural gas & syngas nozzle, Protoytpe-1N, was also developed later in the program. It did

  19. Fuel cell hydrogen production by catalytic ethanol-steam reforming

    SciTech Connect

    Amphlett, J.C.; Leclerc, S.; Mann, R.F.; Peppley, B.A.; Roberge, P.R.

    1998-07-01

    It is clear that the reaction network that results from catalytic reaction of ethanol, with and without steam, is very complex and involves over a dozen potential products. Reactions to avoid are any that lead to CP{sub 4} species and ethylene, the former representing a more difficult challenge for subsequent steam reforming and the latter providing what is probably the major route to carbon production and coking of the catalyst. Dehydration reactions, therefore, should generally be avoided. Dehydrogenation catalysts would seem to be most appropriate, especially since the production of hydrogen is the main goal. Copper-based catalysts have been long-established for this function so that they are commercially available and therefore lower cost. CuO/ZnO, CuO/SiO{sub 2}, CuO/Cr{sub 2}O{sub 3} or CuO/NiO/SiO{sub 2} may be the best catalyst candidates. Reaction pressures should be relatively low (1 to a few atm) and the best reaction temperature could be in the range 350 to 450 C. Insufficient experimental work has been reported to give a clear idea of the required water-to-ethanol mole ratio. The stoichiometric value of this ratio is three and it is likely that excess water, although presenting some process complications, will be necessary to minimize yields of CO and CH{sub 4}. A major new aspect of catalyst selection and operation, when comparing ethanol to methanol steam reforming, will be catalyst deactivation due to temperature. The methanol process works well on CuO/ZnO around 250 to 260 C, just on the threshold of fairly rapid catalyst deactivation. If the ethanol process is to work at or above 300 C, the present CuO/ZnO catalysts will be operating at an activity well below that obtainable in methanol-steam reformers. This means that larger reformers (i.e. more catalyst) will be necessary or that Cu-based (or other) catalysts with slower deactivation in the 300 C-plus range will have to be developed.

  20. Water consumption footprint and land requirements of large-scale alternative diesel and jet fuel production.

    PubMed

    Staples, Mark D; Olcay, Hakan; Malina, Robert; Trivedi, Parthsarathi; Pearlson, Matthew N; Strzepek, Kenneth; Paltsev, Sergey V; Wollersheim, Christoph; Barrett, Steven R H

    2013-01-01

    Middle distillate (MD) transportation fuels, including diesel and jet fuel, make up almost 30% of liquid fuel consumption in the United States. Alternative drop-in MD and biodiesel could potentially reduce dependence on crude oil and the greenhouse gas intensity of transportation. However, the water and land resource requirements of these novel fuel production technologies must be better understood. This analysis quantifies the lifecycle green and blue water consumption footprints of producing: MD from conventional crude oil; Fischer-Tropsch MD from natural gas and coal; fermentation and advanced fermentation MD from biomass; and hydroprocessed esters and fatty acids MD and biodiesel from oilseed crops, throughout the contiguous United States. We find that FT MD and alternative MD derived from rainfed biomass have lifecycle blue water consumption footprints of 1.6 to 20.1 Lwater/LMD, comparable to conventional MD, which ranges between 4.1 and 7.4 Lwater/LMD. Alternative MD derived from irrigated biomass has a lifecycle blue water consumption footprint potentially several orders of magnitude larger, between 2.7 and 22 600 Lwater/LMD. Alternative MD derived from biomass has a lifecycle green water consumption footprint between 1.1 and 19 200 Lwater/LMD. Results are disaggregated to characterize the relationship between geo-spatial location and lifecycle water consumption footprint. We also quantify the trade-offs between blue water consumption footprint and areal MD productivity, which ranges from 490 to 4200 LMD/ha, under assumptions of rainfed and irrigated biomass cultivation. Finally, we show that if biomass cultivation for alternative MD is irrigated, the ratio of the increase in areal MD productivity to the increase in blue water consumption footprint is a function of geo-spatial location and feedstock-to-fuel production pathway.

  1. IMPACT OF FISSION PRODUCTS IMPURITY ON THE PLUTONIUM CONTENT IN PWR MOX FUELS

    SciTech Connect

    Gilles Youinou; Andrea Alfonsi

    2012-03-01

    This report presents the results of a neutronics analysis done in response to the charter IFCA-SAT-2 entitled 'Fuel impurity physics calculations'. This charter specifies that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies (UOX SNF) is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate PWR MOX fuel assemblies. Only non-gaseous FP have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1). This mixture of Pu and FP is called PuFP. Note that, in this preliminary analysis, the FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

  2. Fuel cells are a commercially viable alternative for the production of "clean" energy.

    PubMed

    Niakolas, Dimitris K; Daletou, Maria; Neophytides, Stylianos G; Vayenas, Constantinos G

    2016-01-01

    Fuel cells present a highly efficient and environmentally friendly alternative technology for decentralized energy production. The scope of the present study is to provide an overview of the technological and commercialization readiness level of fuel cells. Specifically, there is a brief description of their general advantages and weaknesses in correlation with various technological actions and political strategies, which are adopted towards their proper positioning in the global market. Some of the most important key performance indicators are also discussed, alongside with a few examples of broad commercialization. It is concluded that the increasing number of companies which utilize and invest on this technology, in combination with the supply chain improvements and the concomitant technological maturity and recognition, reinforce the fuel cell industry so as to become well-aligned for global success.

  3. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect

    Gerald P. Huffman

    2003-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research.

  4. A review of recent advances in numerical simulations of microscale fuel processor for hydrogen production

    NASA Astrophysics Data System (ADS)

    Holladay, J. D.; Wang, Y.

    2015-05-01

    Microscale (<5 W) reformers for hydrogen production have been investigated for over a decade. These devices are intended to provide hydrogen for small fuel cells. Due to the reformer's small size, numerical simulations are critical to understand heat and mass transfer phenomena occurring in the systems and help guide the further improvements. This paper reviews the development of the numerical codes and details the reaction equations used. The majority of the devices utilized methanol as the fuel due to methanol's low reforming temperature and high conversion, although, there are several methane fueled systems. The increased computational power and more complex codes have led to improved accuracy of numerical simulations. Initial models focused on the reformer, while more recently, the simulations began including other unit operations such as vaporizers, inlet manifolds, and combustors. These codes are critical for developing the next generation systems. The systems reviewed included plate reactors, microchannel reactors, and annulus reactors for both wash-coated and packed bed systems.

  5. Method and device for fabricating dispersion fuel comprising fission product collection spaces

    DOEpatents

    Shaber, Eric L; Fielding, Randall S

    2015-05-05

    A method of fabricating a nuclear fuel comprising a fissile material, one or more hollow microballoons, a phenolic resin, and metal matrix. The fissile material, phenolic resin and the one or more hollow microballoons are combined. The combined fissile material, phenolic resin and the hollow microballoons are heated sufficiently to form at least some fissile material carbides creating a nuclear fuel particle. The resulting nuclear fuel particle comprises one or more fission product collection spaces. In a preferred embodiment, the fissile material, phenolic resin and the one or more hollow microballoons are combined by forming the fissile material into microspheres. The fissile material microspheres are then overcoated with the phenolic resin and microballoon. In another preferred embodiment, the fissile material, phenolic resin and the one or more hollow microballoons are combined by overcoating the microballoon with the fissile material, and phenolic resin.

  6. Fission product partitioning in aerosol release from simulated spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Di Lemma, F. G.; Colle, J. Y.; Rasmussen, G.; Konings, R. J. M.

    2015-10-01

    Aerosols created by the vaporization of simulated spent nuclear fuel (simfuel) were produced by laser heating techniques and characterised by a wide range of post-analyses. In particular attention has been focused on determining the fission product behaviour in the aerosols, in order to improve the evaluation of the source term and consequently the risk associated with release from spent fuel sabotage or accidents. Different simulated spent fuels were tested with burn-up up to 8 at. %. The results from the aerosol characterisation were compared with studies of the vaporization process by Knudsen Effusion Mass Spectrometry and thermochemical equilibrium calculations. These studies permit an understanding of the aerosol gaseous precursors and the gaseous reactions taking place during the aerosol formation process.

  7. A review of recent advances of numerical simulations of microscale fuel processors for hydrogen production

    SciTech Connect

    Holladay, Jamelyn D.; Wang, Yong

    2015-05-01

    Microscale (<5W) reformers for hydrogen production have been investigated for over a decade. These devices are intended to provide hydrogen for small fuel cells. Due to the reformer’s small size, numerical simulations are critical to understand heat and mass transfer phenomena occurring in the systems. This paper reviews the development of the numerical codes and details the reaction equations used. The majority of the devices utilized methanol as the fuel due to methanol’s low reforming temperature and high conversion, although, there are several methane fueled systems. As computational power has decreased in cost and increased in availability, the codes increased in complexity and accuracy. Initial models focused on the reformer, while more recently, the simulations began including other unit operations such as vaporizers, inlet manifolds, and combustors. These codes are critical for developing the next generation systems. The systems reviewed included, plate reactors, microchannel reactors, annulus reactors, wash-coated, packed bed systems.

  8. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect

    Paul A. Erickson

    2004-06-30

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the third report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 30, 2004. This quarter saw progress in five areas. These areas are: (1) External evaluation of coal based methanol and the fuel cell grade baseline fuel, (2) Design, set up and initial testing of the autothermal reactor, (3) Experiments to determine the axial and radial thermal profiles of the steam reformers, (4) Catalyst degradation studies, and (5) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

  9. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect

    Paul A. Erickson

    2004-04-01

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the second report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1--March 31, 2004. This quarter saw progress in five areas. These areas are: (1) Internal and external evaluations of coal based methanol and the fuel cell grade baseline fuel; (2) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation; (3) Design and set up of the autothermal reactor; (4) Steam reformation of Coal Based Methanol; and (5) Initial catalyst degradation studies. All of the projects are proceeding on or slightly ahead of schedule.

  10. Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals.

    PubMed

    Lian, Jiazhang; Zhao, Huimin

    2015-03-20

    Functionally reversing the β-oxidation cycle represents an efficient and versatile strategy for synthesis of a wide variety of fuels and chemicals. However, due to the compartmentalization of cellular metabolisms, reversing the β-oxidation cycle in eukaryotic systems remains elusive. Here, we report the first successful reversal of the β-oxidation cycle in Saccharomyces cerevisiae, an important cell factory for large-scale production of fuels and chemicals. After extensive gene cloning and enzyme activity assays, a reversed β-oxidation pathway was functionally constructed in the yeast cytosol, which led to the synthesis of n-butanol, medium-chain fatty acids (MCFAs), and medium-chain fatty acid ethyl esters (MCFAEEs). The resultant recombinant strain provides a new broadly applicable platform for synthesis of fuels and chemicals in S. cerevisiae.

  11. Energy consumption evaluation of fuel bioethanol production from sweet potato.

    PubMed

    Ferrari, Mario Daniel; Guigou, Mairan; Lareo, Claudia

    2013-05-01

    The energy consumption for different operative conditions and configurations of the bioethanol production industrial process from an experimental variety of sweet potato (Ipomea batatas) K 9807.1 was evaluated. A process simulation model was developed using SuperPro Designer® software. The model was based on experimental data gathered from our laboratory experiments and technology and equipment suppliers. The effects of the dry matter ratio of sweet potato to water, the fermentation efficiency, and sweet potato sugar content, on the energy consumption (steam and electricity) were respectively evaluated. All factors were significant. The best ratio of dry matter to total water to work with fresh sweet potato was 0.2 kg dry sweet potato/kg water, as for greater ratios was not found a significant reduction in energy consumption. Also, the drying of the sweet potato previous its processing was studied. It presented an energy consumption greater than the energetic content of the bioethanol produced.

  12. Energy recovery by production of fuel from citrus wastes

    SciTech Connect

    Wesley Clark, C.

    1982-05-01

    A study to determine how much energy can be recovered from a Florida citrus processing plant was conducted. The production of ethyl alcohol in particular was examined as it is thought to represent the greatest potential for immediate energy recovery. Three-fourths of the energy expended to produce, harvest, process and market a box of fruit was recoverable using existing technology, i.e. 78,500 Btu/ box of fruit recoverable from a total energy expenditure of 107,800 Btu/ box of fruit. Aside from the actual cost benefits of recovering energy in the form of ethanol, the food processor is also helping to reduce the foreign-oil imports by the blending of ethyl alcohol with unleaded gasoline to form gasohol.

  13. Increasing the power density when using inert matrix fuels to reduce production of transuranics

    SciTech Connect

    Recktenwald, G.D.; Deinert, M.R.

    2013-07-01

    Reducing the production of transuranics is a goal of most advanced nuclear fuel cycles. One way to do this is to recycle the transuranics into the same reactors that are currently producing them using an inert matrix fuel. In previous work we have modeled such a reactor where 72%, of the core is comprised of standard enriched uranium fuel pins, with the remaining 28% fuel made from Yttria stabilized zirconium, in which transuranics are loaded. A key feature of this core is that all of the transuranics produced by the uranium fuel assemblies are later burned in inert matrix fuel assemblies. It has been shown that this system can achieve reductions in transuranic waste of more than 86%. The disadvantage of such a system is that the core power rating must be significantly lower than a standard pressurized water reactor. One reason for the lower power is that high burnup of the uranium fuel precludes a critical level of reactivity at the end of the campaign. Increasing the uranium enrichment and changing the pin pitch are two ways to increase burnup while maintaining criticality. In this paper we use MCNPX and a linear reactivity model to quantify the effect of these two parameters on the end of campaign reactivity. Importantly, we show that in the region of our proposed reactor, enrichment increases core reactivity by 0.02 per percent uranium 235 and pin pitch increases reactivity by 0.02 per mm. Reactivity is lost at a rate of 0.005 per MWd/kgIHM uranium burnup. (authors)

  14. Spent Nuclear Fuel project estimate of volatile fission products release from multi-canister overpacks

    SciTech Connect

    Cooper, T.D.

    1996-08-01

    Spent N-Reactor fuel will be moved from wet pool storage to dry storage at Hanford Washington. This fuel will be sequentially loaded into a Multiple Container Overpack (MCO), moved to the cold vacuum drying station, drained, cold vacuum dried, shipped to the Canister Storage Building (CSB), staged for up to 2 years,hot vacuum dried at 300 degrees C, hot conditioned at 150 degrees C, and finally, sealed and stored for up to 75 years in the CSB.During each proposed process step, the volatile radioactive fission products released to the atmosphere were estimated.Tritium is the only volatile fission product released insignificant amounts during each process step. For an accident scenario involving interior MCO temperature of 600 degrees C for up to 8 hours, it was estimated that many volatile fission products are released.

  15. Fission Product Removal From Spent Oxide Fuel By Head-End Processing

    SciTech Connect

    B. R. Westphal; K. J. Bateman; R. P. Lind; K. L. Howden; G. D. Del Cul

    2005-10-01

    The development of a head-end processing step for spent oxide fuel that applies to both aqueous and pyrometallurgical technologies is being performed by the Idaho National Laboratory, the Oak Ridge National Laboratory, and the Korean Atomic Energy Research Institute through a joint International Nuclear Energy Research Initiative. The processing step employs high temperatures and oxidative gases to promote the oxidation of UO2 to U3O8. Potential benefits of the head-end step include the removal or reduction of fission products as well as separation of the fuel from cladding. Experiments have been performed with irradiated oxide fuel to evaluate the removal of fission products. During these experiments, operating parameters such as temperature and pressure have been varied to discern their effects on the behavior of specific fission products. In general, the extent of removal increases with increasing operating temperature and decreasing pressure. Removal efficiencies as high as 98% have been achieved during testing. Given the results of testing, an explanation of the likely fission product species being removed during the test program is also provided. In addition, experiments have been performed with other oxidative gases (steam and ozone) on surrogates to determine their potential benefit for removal of fission products.

  16. Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture.

    PubMed

    Jang, Yu-Sin; Malaviya, Alok; Lee, Joungmin; Im, Jung Ae; Lee, Sang Yup; Lee, Julia; Eom, Moon-Ho; Cho, Jung-Hee; Seung, Do Young

    2013-01-01

    Butanol is considered as a superior biofuel, which is conventionally produced by clostridial acetone-butanol-ethanol (ABE) fermentation. Among ABE, only butanol and ethanol can be used as fuel alternatives. Coproduction of acetone thus causes lower yield of fuel alcohols. Thus, this study aimed at developing an improved Clostridium acetobutylicum strain possessing enhanced fuel alcohol production capability. For this, we previously developed a hyper ABE producing BKM19 strain was further engineered to convert acetone into isopropanol. The BKM19 strain was transformed with the plasmid pIPA100 containing the sadh (primary/secondary alcohol dehydrogenase) and hydG (putative electron transfer protein) genes from the Clostridium beijerinckii NRRL B593 cloned under the control of the thiolase promoter. The resulting BKM19 (pIPA100) strain produced 27.9 g/l isopropanol-butanol-ethanol (IBE) as a fuel alcohols with negligible amount of acetone (0.4 g/l) from 97.8 g/l glucose in lab-scale (2 l) batch fermentation. Thus, this metabolically engineered strain was able to produce 99% of total solvent produced as fuel alcohols. The scalability and stability of BKM19 (pIPA100) were evaluated at 200 l pilot-scale fermentation, which showed that the fuel alcohol yield could be improved to 0.37 g/g as compared to 0.29 g/g obtained at lab-scale fermentation, while attaining a similar titer. To the best of our knowledge, this is the highest titer of IBE achieved and the first report on the large scale fermentation of C. acetobutylicum for IBE production. © 2013 American Institute of Chemical Engineers.

  17. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel.

    PubMed

    Mase, Kentaro; Yoneda, Masaki; Yamada, Yusuke; Fukuzumi, Shunichi

    2016-05-04

    Hydrogen peroxide (H2O2) in water has been proposed as a promising solar fuel instead of gaseous hydrogen because of advantages on easy storage and high energy density, being used as a fuel of a one-compartment H2O2 fuel cell for producing electricity on demand with emitting only dioxygen (O2) and water. It is highly desired to utilize the most earth-abundant seawater instead of precious pure water for the practical use of H2O2 as a solar fuel. Here we have achieved efficient photocatalytic production of H2O2 from the most earth-abundant seawater instead of precious pure water and O2 in a two-compartment photoelectrochemical cell using WO3 as a photocatalyst for water oxidation and a cobalt complex supported on a glassy-carbon substrate for the selective two-electron reduction of O2. The concentration of H2O2 produced in seawater reached 48 mM, which was high enough to operate an H2O2 fuel cell.

  18. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system.

    PubMed

    Torella, Joseph P; Gagliardi, Christopher J; Chen, Janice S; Bediako, D Kwabena; Colón, Brendan; Way, Jeffery C; Silver, Pamela A; Nocera, Daniel G

    2015-02-24

    Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2, along with H2 and O2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations.

  19. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel

    NASA Astrophysics Data System (ADS)

    Mase, Kentaro; Yoneda, Masaki; Yamada, Yusuke; Fukuzumi, Shunichi

    2016-05-01

    Hydrogen peroxide (H2O2) in water has been proposed as a promising solar fuel instead of gaseous hydrogen because of advantages on easy storage and high energy density, being used as a fuel of a one-compartment H2O2 fuel cell for producing electricity on demand with emitting only dioxygen (O2) and water. It is highly desired to utilize the most earth-abundant seawater instead of precious pure water for the practical use of H2O2 as a solar fuel. Here we have achieved efficient photocatalytic production of H2O2 from the most earth-abundant seawater instead of precious pure water and O2 in a two-compartment photoelectrochemical cell using WO3 as a photocatalyst for water oxidation and a cobalt complex supported on a glassy-carbon substrate for the selective two-electron reduction of O2. The concentration of H2O2 produced in seawater reached 48 mM, which was high enough to operate an H2O2 fuel cell.

  20. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel

    PubMed Central

    Mase, Kentaro; Yoneda, Masaki; Yamada, Yusuke; Fukuzumi, Shunichi

    2016-01-01

    Hydrogen peroxide (H2O2) in water has been proposed as a promising solar fuel instead of gaseous hydrogen because of advantages on easy storage and high energy density, being used as a fuel of a one-compartment H2O2 fuel cell for producing electricity on demand with emitting only dioxygen (O2) and water. It is highly desired to utilize the most earth-abundant seawater instead of precious pure water for the practical use of H2O2 as a solar fuel. Here we have achieved efficient photocatalytic production of H2O2 from the most earth-abundant seawater instead of precious pure water and O2 in a two-compartment photoelectrochemical cell using WO3 as a photocatalyst for water oxidation and a cobalt complex supported on a glassy-carbon substrate for the selective two-electron reduction of O2. The concentration of H2O2 produced in seawater reached 48 mM, which was high enough to operate an H2O2 fuel cell. PMID:27142725

  1. Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system

    PubMed Central

    Torella, Joseph P.; Gagliardi, Christopher J.; Chen, Janice S.; Bediako, D. Kwabena; Colón, Brendan; Way, Jeffery C.; Silver, Pamela A.; Nocera, Daniel G.

    2015-01-01

    Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2, along with H2 and O2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations. PMID:25675518

  2. Selection and properties of alternative forming fluids for TRISO fuel kernel production

    NASA Astrophysics Data System (ADS)

    Baker, M. P.; King, J. C.; Gorman, B. P.; Marshall, D. W.

    2013-01-01

    Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardous alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ˜10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1-bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.

  3. Selection and properties of alternative forming fluids for TRISO fuel kernel production

    SciTech Connect

    Baker, M. P.; King, J. C.; Gorman, B. P.; Marshall, Doug W.

    2013-01-01

    Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardous alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ~10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1- bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.

  4. Comparative study of combustion product emissions of Pakistani coal briquettes and traditional Pakistani domestic fuels

    SciTech Connect

    Wachter, E.A.; Gammage, R.B.; Haas, J.W. III; Wilson, D.L. ); DePriest, J.C.; Wade, J. ); Ahmad, N.; Sibtain, F.; Zahid Raza, M. )

    1992-10-01

    A comparative emissions study was conducted on combustion products of various solid domestic cooking fuels; the objective was to compare relative levels of organic and inorganic toxic emissions from traditional Pakistani fuels (wood, wood charcoal, and dried animal dung) with manufactured low-rank coal briquettes (Lakhra and Sor- Range coals) under conditions simulating domestic cooking. A small combustion shed 12 m[sup 3] internal volume, air exchange rate 14 h[sup [minus]1] was used to simulate south Asian cooking rooms. 200-g charges of the various fuels were ignited in an Angethi stove located inside the shed, then combusted to completion; effluents from this combustion were monitored as a function of time. Measurements were made of respirable particulates, volatile and semi-volatile organics, CO, SO[sub 2], and NO[sub x]. Overall it appears that emissions from coal briquettes containing combustion amendments (slaked lime, clay, and potassium nitrate oxidizer) are no greater than emissions from traditional fuels, and in some cases are significantly lower; generally, emissions are highest for all fuels in the early stages of combustion.

  5. Comparative study of combustion product emissions of Pakistani coal briquettes and traditional Pakistani domestic fuels

    SciTech Connect

    Wachter, E.A.; Gammage, R.B.; Haas, J.W. III; Wilson, D.L.; DePriest, J.C.; Wade, J.; Ahmad, N.; Sibtain, F.; Zahid Raza, M.

    1992-10-01

    A comparative emissions study was conducted on combustion products of various solid domestic cooking fuels; the objective was to compare relative levels of organic and inorganic toxic emissions from traditional Pakistani fuels (wood, wood charcoal, and dried animal dung) with manufactured low-rank coal briquettes (Lakhra and Sor- Range coals) under conditions simulating domestic cooking. A small combustion shed 12 m{sup 3} internal volume, air exchange rate 14 h{sup {minus}1} was used to simulate south Asian cooking rooms. 200-g charges of the various fuels were ignited in an Angethi stove located inside the shed, then combusted to completion; effluents from this combustion were monitored as a function of time. Measurements were made of respirable particulates, volatile and semi-volatile organics, CO, SO{sub 2}, and NO{sub x}. Overall it appears that emissions from coal briquettes containing combustion amendments (slaked lime, clay, and potassium nitrate oxidizer) are no greater than emissions from traditional fuels, and in some cases are significantly lower; generally, emissions are highest for all fuels in the early stages of combustion.

  6. Innovative Fresh Water Production Process for Fossil Fuel Plants

    SciTech Connect

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2006-09-29

    This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report summarizes the progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. Detailed heat and mass transfer analyses required to size and analyze the diffusion tower using a heated water input are described. The analyses agree quite well with the current data and the information available in the literature. The direct contact condenser has also been thoroughly analyzed and the system performance at optimal operating conditions has been considered using a heated water/ambient air input to the diffusion tower. The diffusion tower has also been analyzed using a heated air input. The DDD laboratory facility has successfully been modified to include an air heating section. Experiments have been conducted over a range of parameters for two different cases: heated air/heated water and heated air/ambient water. A theoretical heat and mass transfer model has been examined for both of these cases and agreement between the experimental and theoretical data is good. A parametric study reveals that for every liquid mass flux there is an air mass flux value where the diffusion tower energy consumption is minimal and an air mass flux where the fresh water production flux is maximized. A study was also performed to compare the DDD process with different inlet operating conditions as well as different packing. It is shown that the heated air/heated water case is more capable of greater fresh water production with the same energy consumption than the ambient air/heated water process at high liquid mass flux. It is also shown that there can be

  7. Switchgrass biomass to ethanol production economics: Field to fuel approach

    NASA Astrophysics Data System (ADS)

    Haque, Mohua

    Scope and Method of Study. Switchgrass has been proposed as a dedicated energy crop. The first essay determines switchgrass yield response to nitrogen fertilizer for a single annual harvest in July and for a single annual harvest in October based on a field experiments conducted at Stillwater, OK. Data were fitted to several functional forms to characterize both the July harvest and the October harvest response functions. Extending the harvest window to take advantage of reduction in harvest machinery investment costs has important biological consequences. The second essay determines the cost to deliver a ton of switchgrass biomass to a 2,000 tons per day plant located in Oklahoma. The model accounts for differences in yield and nitrogen fertilizer requirements across harvest months. The data were incorporated into a multi-region, multi-period, monthly time-step, mixed integer mathematical programming model that was constructed to determine the optimal strategy. Desirable feedstock properties, biomass to biofuel conversion rate, and investment required in plant differs depending on which conversion technology is used. The third essay determines the breakeven ethanol price for a cellulosic biorefinery. A comprehensive mathematical programming model that encompasses the chain from land acquisition to ethanol production was constructed and solved. Findings and Conclusions. The July and October harvest plateau yield of 4.36 and 5.49 tons per acre were achieved with an estimated annual nitrogen fertilizer application of 80 and 63 pounds per acre, respectively. Farm gate production costs were estimated to be 60 per ton for the July harvest and 50 per ton for the October harvest. Based on the model results, the strategy of extending harvest over many months is economically preferable to a strategy of harvesting only in peak yield harvest months. Restricting harvest to a two-month harvest season would increase the cost to deliver feedstock by 23 percent. For a capital

  8. Production of Jet Fuels from Coal-Derived Liquids. Volume 13. Evaluation of Storage and Thermal Stability of Jet Fuels Derived from Coal Liquids

    DTIC Science & Technology

    1990-05-01

    at the Great Plains Gasification Plant ( GPGP ) in Beulah, North Dakota. Funding was provided to the Department of Energy. (DOE), Pittsburgh Energy...Petroleum and Energy Research-(NIPER)>of the lIT Research Institute to study the storage and thermal stability of a JP-8 fuel produced from the GPGP liquid by...fuel produced from the GPGP liquid by-product streams. DOE/PETC was funded through Military Interdepartmental Purchase Request (MIPR) FY1455-86- N0657

  9. Properties and performance of glucoamylases for fuel ethanol production.

    PubMed

    Saville, Bradley A; Huang, Chunbei; Yacyshyn, Vince; Desbarats, Andrew

    2006-01-01

    Studies were conducted on maltodextrin saccharification and on simultaneous saccharification and fermentation (SSF) with various commercial glucoamylases. In kinetics studies, none of the glucoamylases were able to completely convert maltodextrin into glucose. Typically, about 85% conversion was obtained, and glucose yields were about 75%. Typically, the kinetics were biphasic, with 1 h of rapid conversion, then a significant reduction in rate. Data were consistent with strong product inhibition and/or enzyme inactivation. Some glucoamylases followed first-order kinetics, initially slower at dextrin conversion, but eventually achieving comparable conversion and glucose concentrations. Most of the glucoamylases were more active at 55 degrees C than at 35 degrees C, but pH had little effect on activity. Screening studies in an SSF system demonstrated little difference between the glucoamylases, with a few exceptions. Subsequent targeted studies showed clear differences in performance, depending on the fermentation temperature and yeast used, suggesting that these are key parameters that would guide the selection of a glucoamylase.

  10. A novel coal feeder for production of low sulfur fuel

    SciTech Connect

    Khang, S.J.; Lin, L.; Keener, T.C.; Yeh, P.

    1991-01-01

    A dual-screw feeder was designed for desulfurization of coal. This reactor contains two screw tubes, the inner tube acting as a coal pyrolizer and the outer tube acting as a desulfurizer with hot calcined lime pellets or other renewable sorbent pellets. The objectives of this project is to study the feasibility of an advanced concept of desulfurization and possibly some denitrification in this coal feeder. In this year, two basic studies have been performed: (1) the desulfurization and (2) the denitrification due to mild pyrolysis. Specifically, the following tasks have been performed: (1) Setting up the Dual-Screw reactor, (2) Determination of the pyrolysis product and the sulfur distribution in char, tar and gas based on experimental data, (3) Study of the devolatilization, the desulfurization kinetics and the denitrification kinetics and obtaining the basic kinetic parameters, (4) Study of the sulfur removal efficiency of lime pellets fed into the outer tube of the dual-feeder reactor, (5) Study of the effect of the coal particle size on pyrolysis and desulfurization, (6) Study of the coal pyrolysis and desulfurization using a TGA(Thermal Gravimetric Analyzer).

  11. Tapered fluidized bed bioreactor for environmental control and fuel production

    SciTech Connect

    Scott, C. D.; Hancher, C. W.; Arcuri, E. J.

    1980-01-01

    Fluidized bed bioreactors are under development for use in environmental control and energy production. The most effective systems utilize a tapered portion either throughout the column or at the top of the column. This taper allows a wide range of operating conditions without loss of the fluidized particulates, and in general, results in more stable operation. The system described here utilize fixed films of microorganisms that have attached themselves to the fluidized particles. Preliminary investigations of the attachment indicate that reactor performance is related to film thickness. The biological denitrification of aqueous waste streams is typical of processes under development that utilize fluidized bed bioreactors. This development has progressed to the pilot plant scale where two 20-cm-diam x 800-cm fluidized beds in series accept aqueous wastes with nitrate concentrations as high as 10,000 mg/l and denitrification rates greater than 50 g/l/day using residence times of less than 30 minutes in each reactor. Other applications include aerobic degradation of phenolic wastes at rates greater than 25 g/l/day and the conversion of glucose to ethanol.

  12. Microbial liquefaction of peat for the production of synthetic fuels

    SciTech Connect

    Gunasekaran, M.

    1988-01-01

    Objectives of this study were: to evaluate the potential of using various microorganisms to hydrolyse and liquify peat; to determine the optimal conditions for peat hydrolysis and liquefaction; to study the co-metabolizable substances; to separate the compounds present in liquified peat by alumina and silica acid chromatography and capillary gas chromatography; and to identify the compounds in liquified peat by capillary GC-Mass spectrometry. Organisms used in the study include: Coprinus comatus, Coriolus hirsutus, Ganoderma lucidum, Lentinus edodes, Lenzites trabea, Phanerochaete chrysosporium, Pleurotus ostreatus, P. sapidus, Polyporus adjustus, Neurospora sitophila, Rhizophus arrhizus, Bacillus subtilis, Acinetobacter sp. and Alcaligenes sp. The fungi were maintained and cultivated in potato dextrose agar at 30 C. The bacteria were maintained in nutrient agar at 30 C. We have also initiated work on coal solubilization in addition to the studies on peat liquefaction. A relatively new substratum or semi-solid base for culture media called Pluronic F-127, or Polyol (BASF, New Jersey). Objectives of this study were: (1) to study the growth patterns of Candida ML 13 on pluronic as substratum; (2) to determine the rate of microbial coal solubilization on pluronic F-127 amended in different growth media; (3) to separate the mycelial mat of Candida ML 13 from unsolubilized coal particles and solubilized coal products from pluronic F-127; (4) to determine the effects of pH on microbial coal solubilization in pluronic F-127 media; (5) the effect of concentration of pluronic F-127 in media on coal solubilization; and, (6) to study the role of extracellular factors secreted by Candida ML 13 on coal solubilization in pluronic F-127 media. Results are discussed. 4 refs.

  13. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    SciTech Connect

    Weakley, Steven A.; Brown, Scott A.

    2011-09-29

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). To do this, Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify hydrogen- and fuel-cell-related patents that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of hydrogen- and fuel-cell-related grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs, and within the FCT portfolio.

  14. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    SciTech Connect

    Weakley, Steven A.

    2012-09-28

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify patents related to hydrogen and fuel cells that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents’ current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs that are related to hydrogen and fuel cells.

  15. Design, engineering, and construction of photosynthetic microbial cell factories for renewable solar fuel production.

    PubMed

    Lindblad, Peter; Lindberg, Pia; Oliveira, Paulo; Stensjö, Karin; Heidorn, Thorsten

    2012-01-01

    There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H(2) production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted.

  16. Partitioning of selected fission products from irradiated oxide fuel induced by thermal treatment

    NASA Astrophysics Data System (ADS)

    Shcherbina, Natalia; Kivel, Niko; Günther-Leopold, Ines

    2013-06-01

    The release of fission products (FPs) from spent nuclear fuel (SNF) has been studied as a function of the temperature and redox conditions. The present paper concerns essentially the high temperature separation of Cs and Sr from irradiated pressurized (PWR) and boiling water reactor (BWR) fuel of different burn-up levels with use of an in-house designed system for inductive vaporization (InVap). Using thermodynamic calculations with the Module of Fission Product Release (MFPR) code along with annealing experiments on SNF in the InVap it was shown that the speciation of Cs and Sr, hence their release behavior at high temperature, is sensitive to the redox conditions during thermal treatment. It was demonstrated that annealing conditions in the InVap can be adjusted in the way to promote the release of selected FPs without significant loss of the fuel matrix or actinides: complete release of Cs and I was achieved during treatment of irradiated fuel at 1800 °C under reducing atmosphere (0.7% H2/Ar mixture). The developed partitioning procedure can be used for the SNF pretreatment as an advanced head-end step in the hydrometallurgical or pyrochemical reprocessing technology.

  17. Transportation fuel production by combination of LDPE thermal cracking and catalytic hydroreforming.

    PubMed

    Escola, J M; Aguado, J; Serrano, D P; Briones, L

    2014-11-01

    Fuel production from plastics is a promising way to reduce landfilling rates while obtaining valuable products. The usage of Ni-supported hierarchical Beta zeolite (h-Beta) for the hydroreforming of the oils coming from LDPE thermal cracking has proved to produce high selectivities to gasoline and diesel fuels (>80%). In the present work, the effect of the Ni loading on Ni/h-Beta is investigated in the hydroreforming of the oils form LDPE thermal cracking. h-Beta samples were impregnated with Ni nitrate, calcined and reduced in H2 up to 550°C to achieve different Ni contents: 1.5%, 4%, 7% and 10%. Larger and more easily reducible metal particles were obtained on Ni 7%/h-Beta and Ni 10%/h-Beta. Hydroreforming tests were carried out in autoclave reactor at 310°C, under 20 bar H2, for 45 min. Ni content progressively increased the amount of gases at the expenses of diesel fractions, while gasoline remained approximately constant about 52-54%. Maximum selectivity to automotive fuels (∼81%) was obtained with Ni 7%/h-Beta. Ni loading also enhanced olefins saturation up to Ni 7%/h-Beta. High cetane indices (71-86) and octane numbers (89-91) were obtained over all the catalysts. Regarding the different studied Ni contents, Ni 7%/h-Beta constitutes a rather promising catalyst for obtaining high quality fuels from LDPE thermal cracking oils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Grain boundary sweeping and dissolution effects on fission product behavior under severe fuel damage accident conditions

    SciTech Connect

    Rest, J.

    1985-10-01

    The theoretical FASTGRASS-VFP model has been used in the interpretation of fission gas, iodine, tellurium, and cesium release from severe-fuel-damage (SFD) tests performed in the PBF reactor in Idaho. A theory of grain boundary sweeping of gas bubbles, gas bubble behavior during fuel liquefaction (destruction of grain boundaries due to formation of a U-rich melt phase), and during U-Zr eutectic melting has been included within the FASTGRASS-VFP formalism. The grain-boundary-sweeping theory considers the interaction between the moving grain boundary and two distinct size classes of bubbles, those on grain faces and on grain edges. The theory of the effects of fuel liquefaction and U-Zr eutectic melting on fission product behavior considers the migration and coalescence of fission gas bubbles in either molten uranium, or a zircaloy-uranium eutectic melt. The FASTGRASS-VFP predictions, measured release rates from the above tests, and previously published release rates are compared and differences between fission product behavior in trace-irradiated and in normally irradiated fuel are highlighted.

  19. MINING PROCESS AND PRODUCT INFORMATION FROM PRESSURE FLUCTUATIONS WITHIN A FUEL PARTICLE COATER

    SciTech Connect

    Douglas W. Marshall; Charles M. Barnes

    2008-09-01

    The Next Generation Nuclear Power (NGNP) Fuel Development and Qualification Program included the design, installation, and testing of a 6-inch diameter nuclear fuel particle coater to demonstrate quality TRISO fuel production on a small industrial scale. Scale-up from the laboratory-scale coater faced challenges associated with an increase in the kernel charge mass, kernel diameter, and a redesign of the gas distributor to achieve adequate fluidization throughout the deposition of the four TRISO coating layers. TRISO coatings are applied at very high temperatures in atmospheres of dense particulate clouds, corrosive gases, and hydrogen concentrations over 45% by volume. The severe environment, stringent product and process requirements, and the fragility of partially-formed coatings limit the insertion of probes or instruments into the coater vessel during operation. Pressure instrumentation were installed on the gas inlet line and exhaust line of the 6-inch coater to monitor the bed differential pressure and internal pressure fluctuations emanating from the fuel bed as a result of bed and gas “bubble” movement. These instruments are external to the particle bed and provide a glimpse into the dynamics of fuel particle bed during the coating process and data that could be used to help ascertain the adequacy of fluidization and, potentially, the dominant fluidization regimes. Pressure fluctuation and differential pressure data are not presently useful as process control instruments, but data suggest a link between the pressure signal structure and some measurable product attributes that could be exploited to get an early estimate of the attribute values.

  20. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  1. Engineered product storage under the advanced fuel cycle initiative. Part II: Conceptual storage scenarios

    NASA Astrophysics Data System (ADS)

    Kaminski, Michael D.

    2005-12-01

    The Advanced Fuel Cycle Initiative (AFCI) of the US Department of Energy stresses waste minimization within an integrated nuclear fuel cycle. In one possible future fuel cycle scenario, the radionuclides 244Cm and 241Am are placed in decay storage until a capability for fast-spectrum transmutation is available. We discuss the scale of hypothetical wet and dry storage facilities for cesium/strontium and americium/curium products. Because of the extended storage period for cesium/strontium products, underground storage appears to be the option most acceptable to regulatory policy. Several underground designs are discussed. To reduce the required underground storage space, we recommend a pre-staging period where the cesium/strontium products are cooled in a small pool for 30-50 years. Americium and curium products would require storage for not more than approximately 50 years. For this reason, and because of the high thermal power density, pool storage appears to be the best option for americium and curium.

  2. Co-production of electricity and alternate fuels from coal. Final report, August 1995

    SciTech Connect

    1995-12-31

    The Calderon process and its process development unit, PDU, were originally conceived to produce two useful products from a bituminous coal: a desulfurized medium BTU gas containing primarily CO, H{sub 2}, CH{sub 4}, CO{sub 2}, and H{sub 2}O; and a desulfurized low BTU gas containing these same constituents plus N{sub 2} from the air used to provide heat for the process through the combustion of a portion of the fuel. The process was viewed as a means for providing both a synthesis gas for liquid fuel production (perhaps CH{sub 3}OH, alternatively CH{sub 4} or NH{sub 3}) and a pressurized, low BTU fuel gas, for gas turbine based power generation. The Calderon coal process comprises three principle sections which perform the following functions: coal pyrolysis in a continuous, steady flow unit based on coke oven technology; air blown, slagging, coke gasification in a moving bed unit based on a blast furnace technology; and a novel, lime pebble based, product gas processing in which a variety of functions are accomplished including the cracking of hydrocarbons and the removal of sulfur, H{sub 2}S, and of particulates from both the medium and low BTU gases. The product gas processing unit, based on multiple moving beds, has also been conceived to regenerate the lime pebbles and recover sulfur as elemental S.

  3. Preliminary evaluation of fungicidal and termiticidal activities of filtrates from biomass slurry fuel production.

    PubMed

    Kartal, S N; Imamura, Y; Tsuchiya, F; Ohsato, K

    2004-10-01

    Biomass slurry fuel (BSF) production has recently been developed as a natural energy for the conversion of solid biomass into fuel. In addition to using fuel, filtrates from BSF production may also serve a chemical source with several organic compounds. There is an increasing interest in the research and application of biomass-based filtrates. In this study, fungicidal and termiticidal properties of filtrates from BSF production using sugi (Cryptomeria japonica) and acacia (Acacia mangium) wood were evaluated in laboratory decay and termite resistance tests. Wood blocks treated with the filtrates showed increased resistance against brown-rot fungus, Fomitopsis palustris. However the filtrates from sugi wood processed at 270 degrees C which contained less phenolic compounds than the other filtrates were effective against white-rot fungus, Trametes versicolor. Phenolic compounds of filtrates seemed to play a role in the decay resistance tests however the filtrates did not increase the durability of the wood blocks against subterranean termites Coptotermes formosanus. Despite high acetic and lactic acid content of the filtrates, vanillin content of the filtrates may have served as an additional food source and promoted termite attack. It can be concluded that filtrates with phenolic compounds from lignin degradation during BSF production can be considered for targeted inhibition of brown-rot.

  4. Wood fuel production from young Piedmont oak stands of sprout origin

    SciTech Connect

    Harris, R.A.; Zahner, R.

    1984-06-01

    Total above ground tree weights were measured and fuel values calculated in 48 even-aged upland hardwood stands in the South Carolina Piedmont, aged 5 to 39 years since clearcutting, with oak site indices from 46 to 89. Due to well established root systems, growth of these sprout origin stands is rapid, even on poor sites, up to age 20 years. Mean annual increment of fuel value maximizes before 25 years on all sites, at 21.32 million Btu/acre/yr. on oak site 50, and at 33.62 million Btu/acre/yr. on site 90. Yields at age 30 years are about 650 million Btu/acre on typical poor sites. After age 30, the productivity of the poorer sites slows dramatically. With little potential of producing higher value products, a total wood fuel harvest between ages 20 and 30 years resulting in a vigorous regeneration of hardwood sprouts with good production rates over the next 20 to 30 years could be the most productive use of poorer sites. The vast acreages involved (over 1 million acres in the South Carolina Piedmont alone), coupled with the absence of costs and input energy in site preparation and maintenance, could prove utilization of this resource superior to cultivated energy plantations. 21 references.

  5. Occupational health and safety assessment of exposure to jet fuel combustion products in air medical transport.

    PubMed

    MacDonald, Russell D; Thomas, Laura; Rusk, Frederick C; Marques, Shauna D; McGuire, Dan

    2010-01-01

    Transport medicine personnel are potentially exposed to jet fuel combustion products. Setting-specific data are required to determine whether this poses a risk. This study assessed exposure to jet fuel combustion products, compared various engine ignition scenarios, and determined methods to minimize exposure. The Beechcraft King Air B200 turboprop aircraft equipped with twin turbine engines, using a kerosene-based jet fuel (Jet A-1), was used to measure products of combustion during boarding, engine startup, and flight in three separate engine start scenarios ("shielded": internal engine start, door closed; "exposed": ground power unit start, door open; and "minimized": ground power unit right engine start, door open). Real-time continuous monitoring equipment was used for oxygen, carbon dioxide, carbon monoxide, nitrogen dioxide, hydrogen sulfide, sulfur dioxide, volatile organic compounds, and particulate matter. Integrated methods were used for aldehydes, polycyclic aromatic hydrocarbons, volatile organic compounds, and aliphatic hydrocarbons. Samples were taken in the paramedic breathing zone for approximately 60 minutes, starting just before the paramedics boarded the aircraft. Data were compared against regulated time-weighted exposure thresholds to determine the presence of potentially harmful products of combustion. Polycyclic aromatic hydrocarbons, aldehydes, volatile organic compounds, and aliphatic hydrocarbons were found at very low concentrations or beneath the limits of detection. There were significant differences in exposures to particulates, carbon monoxide, and total volatile organic compound between the "exposed" and "minimized" scenarios. Elevated concentrations of carbon monoxide and total volatile organic compounds were present during the ground power unit-assisted dual-engine start. There were no appreciable exposures during the "minimized" or "shielded" scenarios. Air medical personnel exposures to jet fuel combustion products were

  6. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect

    Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-09-17

    This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO

  7. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    SciTech Connect

    Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

  8. Gaseous fission product management for molten salt reactors and vented fuel systems

    SciTech Connect

    Messenger, S. J.; Forsberg, C.; Massie, M.

    2012-07-01

    Fission gas disposal is one of the unresolved difficulties for Molten Salt Reactors (MSRs) and advanced reactors with vented fuel systems. As these systems operate, they produce many radioactive isotopes of xenon and krypton (e.g. {sup 135}Xe t{sub 1/2} = 9.14 hours and {sup 85}Kr t{sub 1/2}= 10.73 years). Removing these gases proves vital to the success of such reactor designs for two reasons. First, the gases act as large neutron sinks which decrease reactivity and must be counterbalanced by increasing fuel loading. Second, for MSRs, inert fission product gases naturally separate quickly from high temperature salts, thus creating high vapor pressure which poses safety concerns. For advanced reactors with solid vented fuel, the gases are allowed to escape into an off-gas system and thus must be managed. Because of time delays in transport of fission product gases in vented fuel systems, some of the shorter-lived radionuclides will decay away thereby reducing the fission gas source term relative to an MSR. To calculate the fission gas source term of a typical molten salt reactor, we modeled a 1000 MWe graphite moderated thorium MSR similar to that detailed in Mathieu et al. [1]. The fuel salt used in these calculations was LiF (78 mole percent) - (HN)F 4 (22 mole percent) with a heavy nuclide composition of 3.86% {sup 233}U and 96.14% {sup 232}Th by mass. Before we can remove the fission product gases produced by this reactor configuration, we must first develop an appropriate storage mechanism. The gases could be stored in pressurized containers but then one must be concerned about bottle failure. Methods to trap noble gases in matrices are expensive and complex. Alternatively, there are direct storage/disposal options: direct injection into the Earth or injecting a grout-based product into the Earth. Advances in drilling technologies, hydro fracture technologies, and methods for the sequestration of carbon dioxide from fossil fuel plants are creating new options

  9. Economics of on-farm production and use of vegetable oils for fuel

    SciTech Connect

    McIntosh, C.S.; Withers, R.V.; Smith, S.M.

    1982-01-01

    The technology of oilseed processing, on a small scale, is much simpler than that for ethanol production. This, coupled with the fact that most energy intensive farm operations use diesel powered equipment, has created substantial interest in vegetable oils as an alternative source of liquid fuel for agriculture. The purpose of this study was to estimate the impact on gross margins resulting from vegetable oil production and utilization in two case study areas, Latah and Power Counties, in Iadho. The results indicate that winter rape oil became a feasible alternative to diesel when the price of diesel reached $0.84 per liter in the Latah County model. A diesel price of $0.85 per liter was required in the Power County model before it became feasible to produce sunflower oil for fuel. 5 tables.

  10. Life cycle assessment of biohydrogen and biomethane production and utilisation as a vehicle fuel.

    PubMed

    Patterson, Tim; Esteves, Sandra; Dinsdale, Richard; Guwy, Alan; Maddy, Jon

    2013-03-01

    Environmental burdens for the production and utilisation of biomethane vehicle fuel or a biohydrogen/biomethane blend produced from food waste or wheat feed, based on data from two different laboratory experiments, have been compared. For food waste treated by batch processes the two stage system gave high hydrogen yields (84.2l H2kg(-1) VS added) but a lower overall energy output than the single stage system. Reduction in environmental burdens compared with diesel was achieved, supported by the diversion of waste from landfill. For wheat feed, the semi continuously fed two stage process gave low hydrogen yields (7.5l H2kg(-1) VS added) but higher overall energy output. The process delivers reduction in fossil fuel burdens, and improvements in process efficiencies will lead to reduction in CO2 burdens compared with diesel. The study highlights the importance of understanding and optimising biofuel production parameters according to the feedstock utilised.

  11. Carbonaceous material for production of hydrogen from low heating value fuel gases

    DOEpatents

    Koutsoukos, Elias P.

    1989-01-01

    A process for the catalytic production of hydrogen, from a wide variety of low heating value fuel gases containing carbon monoxide, comprises circulating a carbonaceous material between two reactors--a carbon deposition reactor and a steaming reactor. In the carbon deposition reactor, carbon monoxide is removed from a fuel gas and is deposited on the carbonaceous material as an active carbon. In the steaming reactor, the reactive carbon reacts with steam to give hydrogen and carbon dioxide. The carbonaceous material contains a metal component comprising from about 75% to about 95% cobalt, from about 5% to about 15% iron, and up to about 10% chromium, and is effective in suppressing the production of methane in the steaming reactor.

  12. Production and fuel characteristics of vegetable oil from oilseed crops in the Pacific Northwest

    SciTech Connect

    Auld, D.L.; Bettis, B.L.; Peterson, C.L.

    1982-01-01

    The purpose of this research was to evaluate the potential yield and fuel quality of various oilseed crops adapted to the Pacific Northwest as a source of liquid fuel for diesel engines. The seed yield and oil production of three cultivars of winter rape (Brassica napus L.), two cultivars of safflower (Carthamus tinctorius L.) and two cultivars of sunflower (Helianthus annuus L.) were evaluated in replicated plots at Moscow. Additional trials were conducted at several locations in Idaho, Oregon and Washington. Sunflower, oleic and linoleic safflower, and low and high erucic acid rapeseed were evaluated for fatty acid composition, energy content, viscosity and engine performance in short term tests. During 20 minute engine tests power output, fuel economy and thermal efficiency were compared to diesel fuel. Winter rape produced over twice as much farm extractable oil as either safflower or sunflower. The winter rape cultivars, Norde and Jet Neuf had oil yields which averaged 1740 and 1540 L/ha, respectively. Vegetable oils contained 94 to 95% of the KJ/L of diesel fuel, but were 11.1 to 17.6 times more viscous. Viscosity of the vegetable oils was closely related to fatty acid chain length and number of unsaturated bonds (R/sup 2/=.99). During short term engine tests all vegetable oils produced power outputs equivalent to diesel, and had thermal efficiencies 1.8 to 2.8% higher than diesel. Based on these results it appears that species and cultivars of oilseed crops to be utilized as a source of fuel should be selected on the basis of oil yield. 1 figure, 5 tables.

  13. EXPERIMENTAL STUDY OF THE NEW BIOCATALYST METHOD FOR BIODIESEL-FUEL BASED ON THE LIPASE PRODUCTION FUNGUS

    NASA Astrophysics Data System (ADS)

    Hata, Toshiro; Shimada, Miki; Toida, Jinichi

    This paper describes how to develop and evaluate a new biocatalyst method for biodiesel fuel based on the lipase production fungus. This method can convert waste vegetable oil into biodiesel fuel without alkaline waste fluid and byproducts (gly cerine). The main outcomes of this research were: (1) The biodiesel fuel can be manufactured from lipase production fungus (Rhizupus oryzae NBRC 9364). (2) The lipase activity can be enhanced by adding glucose and oil. (3) Phased addition of the methanol enhances the conversion rate of the biodiesel fuel (Maximum conversion rate is 85%). (4) The proposed method can improve vehicle exhaust emission and reduce byproducts (glycerine). We concluded that our proposed methods are effective for the production of biodiesel fuel from waste vegetable oil.

  14. Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production.

    PubMed

    de Jong, Sierk; Antonissen, Kay; Hoefnagels, Ric; Lonza, Laura; Wang, Michael; Faaij, André; Junginger, Martin

    2017-01-01

    The introduction of renewable jet fuel (RJF) is considered an important emission mitigation measure for the aviation industry. This study compares the well-to-wake (WtWa) greenhouse gas (GHG) emission performance of multiple RJF conversion pathways and explores the impact of different co-product allocation methods. The insights obtained in this study are of particular importance if RJF is included as an emission mitigation instrument in the global Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). Fischer-Tropsch pathways yield the highest GHG emission reduction compared to fossil jet fuel (86-104%) of the pathways in scope, followed by Hydrothermal Liquefaction (77-80%) and sugarcane- (71-75%) and corn stover-based Alcohol-to-Jet (60-75%). Feedstock cultivation, hydrogen and conversion inputs were shown to be major contributors to the overall WtWa GHG emission performance. The choice of allocation method mainly affects pathways yielding high shares of co-products or producing co-products which effectively displace carbon intensive products (e.g., electricity). Renewable jet fuel can contribute to significant reduction of aviation-related GHG emissions, provided the right feedstock and conversion technology are used. The GHG emission performance of RJF may be further improved by using sustainable hydrogen sources or applying carbon capture and storage. Based on the character and impact of different co-product allocation methods, we recommend using energy and economic allocation (for non-energy co-products) at a global level, as it leverages the universal character of energy allocation while adequately valuing non-energy co-products.

  15. Reduced carbon emission estimates from fossil fuel combustion and cement production in China.

    PubMed

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A; Feng, Kuishuang; Peters, Glen P; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-20

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  16. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    SciTech Connect

    Liu, Z.; Guan, D.; Wei, W.; Davis, S.; Ciais, P.; Bai, J; Peng, S.; Zhang, Q.; Hubacek, K.; Marland, Gregg; Andres, Robert Joseph; Crawford-Brown, D.; Lin, J.; Zhao, H.; Hong, C.; Boden, Thomas A.; Feng, K.; Peters, Glen P.; Xi, F.; Liu, J.; Li, Y.; Zhao, Y.; Zeng, Ning; He, K.

    2015-08-19

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China’s total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China’s carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000–2012 than the value reported by China’s national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China’s cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China’s CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China’s cumulative carbon emissions. Our findings suggest that overestimation of China’s emissions in 2000–2013 may be larger than China’s estimated total forest sink in 1990–2007 (2.66 gigatonnes of carbon) or China’s land carbon sink in 2000–2009 (2.6 gigatonnes of carbon).

  17. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    DOE PAGES

    Liu, Z.; Guan, D.; Wei, W.; ...

    2015-08-19

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China’s total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China’s carbon emissions using updated and harmonized energy consumption andmore » clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000–2012 than the value reported by China’s national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China’s cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China’s CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China’s cumulative carbon emissions. Our findings suggest that overestimation of China’s emissions in 2000–2013 may be larger than China’s estimated total forest sink in 1990–2007 (2.66 gigatonnes of carbon) or China’s land carbon sink in 2000–2009 (2.6 gigatonnes of carbon).« less

  18. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    NASA Astrophysics Data System (ADS)

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J.; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J.; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A.; Feng, Kuishuang; Peters, Glen P.; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-01

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = +/-7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  19. Computer model for refinery operations with emphasis on jet fuel production. Volume 1: Program description

    NASA Technical Reports Server (NTRS)

    Dunbar, D. N.; Tunnah, B. G.

    1978-01-01

    A FORTRAN computer program is described for predicting the flow streams and material, energy, and economic balances of a typical petroleum refinery, with particular emphasis on production of aviation turbine fuel of varying end point and hydrogen content specifications. The program has provision for shale oil and coal oil in addition to petroleum crudes. A case study feature permits dependent cases to be run for parametric or optimization studies by input of only the variables which are changed from the base case.

  20. Bio-based production of chemicals, materials and fuels -Corynebacterium glutamicum as versatile cell factory.

    PubMed

    Becker, Judith; Wittmann, Christoph

    2012-08-01

    Since their discovery almost 60 years ago, Corynebacterium glutamicum and related subspecies are writing a remarkable success story in industrial biotechnology. Today, these gram-positive soil bacteria, traditionally well-known as excellent producers of L-amino acids are becoming flexible, efficient production platforms for various chemicals, materials and fuels. This development is intensively driven by systems metabolic engineering concepts integrating systems biology and synthetic biology into strain engineering. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Production of Jet Fuels from Coal-Derived Liquids. Volume 8. Heteroatom Removal by Catalytic Processing

    DTIC Science & Technology

    1989-01-01

    distillation profiles of JP-4, JP-8, and GPGP tar oil stream ....................................... 7 2 Autoclave system used during tar oil upgrading...Table Title Page 1 Properties of JP-4, JP-8, and JP-8X aviation turbine fuels .... 3 2 Results of the elemental analyses of the GPGP liquid by...product streams ............................................ 4 3 Proton and carbon-13 NMR data for GPGP liquid streams ......... 5 4 Results of ASTM D86

  2. Molten carbonate fuel cell product development test environmental assessment/protection plan

    NASA Astrophysics Data System (ADS)

    1992-11-01

    The objective of proposed action is to conduct a 250-kW product development test of M-C Power Corporation's molten carbonate fuel cell concept, at the Kaiser Permanente San Diego Medical Center. A review of the environmental impact of this test indicates the following: no impact on solid waste disposal, water quality, noise levels, floodplains, wetlands, ecology, historic areas, or socioeconomic resources. Impacts on air quality are expected to be positive.

  3. Molten carbonate fuel cell product development test environmental assessment/protection plan

    SciTech Connect

    Brunton, Jack; Furukawa, Vance; Frost, Grant; Danna, Mike; Figueroa, Al; Scroppo, Joseph

    1992-11-01

    Objective of proposed action is to conduct a 250-kW product development test of M-C Power Corporation's molten carbonate fuel cell concept, at the Kaiser Permanente San Diego Medical Center. Review of environmental impacts of this test indicate the following: no impact on solid waste disposal, water quality, noise levels, floodplains, wetlands, ecology, historic areas, or socioeconomic resources. Impact on air quality are expected to be positive.

  4. Molten carbonate fuel cell product development test environmental assessment/protection plan

    SciTech Connect

    Not Available

    1992-11-01

    Objective of proposed action is to conduct a 250-kW product development test of M-C Power Corporation`s molten carbonate fuel cell concept, at the Kaiser Permanente San Diego Medical Center. Review of environmental impacts of this test indicate the following: no impact on solid waste disposal, water quality, noise levels, floodplains, wetlands, ecology, historic areas, or socioeconomic resources. Impact on air quality are expected to be positive.

  5. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect

    Gerald P. Huffman

    2003-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. These feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. Some highlights of the results obtained during the first year of the current research contract are summarized as: (1) Terminal alkynes are an effective chain initiator for Fischer-Tropsch (FT) reactions, producing normal paraffins with C numbers {ge} to that of the added alkyne. (2) Significant improvement in the product distribution towards heavier hydrocarbons (C{sub 5} to C{sub 19}) was achieved in supercritical fluid (SCF) FT reactions compared to that of gas-phase reactions. (3) Xerogel and aerogel silica supported cobalt catalysts were successfully employed for FT synthesis. Selectivity for diesel range products increased with increasing Co content. (4) Silicoaluminophosphate (SAPO) molecular sieve catalysts have been developed for methanol to olefin conversion, producing value-added products such as ethylene and propylene. (5) Hybrid Pt-promoted tungstated and sulfated zirconia catalysts are very effective in cracking n-C{sub 36} to jet and diesel fuel; these catalysts will be tested for cracking of FT wax. (6) Methane, ethane, and propane are readily decomposed to pure

  6. Plant for preparing and hydrogenating fossil fuels to prepare products low in sulfur content, and employment of these products for combined generation of the electric current and gas

    SciTech Connect

    Schuster, E.; Knizia, K.

    1986-07-01

    A plant is described for producing solid and gaseous desulfurizing fossil fuels for use in a gas turbine power plant and a steam power plant for electric power generation. The plant consists of operatively interconnected components including sequentially in combination: crusher means for crushing the fuel to a particle size not to exceed 0.1 mm., a vapor separator, means for supplying hot, substantially inert, flue gas to the crusher means to convey the crushed fuel to the separator with simultaneous evaporation of moisture therefrom, a preoxidation station, means to convey the fuel to the preoxidation station, means to convey the fuel to the preoxidation station, means to supply heated air to the preoxidation station to oxidize the fuel, a separator for separating the air from the oxidized fuel, a reaction chamber station and means to supply the chamber with the pre-oxidized fuel and in which chamber the gas content of the fuel is adjusted, means for supplying steam to the reaction chamber station to hydrolyze the fuel, a separator station past the reaction chamber station to separate the oxidized fuel from gas, an additional gas driven conveyor and distributor means for distributing the solid product from the reaction chamber station to the steam generator plant, means for extensively desulfurized gas leaving the separator from the reaction chamber station, distributor means for distributing the desulfurized gas to the gas turbine power plant and at least a portion of the gas to the steam generator plant.

  7. Novel Strategies for the Production of Fuels, Lubricants, and Chemicals from Biomass.

    PubMed

    Shylesh, Sankaranarayanapillai; Gokhale, Amit A; Ho, Christopher R; Bell, Alexis T

    2017-09-20

    Growing concern with the environmental impact of CO2 emissions produced by combustion of fuels derived from fossil-based carbon resources has stimulated the search for renewable sources of carbon. Much of this focus has been on the development of methods for producing transportation fuels, the major source of CO2 emissions today, and to a lesser extent on the production of lubricants and chemicals. First-generation biofuels such as bioethanol, produced by the fermentation of sugar cane- or corn-based sugars, and biodiesel, produced by the transesterification reaction of triglycerides with alcohols to form a mixture of long-chain fatty esters, can be blended with traditional fuels in limited amounts and also arise in food versus fuel debates. Producing molecules that can be drop-in solutions for fossil-derived products used in the transportation sector allows for efficient use of the existing infrastructure and is therefore particularly interesting. In this context, the most viable source of renewable carbon is abundantly available lignocellulosic biomass, a complex mixture of lignin, hemicellulose, and cellulose. Conversion of the carbohydrate portion of biomass (hemicellulose and cellulose) to fuels requires considerable chemical restructuring of the component sugars in order to achieve the energy density and combustion properties required for transportation fuels-gasoline, diesel, and jet. A different set of constraints must be met for the conversion of biomass-sourced sugars to lubricants and chemicals. This Account describes strategies developed by us to utilize aldehydes, ketones, alcohols, furfurals, and carboxylic acids derived from C5 and C6 sugars, acetone-butanol-ethanol (ABE) fermentation mixtures, and various biomass-derived carboxylic acids and fatty acids to produce fuels, lubricants, and chemicals. Oxygen removal from these synthons is achieved by dehydration, decarboxylation, hydrogenolysis, and hydrodeoxygenation, whereas reactions such as aldol

  8. Technological Alternatives or Use of Wood Fuel in Combined Heat and Power Production

    NASA Astrophysics Data System (ADS)

    Rusanova, Jekaterina; Markova, Darja; Bazbauers, Gatis; Valters, Kārlis

    2013-12-01

    Abstract Latvia aims for 40% share of renewable energy in the total final energy use. Latvia has large resources of biomass and developed district heating systems. Therefore, use of biomass for heat and power production is an economically attractive path for increase of the share of renewable energy. The optimum technological solution for use of biomass and required fuel resources have to be identified for energy planning and policy purposes. The aim of this study was to compare several wood fuel based energy conversion technologies from the technical and economical point of view. Three biomass conversion technologies for combined heat and electricity production (CHP) were analyzed: • CHP with steam turbine technology; • gasification CHP using gas engine; • bio-methane combined cycle CHP. Electricity prices for each alternative are presented. The results show the level of support needed for the analyzed renewable energy technologies and time period needed to reach price parity with the natural gas - fired combined cycle gas turbine (CCGT) CHPss. The results also show that bio-methane technology is most competitive when compared with CCGT among the considered technologies regarding fuel consumption and electricity production, but it is necessary to reduce investment costs to reach the electricity price parity with the natural gas CCGT.

  9. Mechanistic approach for nitride fuel evolution and fission product release under irradiation

    NASA Astrophysics Data System (ADS)

    Dolgodvorov, A. P.; Ozrin, V. D.

    2017-01-01

    A model for describing uranium-plutonium mixed nitride fuel pellet burning was developed. Except fission products generating, the model includes impurities of oxygen and carbon. Nitrogen behaviour in nitride fuel was analysed and the nitrogen chemical potential in solid solution with uranium-plutonium nitride was constructed. The chemical program module was tested with the help of thermodynamic equilibrium phase distribution calculation. Results were compared with analogous data in literature, quite good agreement was achieved, especially for uranium sesquinitride, metallic species and some oxides. Calculation of a process of nitride fuel burning was also conducted. Used mechanistic approaches for fission product evolution give the opportunity to find fission gas release fractions and also volumes of intergranular secondary phases. Calculations present that the most massive secondary phases are the oxide and metallic phases. Oxide phase contain approximately 1 % wt of substance over all time of burning with slightly increasing of content. Metallic phase has considerable rising of mass and by the last stage of burning it contains about 0.6 % wt of substance. Intermetallic phase has less increasing rate than metallic phase and include from 0.1 to 0.2 % wt over all time of burning. The highest element fractions of released gaseous fission products correspond to caesium and iodide.

  10. Biomass production and bioconversion to both fuel and food employing solar energy technology - An alternative to conventional farming and the conversion of food to fuel

    NASA Astrophysics Data System (ADS)

    Wise, D. L.

    1981-01-01

    A process for the bioconversion of high-yield biomass to both fuel and food, judged more efficient than the conventional production of soybean meal and methanol, is described. Attention is given the diversion of farm land for the production of a conventional food/energy crop, such as corn, that will be subsequently converted to a liquid fuel. The technique presented involves growing biomass at optimum crop yield, then converting it to synthesis gas and finally, through bioconversion, to single-cell protein and methanol. Background for the various aspects of the system and its preliminary engineering economics are provided.

  11. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (Phb) from a Process Relevant Lignocellulosic Derived Sugar

    SciTech Connect

    Wang, Wei; Mohagheghi, Ali; Mittal, Ashutosh; Pilath, Heidi; Johnson, David K.

    2015-03-22

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. In recent years a great effort has been made in bacterial production of PHB, yet the production cost of the polymer is still much higher than conventional petrochemical plastics. The high cost of PHB is because the cost of the substrates can account for as much as half of the total product cost in large scale fermentation. Thus searching for cheaper and better substrates is very necessary for PHB production. In this study, we demonstrate production of PHB by Cupriavidus necator from a process relevant lignocellulosic derived sugar stream, i.e., saccharified hydrolysate slurry from pretreated corn stover. Good cell growth was observed on slurry saccharified with advanced enzymes and 40~60% of PHB was accumulated in the cells. The mechanism of inhibition in the toxic hydrolysate generated by pretreatment and saccharification of biomass, will be discussed.

  12. Technical investigation of a pyrophoric event involving corrosion products from HEU ZPPR fuel plates

    SciTech Connect

    Totemeier, T. C.

    2000-02-02

    A pyrophoric event recently occurred which involved corrosion products collected from highly-enriched uranium (HEU) fuel plates used in the Zero Power Physics Reactor (ZPPR). This paper summarizes the event and its background, and presents the results of an investigation into its source and mechanism. The investigation focused on characterization of corrosion product samples similar to those involved in the event using thermo-gravimetric analysis (TGA). Burning curve TGA tests were performed to measure the ignition temperature and hydride fractions of corrosion products in several different conditions to assess the effects of passivation treatment and long-term storage on chemical reactivity. The hydride fraction and ignition temperature of the corrosion products were found to be strongly dependent on the corrosion extent of the source metal. The results indicate that the energy source for the event was a considerable quantity of uranium hydride present in the corrosion products, but the specific ignition mechanism could not be identified.

  13. Dual-fuel production from restaurant grease trap waste: bio-fuel oil extraction and anaerobic methane production from the post-extracted residue.

    PubMed

    Kobayashi, Takuro; Kuramochi, Hidetoshi; Maeda, Kouji; Tsuji, Tomoya; Xu, Kaiqin

    2014-10-01

    An effective way for restaurant grease trap waste (GTW) treatment to generate fuel oil and methane by the combination of physiological and biological processes was investigated. The heat-driven extraction could provide a high purity oil equivalent to an A-grade fuel oil of Japanese industrial standard with 81-93 wt% of extraction efficiency. A post-extracted residue was treated as an anaerobic digestion feedstock, and however, an inhibitory effect of long chain fatty acid (LCFA) was still a barrier for high-rate digestion. From the semi-continuous experiment fed with the residual sludge as a single substrate, it can be concluded that the continuous addition of calcium into the reactor contributed to reducing LCFA inhibition, resulting in the long-term stable operation over one year. Furthermore, the anaerobic reactor performed well with 70-80% of COD reduction and methane productivity under an organic loading rate up to 5.3g-COD/L/d.

  14. Electricity production from and biodegradation of quinoline in the microbial fuel cell.

    PubMed

    Zhang, Cuiping; Liu, Guangli; Zhang, Renduo; Luo, Haiping

    2010-01-01

    Quinoline has become one of the common contaminants in groundwater and soil, discharged from the process of coal tar distillation and creosote wood preservation, as well as fossil fuel facilities. The aim of this study was to investigate the feasibility of electricity production from and biodegradation of quinoline in the microbial fuel cell (MFC). Experiments were conducted in the MFC using an initial 500 mg/L quinoline with different glucose concentrations as substrates. Results showed maximum voltages of 558, 469, and 328 mV for the substrates with ratios of quinoline to glucose of 1:1, 5:3, 5:1, respectively. The MFC accomplished complete quinoline biodegradation within 6 h. Experiments were then conducted using 200 mg/L quinoline only as the MFC fuel, resulting in the maximal voltage of 145 mV and maximal power density of 16.4 mW/m(2). GC/MS analyses showed that 2(1H)quinolinone accumulated in the anode solution and later disappeared. The results clearly demonstrated the feasibility to use quinoline as the MFC fuel to generate electricity and enhance quinoline biodegradation simultaneously.

  15. Life cycle analysis of fuel production from fast pyrolysis of biomass.

    PubMed

    Han, Jeongwoo; Elgowainy, Amgad; Dunn, Jennifer B; Wang, Michael Q

    2013-04-01

    A well-to-wheels (WTW) analysis of pyrolysis-based gasoline was conducted and compared with petroleum gasoline. To address the variation and uncertainty in the pyrolysis pathways, probability distributions for key parameters were developed with data from literature. The impacts of two different hydrogen sources for pyrolysis oil upgrading and of two bio-char co-product applications were investigated. Reforming fuel gas/natural gas for H2 reduces WTW GHG emissions by 60% (range of 55-64%) compared to the mean of petroleum fuels. Reforming pyrolysis oil for H2 increases the WTW GHG emissions reduction up to 112% (range of 97-126%), but reduces petroleum savings per unit of biomass used due to the dramatic decline in the liquid fuel yield. Thus, the hydrogen source causes a trade-off between GHG reduction per unit fuel output and petroleum displacement per unit biomass used. Soil application of biochar could provide significant carbon sequestration with large uncertainty. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Accelerator Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    SciTech Connect

    Brown, Nicholas R.; Heidet, Florent; Haj Tahar, Malek

    2016-01-01

    This article is a review of several accelerator–reactor interface issues and nuclear fuel cycle applications of acceleratordriven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systems on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.

  17. Accelerator Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    DOE PAGES

    Brown, Nicholas R.; Heidet, Florent; Haj Tahar, Malek

    2016-01-01

    This article is a review of several accelerator–reactor interface issues and nuclear fuel cycle applications of acceleratordriven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systemsmore » on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.« less

  18. Lanthanide fission product separation from the transuranics in the integral fast reactor fuel cycle demonstration

    SciTech Connect

    Goff, K.M.; Mariani, R.D.; Benedict, R.W.; Ackerman, J.P.

    1993-12-31

    The Integral Fast Reactor (IFR) is an innovative reactor concept being developed by Argonne National Laboratory. This reactor uses liquid-metal cooling and metallic fuel. Its spent fuel will be reprocessed using a pyrochemical method employing molten salts and liquid metals in an electrofining operation. The lanthanide fission products are a concern during reprocessing because of heating and fuel performance issues, so they must be removed periodically from the system to lessen their impact. The actinides must first be removed form the system before the lanthanides are removed as a waste stream. This operation requires a relatively good lanthanide-actinide separation to minimize both the amount of transuranic material lost in the waste stream and the amount of lanthanides collected when the actinides are first removed. A computer code, PYRO, that models these operations using thermodynamic and empirical data was developed at Argonne and has been used to model the removal of the lanthanides from the electrorefiner after a normal operating campaign. Data from this model are presented. The results demonstrate that greater that 75% of the lanthanides can be separated from the actinides at the end of the first fuel reprocessing campaign using only the electrorefiner vessel.

  19. Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice.

    PubMed

    Diederichs, Gabriel Wilhelm; Ali Mandegari, Mohsen; Farzad, Somayeh; Görgens, Johann F

    2016-09-01

    In this study, a techno-economic comparison was performed considering three processes (thermochemical, biochemical and hybrid) for production of jet fuel from lignocellulosic biomass (2G) versus two processes from first generation (1G) feedstocks, including vegetable oil and sugar cane juice. Mass and energy balances were constructed for energy self-sufficient versions of these processes, not utilising any fossil energy sources, using ASPEN Plus® simulations. All of the investigated processes obtained base minimum jet selling prices (MJSP) that is substantially higher than the market jet fuel price (2-4 fold). The 1G process which converts vegetable oil, obtained the lowest MJSPs of $2.22/kg jet fuel while the two most promising 2G processes- the thermochemical (gasification and Fischer-Tropsch synthesis) and hybrid (gasification and biochemical upgrading) processes- reached MJSPs of $2.44/kg and $2.50/kg jet fuel, respectively. According to the economic sensitivity analysis, the feedstock cost and fixed capital investment have the most influence on the MJSP.

  20. Chemical forms of solid fission products in the irradiated uranium—plutonium mixed nitride fuel

    NASA Astrophysics Data System (ADS)

    Arai, Yasuo; Maeda, Atsushi; Shiozawa, Ken-ichi; Ohmichi, Toshihiko

    1994-06-01

    Chemical forms of solid fission products in the irradiated (U, Pu)N fuel were estimated by both thermodynamic equilibrium calculation and electron microprobe analysis on burnup simulated samples prepared by carbothermic reduction. Besides the MX type matrix phase dissolving zirconium, niobium, yttrium and rare earth elements, the existence of two kinds of inclusion was recognized. One is URu 3 type intermetallic compound constituted by uranium and platinum group elements. The other is an alloy containing molybdenum as a principal constituent. Furthermore, the swelling rate due to solid fission products precipitation was evaluated to be about 0.5% per %FIMA.